
Automated Deductive Verification

of Probabilistic Programs

Kevin Batz

Φ

Automated Deductive Verification of
Probabilistic Programs

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der
RWTH Aachen University zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Kevin Stefan Batz, M. Sc.
aus Grevenbroich

Berichter: Prof. Dr. Ir. Dr. h. c. Joost-Pieter Katoen
Prof. Ichiro Hasuo, Ph.D.

Tag der mündlichen Prüfung: 20.12.2024

Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek online verfügbar.

v

Abstract

We study both foundational and practical aspects of the automated deductive
verification of discrete probabilistic programs. Our special emphasis is on the
verification of possibly unbounded loops by quantitative loop invariants. We
build upon Kozen’s, McIver & Morgan’s, and Kaminski’s weakest preexpectation
calculus for reasoning about expected outcomes such as the probability of termi-
nating in some postcondition or the expected final value of a program variable.

The weakest preexpectation calculus replaces predicates from classical pro-
gram verification by more general expectations — functions mapping program
states to numbers instead of truth values. We study a syntax for specifying expec-
tations, providing a foundation for automated deductive probabilistic program
verifiers. We prove that our syntax is expressive and hence obtain a relatively
complete verification system for reasoning about expected outcomes.

We then present three different approaches for automating the verification
of bounds on expected outcomes of linear loops, all of which combine weakest
preexpectation reasoning with Satisfiability Modulo Theories (SMT) techniques:

1. We revisit two well-established verification techniques for transition sys-
tems, k-induction and bounded model checking (BMC), in the more gen-
eral setting of bounding least fixpoints of functions over complete lattices,
yielding latticed k-induction and latticed BMC. Instantiating our latticed
techniques with the weakest preexpectation calculus enables the fully
automatic verification of linear loops taken from the literature.

2. We present a counterexample-guided inductive synthesis approach for the
synthesis of quantitative loop invariants. This enables the fully automatic
verification of bounds on both expected outcomes and expected runtimes.
Our implementation synthesizes quantitative invariants of various linear
loops taken from the literature, can beat state-of-the-art probabilistic
model checkers on finite-state programs, and is competitive with modern
tools dedicated to invariant synthesis or expected runtime reasoning.

3. We present PrIC3 — the first truly quantitative extension of the state-of-
the-art qualitative symbolic model checking algorithm IC3 to symbolic
model checking of Markov decision processes. By marrying PrIC3 with the
weakest preexpectation calculus, we obtain a symbolic model checking
algorithm for probabilistic programs. Alongside, we present an implemen-
tation of PrIC3 featuring IC3-specific techniques such as generalization.

vii

Zusammenfassung

Wir studieren sowohl grundlegende als auch praktische Aspekte der automati-
sierten deduktiven Verifikation von diskreten probabilistischen Programmen.
Unser besonderer Schwerpunkt liegt auf der Verifikation von möglicherwei-
se unbeschränkten Schleifen mittels quantitativer Schleifeninvarianten. Wir
bauen auf Kozens, McIver & Morgans und Kaminskis Kalkül der Schwächsten
Vorerwartung auf, um erwartete Ergebnisse, wie z.B. die Wahrscheinlichkeit, in
einer Nachbedingung zu terminieren oder den erwarteten finalen Wert einer
Programmvariablen, zu ermitteln.

Der Kalkül der Schwächsten Vorerwartung ersetzt Prädikate aus der klassi-
schen Programmverifikation durch allgemeinere Erwartungen — Funktionen,
die Programmzustände auf Zahlen anstelle von Wahrheitswerten abbilden. Wir
untersuchen eine Syntax zur Spezifikation von Erwartungen, die eine Grundla-
ge für automatisierte deduktive probabilistische Programmverifizierer liefert.
Wir beweisen, dass unsere Syntax aussagekräftig ist und erhalten so ein relativ
vollständiges Verifikationssystem für erwartete Ergebnisse.

Anschließend stellen wir drei verschiedene Ansätze für die automatisierte
Verifikation von Schranken auf erwartete Ergebnisse linearer Schleifen. Diese
Ansätze kombinieren den Kalkül der Schwächsten Vorerwartung mit Techniken
der Erfüllbarkeit Modulo Theorien:

1. Wir betrachten zwei etablierte Verifikationstechniken für Übergangssyste-
me, k-Induktion und begrenzte Modellüberprüfung (BMÜ), im allgemei-
neren Rahmen der Begrenzung kleinster Fixpunkte von Funktionen über
vollständigen Verbänden. Dies führt zu vergitterter k-Induktion und vergit-
terter BMÜ führt. Die Instanziierung unserer vergitterten Techniken mit
dem Kalkül der Schwächsten Vorerwartung ermöglicht die vollautomati-
sche Verifikation von linearen Schleifen, die aus der Literatur stammen.

2. Wir präsentieren einen gegenbeispielgeleiteten induktiven Syntheseansatz
für die Synthese quantitativer Schleifeninvarianten. Dies ermöglicht die
vollautomatische Verifikation von Schranken auf erwartete Ergebnisse
und erwartete Laufzeiten. Unsere Implementierung synthetisiert quanti-
tative Invarianten verschiedener linearer Schleifen aus der Literatur, kann
modernste probabilistische Modellprüfer für Programme mit endlichen
Zustandsräumen schlagen und ist mit modernen Werkzeugen konkurrenz-
fähig, die sich der Invariantensynthese oder dem berechnen erwarteter
Laufzeiten widmen.

viii

3. Wir präsentieren PrIC3 — die erste wirklich quantitative Erweiterung
des modernen qualitativen symbolischen Modellprüfungsalgorithmus IC3
zur symbolischen Modellprüfung von Markov-Entscheidungsprozessen.
Durch das Verbinden von PrIC3 mit dem Kalkül der Schwächsten Vorer-
wartung erhalten wir einen symbolischen Modellprüfungsalgorithmus für
probabilistische Programme. Wir stellen eine Implementierung von PrIC3
vor, die IC3-spezifische Techniken, wie z.B. Generalisierung, beinhaltet.

ix

Acknowledgments

First and foremost, I would like to express my gratitude to my supervisor Joost-
Pieter Katoen. Joost-Pieter’s guidance was invaluable. He introduced me to
the extremely fascinating field of formal verification, he was there whenever I
needed him, and created an amazing working environment. Joost-Pieter, I think
you are an outstanding boss and supervisor because you truly care about your
people. Pursuing a PhD with you teaches your students way more than writing
papers. You invite numerous guests, actively support collaborations, and enable
amazing business trips while sharing your enormous experience with us. Thank
you for this extraordinarily enriching journey. I would also like to thank Ichiro
Hasuo for reviewing my thesis and for providing me with valuable feedback.
Ichiro also enabled one of the most awesome scientific and cultural experiences
of my life by inviting me to his JST Aspire workshop in Japan.

I am grateful to Benjamin Kaminski, Christoph Matheja, and Sebastian Junges.
Benjamin and Christoph supervised my bachelor’s thesis back in 2017. Ben-
jamin, Christoph, and Sebastian supervised my master’s thesis in 2019. Since
then, we have successfully continued to work together. Benni, Christoph, Se-
bastian, you have not only been extremely helpful and approachable but also
showed me right from the beginning of my career that work can be both pro-
ductive and fun at the same time. Thank you for sharing your knowledge with
me and for all those exhausting-yet-satisfactory deadline sprints! I have always
been (and still am) looking forward to every business trip where we meet again.

Lutz Klinkenberg, what we’ve been joking about during our first semester at
RWTH Aachen actually came true: We became office mates! Thank you for all
the laughs and “deep scientific chats” we shared. These chats have lightened
up my everyday life at work significantly. Tobias “Tobais” Winkler, my former
roommate, colleague, and friend, thank you for all the laughs we shared, for the
fruitful discussions, and for our collaborations. Be it skiing in Kleinwalsertal
or exploring the nightlife of Argentina or Boston, the time with you, Lutz and
Tobi, was just amazing.

Tim Quatmann, thank you for guiding Lutz, Tobi, and myself as the world’s
best mentor for first-year students, for all the help you provided during our
time as colleagues, and for all the (not always) scientific chats and refreshing
meetings at the coffee machine.

It was my pleasure to supervise brilliant B.Sc. and M.Sc. students while they
have been working on their thesis. Thank you, Florian Keßler, Adrian Gallus,
Marvin Jansen, Philipp Schröer, Ben Sturgis, Tom Biskup, Nora Orhan, Daniel
Zilken, Dinis Vitorino, and Daniel Basgöze for sharing your insights with me. I

x

would also like to thank my former student assistants Philipp Schröer, Adrian
Gallus, and Nora Orhan as well as our interns Tom Biskup and Zhiang Wu.
Collaborating with you was a great experience.

I would like to thank my colleagues Alexander Bork, Bahare Salmani,
Christina Gehnen, Christopher Brix, Daniel Cloerkes, Daniel Zilken, Darion
Haase, Èlèanore Meyer, Hannah Mertens, Ira Fesefeldt, Jana Berger, Jan-
Christoph Kassing, Jip Spel, Joshua Moerman, László Antal, Lena Verscht,
Jasper Nalbach, József Kovács, Lina Gerlach, Matthias Volk, Marcel Hark,
Mingshuai Chen, Mojgan Kamali, Nicolai Radke, Nils Lommen, Philipp Schroer,
Raphael Berthon, Roy Hermanns, Stefan Dollase, Thomas Noll, and Valentin
Promies for being so helpful and approachable. I will certainly miss all those
spontaneous pleasant conversations and our awesome trips to Kleinwalsertal
with the MOVES group!

Thank you, Marcel Moosbrugger, Stefano Maria Nicoletti, Felix Walter, and
Bram Kohlen for the awesome trips we experienced together. It was a pleasure
to meet you. Special thanks go to Pedro R. D’Argenio for hosting me at the
National University of Córdoba in such a hospitable way.

I would like to thank my dear friends Annika Jüttner, Cathrin Simon, Daniela
Arndt, Jasmin Dahmen, Joshua Stenz, Karen Pelzer, Lennart Friederichs, Leo
Martin Moll, Lukas Fehst, Maximiliane Heyer, Norman Heinze, Pablo Guardia
Martinez, Paul Stenz, Sarah Spicker, and Tom Stenz for attending my defense
and/or the subsequent celebration. With you guys, it was a truly amazing day
that still resonates with me.

Finally, it is hard to express my gratefulness to my beloved parents Monika
Batz and Hartmut Batz as well as my beloved grandmother Brigitte Batz for
their unconditional love and support throughout my life.

Feedback and LaTeX Sources. I am indebted to Joost-Pieter Katoen and Ichiro
Hasuo for providing me with feedback on the entire thesis. Moreover, I am
indebted to Benjamin Kaminski for providing me with feedback on the abstract,
Chapter 1, Sections 3.1 and 3.2, and to Christoph Matheja for providing me
with feedback on Section 1.1. I would like to thank Tobias Winkler for fruitful
discussions on Markov decision processes. Finally, I am grateful to Sebastian
Junges, Tim Quatmann, and Matthias Volk for providing me with the LaTeX
sources of their thesis template.

xi

Contents

1 Introduction 1
1.1 Classical Deductive Program Verification 1
1.2 Probabilistic Programs . 4
1.3 Deductive Verification of Probabilistic Programs 5
1.4 Contributions and Synopsis . 5
1.5 Origins . 7

2 Foundations 11
2.1 Fixpoint Theory . 11

2.1.1 Motivating Example: Reachability in Transition Systems . 12
2.1.2 Partial Orders and Complete Lattices 16
2.1.3 Existence of Least Fixpoints 19
2.1.4 Constructive Fixpoint Theorems 21
2.1.5 Park Induction for Upper Bounds on Least Fixpoints . . . 28

2.2 Markov Decision Processes . 31
2.2.1 Definition and Basic Notions 32
2.2.2 Expected Reachability-Rewards 35
2.2.3 Properties of Expected Reachability-Rewards 38
2.2.4 Expected Reachability-Rewards via Least Fixpoints 39
2.2.5 Existence of Optimal Schedulers 44

2.3 Probabilistic Programs . 45
2.3.1 The Probabilistic Programming Language pGCL 45
2.3.2 Operational MDP Semantics of pGCL 47

2.4 Deductive Verification of Probabilistic Programs 51
2.4.1 Motivation: Reasoning about Expected Outcomes 53
2.4.2 Expectations . 58
2.4.3 The Weakest Preexpectation Calculus 60
2.4.4 Quantitative Loop Invariants 65
2.4.5 Soundness of the Weakest Preexpectation Calculus 69

3 Relatively Complete Verification 75
3.1 Motivation and Problem Statement 75

xii Contents

3.2 The Language Exp of Syntactic Expectations 80
3.2.1 Syntax of Arithmetic Expressions 80
3.2.2 Syntax of Boolean Expressions 81
3.2.3 Syntax of Expectations . 81
3.2.4 Semantics of Expressions and Expectations 84
3.2.5 Capture-Avoiding Substitutions of Variables 87

3.3 Expressiveness for Loop-Free Programs 90
3.4 Expressiveness for Loopy Programs 91

3.4.1 Overview . 91
3.4.2 Gödelization for Syntactic Expectations 96
3.4.3 Dedekind-Characteristic Formulae 103
3.4.4 Sums and Products of Syntactic Expectations 107
3.4.5 Expressiveness of Syntactic Expectations 110

3.5 Discussion . 114
3.5.1 Relative Completeness of Probabilistic Program Verification114
3.5.2 Termination Probabilities 116
3.5.3 Reachability Probabilities 117
3.5.4 Distribution of Final States 117
3.5.5 Ranking Functions and Supermartingales 118

3.6 Future and Related Work . 118

4 Latticed k-Induction 121
4.1 Preview: Automatic Verification of Loops 121
4.2 Reasoning about Safety of Transition Systems 124

4.2.1 Bounded Model Checking 124
4.2.2 k-Induction . 125
4.2.3 Excursus: Infinite-State Software Model Checking 127

4.3 Latticed k-Induction: Theory and Algorithm 130
4.4 Latticed versus Classical k-Induction 137
4.5 Latticed Bounded Model Checking 139
4.6 k-Induction and BMC for Probabilistic Programs 140

4.6.1 Instantiating Latticed k-Induction and BMC 141
4.6.2 Automatic Reasoning about Loops 143
4.6.3 Linear pGCL and Piecewise Linear Expectations 145
4.6.4 Implementation and Experiments 155

4.7 Future and Related Work . 163

5 Automatic Loop Invariant Synthesis 165
5.1 Motivation and Problem Statement 165

Contents xiii

5.2 Overview: Loop Invariants via CEGIS 168
5.3 Templated Piecewise Linear Expectations 172
5.4 Reasoning about Template Instances 175
5.5 Constructing an Efficient CEGIS Loop 180

5.5.1 The Verifier . 180
5.5.2 The Synthesizer . 182

5.6 The Template Generator . 185
5.6.1 Constructing the Initial Template 185
5.6.2 Template Refinement . 187

5.7 Extensions for Termination and Lower Bounds 189
5.7.1 Verifying Positive Almost-Sure Termination 190
5.7.2 Verifying Lower Bounds on Expected Outcomes 191

5.8 Implementation and Experiments 193
5.9 Future and Related Work . 196

6 Property Directed Reachability 201
6.1 Foundations of IC3 for Transition Systems 201

6.1.1 Setting . 202
6.1.2 The IC3 Main Loop . 206
6.1.3 Strengthening in IC3 . 209
6.1.4 On Generalization in IC3 215

6.2 PrIC3: Property Directed Reachability for MDPs 221
6.2.1 Setting . 221
6.2.2 Recovering IC3 for Transition Systems 223
6.2.3 Challenges . 224
6.2.4 The Core PrIC3 Algorithm 226
6.2.5 Strengthening in PrIC3 . 233
6.2.6 Dealing with Potential Counterexamples 239
6.2.7 Practical PrIC3 for Probabilistic Programs 242
6.2.8 Implementation and Experiments 252

6.3 Future and Related Work . 254
6.3.1 Future Work . 254
6.3.2 Related Work . 255

7 Conclusion and Outlook 257

Declaration of Authorship 259

xiv Contents

A Appendix 261
1 Appendix to Chapter 2 . 263

1.1 Appendix to Section 2.2 263
1.2 Appendix to Section 2.3 270

2 Appendix to Chapter 4 . 275
3 Appendix to Chapter 5 . 276

3.1 Details on the Comparison of Storm and cegispro2 276
3.2 Details on the Comparison of Absynth and cegispro2 . . 281
3.3 Details on the Comparison of Exist and cegispro2 281

4 A Note on Contributions of the Author 285

Bibliography 289

Index 317

11

1 Introduction

Soft- and hardware systems are ubiquitous. They steer trains, planes, cars, med-
ical devices, and more. Ensuring their correctness is notoriously hard yet indis-
pensable as our society is increasingly reliant on these systems, employing them
in evermore safety-critical contexts. The aim of formal methods is to prove or dis-
prove — in a mathematically rigorous sense — that these systems work correctly.

Many soft- and hardware systems are subject to uncertainty and random-
ness. Environments exhibit stochastic behavior, yielding sensor data to be noisy
or communication channels to be lossy. Some systems explicitly exploit ran-
domness, e.g., for increasing their performance or for breaking symmetries
in anonymous networks. Formal methods must hence be able to quantify the
impact of uncertainty and randomness on such systems. In this thesis, we
contribute to the automated deductive verification of probabilistic programs — a
branch of formal methods suitable for tackling the aforementioned tasks.

1.1 Classical Deductive Program Verification

Verifying classical non-probabilistic programs means answering questions like:

Does a given program terminate on all inputs?
Does the output of a given program always comply with the desired result?

Deductive program verification techniques establish such properties about
the input-output behavior of programs by means of logical inference. This
involves (i) formalizing the desired property about the program’s input-output
behavior as a mathematical statement and (ii) applying a deductive proof system
to establish the validity of these statements. The most prevalent deductive
program verification technique — nowadays often referred to as Floyd-Hoare
Logic — originated from the ground-breaking works by Robert Floyd [Flo67]
and Sir Antony Hoare [Hoa69]. In Floyd-Hoare Logic, the central objects are
triples — often referred to as Hoare triples — of the form

⟨P ⟩ C ⟨Q⟩ where

2 1 Introduction

1. P is a predicate over program states referred to as the precondition,

2. C is a program, and

3. Q is a predicate over program states referred to as the postcondition.

One distinguishes between partial and total correctness: The triple ⟨P ⟩ C ⟨Q⟩ is
valid for partial correctness, if all terminating executions of C on initial states
σ ∈ P from the precondition yield final states τ ∈ Q from the postcondition.
Partial correctness does not require C to terminate. If, additionally, C terminates
on all initial states σ ∈ P , then the triple is valid for total correctness, i.e.,

partial correctness + termination = total correctness .

Proving a Hoare triple valid for partial or total correctness is the key task in
deductive program verification. This can be challenging. Simply executing C on
all states from the precondition P is not an option: P might — and usually does —
contain infinitely many states. Even for a single initial state σ , determining
whether executing C on σ results in a final state from the postcondition can
be challenging and is generally undecidable — a consequence of Alan Turing’s
famous result on the undecidability of the halting problem [Tur37].

Hoare therefore proposed a deductive proof system — a collection of axioms
and inference rules — to establish the validity of Hoare triples. These axioms
and rules formalize intuitive proof strategies. Consider, for instance, a Hoare
triple involving a conditional choice:

⟨P ⟩ if (B) {C1 } else {C2 } ⟨Q⟩
The guard B determines which of the two branches C1 and C2 is going to be
executed. It is therefore intuitive to split the task of proving the triple valid
into two sub-tasks by distinguishing the cases where either of the branches is
executed. Hoare’s inference rule for conditional choices formalizes this strategy:

premisses of the rule
︷ ︸︸ ︷
⟨P ∧B⟩ C1 ⟨Q⟩ ⟨P ∧¬B⟩ C2 ⟨Q⟩
⟨P ⟩ if (B) {C1 } else {C2 } ⟨Q⟩︸ ︷︷ ︸

conclusion of the rule

Repeatedly applying such rules of inference in a bottom-up manner gives rise to
a proof tree, decomposing the original program into ever smaller sub-programs.

11.1 Classical Deductive Program Verification 3

If all the leaves of such a tree are axioms, i.e., triples whose validity requires no
further justification such as

⟨P ⟩ skip ⟨P ⟩ (skip is the immediately terminating effectless program)

then the original Hoare triple is proven to be valid.

From Theory to Automation. Floyd-Hoare Logic provides a systematic and
syntax-directed approach to program verification. This made it the formal basis
of various modern automated program verifiers. These software tools are either
semi-automated, meaning that the user has to provide additional hints on how to
construct the aforementioned proof trees, or fully automatic. There is a trade-off
between the degree of automation and the supported programming language
features and specifications. This trade-off is due to the following two main
challenges of automated deductive program verification:

Reasoning about loops is, unsurprisingly, one of the most intricate tasks. Prov-
ing partial correctness of loops requires coming up with suitable loop invariants.
Additionally proving termination is tackled via so-called loop variants. Intu-
itively speaking, loop (in)variants are predicates over program states summariz-
ing a loop’s execution (termination) behavior.

Second, pre- and postconditions as well as loop (in)variants are typically rep-
resented as logical formulae over the program variables. For instance, validity
for total correctness of ⟨∃i ∈ Z : 2 · i = x⟩ C ⟨x = 0⟩ specifies that C termi-
nates in a final state where x is equal to 0 whenever x initially stores an even
number. Reasoning about pre- and postconditions or establishing the validity
of loop (in)variants requires possibly complex arithmetical reasoning. This
challenge is mostly tackled by offloading the arithmetical reasoning to Satis-
fiability Modulo Theories (SMT) solvers, which are software tools dedicated to
this task. The rapidly increasing capabilities of SMT solvers such as Z3 [MB08],
CVC5 [BBBK+22], or MathSat5 [CGSS13] play an important role in the success
of automated deductive program verification. The required arithmetical theo-
ries are often undecidable. Depending on the expressive power of the employed
theories, users must provide the SMT solver with additional hints.

Prime examples of modern verifiers supporting high-level programming
language features such as generic classes or dynamic data structures include
Dafny [Lei10] and Prusti [ABFG+22]. Dafny and Prusti target the verification
of real-world programs written in high-level programming languages. They are
semi-automated in the sense that the user must — on top of the desired specifi-
cations — provide additional verification hints such as loop invariants. Tools

4 1 Introduction

targeting full automation by, e.g., trying to automatically synthesize loop invari-
ants include CPAchecker [BK11], SeaHorn [GKKN15], and Infer [CDDG+15].
Full automation typically comes at the cost of restrictions on the supported
arithmetical theories, programming language features, and specifications.

1.2 Probabilistic Programs

Probabilistic programs are ordinary programs whose execution may depend on
the outcomes of random experiments such as coin flips. Randomized computa-
tions have a long-standing history [LMSS56] and a plethora of applications.

Probabilistic programs describe randomized algorithms, which exploit random-
ness for the purpose of, e.g., solving computational problems more efficiently
in expectation or for rendering certain computational problems at all feasible.
Hoare’s randomized variant of his Quicksort algorithm [Hoa62] is a prime ex-
ample of the former. Examples of the latter include scenarios that require some
kind of symmetry-breaking such as self-stabilizing protocols [Her90].

Probabilistic programs moreover provide a powerful means for modeling
complex stochastic processes. This is extensively leveraged in the field of
probabilistic model checking [BK08; Kat16; BHK19], where probabilistic programs
— written, e.g., in the PRISM-language1 — provide concise modular descriptions
of Markov chains or more general Markov decision processes. Most modern
probabilistic models checkers, including PRISM [CHLP10; HKNP06; KNP02]
and Storm [HJKQ+22; DJKV17], support the PRISM-language.

Probabilistic programs are capable of modeling complex (conditional) proba-
bility distributions in a structured programmatic manner. This has led to the
rapidly emerging field of probabilistic programming, where the goal is to “[...]
enable probabilistic modeling and machine learning to be accessible to the work-
ing programmer” [GHNR14]. In probabilistic programming, the main task is
probabilistic inference: Given a (conditional) probability distribution encoded as
a probabilistic program, compute an explicit representation of that distribution
or properties thereof such as its mode or the expected value of a given random
variable. Applications of probabilistic programming and their associated in-
ference methods are spread over various fields of research, including cognitive
science [GTC16], biology [RKSB+21], and artificial intelligence [Gha15].

1https://www.prismmodelchecker.org/manual/ThePRISMLanguage/Introduction

https://www.prismmodelchecker.org/manual/ThePRISMLanguage/Introduction

11.3 Deductive Verification of Probabilistic Programs 5

1.3 Deductive Verification of Probabilistic Programs

Introducing randomization into computations has severe consequences. Rather
than producing a single (if any) final state, a probabilistic program produces
a probability (sub)distribution of final states. Reasoning about probabilistic
programs hence becomes inherently quantitative. Typical questions include:

What is the probability of terminating in a given final state?
What is the probability of terminating in some postcondition?

What is the expected final value of a program variable?

We refer to such quantities as expected outcomes of probabilistic programs. Rea-
soning about expected outcomes is hard. For instance, the question of whether
a probabilistic program terminates with probability 1 on a given initial state is
computationally as hard as the question of whether a non-probabilistic program
terminates on all states [KK15; KKM19; Kam19].

As with classical deductive program verification, the deductive verification
of probabilistic programs involves (i) formalizing the desired property of a
probabilistic program as a mathematical statement and (ii) applying some kind
of logical inference — in the form of program calculi and proof rules — for
establishing the validity of these statements. Seminal works on this subject date
back to the 1970s [Ram79] and 1980s [HSP82; Koz83; Koz85] and has been an
active area of research since. Approaches targeting the deductive verification of
probabilistic programs can roughly be classified into distribution- and expecta-
tion-based techniques. For distribution-based techniques, the central objects
are (predicates over) probability distributions, enabling to explicitly reason
about input-output distributions of probabilistic programs, see, e.g., [Har99;
HV02; BEGG+18; RZ15; LAH23; CCMS07]. For expectation-based techniques,
the central objects are random variables (functions mapping program states to
numbers), enabling to reason more directly about specific expected outcomes
of probabilistic programs. Expectation-based reasoning as pioneered by Kozen
[Koz83; Koz85] and McIver & Morgan [MM05; MMS96] is central to many
results presented in this thesis and will be detailed in Section 2.4. We refer
to [BKS20a] for a state-of-the-art overview of the theoretical underpinnings of
probabilistic programs and their associated reasoning techniques.

1.4 Contributions and Synopsis

In this thesis, we contribute both foundational and practical aspects of the
automated deductive verification of probabilistic programs. We build upon

6 1 Introduction

the weakest preexpectation calculus by Kozen [Koz83; Koz85], McIver & Mor-
gan [MMS96; MM05], and Kaminski [Kam19] — a quantitative extension of
Dijkstra’s weakest precondition calculus [Dij75]. Our special emphasis is on
reasoning about possibly unbounded loops by combining Satisfiability Modulo
Theories techniques with quantitative loop invariants.

Chapter 2 equips us with the required foundations. Our main contributions
are presented in Chapters 3 to 6. Each of these chapters contains a dedicated in-
troduction, an outline, and a section on future and related work. In what follows,
we briefly summarize the contents and key contributions of each chapter.

Chapter 2: Foundations. We recap the foundations we build upon in this
thesis by discussing elementary results from fixpoint theory, Markov decision
processes, probabilistic programs, and the weakest preexpectation calculus. We
emphasize (i) the role of fixpoint theory in the latter fields and (ii) connections
between notions from Markov decision processes and weakest preexpectations.

Chapter 3: Relatively Complete Verification [12]. The weakest preexpecta-
tion calculus replaces predicates from classical program verification by more
general expectations — functions mapping program states to numbers instead
of truth values. As with classical program verification, automating the ver-
ification of probabilistic programs requires a syntax for such “quantitative
assertions”. We present an expressive formal language of expectations for the weak-
est preexpectation calculus, obtaining a relatively complete verification system
for reasoning about expected outcomes. Our language is a cornerstone of the
modern semi-automated deductive probabilistic program verifier Caesar2 [18].

Chapter 4: Latticed k-Induction [11]. k-induction [SSS00] and bounded
model checking (BMC) [CBRZ01] are two well-established verification tech-
niques for transition systems integrated into various automated soft- and hard-
ware verifiers. As pointed out by Krishnan et al. [KVGG19]:

“The simplicity of applying k-induction made it
the go-to technique for SMT-based infinite-state model checking."

We revisit k-induction and BMC in the more general setting of bounding least
fixpoints of monotone functions over complete lattices. Instantiating our lat-
ticed techniques with the weakest preexpectation calculus enables the fully

2Caesar itself will not be presented in this thesis.

11.5 Origins 7

automatic SMT-based verification of piecewise linear bounds on expected out-
comes of possibly unbounded linear3 loops. Our implementation manages to
automatically verify specifications of loops taken from the literature. Moreover,
the generality of our latticed techniques has led to more applications discovered
by other researchers: Latticed k-induction has been leveraged by Winkler and
Katoen [WK23a] in the context of probabilistic pushdown automata and by
Yang et al. [YFKZ+24] for the synthesis of quantitative loop invariants.

Chapter 5: Automatic Loop Invariant Synthesis [16]. We present an SMT-
based counterexample-guided inductive synthesis approach for quantitative
loop invariants. This enables the fully automatic verification of piecewise linear
bounds on both expected outcomes and expected runtimes. Our implementation
finds invariants of various linear loops taken from the literature, can beat state-
of-the-art probabilistic model checkers, and is competitive with modern tools
dedicated to the synthesis of quantitative invariants or expected runtimes.

Chapter 6: Property Directed Reachability [6]. Aaron R. Bradley’s algorithm
IC3 [Bra11a] has been a leap forward in symbolic model checking of transi-
tion systems. We first recap the fundamental concepts underlying IC3. We
then present PrIC3 — the first truly quantitative extension of IC3 to symbolic
model checking of Markov decision processes. Moreover, by leveraging tight
connections between Markov decision processes and probabilistic programs, we
marry PrIC3 with the weakest preexpectation calculus, obtaining a symbolic
SMT-based model checking algorithm for finite-state probabilistic programs.
Alongside, we present an implementation of PrIC3 including key ingredients
for IC3’s scalability such as (inductive) generalization and propagation.

1.5 Origins

The results presented in Chapters 3 to 6 are based on prior publications I have
co-authored, each of which is cited in the respective chapters. Below I give a
list of all publications I have co-authored as a doctoral researcher at RWTH
Aachen University, divided into the publications covered in this thesis and
further publications. The university’s regulations for doctoral studies moreover
obliges me to discuss my contributions to these publications. This discussion
can be found in Appendix 4.

3i.e., the loop’s body is loop-free and all arithmetic is linear, see Definition 4.3 on page 146.

8 1 Introduction

Publications Covered in this Thesis.

[16] K. Batz, M. Chen, S. Junges, B. L. Kaminski, J.-P. Katoen, and C. Matheja.
“Probabilistic Program Verification via Inductive Synthesis of Inductive In-
variants.” TACAS (2). Volume 13994. Lecture Notes in Computer Science.
Springer, 2023, pages 410–429

[12] K. Batz, B. L. Kaminski, J.-P. Katoen, and C. Matheja. “Relatively Com-
plete Verification of Probabilistic Programs: An Expressive Language for
Expectation-based Reasoning.” Proc. ACM Program. Lang. 5.POPL (2021),
pages 1–30

[11] K. Batz, M. Chen, B. L. Kaminski, J.-P. Katoen, C. Matheja, and P. Schröer.
“Latticed k-Induction with an Application to Probabilistic Programs.” CAV
(2). Volume 12760. Lecture Notes in Computer Science. Springer, 2021,
pages 524–549

[6] K. Batz, S. Junges, B. L. Kaminski, J.-P. Katoen, C. Matheja, and P. Schröer.
“PrIC3: Property Directed Reachability for MDPs.” CAV (2). Volume 12225.
Lecture Notes in Computer Science. Springer, 2020, pages 512–538

Further Publications.

[19] K. Batz, T. J. Biskup, J.-P. Katoen, and T. Winkler. “Programmatic Strategy
Synthesis: Resolving Nondeterminism in Probabilistic Programs.” Proc. ACM
Program. Lang. 8.POPL (2024), pages 2792–2820

[18] P. Schröer, K. Batz, B. L. Kaminski, J.-P. Katoen, and C. Matheja. “A Deductive
Verification Infrastructure for Probabilistic Programs.” Proc. ACM Program.
Lang. 7.OOPSLA2 (2023), pages 2052–2082

[17] K. Batz, B. L. Kaminski, J.-P. Katoen, C. Matheja, and L. Verscht. “A Calculus
for Amortized Expected Runtimes.” Proc. ACM Program. Lang. 7.POPL (2023),
pages 1957–1986

[15] K. Batz, A. Gallus, B. L. Kaminski, J.-P. Katoen, and T. Winkler. “Weighted
Programming: A Programming Paradigm for Specifying Mathematical Mod-
els.” Proc. ACM Program. Lang. 6.OOPSLA1 (2022), pages 1–30

[14] K. Batz, I. Fesefeldt, M. Jansen, J.-P. Katoen, F. Keßler, C. Matheja, et al.
“Foundations for Entailment Checking in Quantitative Separation Logic.”
ESOP. Volume 13240. Lecture Notes in Computer Science. Springer, 2022,
pages 57–84

11.5 Origins 9

[9] L. Klinkenberg, K. Batz, B. L. Kaminski, J.-P. Katoen, J. Moerman, and T.
Winkler. “Generating Functions for Probabilistic Programs.” LOPSTR. Vol-
ume 12561. Lecture Notes in Computer Science. Springer, 2020, pages 231–
248

[5] K. Batz, B. L. Kaminski, J.-P. Katoen, C. Matheja, and T. Noll. “Quantita-
tive Separation logic: A Logic for Reasoning about Probabilistic Pointer
Programs.” Proc. ACM Program. Lang. 3.POPL (2019), 34:1–34:29

[2] K. Batz, B. L. Kaminski, J.-P. Katoen, and C. Matheja. “How long, O Bayesian
network, will I sample thee? - A program analysis perspective on expected
sampling times.” ESOP. Volume 10801. Lecture Notes in Computer Science.
Springer, 2018, pages 186–213

2

11

2 Foundations

This chapter treats the foundations we build upon in this thesis. In Section 2.1,
we study the (order-theoretic) theory of fixpoints. In Section 2.2, we study
Markov decision processes and expected rewards. Section 2.3 introduces the
probabilistic programming language considered throughout this thesis. Finally,
in Section 2.4, we introduce the deductive program verification techniques
which we extend and automate in the subsequent chapters.

Basic Notation. We denote the set of natural numbers including 0 by

N = {0,1,2, . . .} .
The set of rationals is denoted by Q. The set of reals is denoted by R. The set of
non-negative rationals and the set of non-negative reals are respectively defined as

Q≥0 = {q ∈Q | q ≥ 0} and R≥0 = {α ∈R | α ≥ 0} .
Moreover, the set of non-negative extended reals is defined as

R
∞
≥0 = {α ∈R | α ≥ 0} ∪ {∞} .

Finally, if both the domain and the codomain are clear from the context, we
often use lambda expressions to denote functions, i.e, function λx.f applied to
some argument a evaluates to f in which x is replaced by a.

2.1 Fixpoint Theory

In this section, we treat the concepts from (order-theoretic) fixpoint theory
over complete lattices which provide us with the mathematical foundations
for reasoning about transition systems, Markov decision processes, and prob-
abilistic programs in a unified manner. We start with a motivating example
borrowed from the propositional µ-calculus [Koz82] in Section 2.1.1, which will
serve us as a running example. In Section 2.1.2, we consider partial orders and
complete lattices. Finally, in Sections 2.1.3 to 2.1.5, we study (least) fixpoints of
endofunctions over complete lattices. We follow the presentation from [AJ95].

12 2 Foundations

2.1.1 Motivating Example: Reachability in Transition Systems

We motivate the concepts related to fixpoint theory employed in this thesis by
means of reachability in transition systems. Transition systems1 are a prominent
state-based model to formally describe the behavior of, e.g., hardware- and
software systems. We mainly follow the presentation from [BK08, Chapter 2].

Definition 2.1 (Transition Systems).
A transition system is a structure

TS = (S , −→, SI) ,
where:

1. S is the countable set of states,

2. −→ ⊆ S ×S is the total transition relation, i.e.,

for all s ∈ S : exists t ∈ S : (s, t) ∈−→ ,

3. SI ⊆ S is the set of initial states.

We often write s −→ t instead of (s, t) ∈−→.

If s −→ t, then we say that t is a (direct) successor of s. If S is finite, then we
say that TS is finite-state. Otherwise, we say that TS is infinite-state. If every
s ∈ S has only finitely many successors, then we say that TS is finitely branching.
Otherwise, we say that TS is infinitely branching.

Intuitively, a transition system TS models the possible executions of a system.
The set SI contains the initial states where execution may start and the transition
relation −→ describes possible state changes, i.e., how the system can evolve
from one state to another.

Example 2.1.
Transition systems can be represented as graphs, where the nodes corre-
spond to the states and the edges determine the transition relation. The
graph shown in Figure 2.1 on page 13 represents the transition system

TS1 = (S , −→, SI) ,
where

1. S = {s0, . . . , s6},

1Transition systems are often referred to as Kripke structures [Kri63].

2

2.1 Fixpoint Theory 13

s0

s1 s2

s3

s4 s5

s6

Figure 2.1: The finite-state and finitely branching transition system TS1.

2. s −→ s′ iff there is an edge from s to s′ , and

3. SI = {s0}.
Notice that S is nondeterministic: There are two outgoing edges from s0,
meaning that system execution either proceeds in state s1 or proceeds in s3.

One of the most important notions for transition systems is reachability: As-
suming that system execution starts in some initial state and evolves according
to the transition relation, which states of the system can be reached by some
execution? We are thus interested in the set of states reachable by some exe-
cution of the system. For the transition system from Example 2.1, this set is
given by {s0, s1, s2, s3}. In what follows, we discuss two different, yet equiva-
lent, approaches for defining this set. Section 2.1.1.1 provides an operational
perspective: We formally define the possible executions described by a given
transition system. In Section 2.1.1.2, we define the set of reachable states by
means of a recursive equation from which we derive a characterization of the
set of reachable states as the least (in a sense we will make precise) fixpoint of
a certain function. This will give rise to the main concepts and questions for
which fixpoint theory provides us with an answer.

2.1.1.1 Reachability via Execution Fragments

Fix a transition system TS = (S , −→, SI). A finite execution fragment π of TS is a
finite, non-empty sequence of states

π = s0 . . . sn such that for all i ∈ {0, . . . ,n− 1} : si −→ si+1 .

14 2 Foundations

Similarly, an infinite execution fragment π of TS is an infinite sequence of states

π = s0s1s2 . . . such that for all i ∈N : si −→ si+1 .

If for a (finite or infinite) execution fragment π we have s0 ∈ SI , then π is called
an initial (finite or infinite) execution fragment of TS. A state s ∈ S is called
reachable (in TS) if there is an initial finite execution fragment s0 . . . sn with sn = s.
Otherwise, s is called unreachable (in TS). Finally, we define the set Reach (TS)
of reachable states as

Reach (TS) = {s ∈ S | s is reachable in TS}
and the set Reach≤n (TS) of states reachable in at most n ∈N steps as

Reach≤n (TS)

= {s ∈ S | there is m ∈ {0, . . . ,n}
and initial finite execution fragment s0 . . . sm : sm = s} .

Notice that

Reach (TS) =
⋃

n∈N
Reach≤n (TS) ,

i.e., Reach (TS) contains all states reachable in an unbounded number of steps.

2.1.1.2 Reachability via Least Fixpoints

Fix a transition system TS = (S , −→, SI). We start with an informal recursive
characterization of what it means for a state s to be reachable. This informal
characterization is given by the observation that

A state s ∈ S is reachable
iff

s is an initial state or s is a successor of some reachable state t.

The above characterization is recursive since the term “reachable” occurs on
both sides of the equivalence. Put more formally, “s is reachable” is a predicate
X ⊆ S over states, which satisfies the recursive equation

X︸︷︷︸
the set of reachable states

= SI︸︷︷︸
contains all initial states

∪ {s | exists t ∈ X : t −→ s}
︸ ︷︷ ︸
and is closed under successors

.

(2.1)

2

2.1 Fixpoint Theory 15

The solution domain [Hüt10] for the above equation is

P (S) = {X | X ⊆ S} ,
i.e., the power set of S and the set Reach (TS) of reachable states defined in Sec-
tion 2.1.1.1 is indeed a solution of Equation (2.1). There is, however, generally
not a unique solution of Equation (2.1). Only the least (in a sense we make
precise below) coincides with Reach (TS).

In the framework of fixpoint theory, we formalize solutions of Equation (2.1)
as fixpoints of a function over the solution domain P (S):

Definition 2.2 (Reachability Operators).
Let TS = (S , −→, SI) be a transition system. We call

ΦTS : P (S)→P (S) , ΦTS(X) = SI ∪ {s | exists t ∈ X : t −→ s}
the reachability operator (of TS).

In words, applying ΦTS to some set X of states gives the set of initial states plus
all direct successors of states in X. A set of states X is a fixpoint of ΦTS, if

ΦTS(X) = X

and we say that X is a solution of Equation (2.1) if X is a fixpoint ΦTS.

Example 2.2.
Reconsider the transition system TS1 from Figure 2.1. There are exactly 5
fixpoints of ΦTS1 and thus 5 solutions of Equation (2.1):

1. X1 = S ,

2. X2 = {s0, s1, s2, s3, s4, s5},
3. X3 = {s0, s1, s2, s3, s5},
4. X4 = {s0, s1, s2, s3, s6}, and

5. X5 = {s0, s1, s2, s3}.
Only X5 is equal to the set Reach (TS1) of reachable states as defined in
Section 2.1.1.1. Notice that X5 is the least fixpoint of ΦTS1 in the sense that
for all fixpoints X ∈ {X1, . . . ,X5}, we have X5 ⊆ X.

Function ΦTS might have several fixpoints. Given the solution domain P (S) and
the order ⊆ on this domain, we are interested in the least fixpoint of ΦTS w.r.t. ⊆

16 2 Foundations

and only this least fixpoint coincides with the set Reach (TS) of reachable states
as defined in Section 2.1.1.1. The intuition is that

the set Reach (TS) of reachable states is the smallest set of states which
contains all initial states and is closed under successors.

The above approach of defining the set of reachable states as the least fixpoint
of a function over a given solution domain is in fact an instance of a general
framework. We will see in Section 2.2 that tightly related ideas give rise to
constructions of minimal and maximal expected rewards in Markov decision
processes, and in Section 2.4.3 that similar ideas lead to constructions of mini-
mal and maximal expected outcomes of probabilistic programs [MM05; Kam19].
These approaches always follow the same scheme:

1. Define the solution domain D.

2. Define a suitable order ⊑ on D.

3. Define a function Φ : D→D.

4. Ensure that Φ has a unique least fixpoint.

The latter aspect is one of the key applications of fixpoint theory as it is em-
ployed in this thesis. Fixpoint theory provides us with general and sufficient
conditions on D, ⊑, and Φ which guarantee that the least fixpoint of Φ exists
uniquely. Furthermore, fixpoint theory provides us with generic techniques for
constructing and approximating least fixpoints in a systematic manner. These
techniques apply, amongst others, to transition systems, Markov decision pro-
cesses, and probabilistic programs and they underlie all approaches for automat-
ing the deductive verification of probabilistic systems presented in this thesis.

We proceed as follows: In Section 2.1.2, we introduce partial orders and
complete lattices — notions providing us with said sufficient conditions on D
and ⊑. In Section 2.1.3, we consider sufficient conditions for the existence of
least fixpoints of functions Φ : D→D. Finally, Sections 2.1.4 and 2.1.5 treat the
systematic construction and approximation of least fixpoints.

2.1.2 Partial Orders and Complete Lattices

We start by introducing partial orders — sets equipped with a binary relation
satisfying certain well-behavedness conditions. These conditions enable us to
sensibly speak about, e.g., least fixpoints of functions.

2

2.1 Fixpoint Theory 17

Definition 2.3 (Partial Orders).
Let D be a set and let ⊑⊆D ×D. The structure

(D, ⊑)

is called a partial order, if the following conditions hold:

1. ⊑ is reflexive, i.e.,

for all d ∈D : d ⊑ d ,
2. ⊑ is antisymmetric, i.e.,

for all d,e ∈D : d ⊑ e and e ⊑ d implies d = e ,

3. ⊑ is transitive, i.e.,

for all d,e,e′ ∈D : d ⊑ e and e ⊑ e′ implies d ⊑ e′ .
If d ⊑ e, then we say that e upper-bounds d or that d lower-bounds e.

Example 2.3.
1. Both the non-negative rationals and the non-negative reals equipped

with the usual “at most”-relation are partial orders, i.e., both

(Q≥0, ≤) and (R≥0, ≤)

are partial orders.

2. Partial orders can be constructed via power sets: For any set M, the
structure (P (M) , ⊆) is a partial order, where P (M) is the power set of
M and where ⊆ is the subset-relation. In particular, every transition
system TS = (S , −→, SI) induces the partial order (P (S) , ⊆).

Now fix a partial order (D, ⊑) and let S ⊆D. An element d ∈D is called an upper
bound for S, if d upper-bounds every element of S, i.e., if

for all e ∈ S : e ⊑ d .
If there is a least upper bound for S, i.e., if there is d ∈D satisfying

d is upper bound of S and for all upper bounds e of S we have d ⊑ e ,
then d is called the supremum of S. Antisymmetry of ⊑ implies that if the
supremum of S exists, then it is unique and we denote it by

⊔
S. Dually, d ∈D

is called a lower bound for S, if d lower-bounds every element of S, i.e., if

for all e ∈ S : d ⊑ e .

18 2 Foundations

If there is a greatest lower bound for S, i.e., if there is d ∈D satisfying

d is lower bound of S and for all lower bounds e of S we have e ⊑ d ,
then d is called the infimum of S. As with suprema, if the infimum of S exists,
then it is unique and we denote it by

�
S.

Example 2.4.
1. For the partial order (Q≥0, ≤), the set

S = {q ∈Q≥0 | q · q < 2}
has infinitely many upper bounds, namely all r ∈ Q≥0 greater than√

2. There is, however, no least upper bound in Q≥0 since
√

2 <Q≥0.

2. For the partial order (P (S) , ⊆) induced by a transition system TS =
(S , −→, SI), suprema and infima of S ⊆ P (S) are given by set union
and set intersection, respectively, i.e.,⊔

S =
⋃

X∈S
X and

�
S =

⋂

X∈S
X .

We usually restrict to partial orders where suprema and infima are guaranteed
to exist. Such partial orders are called complete lattices:

Definition 2.4 (Complete Lattices).
A partial order (D, ⊑) is called a complete lattice, if every S ⊆ D has a supre-
mum

⊔
S ∈D and an infimum

�
S ∈D.

In particular, every complete lattice (D, ⊑) has a least element⊥ given by⊥ =
⊔∅,

and a greatest element ⊤ given by ⊤ =
�∅.

Example 2.5.
1. We have seen in Example 2.4 that (Q≥0, ≤) is not a complete lattice.

The partial order (R≥0, ≤) is not a complete lattice either since it has
no greatest element. We do, however, obtain a complete lattice by
adding a greatest element, which we denote by∞, thereby obtaining
the non-negative extended reals

R
∞
≥0 = {α ∈R∪ {∞} | α ≥ 0} .

The structure (R∞≥0, ≤) is a complete lattice with ⊥ = 0 and ⊤ =∞.

2. Every partial order constructed via power sets (cf. Example 2.3) is a
complete lattice. In particular, the partial order (P (S) , ⊆) induced by

2

2.1 Fixpoint Theory 19

some transition system TS = (S , −→, SI) is a complete lattice with

⊥ = ∅ and ⊤ = S .

2.1.3 Existence of Least Fixpoints

We introduce the notion of (least) fixpoints of functions over complete lattices
— a central notion for this thesis.

Definition 2.5 (Fixpoints).
Let (D, ⊑) be a complete lattice and Φ : D→D.

1. An element d ∈D is called a fixpoint of Φ , if Φ(d) = d .

2. A fixpoint d ∈D of Φ is called the least fixpoint of Φ , if

for all fixpoints d′ of Φ : d ⊑ d′ .
If it exists, we denote the least fixpoint of Φ by lfp Φ .

Antisymmetry of ⊑ implies that if the least fixpoint of Φ exists, then it is unique,
which justifies the above notation.

Example 2.6.
Recall from Definition 2.2 that every transition system TS = (S , −→, SI)
induces the reachability operator ΦTS : P (S) → P (S) over the complete
lattice (P (S) , ⊆). For the transition system TS1 from Example 2.1, ΦTS1 has
5 fixpoints given by the sets X1, . . . ,X5 from Example 2.2 — all solutions of
Equation (2.1). The least fixpoint lfp ΦTS1 is X5 — the least solution.

The fact that the function ΦTS1 from Example 2.6 has a least fixpoint is not a co-
incidence but follows from the fact that it satisfies a property called monotonicity
— a sufficient condition for the existence of the least fixpoint:

Definition 2.6 (Monotone Functions).
Let (D, ⊑) be a complete lattice. A function

Φ : D→D

is called monotone (w.r.t. (D, ⊑)), if

for all d,e ∈D : d ⊑ e implies Φ(d) ⊑ Φ(e) .

Alfred Tarski’s fixpoint theorem states that every monotone function over a

20 2 Foundations

complete lattice has a least fixpoint.

Theorem 2.1 (Tarski’s Fixpoint Theorem [Tar55]).
Let (D, ⊑) be a complete lattice. Every monotone function Φ : D→ D has a
least fixpoint given by

lfp Φ =
�
{d ∈D | Φ(d) ⊑ d} .

Proof. Write S = {d ∈D | Φ(d) ⊑ d}. First notice that
�
S exists because

(D, ⊑) is a complete lattice. To prove lfp Φ =
�
S, one shows that

�
S is a

fixpoint of Φ . Since S contains all fixpoints of Φ by reflexivity of ⊑, this yields

for all fixpoints d′ of Φ :
�

S ⊑ d′

and thus lfp Φ =
�
S. Now, for proving that Φ(

�
S) = Φ(

�
S) holds, it suffices

to show that both Φ(
�
S) ⊑�

S and
�
S ⊑ Φ(

�
S) hold by antisymmetry of ⊑.

To see that Φ(
�
S) ⊑�

S holds, consider the following:

for all d′ ∈ S :
�

S ⊑ d′ (definition of infima)

implies for all d′ ∈ S : Φ
(�

S
)
⊑ Φ(d′) (monotonicity of Φ)

implies for all d′ ∈ S : Φ
(�

S
)
⊑ Φ(d′) ⊑ d′
(definition of S and transitivity of ⊑)

implies Φ
(�

S
)

is lower bound for S (definition of infima)

implies Φ
(�

S
)
⊑

�
S (

�
S is greatest lower bound for S)

To see that
�
S ⊑ Φ(

�
S) holds, consider the following:

Φ
(�

S
)
⊑

�
S (see above)

implies Φ
(
Φ
(�

S
))
⊑ Φ(

�
S) (monotonicity of Φ)

implies Φ
(�

S
)
∈ S (definition of S)

implies
�

S ⊑ Φ
(�

S
)

(definition of infima)

This completes the proof. ■

If Φ(d) ⊑ d, then d is called a prefixpoint of Φ . Theorem 2.1 thus states that the
least fixpoint of a monotone function Φ is the infimum of all prefixpoints.

2

2.1 Fixpoint Theory 21

Example 2.7.
Reconsider the reachability operator ΦTS induced by some transition sys-
tem TS = (S , −→, SI) (Definition 2.2). The reachability operator is mono-
tone [Koz82] because for X,X ′ ∈ P (S) with X ⊆ X ′ , we have

ΦTS(X)

= SI ∪ {s | exists t ∈ X : t −→ s} (by definition)

⊆ SI ∪
{
s | exists t ∈ X ′ : t −→ s

}
(t ∈ X implies t ∈ X ′)

= ΦTS(X ′) . (by definition)

Hence, by Theorem 2.1, ΦTS has a least fixpoint.

2.1.4 Constructive Fixpoint Theorems

Even though Theorem 2.1 guarantees the existence of least fixpoints of mono-
tone functions over complete lattices, it is not particularly constructive. In
what follows, we discuss Kleene’s fixpoint theorem (Theorem 2.2) and its gen-
eralization by Cousot & Cousot (Theorem 2.3), which provide us with more
constructive characterizations of least fixpoints.

Kleene’s fixpoint theorem requires the notion of continuity:

Definition 2.7 (Continuous Functions [Win93]).
Let (D, ⊑) be a complete lattice and let Φ : D→D. We say that Φ is continuous
(w.r.t. (D, ⊑)), if for all increasing ω-chains S = {d0 ⊑ d1 ⊑ . . .} ⊆D, we have

Φ
(⊔

S
)

=
⊔{

Φ(d) | d ∈ S
}
.

In words, continuity states that taking suprema of ω-chains S and applying Φ
commute: Applying Φ to

⊔
S yields the same result as taking the supremum of

the set obtained from applying Φ to every element of S.

Now let (D, ⊑) be a complete lattice, let Φ : D→D, and d ∈D. Given a natural
number n, we denote by Φn(d) the (upper) n-fold iteration of Φ on d defined as

Φn(d) =


d if n = 0

Φ
(
Φn−1(d)

)
if n > 0 .

22 2 Foundations

s0

s1 s2

s3

s4 s5

s6

Φ1
TS1(∅)

Φ2
TS1(∅) Φ3

TS1(∅) = Φ4
TS1(∅) = lfp ΦTS1

Figure 2.2: Fixpoint iterates for determining the set Reach (TS1) = lfp ΦTS1 of
reachable states of the transition system TS1 from Example 2.1.

Theorem 2.2 (Kleene’s Theorem [Win93]).
Let (D, ⊑) be a complete lattice and let Φ : D→D. If Φ is continuous, then

lfp Φ =
⊔
{Φn(⊥) | n ∈N} .

Theorem 2.2 states that the least fixpoint lfp Φ of a continuous function Φ
is given by the supremum of the set obtained from iterating Φ on the least
element ⊥. This iterative process, i.e., determining Φn(⊥) for increasing n is
called a fixpoint iteration and we call Φn(⊥) the n-th iterate of Φ . It is worthwhile
to note that continuity of Φ implies monotonicity of Φ , which implies that

{
⊥ ⊑ Φ(⊥) ⊑ Φ2(⊥) ⊑ . . .

}

is an increasing ω-chain. Hence, a fixpoint iteration yields increasingly precise
lower bounds on lfp Φ , and iterating — so to speak — ad infinitum yields lfp Φ .

Example 2.8.
Reconsider the transition system TS1 = (S , −→, SI) from Example 2.1 and
the reachability operator ΦTS1 : P (S) → P (S) from Definition 2.2. The
reachability operator ΦTS1 can be shown to be continuousa. The least
element of the complete lattice (P (S) , ⊆) is ⊥ = ∅ and suprema correspond

2

2.1 Fixpoint Theory 23

to set union. Hence, Theorem 2.2 yields

lfp ΦTS1 =
⋃{

Φn
TS1 (∅) | n ∈N

}
,

i.e., the set Reach (TS1) of reachable states is given by the above supremum
obtained from fixpoint iteration. This fixpoint iteration is depicted in
Figure 2.2. Notice that determining Φn

TS1(∅) for increasing n corresponds
to performing a breadth-first search from the initial states in the graph
representing the transition system. This fixpoint iteration stabilizes after
finitely many steps, i.e., we have Φ3

TS1(∅) = Φ4
TS1(∅), which implies

for all n ≥ 3: Φn
TS1(∅) = Φn+1

TS1 (∅)
which implies

⋃{
Φn

TS1 (∅) | n ∈N
}

= Φ3
TS1(∅)

and thus lfp ΦTS1 = Reach (TS1) = Φ3
TS1(∅) .

For finite-state transition systems, stabilization after finitely many fixpoint
iterations is guaranteed. For infinite-state transition systems this is, how-
ever, not the case. Consider the simple infinite-state transition system TS2
depicted in Figure 2.3 as an example: For this transition system, we have

for all n ≥ 1: Φn
TS2(∅) = {s0, . . . , sn−1} ,

which implies that

{Φ0
TS2(∅) ⊂ Φ1

TS2(∅) ⊂ Φ2
TS2(∅) ⊂ . . .}

is a strictly increasing ω-chain and the supremum
⋃{

Φn
TS2(∅) | n ∈N

}
= {sn | n ∈N} = lfp ΦTS2

is attained only after infinitely many fixpoint iterations.

aThis is, in fact, the case for every transition system, not just the concrete one considered in
this example. See, e.g., [Koz82; Fon08].

Remark 2.1.
There is a general connection between the (n+ 1)-th fixpoint iterate Φn+1

TS (∅)
and the set Reach≤n (TS) of states reachable in at most n steps, namely

for all n ∈N : Φn+1(⊥) = Reach≤n (TS) .

24 2 Foundations

s0 s1 s2 s3 . . .

Figure 2.3: The simple infinite-state transition system TS2.

Theorem 2.2 thus enables us to see that lfp ΦTS and Reach (TS) coincide since

lfp Φ =
⋃{

Φn
TS(∅) | n ∈N

}
=

⋃{
Reach≤n (TS) | n ∈N

}
= Reach (TS) .

Hence, Theorem 2.2 provides a link between the operational perspective on
reachability from Section 2.1.1.1 and the fixpoint perspective presented here.
This link often helps to understand a least fixpoint construction and to prove
its correctness w.r.t. some ground truth. In Section 2.2.4 we proceed analo-
gously to understand least fixpoint constructions of minimal and maximal
expected rewards in Markov decision processes.

Theorem 2.2 thus provides us with a constructive characterization of least
fixpoints in case the function Φ under consideration is continuous. This raises
the question: Is there a similarly constructive characterization of lfp Φ in case
Φ is monotone but not necessarily continuous? This situation occurs naturally:

Example 2.9.
Let TS = (S , −→, SI) be a transition system and let T ⊆ S be a set of target
states. Adopting notation from linear temporal logic (LTL) [BK08, Chapter
5], define the set ♦T ⊆ S of states that eventually (and definitely, i.e.,
regardless of which transitions are taken) reach a state in T as

♦T = {s0 ∈ S | for all infinite execution fragments π = s0s1s2 . . . :

exists i ∈N : si ∈ T } .

The set ♦T is the least fixpoint of ΘTS,T : P (S)→P (S) defined asa

ΘTS,T (X) = T ∪ {s ∈ S | for all direct successors t of s : t ∈ X}
over the complete lattice (P (S) , ⊆) induced by TS. The intuition is that

♦T is the smallest set of states which contains all target states from T
and all states s for which all direct successors t are in ♦T .

2

2.1 Fixpoint Theory 25

sI

s1,1 s2,1

s2,2

s3,1

s3,2

s3,3

s4,1

s4,2

s4,3

s4,4

. . .

. . .

...

Figure 2.4: The infinite-state and infinitely branching transition system TS3
adapted from [Koz82].

26 2 Foundations

Even though ΘTS,T is monotonic, continuity is not guaranteed [Dij76;
Koz82]. Consider the infinite-state transition system TS3 = (S , −→, {sI })
depicted in Figure 2.4. TS3 is infinitely branching since sI has infinitely
many successors. Each of these transitions leads to a subsystem of increas-
ing length. Now fix the set of target states (colored in red)

T =
{
si,i | i ≥ 1

}
for which we have ♦T = S .

To see that ΘTS3,T is not continuous, define for each n ∈N the set ♦≤nT of
states which (definitely) reach a state in T in at most n steps as

♦≤nT = {s0 ∈ S | for all infinite execution fragments π = s0s1s2 . . . :

exists i ≤ n : si ∈ T } .

Clearly,
{
♦≤0T ⊆ ♦≤1T ⊆ ♦≤2T ⊆ . . .

}
=

{
♦≤nT | n ∈N

}

is an increasing ω-chain and we have
⋃{
♦≤nT | n ∈N

}
= S \ {sI } ,

i.e., for all states s except for the initial state sI , there is some n ∈N such
that s (definitely) reaches a state in T in at most n steps. The above ω-chain
yields a counterexample to continuity of ΘTS3,T since

ΘTS3,T
(⋃{
♦≤nT | n ∈N

})

= ΘTS3,T (S \ {sI })
= S (since all direct successors of sI are in S \ {sI })
, S \ {sI }
=

⋃{
♦≤n+1T | n ∈N

}

=
⋃{

ΘTS3,T
(
♦≤nT

)
| n ∈N

}
.

aThis follows from the fact that ♦T is the least solution of the expansion law of LTL [BK08,
Lemma 5.18].

Cousot & Cousot [CC79] provide a generalization of Theorem 2.2 for possibly
non-continuous but monotone functions. For that, we need to generalize the

2

2.1 Fixpoint Theory 27

n-fold iteration of Φ on some element d ∈ D to transfinite ordinals: Given an
ordinal n, we denote by Φn(d) the (upper) n-fold iteration of Φ on d defined by
transfinite recursion as2

Φn(d) =



d if n = 0 ,

Φ (Φm(d)) if n = m+ 1 is a successor ordinal ,
⊔ {Φm(d) | m < n} if n is a limit ordinal .

To gain some intuition on the above notion, consider the special case where n
is the first limit ordinal ω, which can be identified with the set N of natural
numbers. The ω-fold iteration of Φ on d is given by

Φω(d) =
⊔
{Φn(d) | n ∈N} .

Hence, in case Φ is continuous, Theorem 2.2 can be stated more concisely as

lfp Φ = Φω(⊥) .

Now consider the case where n is the successor ordinal ω+ 1. We have

Φω+1(d) = Φ (Φω(d)) = Φ
(⊔
{Φn(d) | n ∈N}

)
,

i.e., Φω+1(d) is obtained from first taking the supremum of all finite n-fold
iterations of Φ on d (think: iterating Φ ω-times on d), and then applying Φ once
more to the so-obtained element.

With this notion at hand, consider Cousot & Cousot’s theorem:

Theorem 2.3 (Constructive Version of Tarski’s Theorem [CC79]).
Let (D, ⊑) be a complete lattice and let Φ : D→D be monotone. There

exists ordinal n : lfp Φ = Φn(⊥) .

Proof. We recommend [Ech05] for a concise proof. Let us recap the key
ideas. One proves that there exists an ordinal n whose cardinality exceeds the
cardinality of D at which the transfinite iteration of Φ on ⊥ stabilizes, i.e.,

Φ(Φn(⊥)) = Φn(⊥) .

Hence, Φn(⊥) is a fixpoint of Φ . To see that Φn(⊥) is the least fixpoint of Φ ,

2Following [CC79], we fix an ambient ordinal k, which is the smallest ordinal such that |k| > |D |,
and tacitly assume n < k for all ordinals n considered throughout.

28 2 Foundations

one shows by transfinite induction that for all fixpoints d′ of Φ , we have

for all ordinals m : Φm(⊥) ⊑ d′ ,

which implies the claim by taking m = n. ■

Example 2.10.
Reconsider the transition system TS3 depicted in Figure 2.4 and the func-
tion ΘTS3,T from Example 2.9. We have seen that ΘTS3,T is monotone but
not continuous and, indeed, Theorem 2.2 — Kleene’s fixpoint theorem —
does not apply: For each n ∈N, we have

Θn+1
TS3,T (∅) = ♦≤nT ,

i.e., the (n+ 1)-th fixpoint iterate is the set of states that definitely reach a
state in T in at most n steps. Hence, we get

Θω
TS3,T (∅) =

⋃{
Θn

TS3,T (∅) | n ∈N
}

=
⋃{
♦≤nT | n ∈N

}
= S \ {sI }

The set S \ {sI } is not the least fixpoint of Φ since we have

ΘTS3,T (S \ {sI }) = S .
The set S , on the other hand, is the least fixpoint of ΘTS3,T (and indeed co-
incides with ♦T). We thus need ω+1 fixpoint iterations to obtain lfp Φ , i.e.,

lfp ΘTS3,T = Θω+1
TS3,T (∅) = ΘTS3,T (Θω

TS3,T (∅)) .
Hence, Cousot & Cousot’s Theorem 2.3 applies for n =ω+ 1.

2.1.5 Park Induction for Upper Bounds on Least Fixpoints

In the previous section, we have seen that least fixpoints are obtained via
fixpoint iteration, which yields increasingly precise lower bounds on the least
fixpoint of interest. In this section, we consider a proof rule — often referred to
as Park induction — for establishing upper bounds on least fixpoints.

Lemma 2.4 (Park Induction [Par69]).
Let (D, ⊑) be a complete lattice and Φ : D→D be monotone. We have

for all d ∈ Φ : Φ(d) ⊑ d implies lfp Φ ⊑ d .

2

2.1 Fixpoint Theory 29

s0

s1 s2

s3

s4 s5

s6

S = {s0 , . . . , s5}

ΦTS1(S) = S \ {s4}

Figure 2.5: Applying Lemma 2.4 to prove that the subset S = {s0, . . . , s5} of states
contains all reachable states of the transition system TS1 from Ex-
ample 2.1, i.e., that Reach (TS1) ⊆ S holds.

Proof. This is an immediate consequence of Theorem 2.1: We have

d ∈ {d ∈D | Φ(d) ⊑ d}
and thus

lfp Φ =
�
{d ∈D | Φ(d) ⊑ d} ⊑ d

by the definition of infima. ■

Even though lfp Φ is a supremum of a possibly transfinite fixpoint iteration (cf.
Theorem 2.3), proving that d upper-bounds lfp Φ by Lemma 2.4 — if it applies
— can be fairly easy: We only need to apply Φ once to d.

Example 2.11.
We apply Lemma 2.4 to prove that a given subset of states S ⊆ S of some
transition system TS = (S , −→, SI) contains all reachable states: For the

30 2 Foundations

s0

s1 s2

s3

s4 s5

s6

S = {s0 , . . . , s4}

ΦTS1(S)

Figure 2.6: A counterexample to the converse direction of Lemma 2.4: We have
lfp ΦTS1 ⊆ S but ΦTS1(S) ⊈ S.

reachability operator ΦTS : P (S)→P (S) from Definition 2.2 we have

lfp ΦTS = Reach (TS) .

Hence, by Lemma 2.4, if ΦTS(S) ⊆ S, then Reach (TS) ⊆ S. Now consider the
transition system TS1 depicted in Figure 2.5. We prove that S = {s0, . . . , s5}
contains all reachable states of TS1. For that, we compute ΦTS1(S). This is
easy since we simply need to collect all initial states and all successors of
states in S. Since ΦTS1(S) ⊆ S holds, the claim follows by Lemma 2.4.

Importantly, Lemma 2.4 is only a sufficient condition, i.e.,

� lfp Φ ⊑ d implies Φ(d) ⊑ d �

does not hold in general.

Example 2.12.
Consider the situation depicted in Figure 2.6, where S = {s0, . . . , s4}. We

2

2.2 Markov Decision Processes 31

have lfp ΦTS ⊆ S but ΦTS1(S) ⊈ S.

Park induction can be seen as one of the fixpoint theoretic key principles un-
derlying various state-of-the-art verification techniques such as, e.g., invariant-
based reasoning for the verification of classical programs [Hoa69], probabilistic
programs [MM05; Kam19], or hardware [MP95; Bra11a]. From a fixpoint the-
oretic perspective, unsoundness of the converse direction of Lemma 2.4 gives
rise to one of the main challenges when employing these techniques. Regarding
the deductive verification of probabilistic programs, the techniques presented
in Chapters 4 to 6 tackle this challenge in distinct ways.

2.2 Markov Decision Processes

We consider countably infinite-state Markov decision processes (MDPs) and
undiscounted expected rewards for R∞≥0-valued reward functions. MDPs are a
suitable model for an operational semantics of probabilistic programs (cf. Sec-
tion 2.3.2). The notion of expected rewards enables us to establish a connection
between this operational semantics and the deductive verification techniques
employed in this thesis (cf. Section 2.4.5).

We rely on least fixpoint characterizations of minimal and maximal expected
rewards in MDPs, i.e., on the fact that expected rewards are given as the least
solution of Bellman’s optimality equations [Bel57]. These least fixpoint charac-
terizations are well-understood in various settings (see, e.g., [Put94, Theorem
7.2.3a and Theorem 7.3.3a]). There is, however, a slight mismatch between
the notion of expected rewards considered in the literature and the notion
required in this thesis: For maximal expected rewards, our setting is closely
related to what [Put94, Section 7.2] calls positive bounded models. [Put94, Section
7.2] assumes that both reward functions and corresponding maximal expected
rewards are pointwise smaller than∞ (cf. [Put94, Assumption 7.2.1]). We can-
not rely on this assumption since∞-valued maximal expected rewards occur
naturally when reasoning about expected outcomes of probabilistic programs
(cf. Remark 2.3). Similarly, for minimal expected rewards, our setting is closely
related to what [Put94, Section 7.3] calls negative models. Even though∞-valued
minimal expected rewards are not excluded, reward functions are assumed to
be pointwise smaller than∞— another assumption we cannot rely on.

For this reason, we employ the concepts from fixpoint theory presented
in Section 2.1 to derive least fixpoint characterizations of possibly ∞-valued
minimal and maximal expected rewards and prove these characterizations

32 2 Foundations

correct. We proceed as follows: In Section 2.2.1, we define MDPs alongside
corresponding basic notions such as paths and schedulers. In Section 2.2.2, we
introduce the notion of expected rewards in MDPs considered in this thesis and
study their properties in Section 2.2.3. The least fixpoint characterizations of
expected rewards are treated in Section 2.2.4. We then conclude with a note on
the existence of optimal schedulers in Section 2.2.5.

2.2.1 Definition and Basic Notions

We consider finitely branching Markov decision processes (MDPs) with count-
able state spaces. MDPs can be thought of as a probabilistic extension of
transition systems. We mainly follow the presentation from [BK08, Chapter 10].

Definition 2.8 (Markov Decision Processes).
A Markov decision process (MDP) is a structure

M = (S , Act, P) ,

where:

1. S is the countable set of states,

2. Act is the finite set of actions, and

3. P : S ×Act×S → [0,1] is the transition probability function satisfying

a) for all s ∈ S : for all a ∈ Act :
{
s′ ∈ S | P (s,a, s′) > 0

}
is finite and

∑

s′∈S
P (s,a, s′) ∈ {0,1}

b) for all s ∈ S : exists a ∈ Act :
∑
s′∈S P (s,a, s′) = 1.

We say that an action a is enabled in state s if
∑
s′∈S P (s,a, s′) = 1 and denote the

finite set of actions enabled in s by Act(s). If P (s,a, s′) > 0, then s′ is called an
a-successor of s and we denote the finite set of a-successors of s by Succsa(s). If
|Act(s)| = 1 for all s ∈ S , thenM is called a Markov chain (MC). If S is finite, then
we say thatM is finite-state. Otherwise, we say thatM is infinite-state.

Intuitively, an MDPM models an agent operating in a stochastic environ-
ment. Starting in some state s, the agent first nondeterministically chooses some
enabled action a ∈ Act(s). The agent’s next state is then determined probabilis-
tically according to the probability distribution P (s,a, ·) over a-successors of s,
i.e., the probability of moving to state s′ is given by P (s,a, s′). From there, the
agent chooses the next enabled action, and so on. IfM is a Markov chain, then

2

2.2 Markov Decision Processes 33

s0

s1 s3

s2 s4

a 1

a

1

a

1

b

1/3

2/3

a 1

a 1

Figure 2.7: The finite-state MDPM1.

this process is fully probabilistic in the sense that the agent never has a choice.

Example 2.13.
Similarly to transition systems, MDPs can be depicted as graphs. Con-
sider the finite-state MDP M1 = (S , Act, P) depicted in Figure 2.7. We
have S = {s0, . . . , s4} and Act = {a,b}. State s0 has two enabled actions, i.e.,
Act(s0) = {a,b}. The transition probability function P is given by the labeled
edges. For instance, when taking action b in state s0, the probability of
transitioning to state s1 is 1/3, i.e., P (s0,b, s1) = 1/3.

Toward defining expected rewards in MDPs, we introduce the notion of paths,
schedulers, and induced path probabilities.

Definition 2.9 (Paths).
LetM = (S , Act, P) be an MDP and let T ⊆ S .

1. A (finite) path inM is a finite, non-empty sequence of states

π = s0 . . . sn

such that for all i ∈ {0, . . . ,n−1} there is a ∈ Act(si) with si+1 ∈ Succsa(si).

2. We define the set of paths starting in s ∈ S of length at most n ∈N as

Paths≤n(s) = {s0 . . . sm is a path inM | s0 = s and m ≤ n} .
3. We define the set of set of all paths starting in state s ∈ S as

Paths(s) =
⋃

n∈N
Paths≤n(s) .

34 2 Foundations

4. We define the set of paths starting in state s ∈ S and eventually reaching a
state in T of length at most n as

Paths≤n(s,T)

=
{
s0 . . . sm ∈ Paths≤n(s) | sm ∈ T and for all i ∈ {0, . . . ,m− 1} : si < T

}
.

5. We define the set of all paths starting in state s ∈ S and eventually reaching
a state in T as

Paths(s,T) =
⋃

n∈N
Paths≤n(s,T) .

All of the above sets are countable. Furthermore, every path π ∈ Paths(s,T)
contains exactly one state from T , namely the last state of π.

Next, we consider schedulers for resolving the nondeterminism in an MDP.

Definition 2.10 (Schedulers).
LetM = (S , Act, P) be an MDP. A scheduler forM is a function

S : S+→ Act

satisfying

for all s0 . . . sn ∈ S+ : S(s0 . . . sn) ∈ Act(sn) .

We denote the set of all schedulers forM by Scheds. Moreover, a scheduler S
is called memoryless, if

for all s0 . . . sn ∈ S+ : for all t0 . . . tm ∈ S+ :

sn = tm implies S(s0 . . . sn) = S(t0 . . . tm) .

Otherwise, S is called history-dependent. We often identify memoryless sched-
ulers S with functions of type S → Act. We denote the set of all memoryless
schedulers forM by MLScheds.

A scheduler S resolves the nondeterminism in an MDPM as follows: Starting in
some state s0, the first action that is to be chosen is S(s0). If the probabilistically
chosen S(s0)-successor of s0 is s1, then the next action that is to be chosen is
S(s0s1), and so on. For the special case of memoryless schedulers, the action
that is to be chosen only depends on the current state.

Since a scheduler S resolves the nondeterminism in M, it makes sense to
speak about the probability of a path inM under S.

2

2.2 Markov Decision Processes 35

Definition 2.11 (Induced Path Probabilities).
Let M = (S , Act, P) be an MDP, let S ∈ Scheds, and let s0 . . . sn ∈ S+. The
probability of s0 . . . sn inM under S is defined as

ProbS(s0 . . . sn) =
n−1∏

i=0

P (si ,S(s0 . . . si), si+1) ,

where the empty product equals 1.

Example 2.14.
Reconsider the MDP M1 from Figure 2.7 and let S be the memoryless
scheduler defined as

S(s) =


b if s = s0
a otherwise .

We have ProbS(s0s0) = 0 and ProbS(s0s2s4) = 2/3.

2.2.2 Expected Reachability-Rewards

We consider expected reachability-rewards in MDPs — a generalization of
reachability probabilities (cf. [BK08, Chapter 10]). We start with a formalization
of summation over countable index sets of non-negative extended reals.

Throughout this thesis, we let 0 · ∞ = ∞ · 0 = 0 and α +∞ = ∞ + α for all
α ∈R∞≥0. Given a countable set A and g : A→R

∞
≥0, we define3

∑

a∈A
g(a) = sup


∑

a∈F
g(a) | F finite and F ⊆ A

 ,

which is a well-defined quantity in R
∞
≥0. An important characteristic of such a

sum is that even for countably infinite A, the order of summation is irrelevant:
For every bijective function enum : N→ A, we have [Wil07, Proposition 6.1]

∑

a∈A
g(a) =

∞∑

i=0

g(enum(i)) = sup
n∈N

n∑

i=0

g(enum(i)) .

With this notion at hand, we define reachability-reward functions and corre-
sponding expected reachability-rewards in MDPs.

3following [Wil07, Section 6.2]

36 2 Foundations

Definition 2.12 (Reachability-Reward Functions).
LetM = (S , Act, P) be an MDP and let T ⊆ S be a set of states. A function

rew : T →R
∞
≥0

is called (reachability-)reward function (forM).

Intuitively, T is a set of target states and rew(t) is the reward collected upon
reaching target state t ∈ T . We call rew(t) the reward of state t.

Definition 2.13 (Expected Reachability-Rewards).
LetM = (S , Act, P) be an MDP, let rew : T →R

∞
≥0 be a reward function, and

let S ∈ Scheds. We define the following quantities in R
∞
≥0:

1. The expected (reachability-)reward to eventually reach a state in T from
state s ∈ S in at most n ∈N steps under S is defined as

ERS

(
M, s |= ♦≤nrew

)
=

∑

s0...sm∈Paths≤n(s,T)

ProbS(s0 . . . sm) · rew(sm) .

Notice that the number of summands is finite.

2. The expected (reachability-)reward to eventually reach a state in T from
state s ∈ S under S in an arbitrary number of steps is defined as

ERS (M, s |= ♦rew) =
∑

s0...sm∈Paths(s,T)

ProbS(s0 . . . sm) · rew(sm) .

Notice that the number of summands can be infinite.

3. The minimal expected (reachability-)reward to eventually reach a state in
T from state s ∈ S in at most n ∈N steps is defined as

MinER
(
M, s |= ♦≤nrew

)
= inf

S∈Scheds
ERS

(
M, s |= ♦≤nrew

)
.

4. The minimal expected (reachability-)reward to eventually reach a state in
T from state s ∈ S in an arbitrary number of steps is defined as

MinER (M, s |= ♦rew) = inf
S∈Scheds

ERS (M, s |= ♦rew) .

5. The maximal expected (reachability-)reward to eventually reach a state in
T from state s ∈ S in at most n ∈N steps is defined as

MaxER
(
M, s |= ♦≤nrew

)
= sup

S∈Scheds
ERS

(
M, s |= ♦≤nrew

)
.

2

2.2 Markov Decision Processes 37

s0

s1 s3

3

s2 s4

6

a 1

a

1

a

1

b

1/3

2/3

a 1

a 1

Figure 2.8: MDP M1 from Figure 2.7 annotated with a reward function
rew : T →R

∞
≥0. States in T and their rewards are colored in red.

6. The maximal expected (reachability-)reward to eventually reach a state in
T from state s ∈ S in an arbitrary number of steps is defined as

MaxER (M, s |= ♦rew) = sup
S∈Scheds

ERS (M, s |= ♦rew) .

If clear from the context, we often omitM in the above-defined notions. If
M is a Markov chain, then MinER (s |= ♦rew) and MaxER (s |= ♦rew) coincide, in
which case we often write ER (s |= ♦rew).

Let us gain some intuition on the above notions. ERS (s |= ♦rew) is the expected
(or average) reward collected if the agent modeled by M behaves as follows:
The agent starts in state s and chooses actions according to S. Upon reaching
a target state s′ ∈ T , the agent collects a reward of rew(s′), and then stops, i.e.,
collects no further reward. Similarly, ERS

(
s |= ♦≤nrew

)
is the expected reward

collected if the agent is restricted to at most n steps. MinER (s |= ♦rew) is the
minimal — under all possible resolutions of the nondeterminism, i.e., all choices
the agent can make — expected reward when starting in state s. Analogously,
MaxER (s |= ♦rew) is the maximal4 expected reward. Finally, MinER

(
s |= ♦≤nrew

)

and MaxER
(
s |= ♦≤nrew

)
are the corresponding step-bounded variants.

Example 2.15.
Figure 2.8 depicts the MDP M1 annotated with the reward function

4This value is not necessarily attained, i.e., the supremum from Definition 2.13.6 is not necessarily
a maximum (cf. Section 2.2.5). We will nonetheless speak of maximal expected rewards for the
sake of convenience.

38 2 Foundations

rew : T →R
∞
≥0 with T = {s3, s4} and

rew(s3) = 3 and rew(s4) = 6 .

We have

MinER (M, s0 |= ♦rew) = 0

since for every scheduler S with S(s0) = a, every state in T is unreachable,
i.e., there is no path π ∈ Paths(s0,T) with ProbS(π) > 0. Moreover, we have

MaxER (M, s0 |= ♦rew) = 1/3 · 3 + 2/3 · 6 = 5 ,

which is realized by every scheduler S with S(s0) = b.

2.2.3 Properties of Expected Reachability-Rewards

Expected reachability-rewards generalize the notion of reachability probabili-
ties, which are defined as follows (cf. [BK08, Chapter 10]): For scheduler S, the
probability to reach a state in T under S from state s is defined as

PrS (M, s |= ♦T) =
∑

s0...sm∈Paths(s,T)

ProbS(s0 . . . sm) .

The minimal probability to reach a state in T from state s is defined as

MinPr (M, s |= ♦T) = inf
S∈Scheds

PrS (M, s |= ♦T) .

Analogously, the maximal probability to reach a state in T from state s is defined as

MaxPr (M, s |= ♦T) = sup
S∈Scheds

PrS (M, s |= ♦T) .

If clear from the context, we often omit M. If M is a Markov chain, then
MinPr (s |= ♦T) and MaxPr (s |= ♦T) coincide, which justifies writing Pr (s |= ♦T).

Corollary 2.5 (Reachability Probabilities via Expected Rewards).
LetM = (S , Act, P) be an MDP and let T ⊆ S be a set of target states. More-
over, let rew : T → R

∞
≥0 be the reward function defined as rew(t) = 1 for all

t ∈ T . We have for every s ∈ S :

1. MinER (s |= ♦rew) = MinPr (s |= ♦T)

2. MaxER (s |= ♦rew) = MaxPr (s |= ♦T)

2

2.2 Markov Decision Processes 39

We say that a state s ∈ S is a sink if all outgoing transitions of s lead to s, i.e.,
if for all a ∈ Act(s) we have Succsa = {s}. If T contains only sink states, then we
can express expected rewards in terms of reachability probabilities:

Theorem 2.6 (Expected Rewards via Reachability Probabilities).
LetM = (S , Act, P) be an MDP and let rew : T → R

∞
≥0 be a reward function.

If every t ∈ T is a sink, then:

1. MinER (s |= ♦rew) = inf
S∈Scheds

∑

t∈T
PrS (s |= ♦{t}) · rew(t)

2. MaxER (s |= ♦rew) = sup
S∈Scheds

∑

t∈T
PrS (s |= ♦{t}) · rew(t)

Moreover, ifM is a Markov chain, then

3. ER (s |= ♦rew) =
∑

t∈T
Pr (s |= ♦{t}) · rew(t) .

Proof. This is an immediate consequence of the fact that

Paths(s,T) =
⋃̇

t∈T
Paths(s, {t}) ,

i.e., the sets Paths(s, {t}) for t ∈ T partition the set Paths(s,T). ■

2.2.4 Expected Reachability-Rewards via Least Fixpoints

Our goal is to obtain least fixpoint characterizations of minimal and maximal
expected reachability-rewards and to prove these characterizations correct. For
that, we employ the framework of fixpoint theory presented in Section 2.1.

Said least fixpoint constructions are obtained from a variant of Bellman’s
optimality equations [Bel57]. LetM = (S , Act, P) be an MDP and rew : T →R

∞
≥0

a reward function. We have for every s ∈ S

MinER (s |= ♦rew)

=



rew(s) if s ∈ T
min

a∈Act(s)

∑

s′∈Succsa(s)

P (s,a, s′) ·MinER (s′ |= ♦rew) otherwise

40 2 Foundations

and

MaxER (s |= ♦rew)

=



rew(s) if s ∈ T
max

a∈Act(s)

∑

s′∈Succsa(s)

P (s,a, s′) ·MaxER (s′ |= ♦rew) otherwise .

In words, if s ∈ T , then the minimal (resp. maximal) expected reward of state
s is rew(s). Otherwise, the minimal (resp. maximal) expected reward of s is
the minimum (resp. maximum) of the sums over the minimal (resp. maximal)
expected reward of a-successors s′ of s, where each summand is weighted
according to the probability of moving from s to s′ when taking action a.

In fixpoint-theoretic terms, we define a function X : S → R
∞
≥0, which maps

each state s to its (minimal or maximal) expected reward as the least — in a
sense we make precise below — solution of the recursive equation

X = λs.



rew(s) if s ∈ T
op

a∈Act(s)

∑

s′∈Succsa(s)

P (s,a, s′) ·X(s′) otherwise , (2.2)

where the choice of op ∈ {min,max} depends on whether we are considering
minimal or maximal expected rewards. In what follows, we prove that the least
solution of Equation (2.2) exists uniquely (Theorem 2.7) and indeed yields the
sought-after expected rewards (Theorem 2.9). The solution domain of the above
equation is the complete lattice of value functions:

Definition 2.14 (Value functions).
LetM = (S , Act, P) be an MDP. The complete lattice of value functions (for
M) is defined as

(V , ⊑) ,

where:

1. V = S →R
∞
≥0 is the set of value functions, and

2. ⊑ is the pointwise lifted order on R
∞
≥0, i.e.,

for all v,v′ ∈ V : v ⊑ v′ iff for all s ∈ S : v(s) ≤ v′(s) .
The least element of (V , ⊑) is the constant-zero-function λs.0, which we —

2

2.2 Markov Decision Processes 41

slightly abusing notation — denote by 0. Moreover, suprema and infima in
(V , ⊑) are given as the pointwise liftings of suprema and infima in (R∞≥0, ≤), i.e.,

for all V ⊆ V :
⊔

V = λs. sup {v(s) | v ∈ V } and
�

V = λs. inf {v(s) | v ∈ V } .
(Least) solutions of Equation (2.2) are formalized as (least) fixpoints of func-

tions of type V → V , which are called Bellman operators.

Definition 2.15 (Bellman operators).
LetM = (S , Act, P) be an MDP and let rew : T →R

∞
≥0.

1. The function Φmin
M rew : V → V defined as

Φmin
M rew(v) = λs.



rew(s) if s ∈ T
min

a∈Act(s)

∑

s′∈Succsa(s)

P (s,a, s′) · v(s′) otherwise .

is called the min-Bellman operator ofM w.r.t. rew.

2. Analogously, the function Φmax
M rew : V → V defined as

Φmax
M rew(v) = λs.



rew(s) if s ∈ T
max

a∈Act(s)

∑

s′∈Succsa(s)

P (s,a, s′) · v(s′) otherwise .

is called the max-Bellman operator ofM w.r.t. rew.

IfM is a Markov chain, then Φmin
M rew and Φmax

M rew coincide, in which case we
often write ΦM rew. Least fixpoints of the Bellman operators exist uniquely:

Theorem 2.7 (Continuity of Bellman Operators).
LetM = (S , Act, P) be an MDP and let rew : T →R

∞
≥0.

1. Both the min-Bellman operator Φmin
M rew and the max-Bellman operator

Φmax
M rew ofM w.r.t. rew are continuous w.r.t. (V , ⊑).

2. Both Φmin
M rew and Φmax

M rew have a least fixpoint given by

lfp Φmin
M rew = Φmin ω

M rew(0)

and lfp Φmax
M rew = Φmax ω

M rew(0) .

Proof. Theorem 2.7.1 is a consequence of the fact that addition, multiplica-
tion, minima, and maxima are continuous w.r.t. (R∞≥0, ≤) [DKV09, Chapter 1].
Theorem 2.7.2 is then an instance of Kleene’s Theorem 2.2. ■

42 2 Foundations

Our goal is now to prove that the least fixpoints of the Bellman operators
indeed evaluate to the sought-after expected rewards, i.e.,

lfp Φmin
M rew = λs.MinER (s |= ♦rew)

and lfp Φmax
M rew = λs.MaxER (s |= ♦rew) .

Analogously to Remark 2.1, we first establish a link between fixpoint iterates
and step-bounded expected rewards.

Lemma 2.8 (Step-Bounded Expected Rewards via Fixpoint Iteration).
LetM = (S , Act, P) be an MDP and let rew : T →R

∞
≥0. We have:

1. for all n ∈N : Φmin n+1
M rew (0) = λs.MinER

(
s |= ♦≤nrew

)

2. for all n ∈N : Φmax n+1
M rew (0) = λs.MaxER

(
s |= ♦≤nrew

)

Moreover, ifM is a Markov chain, then

3. for all n ∈N : Φn+1
M rew (0) = λs.ER

(
s |= ♦≤nrew

)
.

Proof. By induction on n. See Appendix 1.1.1 for details. ■

Using some additional auxiliary results given in Appendix 1.1, this enables us
to prove our least fixpoint construction correct:

Theorem 2.9 (Expected Rewards via Least Fixpoints).
LetM = (S , Act, P) be an MDP and rew : T →R

∞
≥0. We have:

1. lfp Φmin
M rew = λs.MinER (M, s |= ♦rew)

2. lfp Φmax
M rew = λs.MaxER (M, s |= ♦rew)

Moreover, ifM is a Markov chain, then

3. lfp ΦM rew = λs.ER (M, s |= ♦rew) .

Proof. For maximal expected rewards, the claim follows from Theorem 2.2
and Lemma 2.8.2. The proof for minimal expected rewards is more involved
and relies on the fact lfp Φmin

M rew gives rise to an optimal memoryless sched-
uler (cf. Lemma A.1). The full proof is given in Appendix 1.1.2. ■

2

2.2 Markov Decision Processes 43

Example 2.16.
Reconsider the MDP M1 and the reward function rew from Figure 2.8.
By Lemma 2.8, performing a fixpoint iteration on Φmin

M rew (resp. Φmax
M rew)

yields increasingly precise lower bounds on the minimal (resp. maximal)
expected reward of each state, which — in the limit — yields the precise
minimal (resp. maximal) expected rewards. In the literature, this process
is often called value iteration [BK08, Chapter 10]. We exemplify this for
minimal expected rewards. For that, we denote value functions by column
vectors, i.e., v ∈ V is denoted by




v(s0)
v(s1)
v(s2)
v(s3)
v(s4)




.

Let us now perform a fixpoint iteration on Φmin
M rew:

Φmin
M rew







0
0
0
0
0







=




0
0
0
3
6




Φmin 2
M rew







0
0
0
0
0







=




0
3
6
3
6




Φmin 3
M rew







0
0
0
0
0







=




0
3
6
3
6




Since Φmin 2
M rew(0) and Φmin 3

M rew(0) coincide, we obtain lfp Φmin
M rew after

finitely many fixpoint iterations. We remark that, even for finite-state
MDPs, this is not guaranteed in general.

44 2 Foundations

2.2.5 Existence of Optimal Schedulers

We briefly comment on the existence of optimal schedulers for expected
reachability-rewards. LetM = (S , Act, P) be an MDP and let rew be a reward
function. We say that a scheduler S is min-optimal forM w.r.t. rew at state s, if

ERS (s |= ♦rew) = MinER (M, s |= ♦rew) .

Moreover, we say that S is uniformly min-optimal forM w.r.t. rew, if S is min-
optimal at all states s ∈ S , i.e., if

for all s ∈ S : ERS (s |= ♦rew) = MinER (M, s |= ♦rew) .

For maximal expected rewards, both notions are defined analogously.
We obtain as a by-catch of Lemma A.1 and Theorem 2.9.1 that there is always

a uniformly min-optimal scheduler S, which is moreover memoryless.5

Theorem 2.10 (Optimal Schedulers for Minimal Expected Rewards).
LetM = (S , Act, P) be an MDP and let rew be a reward function. There is a
memoryless scheduler S ∈MLScheds with

for all s ∈ S : MinER (s |= ♦rew) = ERS (s |= ♦rew) .

In particular, the infimum from Definition 2.13.4 is always attained by a memo-
ryless scheduler, i.e., we have

MinER (s |= ♦rew) = min
S∈MLScheds

ERS (s |= ♦rew) . (2.3)

Regarding maximal expected rewards, it is known that (both non-uniform and
uniform) max-optimal schedulers do not necessarily exist (see, e.g., [Orn69]).
In particular, the supremum from Definition 2.13.6 is not necessarily attained.
Analogously to Equation (2.3), one could, however, ask whether the supremum
from Definition 2.13.6 over all schedulers can be replaced by a supremum over
memoryless schedulers, i.e., whether for all states s,

MaxER (s |= ♦rew) ?= sup
S∈MLScheds

ERS (s |= ♦rew) ,

which is the case if for all states s and all ϵ > 0 there is an ϵ-max-optimal
memoryless scheduler S, i.e., a memoryless scheduler S with

MaxER (s |= ♦rew)− ϵ ≤ ERS (s |= ♦rew) .

5A similar result is known for expected total rewards in case the reward function is pointwise
smaller than∞ [Put94, Theorem 7.3.6a].

2

2.3 Probabilistic Programs 45

The answer to this question is, to the best of our knowledge, open. A more in-
depth treatment of the existence of schedulers is outside the scope of this thesis.

2.3 Probabilistic Programs

In this thesis, we study the deductive verification of discrete probabilistic programs
featuring nondeterministic choices. The probabilistic programming language con-
sidered throughout is McIver & Morgan’s probabilistic guarded command language
(pGCL) [MM99; MM05] — an extension of Dijkstra’s guarded command lan-
guage [Dij76]. The syntax of pGCL is provided in Section 2.3.1. In Section 2.3.2,
we provide a formal operational semantics based on Markov decision processes.

2.3.1 The Probabilistic Programming Language pGCL

Let Vars = {x,y,z, . . .} be a countably infinite set of program variables and let Vals
be a countable set of values. Unless explicitly stated otherwise, we assume that
Vals = Q≥0. A (program) state is a function of type Vars→ Vals. Program states
are denoted by σ,τ , and variations thereof. We restrict to non-negative rationals
for the sake of convenience, which is discussed in Section 2.4.2. To ensure that
the set of program states is countable, we define it as

States = {σ : Vars→Q≥0 | the set {x ∈ Vars | σ (x) > 0} is finite}
and tacitly assume that all program states are taken from States. A predicate
(over States) is a set P ⊆ States and the set of predicates is P (States). We usually
write σ |= P instead of σ ∈ P and say that σ satisfies P . Moreover, we employ the
usual logical connectives between predicates. For instance, we write

P ∧Q instead of P ∩Q .

With these notions at hand, we define pGCL.

Definition 2.16 (The Probabilistic Guarded Command Language).
Programs C in the probabilistic guarded command language, which we denote
by pGCL, adhere to the grammar

C −→ skip (effectless program)

| x := A (assignment)

| C ; C (sequential composition)

| {C } [p] {C } (probabilistic choice)

46 2 Foundations

| {C }2 {C } (nondeterministic choice)

| if (B) {C } else {C } (conditional choice)

| while (B) {C } , (while loop)

where:

1. A : States→ Vals is an arithmetic expression,

2. p ∈ [0,1]∩Q is a rational probability, and

3. B ∈ P (States) is a predicate also referred to as a guard.

If a program C does not contain nondeterministic choice, then we call C
fully probabilistic. Otherwise, we call C nondeterministic. If C does not contain
probabilistic choices, then we call C non-probabilistic. If C does not contain
while loops, then we call C loop-free. Otherwise, we call C loopy. We do not
(yet) give a concrete syntax for arithmetic expressions or predicates since such
a syntax is not relevant at this point. In order to ensure that the set pGCL
of programs is countable6, we assume that both arithmetic expressions and
predicates are taken from some computable set.

Let us gain some intuition on what it means to execute each of the individual
constructs on some initial program state σ . A formal treatment of pGCL’s
operational semantics is given in Section 2.3.2.

Effectless Program. skip immediately terminates in σ .

Assignment. x := A evaluates A in the current state σ and assigns the result
to x. Hence, the assignment terminates in the state σ [x 7→ A(σ)] obtained from
updating the value of x to A(σ). More generally, we define for every q ∈Q≥0

σ [x 7→ q] = λy.


q if y = x

σ (y) otherwise .

Sequential Composition. C1 ; C2 first executes C1. If C1 terminates in some state
σ ′ , then C2 is subsequently executed on this new state σ ′ .

Probabilistic Choice. Executing {C1 } [p] {C2 } corresponds to a random ex-
periment, where we flip a coin with bias p and base our decision of which

6This will ensure that pGCL’s operational MDP is countable, see Definition 2.17 on page 50.

2

2.3 Probabilistic Programs 47

branch is to be executed on the outcome of this coin flip: The branch C1 is
executed with probability p and the branch C2 is executed with probability 1−p.

Nondeterministic Choice. Rather than having information on the likelihood
of C1 or C2 being executed, all we know is that for both C1 and C2 there is
the possibility of being executed. In this sense, the nondeterministic choice
is actually not executable unless we explicitly resolve the nondeterminism by
deciding which branch to take. As with resolving nondeterminism in MDPs, this
decision may be based on the current state σ or on the complete computation
history. See Section 2.3.2 for details.

Conditional Choice. if (B) {C1 } else {C1 } executes C1 if the current state σ
satisfies the guard B. Otherwise, C2 is executed.

While Loop. while (B) {C } checks whether the current state σ satisfies the guard
B. If not, the loop terminates. Otherwise, the loop executes C on σ — the loop
body. If the loop body C terminates in a new state σ ′ , then while (B) {C } repeats
this procedure i.e., checks whether σ ′ satisfies B, and so on. Notice that only
loops can cause nonterminating (or diverging) behavior.

Example 2.17.
Consider the fully probabilistic loop C given by

while (y = 1) { {y := 0 } [1/2] {x := x+ 1 } } .
C can be understood as a sampler for the geometric distribution with
parameter 1/2: Given an initial state σ with σ |= y = 1 and i ∈ N, the
probability that C terminates in a final state τ with τ(x) = σ (x) + i is 1/2i+1.

2.3.2 Operational MDP Semantics of pGCL

Towards defining an operational MDP semantics of pGCL, we define a small-
step execution relation à la Plotkin [Plo04]. We mainly follow the presentation
from [5] with adaptions from [19]. We define the set of configurations as

Conf = (pGCL∪ {⇓})×States .

Configurations are denoted by c and variations thereof. A configuration of
the form (⇓, τ) is called final and indicates termination in the final state τ . A

48 2 Foundations

1. Final configurations:

(⇓,σ)
N,1−−−→ (⇓,σ)

2. Effectless Program:

(skip,σ)
N,1−−−→ (⇓,σ)

3. Assignment:

(x := A,σ)
N,1−−−→ (⇓,σ [x 7→ A(σ)])

4. Sequential Composition:

(C1,σ)
a,p−−→ (⇓,σ ′)

(C1 ; C2,σ)
a,p−−→ (C2,σ

′)

(C1,σ)
a,p−−→ (C′1,σ

′)

(C1 ; C2,σ)
a,p−−→ (C′1 ; C2,σ

′)

Figure 2.9: Rules defining the small-step execution relation −→ (first part).

2

2.3 Probabilistic Programs 49

5. Probabilistic Choice:
C1 , C2

({C1 } [p] {C2 } ,σ)
N,p−−−→ (C1,σ)

C1 , C2

({C1 } [p] {C2 } ,σ)
N,1−p−−−−−→ (C2,σ)

({C } [p] {C } ,σ)
N,1−−−→ (C,σ)

6. Nondeterministic Choice:

({C1 }2 {C2 } ,σ)
L,1−−→ (C1,σ) ({C1 }2 {C2 } ,σ)

R,1−−−→ (C2,σ)

7. Conditional Choice:
σ |= B

(if (B) {C1 } else {C2 } ,σ)
N,1−−−→ (C1,σ)

σ |= ¬B
(if (B) {C1 } else {C2 } ,σ)

N,1−−−→ (C2,σ)

8. While Loop:

σ |= B
(while (B) {C } ,σ)

N,1−−−→ (C ; while (B) {C },σ)

σ |= ¬B
(while (B) {C } ,σ)

N,1−−−→ (⇓,σ)

Figure 2.10: Rules defining the small-step execution relation −→ (second part).

50 2 Foundations

configuration of the form (C,σ) indicates that program C is to be executed on
initial state σ . We then define the small-step execution relation

−→ ⊆ Conf× {N,L,R} × ([0,1]∩Q)×Conf

as the smallest relation satisfying the rules given in Figures 2.9 and 2.10, where

we write c
a,p−−→ c′ instead of (c,a,p,c′) ∈−→. This yields pGCL’s operational MDP:

Definition 2.17 (Operational MDP).
The operational MDP of pGCL is

O = (Conf, Act, P) ,

where:

1. Act = {N,L,R} is the set of actions,

2. P : Conf×Act×Conf→ [0,1] is the transition probability function with

P (c,a,c′) =


p if c

a,p−−→ c′

0 otherwise .

The transition probability function P of the operational MDP O formalizes the
informal explanation of pGCL’s execution behavior from Section 2.3.1: If

P ((C,σ),a,c′) = p

then executing C for one step on initial state σ when taking action a yields the
new configuration c′ with probability p. We have p ∈ (0,1) only if executing C
for one step involves a probabilistic choice. For all other statements, we have
p ∈ {0,1}. Moreover, we have |Act((C,σ))| = {L,R} iff executing C for one step
involves a nondeterministic choice, where L is the action for the left branch
and R is the action for the right branch. If executing C for one step involves
one of the remaining statements, then Act((C,σ)) = {N }, indicating that no
nondeterministic choice is possible.

A scheduler S for O resolves the nondeterminism encountered when execut-
ing a given program C on some initial state σ . If the nondeterminism is resolved
by a scheduler, then it makes sense to speak about the subdistribution of final
states obtained from executing C on initial state σ . We adopt the following
definition from [Kam19, Proposition 3.13].

Definition 2.18 (Subdistribution of Final States).
Let C ∈ pGCL, let σ ∈ States, and let S be a scheduler for O. The subdistribu-

2

2.4 Deductive Verification of Probabilistic Programs 51

tion of final states obtained from executing C on σ under S is defined as

⟦C⟧σS : States→ [0,1] , ⟦C⟧σS(τ) = PrS ((C,σ) |= ♦(⇓, τ)) .

⟦C⟧σS(τ) is the probability that C terminates in state τ when executed on
initial state σ and resolving the nondeterminism according to S. If C is fully
probabilistic, then S is irrelevant and we simply write ⟦C⟧σ . We speak of a
subdistribution since the probabilities to reach some final state do not necessarily
add up to 1, i.e., we might have

∑

τ∈States

⟦C⟧σS(τ)

︸ ︷︷ ︸
probability that C terminates on σ under S

possibly
< 1 ,

and the “missing” probability mass is the probability that C diverges on σ under
scheduler S. For instance, for the fully probabilistic program

C = while (true) {skip } ,
we have for all initial states σ that∑

τ∈States

⟦C⟧σ (τ) = 0 ,

since C diverges with probability 1 on every initial state, and this fact does not
depend on a scheduler since C is fully probabilistic.

Example 2.18.
Reconsider the fully probabilistic loop C from Example 2.17 given by

while (y = 1) { {y := 0 } [1/2] {x := x+ 1 } } .
Figure 2.11 on page 52 depicts a reachable fragment of pGCL’s operational
MDP O from the initial configuration (C,σ) with σ (x) = 0 and σ (y) = 1.
Since C is fully probabilistic, so is the depicted reachable fragment in the
sense that for all reachable configurations c, we have Act(c) = {N }. Notice
that — even for a fixed initial configuration — the number of reachable con-
figurations is infinite which is due to the fact that C is an unbounded loop.

2.4 Deductive Verification of Probabilistic Programs

We introduce the deductive program verification techniques we build upon in
this thesis — the weakest preexpectation calculus for reasoning about expected

52 2 Foundations

(while (y = 1) { {y := 0 } [1/2] {x := x+1 } } , x = 0∧ y = 1)

({y := 0 } [1/2] {x := x+1 } ; while . . ., x = 0∧ y = 1)

(y := 0; while . . ., x = 0∧ y = 1) (x := x+1; while . . ., x = 0∧ y = 1)

(while . . . , x = 0∧ y = 0)

(⇓, x = 0∧ y = 0)

(while . . . , x = 1∧ y = 1)

({y := 0 } [1/2] {x := x+1 } ; while . . ., x = 1∧ y = 1)

...
...

N

1

N

1/2

N

1/2

N

1

N

1

N1

N

1

N

1

N

1/2

N

1/2

Figure 2.11: A reachable fragment of pGCL’s operational MDP O for the loop
from Example 2.17. Program states are denoted by conjunctions
of equalities, i.e., x = n∧ y = m indicates that the current state σ
satisfies σ (x) = n and σ (y) =m.

2

2.4 Deductive Verification of Probabilistic Programs 53

outcomes of pGCL programs. Weakest preexpectation reasoning has been pi-
oneered by Kozen [Koz83; Koz85] for fully probabilistic programs. McIver
& Morgan [MM05; MMS96] extended weakest preexpectation reasoning to
probabilistic programs featuring nondeterministic choices. McIver & Morgan’s
calculus is a quantitative generalization of Dijkstra’s weakest precondition cal-
culus [Dij75; Dij76] and enables reasoning about expected values of bounded
random variables on a program’s state space. Kaminski [Kam19] extended this
calculus further to enable reasoning about unbounded and ∞-valued random
variables, which allows to leverage the concepts from fixpoint theory presented
in Section 2.1. We mainly follow the presentation from [Kam19].

2.4.1 Motivation: Reasoning about Expected Outcomes

The weakest preexpectation calculus enables us to reason about expected out-
comes of probabilistic programs in a syntax-based manner, i.e., by reasoning
on the source code of a given program. Before we deal with the fully-fledged
formalization of this calculus, let us gain some intuition on expected outcomes.
For that, let C — for the sake of simplicity — be a fully probabilistic program
and let σ be a state. By “expected outcomes” we mean quantities like:

1. What is the probability that C terminates on initial state σ?

2. Given a predicate P ∈ P (States), what is the probability that C terminates in
a final state satisfying P on initial state σ?

3. Given a program variable x, what is the expected (or average) final value of x
on termination of C on initial state σ?

Example 2.19.
Consider the simple pGCL program C given by

{skip } [1/3] {x := x+ 3 } .
Program C flips a biased coin and either does nothing (left branch) or
increments x by 3 (right branch). Let us consider each of the quantities
from above for this concrete program C.

1. Program C terminates with probability 1 on every initial state.

2. Let P be the predicate x = 3. Given an initial program state σ , the
probability that C terminates in a final state satisfying x = 3 depends
on the initial value σ (x) of x:

54 2 Foundations

a) If σ (x) = 3, this probability is 1/3 (due to the left branch).

b) If σ (x) = 0, this probability is 2/3 (due to the right branch).

c) If neither σ (x) = 3 nor σ (x) = 0, this probability is 0.

3. Given an initial program state σ , the expected (or average) final value
of x depends on the initial value σ (x) of x: With probability 1/3, the
final of x is σ (x). With probability 2/3, the final of x is σ (x) + 3. The
expected final value of x is thus given by the weighted sum

1/3 · σ (x) + 2/3 · (σ (x) + 3) = σ (x) + 2 .

Hence, on average, C increments x by 2.

We now make the crucial observation that all of the above quantities can be
expressed as the expected value of a random variable X : States→ R

∞
≥0 w.r.t. the

distribution of final states obtained from executing C on σ , which we define as
∑

τ∈States

⟦C⟧σ (τ) ·X(τ) ∈R∞≥0 ,

i.e., we sum over X(τ) for each state τ ∈ States and weigh each summand by the
probability ⟦C⟧σ (τ) of terminating in τ . In particular:

1. The probability that C terminates on initial state σ is obtained by choosing
X = λτ.1 — the random variable which maps every state to 1, i.e., C’s
termination probability on initial state σ is

∑

τ∈States

⟦C⟧σ (τ) ·X(τ) =
∑

τ∈States

⟦C⟧σ (τ) .

2. The probability that C terminates in a final state satisfying a given pred-
icate P on initial state σ is obtained by choosing X = [P] — the Iverson
bracket (or indicator function) of P defined as

[P] = λτ.


1 if τ |= P
0 if τ ̸|= P ,

because this yields
∑

τ∈States

⟦C⟧σ (τ) ·X(τ) =
∑

τ∈States
τ |=P

⟦C⟧σ (τ) .

Notice that termination probabilities, i.e., the probability of terminating
in an arbitrary final state, is a special case of the above for P = [true].

2

2.4 Deductive Verification of Probabilistic Programs 55

σ

1
3

1
2

• • • . . .
X(τ1)

X(τ2) X(τ3)Exp
[]

=
∑

τ∈States
⟦C⟧σ (τ) ·X(τ)

C

wp⟦C⟧ (X)

Figure 2.12: For fully probabilistic C, the weakest preexpectation wp⟦C⟧ (X) of
C w.r.t. postexpectation X maps each initial state σ to the expected
value of X w.r.t. the distribution ⟦C⟧σ of final states obtained from
executing C on σ (adapted from [15]).

3. The expected final value of variable x on termination of C on initial state
σ is obtained by choosing X = λτ.τ(x) — the random variable which
maps every state τ to the value of x under τ , because this yields

∑

τ∈States

⟦C⟧σ (τ) ·X(τ) =
∑

τ∈States

⟦C⟧σ (τ) · τ(x) .

In the jargon of the weakest preexpectation calculus, random variables of type
States → R

∞
≥0 are called expectations7. The expectations X from above are

referred to as postexpectations: They specify the expected outcomes we are
interested in and are evaluated in the final states. The function which maps
every initial state σ to the expected value of X w.r.t. the distribution of final
states is again of type States→R

∞
≥0 — thus an expectation — called the weakest

preexpectation of C w.r.t. (postexpectation) X, denoted by

wp⟦C⟧ (X) = λσ.
∑

τ∈States

⟦C⟧σ (τ) ·X(τ) .

7The terminology is standard yet slightly misleading: By an “expectation” we mean functions of
type States→R

∞
≥0, not an expected value.

56 2 Foundations

Figure 2.12 depicts the function wp⟦C⟧ (X) graphically.
For a nondeterministic program C, the distribution of final states is generally

not unique but depends on the resolution of the nondeterminism, i.e., on a
scheduler S for pGCL’s operational MDP O. Hence, expected outcomes like the
probability of termination or the expected final value of a program variable are
generally not unique, as well. Analogously to minimal and maximal expected
rewards in MDPs, we are interested in minimal and maximal — under all
possible resolutions of the nondeterminism — expected outcomes. In the
jargon of weakest preexpectations, we speak of the demonic and angelic weakest
preexpectation of C w.r.t. postexpectation X, which are respectively denoted by

dwp⟦C⟧ (X) = λσ. inf
S∈Scheds

∑

τ∈States

⟦C⟧σS(τ) ·X(τ) ,and

awp⟦C⟧ (X) = λσ. sup
S∈Scheds

∑

τ∈States

⟦C⟧σS(τ) ·X(τ) .

If C is fully probabilistic, then dwp⟦C⟧ (X) and awp⟦C⟧ (X) coincide, i.e.,

wp⟦C⟧ (X) = dwp⟦C⟧ (X) = awp⟦C⟧ (X) .

In this sense, dwp and awp are extensions of wp for nondeterministic programs.
One of our prime objectives is to employ the weakest preexpectation calculus

to automate the verification of bounds on expected outcomes: Given a program
C ∈ pGCL, expectations X,Y , and T ∈ {dwp,awp}, automatically check whether

T ⟦C⟧ (X) ⊑ Y

which is the case iff for all σ ∈ States : T ⟦C⟧ (X) (σ) ≤ Y (σ) ,

i.e., automatically verify whether, for every initial state σ , the quantitiy Y (σ)
upper-bounds the expected outcome T ⟦C⟧ (X) (σ).

Example 2.20.
The verification of bounds on expected outcomes has natural applications
when, e.g., reasoning about probabilistic safety of stochastic processes mod-
eled by pGCL programs. Let us consider a variant of the bounded retransmis-
sion protocol (BRP) as an example [HSV93; DJJL01]. The goal of the BRP is
to send a file consisting of N packets via a lossy channel. Each transmission
of a packet can fail with probability 0.01. Whenever this happens, the
packet has to be retransmitted. Crucially, the BRP allows for at most M

2

2.4 Deductive Verification of Probabilistic Programs 57

retransmissions per packet. If this number is exceeded for some packet, we
say that the protocol fails, i.e., did not manage to transmit the file. This
stochastic process is naturally modeled by the following pGCL program C:

sent := 0; failed := 0;

while (sent < N ∧ failed ≤M) {
{ failed := failed + 1 } [0.01] { failed := 0; sent := sent + 1 }

}

Variable sent keeps track of the number of successfully transmitted pack-
ages and failed keeps track of the number of retransmissions for the current
packet. The loop terminates either when sent = N , i.e., when all packets
have been successfully transmitted, or when failed >M, i.e., when the pro-
tocol fails. Notice that N and M are program variables, i.e., the number
of packets and maximal retransmissions are part of the input to C. Now,
a crucial property for the BRP is that the probability that the protocol fails
is sufficiently small. The BRP fails whenever it terminates in a final state τ
with τ |= failed >M. Hence, the weakest preexpectation

wp⟦C⟧ ([failed >M])

maps every initial program state σ , i.e., all values for N and M, to the
probability that the protocol fails for the given number of packets and
maximal retransmissions. Suppose we know that whenever we run the
protocol, there are at most 8 · 106 packets to send; and that we may allow
for at least 5 retransmission tries. Let Y be the expectation defined as

Y = λσ.


0.001 if σ (N) ≤ 8 · 106 ∧ σ (M) ≥ 5

∞ otherwise .

By verifying that

wp⟦C⟧ ([failed >M]) ⊑ Y

holds, we verify for all relevant inputs to the protocol that the probability of
failing is at most 0.001.

It is one of Kozen’s and McIver & Morgan’s key insight that weakest preex-
pectations can be defined in a syntax-based manner, i.e., by reasoning on the
source code of the given program C. In fact, we will see in Section 2.4.3 that

58 2 Foundations

both dwp⟦C⟧ (X) and awp⟦C⟧ (X) can be defined by induction on the structure of
C. Hence, we can reason on the finite source code rather than the infinite-state
operational MDP O and the infinite sets of paths involved in the above sums.

2.4.2 Expectations

In this section, we formalize expectations, treat their algebraic properties, and
define the arithmetic operations needed for the weakest preexpectation calculus.

Definition 2.19 (Expectations).
The complete lattice of expectations is defined as

(E, ⊑) ,

where:

1. E = States→R
∞
≥0 is the set of expectations,

2. ⊑ is the pointwise lifted order on R
∞
≥0, i.e.,

for all X,Y ∈ E : X ⊑ Y iff for all σ ∈ States : X(σ) ≤ Y (σ) .

The least element of (E, ⊑) is the constant-zero-expectation λσ.0. The greatest
element is λσ.∞. Moreover, suprema and infima are given as the pointwise
liftings of suprema and infima in (R∞≥0, ≤), i.e., for E ⊆ E, we have

⊔
E = λσ. sup {X(σ) | X ∈ E} and

�
E = λσ. inf {X(σ) | X ∈ E} .

Given two expectations X,Y ∈ E, we often write

X ⊔Y instead of
⊔
{X,Y } and similarly X ⊓Y instead of

�
{X,Y } .

We define standard arithmetic operations on expectations as the pointwise
liftings of these operations on the non-negative extended reals, i.e.,

X ·Y = λσ.X(σ) ·Y (σ) and X +Y = λσ.X(σ) +Y (σ) ,

where we recall that we let 0 · ∞ = ∞ · 0 = 0. We agree on the usual order
of precedence for these operations, i.e., · binds stronger than +, and we use
parentheses to resolve ambiguities. Moreover, we often identify constants in
R
∞
≥0 with expectations, i.e., we identify α ∈R∞≥0 with the constant expectation

λσ.α .

2

2.4 Deductive Verification of Probabilistic Programs 59

Similarly, we often identify a program variable x with the expectation

λσ.σ (x) ,

which, on state σ , evaluates to the value of x under σ . The Iverson bracket [P] of
a predicate P ∈ P (States) casts P to an expectation, defined as

[P] = λσ.


1 if σ |= P
0 if σ ̸|= P .

Example 2.21.
The above conventions enable us to denote expectations conveniently, e.g.,

[z ≤ 2] · (x+ 2) + [z > 2] · (2 · y) = λσ.



σ (x) + 2 if σ (z) ≤ 2

2 · σ (y) if σ (z) > 2

0 otherwise .

Moreover, we can conveniently specify various weakest preexpectations:

1. Given a predicate P , wp⟦C⟧ ([P]) is the expectation which maps every
initial state σ to the probability that C terminates in a state satisfying
P . In particular, for the special case where P = true, wp⟦C⟧ ([true]) (σ)
is the probability that C terminates on σ .

2. wp⟦C⟧ (x) is the expectation which maps every initial state σ to the
expected final value of variable x on termination of C.

We do, however, not give a concrete syntax for expectations here since we
present the weakest preexpectation calculus in a fully extensional setting.
A syntax for expectations is presented in Chapter 3.

Finally, given X ∈ E, a variable x, and an arithmetic expression A : States→
Vals, we define the expectation X [x/A] obtained from replacing x in X with A as

X [x/A] = λσ.X(σ [x 7→ A(σ)]) .

On the Domain of Program Variables. We do not let the program variables
range over a domain containing negative numbers since, otherwise, the expecta-
tion λσ.σ (x) identified with variable x would generally not be well-defined (re-
call that expectations map program states to non-negative8 extended reals). Even

8Weakest preexpectation calculi for possibly negative expectations exist [KK17] but are less handy
and outside the scope of this thesis.

60 2 Foundations

C dwp⟦C⟧(X)

skip X

x := A X [x/A]

C1 ; C2 dwp⟦C1⟧ (dwp⟦C2⟧ (X))

{C1 }2 {C2 } dwp⟦C1⟧ (X)⊓dwp⟦C2⟧ (X)

{C1 } [p] {C2 } p ·dwp⟦C1⟧ (X) + (1− p) ·dwp⟦C2⟧ (X)

if (B) {C1 } else {C2 } [B] ·dwp⟦C1⟧ (X) + [¬B] ·dwp⟦C2⟧ (X)

while (B) {C′ } lfp Y . [B] ·dwp⟦C′⟧ (Y) + [¬B] ·X

Table 2.1: Inductive definition of dwp⟦C⟧ adapted from [Kam19].

though we could circumvent this by, e.g., identifying x with the expectations

λσ.max{0,σ (x)} or λσ. |σ (x)| ,
this renders — in the author’s opinion — the weakest preexpectation calculus
and its applications harder to understand. We remark that signed variables can
be encoded by introducing auxiliary variables (see, e.g., [12, Section 11.2]).

2.4.3 The Weakest Preexpectation Calculus

In this section, we consider the weakest preexpectation calculus in more detail.
In particular, we study how weakest preexpectations can be defined by induction
on a program’s structure, and how least fixpoint constructions yield weakest
preexpectations of loops. For that, consider the following definition:

Definition 2.20 (Weakest Preexpectations).
Let C ∈ pGCL and X ∈ E.

1. The demonic weakest preexpectation transformer of C

dwp⟦C⟧ : E→ E

is defined by induction on C in Table 2.1. We call

dwp⟦C⟧ (X) ∈ E

2

2.4 Deductive Verification of Probabilistic Programs 61

the demonic weakest preexpectation of C w.r.t. postexpectation X.

2. The angelic weakest preexpectation transformer of C

awp⟦C⟧ : E→ E

is defined by induction on C in Table 2.1, where every occurrence of
dwp is replaced by awp and ⊓ is replaced by ⊔. We call

awp⟦C⟧ (X) ∈ E

the angelic weakest preexpectation of C w.r.t. postexpectation X.

The two transformers dwp⟦C⟧ and awp⟦C⟧ differ in the way they treat nonde-
terminism: demonically (minimizing) versus angelically (maximizing). If C is
fully probabilistic, then dwp⟦C⟧ and awp⟦C⟧ coincide, i.e.,

for all X ∈ E : dwp⟦C⟧ (X) = awp⟦C⟧ (X) .

For fully probabilistic programs C, we often write wp⟦C⟧ (X) called the weakest
preexpectation of C w.r.t postexpectation X. Let us now go over each of the
individual rules for T ∈ {dwp,awp}.

Effectless Program. Since skip does not modify the program state and terminates
immediately, T ⟦skip⟧ (X) is just X.

Assignment. T ⟦x := A⟧ (X) is obtained from substituting x in X by A.

Sequential Composition. The rule for a sequential composition C1 ; C2 suggests
that weakest preexpectations are obtained in a backward-moving, continuation-
passing fashion: We first determine T ⟦C2⟧ (X). This intermediate preexpectation
is then plugged into T ⟦C1⟧, which yields T ⟦C1 ; C2⟧ (X).

Probabilistic Choice. The weakest preexpectation of a probabilistic choice is
the sum of the preexpectations of the two branches, where the summands are
weighted by the probability of the respective branch being executed.

Nondeterministic Choice. We have

dwp⟦{C1 }2 {C2 }⟧ (X) = λσ.min{dwp⟦C1⟧ (X) (σ),dwp⟦C2⟧ (X) (σ)} , and

awp⟦{C1 }2 {C2 }⟧ (X) = λσ.max{awp⟦C1⟧ (X) (σ),awp⟦C2⟧ (X) (σ)} ,

i.e., the demonic (resp. angelic) weakest preexpectation of {C1 }2 {C2 } is given
by the pointwise minimum (resp. maximum) of the demonic (resp. angelic)

62 2 Foundations

weakest preexpectations of the two branches.

Conditional Choice. We have

T ⟦if (B) {C1 } else {C2 }⟧ (X) = λσ.


T ⟦C1⟧ (X) (σ) if σ |= B
T ⟦C2⟧ (X) (σ) if σ ̸|= B ,

i.e., depending on whether the program state σ satisfies the guard B or not, the
weakest preexpectation of the branch that is to be executed is chosen.

Example 2.22.
For loop-free C, determining T ⟦C⟧ (X) consists mostly of syntactic reason-
inga. Reconsider the program C from Example 2.19 given by

{skip } [1/3] {x := x+ 3 } .
1. We calculate wp⟦C⟧ ([x = 3]) — the expectation which maps every

initial state σ to the probability that C terminates in a final state
satisfying x = 3 on initial state σ :

wp⟦{skip } [1/3] {x := x+ 3 }⟧ ([x = 3])

= 1/3 ·wp⟦skip⟧ ([x = 3]) + 2/3 ·wp⟦x := x+ 3⟧ ([x = 3])

= 1/3 · [x = 3] + 2/3 · [x+ 3 = 3]

= 1/3 · [x = 3] + 2/3 · [x = 0]

= λσ.



1/3 if σ |= x = 3
2/3 if σ |= x = 0

0 otherwise .

2. We calculate wp⟦C⟧ (x) — the expectation which maps every initial
state σ to the expected final value of x obtained from executing C:

wp⟦{skip } [1/3] {x := x+ 3 }⟧ (x)

= 1/3 ·wp⟦skip⟧ (x) + 2/3 ·wp⟦x := x+ 3⟧ (x)

= 1/3 · x+ 2/3 · (x+ 3)

= x+ 2 ,

i.e., on average, C increments x by 2.
aIt is not entirely justified to speak of “syntactic reasoning” here since expectations are mere

2

2.4 Deductive Verification of Probabilistic Programs 63

mathematical functions rather than syntactic objects. We refer to Chapter 3 for a formal
language of expectations.

While Loop. Weakest preexpectations of loops are defined by means of a least
fixpoint construction. To get an intuition on this construction, we first observe
that the weakest preexpectations of the two programs

while (B)
{
C′

}
and if (B)

{
C′ ; while (B)

{
C′

} }
else {skip }

must coincide, since these two programs are semantically equivalent. Hence,
by the rules for skip, sequential composition, and conditional choice from
Table 2.1, T ⟦while (B) {C′ }⟧ (X) must satisfy the recursive equation

T ⟦while (B)
{
C′

}
⟧ (X)

= [B] · T ⟦C′⟧ (T ⟦while (B)
{
C′

}
⟧ (X)) + [¬B] ·X , (2.4)

and the least solution of this equation in the complete lattice (E, ⊑) precisely
captures (minimal or maximal) expected outcomes of loops. To formalize this
in fixpoint-theoretic terms, we associate with each loop and postexpectation
respective functions of type E→ E:

Definition 2.21 (Characteristic Functions of Loops).
Let C ∈ pGCL be the loop while (B) {C′ }, and let X ∈ E.

1. The dwp-characteristic function of C w.r.t. X is defined as

Φ
dwp
C X : E→ E , Φ

dwp
C X(Y) = [B] ·dwp⟦C′⟧ (Y) + [¬B] ·X .

2. The awp-characteristic function of C w.r.t. X is defined as

Φ
awp
C X : E→ E , Φ

awp
C X(Y) = [B] ·awp⟦C′⟧ (Y) + [¬B] ·X .

If C is fully probabilistic, we often use

3. the wp-characteristic function of C w.r.t. X defined as

Φ
wp
C X : E→ E , Φ

wp
C X(Y) = [B] ·wp⟦C′⟧ (Y) + [¬B] ·X .

Hence, the least solution of Equation (2.4) is given by the least fixpoint of the
respective characteristic function, i.e.,

dwp⟦C⟧ (X) = lfp Φ
dwp
C X and awp⟦C⟧ (X) = lfp Φ

awp
C X .

These least fixpoints are guaranteed to exist uniquely:

64 2 Foundations

Theorem 2.11 (Healthiness Conditions [Kam19]).
Let C ∈ pGCL and X ∈ E.

1. Both dwp⟦C⟧ and awp⟦C⟧ are monotonic w.r.t. (E, ⊑).

2. Both dwp⟦C⟧ and awp⟦C⟧ are continuous w.r.t. (E, ⊑).

3. For loop C = while (B) {C′ }, both Φ
dwp
C X and Φ

awp
C X are continuous

w.r.t. (E, ⊑). Hence, by Kleene’s Theorem 2.2, we have

lfp Φ
dwp
C X =

⊔

n∈N
Φ

dwp n
C X(0) and lfp Φ

awp
C X =

⊔

n∈N
Φ

awp n
C X(0) .

As with reachability in transition systems (Remark 2.1) and expected rewards
in MDPs (Lemma 2.8), Kleene’s Theorem 2.2 helps us to understand why this
least fixpoint construction makes sense and indeed gives the expected outcomes
we are interested in. Define an auxiliary program statement abort satisfying9

for all X ∈ E : dwp⟦abort⟧ (X) = awp⟦abort⟧ (X) = 0 ,

i.e., the expected final value of X on termination of abort is 0. Now define for
each loop C = while (B) {C′ } and each n ∈N the n-th unfolding of C as

while≤n (B)
{
C′

}

=


abort if n = 0

if (B)
{
C′ ; while≤n−1 (B) {C′ }

}
else {skip } if n > 0 .

Intuitively, while≤n (B) {C′ } behaves likes while (B) {C′ } but aborts after n
iterations. We have for T ∈ {awp,dwp} and all n ∈N,

ΦT n
C X(0) = T ⟦while≤n (B)

{
C′

}
⟧ (X) .

Hence, ΦT n
C X(0)(σ) is the (minimal or maximal) expected final value of X on

termination of C on initial state σ when restricting C to at most n loop iterations.
Allowing for an arbitrary number of loop iterations by taking the supremum
over n thus yields by Theorem 2.11.3

⊔

n∈N
T ⟦while≤n (B)

{
C′

}
⟧ (X) =

⊔

n∈N
ΦT n

C X(0) = T ⟦C⟧ (X) .

9abort is syntactic sugar for while (true) {skip } but using abort is more intuitive in this context.

2

2.4 Deductive Verification of Probabilistic Programs 65

Example 2.23.
Reconsider loop C from Example 2.17 given by

while (y = 1) { {y := 0 } [1/2] {x := x+ 1 } }
and recall that for initial state σ satisfying y = 1, the probability that C
terminates in a final state τ with τ(x) = σ (x) + i is

⟦C⟧σ (τ) =
1

2i+1
.

Hence, the expected final value of x is

∞∑

i=0

1
2i+1

· (σ (x) + i) = σ (x) + 1 ,

i.e., if executed on an initial state satisfying its loop guard, C increments x
by 1 in expectation. Let us verify this by means of the weakest preexpecta-
tion calculus. For that, we calculate wp⟦C⟧ (x) using Theorem 2.11.3. It can
be shown by induction on n ≥ 1 that

wp⟦while≤n (y = 1) { {y := 0 } [1/2] {x := x+ 1 } }⟧ (x)

= Φ
wp n
C X(0) = [y = 1] ·



n−2∑

i=0

x+ i
2i+1


+ [y , 1] · x

Hence, by Theorem 2.11.3, we get

wp⟦C⟧ (x) =
⊔

n∈N
[y = 1] ·



n−2∑

i=0

x+ i
2i+1


+ [y , 1] · x

= [y = 1] · (x+ 1) + [y , 1] · x ,

i.e., on an initial state satisfying the loop guard, C increments x by 1 in
expectation (first summand). Otherwise, x is not modified at all, which
yields x’s expected final value to be its initial value (second summand).

2.4.4 Quantitative Loop Invariants

Reasoning about weakest preexpectations of loops is difficult and one of the
most challenging tasks in probabilistic program verification. Weakest preex-

66 2 Foundations

pectations of loops are defined as higher-order least fixpoints of the respective
characteristic functions, which are uncomputable in general [KKM19]. Invariant-
based reasoning for loops simplifies the verification of bounds on expected out-
comes of loops significantly. Reasoning with quantitative loop invariants (or
superinvariants) is one of the key techniques employed in this thesis.

Definition 2.22 (Superinvariants).
Let C = while (B) {C′ } and let X,I ∈ E.

1. We call I a dwp-superinvariant of C w.r.t. X, if

Φ
dwp
C X(I) ⊑ I .

2. We call I an awp-superinvariant of C w.r.t. X, if

Φ
awp
C X(I) ⊑ I .

3. If C is fully probabilistic, we call I a wp-superinvariant of C w.r.t. X, if

Φ
wp
C X(I) ⊑ I .

Since weakest preexpectations of loops are defined as least fixpoints monotone
functions over the complete lattice of expectations, it follows by Park induction
(Lemma 2.4) that superinvariants yield upper bounds on expected outcomes:

Theorem 2.12 (Park Induction for Loops [Par69; Kam19]).
Let C = while (B) {C′ } be a loop and let X,I ∈ E. We have:

1. If I is a dwp-superinvariant of C w.r.t. X, then

dwp⟦C⟧ (X) ⊑ I .

2. If I is a awp-superinvariant of C w.r.t. X, then

awp⟦C⟧ (X) ⊑ I .

3. If C is fully probabilistic and I is a wp-superinvariant of C w.r.t. X, then

wp⟦C⟧ (X) ⊑ I .

Example 2.24.
Reconsider the loop C from Example 2.23 given by

while (y = 1) { {y := 0 } [1/2] {x := x+ 1 } } .
Determining that wp⟦C⟧ (x) = [y = 1] · (x + 1) + [y , 1] · x was quite involved
since we needed to come up with a closed-form expression for the n-th

2

2.4 Deductive Verification of Probabilistic Programs 67

fixpoint iterate of Φ
wp
C X , and to calculate the corresponding supremum

over n. On the other hand, proving that

I = [y = 1] · (x+ 1) + [y , 1] · x
upper-bounds wp⟦C⟧ (x) by means of Theorem 2.12 is way easier: We have
to verify that I is a wp-superinvariant of C w.r.t. x. For that, we calculate:

Φ
wp
C x(I)

= [y = 1] ·wp⟦{y := 0 } [1/2] {x := x+ 1 }⟧ (I) + [y , 1] · x
= [y = 1] · (1/2 · I [y/0] + 1/2 · I [x/x+ 1]) + [y , 1] · x
= [y = 1] · (1/2 · x+ 1/2 · ([y = 1] · (x+ 2) + [y , 1] · (x+ 1)) + [y , 1]) · x
= [y = 1] · (1/2 · x+ 1/2 · (x+ 2)) + [y , 1]) · x
= [y = 1] · (x+ 1) + [y , 1] · x
= I ⊑ I .

Hence, Theorem 2.12 yields

wp⟦C⟧ (x) ⊑ I = [y = 1] · (x+ 1) + [y , 1] · x .
Notice that checking the superinvariant condition only requires us to com-
pute a single weakest preexpectation of the loop body. This is particularly
easy if the loop body itself is loop-free since the wp computation consists
mostly of syntactic reasoning. It is the power of invariant-based reason-
ing that it suffices to reason about the loop body in order to obtain upper
bounds on the entire loop. In Chapters 4 to 6 we exploit this fact to auto-
mate the verification of upper bounds on weakest preexpectations of loops.

Understanding Park Induction For Loops. Let C = while (B) {C′ } be a loop
and X ∈ E. Recall from Theorem 2.11.3 that for T ∈ {awp,dwp},

T ⟦C⟧ (X) =
⊔

n∈N
ΦT n

C X(0) =
⊔

n∈N
T ⟦while≤n (B)

{
C′

}
⟧ (X) .

Now let I ∈ E and suppose we want to prove that T ⟦C⟧ (X) ⊑ I holds. Using the
above identity and the definition of suprema, this is the case if and only if

for all n ∈N : T ⟦while≤n (B)
{
C′

}
⟧ (X) ⊑ I .

68 2 Foundations

We may thus attempt to prove T ⟦C⟧ (X) ⊑ I by induction on n, which, intuitively,
corresponds to a proof by induction on the number of iterations the loop C
performs. The base case n = 0 is trivial since T ⟦while≤0 (B) {C′ }⟧ (X) = 0. For
the induction step, consider the following:

T ⟦while≤n+1 (B)
{
C′

}
⟧ (X)

= T ⟦if (B)
{
C′ ; while≤n (B)

{
C′

} }
else {skip }⟧ (X)

= [B] · T ⟦C′⟧
(
T ⟦while≤n (B)

{
C′

}
⟧ (X)

)
+ [¬B] ·X (Table 2.1)

⊑ [B] · T ⟦C′⟧ (I) + [¬B] ·X (I.H. and monotonicity of T)

= ΦTC X(I) (Definition 2.21)

Now, if we know that I is a T -superinvariant of C w.r.t.X, then we may complete
the above reasoning for the induction step by

⊑ I , (I is T -superinvariant of C w.r.t. X)

which is what we have to show. Park induction for loops can thus be understood
as a proof by induction on the number of iterations the given loop performs,
where we prove that I is a T -superinvariant of C in order to have a sufficiently
strong induction hypothesis at hand.

Lower Bounds on Weakest Preexpectations of Loops. Invariant-based proof
rules for lower-bounding weakest preexpectation of loops, i.e., for proving

I ⊑ T ⟦while (B)
{
C′

}
⟧ (X)

exist but are more involved. In particular, the analogue of Theorem 2.12 for
lower bounds, i.e., that for C = while (B) {C′ } and T ∈ {dwp,awp} it holds that

� I ⊑ ΦTC X(I) implies I ⊑ T ⟦C⟧ (X) �

is unsound in general (cf. [Kam19, Counterexample 5.8]). We refer to [HKGK20]
and [Kam19, Chapter 5] for an overview of invariant-based proof rules for
lower-bounding weakest preexpectations of loops. In Section 5.7.2, we present a
restricted variant of the proof rule from [HKGK20] for lower-bounding possibly
unbounded expected outcomes of loops.

2

2.4 Deductive Verification of Probabilistic Programs 69

2.4.5 Soundness of the Weakest Preexpectation Calculus

In this section, we prove that the inductive definitions of dwp and awp (Defini-
tion 2.20) indeed coincide with their characterizations from Section 2.4.1 which
refer to the distribution of final states defined via pGCL’s operational MDP O ,
i.e., that for all C ∈ pGCL and X ∈ E, we have

dwp⟦C⟧ (X) = λσ. inf
S∈Scheds

∑

τ∈States

⟦C⟧σS(τ) ·X(τ) , and

awp⟦C⟧ (X) = λσ. sup
S∈Scheds

∑

τ∈States

⟦C⟧σS(τ) ·X(τ) .

We call this soundness of the weakest preexpectation calculus because it is in
this sense that dwp and awp indeed soundly determine minimal and maximal
expected outcomes of probabilistic programs. An analogous result has been
proven in [GKM14] for bounded expectations10. Our proofs very closely follow
the lines of [5; 3, Theorem 4.5] (for dwp) and [17, Theorem 4.6] (for awp),
unifying these results with minor simplifications.

We proceed by proving that dwp⟦C⟧ (X) and awp⟦C⟧ (X) evaluate to appro-
priate minimal and maximal expected rewards in the operational MDP O. For
that, we associate with each X ∈ E a reward function rewX for O defined as

rewX : {(⇓, τ) | τ ∈ States} →R
∞
≥0 , rewX((⇓, τ)) = X(τ) .

Definition 2.23 (Operational Weakest Preexpectations).
Let C ∈ pGCL and X ∈ E.

1. We define the demonic operational weakest preexpectation of C w.r.t. X as

dop⟦C⟧ (X) = λσ.MinER (O, (C,σ) |= ♦rewX) .

2. We define the angelic operational weakest preexpectation of C w.r.t. X as

aop⟦C⟧ (X) = λσ.MaxER (O, (C,σ) |= ♦rewX) .

Our goal is now to show that for all C ∈ pGCL and all X ∈ E, we have

dwp⟦C⟧ (X) = dop⟦C⟧ (X) and awp⟦C⟧ (X) = aop⟦C⟧ (X) .

We proceed by proving two inequalities for each of the respective transformers;
and then exploit antisymmetry of ⊑. We start with the ⊑-direction.

10An expectation X is bounded, if there is a constant α ∈R such that X(σ) ≤ α for all σ ∈ States.

70 2 Foundations

Lemma 2.13.
We have for all C ∈ pGCL and all X ∈ E:

1. dop⟦C⟧ (X) ⊑ dwp⟦C⟧ (X)

2. aop⟦C⟧ (X) ⊑ awp⟦C⟧ (X)

Proof. We prove the claim for dwp. The proof for awp is completely analo-
gous. The key idea is to apply Park induction (Lemma 2.4) to the min-Bellman
operator of pGCL’s operational MDP O w.r.t. rewX (Definition 2.15.1). For
that, we first observe that for all C ∈ pGCL and all X ∈ E, we have

dwp⟦C⟧ (X)

= λσ. min
a∈Act(C,σ)

∑

(C,σ)
a,p−−→ c′

p ·

X(τ) if c′ = (⇓, τ)

dwp⟦C′⟧ (X) (σ ′) if c′ = (C′ ,σ ′) ,
(2.5)

which follows by induction on the structure of C (cf. Lemma A.3). Now
define the value function v for pGCL’s operational MDP O as

v = λc.


X(τ) if c = (⇓, τ)

dwp⟦C⟧ (X) (σ) if c = (C,σ) .

It is an immediate consequence of Equation (2.5) that

Φmin
O rewX

(v) = v ⊑ v ,

which, by Park induction (Lemma 2.4), yields

lfp Φmin
O rewX

⊑ v .

By Theorem 2.9.1, we thus get

lfp Φmin
O rewX

= λc.MinER (O,c |= ♦rewX) ⊑ v

so, in particular, we have for every C ∈ pGCL,X ∈ E, and σ ∈ States,

dop⟦C⟧ (X) (σ)

= MinER (O, (C,σ) |= ♦rewX)

≤ v(C,σ)

= dwp⟦C⟧ (X) (σ) ,

which is what we have to show. ■

2

2.4 Deductive Verification of Probabilistic Programs 71

Next, we prove the converse direction.

Lemma 2.14.
We have for all C ∈ pGCL and all X ∈ E:

1. dwp⟦C⟧ (X) ⊑ dop⟦C⟧ (X)

2. awp⟦C⟧ (X) ⊑ aop⟦C⟧ (X).

Proof. We prove the claim for dwp. The proof for awp is completely analo-
gous. The key observation is that dop satisfies the following big-step decom-
position w.r.t. sequential composition: For all C1,C2 ∈ pGCL and all X ∈ E,

dop⟦C1⟧ (dop⟦C2⟧ (X)) ⊑ dop⟦C1 ; C2⟧ (X) .
(Lemma A.4 on page 273)

The claim then follows by induction on C. The most interesting case is
C = while (B) {C′ }: We show that dop⟦C⟧ (X) is a dwp-superinvariant of C
w.r.t. X (Definition 2.22.1). For that, consider the following:

Φ
dwp
C X(dop⟦C⟧ (X))

= [B] ·dwp⟦C′⟧ (dop⟦C⟧ (X)) + [¬B] ·X (Definition 2.22.1)

⊑ [B] ·dop⟦C′⟧ (dop⟦C⟧ (X)) + [¬B] ·X (I.H.)

⊑ [B] ·dop⟦C′ ; C⟧ (X) + [¬B] ·X (Lemma A.4)

⊑ λσ.


MinER (O, (C′ ; C,σ) |= ♦rewX) if σ |= B
X(σ) if σ ̸|= B

⊑ λσ.MinER (O, (C,σ) |= ♦rewX) (Definition 2.13.3 and Figure 2.10)

= dop⟦C⟧ (X) . (Definition 2.23)

Hence, dwp⟦C⟧ (X) ⊑ dop⟦C⟧ (X) follows by Theorem 2.12.1. ■

Lemmas 2.13 and 2.14, and antisymmetry of ⊑ now yield the desired claim.

Theorem 2.15 (Soundness of the Weakest Preexpectation Calculus).
We have for all C ∈ pGCL and all X ∈ E:

1. dwp⟦C⟧ (X) = dop⟦C⟧ (X)

2. awp⟦C⟧ (X) = aop⟦C⟧ (X)

72 2 Foundations

With our observations from Sections 2.2.3 and 2.2.5, we finally obtain the
following characterizations of demonic and angelic weakest preexpectations.

Corollary 2.16.
We have for all C ∈ pGCL and all X ∈ E:

1. dwp⟦C⟧ (X) = λσ. min
S∈MLScheds

∑

τ∈States

⟦C⟧σS(τ) ·X(τ)

2. awp⟦C⟧ (X) = λσ. sup
S∈Scheds

∑

τ∈States

⟦C⟧σS(τ) ·X(τ)

Moreover, if C is fully probabilistic, then

3. wp⟦C⟧ (X) = λσ.
∑

τ∈States

⟦C⟧σ (τ) ·X(τ) .

Proof. These claims follow from Theorem 2.15 and Theorem 2.6 since every
configuration of the form (⇓, τ) is a sink in MDP O. The fact that in Corol-
lary 2.16.1 it suffices to take the minimum over all memoryless schedulers fol-
lows from Theorem 2.10. Finally, we may omit schedulers in Corollary 2.16.3
because there is no nondeterministic choice reachable from (C,σ). ■

Remark 2.2 (On the Kozen Duality for Fully Probabilistic Programs).
Corollary 2.16.3 for fully probabilistic programs is an instance of the Kozen
duality [Koz83; Koz85], which is a more general duality between expectation
transformers and measure transformers.

Remark 2.3 (On the Relevance of Unbounded Expected Rewards).
We are now in a position to see the relevance of unbounded reward functions
and expected rewards. Consider, e.g., the nondeterministic loop C given by

while (y = 1) { {y := 0 } [1/2] { {x := x+ 1 }2 {x := 2 · x } } } .

On every iteration, C flips a fair coin and either terminates with probability
1/2 (left branch) or nondeterministically (right branch) increments x by 1 or
doubles the value of x, also with probability 1/2. Now suppose we want to
reason about the maximal expected final value of x. We have

awp⟦C⟧ (x) = [y = 1] ·∞+ [y , 1] · x ,
i.e., the maximal expected final value of x is unboundedly large for all initial
states satisfying the loop guard. The intuition is that the exponential decay of

2

2.4 Deductive Verification of Probabilistic Programs 73

the probability to keep iterating is compensated by the exponential growth
of x. Now, establishing the link

awp⟦C⟧ (x) = λσ.MaxER (O, (C,σ) |= ♦rewx)

from Theorem 2.15 requires the right-hand side to possibly be∞-valued.

Remark 2.4 (On Existing Variants of Theorem 2.15).
To the best of our knowledge, there exist three variants of Theorem 2.15 in
the literature, which we briefly discuss next.

1. Gretz, Katoen, and McIver [GKM14] prove a variant of Theorem 2.15
but restrict to bounded expectations.

2. Batz et. al [5] propose a variant of Theorem 2.15 for an extension of
dwp to heap-manipulating probabilistic programs involving unbounded
nondeterminism. Their proof relies on an auxiliary result [3, Lemma
B.7] stating — phrased in our terminology — that

dop⟦C⟧ (X) = λσ.MinER (O, (C,σ) |= ♦rewX)

is indeed obtained from the least fixpoint of Φmin
O rewX

. The induction
proof of [3, Lemma B.7] is, however, flawed (the considered relation is
generally not well-founded so that well-founded induction does not
apply). It is for this reason that we have (i) developed least fixpoint char-
acterizations of possibly unbounded or ∞-valued minimal expected
rewards in MDPs in Section 2.2.3 and (ii) recapped the proof of The-
orem 2.15 in this thesis. While our results from Section 2.2.3 do not
apply to programs involving unbounded nondeterminsim, they are a
first step towards fixing this issue.

3. Batz et. al [17, Theorem 4.6] propose a variant of Theorem 2.15 for
an extension of awp to heap-manipulating probabilistic programs in-
volving unbounded nondeterminism and tick statements for modelling
expected runtimes. Their proof invokes [Bla67, Theorem 2] for conclud-
ing — phrased in our terminology — that

aop⟦C⟧ (X) = λσ.MaxER (O, (C,σ) |= ♦rewX)

is indeed obtained from the least fixpoint of Φmax
O rewX

. [Bla67, Theorem
2] restricts, however, to bounded rewards functions and does, there-
fore, not apply. It is for this reason that we have (i) developed least
fixpoint characterizations of possibly unbounded or∞-valued minimal

74 2 Foundations

expected rewards in MDPs in Section 2.2.3 and (ii) recapped the proof
of Theorem 2.15 in this thesis. While our results from Section 2.2.3 do
not apply to programs involving unbounded nondeterminsim, they are
a first step towards fixing this issue.

3

75

3 Relatively Complete Verification

This chapter is based on our prior publications [12; 8].

Assumptions. In this chapter, we assume that all programs C ∈ pGCL consid-
ered throughout are fully probabilistic, i.e., C does not contain nondeterministic
choices. Extending the presented results to nondeterministic programs is left as
a promising direction for future work. See Section 3.6 for details.

3.1 Motivation and Problem Statement

This chapter treats a fundamental aspect regarding the automated deductive ver-
ification of probabilistic programs based on weakest preexpectation reasoning:

We present an expressive formal language Exp of expectations, enabling the
relatively complete verification of probabilistic programs and providing a

foundation for the development of automated deductive verifiers.

To motivate and understand this aspect, let us consider what is meant by
extensional vs. intensional approaches of deductive program verification [NN07].

Extensional Probabilistic Program Verification. In Section 2.4, we have pre-
sented the weakest preexpectation calculus in an extensional setting. That is, we
treat expectations as purely mathematical entities: We admit arbitrary expecta-
tions X of type E and do not care about, e.g., finite representability of X. From
a mathematical perspective, there are good reasons to work in the extensional
setting when developing program calculi such as the weakest preexpectations
calculus. Desirable properties such as well-definedness of wp⟦C⟧ : E→ E as de-
fined in Table 2.1 on page 60 follow from concise fixpoint-theoretic arguments.
For instance, the fact that for every, arbitrarily complex loop C = while (B) {C′ }
and all postexpectations X ∈ E, the weakest preexpectation

wp⟦C⟧ (X) = lfp Φ
wp
C X

76 3 Relatively Complete Verification

denotes a well-defined expectation is a consequence of Tarski’s Fixpoint Theo-
rem 2.1 on page 20. As another example, the soundness of invariant-based rea-
soning for upper bounds on weakest preexpectations of loops (cf. Theorem 2.12
on page 66) is an instance of Park induction (cf. Lemma 2.4 on page 28).

Intensional Probabilistic Program Verification. Automated deductive veri-
fiers based on the weakest preexpectation calculus ultimately rely on computing
or approximating wp⟦C⟧ (X) for X ∈ E of interest. This raises the question:

How can one syntactically represent X and wp⟦C⟧ (X)?

Recall that wp⟦C⟧ (X) is defined by induction on the structure of C, i.e., in a
compositional and program-syntax based manner. We argued in Example 2.22
on page 62 that this yields determining wp⟦C⟧ (X) for loop-free C to consist
mostly of syntactic reasoning. Quantitative loop invariants, in turn, can reduce
reasoning about loopy programs to reasoning about loop-free programs (cf.
Example 2.24 on page 66). As long as we treat the postexpectation X as a purely
mathematical entity as is done in the extensional setting, we can, however,
not speak of entirely syntactic reasoning. For that, we need to have some
syntactic representation of the postexpectation X at hand. With the notational
conventions from Section 2.4.2, we ensured this to be the case for the examples
we have considered so far. By, e.g., identifying the variable xwith the expectation
λσ.σ (x), determining

wp⟦x := y + z⟧ (x) = y + z

can indeed be considered a syntactic operation. Since the set E of expectations
is uncountably infinite, there is no hope to finitely represent all expectations.

Therefore, in the intensional setting, we do not admit arbitrary expectations
X ∈ E. Rather, the goal is to provide a computable — and thus countable — formal
language Exp of syntactic expectations together with a semantic function

⟦·⟧ : Exp→ E ,

which associates to each syntactic expectation f ∈ Exp an expectation ⟦f ⟧ ∈ E.
Let us say that an expectation X is expressible in Exp, if there is some f ∈ Exp
with ⟦f ⟧ = X. We immediately encounter the question: Which expectations
should be expressible in Exp? We identify the following requirements:

1. We can express enough expectations in Exp to specify interesting expected
outcomes (cf. Section 2.4.1). In particular:

3

3.1 Motivation and Problem Statement 77

a) The constant-1-expectation λσ.1 should be expressible in Exp to
reason about termination probabilities, given by wp⟦C⟧ (λσ.1).

b) Indicator functions [P] for a sufficiently large class of predicates1

P should be expressible in Exp to reason about the probabilities to
reach a final state satisfying P , given by wp⟦C⟧ ([P]).

c) For every x ∈ Vars, the expectation λσ.σ (x) should be expressible in
Exp to reason about expected final values of program variables, given
by wp⟦C⟧ (λσ.σ (x)).

2. For every program C, expectations expressible in Exp should be closed
under wp⟦C⟧. This property is called expressiveness. Formally:

Definition 3.1 (Expressiveness [Coo78; Win93]).
Let Exp be a formal language of syntactic expectations equipped with a
semantic function ⟦·⟧ : Exp→ E. We say that Exp is expressive, if

for all C ∈ pGCL, f ∈ Exp : exists g ∈ Exp : wp⟦C⟧ (⟦f ⟧) = ⟦g⟧ .

Challenges. If expressiveness was our only requirement, there would be a
simple solution to our problem: Let Exp0 = {0} be the singleton with ⟦0⟧ = λσ.0,
i.e., Exp0 contains a single syntactic expectation expressing the constant-0-
expectation. Then Exp0 is expressive by strictness of wp, i.e.,

for all C ∈ pGCL : wp⟦C⟧ (⟦0⟧) = ⟦0⟧ . ([Kam19, Theorem 4.14.A])

Unfortunately, Exp0 is useless for specifying non-trivial expected outcomes.
If we require both that Exp is expressive and that Exp enables the specification

of interesting expected outcomes, the situation becomes much more challenging.
To get a first intuition, consider the following program C given by

x := 1;

while (x > 0) {
{x := x − 1 } [1/2] {x := x+ 2 }

} .

1The language presented in the subsequent sections subsumes first-order arithmetic A
Q≥0 over

Q≥0 (cf. Section 3.4.2.1), thus admitting any predicate P definable in A
Q≥0 .

78 3 Relatively Complete Verification

x1 := geo (1/4) ; x2 := geo (1/4);

{x := x1 + x2 } [5/9] {x := x1 + x2 + 1 } ;
t := 1;

repeat 3 times {
z := 1; y1 := 0; y2 := 0;

while (z ≤ 2 · x) {
{y1 := y1 + 1 } [1/2] {y2 := y2 + 1 } ;
z := z+ 1

}
if (y1 , y2) { t := 0 } else {skip }

}

Figure 3.1: A pGCL program adapted from [FPS11]. Here xi := geo (1/4) is a short-
hand for xi := 0; z := 1; while (z = 1) { {xi := xi + 1 } [1/4] {z := 0 } }.

3

3.1 Motivation and Problem Statement 79

For this program C, we have [OKKM16]

wp⟦C⟧ (λσ.1) = λσ.

√
5− 1
2

,

i.e., if the constant-1-expectation is expressible in Exp, it already follows that
irrational, yet algebraic, numbers such as

√
5−1/2 must also be expressible in Exp.

So do algebraic reals suffice for an expressive language of expectations? The
answer is no. Consider the program C shown in Figure 3.1. We have

wp⟦C⟧ ([t = 1]) = λσ.
1
π
,

i.e., if [t = 1] is expressible in Exp, which is a reasonable requirement, then we
need to be able to express transcendental reals in Exp even though all ingredients
of C are rational-valued. We conclude that admitting even the most simple
postexpectations in Exp requires the ability to express non-trivial quantities in
Exp. Yet, we will see in the subsequent sections that there is a (syntactically)
simple formal language Exp meeting our requirements. The proof that this Exp
is indeed expressive is, however, rather involved. We will outline that parts of
our proof strategy are inspired by existing expressiveness proofs for Dijkstra’s
weakest preconditions for non-probabilistic programs [Win93; LSS84]. One of
the key differences between this and our setting is that we have to reason about
possibly transcendental reals. This fact requires us to introduce additional
technical machinery, see Sections 3.4.3 and 3.4.4 for details.

Application: A Foundation for Automated Deductive Verifiers. We com-
ment on an application of the results presented in this chapter. In [18], we have
presented the automated deductive verifier Caesar based on the weakest preex-
pectation calculus. Since the results from [18] will not be included in this thesis,
suffice it to say here that one of Caesar’s main applications is to compute or
approximate weakest preexpectations of possibly loopy probabilistic programs
in a semi-automatic fashion, thereby enabling the semi-automatic verification
of bounds on expected outcomes. When developing Caesar, we thus naturally
encountered the question of how to syntactically represent a sufficiently large
class of expectations. The language Exp which we present in the subsequent
section provided us with a solid foundation: Caesar’s quantitative assertion lan-
guage HeyLo subsumes Exp, thus taking benefit from its expressive power and
the fact that the results presented here enable the relatively complete verification
of pGCL programs. Section 3.5 includes a detailed discussion of these aspects.

80 3 Relatively Complete Verification

Chapter Outline. The remainder of this chapter is structured as follows:
In Section 3.2 we discuss the syntax and semantics of our language Exp. In
Section 3.3, we prove expressiveness of Exp for loop-free programs. Proving
expressiveness for all, possibly loopy programs is significantly more involved
and treated in Section 3.4, where we provide a proof outline in Section 3.4.1. In
Section 3.5, we then discuss further consequences of the results presented in
this chapter. Finally, in Section 3.6, we discuss future and related work.

3.2 The Language Exp of Syntactic Expectations

We describe the syntax and semantics of a language Exp of syntactic expectations,
which we prove to be expressive in the subsequent sections. Recall that in
the definition of pGCL (Definition 2.16 on page 45), we did not fix a syntax
for arithmetic or Boolean expressions. To obtain a computable set of pGCL
programs and, in particular, an expressive and computable language of syntactic
expectations, we now do fix a natural syntax for both arithmetic and Boolean
expressions occurring in pGCL programs. These expressions will moreover be
the basic building blocks (or atoms) of our language of syntactic expectations.

3.2.1 Syntax of Arithmetic Expressions

We first describe a syntax of arithmetic expressions, which form precisely the
right-hand-sides of assignments that we allow in pGCL programs.

Definition 3.2 (Arithmetic Expressions).
Arithmetic expressions, which we denote by a,b,c, and variations thereof, in
the set AExpr adhere to the grammar

a −→ q ∈Q≥0 (non-negative rationals)

| x ∈ Vars (Q≥0-valued variables)

| a+ a (addition)

| a · a , (multiplication)

| a −̇ a . (subtraction truncated at 0 (“monus”))

We agree on the usual order of precedence for arithmetic operations and use
parentheses to resolve ambiguities.

3

3.2 The Language Exp of Syntactic Expectations 81

3.2.2 Syntax of Boolean Expressions

We next describe a syntax for Boolean expressions over AExpr, which form precisely
the guards for conditional choices and while loops in pGCL.

Definition 3.3 (Boolean Expressions).
Boolean expressions, which we denote by ϕ,ψ,ξ, and variations thereof, in the
set BExpr adhere to the grammar

ϕ −→ a < a (strict inequality of arithmetic expressions)

| ϕ ∧ϕ (conjunction)

| ¬ϕ . (negation)

As usual, the following Boolean expressions are syntactic sugar:

false , true , ϕ ∨ψ , ϕ =⇒ ψ , a = b , a ≤ b

We agree on the usual order of precedence for the Boolean connectives, i.e.,

¬ binds stronger than ∧ binds stronger than ∨ binds stronger than =⇒ ,

and we use parenthesis to resolve ambiguities.

3.2.3 Syntax of Expectations

We now describe the syntax of our formal language Exp of syntactic expectations.

Definition 3.4 (Syntactic Expectations).
Syntactic expectations, which we denote by f ,g,h, and variations thereof, in
the set Exp adhere to the grammar

f −→ a (arithmetic expressions)

| [ϕ] (Boolean expressions)

| f + f (addition)

| f · f (multiplication)

| Sv : f (supremum over v)

| Jv : f , (infimum over v)

where a ∈ AExpr, ϕ ∈ BExpr, and v ∈ Vars.

Sis the supremum quantifier and J is the infimum quantifier. They are the

82 3 Relatively Complete Verification

quantitative analogs of the ∃ and ∀ quantifiers of first-order predicate logic.
Analogously to predicate logic, variable v is bound in Sv : f or Jv : f . Bound
variables are typically denoted by v,u,w, and variations thereof. To reduce the
number of parenthesis resolving ambiguities, we assume that

· binds stronger than +; + binds stronger than S, J .

Except for the quantifiers, the above constructs are largely self-explanatory
since they are chosen reminiscent of the operations for (semantic) expectations
from Section 2.4.2. Let us therefore get a first intuition on our choice of Exp.

Arithmetic Expressions. These form the base case and it is immediate that
they are needed for an expressive language. Assume, for instance, that we
want to know the “expected” (in fact: certain) value of variable x — itself an
arithmetic expression by definition — after executing x := a. Then this is given
by2 wp⟦x := a⟧ (x) = a — again an arithmetic expression. As a could have been
any arithmetic expression, we at least need all arithmetic expressions in an
expressive language of expectations.

Boolean Expressions, Addition, and Multiplication. These constructs are used for
expressing the weakest preexpectations of conditional choices, probabilistic
choices, and loops. As we have, for instance,

wp⟦if (ϕ) {C1 } else {C2 }⟧ (f) = [ϕ] ·wp⟦C1⟧ (f) + [¬ϕ] ·wp⟦C2⟧ (f) ,

and

wp⟦{C1 } [p] {C2 }⟧ (f) = p ·wp⟦C1⟧ (f) + (1− p) ·wp⟦C2⟧ (f) ,

these constructs are convenient for being expressive.

Suprema and Infima. The supremum and infimum quantification Sv : f and
Jv : f take over the role of the ∃v : P and ∀v : P quantification of first-order

predicate logic. Sand J are necessary for Exp to be expressive in the same
way as the ∃ and ∀ quantifiers are necessary for first-order arithmetic to be
expressive for weakest preconditions of non-probabilistic programs [Win93].

2Strictly speaking, we must not write wp⟦C⟧ (f) since f is a syntactic object rather than an expec-
tation of type E. In the following, we do so nonetheless to gain some intuition on why include
the different constructs in the language Exp. The formal semantics of syntactic expectations is
given in Section 3.2.4.

3

3.2 The Language Exp of Syntactic Expectations 83

f FV(f)

a FV (a)

[ϕ] FV (ϕ)

g + h FV (g)∪ FV (h)

g · h FV (g)∪ FV (h)

Sv : g, Jv : g FV (g) \ {v}

Table 3.1: Inductive definition of FV (f) ⊂ Vars.

Finally, we introduce the notion of free variables of syntactic expectations.
Given a ∈ AExpr, we denote by FV (a) ⊂ Vars the finite set of (necessarily free)
variables in a. For ϕ ∈ BExpr, we define FV (ϕ) analogously.

Definition 3.5 (Free Variables of Syntactic Expectations).
Let f ∈ Exp. The finite set of free variables in f

FV (f) ⊂ Vars

is defined by induction on f in Table 3.1.

Thus, FV (f) contains all variables occurring at least once in f without being in
the scope of a Sor J quantifier. When defining specific syntactic expectations,
we will often write f (x1, . . . , xn), where x1, . . . , xn are pairwise distinct variables,
to indicate that at most the variables x1, . . . , xn occur freely in f , i.e.,

FV (f) ⊆ {x1, . . . , xn} .
Remark 3.1 (Comparing Exp to the Language Presented in [12]).
The language Exp presented here differs from the language presented in [12].
The language from [12] does not allow for products f · g of two arbitrary
syntactic expectations f and g. This was because our proof strategya for
expressiveness required that for every f ∈ Exp, we can compute an equivalent
syntactic expectation f ′ in prenex normalform. This turned out to be chal-
lenging when allowing for such general products (cf. [12, Section 4.6]). In
the course of writing this thesis, it turned out that prenex normal forms of

84 3 Relatively Complete Verification

a ⟦a⟧(σ) ϕ σ ∈
�
ϕ
�

iff

q ∈Q≥0 q b < c ⟦b⟧ (σ) < ⟦c⟧ (σ)

x ∈ Vars σ (x) ψ ∧ ξ σ ∈ ⟦ψ⟧ and σ ∈ ⟦ξ⟧
b+ c ⟦b⟧ (σ) + ⟦c⟧ (σ) ¬ψ σ < ⟦ψ⟧

b · c ⟦b⟧ (σ) · ⟦c⟧ (σ)

b −̇ c max(⟦b⟧ (σ)− ⟦c⟧ (σ),0)

Table 3.2: Inductive definitions of the semantics of a ∈ AExpr and ϕ ∈ BExpr.

syntactic expectations can actually be avoided, leading to a slightly simpler
and more natural language of syntactic expectations which does allow for
arbitrary products. The expressive power of the language Exp presented here
and our original language from [12] does, however, coincide since general
products are expressible in our original language (cf. [12, Theorem 9.4]).

aMore precisely, this was required for a construction similar to Theorem 3.10 on page 105.

3.2.4 Semantics of Expressions and Expectations

The semantics ⟦f ⟧ of a syntactic expectation is of type E, i.e., ⟦f ⟧ is an expecta-
tion. We first define the semantics of arithmetic and Boolean expressions.

Definition 3.6 (Semantics of Arithmetic and Boolean Expressions).
Let a ∈ AExpr and ϕ ∈ BExpr.

1. The semantics of a is the function

⟦a⟧ : States→Q≥0

defined by induction on the structure of a in Table 3.2 (left).

2. The semantics of ϕ is the predicate

⟦ϕ⟧ ∈ P (States)

defined by induction on the structure of ϕ in Table 3.2 (right). We
usually write σ |= ϕ instead of σ ∈ ⟦ϕ⟧.

3

3.2 The Language Exp of Syntactic Expectations 85

f
�
f
�

(σ)

a ⟦a⟧ (σ)

[ϕ]


1 if σ |= ϕ
0 if σ ̸|= ϕ

g + h ⟦g⟧ (σ) + ⟦h⟧ (σ)

g · h ⟦g⟧ (σ) · ⟦h⟧ (σ)

Sv : g sup {⟦g⟧ (σ [v 7→ q]) | q ∈Q≥0}
Jv : g inf {⟦g⟧ (σ [v 7→ q]) | q ∈Q≥0}

Table 3.3: Inductive definition of the semantics of f ∈ Exp. Suprema and infima
are taken w.r.t. the complete lattice (R∞≥0, ≤).

Definition 3.7 (Semantics of Syntactic Expectations).
Let f ∈ Exp. The semantics of f is the expectation

⟦f ⟧ ∈ E
defined by induction on the structure of f in Table 3.3.

Recall that we let 0 · ∞ =∞ · 0 = 0. Given syntactic expectations f and g, we
write f = g if they coincide syntactically. We say that f and g are (semantically)
equivalent, denoted f ≡ g, if they denote the same expectation, i.e.,

f ≡ g iff ⟦f ⟧ = ⟦g⟧ .

Most of the rules in Table 3.3 are self-explanatory. The most involved rules are
the ones for quantifiers. Sand J are the quantitative analogues of the ∃ and ∀
quantifiers from first-order predicate logic [EFT94]. The Squantifier maximizes
a quantity just like the ∃ quantifier maximizes a truth value: The interpretation
of the Sv : f quantification interprets f under all possible values of the variable
v and then returns the supremum of all these values. Dually, J minimizes f
under all possible values of v. Notice that ⟦f ⟧ (σ) is a well-defined quantity in
R
∞
≥0 for each σ ∈ States since (R∞≥0, ≤) is a complete lattice.

86 3 Relatively Complete Verification

Even though all atomic syntactic expectations of the form f = a or f =
[ϕ] evaluate to rationals, a syntactic expectation f involving Sor J possibly
evaluates to an irrational number. Let us consider some introductory examples.
A more extensive discussion on expressible expectations is given in Section 3.5.

Example 3.1.
1. For

f = Sv : [v · v < y] · v ,
we have for every σ ∈ States,

⟦f ⟧ (σ)

= sup {⟦[v · v < y] · v⟧ (σ [v 7→ q]) | q ∈Q≥0}
= sup {q | q ∈Q≥0 and q · q < σ (y)}
=

√
σ (y) .

Hence, if, e.g., σ (y) = 2, we have ⟦f ⟧ (σ) =
√

2 — an irrational number.

2. For

f = Sv : v ,

we have ⟦f ⟧ (σ) =∞ for all σ ∈ States.

3. Even though fractions like 1/x are not allowed by our syntax, we can
express them using quantifiers. We have, e.g.,

⟦ Sv : [v · x = 1] · v⟧ (σ)

= {q | q ∈Q≥0 and q · σ (x) = 1}

=


1/σ (x) if σ (x) > 0

0 if σ (x) = 0 .

The role of the Sv quantifier is — so to speak — to select the rational
number we are interested in. When constructing fractions this way,
we never run into well-definedness issues arising from, e.g., dividing
by 0. The above construction automatically defaults to 0 in case we
“divide by 0”. Any other default value r ∈Q≥0 can be constructed via

[x = 0] · r + [x > 0] · (Sv : [v · x = 1] · v) .

3

3.2 The Language Exp of Syntactic Expectations 87

4. In Example 3.5 on page 110, we will define a syntactic expectation
which evaluates to π2/6 — a transcendental number.

3.2.5 Capture-Avoiding Substitutions of Variables

Given f ∈ Exp, a ∈ AExpr, and x ∈ Vars, our goal is to define f [x/a] ∈ Exp — the
syntactic expectation obtained from substituting x in f by a. A natural and, in
fact, necessary requirement for such a substitution is that

for all σ ∈ States : ⟦f [x/a]⟧ (σ) = ⟦f ⟧ (σ [x 7→ ⟦a⟧ (σ)]) ,

i.e., syntactically substituting x in f by a and then evaluating the so-obtained
syntactic expectation in some state σ yields the same quantity as evaluating f
in the state obtained from σ by updating the value of x by ⟦a⟧ (σ).

An Unsound Approach. If we were to naively define

� “obtain f [x/a] by simply replacing every free occurrence of x by a” �

then the above requirement is generally not met. The problem arises if a contains
variables that are substituted into the scope of a quantifier3. Consider, for
instance, the syntactic expectation f = Sy : x and the arithmetic expression a = y.
With the above naive definition of syntactic substitution, we get f [x/y] = Sy : y.
However, we have for every σ ∈ States,

⟦f [x/y]⟧ (σ)

= ⟦ Sy : y⟧ (σ)

= ∞
, σ (y)

= sup {σ (y) | q ∈Q≥0}
= sup {⟦x⟧ (σ [x 7→ ⟦y⟧ (σ)] [y 7→ q]) | q ∈Q≥0}
= ⟦ Sy : x⟧ (σ [x 7→ ⟦y⟧ (σ)]) .

We would expect that ⟦f [x/y]⟧ (σ) = σ (y) but since variable y gets bound by the
Squantifier when substituting x by y, the value of y under σ becomes irrelevant

when evaluating Sy : y so that ⟦ Sy : y⟧ is the constant expectation∞.

3In the field of lambda calculi, this situation is called variable capture [Lea00].

88 3 Relatively Complete Verification

A Sound Approach. We can fix the above issue by renaming bound variables
by fresh variables. It is obvious that renaming a bound variable in some f ∈ Exp
by some fresh variable not occurring in f never changes the semantics4 of f . For
instance, reconsidering the situation from above, if we first rename the bound
variable y in f by the fresh variable y′ (which does not occur in f or a), we get
f ′ = Sy′ : x satisfying f ′ ≡ f . If we now substitute every free occurrence of x in
f ′ by a = y, we obtain the desired result since we have for every σ ∈ States that�

f ′ [x/y]
�

(σ)

=
�

Sy′ : y
�

(σ)

= σ (y)

= ⟦f ⟧ (σ [x 7→ ⟦y⟧ (σ)]) .

Renaming bound variables to avoid variable capture when substituting variables
by expressions is called capture-avoiding substitution, which we formalize in
the following. Given two arithmetic expressions a,b and x ∈ Vars, denote by
a [x/b] the arithmetic expression obtained from substituting every occurrence of
x in a by b, which is defined by induction on a in the obvious way. For Boolean
expressions ϕ, we analogously define ϕ [x/a] as the Boolean expression obtained
from substituting every occurrence of x in ϕ by a. Neither arithmetic nor
Boolean expressions contain quantifiers, so variable capture is not an issue here.

Definition 3.8 (Capture-Avoiding Substitutions of Variables).
Let f ∈ Exp, a ∈ AExpr, and let x ∈ Vars. The syntactic expectation

f [x/a] ∈ Exp

obtained from substituting every free occurrence of x in f by a in a capture-
avoiding manner is defined by induction on f in Table 3.4.

Capture-avoiding substitutions indeed meet our soundness requirement.

Lemma 3.1 (Coincidence of Syntactic and Semantic Substitutions).
Let f ∈ Exp, a ∈ AExpr, and let x ∈ Vars. We have

for all σ ∈ States : ⟦f [x/a]⟧ (σ) = ⟦f ⟧ (σ [x 7→ ⟦a⟧ (σ)]) .

Finally, we generalize the above concept to the simultaneous substitution of
multiple free variables. Recall that we often define specific syntactic expectations
f by writing f (x1, . . . ,xn) to indicate that at most the pairwise distinct variables

4this is also known as α-conversion.

3

3.2 The Language Exp of Syntactic Expectations 89

f f [x/a]

b b [x/a]

[ϕ] [ϕ [x/a]]

g + h g [x/a] + h [x/a]

g · h g [x/a] · h [x/a]

Sv : g Sv′ : (g [v/v′]) [x/a]

Jv : g Jv′ : (g [v/v′]) [x/a]

Table 3.4: Inductive definition of capture-avoiding substitutions. v′ ∈ Vars is
fresh, i.e, distinct from both x and v and we have v′ < FV (g)∪ FV (a).

x1, . . . ,xn occur freely in f . Given a1, . . . , an ∈ AExpr, we then write f (a1, . . . , an) to
denote the syntactic expectation obtained from f by simultaneously substituting
x1, . . . ,xn in f by a1, . . . , an in a capture-avoiding manner so that we have

for all σ ∈ States : ⟦f (a1, . . . , an)⟧ (σ) = ⟦f ⟧ (σ [x1 7→ ⟦a1⟧ (σ), . . . ,xn 7→ ⟦an⟧ (σ)]) ,

where

σ [x1 7→ ⟦a1⟧ (σ), . . . ,xn 7→ ⟦an⟧ (σ)] = λx.



⟦a1⟧ (σ) if x = x1
...

⟦an⟧ (σ) if x = xn
σ (x) otherwise .

Example 3.2.
Let us define the syntactic expectation fraction(x1,x2) by

fraction(x1,x2) = Sv : [v · x2 = x1] · v .
We then denote by, e.g., fraction(z,z+ 2) the syntactic expectation

fraction(z,z+ 2) = Sv′ :
[
v′ · (z+ 2) = z

] · v′ .

90 3 Relatively Complete Verification

3.3 Expressiveness for Loop-Free Programs

Before we deal with loops, we now show that our language Exp of syntactic
expectations is expressive for all loop-free pGCL programs. Proving expressiveness
for loops is way more involved and will be addressed in the subsequent sections.

Theorem 3.2 (Expressiveness of Exp for Loop-Free Programs).
Exp is expressive (cf. Definition 3.1) for the loop-free fragment of pGCL, i.e.,

for all loop-free C ∈ pGCL, f ∈ Exp : exists g ∈ Exp : wp⟦C⟧ (⟦f ⟧) = ⟦g⟧ .

Moreover, g is effectively constructible.

Proof. By induction on the structure of C. Let f ∈ Exp.

Effectless Program C = skip. We have

wp⟦skip⟧ (⟦f ⟧) = ⟦f ⟧ (Table 2.1)

and f ∈ Exp by assumption.

Assignment C = x := a. We have

wp⟦x := a⟧ (⟦f ⟧)

= ⟦f ⟧ [x/a] (Table 2.1)

= ⟦f [x/a]⟧ (Lemma 3.1)

and f [x/a] ∈ Exp by assumption and definition of Exp.

Induction Hypothesis. For arbitrary, but fixed, loop-free C1,C2 ∈ pGCL and all
f1, f2 ∈ Exp there are effectively constructible g1, g2 ∈ Exp such that

wp⟦C1⟧ (⟦f1⟧) = ⟦g1⟧ and wp⟦C2⟧ (⟦f2⟧) = ⟦g2⟧ .

Sequential Composition C = C1 ; C2. We have

wp⟦C1 ; C2⟧ (⟦f ⟧)

= wp⟦C1⟧ (wp⟦C2⟧ (⟦f ⟧)) (Table 2.1)

= wp⟦C1⟧ (⟦g2⟧) (g2 ∈ Exp with ⟦g2⟧ = wp⟦C2⟧ (⟦f ⟧) exists by I.H.)

3

3.4 Expressiveness for Loopy Programs 91

= ⟦g1⟧ . (g1 ∈ Exp with ⟦g1⟧ = wp⟦C1⟧ (⟦g2⟧) exists by I.H.)

Probabilistic Choice {C1 } [p] {C2 }. We have

wp⟦{C1 } [p] {C2 }⟧ (⟦f ⟧)

= p ·wp⟦C1⟧ (⟦f ⟧) + (1− p) ·wp⟦C2⟧ (⟦f ⟧) (Table 2.1)

= p · ⟦g1⟧+ (1− p) · ⟦g2⟧ (suitable g1, g2 ∈ Exp exist by I.H.)

= ⟦p · g1 + (1− p) · g2⟧ , (Table 3.3)

and p · g1 + (1− p) · g2 ∈ Exp, where we treat (1− p) as an atomic expression
since p is a constant rational probability by Definition 2.16 on page 45.

Conditional Choice if (ϕ) {C1 } else {C2 }. We have

wp⟦if (ϕ) {C1 } else {C2 }⟧ (⟦f ⟧)

= [⟦ϕ⟧] ·wp⟦C1⟧ (⟦f ⟧) + [⟦¬ϕ⟧] ·wp⟦C2⟧ (⟦f ⟧) (Table 2.1)

= [⟦ϕ⟧] · ⟦g1⟧+ [⟦¬ϕ⟧] · ⟦g2⟧ (suitable g1, g2 ∈ Exp exist by I.H.)

= ⟦[ϕ] · g1 + [¬ϕ] · g2⟧ (Table 3.3)

and [ϕ] · g1 + [¬ϕ] · g2 ∈ Exp. ■

3.4 Expressiveness for Loopy Programs

3.4.1 Overview

Before we get to the technical details, we outline the main challenges — and the
steps we took to address them — of proving expressiveness of our language Exp
of syntactic expectations for pGCL programs including loops; the technical de-
tails of the involved encodings and auxiliary results are considered throughout
Sections 3.4.2 – 3.4.5. This section is intended to support navigation through
the individual components of the expressiveness proof; as such, we provide
various references to follow-up sections.

3.4.1.1 Setup

As in the loop-free case considered in Section 3.3, we prove expressiveness
of Exp for all pGCL programs (including loopy programs) by induction on the
program structure; all cases except loops are completely analogous to the proof

92 3 Relatively Complete Verification

of Theorem 3.2 on page 90. Our remaining proof obligation thus boils down to
proving that for every loop C = while (ϕ) {C′ }, we have

for all f ∈ Exp : exists g ∈ Exp : wp⟦while (ϕ)
{
C′

}
⟧ (⟦f ⟧) = ⟦g⟧ , (†)

where we already know by the I.H. that for the loop body C′ , we have

for all f ′ ∈ Exp : exists g ′ ∈ Exp : wp⟦C′⟧ (
�
f ′

�
) =

�
g ′

�
. (3.1)

A Simplification for this Overview. Just for this overview section, we assume
that the set Vars of all variables is finite instead of countably infinite. This is a
convenient simplification to avoid a few purely technical details such that we
can focus on the actual ideas of the proof. We do not make this assumption in
follow-up sections. Rather, our construction will ensure that only the finite set of
“relevant” variables — those that appear in the program or the postexpectation
under consideration — are taken into account.

3.4.1.2 Basic Idea: Exploiting the Kozen Duality

We first move to an alternative characterization of the weakest preexpectations
of loops whose components are simpler to capture with syntactic expectations.
In particular, we will be able to apply our induction hypothesis (3.1) to some of
these components. Recall the Kozen duality from Corollary 2.16.3 on page 72:

wp⟦C⟧ (X) = λσ0.
∑

τ∈States

⟦C⟧σ0(τ) ·X(τ) ,

where ⟦C⟧σ0 is the subdistribution of final states obtained from executing C on
initial state σ0. Adapting the above equality to our concrete case in which C is a
loop and X = ⟦f ⟧, we obtain

wp⟦while (ϕ)
{
C′

}
⟧ (⟦f ⟧)

= λσ0.
∑

τ∈States

⟦[¬ϕ] · f ⟧ (τ) · ⟦while (ϕ)
{
C′

}
⟧σ0(τ) ,

where we strengthened the postexpectation X to [¬ϕ] ·X to account for the fact
that the loop guard ϕ is violated in every final state, see [Kam19, Corollary 4.6].
The main idea is — instead of viewing the whole distribution ⟦while (ϕ) {C′ }⟧σ0

in a single “big step” — to take an operational “small-step” perspective: we
consider the intermediate states reached after each guarded loop iteration,

3

3.4 Expressiveness for Loopy Programs 93

which corresponds to executing the program

Citer = if (ϕ)
{
C′

}
else {skip } .

We then sum over all terminating execution paths — finite sequences of states
σ0, . . .σk with initial state σ0 and final state σk = τ — instead of a single final
state τ . The probability of an execution path is then given by the product of
the probability ⟦Citer⟧σi (σi+1) of each intermediate step, i.e., the probability of
reaching the state σi+1 from the previous state σi by one guarded loop iteration:

wp⟦while (ϕ)
{
C′

}
⟧ (⟦f ⟧)

= λσ0. sup
k∈N

∑

σ0,...,σk∈States

⟦[¬ϕ] · f ⟧ (σk) ·
k−1∏

i=0

⟦Citer⟧σi (σi+1) . (3.2)

Notice that the above sum (without the sup) considers all execution paths of a
fixed length k; we take the supremum over all natural numbers k to account for
all terminating execution paths.

Next, we aim to apply the induction hypothesis (3.1) to the probability
⟦Citer⟧σi (σi+1) of each step such that we can write it as a syntactic expecta-
tion. To this end, we need to characterize ⟦Citer⟧σi (σi+1) in terms of weakest
preexpectations. We employ a syntactic expectation [σ] — called the character-
istic expectation (inspired by the characteristic assertions from [Win93]) of state σ
— capturing the values assigned to variables by σ :5

[σ] =



∧

x∈Vars

x = σ (x)


 ∈ Exp .

By the Kozen duality (Corollary 2.16.3 on page 72), the probability of reaching
state σi+1 from σi by one guarded loop iteration Citer is then given by

⟦Citer⟧σi (σi+1) = wp⟦Citer⟧ (⟦[σi+1]⟧) (σi) .

Using the induction hypothesis (3.1), we construct a single syntactic expectation
gσi+1
Citer
∈ Exp, where we introduce auxiliary variables to realize the parameteriza-

tion in σi+1, such that for all σi ,σi+1 ∈ States, we have

⟦Citer⟧σi (σi+1) = wp⟦Citer⟧ (⟦[σi+1]⟧) (σi) =
�
gσi+1
Citer

�
(σi) .

5Recall that we assume for simplicity that Vars is finite.

94 3 Relatively Complete Verification

Plugging the above equality into our “small-step” characterization of loops (3.2)
then yields the following characterization of ⟦g⟧ in (†):

wp⟦while (ϕ)
{
C′

}
⟧ (⟦f ⟧)

= λσ0. sup
k∈N

∑

σ0,...,σk∈States

�
[¬ϕ] · f
︸ ︷︷ ︸
∈Exp

�
(σk) ·

k−1∏

i=0

�
gσi+1
Citer︸︷︷︸
∈Exp

�
(σi)

︸ ︷︷ ︸
product of variable length expressible in Exp?

︸ ︷︷ ︸
products of constant length 2 expressible in Exp

︸ ︷︷ ︸
sum over variable-length state sequences expressible in Exp?

︸ ︷︷ ︸
suprema supported in Exp via S

(3.3)

3.4.1.3 Encoding Loops as Syntactic Expectations

Let us now revisit the individual components of the expectation (3.3) from
above and discuss how to encode them as syntactic expectations in Exp, moving
through the braces from bottom to top:

The Supremum supk∈N. The supremum ensures that terminating execution
paths of arbitrary length are accounted for; it is supported in Exp by the S
quantifier. If we already know a syntactic expectation g ∈ Exp for the entire sum
that follows, we hence obtain an encoding of the whole expectation, namely

Sk : g ∈ Exp ,

where we ensure that g evaluates to 0 if k evaluates to a non-integral number.

The Sum
∑
σ0,...,σk∈States. This sum cannot directly be written as a syntactic

expectation: First, it sums over sequences of program states of length k. Second,
its number of summands depends on the length k whereas Exp (syntactically)
only supports sums with a constant number of summands. To deal with the
first issue, there is a standard solution in proofs of expressiveness for classical
non-probabilistic programs (cf. [LS87; Win93; TCA19; TCA09]): We employ
Gödelization to encode both program states and finite sequences of program
states as natural numbers in syntactic expectations. The details are found in
Section 3.4.2. In particular:

3

3.4 Expressiveness for Loopy Programs 95

• We show that Exp subsumes both first-order arithmetic A
Q≥0

over Q≥0 and
first-order arithmetic A

N
over N in Section 3.4.2.1.

• This enables us to utilize Gödelization [Göd31] in Sections 3.4.2.2 and 3.4.2.3,
i.e., to encode finite sequences over both N and Q≥0 as Gödel numbers in
A
Q≥0

and thereby in Exp.

• In Section 3.4.2.4, we then encode program states and sequences of program
states in Exp as sequences over Q≥0 and N, respectively.

To deal with the second issue (the sum having a variable number of sum-
mands), we also rely on the ability to encode sequences as Gödel numbers in
Exp. Roughly speaking, we encode the sum as follows:

• In Section 3.4.3, we construct for each syntactic expectation h its Dedekind-
characteristic formula to represent h in A

Q≥0
, exploiting that the reals α that h

evaluates to can be represented by their Dedekind cuts [Ber49] — the set of
rationals strictly smaller than α.

• In Section 3.4.4, we then combine Dedekind-characteristic formulae with
Gödelization to construct for every h ∈ Exp another syntactic expectation

y
SUM
x=0

: h with
�

y
SUM
x=0

: h
�

(σ) =



∑σ (y)
i=0 ⟦h⟧ (σ [x 7→ i]) if σ (y) ∈N

0 otherwise ,

evaluating to the sought-after sums with a variable number of summands.

The Product ⟦[¬ϕ] · f ⟧ · This product is expressible in Exp.

The Product
∏k−1
i=0

�
gσi+1
Citer

�
(σi). Products with a variable number of factors

require a similar approach as for sums. See Section 3.4.4 for details.

The Expectations ⟦[¬ϕ] · f ⟧ and
�
gσi+1
Citer

�
. The former is a syntactic expectation

by construction whereas the latter is obtained from the induction hypothesis,
where we apply Gödelization to evaluate syntactic expectations in states given
as Gödel numbers. See Section 3.4.5 for details.

The Expressiveness Proof. We glue together the constructions for the indi-
vidual components of the expectation (3.3), which characterizes the weakest
preexpectation of loops. We present the full construction, a proof of its correct-
ness, and an example of the resulting syntactic expectation in Section 3.4.5.

96 3 Relatively Complete Verification

P ∈A
N

P
Q≥0 ∈A

Q≥0 P ∈A
Q≥0 [P] ∈ Exp

ϕ ϕ ∧N (x1)∧ . . .∧N (xn) ϕ [ϕ]

∃v : P ′ ∃v : P ′
Q≥0

∃v : P ′ Sv : [P ′]
∀v : P ′ ∀v : N (v) −→ P ′

Q≥0
∀v : P ′ Jv : [P ′]

Table 3.5: Embedding of P ∈ A
N

in A
Q≥0

(left, where FV (ϕ) = {x1, . . . ,xn}) and of
P ∈A

Q≥0
in Exp (right).

3.4.2 Gödelization for Syntactic Expectations

We show that Exp subsumes the standard model of first-order arithmetic over
both Q≥0 (Theorem 3.5) and N (Theorem 3.6). Consequently, Exp conservatively
extends the standard assertion language of Floyd-Hoare logic for classical pro-
grams (cf. [Win93; LSS84; Coo78]). Moreover, this enables us to encode finite
sequences of both natural numbers and non-negative rationals in Exp utilizing
Gödelization [Göd31] — a central ingredient of our expressiveness proof.

3.4.2.1 Embedding First-Order Arithmetic in Exp

Formulas P in first-order arithmetic over Q≥0 are obtained by extending Boolean
expressions ϕ by existential ∃ and universal ∀ quantifiers. For simplicity, we
assume without loss of generality that all formulas P are in prenex normalform.

Definition 3.9 (First-Order Arithmetic over Q≥0).
First-order arithmetic formulae over Q≥0, which we denote by P ,Q, and varia-
tions thereof, in the set A

Q≥0
adhere to the grammar

P −→ ϕ ∈ BExpr (Boolean expressions (see Definition 3.3))

| ∃v : P (existential quantification)

| ∀v : P . (universal quantification)

The semantics of formulae P ∈A
Q≥0

is standard, e.g.,

σ |= ∀v : P iff for all q ∈Q≥0 : σ [v 7→ q] |= P .
We adopt the same notation as for syntactic expectations, i.e., FV (P) is the finite

3

3.4 Expressiveness for Loopy Programs 97

set of free variables in P and P [x/a] is the formula obtained from substituting
every occurrence of x in P by a in a capture-avoiding manner (cf. Definition 3.8).

The set A
N

of formulas P in first-order arithmetic over N is defined analo-
gously by restricting to Boolean expressions where all constants are in N. We
denote the set of all such Boolean expressions by BExpr

N
.

Definition 3.10 (First-Order Arithmetic over N).
First-order arithmetic formulae over N, which we also denote by P ,Q, and
variations thereof, in the set A

N
adhere to the grammar

P −→ ϕ ∈ BExpr
N

(Boolean expressions with constants in N)

| ∃v : P (existential quantification)

| ∀v : P . (universal quantification)

Since our program states are of type Vars→ Q≥0 rather than Vars→ N, we
define an auxiliary satisfaction relation |=

N
⊆ States×A

N
which ensures (1) that

all free variables occurring in a formula P ∈A
N

evaluate to values in N under
the current state and (2) that the quantifiers range over N:

σ |=
N
ϕ iff σ |= ϕ and for all x ∈ FV (ϕ) : σ (x) ∈N

σ |=
N
∃v : P ′ iff exists i ∈N : σ [v 7→ i] |=

N
P ′

σ |=
N
∀v : P ′ iff for all i ∈N : σ [v 7→ i] |=

N
P ′

Next, we adopt a result by Julia Robinson to show that A
Q≥0

subsumes A
N

.

Lemma 3.3 (Definability of N in A
Q≥0 (adapted from [Rob49])).

The set N of natural numbers is definable in A
Q≥0

, i.e., there is a formula
N (x) ∈A

Q≥0
with free variable x such that for all σ ∈ States, we have

σ |= ⟦N (x)⟧ iff σ (x) ∈N .

Hence, A
Q≥0

subsumes A
N

in the following sense:

Theorem 3.4 (Embedding of A
N

in A
Q≥0).

Let P ∈ A
N

and let P
Q≥0
∈ A

Q≥0
be the formula obtained from P by applying

the rules shown in Table 3.5 (left). For all σ ∈ States, we have

σ |= P
Q≥0

iff σ |=
N
P .

Proof. By induction on P . ■

98 3 Relatively Complete Verification

Next, we show that Exp subsumes A
Q≥0

. Given P ∈ A
Q≥0

, we define an
effectively constructible syntactic expectation [P] obtained from P by (1) taking
Iverson brackets for Boolean expressions, i.e., quantifier-free formulae, and (2)
substituting the quantifiers ∃/∀ by their quantitative analogs S/ J.

Theorem 3.5 (Embedding of A
Q≥0 in Exp).

Let P ∈A
Q≥0

and let [P] ∈ Exp be the syntactic expectation obtained from P
by applying the rules shown in Table 3.5 (right). For all σ ∈ States, we have

⟦[P]⟧ (σ) =


1 if σ |= P
0 if σ ̸|= P .

Proof. By induction on P . ■

Finally, by Theorems 3.4 and 3.5, Exp also subsumes A
N

.

Theorem 3.6 (Embedding of A
N

in Exp).
For every P ∈A

N
, there is an effectively constructible syntactic expectation

[P] ∈ Exp such that for all σ ∈ States, we have

⟦[P]⟧ (σ) =


1 if σ |=

N
P

0 if σ ̸|=
N
P .

Notice that [P] possibly contains quantitative quantifiers Sor J.

3.4.2.2 Encoding Sequences of Natural Numbers

We employ a result by Gödel [Göd31] for encoding finite sequences of natural
numbers in a single number — a process often referred to as Gödelization.

Lemma 3.7 (Gödelization [Göd31] of Finite Sequences over N).
There is a formula Elem(x1,x2,x3) ∈A

Q≥0
such that for all σ ∈ States:

1. If σ (xi) <N for some i ∈ {1,2,3}, then σ ̸|= Elem(x1,x2,x3).

2. For all m,m′ ∈N, we have

σ |= Elem(x1,x2,m) and σ |= Elem(x1,x2,m
′) implies m =m′ ,

and if σ (x1),σ (x2) ∈N, then there is m ∈N with σ |= Elem(x1,x2,m).

3. For all k ≥ 0 and all (possibly empty) finite sequences n0, . . . ,nk−1 of

3

3.4 Expressiveness for Loopy Programs 99

natural numbers, there is a Gödel number num ∈N such that

for all i ∈ {0, . . . , k − 1} : σ |= Elem(num,i,x3) iff σ (x3) = ni .

Proof. By using the fact that Gödel’s β-function is definable in A
N

and using
the fact that A

Q≥0
subsumes A

N
(Theorem 3.4). ■

Gödelization gives rise to a powerful concept: Quantifying over finite sequences
of arbitrary length is not syntactically supported in A

Q≥0
. However, with Elem,

such a quantification can nonetheless be expressed by quantifying over a single
variable. We can thereby define various predicates in A

Q≥0
whose definability is

— at first sight — far from obvious.

Example 3.3.
We use Elem to define a formula Fac(x,y) ∈A

Q≥0
which expresses that y is

the factorial of x, i.e.,

for all σ ∈ States :

σ |= Fac(x,y) iff σ (x),σ (y) ∈N and σ (y) = σ (x)! .

where n! denotes the factorial of n ∈N which we define recursively as

n! =


1 if n = 0

n · (n− 1)! otherwise .

The idea is to use the above recursive definition of n! to express the fact
that for n,m ∈N we have m = n! equivalently as the existence of a sequence
m0, . . . ,mn of natural numbers such that

m0 = 1 and mn =m and for all i ∈ {1, . . . ,n} : mi = i ·mi−1 .

Using Elem, we can express this characterization in A
Q≥0

as follows:

Fac(x,y)

= ∃v :︸︷︷︸
there is a sequence m0, . . . such that

Elem(v,0,1)
︸ ︷︷ ︸

m0=1

∧ Elem(v,x,y)
︸ ︷︷ ︸

mx=y

∧∀1 ≤ u ≤ x : ∀w : (Elem(v,u −̇ 1,w) =⇒ Elem(v,u,u ·w))
︸ ︷︷ ︸

for all u∈{1,...,x} : mu=u·mu−1

.

Notice that if σ (x) <N or σ (y) <N, then σ ̸|= Fac(x,y) by Lemma 3.7.1.

100 3 Relatively Complete Verification

To assign a unique Gödel number num to a (possibly empty) sequence
n0, . . . ,nk−1 of length k we employ minimization, i.e., we choose the least suitable
Gödel number. Formally, we define the A

Q≥0
formula

Sequence (x,y)

= N (x)∧N (y)

∧∀v :
(
∀w : (N (w)∧w < y) =⇒ ∃u : Elem(x,w,u)∧ Elem(v,w,u)

)

︸ ︷︷ ︸
x and v encode sequences coinciding on first y elements

=⇒ v ≥ x ,

i.e., σ |= Sequence (x,y) iff σ (x),σ (y) ∈N and num = σ (x) is the smallest Gödel
number of the uniquely determined sequence n0, . . . ,nσ (y)−1 ∈N satisfying

for all i ∈ {0, . . . ,σ (y)− 1} : σ |= Elem(num,i,ni) .

For every k ∈N and every sequence n0, . . . ,nk−1 ∈N of length k, we then define
the unique Gödel number of the sequence n0, . . . ,nk−1 as the natural number
⟨n0, . . . ,nk−1⟩ satisfying

Sequence (⟨n0, . . . ,nk−1⟩, k) ∧
k−1∧

i=0

Elem(⟨n0, . . . ,nk−1⟩, i,ni) ,

where the empty conjunction is equivalent to true.

3.4.2.3 Encoding Sequences of Non-Negative Rationals

We employ the formula Elem from Lemma 3.7 to uniquely encode finite se-
quences of non-negative rationals in A

Q≥0
. The main idea is to exploit that every

non-negative rational q can be uniquely written as a fraction q = n/m in lowest
terms, i.e., such that n,m ∈ N and n and m are relatively prime. Hence, ev-
ery finite sequence of non-negative rationals can be identified with two finite
sequences of natural numbers, which can be encoded via Elem.

Lemma 3.8 (Gödelization [Göd31] of Finite Sequences over Q≥0).
There is a formula RElem(x1,x2,x3) ∈A

Q≥0
such that for all σ ∈ States:

1. If σ (xi) <N for some i ∈ {1,2}, then σ ̸|= RElem(x1,x2,x3).

2. For all q,q′ ∈Q≥0,

σ |= RElem(x1,x2,q) and σ |= RElem(x1,x2,q
′) implies q = q′ ,

3

3.4 Expressiveness for Loopy Programs 101

and if σ (x1),σ (x2) ∈N, then there is q ∈Q≥0 with σ |= RElem(x1,x2,q).

3. For all k ≥ 0 and all (possibly empty) finite sequences q0, . . . , qk−1 of
non-negative rationals, there is a Gödel number num ∈N such that

for all i ∈ {0, . . . , k − 1} : σ |= RElem(num,i,x3) iff σ (x3) = qi .

Proof. See [8, Appendix B.4] for details. ■

Analogously to the previous section, we define a formula RSequence (x,y) ∈
A
Q≥0

that uses minimization to define a unique Gödel number num for every
finite sequence q0, . . . , qk−1 of non-negative rationals. The only difference be-
tween RSequence (x,y) and Sequence (x,y) is that every occurrence of Elem is
replaced by RElem. Similarly, for every k and every sequence q0, . . . , qk−1, we
define the unique Gödel number encoding that sequence as the unique natural
number ⟨q0, . . . , qk−1⟩ ∈N satisfying the A

Q≥0
formula

RSequence (⟨q0, . . . , qk−1⟩, k) ∧
k−1∧

i=0

RElem(⟨q0, . . . ,qk−1⟩, i,qi) .

Example 3.4.
Analogously to Example 3.3, we use RElem to define a formula
Harmonic(x,y) ∈ A

Q≥0
which expresses that y is the x-th harmonic number,

i.e., such that for all σ ∈ States, we have

σ |= Harmonic(x,y) iff σ (x) ∈N and σ (y) =
σ (x)∑

i=1

1
i
.

We construct Harmonic(x,y) as follows:

Harmonic(x,y)

= ∃v :︸︷︷︸
there is a sequence q0, . . . such that

RElem(v,0,0)
︸ ︷︷ ︸

q0=0

∧RElem(v,x,y)
︸ ︷︷ ︸

qx=y

∧∀1 ≤ u ≤ x : ∀w : (RElem(v,u −̇ 1,w)

=⇒ (∃w′ : w′ ·u = 1∧RElem(v,u,w′ +w)))
︸ ︷︷ ︸

for all u∈{1,...,x} : qu= 1
u +qu−1

.

Using the fact that Exp subsumes A
Q≥0

(Theorem 3.5), we also obtain

102 3 Relatively Complete Verification

a syntactic expectation Harmonic(x) ∈ Exp which evaluates to the x-th
harmonic number, which is defined as

Harmonic(x) = Sv′ :
[
Harmonic(x,v′)

] · v′ ,such that we have

⟦Harmonic(x)⟧ (σ) =



∑σ (x)
i=1

1
i if σ (x) ∈N

0 otherwise .

Intuitively, the Squantifier selects the rational for v′ which makes
[Harmonic(x,v′)] evaluate to 1 (if such a rational exists). Multiplying with
v′ then yields the desired result by construction.

3.4.2.4 Encoding Sequences of Program States

We use RElem (Lemma 3.8) and Elem (Lemma 3.7) to encode both program
states and finite sequences of program states in A

Q≥0
. For that, we first fix an

ordered (possibly empty) k-tuple x = (x0, . . . ,xk−1) of pairwise distinct “relevant”
variables. Intuitively, x consists of all variables that appear in a given program or
a postexpectation. Inspired by [Win93], the idea is then to encode (the relevant
part of) a state σ as the sequence σ (x0), . . . ,σ (xk−1) of non-negative rationals.

We define an equivalence relation ∼x⊆ States×States between states as

σ1 ∼x σ2 iff for all i ∈ {0, . . . , k − 1} : σ1(xi) = σ2(xi) .

Every num satisfying RSequence (num,k) encodes exactly one sequence of non-
negative rationals of length k and thus also exactly one state σ modulo ∼x, i.e.,
one equivalence class of ∼x. We define the Gödel number ⟨σ⟩x ∈N encoding a
given state σ (w.r.t. x) as the unique number satisfying the A

Q≥0
formula

RSequence (⟨σ⟩x, k) ∧
k−1∧

i=0

RElem(⟨σ⟩x, i,σ (xi)) .

Moreover, we define the A
Q≥0

formula

EncodesStatex (x) = RSequence (x,k) ∧
k−1∧

i=0

RElem(x, i,xi) ,

which is satisfied by σ iff σ (x) is the Gödel number of a state σ ′ with σ ∼x σ
′ .

Now, since program states are encoded as natural numbers, sequences
of program states can be encoded as sequences of natural numbers. Let

3

3.4 Expressiveness for Loopy Programs 103

f Dedekind[f ,x]

a x < a∨ x = 0

[ϕ] (ϕ ∧ x < 1)∨ x = 0

g + h ∃v1,v2 : Dedekind [g,v1]∧Dedekind [h,v2]∧ x = v1 + v2

g · h ∃v1,v2 : Dedekind [g,v1]∧Dedekind [h,v2]∧ x = v1 · v2

Sv : g ∃v : Dedekind [g,x]

Jv : g x = 0∨ (∃v′ : x < v′ ∧∀v : Dedekind [g,v′])

Table 3.6: Inductive definition of Dedekind [f ,x] ∈A
Q≥0

. Here v′ ,v1, and v2 are
fresh variables. Moreover, we assume w.l.o.g. that x is distinct from v.

σ0, . . . ,σn−1 be such a sequence of length n. We define the unique6 Gödel number
⟨(σ0, . . . ,σn−1)⟩x encoding σ0, . . . ,σn−1 as the unique number satisfying

Sequence (⟨(σ0, . . . ,σn−1)⟩x,n) ∧
n−1∧

i=0

Elem(⟨(σ0, . . . ,σn−1)⟩x, i,⟨σi⟩x) .

Moreover, we define the formula

StateSequencex (x,y)

= Sequence (x,y)∧
(
∃y′ : Elem(x,0, y′)∧ EncodesStatex (y′)

)

∧∀u : ∀y′ :
(
(u < y ∧ Elem(x,u,y′)) =⇒ RSequence (y′ , k)

)
,

which is satisfied by state σ iff (1) num = σ (x) is the unique Gödel number of
some sequence σ0, . . . ,σσ (y)−1 of states of length σ (y) ∈N and (2) σ ∼x σ0.

3.4.3 Dedekind-Characteristic Formulae

Recall from Example 3.1.1 that a syntactic expectation f possibly evaluates to
an irrational number. Since variables evaluate to non-negative rationals, we can

6modulo ∼x

104 3 Relatively Complete Verification

thus not directly bind a fresh variable x to the reals f evaluates to. Put more
formally, there are f ∈ Exp for which there is no formula P ∈A

Q≥0
such that

for all σ ∈ States : σ |= P iff σ (x)
︸︷︷︸
∈Q≥0

= ⟦f ⟧ (σ)
︸ ︷︷ ︸

possibly <Q≥0

.

To circumvent this issue, we exploit that every non-negative extended real
α ∈R∞≥0 can be identified with the set of rationals strictly smaller7 than α:

Definition 3.11 (Dedekind Cuts adapted from [Ber49]).
Let α ∈R∞≥0. The Dedekind cut of α is defined as

Cut (α) = {q ∈Q≥0 | q < α} ∪ {0} .
Every α ∈R∞≥0 is equal to the supremum of its Dedekind cut:

Lemma 3.9 (Reals from Dedekind Cuts).
For every α ∈R∞≥0, we have α = supCut (α).

Dedekind cuts thus reduce8 reasoning about reals to reasoning about sets of
rationals. Crucially, we have for all α,β ∈R∞≥0 and ◦ ∈ {+, ·},

Cut (α ◦ β) = {q ◦ r | q ∈ Cut (α) and r ∈ Cut (β)}

and thus, by Lemma 3.9,

α ◦ β = sup {q ◦ r | q ∈ Cut (α) and r ∈ Cut (β)} .

Now, even though we cannot directly bind a variable x to the reals f evaluates to,
we show that the Dedekind cuts of these reals can be expressed in an effectively
constructible manner. Towards this end, consider the following:

Definition 3.12 (Dedekind-Characteristic Formulae).
Let f ∈ Exp and let x ∈ Vars. The Dedekind-characteristic formula of f (w.r.t. x)

Dedekind [f ,x] ∈A
Q≥0

is defined by induction on f in Table 3.6.

7We always include 0 for technical reasons since we operate in the non-negative extended reals
rather than the whole extended real number line.

8In fact, Dedekind cuts are a means to construct the (non-negative extended) reals and their
arithmetic operations from the rationals.

3

3.4 Expressiveness for Loopy Programs 105

Theorem 3.10 (Dedekind Cuts of Syntactic Expectations in A
Q≥0).

Let f ∈ Exp. We have for all σ ∈ States:

σ |= Dedekind [f ,x] iff σ (x) ∈ Cut (⟦f ⟧ (σ))

Proof. By induction on f . The base cases are straightforward.

The cases f = g ◦ h for ◦ ∈ {+, ·}. Let σ ∈ States. We have

σ |= Dedekind [f ,x]

iff σ |= ∃v1,v2 : Dedekind [g,v1]∧Dedekind [h,v2]∧ x = v1 ◦ v2
(Table 3.6)

iff exists q1,q2 ∈Q≥0 : q1 ∈ Cut (⟦g⟧ (σ)) and q2 ∈ Cut (⟦h⟧ (σ))

and σ (x) = q1 ◦ q2 (I.H., v1,v2 do not occur in g or h)

iff σ (x) ∈ {q1 ◦ q2 | q1 ∈ Cut (⟦g⟧ (σ)) and q2 ∈ Cut (⟦h⟧ (σ))}
iff σ (x) ∈ Cut (⟦g⟧ (σ) ◦ ⟦h⟧ (σ))

iff σ (x) ∈ Cut (⟦f ⟧ (σ)) .

The case f = Sv : g. Let σ ∈ States. We have

σ |= Dedekind [f ,x]

iff σ |= ∃v : Dedekind [g,x] (Table 3.6)

iff exists q ∈Q≥0 : σ [v 7→ q] |= Dedekind [g,x]

iff exists q ∈Q≥0 : σ (x) ∈ Cut (⟦g⟧ (σ [v 7→ q]))
(I.H., x is distinct from v by assumption)

iff exists q ∈Q≥0 : σ (x) < ⟦g⟧ (σ [v 7→ q]) or σ (x) = 0 (Definition 3.11)

iff σ (x) = 0 or σ (x) < sup {⟦g⟧ (σ [v 7→ q]) | q ∈Q≥0}
(standard property of suprema)

iff σ (x) = 0 or σ (x) < ⟦ Sv : g⟧ (σ) (Table 3.3 on page 85)

iff σ (x) ∈ Cut (⟦f ⟧ (σ)) . (Definition 3.11)

The case f = Jv : g. Let σ ∈ States. We have

σ |= Dedekind [f ,x]

iff σ |= x = 0∨ (∃v′ : x < v′ ∧∀v : Dedekind
[
g,v′

]
) (Table 3.6)

106 3 Relatively Complete Verification

iff σ (x) = 0 or exists q′ ∈Q≥0 : σ (x) < q′

and for all q ∈Q≥0 : σ [v 7→ q]
[
v′ 7→ q′

] |= Dedekind
[
g,v′

]

(v′ is fresh and x is distinct from v by assumption)

iff σ (x) = 0 or exists q′ ∈Q≥0 : σ (x) < q′ (I.H., v′ is fresh)

and for all q ∈Q≥0 : q′ ∈ Cut (⟦g⟧ (σ [v 7→ q]))

iff σ (x) = 0 or exists q′ ∈Q≥0 : σ (x) < q′ (Definition 3.11)

and for all q ∈Q≥0 : q′ < ⟦g⟧ (σ [v 7→ q])∨ q′ = 0

iff σ (x) = 0 or exists q′ ∈Q≥0 : σ (x) < q′ (q′ = 0 not possible)

and for all q ∈Q≥0 : q′ < ⟦g⟧ (σ [v 7→ q])

iff σ (x) = 0 or σ (x) < inf {⟦g⟧ (σ [v 7→ q]) | q ∈Q≥0} (see below (†))
iff σ (x) = 0 or σ (x) < ⟦ Jv : g⟧ (σ) (Table 3.3 on page 85)

iff σ (x) ∈ Cut (⟦f ⟧ (σ)) . (Definition 3.11)

To see that the equivalence (†) holds, consider the following: If σ (x) = 0, the
claim holds trivially. Now let σ (x) , 0. For the “if”-direction, we have:

σ (x) < inf {⟦g⟧ (σ [v 7→ q]) | q ∈Q≥0}
implies exists q′ ∈Q≥0 : σ (x) < q′ (Q≥0 is dense)

and q′ < inf {⟦g⟧ (σ [v 7→ q]) | q ∈Q≥0}
implies exists q′ ∈Q≥0 : σ (x) < q′ (standard property of infima)

and for all q ∈Q≥0 : q′ < ⟦g⟧ (σ [v 7→ q]) .

For the “only if”-direction, we have:

exists q′ ∈Q≥0 : σ (x) < q′

and for all q ∈Q≥0 : q′ < ⟦g⟧ (σ [v 7→ q])

implies exists q′ ∈Q≥0 : σ (x) < q′

and q′ ≤ inf {⟦g⟧ (σ [v 7→ q]) | q ∈Q≥0}
(standard property of infima)

implies σ (x) < inf {⟦g⟧ (σ [v 7→ q]) | q ∈Q≥0} .

This completes the proof. ■

Hence, we can recover f from Dedekind [f ,x] in the following sense:

3

3.4 Expressiveness for Loopy Programs 107

Lemma 3.11 (Syntactic Expectations from Dedekind Formulae).
Let Dedekind [f ,x] be the Dedekind formula of f ∈ Exp. We have

f ≡ Sx : [Dedekind [f ,x]] · x .
Proof. This follows from Lemma 3.9 and Theorem 3.10. ■

3.4.4 Sums and Products of Syntactic Expectations

This section deals with the syntactic Sum and Product expectations as described
in Section 3.4.1.3. The crucial idea is to reduce reasoning about sums (resp. prod-
ucts) of non-negative extended reals to reasoning about sums (resp. products)
of rationals as demonstrated in the previous Section 3.4.3. Formally:

Lemma 3.12 (Sums and Products of Reals via Sums of Rationals).
Let n ∈N and let α0, . . . ,αn ∈R∞≥0. We have:

1. q ∈ Cut



n∑

j=0

αj




iff there are q0 ∈ Cut (α0) , . . . , qn ∈ Cut (αn) : q =
n∑

j=0

qi

2. q ∈ Cut



n∏

j=0

αj




iff there are q0 ∈ Cut (α0) , . . . , qn ∈ Cut (αn) : q =
n∏

j=0

qi

We thus get by Lemma 3.9 that for f ∈ Exp, n ∈N, σ ∈ States, and x ∈ Vars,

n∑

i=0

⟦f ⟧ (σ [x 7→ i]) = sup



n∑

i=0

qi | qi ∈ Cut (⟦f ⟧ (σ [x 7→ i]))

 .

We construct the above sums
∑n
i=0 qi of rationals in A

Q≥0
using (1) Gödelization

(Lemma 3.8 on page 100) and (2) Dedekind-characteristic formulae (Theo-
rem 3.10 on page 105) to assert that qi ∈ Cut (⟦f ⟧ (σ [x 7→ i])).

Theorem 3.13 (Sums and Products of Syntactic Expectations).
Let f ∈ Exp and let y ∈ Vars be a variable not occurring in f . We have:

108 3 Relatively Complete Verification

1. There is an effectively constructible syntactic expectation
y

SUM
x=0

: f ∈ Exp

such that for all σ ∈ States, we have�
y

SUM
x=0

: f
�

(σ) =



∑σ (y)
i=0 ⟦f ⟧ (σ [x 7→ i]) if σ (y) ∈N

0 otherwise .

2. There is an effectively constructible syntactic expectation
y

PROD
x=0

: f ∈ Exp

such that for all σ ∈ States, we have�
y

PROD
x=0

: f
�

(σ) =



∏σ (y)
i=0 ⟦f ⟧ (σ [x 7→ i]) if σ (y) ∈N

0 otherwise .

Proof. We provide the construction for SUM. The construction for PROD is
completely analogous. We proceed by constructing a formula P ∈A

Q≥0
with

free variable z not occurring in f such that for all σ ∈ States, we have

σ |= P iff σ (y) ∈N and σ (z) ∈ Cut




σ (y)∑

i=0

⟦f ⟧ (σ [x 7→ i])


 .

We then define
y

SUM
x=0

: f = Sz : [P] · z ,

which yields the desired syntactic expectation by Lemma 3.9 on page 104. It
remains to construct P . The crucial idea is to employ Lemma 3.12 and to use
(1) the Dedekind-characteristic formula of f (Theorem 3.10 on page 105) and
(2) the formula RElem (Lemma 3.8 on page 105) to encode the corresponding
sequences of rationals in A

Q≥0
. Now let σ be an arbitrary state and assume in

the following that all introduced bound variables do not occur in f . We have

σ (y) ∈N and σ (z) ∈ Cut




σ (y)∑

i=0

⟦f ⟧ (σ [x 7→ i])




iff σ (y) ∈N (Lemma 3.12)

and exist q0, . . . ,qσ (y) ∈Q≥0 : σ (z) = q0 + . . .+ qσ (y)

3

3.4 Expressiveness for Loopy Programs 109

and for all i ∈ {0, . . . ,σ (y)} : qi ∈ Cut (⟦f ⟧ (σ [x 7→ i]))

iff σ (y) ∈N (rewrite sum)

and exist q0, . . . , qσ (y) ∈Q≥0 : q0 ∈ Cut (⟦f ⟧ (σ [x 7→ 0])) and σ (z) = qσ (y)

and for all 0 ≤ i < σ (y) :

exists q ∈ Cut (⟦f ⟧ (σ [x 7→ i + 1])) : qi+1 = qi + q

iff σ |= N (y)
︸︷︷︸
σ (y)∈N

(Lemma 3.8 and Theorem 3.10)

∧∃v :
(
∃u : Dedekind [f ,u] [x/0]∧RElem(v,0,u)∧RElem(v,y,z)

)

︸ ︷︷ ︸
there is a sequence q0, . . . such that q0 ∈ Cut0 (⟦f ⟧ (σ [x 7→ 0])) and σ (z) = qσ (y)

∧∀w :
(
w < y ∧N (w)

)

︸ ︷︷ ︸
and for all 0 ≤ i < σ (y) :

=⇒
(
∃u,u′ : Dedekind [f ,u] [x/w+ 1]
︸ ︷︷ ︸

exists q∈Cut0(⟦f ⟧(σ [x 7→i+1])) :

∧RElem(v,w,u′)

∧RElem(v,w+ 1,u +u′)
︸ ︷︷ ︸

qi+1=qi+q

)

where the latter is the desired formula P ∈A
Q≥0

. ■

Notice that

g =
y

SUM
x=0

: f and g =
y

PROD
x=0

: f

can be understood as a quantitative quantifier in the sense that we might have
x ∈ FV (f) but x < FV (g), i.e., variable x gets bound by SUM or PROD.

Since infinite series in R
∞
≥0 evaluate to the supremum of their partial sums, we

immediately obtain a construction for infinite series of syntactic expectations:

Corollary 3.14 (Infinite Series of Syntactic Expectations).
Let f ∈ Exp. For every σ ∈ States, we have�

Sy :
y

SUM
x=0

: f
�

(σ) =
∞∑

i=0

⟦f ⟧ (σ [x 7→ i]) = sup
n∈N

n∑

i=0

⟦f ⟧ (σ [x 7→ i]) .

110 3 Relatively Complete Verification

Example 3.5.
1. SUM provides us with a much more convenient way to define the

expectation Harmonic(x) from Example 3.4 on page 101:

Harmonic(x) =
x

SUM
v=0

: Sw : [v ≥ 1∧w · v = 1] ·w .

2. Similarly, we can define the sum over squares of harmonic numbers:
x

SUM
v=0

: Sw : [v ≥ 1∧w · v = 1] ·w ·w .
Since the corresponding infinite series evaluates to π2/6, we obtain a
syntactic expectation evaluating to a transcendental number:

∞
SUM
v=0

: Sw : [v ≥ 1∧w · v = 1] ·w ·w evaluates to
π2

6
.

3.4.5 Expressiveness of Syntactic Expectations

Gluing the results from the previous sections together, we give a constructive
expressiveness proof for our language Exp. Given arbitrary, but fixed, C ∈ pGCL
and f ∈ Exp, our goal is to effectively construct g ∈ Exp such that

⟦g⟧ = wp⟦C⟧ (⟦f ⟧) .

Given n ∈N, we write x = (x0, . . . ,xn−1) to indicate that x is a (possibly empty)
n-tuple of pairwise distinct variables. Moreover, we denote by Statesx ⊆ States
an arbitrary, but fixed, set of states that contains exactly one state from each
equivalence class of ∼x (cf. Section 3.4.2.4). Moreover, given a state σ ∈ States,
we define the characteristic expectation of σ (w.r.t. x) as

[σ]x =



n−1∧

i=0

xi = σ (xi)


 . (adapted from [Win93])

Expectation [σ]x evaluates to 1 on state σ ′ if σ ∼x σ
′ , and to 0 otherwise.

Denote by Vars(C) ⊂ Vars the finite set of variables occurring in C. We formal-
ize the characterization of weakest preexpectations of loops from Section 3.4.1.3.

Theorem 3.15 (Small-Step Characterization of Loops).
Let C = while (ϕ) {C′ } be a loop and let f ∈ Exp. Moreover, let n ≥ 1 and

3

3.4 Expressiveness for Loopy Programs 111

x = (x0, . . . ,xn−1) with {x0, . . . ,xn−1} = Vars(C)∪ FV (f). We have

wp⟦while (ϕ)
{
C′

}
⟧ (⟦f ⟧)

= λσ. sup
k∈N

∑

σ0,...,σk∈Statesx

[σ0]x (σ) · ⟦[¬ϕ] · f ⟧ (σk)

·
k−1∏

i=0

wp⟦if (ϕ)
{
C′

}
else {skip }⟧ ([σi+1]x) (σi) .

Proof. See [8, Appendix D]. ■

We encode
∑
σ0,...,σk∈Statesx

in Exp by summing over all Gödel numbers of state
sequences of length k (cf. Section 3.4.2.4) using SUM (Theorem 3.13 on page
107). It remains to show how to mimic substitutions and evaluations of syntactic
expectations in program states given as Gödel numbers:

Lemma 3.16 (Gödelized Substitutions of Variables).
Let f ∈ Exp, x ∈ Vars, n ∈N, x = (x0, . . . ,xn−1), and let y = (y0, . . . , yn−1). There
is an effectively constructible syntactic expectation

Substx [f ,x,y0, . . . , yn−1] ∈ Exp

such that for all σ,σ ′ ∈ States with σ (x) = ⟨σ ′⟩x, we have

⟦Substx [f ,x,y0, . . . , yn−1]⟧ (σ) = ⟦f ⟧ (σ [y0 7→ σ ′(x1), . . . , yn−1 7→ σ ′(xn−1)]) .

Proof. Let v0, . . . , vn−1 be pairwise distinct fresh variables. We construct

Substx [f ,x,y0, . . . , yn−1]

= Sv0 : . . . Svn−1 : [RElem(x,0,v0)∧ . . .∧RElem(x,n− 1,vn−1)]

· (f [y0/v0] . . . [yn−1/vn−1]) . ■

Evaluating some f in some state given as a Gödel number then simply corre-
sponds to substituting all free variables of f by their respective values.

Corollary 3.17 (Gödelized Evaluation of Syntactic Expectations).
Let f ∈ Exp, x ∈ Vars, n ∈ N, and let x = (x0, . . . ,xn−1) with {x0, . . . ,xn−1} ⊇
FV (f). There is an effectively constructible syntactic expectation

Applyx [f ,x] ∈ Exp

112 3 Relatively Complete Verification

such that for all σ,σ ′ ∈ States with σ (x) = ⟨σ ′⟩x, we have

⟦Applyx [f ,x]⟧ (σ) = ⟦f ⟧ (σ ′) .

Proof. We construct

Applyx [f ,x] = Substx [f ,x,x0, . . . ,xn−1] . ■

Finally, we require the following auxiliary result to express the probability

wp⟦if (ϕ)
{
C′

}
else {skip }⟧ ([σi+1]x) (σi)

of reaching state σi+1 from σi by one guarded loop iteration.

Lemma 3.18.
Let C ∈ pGCL, n ∈ N, x = (x0, . . . ,xn−1), and y = (y0, . . . , yn−1) with
{x0, . . . ,xn−1} ⊇ Vars(C) and x,y disjoint. For all σ,σ ′ ∈ States, we have

wp⟦C⟧ (
[
σ ′
]

x) (σ)

= wp⟦C⟧ ([x0 = y0 ∧ . . .∧ xn−1 = yn−1])

(σ ([y0 7→ σ ′(x0), . . . , yn−1 7→ σ ′(xn−1)])) .

Proof. By induction on C. ■

We are now in a position to prove expressiveness of Exp.

Theorem 3.19 (Expressiveness of Exp).
The language Exp of syntactic expectations is expressive, i.e.,

for all C ∈ pGCL, f ∈ Exp : exists g ∈ Exp : wp⟦C⟧ (⟦f ⟧) = ⟦g⟧ .

Moreover, g is effectively constructible.

Proof. By induction on the structure of C. All cases except loops are
completely analogous to the proof of Theorem 3.2 on page 90.

The case C = while (ϕ) {C′ }. Let x = (x0, . . . ,xn−1) with {x0, . . . ,xn−1} =
Vars(C) ∪ FV (f). Moreover, let y = (y0, . . . , yn−1) with x,y disjoint. By the
I.H., there is an effectively constructible syntactic expectation h ∈ Exp with

⟦h⟧ = wp⟦if (ϕ)
{
C′

}
else {skip }⟧ ([x0 = y0 ∧ . . .∧ xn−1 = yn−1]) ,

Now assume in the following that all introduced bound variables are fresh.

3

3.4 Expressiveness for Loopy Programs 113

We effectively construct the desired syntactic expectation g by encoding the
small-step characterization of wp⟦C⟧ (⟦f ⟧) from Theorem 3.15 on page 110:

Sv :
︸︷︷︸

=λσ. supk∈N

∞
SUM
z=0

: [StateSequencex (z,v + 1)]
︸ ︷︷ ︸

∑
σ0 ,...,σk∈Statesx [σ0]x(σ)

· (Sw : [Elem(z,v,w)] ·Applyx [[¬ϕ] · f ,w])
︸ ︷︷ ︸

·⟦[¬ϕ]·f ⟧(σk)

·
(
[v = 0] · 1

+ [v > 0] · v−̇1
PROD
z′=0

: Sw1,w2 :
[
Elem(z,z′ ,w1)∧ Elem(z,z′ + 1,w2)

]

·Applyx [Substx [h,w2, y0, . . . , yn−1] ,w1]
︸ ︷︷ ︸

wp⟦if (ϕ) {C′ }else {skip }⟧([σi+1]x)(σi)

)

︸ ︷︷ ︸
·
k−1∏
i=0

wp⟦if (ϕ) {C′ }else {skip }⟧([σi+1]x)(σi)

Now let σ0 ∈ States be some initial program state. To see that the above
construction is sound, recall from Section 3.4.2.4 that

⟦[StateSequencex (z,v + 1)]⟧ (σ0) = 1

iff σ0(v) + 1 = k for some k ∈N
and σ0(z) is the unique (modulo ∼x) Gödel number of some

sequence σ0, . . . ,σk of states of length k .

Now assume that ⟦[StateSequencex (z,v + 1)]⟧ (σ0) = 1 and let σ0, . . . ,σk be
the corresponding sequence of states. Then, by Corollary 3.17, we have

⟦ Sw : [Elem(z,v,w)] ·Applyx [[¬ϕ] · f ,w]⟧ (σ0) = ⟦[[¬ϕ] · f]⟧ (σk)

since the Sw quantifier selects the Gödel number of σk . Moreover, if i =
σ0(z′) ∈ {0, . . . , k − 1}, then�

Sw1,w2 :
[
Elem(z,z′ ,w1)∧ Elem(z,z′ + 1,w2)

]

·Applyx [Substx [h,w2, y0, . . . , yn−1] ,w1]⟧(σ0)

114 3 Relatively Complete Verification

= ⟦Applyx [Substx [h,num2, y0, . . . , yn−1] ,num1]⟧ (σ0)
(where num1 is Gödel number of σi and num2 is Gödel number of σi+1)

= ⟦Substx [h,num2, y0, . . . , yn−1]⟧ (σi) (Corollary 3.17)

= ⟦h⟧ (σi[y0 7→ σi+1(x1), . . . , yn−1 7→ σi+1(xn−1)]) (Lemma 3.16)

= wp⟦if (ϕ)
{
C′

}
else {skip }⟧ ([x0 = y0 ∧ . . .∧ xn−1 = yn−1])

(σi[y0 7→ σi+1(x1), . . . , yn−1 7→ σi+1(xn−1)]) (I.H.)

= wp⟦if (ϕ)
{
C′

}
else {skip }⟧ ([σi+1]x) (σi) . (Lemma 3.18)

Finally, since for each k ∈N and all sequences σ0, . . . ,σk of states in Statesx,
there is exactly one Gödel number num such that

⟦[StateSequencex (num,k + 1)]⟧ (σ0) = 1 ,

we get by Theorem 3.13 on page 102 (soundness of Sum and Product) that

⟦g⟧ = λσ. sup
k∈N

∑

σ0,...,σk∈Statesx

[σ0]x (σ) · ⟦[¬ϕ] · f ⟧ (σk)

·
k−1∏

i=0

wp⟦if (ϕ)
{
C′

}
else {skip }⟧ ([σi+1]x) (σi) .

and hence

⟦g⟧ = wp⟦C⟧ (⟦f ⟧)

by Theorem 3.15. ■

3.5 Discussion

In what follows, we discuss several consequences of Theorem 3.19.

3.5.1 Relative Completeness of Probabilistic Program Verification

An immediate consequence of Theorem 3.19 is that for all pGCL programs C
and all syntactic expectations f ,g ∈ Exp, verifying the bounds

⟦g⟧ ⊑ wp⟦C⟧ (⟦f ⟧) or wp⟦C⟧ (⟦f ⟧) ⊑ ⟦g⟧

3

3.5 Discussion 115

reduces to checking a single inequality between two syntactic expectations in
Exp, namely the given g and the effectively constructible syntactic expectation
for wp⟦C⟧ (⟦f ⟧). In that sense, the wp calculus together with Exp form a rela-
tively complete system in the sense of Cook [Coo78] for probabilistic program
verification: Given an oracle for discharging inequalities between syntactic
expectations, every correct inequality of the above form can be derived.

It is, however, important to note that Theorem 3.19 does not imply decidability
of the above bounds. To see this, we first observe that quantitative entailments
between syntactic expectations are undecidable.

Theorem 3.20 (Undecidability of Quantitative Entailments in Exp).
Quantitative entailments in Exp are undecidable, i.e.,

Given h1,h2 ∈ Exp, does ⟦h1⟧ ⊑ ⟦h2⟧ hold?

is undecidable.

Proof. Assume the contrary. Now consider the decision problem UAST:

Given fully probabilistic C ∈ pGCL,
does C terminate almost-surely on each initial state?

It follows that UAST is decidable because we have

C terminates almost-surely on each initial state

iff ⟦1⟧ ⊑ wp⟦C⟧ (⟦1⟧)

iff ⟦1⟧ ⊑ ⟦h⟧ ,

where h ∈ Exp is the effectively constructible syntactic expectation with

⟦h⟧ = wp⟦C⟧ (⟦1⟧) .

This contradicts the undecidability of UAST [KKM19; KK15]. ■

Hence, we immediately get the following undecidability result:

Corollary 3.21 (Undecidability of Bounds on Expected Outcomes).
Both of the decision problems

Given C ∈ pGCL and f ,g ∈ Exp, does ⟦g⟧ ⊑ wp⟦C⟧ (⟦f ⟧) hold?

and

Given C ∈ pGCL and f ,g ∈ Exp, does wp⟦C⟧ (⟦f ⟧) ⊑ ⟦g⟧ hold?

116 3 Relatively Complete Verification

are undecidable.

Proof. Assume for a contradiction that the first problem is decidable. Then
quantitative entailments in Exp are decidable because for h1,h2 ∈ Exp,

⟦h1⟧ ⊑ ⟦h2⟧

iff ⟦h1⟧ ⊑ wp⟦skip⟧ (⟦h2⟧) , (Table 2.1)

which contradicts Theorem 3.20. The reasoning for the second problem is
completely analogous. ■

Relative Completeness of Invariant-Based Reasoning for Loops. Recall from
Section 2.4.4 that upper bounds on weakest preexpectations of loops can be
verified in an invariant-based manner, i.e, for C = while (ϕ) {C } and X,I,∈ E,

I is wp-superinvariant of C w.r.t. X
︸ ︷︷ ︸

Φ
wp
C X (I) ⊑ I (cf. Definition 2.21 on page 63)

implies wp⟦C⟧ (X) ⊑ I .

From an extensional perspective, it is rather obvious that invariant-based rea-
soning is complete in the sense that for every Y ∈ E with

wp⟦C⟧ (X) ⊑ Y ,

there is a wp-superinvariant witnessing this fact, namely I = wp⟦C⟧ (X), i.e.,

exists wp-superinvariant I ∈ E of C w.r.t. X : wp⟦C⟧ (X) ⊑ I ⊑ Y .

By Theorem 3.19, this completeness result carries over to the intensional ap-
proach of probabilistic program verification. For every f ,g ∈ Exp with

wp⟦C⟧ (⟦f ⟧) ⊑ ⟦g⟧ ,
there is a wp-superinvariant of C w.r.t. ⟦f ⟧ expressible in Exp witnessing this
fact, namely the effectively constructible I ∈ Exp with ⟦I⟧ = ⟦wp⟦C⟧ (⟦f ⟧)⟧.

3.5.2 Termination Probabilities

For each pGCL program C, the weakest preexpectation

wp⟦C⟧ (⟦1⟧)

3

3.5 Discussion 117

maps each initial state σ to the probability that C terminates on σ . Hence, for
every pGCL program C, there is an effectively constructible syntactic expectation
evaluating to C’s termination probability for each initial state σ .

Our syntax is thus capable of expressing functions from states to numbers
that carry a high degree of internal complexity [KK15; KKM19]. More concretely,
given C ∈ pGCL, σ ∈ States, and p ∈ [0,1]∩Q, deciding whether C terminates
at least with probability p on initial state σ is Σ0

1-complete in the arithmetical
hierarchy. Deciding whether C terminates at most with probability p on initial
σ is even Π0

2–complete, thus strictly harder than, e.g., the universal termination
problem for non-probabilistic programs.

3.5.3 Reachability Probabilities

For a probabilistic program C and a predicate expressed as a formula P ∈ A
Q≥0

,

wp⟦C⟧ (⟦[P]⟧)

maps each initial state σ to the probability that C terminates in some final
state τ |= P . Since [P] is expressible in Exp, we have that wp⟦C⟧ (⟦[P]⟧) is
also expressible in Exp by Theorem 3.19. A further consequence is that we
embed and generalize Dijkstra’s weakest preconditions [Dij75; Dij76] since for
non-probabilistic9 C, the weakest precondition of C w.r.t. postcondition P is

{σ ∈ States | wp⟦C⟧ (⟦[P]⟧) (σ) = 1} .

3.5.4 Distribution of Final States

Let C be a pGCL program in which at most the variables x1, . . . , xk occur and
recall that ⟦C⟧σ is the subdistribution of final states obtained from executing C
on initial state σ (cf. Definition 2.18 on page 50). Then, by the Kozen duality
(Corollary 2.16.3 on page 72), the probability ⟦C⟧σ (τ) of C terminating in final
state τ on initial state σ , where τ(xi) = σ (x′i), is given by

⟦C⟧σ (τ) = wp⟦C⟧
([
x1 = x′1 ∧ · · · ∧ xk = x′k

])
(σ) ,

i.e., σ (x1), . . . , σ (xk) are the initial values of x1, . . . , xk and σ (x′1), . . . , σ (x′k) are the
final values. Hence, the function

λ(σ,τ).⟦C⟧σ (τ) ,

9i.e., C does not contain a probabilistic choice

118 3 Relatively Complete Verification

mapping each pair (σ,τ) of states (w.r.t. x1, . . . , xk) to the probability ⟦C⟧σ (τ)
that C terminates in τ when executed on σ is expressible in Exp.

3.5.5 Ranking Functions and Supermartingales

There is a plethora of methods for proving termination of probabilistic programs
based on ranking supermartingales [CS13; FH15; CFNH16; CNZ17; HFC18;
FC19; HFCG19; AGR21; TOUH21; TOUH18]. Ranking supermartingales are
similar to ranking functions, but one requires that the value decreases in expec-
tation. Weakest preexpectations are a natural formalism to reason about this.

For algorithmic solutions, ranking supermartingales are often assumed to
be, for instance, linear [CFNH18] or polynomial [CFG16; SO19; NCH18]. This
also often applies to the allowed shape of templates for loop invariants in works
on the automated synthesis of probabilistic loop invariants (cf. [KMMM10;
FZJZ+17; BEFH16; CS13; BTPH+22]). Functions linear or polynomial in the
program variables are subsumed by our syntax.

3.6 Future and Related Work

Future Work. We identify several directions for future work. First, we re-
stricted to fully probabilistic programs not containing nondeterministic choices.
We conjecture that Exp is also expressive for demonic and angelic weakest
preexpectations, i.e., that for T ∈ {dwp,awp}, we have

for all possibly nondeterministic C ∈ pGCL and f ∈ Exp :

exists g ∈ Exp : ⟦g⟧ = T ⟦C⟧ (⟦f ⟧) .

The proof presented here does not straightforwardly generalize to nondetermin-
istic programs since Theorem 3.15 on page 110 does generally not hold in the
presence of nondeterminism. Moreover, we also conjecture that Exp is expres-
sive for the ert-calculus [KKMO16; KKMO18] — a weakest preexpectation-style
calculus for reasoning about expected runtimes.

A related direction for future work is to develop an expressive language for
quantitative separation logic (QSL) [5] — a conservative extension of Reynold’s
separation logic [Rey02] for reasoning about probabilistic pointer programs.
QSL requires reasoning about both nondeterminism and dynamic memory.
We might benefit from existing works on expressive assertion languages for
Reynold’s separation logic (cf. paragraph on related work below).

3

3.6 Future and Related Work 119

Related Work. Relative completeness of Hoare logic was shown by Cook
[Coo78]. Cook has proven expressiveness of first-order arithmetic for strongest
postconditions. Clarke [Cla76] and Olderog [Old80] have proven that expres-
siveness first-order arithmetic for strongest postconditions is equivalent to
expressiveness of first-order arithmetic for Dijkstra’s weakest preconditions.
Many techniques for proving expressiveness of Exp presented here are inspired
by the direct expressiveness proofs for weakest preconditions given in [Win93]
and [LSS84]. We recommend the works by Apt [AO19; Apt81] for excellent
surveys on Hoare logic and related aspects of the logic’s completeness.

For separation logic [Rey02] — a prominent logic for compositional reasoning
about pointer programs — expressiveness was shown in [TCA09; TCA19], almost
a decade later than the logic was originally developed and started to be used.

Perhaps most directly related to this chapter is the work by [HV02] on a Hoare-
like logic for verifying probabilistic programs. They prove relative completeness
(also in the sense of [Coo78]) of their logic for loop-free probabilistic programs
and restricted postconditions; they leave expressiveness for loops as an open
problem: “It is not clear whether the probabilistic predicates are sufficiently
expressive [. . .] for a given while loop.”

4

121

4 Latticed k-Induction

This chapter is based on our prior publications [10; 11].

In this chapter, we revisit two well-established verification techniques for transi-
tion systems, k-induction and bounded model checking (BMC), in the more general
setting of fixpoint theory over complete lattices (cf. Section 2.1). We present
latticed k-induction, which (i) generalizes classical k-induction for verifying
invariant properties of transition systems, (ii) generalizes Park induction for
bounding fixpoints of monotone functions on complete lattices, and (iii) extends
from naturals k to transfinite ordinals κ, thus yielding κ-induction.

4.1 Preview: Automatic Verification of Loops

The aforementioned fixpoint-theoretic understanding of k-induction and BMC
enables us to apply both techniques to the fully automatic verification of bounds on
expected outcomes of possibly unbounded probabilistic loops. Our implementation
manages to automatically verify specifications of programs taken from the
literature without requiring user-provided verification hints such as invariant
annotations. Let us consider an introductory example.

k-Induction. Recall the program C modeling a variant of the bounded retrans-
mission protocol [HSV93; DJJL01] from Example 2.20 on page 56:

while (sent < N ∧ failed ≤M) {
{

failed := failed + 1; totalFailed := totalFailed + 1

} [0.1] {
failed := 0; sent := sent + 1

}
}

122 4 Latticed k-Induction

We have introduced an additional variable totalFailed to keep track of the total
number of retransmissions until the protocol succeeds (i.e., terminates with
sent = N) or fails (i.e., terminates with failed = M). We now aim to verify the
following specification of C:

If there are at most 4 packets to send, i.e., if N ≤ 4,
then totalFailed increases by at most 1/2 on average.

In terms of weakest preexpectations, we thus aim to verify that

wp⟦C⟧ (totalFailed) ⊑ [N ≤ 4] · (totalFailed + 1/2) + [N > 4] ·∞ . (4.1)

By Theorem 2.12 on page 66, we can try to verify this bound by checking
whether it is a wp-superinvariant of C w.r.t. totalFailed, i.e., whether for

I = [N ≤ 4] · (totalFailed + 1/2) + [N > 4] ·∞

we have

Φ
wp
C totalFailed(I) ⊑ I
︸ ︷︷ ︸

does not hold

which would imply wp⟦C⟧ (totalFailed) ⊑ I
︸ ︷︷ ︸

holds

.

However, even though (4.1) holds, I is not a wp-superinvariant of C w.r.t.
totalFailed, i.e., Park induction does not apply to I : As it is the case for transition
systems (cf. Example 2.12 on page 30), the converse direction of Theorem 2.12
does generally not hold. k-induction for probabilistic programs can mitigate
this problem: We obtain a class of increasingly powerful proof rules — namely
1-induction, 2-induction, 3-induction, and so on — where 1-induction corre-
sponds to Park induction (Theorem 2.12), and where for k ≥ 2, k-induction
is strictly stronger than Park induction. Moreover, k-induction is amenable to
automation: By leveraging satisfiability modulo theory (SMT) techniques, our
tool kipro2 fully automatically verifies that (4.1) holds by means of 5-induction.

Notice that, even though we bound the number of packets to send, we do not
bound the number M of maximal retransmissions. Hence, kipro2 automatically
solves an infinite-state verification problem: We have to reason about infinitely
many initial program states in order to verify the given specification. In terms
of pGCL’s operational MDP O (cf. Definition 2.17 on page 50), the reachable
fragment of configurations we have to reason about is infinite. Hence, finite-
state probabilistic model checkers such as Storm [HJKQ+22; DJKV17] are not
applicable to such verification problems.

4

4.1 Preview: Automatic Verification of Loops 123

Bounded Model Checking. BMC for probabilistic programs complements
k-induction. With BMC, we can automatically refute upper bounds on expected
outcomes of loops. For the program C from above, we might conjecture:

No matter how many packets there are to be sent,
totalFailed increases by at most 1/2 on average.

That is, we drop the assumption that there are at most 4 packets to send. In
terms of weakest preexpectations, this specification reads

wp⟦C⟧ (totalFailed) ⊑ totalFailed + 1/2 . (4.2)

With BMC, our tool kipro2 automatically refutes this property and moreover
provides us with a concrete initial program state σ — corresponding to an initial
configuration of the bounded retransmission protocol — such that

wp⟦C⟧ (totalFailed) (σ) > σ (totalFailed) + 1/2 and σ (N) = 8,σ (M) = 1 .

Hence, if there are 8 packets to send while allowing for at most 1 retransmission
per packet, then totalFailed is expected to increase by more than 1/2.

Notice again that we tackle here an infinite-state refutation problem: Under
all, infinitely many potential initial program states — each corresponding to
an initial configuration of the bounded retransmission protocol — that might
violate (4.2), our tool automatically finds one for which this is indeed the case.

Latticed k-Induction and BMC. k-induction and BMC for probabilistic pro-
grams are, in fact, instances of our more general latticed techniques. Latticed
k-induction and BMC apply to all verification problems that can be phrased as
upper-bounding the least fixpoint of a monotone function over a complete lat-
tice, including, e.g., upper-bounding expected rewards in MDPs (cf. Section 2.2).
Our latticed techniques have moreover been leveraged by Winkler and Katoen
[WK23a] in the context of probabilistic pushdown automata and by Yang et al.
[YFKZ+24] for the synthesis of quantitative loop invariants.

Chapter Outline. This chapter is structured as follows: In Section 4.2, we
recap k-Induction and BMC for transition systems and exemplify how these
techniques are employed in the field of software model checking. In Section 4.3,
we present our theory of latticed k-induction. Section 4.4 treats the relation
between classical k-induction for transition systems and latticed k-induction.
We present latticed bounded model checking in Section 4.2.1. In Section 4.6,

124 4 Latticed k-Induction

we instantiate latticed k-induction and BMC for the verification of probabilistic
programs, demonstrate how the so-obtained theory yields algorithms for the
automatic verification of probabilistic loops, and discuss empirical results of
our implementation. Finally, in Section 4.7, we discuss future and related work.

4.2 Reasoning about Safety of Transition Systems

Reasoning about safety of hardware and software systems [MP95] often boils
down to verifying or refuting so called invariant properties [BK08, Chapter 3] of
possibly infinite-state transition systems (cf. Section 2.1.1):

Given a transition system TS = (S , −→, SI) and a set P ⊆ S of states,
verify or refute that Reach (TS) ⊆ P holds.

Adopting LTL-style terminology [BK08, Chapter 3], we refer to P as the invariant
property and say that P holds for TS, if P covers all reachable states of TS. Prime
examples include, e.g., verifying or refuting whether a given program can crash
due to null pointer dereferences [CDDG+15]. In what follows, we recap two
prominent approaches for reasoning about invariant properties. We start with
bounded model checking for refuting invariant properties in Section 4.2.1. We
then consider k-induction for verifying them in Section 4.2.2.

4.2.1 Bounded Model Checking

Let TS = (S , −→, SI) be a transition system and let P ⊆ S be an invariant prop-
erty. The essence of bounded model checking (BMC, for short) — a method
introduced by Clarke et al. [CBRZ01] — is to perform a breadth-first search
in the transition system TS. We first check whether P covers all states in
Reach≤0 (TS) — the initial states. If not, the invariant property is refuted. Oth-
erwise, we continue with Reach≤1 (TS) — states reachable in at most 1 step —
and check whether Reach≤1 (TS) ⊆ P , and so on. Whenever we determine that
Reach≤k (TS) ⊆ P for some k ∈N, we thus verified that P covers all states reach-
able within k steps (hence the word “bounded”). If, for some k, we determine
that this is not the case, i.e., if Reach≤k (TS) ⊈ P , we have refuted that P holds for
TS since it follows that there is some reachable state s ∈ Reach (TS) with s < P .
In case P does not hold for TS, the existence of such a k is guaranteed, which
makes BMC particularly suitable for refuting invariant properties.

We adapt the typical formulation of BMC as follows:

4

4.2 Reasoning about Safety of Transition Systems 125

Theorem 4.1 (Classical Bounded Model Checking [CBRZ01]).
Let k ∈N. We have

for all s0, . . . , sk ∈ S :

s0 ∈ SI ∧
k∧

i=1

si−1 −→ si =⇒
k∧

i=0

si ∈ P

iff P covers all states of TS reachable in at most k steps, i.e.,

Reach≤k (TS) ⊆ P .

BMC was originally introduced as a symbolic method based on suitable en-
codings of transition systems as propositional formulae (consider, e.g., [Lan18,
Example 3.2]). By encoding the set S of states, the transition relation −→, and
the set SI of initial states as propositional formulae, checking Reach≤k (TS) ⊆ P
can be encoded equivalently as the validity a propositional formula of the form

s0 ∈ SI ∧
k∧

i=1

si−1 −→ si =⇒
k∧

i=0

si ∈ P ,

which is then offloaded to a Satisfiability solver (SAT solver, for short) — tools
deciding the formula’s validity1. Since we do not treat such encodings in this
thesis, suffice it to say here that these encodings are particularly suited for
modeling hardware circuits and often allow for concise representations of
huge transition systems. We exemplify how such encodings are employed in
the field of software model checking in Section 4.2.3, which is similar to the
aforementioned SAT-based approach for reasoning about hardware circuits.

4.2.2 k-Induction

Whereas BMC is suitable for refuting invariant properties, k-induction — a
method introduced by Sheeran et al. [SSS00] — is a method for verifying them.
As with BMC, k-induction was originally introduced as a symbolic method
based on suitable encodings of transition systems as propositional formulae. Let
TS = (S , −→, SI) be a transition system and let P ⊆ S be an invariant property.
We adapt the typical formulation of k-induction [DHKR11; JD16; GI17]:

1SAT solvers actually decide a formula’s satisfiability but this subsumes validity checking since a
formula is valid iff its negation is unsatisfiable.

126 4 Latticed k-Induction

Theorem 4.2 (Classical k-Induction [SSS00]).
Let k ≥ 1. If for all states s1, . . . , sk+1 ∈ S , we have

s1 ∈ SI ∧
k−1∧

i=1

si −→ si+1 =⇒
k∧

i=1

si ∈ P , (4.3a)

s1 ∈ P ∧


k−1∧

i=1

si −→ si+1 ∧ si+1 ∈ P

∧ sk −→ sk+1 =⇒ sk+1 ∈ P ,

(4.3b)

then P covers all reachable states of TS, i.e.,

Reach (TS) ⊆ P .

Recall from Definition 2.1 on page 12 that we assume the transition relation −→
to be total, which is crucial for the above theorem to be sound. If both of the
above conditions hold for some given k ≥ 1, we say that P is k-inductive.

Condition (4.3a) is the base case asserting that all states reachable within k − 1
transition steps from some initial state are in P ; Condition (4.3b) is the induction
step asserting that if we start in P and stay in P for k − 1 steps, which is the
induction hypothesis, then we also end up in P after taking the k-th step.

Example 4.1.
Consider the transition system TS depicted in Figure 4.1, which already
served us as a counterexample to the converse direction of Park induction
in Example 2.12 on page 30. We employ k-induction to prove that P =
{s1, . . . s4} covers all reachable states of TS. We start with k = 1, which
fails: P is not 1-inductive since s4 and s5 violate the induction step. We
have s4 ∈ P and s4 −→ s5 but s5 < P . Next, we check whether P is 2-
inductive. This is the case: s4 and s5 no longer violate the induction step
since s4 ∈ P ∧ s4 −→ s5 ∧ s5 ∈ P does not hold. Hence, the stronger induction
hypothesis of 2-induction enables us to verify that P holds for TS.

The above example demonstrates that increasing k yields increasingly powerful
proof rules in the sense that P might not be k-inductive but (k+1)-inductive. On
the other hand, if P is k-inductive, it is also k′-inductive for all k′ ≥ k. In practice,
checking k′-inductivity for k′ > k is usually computationally more expensive
than checking k-inductivity since the corresponding conditions require to reason
about ever more steps of the transition relation. For this reason, one typically
starts with small k (e.g., k = 1), and gradually increases k until establishing k-

4

4.2 Reasoning about Safety of Transition Systems 127

s0

s1 s2

s3

s4 s5

s6

P = {s0 , . . . , s4}

Figure 4.1: The transition system considered in Example 4.1 on page 126.

inductivity of P . Since k-induction is incomplete, this procedure might diverge:
There are (both finite-state and infinite-state) transition systems TS and P such
that Reach (TS) ⊆ P but P is not k-inductive for any k. For finite-state transition
systems, k-induction can be extended to be complete by excluding cycles in the
transition system [SSS00], which is not considered here.

4.2.3 Excursus: Infinite-State Software Model Checking

One of the key aspects of k-induction is that — even for infinite-state transition
systems — it suffices to reason about finitely many steps of the transition relation
in order to verify a given invariant property. This makes k-induction suitable
for the automatic verification of software [BK11; BDW15; DHKR11]. There,
one of the most challenging tasks is to reason about loops. With k-induction,
however, it may suffice to reason about a finite number of loop iterations to
verify properties about an unbounded number of loop iterations.

Let us exemplify this by means of a simple example. Analogously to how
probabilistic programs can be understood as finite representations of possibly
infinite-state MDPs (cf. Section 2.3.2), non-probabilistic programs can be under-
stood as finite representations of infinite-state transition systems. Consider the

128 4 Latticed k-Induction

loop C over the N-valued variables x and y given by

while (x , 0) {y := y + 1 }
and fix the initial program state with x = 0, y = 0. We can model the execution
behavior of C as the transition system

TS =
(
N×N, −→, {(0,0)}

)
,

where for every i, j ∈N, we have

(i, j) −→ (i′ , j ′) iff


i′ = i ∧ j ′ = j + 1 if i , 0

i′ = i ∧ j = j ′ if ¬(i , 0) .

A state (i, j) of TS represents the program state σ with σ (x) = i and σ (y) = j at
the beginning of a guarded loop iteration. Naturally, TS is infinite-state since
there are infinitely many variable valuations. The transition relation −→models
the state changes resulting from executing one guarded iteration of C. Now
suppose we want to verify that y < 1 holds at the beginning of each guarded loop
iteration when executing C on the given initial state, i.e., the invariant property

P = {(i, j) ∈N×N | j < 1}
holds for TS.

How can we employ k-induction to automatically check whether this property
holds? The idea is to encode the two conditions from Theorem 4.2 on page
126 — the base case and the induction step — equivalently as the validity of
certain logical formulae over the program variables. These logical formulae
are then offloaded to off-the-shelf tools called Satisfiability Modulo Theory (SMT,
for short) solvers, which are able to decide2 whether these formulae are valid.
Prime examples of SMT solvers include Z3 [MB08], CVC5 [BBBK+22], and
MathSat5 [CGSS13]. The idea is to start with k = 1. If the SMT solver reports
that the conditions for k = 1 hold, we are done by Theorem 4.2. If not, we
proceed with k = 2,3, . . . until we establish k-inductivity of P , or diverge.

We model the set SI of initial states, the transition relation −→, and the set P
of states, respectively, by the following Linear Integer Arithmetic (LIA) formulae:

Finit(x,y) = x = 0∧ y = 0

2if all arithmetic involved is linear, which is the case here. In the presence of non-linear integer
arithmetic, validity checking is undecidable. SMT solvers may still be able to check their validity
by applying (incomplete) heuristics (see, e.g., [KCÁ16; BLNR+09]).

4

4.2 Reasoning about Safety of Transition Systems 129

Ftrans(x,y,x
′ , y′) =

(
(x , 0)∧ (x′ = x∧ y′ = y + 1)

)

︸ ︷︷ ︸
loop guard satisfied: y is incremented

∨
(
¬(x , 0)∧ (x′ = x∧ y′ = y)

)

︸ ︷︷ ︸
loop guard not satisfied: no state change

Fprop(x,y) = y < 1

Here x′ and y′ are copies of x and y often called next-state-variables: The formula
Ftrans encodes the transition relation −→ in the sense that for all i, j, i′ , j ′ ∈N,

(i, j) −→ (i′ , j ′) iff Ftrans(i, j, i
′ , j ′) holds .

The above formulae can be generated automatically via strongest postcondi-
tions (see, e.g., [BDW18]). Now, P is 1-inductive, i.e., the two conditions from
Theorem 4.2 hold, iff the following formula is valid:

(
Finit(x1, y1) =⇒ Fprop(x1, y1)

)

︸ ︷︷ ︸
base case

∧
(
Fprop(x1, y1)∧ Ftrans(x1, y1,x2, y2) =⇒ Fprop(x2, y2)

)

︸ ︷︷ ︸
induction step

This can be checked automatically by, e.g., the SMT solver Z3. It turns out
that P is not 1-inductive since Z3 reports that the induction step is violated for
x1 = 1∧ y1 = 0 and x2 = 1∧ y2 = 1. Indeed, we have (1,0) ∈ P and (1,0) −→ (1,1)
but (1,1) < P . We thus proceed by checking whether P is 2-inductive, which is
the case iff the following formula is valid:

(
Finit(x1, y1)∧ Ftrans(x1, y1,x2, y2) =⇒ Fprop(x1, y1)∧ Fprop(x2, y2)

)

︸ ︷︷ ︸
base case

∧
(
Fprop(x1, y1)∧ Ftrans(x1, y1,x2, y2)∧ Fprop(x2, y2)∧ Ftrans(x2, y2,x3, y3)

=⇒ Fprop(x3, y3)
)

︸ ︷︷ ︸
induction step

Z3 reports that this is the case. Hence, P covers all states reachable in the infinite-
state transition system TS by Theorem 4.2. The crucial point here is that k-

130 4 Latticed k-Induction

induction only requires us to reason about a finite number loop iterations, which
can be automated by offloading the above LIA formulae to SMT solvers. Our
fixpoint-theoretic understanding of k-induction presented in the next section
enables a similar approach for the automatic verification of probabilistic loops.

4.3 Latticed k-Induction: Theory and Algorithm

In this section, we generalize the well-established k-induction verification tech-
nique to latticed k-induction (for short: κ-induction; reads: “kappa induction”) —
a generalization of Park induction (cf. Lemma 2.4 on page 28). We start with
recapping this principle. Fix some complete lattice (D, ⊑), some monotone
function Φ : D→ D, and some u ∈ D for the rest of this section. Our aim is to
prove that lfp Φ ⊑ u. To this end, we attempt Park induction, i.e.,

Φ(u) ⊑ u implies lfp Φ ⊑ u ,

which, intuitively, says: if pushing our candidate upper bound u through Φ
does not take us up in the partial order ⊑, we have verified that u is indeed an
upper bound on lfp Φ . If Φ(u) ⊑ u, then we say that u is inductive.

We have seen in Example 2.12 on page 30 that Park induction, unfortunately,
does not necessarily work in the converse direction: If we are unlucky, u is an
upper bound on lfp Φ , but nevertheless not inductive, i.e., Φ(u) ̸⊑ u. But how
can we verify that u is indeed an upper bound in such a non-inductive scenario?
We search below u for a different, but inductive, upper bound on lfp Φ , that is, we

search for an e ∈D such that lfp Φ ⊑ Φ(e) ⊑ e ⊑ u .

In order to perform a guided search for such an e, we introduce the κ-induction
operator3 — a modified version of Φ that is parameterized by our candidate u:

Definition 4.1 (κ-Induction Operator).
We call the function Ψu : D→D defined as

Ψu(d) = Φ(d)⊓u
the κ-induction operator (w.r.t. u and Φ).

What does Ψu do? As illustrated in Figure 4.2, if Φ(u) ̸⊑ u (i.e. u is not inductive)
then “at least some part of Φ(u) is greater than u”. If the whole of Φ(u) is greater
than u, then u < Φ(u); if only some part of Φ(u) is greater and some is smaller

3Notice that we use the Greek letter κ to emphasize that κ denotes possibly transfinite ordinals.

4

4.3 Latticed k-Induction: Theory and Algorithm 131

Latticed BMC

κ-induction

⊥

Φ1(⊥)
Φ2(⊥)

Φm(⊥) lfp Φ

fp’sΦ

gfpΦ

Ψ
⌊κ⌋
u (u)

Ψ
⌊2⌋
u (u)

Ψ
⌊1⌋
u (u)

u

Φ(Ψ ⌊κ⌋u (u))

Φ(Ψ ⌊κ−1⌋u (u))

Φ(Ψ ⌊1⌋u (u))

Φ(u)

Figure 4.2: κ-induction and latticed BMC in case that lfp Φ ⊑ u. An arrow
from d to e indicates d ⊑ e. The solid blue arrow from Φ(Ψ ⌊κ⌋u (u)) to
u is the premise of κ-induction, i.e., the LHS of Lemma 4.4, which
implies the dash-dotted blue arrow from Φ(Ψ ⌊κ⌋u (u)) to Ψ

⌊κ⌋
u (u),

i.e., the RHS of Lemma 4.4. The dashed blue arrow from lfp u to
Φ(Ψ ⌊κ⌋u (u)) is a consequence of the dash-dotted arrow (by Park induc-
tion, Lemma 2.4 on page 28) and ultimately proves that lfp Φ ⊑ u.

132 4 Latticed k-Induction

than u, then u and Φ(u) are incomparable (recall that ⊑ is generally not total).
The κ-induction operator Ψu now rectifies Φ(u) being (partly) greater than u
by pulling Φ(u) down via the meet with u (i.e., via . . .⊓u), so that the result —
Φ(u)⊓u — is in no part greater than u. Applying Ψu to u hence always yields
something below or equal to u.

Let n be an ordinal. Towards formalizing κ-induction, we denote by Ψ
⌊n⌋
u (d)

the lower n-fold iteration of Ψu on d ∈D defined by transfinite recursion as4

Ψ
⌊n⌋
u (d) =



d if n = 0 ,

Ψu
(
Ψ
⌊m⌋
u (d)

)
if n = m+ 1 is a successor ordinal ,� {

Ψ
⌊m⌋
u (d) | m < n

}
if n is a limit ordinal .

If lfp Φ ⊑ u, then monotonicity of Ψu implies that iterating Ψu on u descends
from u downwards in the direction of lfp Φ (and never below):

Lemma 4.3 (Properties of the κ-Induction Operator).
We have:

1. Ψu is monotone, i.e.,

for all e1, e2 ∈D : e1 ⊑ e2 implies Ψu(e1) ⊑ Ψu(e2) .

2. Iterations of Ψu starting from u are descending, i.e.,

for all ordinals n,m : n <m implies Ψ
⌊m⌋
u (u) ⊑ Ψ

⌊n⌋
u (u) .

3. Ψu is dominated by Φ , i.e.,

for all e ∈D : Ψu(e) ⊑ Φ (e) .

4. If lfp Φ ⊑ u, then for any ordinal m,

lfp Φ ⊑ Ψ
⌊m⌋
u (u) ⊑ . . . ⊑ Ψ

⌊2⌋
u (u) ⊑ Ψu(u) ⊑ u .

Proof. For Lemma 4.3.1, we have

Ψu(e1)

= Φ(e1)⊓u (Definition 4.1)

4Recall from Section 2.1.4 that we fix an ambient ordinal k, which is the smallest ordinal such that
|k| > |D |, and tacitly assume n < k for all ordinals n considered throughout.

4

4.3 Latticed k-Induction: Theory and Algorithm 133

⊑ Φ(e2)⊓u (monotonicity of Φ and ⊓)

= Ψu(e2) . (Definition 4.1)

For Lemma 4.3.2, we proceed by transfinite induction on m. The case m = 0
is trivial. For the remaining cases, we reason as follows:

The case m = l+ 1. Let n <m and notice that the I.H. and reflexivity of ⊑ (for
l = n) yield Ψ

⌊l⌋
u (u) ⊑ Ψ

⌊n⌋
u (u). This gives us

Ψ
⌊m⌋
u (u)

= Ψu(Ψ ⌊l⌋u (u))

⊑ Ψu(Ψ ⌊n⌋u (u)) (Lemma 4.3.1 and I.H.)

= Ψ
⌊n+1⌋
u (u) .

It remains to show that Ψ ⌊m⌋u (u) ⊑ Ψ
⌊0⌋
u (u). We have

Ψ
⌊m⌋
u (u)

= Ψu(Ψ ⌊l⌋u (u))

= Φ(Ψ ⌊l⌋u (u))⊓u (Definition 4.1)

⊑ u (definition of infima)

= Ψ
⌊0⌋
u (u) .

The case m limit ordinal. We have

Ψ
⌊m⌋
u (u) =

� {
Ψ
⌊n⌋
u (d) | n <m

}

which immediately implies the claim by definition of infima.

For Lemma 4.3.4, we have

Ψu(e)

= Φ(e)⊓u (Definition 4.1)

⊑ Φ(e) . (definition of infima)

For Lemma 4.3.3, it suffices to prove lfp Φ ⊑ Ψ
⌊m⌋
u (u) since the remaining

134 4 Latticed k-Induction

inequalities follow from Lemma 4.3.2. We proceed by transfinite induction
on m. The base case m = 0 holds by assumption.

The case m = l+ 1. We have

lfp Φ

⊑ lfp Φ ⊓u (assumption and reflexivity of ⊑, definition of infima)

= Φ(lfp Φ)⊓u (fixpoint property)

⊑ Φ(Ψ ⌊l⌋u (u))⊓u (monotonicity of Φ and ⊓, I.H.)

= Ψ
⌊l+1⌋
u (u) (Definition 4.1)

= Ψ
⌊m⌋
u (u) .

The case m limit ordinal. We have

lfp Φ

=
�
{lfp Φ}

⊑
� {

Ψ
⌊n⌋
u (u) | n <m

}
(lfp Φ ⊑ Ψ

⌊n⌋
u (u) for all n <m by I.H.)

= Ψ
⌊m⌋
u .

■

The descending chain u ⊒ Ψu(u) ⊒ Ψ
⌊2⌋
u (u) ⊒ . . . constitutes our guided search

for an inductive upper bound on lfp Φ . For each ordinal κ (hence the short
name: κ-induction), Ψ ⌊κ⌋u (u) is a potential candidate for Park induction:

Φ
(
Ψ
⌊κ⌋
u (u)

) potentially⊑ Ψ
⌊κ⌋
u (u) . (‡)

For efficiency reasons, e.g., when offloading the above inequality check to an
SMT solver, we will not check the inequality (‡) directly but a property equiva-
lent to (‡), namely whether Φ

(
Ψ
⌊κ⌋
u (u)

)
is below u instead of Ψ ⌊κ⌋u (u):

Lemma 4.4 (Park Induction from κ-Induction).
Let κ be an ordinal. We have

Φ
(
Ψ
⌊κ⌋
u (u)

)
⊑ u iff Φ

(
Ψ
⌊κ⌋
u (u)

)
⊑ Ψ

⌊κ⌋
u (u) .

4

4.3 Latticed k-Induction: Theory and Algorithm 135

Proof. The if-direction is trivial, as Ψ ⌊κ⌋u (u) ⊑ u (Lemma 4.3.4). For only-if:

Ψ
⌊κ⌋
u (u) ⊒ Ψ

⌊κ+1⌋
u (u) (Lemma 4.3.2)

= Ψu
(
Ψ
⌊κ⌋
u (u)

)
(definition of Ψ ⌊κ+1⌋

u (u))

= Φ
(
Ψ
⌊κ⌋
u (u)

)
⊓u (definition of Ψu)

⊒ Φ
(
Ψ
⌊κ⌋
u (u)

)
. (premise)

■

If Φ
(
Ψ
⌊κ⌋
u (u)

)
⊑ u, then Lemma 4.4 tells us that Ψ ⌊κ⌋u (u) is inductive and thereby

an upper bound on lfp Φ . Since iterating Ψu on u yields a descending chain by
Lemma 4.3.2, Ψ ⌊κ⌋u (u) is at most u and therefore u is also an upper bound on
lfp Φ . Formulated as a proof rule, we obtain the following induction principle:

Theorem 4.5 (κ-Induction).
Let κ be an ordinal. Then

Φ
(
Ψ
⌊κ⌋
u (u)

)
⊑ u implies lfp Φ ⊑ u .

Proof. We have

Φ
(
Ψ
⌊κ⌋
u (u)

)
⊑ u

implies Φ
(
Ψ
⌊κ⌋
u (u)

)
⊑ Ψ

⌊κ⌋
u (u) (Lemma 4.4)

implies lfp Φ ⊑ Ψ
⌊κ⌋
u (u) (Lemma 2.4)

implies lfp Φ ⊑ u . (Lemma 4.3.2 and transitivity of ⊑)

■

An illustration of κ-induction is shown in (the right frame of) Figure 4.2.
If Φ(Ψ ⌊κ⌋u (u)) ⊑ u for some ordinal κ, then we call u (κ+1)-inductive (for Φ). In
particular, κ-induction generalizes Park induction, in the sense that 1-induction
is Park induction and, (κ>1)-induction is a more general principle of induction.

Algorithm 1 on page 136 depicts a (semi-)algorithm that performs latticed
k-induction (for k < ω) to prove lfp Φ ⊑ u by iteratively increasing k. We assume
here that both Φ and Ψu are computable and that ⊑ is decidable. In practice,
this is often not the case, which, on top of the incompleteness of κ-induction
considered next, yields an additional source of incompleteness of Algorithm 1.

Algorithm 1 is generally a proper semi-algorithm: even if lfp Φ ⊑ u, then

136 4 Latticed k-Induction

Algorithm 1: Latticed k-induction
input: Φ : D→D and u ∈D.
output : “verify” if u is

k-inductive for some k,
diverge otherwise.

1 e← u
2 while Φ(e) ̸⊑ u do
3 e← Ψu(e)

// recall: Ψu(e) = Φ(e)⊓u
4 return verify

Algorithm 2: Latticed BMC
input: Φ : D→D and u ∈D.
output : “refute” if there exists

k ∈N with Φk(⊥) ̸⊑ u,
diverge otherwise.

1 e←⊥
2 repeat
3 e← Φ(e)
4 until e ̸⊑ u
5 return refute

Figure 4.3: Algorithmic perspective on latticed k-Induction and BMC.

u is still not guaranteed to be k-inductive for some k < ω. And even if an
algorithm could somehow perform transfinitely many iterations, then u is still
not guaranteed to be κ-inductive for some ordinal κ:

Example 4.2 (Incompleteness of κ-Induction).
Consider the complete lattice ({0,1,2}, ⊑) where 0 ⊑ 1 ⊑ 2, and the mono-
tone operator Φ with Φ(0) = 0 = lfp Φ , and Φ(1) = 2, and Φ(2) = 2 = gfp Φ .
Then lfp Φ ⊑ 1, but for any ordinal κ, Ψ ⌊κ⌋1 (1) = 1 and Φ(1) = 2 ̸⊑ 1. Hence
1 is not κ-inductive for every ordinal κ.

We now provide a sufficient criterion which ensures that every upper bound
on lfp Φ is κ-inductive for some ordinal κ. This is the case if Φ has exactly one
fixpoint, i.e., if the least and the greatest fixpoint of Φ coincide. Dually to least
fixpoints, a fixpoint d ∈D of Φ is called the greatest fixpoint of Φ , if

for all fixpoints d′ of Φ : d′ ⊑ d .

For monotone Φ over a complete lattice, the greatest fixpoint is guaranteed to
exist uniquely [Tar55] and we denote it by gfp Φ .

4

4.4 Latticed versus Classical k-Induction 137

Theorem 4.6 (Completeness of κ-Induction for Unique Fixpoint).
If lfp Φ = gfp Φ , then, for every u ∈D,

lfp Φ ⊑ u implies u is κ-inductive for some ordinal κ .

Proof. By Cousot & Cousot’s fixpoint theorem for greatest fixpoints [CC79],
we have Φ⌊m⌋(⊤) = gfp Φ for some ordinal m. We then show that u is (m+1)-
inductive, see [10, Appendix A.3]. ■

The proof of the above theorem immediately yields that, if the unique fixpoint
can be reached through finite fixpoint iterations starting at ⊤, then u is k-
inductive for some natural number k.

Corollary 4.7.
Let n ∈N. If Φ⌊n⌋(⊤) = lfp Φ , then, for every u ∈D,

lfp Φ ⊑ u implies u is (n+ 1)-inductive .

4.4 Latticed versus Classical k-Induction

We show that our fixpoint-theoretic κ-induction from Section 4.3 generalizes
classical k-induction for transition systems as formalized in Theorem 4.2 on
page 126. For that, let TS = (S , −→, SI) be a transition system and let P ⊆ S
be an invariant property. We instantiate κ-induction as follows. The complete
lattice is induced by TS and given by (cf. Section 2.1.2)

(P (S) , ⊆) .

The monotone function is the reachability operator of TS given by

ΦTS : P (S)→P (S) , ΦTS(X) = SI ∪ {s | exists t ∈ X : t −→ s} .
Recall from Remark 2.1 on page 23 that we have

lfp ΦTS = Reach (TS) and hence Reach (TS) ⊆ P iff lfp ΦTS ⊆ P .
Using the κ-induction operator ΨP constructed from ΦTS and P according to
Definition 4.1, the principle of κ-induction (Theorem 4.5) then tells us that

for all k ∈N : ΦTS

(
Ψ
⌊k⌋
P (P)

)
⊆ P implies Reach (TS) ⊆ P .

How is classical k-induction for transition systems (Theorem 4.2 on page
126) reflected in latticed k-induction? We show that, for the given instance, the

138 4 Latticed k-Induction

premise of κ-induction — ΦTS

(
Ψ
⌊k⌋
P (P)

)
⊆ P — is equivalent to the premises of

classical k-induction — Conditions (4.3a) and (4.3b) from Theorem 4.2. Towards
this end, define the function

Succs : P (S)→P (S) , Succs(X) = {s | exists t ∈ X : t −→ s} ,

which returns the set of direct successors of states in X. Moreover, define

ΛP : P (S)→P (S) , ΛP (X) = Succs(X)∩ P .

Now let k ≥ 1. For the base case of classical k-induction, we have

for all s1, . . . , sk ∈ S : s1 ∈ SI ∧
k−1∧

i=1

si −→ si+1 =⇒
k∧

i=1

si ∈ P

iff for all i ∈ {0, . . . , k − 1} : Succsi(SI) ⊆ P .

Moreover, for the induction step of classical k-induction, we have

for all s1, . . . , sk , sk+1 ∈ S :

s1 ∈ P ∧


k−1∧

i=1

si −→ si+1 ∧ si+1 ∈ P

∧ sk −→ sk+1 =⇒ sk+1 ∈ P

iff Succs
(
Λ
⌊k−1⌋
P (P)

)
⊆ P .

Hence, the premises of classical k-induction are equivalent to

for all i ∈ {0, . . . , k − 1} : Succsi(SI) ⊆ P and Succs
(
Λ
⌊k−1⌋
P (P)

)
⊆ P .

Since the above conjunction is equivalent to ΦTS

(
Ψ
⌊k−1⌋
P (P)

)
⊆ P , we get:

Theorem 4.8 (Equivalence of Latticed and Classical k-Induction).
For every natural number k ≥ 1,

ΦTS

(
Ψ
⌊k−1⌋
P (P)

)
⊆ P

iff P is k-inductive in the sense of Theorem 4.2 .

Proof. See [10, Appendix A.4] for a detailed proof. ■

4

4.5 Latticed Bounded Model Checking 139

s0

s1 s2

s3

s4 s5

s6

P = {s0 , . . . , s4}

ΦTS1(P)
ΨP (P)

Figure 4.4: Applying κ-induction to Example 4.1 on page 126.

Example 4.3.
We reconsider Example 4.1 on page 126 through the lens of κ-induction.
Consider the corresponding transition TS and the invariant property P =
{s0, . . . , s4} shown in Figure 4.4 on page 139. P is not 1-inductive since

ΦTS(P) = (P \ {s4})∪ {s5} ⊈ P .

P is, however, 2-inductive since

ΦTS (ΨP (P)) = {s0, . . . , s3} ⊆ P .

Hence, we have by Theorem 4.5,

Reach (TS) = lfp ΦTS ⊆ P .

4.5 Latticed Bounded Model Checking

We complement κ-induction with a latticed analog of bounded model check-
ing (cf. Section 4.2.1) for refuting lfp Φ ⊑ u. In fixpoint-theoretic terms, bounded

140 4 Latticed k-Induction

model checking amounts to a fixpoint iteration of u on ⊥ while continually
checking whether the iteration exceeds our candidate upper bound u. If so,
then we have indeed refuted lfp Φ ⊑ u:

Theorem 4.9 (Soundness of Latticed BMC [CC79]).
We have

exists ordinal m : Φm(⊥) ̸⊑ u implies lfp Φ ̸⊑ u .

Proof. This is an immediate consequence of Theorem 2.3 on page 27. ■

Furthermore, if we were actually able to perform transfinite iterations of Φ
on ⊥, then latticed bounded model checking is also complete: If u is in fact not
an upper bound on lfp Φ , this will be witnessed at some ordinal:

Theorem 4.10 (Completeness of Latticed BMC [CC79]).
We have

lfp Φ ̸⊑ u implies exists ordinal m : Φm(⊥) ̸⊑ u .

Proof. This is an immediate consequence of Theorem 2.3 on page 27. ■

More practically relevant, if Φ is continuous, then a simple finite fixpoint itera-
tion, see Algorithm 2, is sound and complete for refutation:

Corollary 4.11 (Latticed BMC for Continuous Functions [LNS82]).
If Φ is continuous, then

exists n ∈N : Φn(⊥) ̸⊑ u iff lfp Φ ̸⊑ u .

Proof. This is an immediate consequence of Theorem 2.2 on page 22. ■

4.6 k-Induction and BMC for Probabilistic Programs

We instantiate latticed k-Induction and BMC for reasoning about upper bounds
on expected outcomes of pGCL loops. In Section 4.6.1, we first instantiate our
theory for arbitrary pGCL loops and expectations. Towards automating the so-
obtained techniques, we then consider sufficient conditions on classes of pGCL
loops and expectations for which Algorithms 1 and 2 on page 136 are semi-
decision procedures in Section 4.6.2. Section 4.6.3 introduces concrete instances
of such classes. Finally, in Section 4.6.4, we present our implementation.

4

4.6 k-Induction and BMC for Probabilistic Programs 141

4.6.1 Instantiating Latticed k-Induction and BMC

We now instantiate latticed k-induction and BMC to enable verification of loops
written in pGCL. Fix some T ∈ {dwp,awp} and a loop

C = while (B)
{
C′

}
.

Given a postexpectation X ∈ E and a candidate upper bound Y ∈ E on T ⟦C⟧ (X),
we will apply latticed verification techniques to verify or refute that

T ⟦C⟧ (X) ⊑ Y .

We operate in the complete lattice (E, ⊑) of expectations (cf. Section 2.4.2). The
monotone function is C’s characteristic function (cf. Definition 2.21 on page 63)

ΦTC X : E→ E , ΦTC X(Z) = [B] · T ⟦C′⟧ (Y) + [¬B] ·X .

We remark that ΦTC X is a monotone — and in fact even continuous — function
w.r.t. (E, ⊑). Recall that, in this lattice, the meet is a pointwise minimum, i.e.,

Z ⊓Z ′ = λσ.min{Z(σ),Z ′(σ)} .

By Definition 4.1 on page 130, ΦTC X and Y then induce the κ-induction operator

ΨY : E→ E, ΨY (Z) = ΦTC X(Z)⊓Y .

With this setup, we obtain the following proof rule for reasoning about proba-
bilistic loops as an immediate consequence of Theorem 4.5:

Corollary 4.12 (k-Induction for pGCL).
For every natural number k ∈N,

ΦTC X

(
Ψ
⌊k⌋
Y (Y)

)
⊑ Y implies T ⟦C⟧ (X) ⊑ Y .

If the above premise holds, then we say that Y is (k + 1)-inductive for C w.r.t. T
and X. If clear from the context, we omit T . Notice that Y is 1-inductive iff Y is
a T -superinvariant of C w.r.t. X (cf. Theorem 2.12 on page 66).

Analogously, refuting that Y upper-bounds the expected value of X after
execution of C via bounded model checking is an instance of Corollary 4.11:

142 4 Latticed k-Induction

Corollary 4.13 (Bounded Model Checking for pGCL).
We have

exists n ∈N : ΦTC X
n(0) ̸⊑ Y iff T ⟦C⟧ (X) ̸⊑ Y .

Example 4.4.
Reconsider the geometric loop from Example 2.24 on page 66 given by

C = while (y = 1) { {y := 0 } [1/2] {x := x+ 1 } }
and fix the postexpectation X = x.

1. We have seen that

Y1 = [y = 1] · (x+ 1) + [y , 1] · x
is an upper bound on wp⟦C⟧ (x) since Y1 is a wp-superinvariant of C
w.r.t. postexpectation x and hence also 1-inductive.

2. Let us now consider

Y2 = x+ 1 .

Clearly, Y2 is also an upper bound on wp⟦C⟧ (x) since Y1 ⊑ Y2. Y2 is,
however, not 1-inductive since

Φ
wp
C x (Y2)

= [y = 1] ·wp⟦{y := 0 } [1/2] {x := x+ 1 }⟧ (Y2) + [y , 1] · x
= [y = 1] · (1/2 · (x+ 1) + 1/2 · (x+ 2)) + [y , 1] · x
= [y = 1] · (x+ 1.5) + [y , 1] · x
̸⊑ x+ 1 = Y2 .

Y2 is, however, 2-inductive because

Φ
wp
C x

(
ΨY2

(Y2)
)

= Φ
wp
C x

(
Φ

wp
C x(Y2)⊓Y2

)

= Φ
wp
C x

(
([y = 1] · (x+ 1.5) + [y , 1] · x)⊓ (x+ 1)

)
(see above)

= Φ
wp
C x

(
[y = 1] · (x+ 1) + [y , 1] · x

)

= [y = 1] · (x+ 1) + [y , 1] · x (see Example 2.24 on page 66)

⊑ Y2 .

4

4.6 k-Induction and BMC for Probabilistic Programs 143

3. Some upper bounds on wp⟦C⟧ (x) only become κ-inductive for trans-
finite ordinals κ. For instance,

Y3 = 2 · x+ 1

is not k-inductive for any natural number k, but can be shown to be
ω+ 1-inductive since

Φ
wp
C x

(
Ψ
⌊ω⌋
Y3

(Y3)
)
⊑ Y3 .

4. κ-induction for probabilistic loops is not complete: Consider

Y4 = [y = 1] · ([x = 0] · 1 + [x , 0] ·∞) · [y , 1] · x .
Y4 is not 1-inductive and we have

ΨY4
(Y4) = Y4 and thus for all ordinals κ ≥ 0: Ψ ⌊κ⌋Y4

(Y4) = Y4 .

Hence, Y4 is not κ-inductive for any κ.

5. Finally, we can refute via BMC that

Y5 = x+ 0.99

is an upper bound on wp⟦C⟧ (x) since Φ
wp 11
C x (0) ̸⊑ Y5.

4.6.2 Automatic Reasoning about Loops

Given T ∈ {dwp,awp}, expectations X,Y ∈ E, and a loop

C = while (B)
{
C′

}
,

we now automate our latticed techniques for verifying or refuting whether

T ⟦C⟧ (X) ⊑ Y

holds. More precisely, we semi-decide whether (i) Y is k-inductive for C w.r.t.
X for some k or (ii) T ⟦C⟧ (X) ⊑ Y can be refuted via BMC. For simplicity, we
assume that the loop body C′ is loop-free. We call such loops single loops5.

In principle, it suffices to run Algorithms 1 and 2 on page 136 in parallel.
For these algorithms to be semi-decision procedures, we can, however, neither
admit arbitrary loops C (more precisely: arbitrary arithmetic and Boolean
expressions occurring in assignments and guards) nor arbitrary expectations.
The reason is that we require the checks in the respective termination conditions
of Algorithms 1 and 2 to be decidable. Let us therefore investigate sufficient

5Every probabilistic program can be rewritten as a single while loop with loop-free body [RS09].

144 4 Latticed k-Induction

conditions on classes of single loops and expectations for which this is the case.
To formalize subclasses of expectations, we proceed similarly to Chapter 3 by
considering appropriate formal languages of expectations.

Definition 4.2 (Fragments of pGCL and E Suitable for Automation).
Let AutpGCL ⊆ pGCL be a set of single loops. Moreover, let AutExp be a com-
putable formal language of syntactic expectations equipped with a semantic
function ⟦·⟧ : AutExp→ E. We say that the pair

(AutpGCL,AutExp)

is suitable for automation, if the following conditions hold:

1. AutExp is effectively closed under characteristic functions of loops in
AutpGCL for both dwp and awp, i.e., for T ∈ {dwp,awp},

for all C ∈ AutpGCL and f ,h ∈ AutExp :

exists effectively constructible h′ ∈ AutExp :�
h′

�
= ΦTC ⟦f ⟧ (⟦h⟧) .

2. Quantitative entailments in AutExp are decidable, i.e.,

Given h1,h2 ∈ AutExp, does ⟦h1⟧ ⊑ ⟦h2⟧ hold?

is decidable.

3. AutExp is effectively closed under pointwise minima, i.e.,

for all h1,h2 ∈ AutExp :

exists effectively constructible h′ ∈ AutExp :�
h′

�
= ⟦h1⟧⊓ ⟦h2⟧ .

Restricting to loops in AutpGCL and expectations in AutExp thus yield Algo-
rithms 1 and 2 to be semi-decision procedures and we get:

Theorem 4.14 (Automatic Reasoning about Loops).
If (AutpGCL,AutExp) is suitable for automation, then for T ∈ {dwp,awp}, both
of the following problems are semi-decidable:

1. Given C ∈ AutpGCL, f ,g ∈ AutExp, is there some k ∈N such that ⟦g⟧ is
k-inductive for C w.r.t. T and ⟦f ⟧?

2. Given C ∈ AutpGCL, f ,g ∈ AutExp, does T ⟦C⟧ (⟦f ⟧) ̸⊑ ⟦g⟧ hold?

4

4.6 k-Induction and BMC for Probabilistic Programs 145

Remark 4.1 (On the Language of Expectations from Chapter 3).
The expressive language Exp of syntactic expectations and the pGCL language
presented in Chapter 3 is not suitable for automation in the sense of Defini-
tion 4.2: Quantitative entailments in Exp are undecidable by Theorem 3.20.
We may nonetheless attempt to automate the reasoning with Exp as is done
by the automated deductive verifier Caesar presented in [18]. Using the full
power of Exp yields additional sources of incompleteness of Algorithms 1
and 2: In general, we must rely on incomplete heuristics or user-provided
verification hints for discharging their termination conditions. Since such
heuristics or user-provided hints are outside the scope of this thesis, suffice it
to say here that they often succeed for various verification problems taken
from the literature. See [18] for details.

4.6.3 Linear pGCL and Piecewise Linear Expectations

We now provide a concrete class of pGCL loops and expectations suitable for
automation, i.e., for which Algorithms 1 and 2 are semi-decision procedures.
Inspired by existing approaches for the automatic verification of both non-
probabilistic [CSS03] and probabilistic programs [KMMM10], the key idea is to
restrict to programs and expectations where all arithmetic involved is linear6.
This enables to encode the necessary decision problems — the termination
conditions of Algorithms 1 and 2 — equivalently as satisfiability problems of
formulae over a decidable theory. In our case, these are formulae in quantifier-
free fragment of linear mixed real-integer arithmetic (QF_LIRA). Similarly to
classical software model checking (cf. Section 4.2.3), we can then decide the
termination conditions by offloading these formulae to an SMT solver.

4.6.3.1 Definition

We assume the domain of the program variables to be Vals = N so that the set
of program states is given by

States = {σ : Vars→N | the set {x ∈ Vars | σ (x) > 0} is finite} .
This is a design choice based on the benchmarks considered in Section 4.6.4.
The results presented here can be straightforwardly adapted to Q≥0-valued
variables. Let us now consider the linear fragment of single loops in pGCL.

6In fact, we allow for affine arithmetic expressions but we adopt SMT terminology here.

146 4 Latticed k-Induction

Definition 4.3 (The Linear Fragment of pGCL).
Programs C in the linear fragment of pGCL, denoted by LpGCL, adhere to

C −→ while (ϕ)
{
C′

}
(linear (single) loops)

C′ −→ skip (effectless program)

| x := a (assignment)

| C′ ; C′ (sequential composition)

| {C′ } [p]
{
C′

}
(probabilistic choice)

| {C′ }2 {
C′

}
(nondeterministic choice)

| if (ϕ)
{
C′

}
else

{
C′

}
, (conditional choice)

where

1. a ∈ AExpr
Z

is a linear arithmetic expression over Z adhering to

a −→ z ∈Q≥0 (integers)

| x ∈ Vars (N-valued variables)

| a+ a (addition)

| z · a , (scaling by constants in Z)

2. ϕ ∈ LBExpr
Z

is a linear Boolean expression over Z adhering to

ϕ −→ a < a (strict inequality of arithmetic expressions)

| ϕ ∧ϕ (conjunction)

| ¬ϕ , (negation)

3. and where p ∈ [0,1]∩Q is a rational probability.

The semantics ⟦a⟧ : States→ Z and ⟦ϕ⟧ ∈ P (States) is defined by induction
on the structure of a and ϕ, respectively, which is completely analogous to
Definition 3.7 on page 85. We additionally require that every C ∈ LpGCL is
type-safe7 in the sense that whenever an assignment x := a is executed on some
state σ , then ⟦a⟧ (σ) ∈N. We adapt the usual order of precedence and syntactic
sugar for arithmetic and Boolean operations from Section 3.2.

Next, we consider the formal language of piecewise linear expectations.

7Our implementation presented in Section 4.6.4 ensures this statically.

4

4.6 k-Induction and BMC for Probabilistic Programs 147

Definition 4.4 (Piecewise Linear Expectations adapted from [KMMM10]).
Piecewise linear (syntactic) expectations in the set LExp adhere to the grammar

f −→ [ϑ1] · ẽ1 + . . .+ [ϑn] · ẽn ,

where n ≥ 1 and

1. ẽi ∈ AExpr
Q

is a linear arithmetic expression over Q adhering to

ẽ −→ ∞ | e (infinity or finitely-valued expression)

e −→ q ∈Q (rationals)

| x ∈ Vars (N-valued variables)

| e+ e (addition)

| q · e , (scaling by constants in Q)

2. ϑi ∈ LBExpr
Q

is a linear Boolean expression over Q adhering to

ϑ −→ e < e (strict inequality of arithmetic expressions)

| ϑ ∧ϑ (conjunction)

| ¬ϑ , (negation)

3. and where for all σ ∈ States, we have ⟦f ⟧ (σ) ≥ 0.

The size of f , denoted by |f |, is n — the number of summands in f . The
semantics8 ⟦f ⟧ : States→Q∪{∞},⟦ẽ⟧ : States→Q∪{∞}, and ⟦ϑ⟧ ∈ P (States)
is defined by induction on the structure of f , e, and ϑ, respectively, which is
completely analogous to Section 3.2.4. As usual, we write σ |= ϑ instead of
σ ∈ ⟦ϑ⟧. The last requirement9 ensures that ⟦f ⟧ is a well-defined expectation
of type E. Since this condition is decidable (cf. Lemma A.5 on page 275),
LExp is indeed a computable formal language. Notice that, whereas arithmetic
expressions occurring in pGCL range over Z, arithmetic expressions in LExp
range over Q. This is reasonable since, with expectations, we want to reason
about (rational) probabilities or more general expected outcomes. We will make
heavy use of the following:

8We often omit the semantic brackets if their necessity is clear from the context.
9Analogously to Definition 3.4 on page 81, we could as well restrict to non-negative constants

in Q≥0 and add a rule e −̇ e for monus. We opted for the presented choices to align the results
presented here with the results from Chapter 5.

148 4 Latticed k-Induction

Lemma 4.15 (Decidability of Satisfiability for LBExpr
Q

).
The satisfiability problem for LBExpr

Q

Given ϑ ∈ LBExpr
Q

, is there some σ ∈ States with σ |= ϑ?

is decidable.

Proof. ϑ is a formula in the quantifier-free fragment of linear mixed real-
integer arithmetic (QF_LIRA) with free N-valued variables in Vars. Since
satisfiability of these formulae is decidable [KBT14], the claim follows. ■

The reason why we need mixed arithmetic over both reals and integers is that
variables are N-valued whereas arithmetic expressions possibly contain con-
stants in Q. Hence, intuitively, we require integer arithmetic to reason about
program states and real arithmetic to reason about probabilities or more general
expected outcomes. From now on, we assume a black box — an SMT solver10 —
for deciding a linear Boolean expression’s satisfiability.

Example 4.5.
1. Reconsider the geometric loop C from Example 4.4 given by

C = while (y = 1) { {y := 0 } [1/2] {x := x+ 1 } } .
We have C ∈ LpGCL. Moreover, all the specificationsa from Exam-
ple 4.4 can be expressed in LExp, e.g.,

wp⟦C⟧ (x) ⊑ [y = 1] · (x+ 1) + [y , 1] · x .
2. Including∞ in LExp is convenient for declaring certain initial states

as irrelevant. For instance,

wp⟦C⟧ (x) ⊑ [x = 0] · 1 + [x , 0] ·∞
specifies that the expected final value of x obtained from executing C
on each initial state satisfying x = 0 is at most 1. For all other initial
states, the expected final value of x is irrelevant.

3. We have

[true] · (x − 2) < LExp

since for, e.g., a state σ with σ (x) = 0, the above evaluates to −2.

10Our implementation uses the SMT solver Z3 [MB08]. See Section 4.6.4 for details.

4

4.6 k-Induction and BMC for Probabilistic Programs 149

4. Piecewise linear expectations impose restrictions on the properties
that can be specified. Consider the loop C ∈ LpGCL given by

while (y > 0) {x := x+ z ; y := y − 1 } .

C adds to the initial value of x the product y · z of the initial values of
y and z. Hence, the expected (in fact: certain) final values of x satisfy

wp⟦C⟧ (x) ⊑ λσ.σ (x) + σ (y) · σ (x)
︸ ︷︷ ︸

not expressible in LExp

.

This can not be specified within LExp since non-linear products of
program variables are not expressible. Moreover, it follows that LExp
is not expressive (cf. Definition 3.1).

aWe often write f = ẽ instead of f = [true] · ẽ for the sake of readability.

4.6.3.2 The Guarded Normal Form

Next, we consider an effective normal form for LExp, which is convenient for
both deciding quantitative entailments and constructing pointwise minima.

Definition 4.5 (Guarded Normal Form adapted from [KMMM10]).
A piecewise linear expectation f ∈ LExp

f = [ϑ1] · ẽ1 + . . .+ [ϑn] · ẽn
is in guarded normal form (GNF), if the ϑi partition the set States, i.e., if for
all σ ∈ States, there is exactly one i ∈ {1, . . . ,n} with σ |= ϑi .

The intuition is that f ∈ LExp in GNF can be considered a complete case dis-
tinction: Given σ ∈ States, the value ⟦f ⟧ (σ) is equal to ⟦ẽi⟧ (σ), where i is the
uniquely determined index with σ |= ϑi .

Example 4.6.
1. Consider the piecewise linear expectation

f = [x ≤ 1] · y + [x ≤ 2] · z .
f is not in GNF since x ≤ 1 and x ≤ 2 do not partition States. For, e.g.,
σ ∈ States with σ (x) = 1, we have σ |= x ≤ 1 and σ |= x ≤ 2.

150 4 Latticed k-Induction

Algorithm 3: PrunedGNF(f)
input: f ∈ LExp.
output :g ∈ LExp in GNF with ⟦f ⟧ = ⟦g⟧.

1 return PrunedGNF(f , true,0)

2 Procedure PrunedGNF(f ,ϑ, ẽ)
3 if f = ϵ then
4 return [ϑ] · ẽ

// Let f = [ϑ1] · ẽ1 + . . .+ [ϑn] · ẽn
5 f1, f2← ϵ
6 if ϑ ∧ϑ1 is satisfiable then
7 f1← PrunedGNF([ϑ2] · ẽ2 + . . .+ [ϑn] · ẽn,ϑ ∧ϑ1, ẽ+ ẽ1)

8 if ϑ ∧¬ϑ1 is satisfiable then
9 f2← PrunedGNF([ϑ2] · ẽ2 + . . .+ [ϑn] · ẽn,ϑ ∧¬ϑ1, ẽ)

10 return f1 + f2

Figure 4.5: Computing guarded normal forms with on-the-fly pruning of unsat-
isfiable Boolean expressions, where we use procedure overloading
for a recursive implementation. Here ϵ denotes the empty word.
Moreover, we let ẽ+∞ =∞+ ẽ =∞ and ϵ+ f = f + ϵ = f .

4

4.6 k-Induction and BMC for Probabilistic Programs 151

2. The piecewise linear expectation g given by

g = [x ≤ 1] · (y + z) + [x > 1∧ x ≤ 2] · z+ [x > 2] · 0 ,
on the other hand, is in GNF and moreover equivalent to f .

Lemma 4.16 (Effectively Constructing Guarded Normal Forms).
Let f ∈ LExp. There is an effectively constructible piecewise linear expectation
GNF (f) ∈ LExp which is in GNF and equivalent to f , i.e,

⟦f ⟧ = ⟦GNF (f)⟧ and GNF (f) is in guarded normal form .

Proof. We adapt the construction from [KMMM10]. Let

f = [ϑ1] · ẽ1 + . . .+ [ϑn] · ẽn ∈ LExp .

The construction enumerates the assignments of truth values to the ϑi :

GNF (f)

=
∑

(
(ρ1,ã1),...,(ρn,ãn)∈×ni=1

{
(ϑi ,ẽi),(¬ϑi ,0)

})



n∧

i=1

ρi


 ·


n∑

i=0

ãi


 (4.4)

where we rewrite every expression of the form ã+∞ or∞+ ã by∞ to ensure
that GNF (f) adheres to the grammar from Definition 4.4. It is immediate that
the so-obtained Boolean expressions attached to each summand partition
States. Moreover, ⟦f ⟧ = ⟦GNF (f)⟧ holds since we have for every σ ∈ States,

⟦f ⟧ (σ)

=
∑

{i∈{1,...,n} | σ |=ϑi }
ẽi

=
∑

{i∈{1,...,n} | σ |=ϑi }
ẽi +

∑

{i∈{1,...,n} | σ |=¬ϑi }
0

= ⟦GNF (f)⟧ (σ) . ■

Naively applying the construction from (4.4) yields |GNF (f) | = 2|f |. In practice,
we can often avoid this exponential blow-up by pruning unsatisfiable Boolean

152 4 Latticed k-Induction

expressions resulting from the construction on-the-fly: Let

(ρ1, ã1), . . . , (ρn, ãn) ∈
n×
i=1

{
(ϑi , ẽi), (¬ϑi ,0)

}

and assume we determine for some j ∈ {1, . . . ,n} that the Boolean expression

j∧

i=1

ρj

is unsatisfiable. It follows that all summands in GNF (f) resulting from

(ρ1, ã1), . . . , (ρj , ãj), (ρ
′
j+1, ã

′
j+1), . . . , (ρ′n, ã′n) ∈

n×
i=1

{
(ϑi , ẽi), (¬ϑi ,0)

}

can be omitted — and must hence not be enumerated — because
j∧

i=1

ρi

︸︷︷︸
unsatisfiable

∧
n∧

i=j+1

ρ′i

︸ ︷︷ ︸
unsatisfiable

will as well be unsatisfiable. Algorithm 3 on page 150 implements this op-
timization, where we enumerate the possible assignments of truth values to
the ϑi recursively. If we encounter the situation described above, i.e., if during
enumeration we determine that the currently constructed Boolean expression is
unsatisfiable, we avoid enumerating the remaining conjuncts (lines 6 and 8).

Example 4.7.
Let n ≥ 1 and consider the family of piecewise linear expectations

fn = [x = 1] · y1 + . . .+ [x = n] · yn .
fn is not in GNF because, e.g., for σ ∈ States with σ (x) = n+ 1, there is no
i ∈ {1, . . . ,n} with σ |= x = i. Applying the construction from Lemma 4.16
yields |GNF (fn) | = 2n. With Algorithm 3, on the other hand, we get

PrunedGNF(fn) =



n∧

i=1

x , i


 · 0 +

n∑

i=1


x = i

∧

j∈{1,...,n}\{i}
x , j


 · yi .

with |PrunedGNF(fn)| = n+ 1. We thus obtain much more concise GNFs.

4

4.6 k-Induction and BMC for Probabilistic Programs 153

4.6.3.3 Deciding Quantitative Entailments

Let f1, f2 ∈ LExp. To decide the validity of the quantitative entailment

⟦f1⟧ ⊑ ⟦f2⟧ ,

we effectively construct11 a Boolean expression CEX⊑ (f1, f2) ∈ LBExpr
Q

such that

CEX⊑ (f1, f2) is satisfiable (4.5)

iff exists σ ∈ States : ⟦f1⟧ (σ) > ⟦f2⟧ (σ) .

Thus, intuitively, CEX⊑ (f1, f2) is satisfiable iff there is a counterexample to the
validity of the quantitative entailment ⟦f1⟧ ⊑ ⟦f2⟧, and thus unsatisfiable iff the
quantitative entailment holds. To obtain CEX⊑ (f1, f2), we first construct

GNF (f1) = [ϑ1] · ẽ1 + . . .+ [ϑn] · ẽn and GNF (f2) = [η1] · ã1 + . . .+ [ηm] · ãm .

using Algorithm 3. The sought-after Boolean expression is then given by

CEX⊑ (f1, f2)

=
n∨

i=1

m∨

j=1

ϑi ∧ ηj ∧



true if ẽi =∞, ãj ,∞
false if ãj =∞
ẽi > ãj otherwise .

The latter is indeed a linear Boolean expression over Q adhering to the gram-
mar from Definition 4.4.2 since we eliminated all potential occurrences of∞.
Moreover, CEX⊑ (f1, f2) satisfies (4.5) because we have

⟦f1⟧ ⊑ ⟦f2⟧
iff ⟦GNF (f1)⟧ ⊑ ⟦GNF (f2)⟧ (Lemma 4.16)

iff for all σ ∈ States : ⟦GNF (f1)⟧ (σ) ≤ ⟦GNF (f2)⟧ (σ)

iff for all σ ∈ States and (i, j) ∈ {1, . . . ,n} × {1, . . . ,m} :
σ |= ϑi and σ |= ηj implies ⟦ẽi⟧ (σ) ≤

�
ãj

�
(σ)

(both the ϑi and the ηj partition States)

iff for all σ ∈ States and (i, j) ∈ {1, . . . ,n} × {1, . . . ,m} :

11This construction is adapted from [KMMM10, Lemma 3].

154 4 Latticed k-Induction

σ |= ϑi and σ |= ηj implies



true if ãj =∞
false if ẽi =∞, ãj ,∞
⟦ẽi⟧ (σ) ≤

�
ãj

�
(σ) otherwise

(eliminate∞)

iff for all σ ∈ States :

σ |=
n∧

i=1

m∧

j=1

ϑi ∧ ηj =⇒



true if ãj =∞
false if ẽi =∞, ãj ,∞
ẽi ≤ ãj otherwise

(rewrite as Boolean expression)

iff for all σ ∈ States :

σ ̸|=
n∨

i=1

m∨

j=1

ϑi ∧ ηj ∧



true if ẽi =∞, ãj ,∞
false if ãj =∞
ẽi > ãj otherwise

(double-negate)

iff CEX⊑ (f1, f2) is unsatisfiable .

Since the latter is decidable by Lemma 4.15, we conclude:

Lemma 4.17 (Decidability of Quantitative Entailments in LExp).
Quantitative entailments in LExp are decidable, i.e.,

Given f1, f2 ∈ LExp, does ⟦f1⟧ ⊑ ⟦f2⟧ hold?

is decidable.

4.6.3.4 Constructing Pointwise Minima and Maxima

Lemma 4.18 (Constructing Pointwise Minima and Maxima for LExp).
LExp is effectively closed under both pointwise minima and maxima, i.e., for
all f1, f2 ∈ LExp, there are effectively constructible

1. f1 ⊓ f2 ∈ LExp with ⟦f1 ⊓ f2⟧ = ⟦f1⟧⊓ ⟦f2⟧, and

2. f1 ⊔ f2 ∈ LExp with ⟦f1 ⊔ f2⟧ = ⟦f1⟧⊔ ⟦f2⟧.
Proof. We first construct the GNF’s of f1 and f2 using Algorithm 3 and let

GNF (f1) = [ϑ1] · ẽ1 + . . .+ [ϑn] · ẽn ,and

4

4.6 k-Induction and BMC for Probabilistic Programs 155

GNF (f2) = [η1] · ã1 + . . .+ [ηm] · ãm .

We then construct f1 ⊓ f2 as follows:

∑

(i,j)∈{1,...,n}×{1,...,m}



[
ϑi ∧ ηj

]
· ãj if ẽi =∞[

ϑi ∧ ηj
]
· ẽi if ãj =∞[

ϑi ∧ ηj ∧ ẽi ≤ ãj
]
· ẽi +

[
ϑi ∧ ηj ∧ ẽi > ãj

]
· ãj otherwise

The soundness of this construction is an immediate consequence of the fact
that both the ϑi and the ηj partition the state space by Definition 4.5. Notice
that f1 ⊓ f2 is in GNF. The construction for f1 ⊔ f2 is dual:

∑

(i,j)∈{1,...,n}×{1,...,m}



[
ϑi ∧ ηj

]
· ẽi if ẽi =∞[

ϑi ∧ ηj
]
· ãj if ãj =∞[

ϑi ∧ ηj ∧ ẽi ≤ ãj
]
· ãi +

[
ϑi ∧ ηj ∧ ẽi > ãj

]
· ẽj otherwise

Notice that f1 ⊔ f2 is in GNF. ■

With the preceding results at hand, we finally conclude:

Theorem 4.19 (Suitability for Automation).
(LpGCL,LExp) is suitable for automation (cf. Definition 4.2 on page 144).
Hence, Algorithms 4 and 5 on page 156 are semi-decision procedures.

Proof. The fact that LExp is effectively closed under characteristic functions
of loops in C ∈ LpGCL follows by induction on the structure of C. This is
essentially analogous to the proof of Theorem 3.2 on page 90 where the addi-
tional cases for nondeterministic choices follow from Lemma 4.18. Together
with Lemma 4.17, this implies the claim. ■

4.6.4 Implementation and Experiments

We have implemented a prototype called kipro212 — k-Induction for PROb-
abilistic PROgrams — in Python 3.11 using the SMT solver Z3 [MB08] and
the solver-API PySMT [GM15]. kipro2 performs latticed k-induction or BMC
as depicted in Figure 4.6 to fully automatically verify or refute upper bounds

12We have adapted our original implementation presented in [11; 10] so that it matches the
formalization presented in this thesis. The prototype is available open-source from https:
//github.com/KevinBatz/kipro2-diss.

https://github.com/KevinBatz/kipro2-diss
https://github.com/KevinBatz/kipro2-diss

156 4 Latticed k-Induction

Algorithm 4: k-induction for LpGCL

input: C ∈ LpGCL, f ,g ∈ LExp.
output : “verify” if there is k such that g is k-inductive for C w.r.t. f ,

diverge otherwise.

1 h← g
2 while true do
3 h← Φ

wp
C f (h) // Table 2.1 on page 60

4 if CEX⊑ (h,g) is unsatisfiable then // Section 4.6.3.3
5 return verify
6 h← h⊓ g // Section 4.6.3.4

Algorithm 5: BMC for LpGCL

input: C ∈ LpGCL, f ,g ∈ LExp.
output : “refute” if wp⟦C⟧ (f) ̸⊑ g, diverge otherwise.

1 h← 0
2 while true do
3 h← Φ

wp
C f (h) // Table 2.1 on page 60

4 if CEX⊑ (h,g) is satisfiable then // Section 4.6.3.3
5 return refute

Figure 4.6: k-Induction and BMC for LpGCL as implemented in kipro2 using
the techniques from Section 4.6.3. We omit semantic brackets of
piecewise linear expectations for the sake of readability.

4

4.6 k-Induction and BMC for Probabilistic Programs 157

on expected values of programs C in the fully probabilistic13 linear fragment
of pGCL and piecewise linear expectations. We describe the benchmarks in
Section 4.6.4.1 and discuss empirical results in Section 4.6.4.2.

4.6.4.1 Benchmarks

Table 4.1 on page 158 depicts the postexpectations f and the candidate upper
bounds g we considered for each of the programs given below. Moreover,
column “method” indicates whether the given bound is to be verified by means
of k-induction (Algorithm 4) or refuted by means of BMC (Algorithm 5).

The Bounded Retransmission Protocol (cf. Section 4.1).

while (sent < N ∧ failed ≤M) {
{

failed := failed + 1;

totalFailed := totalFailed + 1

} [0.1] {
failed := 0;

sent := sent + 1

}
}

We reason about candidate upper bounds on the expected final value of
totalFailed for varying bounds on the number N of packets to transmit.

The Geometric Loop (geo). This is the program from Example 4.5 on page 148.

while (y = 1) { {y := 0 } [1/2] {x := x+ 1 } }

We reason about candidate upper bounds on the expected final value of x.

Rabin’s Mutual Exclusion Protocol (rabin) [KR92]. The program shown in Fig-
ure 4.7 on page 159 models Rabin’s protocol, which utilizes randomization to
break the symmetry in a scenario where a unique leader among x participating

13The deductive verifier Caesar [18], which we developed two years later, also supports nondeter-
ministic programs but is outside the scope of this thesis.

158 4 Latticed k-Induction

variant method f g

br
p

1 k-ind.

totalFailed

[N ≤ 4] =⇒ (totalFailed + 1)
2 k-ind. [N ≤ 6] =⇒ (totalFailed + 3)
3 k-ind. [N ≤ 8] =⇒ (totalFailed + 3)
4 k-ind. [N ≤ 20] =⇒ (totalFailed + 8)
5 BMC totalFailed0.25
6 BMC totalFailed + 0.5
7 BMC totalFailed + 0.75
8 BMC totalFailed + 1

ge
o

1 k-ind.

x

[y = 1] · (x+ 1) + [y , 1] · x
2 k-ind. x+ 1
3 BMC x
4 BMC x+ 0.9
5 BMC x+ 0.9999999999999

ra
bi

n

1 k-ind.

[x , 1]

[1 < x∧ x < 3∧ phase = 0] =⇒ 1/3
2 k-ind. [1 < x∧ x < 4∧ phase = 0] =⇒ 1/3
3 k-ind. [1 < x∧ x < 5∧ phase = 0] =⇒ 1/3
4 k-ind. [1 < x∧ x < 6∧ phase = 0] =⇒ 1/3
5 BMC [1 < x∧ phase = 0] =⇒ 0.2
6 BMC [1 < x∧ phase = 0] =⇒ 0.225
7 BMC [1 < x∧ phase = 0] =⇒ 0.25

fd
r

1 k-ind.

[x = i]

[ϑ1] =⇒ 1/2
2 k-ind. [ϑ2] =⇒ 1/3
3 k-ind. [ϑ3] =⇒ 1/4
4 k-ind. [ϑ4] =⇒ 1/5
5 BMC [ϑ2] =⇒ 1/4
6 BMC [ϑ3] =⇒ 1/5
7 BMC [ϑ4] =⇒ 1/6

Table 4.1: Specifications for the programs given in Section 4.6.4.1. Here [ϑ] =⇒
ẽ is a shorthand for [ϑ] · ẽ+ [¬ϑ] ·∞.

4

4.6 k-Induction and BMC for Probabilistic Programs 159

while (1 < x∨ phase = 1) {
if (phase = 0) {

y := x ; phase := 1

}else {
if (0 < y ∧ 1 ≤ x) {

{z := 0 } [1/2] {z := 1 } ;
x := x − z ;

y := y − 1

}else {
phase := 0

}
}

}

Figure 4.7: A pGCL program adapted from [HMM05] modeling Rabin’s mutual
exclusion protocol [KR92].

160 4 Latticed k-Induction

while (running = 0) {
y := 2 · y ;

{x := 2 · x+ 1 } [1/2] {x := 2 · x } ;
if (y ≥N) {

if (x < N) {
running := 1

}else {
y := y −N ; x := x −N

}
}else {

if (running , 0) {x := low + x } else {skip }
}

}

Figure 4.8: A pGCL program adapted from [Lum13] modeling Lumbroso’s al-
gorithm for sampling uniformly from a finite interval of natural
numbers using fair coin flips only.

processes is to be elected. In this model, the protocol succeeds if it terminates
with x = 1. If it terminates in x , 1, the protocol fails.

We reason about candidate upper bounds on the probability that the protocol
fails for varying bounds on the number x of participating processes.

The Fast Dice Roller (fdr) [Lum13]. The program shown in Figure 4.8 on page
160 models Lumbroso’s algorithm for sampling uniformly from a given finite
interval of natural numbers using fair coin flips only. If initially running = 0,x =
0, y = 1, low ≤ high, and N = high− low + 1, then the probability of terminating
in some state with x ∈ {low, . . . ,high} is 1/N .

We reason about candidate upper bounds on the probability of terminating in
some state x ∈ {low, . . . ,high} for varying sizes of the interval. To specify this in
terms of weakest preexpectations, we introduce an auxiliary program variable

4

4.6 k-Induction and BMC for Probabilistic Programs 161

i ∈ Vars to fix some final value of variable x. We then specify the initial program
states of interest by defining for each n ∈N the Boolean exprresion ϑn given by

running = 0∧ x = 0∧ y = 1

∧ low +n = high∧N = high− low + 1∧ low ≤ i ≤ high .

ϑn specifies the initial values of running,x,y, and that we aim to sample from
some interval {low, . . . ,high} with |{low, . . . ,high}| = n+ 1.

4.6.4.2 Results

We evaluate kipro2 on the benchmark set described in the previous section. The
experiments were run on an Apple M2 with 24GB RAM and a 5-minute timeout.
The results are depicted in Table 4.2. Runtimes are given in seconds. Column
“variant” indicates the candidate upper bound. “result” indicates whether the
candidate upper bound was verified or refuted, and “k” indicates that the can-
didate was shown to be k-inductive or that k iterations of the wp-characteristic
functional were needed to refute the bound via BMC. “size” indicates |h|, where
h is the piecewise linear expectation in GNF constructed for the last satisfiabil-
ity check. “construction_t” is the time spent on wp computations, computing
GNFs, and pointwise minima. “entailment_t” is the time spent on checking the
satisfiability of CEX⊑ (h,g). Finally, “total_t” is the total time.

The results depicted in Table 4.2 empirically underline that deductive proba-
bilistic program verification can benefit from k-induction and BMC to the same
extent as classical software verification: kipro2 fully automatically verifies or re-
futes relevant properties of infinite-state randomized algorithms and stochastic
processes from the literature that require k to be strictly larger than 1. That is,
proving these properties using 1-induction, i.e., wp-superinvariants, requires
either invariant synthesis or additional user annotations.

We observe that k-induction tends to succeed if some variable is bounded in
the candidate upper bound under consideration (cf. brp, rabin, fdr). However,
k-induction can also succeed without any bounds (cf. geo). The size of piecewise
linear expectations and the time required for checking k-inductivity can increase
rapidly for larger k; this is particularly striking for brp and rabin. When refuting
candidate bounds with BMC, we obtain a similar picture.

Finally, we observe that most of the computation time is spent on computing
GNFs and pointwise minima. The satisfiability checks for CEX⊑ (h,g), on the
other hand, are rather quick. We conjecture that the scalability of k-induction
and BMC can be improved by investigating more sophisticated pruning tech-

162 4 Latticed k-Induction

variant result k size construction_t entailment_t total_t

br
p

1 ind 5 52 0.52 0.01 0.56
2 ind 7 174 8.4 0.03 8.45
3 ind 9 424 121.02 0.76 121.81
4 TO – – – – –
5 ref 4 26 0.04 <0.01 0.07
6 ref 8 212 6.63 0.03 6.68
7 TO – – – – –
8 TO – – – – –

ge
o

1 ind 1 2 <0.01 <0.01 0.03
2 ind 2 2 <0.01 <0.01 0.02
3 ref 3 2 <0.01 <0.01 0.01
4 ref 8 2 0.01 <0.01 0.03
5 ref 50 2 0.21 0.01 0.23

ra
bi

n

1 ind 5 36 0.95 0.01 0.99
2 ind 6 55 3.18 0.02 3.24
3 ind 7 78 10.07 0.04 10.16
4 ind 8 105 30.52 0.12 30.68
5 ref 5 44 0.47 0.01 0.51
6 ref 5 44 0.47 0.01 0.51
7 ref 9 130 31.47 0.15 31.65

fd
r

1 ind 2 7 3.54 <0.01 3.62
2 ind 3 26 1.5 0.01 1.59
3 ind 3 24 1.38 0.01 1.47
4 TO – – – – –
5 TO – – – – –
6 ref 3 110 1.01 0.01 1.12
7 TO – – – – –

Table 4.2: Experimental results for the benchmarks described in Section 4.6.4.1.
TO = 5min. Runtimes are given in seconds.

4

4.7 Future and Related Work 163

niques. For instance, kipro2 first computes Φ
wp
C f (h) monolithically and then

computes the GNF of the so-obtained expectation. It might pay off to already
simplify the intermediate expectations obtained during the computation of
Φ

wp
C f (h). Such improvements are left for future work.

4.7 Future and Related Work

Future Work. Latticed k-induction applies to all verification problems that can
be phrased as upper-bounding the least fixpoint of a monotone function over a
complete lattice. A natural direction for future work is to investigate whether lat-
ticed k-induction can be applied — both theoretically and practically — to other
domains. A particularly promising direction is to apply latticed k-induction to
the verification of weighted programs [15]. The bachelor’s thesis of Ben Sturgis
[Stu22] shows promise: Sturgis successfully applied latticed k-induction to
automatically verify properties of weighted programs over the tropical semiring.
We strongly conjecture that latticed k-induction yields automated verification
techniques for more instances of weighted programming.

Related Work. k-induction for transition systems has been introduced by
Sheeran et al. [SSS00]. Bounded model checking for transition systems is due to
Clarke et al. [CBRZ01]. Since then, k-Induction and BMC have been extensively
studied and applied in the field of hardware and software model checking
[DHKR11; BDW15; JD16; GI17; RICB15; KVGG19; DKR10; DKR11]. To the best
of our knowledge, we were the first to apply k-induction to the automated deduc-
tive verification of probabilistic programs. BMC has been applied for reasoning
about conditional reachability probabilities in finite unfoldings of probabilistic
programs [JDKK+16], and the enumerative generation of counterexamples in fi-
nite Markov chains [WBB09; JÁZW+12]. The aforementioned approaches either
restrict to finite-state programs or fix some initial program state. Our approach
does not impose these restrictions. However, our implementation is restricted
to linear programs and specifications, and does currently not support reasoning
about conditional reachability probabilities. Moreover, latticed k-induction has
been integrated into techniques for the automatic verification of probabilistic
pushdown automata [WK23a]. We discuss more approaches for the automatic
verification of probabilistic programs in Section 5.9.

When applied to finite-state Markov chains, our κ-induction operator is
related to other operators that have been employed for determining reachability
probabilities through value iteration [QK18; BKLP+17; HK20]. In particular,

164 4 Latticed k-Induction

when iterated on the candidate upper bound, the κ-induction operator coincides
with the (upper value iteration) operator in interval iteration [BKLP+17]; the
latter operator can be used together with up-to techniques14 (cf. [Mil89; Pou07;
PS12]) to prove our κ-induction (Theorem 4.5 on page 135) sound.

14The author thanks Joshua Moerman for this insight.

5

165

5 Automatic Loop Invariant Synthesis

This chapter is based on our prior publications [16; 13].

In this chapter, we present a Counterexample-Guided Inductive Synthesis (CEGIS)
[ABDF+15; SRBE05; STBS+06] approach for synthesizing quantitative invariants
of probabilistic loops. Our approach enables the fully automatic verification of
both upper and lower bounds on expected outcomes of loops as well as the automatic
verification of universal positive almost-sure termination by synthesizing upper
bounds on a loop’s expected runtime. Our implementation shows promise:
It finds invariants of various loops taken from the literature, can beat state-
of-the-art probabilistic model checkers, and is competitive with modern tools
dedicated to invariant synthesis or expected runtime reasoning.

Assumptions. In order to simplify the presentation, we assume the set Vars
of program variables to be finite. We moreover assume that program variables
x ∈ Vars are N-valued, i.e, the countable set of program states is given by

States = {σ | σ : Vars→N} .
Finally, we assume that all programs considered throughout are fully proba-
bilistic and that all piecewise linear expectations (cf. Definition 4.4 on page 147)
are in Guarded Normal Form (GNF) (cf. Definition 4.5 on page 149).

5.1 Motivation and Problem Statement

We start by considering the conceptually simpler problem of automatically
verifying upper bounds on expected outcomes of probabilistic loops:

Given a loop C = while (B) {C′ } and X,Y ∈ E,
automatically verify that wp⟦C⟧ (X) ⊑ Y holds.

Let us recap the approaches from the preceding chapters for tackling this prob-
lem, which will yield our motivation for considering loop invariant synthesis.

166 5 Automatic Loop Invariant Synthesis

We have seen in Section 2.4.4 that the above problem can be tackled via
quantitative loop invariants. By Theorem 2.12 on page 66, we have1

Φ
wp
C X(Y) ⊑ Y
︸ ︷︷ ︸

Y is wp-superinvariant of C w.r.t. X

implies wp⟦C⟧ (X) ⊑ Y . (5.1)

IfC is in the linear fragment2 of pGCL andX,Y are piecewise linear expectations,
we can employ the techniques from Section 4.6.3 implemented by our tool
kipro2 to decide whether Y is a wp-superinvariant of C w.r.t. X. For instance,
kipro2 automatically verifies that for the geometric loop

C = while (y = 1) { {y := 0 } [1/2] {x := x+ 1 } } ,
the following specification holds by (5.1):

wp⟦C⟧ (x) ⊑ [y = 1] · (x+ 1) + [y , 1] · x
The converse direction of (5.1) does, however, not hold in general, i.e., potentially

wp⟦C⟧ (X) ⊑ Y but Φ
wp
C X(Y) ̸⊑ Y
︸ ︷︷ ︸

Y is not a wp-superinvariant of C w.r.t. X

.

This is, e.g., the case for the geometric loop C and the specification

wp⟦C⟧ (x) ⊑ x+ 1 . (5.2)

We have then seen in Chapter 4 that k-induction for probabilistic programs can
mitigate this problem: Even though Y = x + 1 is not a wp-superinvariant of C
w.r.t. X = x (or, phrased in the terminology of k-induction: Y is not 1-inductive)
Y is 2-inductive. We have

Φ
wp
C X

(
Φ

wp
C X(Y)⊓Y

)
⊑ Y

︸ ︷︷ ︸
Y is 2-inductive for C w.r.t. X

and thus
︸ ︷︷ ︸

Corollary 4.12 on page 141

wp⟦C⟧ (X) ⊑ Y .

In the piecewise linear setting, kipro2 semi-decides whether there is some k ∈N
such that Y is k-inductive for C w.r.t. X, thereby verifying (5.2) automatically.
However, k-induction is incomplete in the sense that we might have

wp⟦C⟧ (X) ⊑ Y but
there is no k ∈N such that

Y is k-inductive for C w.r.t. X .

1Recall from Definition 2.21 on page 63 that Φ
wp
C X is the characteristic function of C w.r.t. X.

2Recall the (piecewise) linear setting from Section 4.6.3.

5

5.1 Motivation and Problem Statement 167

This is, e.g., the case for the geometric loop C and the specification

wp⟦C⟧ (x) ⊑ [x = 0] · 1 + [x , 0] ·∞ . (5.3)

What can we do in such a non-k-inductive scenario? We can attempt to synthe-
size what we call an admissible invariant I , i.e., we

search for an I ∈ E satisfying Φ
wp
C X(I) ⊑ I
︸ ︷︷ ︸
I is inductive

and I ⊑ Y
︸︷︷︸
I is safe

︸ ︷︷ ︸
I is admissible

.

The existence of an admissible invariant I witnesses that wp⟦C⟧ (X) ⊑ Y holds:

Φ
wp
C X(I) ⊑ I and I ⊑ Y (I is admissible invariant)

implies wp⟦C⟧ (X) ⊑ I and I ⊑ Y (Theorem 2.12 on page 66)

implies wp⟦C⟧ (X) ⊑ Y (transitivity of ⊑)

For instance, we can verify (5.3) by synthesizing the admissible invariant

I = [y = 1] · (x+ 1) + [y , 1] · x .
The techniques presented in this chapter enable the fully automatic synthesis of I .

Formal Problem Statement. We will heavily build upon the techniques from
Section 4.6.2, exploiting that the piecewise linear setting is particularly suitable
for automation as both inductivity and safety of I ∈ LExp are decidable for loops
in LpGCL and postexpectations in LExp (cf. Theorem 4.19 on page 155).

We denote by FinLExp ⊂ LExp the set of piecewise linear expectations not contain-
ing∞. In this chapter, we restrict to postexpectations and invariants in FinLExp.
Given h ∈ LExp, we often omit the semantic brackets in ⟦h⟧, if it is clear from
the context that we speak about the expectation in E described by h.

Definition 5.1 (Admissible Invariants).
Let C = while (ϕ) {C′ } ∈ LpGCL, f ∈ FinLExp, and let g ∈ LExp. The set of
admissible invariants (for verifying wp⟦C⟧ (f) ⊑ g) is defined as

AdmInv =
{
I ∈ FinLExp | Φ

wp
C f (I) ⊑ I and I ⊑ g

}
.

The loop C as well as f ,g will always be clear from the context. With these
notions at hand, we formalize our problem statement.

168 5 Automatic Loop Invariant Synthesis

CEGIS loop

Synthesizer Verifier

I is admissible invariant ✓

Template Generator

Counterexample σ

I ∈ ⟨T ⟩Template T

Unsat, hint?

Figure 5.1: Our CEGIS framework for synthesizing admissible invariants.

Given C = while (ϕ) {C′ } ∈ LpGCL, f ∈ FinLExp, and g ∈ LExp,
if it exists, synthesize — in a fully automatic manner — some I ∈ AdmInv.

Remark 5.1 (Extensions for Verifying Termination and Lower Bounds).
We have so far considered the verification of about upper bounds on expected
outcomes of probabilistic loops. We discuss extensions of our techniques
for verifying (i) lower bounds on expected outcomes and (ii) universal positive
almost-sure termination in Section 5.7.

5.2 Overview: Loop Invariants via CEGIS

While finding an admissible invariant I is challenging, checking whether a given
candidate I ∈ LExp is indeed admissible is easier:

Is I ∈ AdmInv ?

can be decided3 via SMT solving using the techniques from Section 4.6.3. This
motivates the development of techniques that generate decent candidates I fast
and then check their admissibility. One of our key empirical results is that this
enables the automatic synthesis of admissible invariants for probabilistic loops
with huge or infinite state spaces (cf. Section 5.8).

3See Section 5.5.1 for details.

5

5.2 Overview: Loop Invariants via CEGIS 169

We present the Counterexample-Guided Inductive Synthesis (CEGIS) frame-
work depicted in Figure 5.1 for finding admissible invariants, which builds
upon the idea of template-based invariant synthesis for probabilistic pro-
grams [KMMM10]: A template generator automatically generates templates for
admissible invariants. A template T syntactically describes a set ⟨T ⟩ of candidate
invariants in FinLExp. The inner loop (shaded box in Figure 5.1) then searches
for an admissible invariant I ∈ ⟨T ⟩. If it succeeds, an admissible invariant has
been synthesized. Otherwise, the template cannot be instantiated to an admissi-
ble invariant, i.e., ⟨T ⟩∩AdmInv = ∅. The inner loop then reports this back to the
template generator (possibly with some hint) and asks for a refined template.

We illustrate this procedure by means of an example. Consider the following
program C modeling a variant of the bounded retransmission protocol [HSV93;
DJJL01], which already served us several times as a running example.

while (sent < 8000000∧ failed < 10) {
{

failed := failed + 1

} [0.001] {
failed := 0; sent := sent + 1

}
}

In this model, there are 8000000 packets to send and the protocol fails as soon
as, for some packet, the threshold of 10 retransmissions is reached. Now let
λ ∈ [0,1]∩Q be some rational probability and suppose we wish to verify that
λ upper-bounds the probability that the protocol fails. In terms of weakest
preexpectations, we thus aim to verify that

wp⟦C⟧(

=f
︷ ︸︸ ︷
[failed = 10]) (5.4)

⊑ [sent = 0∧ failed = 0] ·λ+ [¬(sent = 0∧ failed = 0)] ·∞
︸ ︷︷ ︸

=g

.

We start by constructing the following template from the syntax of C and f :

T = [failed < 10∧ sent < 8000000] · (a · sent + b · failed + c)

170 5 Automatic Loop Invariant Synthesis

+ [failed = 10] · 1 + [failed < 10∧ sent ≥ 8000000] · 0

T contains two kinds of variables: N-valued program variables failed,sent and
Q-valued template variables a,b,c. While the template is nonlinear, substituting
a,b,c with values yields a piecewise linear candidate I .

Our inner CEGIS loop checks whether there exists an assignment from these
template variables a,b,c to concrete values in Q such that the resulting piecewise
linear candidate is an admissible invariant. For that, the synthesizer first guesses
values for a,b,c, say all 0’s, which yields the instance I ∈ ⟨T ⟩ of T given by

I = [failed < 10∧ sent < 8000000] · (0 · sent + 0 · failed + 0)

+ [failed = 10] · 1 + [failed < 10∧ sent ≥ 8000000] · 0 ,

and asks a verifier whether this I is indeed admissible, i.e., non-negative4,
inductive, and safe. The verifier determines that I is not admissible since I is
not inductive, and explains this fact by providing a counterexample to inductivity
— a state σ ∈ States with σ (failed) = 9, σ (sent) = 7999999 for which we have

Φ
wp
C f (I)(σ) > ⟦I⟧ (σ) .

This counterexample is reported to the synthesizer, which ensures that the
instances of T it will produce in the future will no longer violate inductivity for
this state σ . For that, it learns the following lemma for the template variables:

quantity obtained from applying Φ
wp
C f to instances of T and evaluated at σ
︷︸︸︷
0.001

!≤ a · 7999999 + b · 9 + c︸ ︷︷ ︸
quantity instances of T evaluate to at σ depending on a,b,c

Observe that this lemma is linear in a,b,c. The synthesizer will now keep “guess-
ing” assignments to the template variables which are consistent with the learned
lemmas. If, eventually, no such parameter assignment exists anymore, we have
determined that T cannot be instantiated to an admissible invariant, which will
then be reported to the template generator. On the other hand, the synthesizer
might eventually produce an admissible invariant. In our running example, for

4Some instances of T do not denote expectations in E as they might evaluate to negative numbers.

5

5.2 Overview: Loop Invariants via CEGIS 171

λ = 0.9, after 6 lemmas, our synthesizer produces the admissible invariant

I =
[
failed < 10∧ sent < 8 · 106

]
· (− 9

8·107 · sent + 79991
72·107 · failed + 9

10)

+ [failed = 10] · 1 + [failed < 10∧ sent ≥ 8000000] · 0 .

For a tighter λ, the simple template T might not suffice. For example, it is
impossible to instantiate T to an admissible invariant for λ = 0.8, even though
(5.4) holds. We therefore support more general templates of the form

∑

i

[Bi] · (ai · sent + bi · failed + ci)

+ [failed = 10] · 1 + [failed < 10∧ sent ≥ 8000000] · 0 ,

where the Bi are (possibly templated) Boolean expressions partitioning States.
In particular, we allow for a template such as

T2 = [failed < 10∧ sent < e] · (a1 · sent + b1 · failed + c1)

+ [failed < 10∧ sent ≥ e] · (a2 · sent + b2 · failed + c2)

+ [failed = 10] · 1 + [failed < 10∧ sent ≥ 8000000] · 0 .

However, such templates containing templated Boolean expressions are chal-
lenging for the CEGIS loop. Thus, we additionally consider templates where
the Bi ’s range only over program variables, e.g.,

T3 = [failed < 10∧ sent < 4000000] · (a1 · sent + b1 · failed + c1)

+ [failed < 10∧ sent ≥ 4000000] · (a2 · sent + b2 · failed + c2)

+ [failed = 10] · 1 + [failed < 10∧ sent ≥ 8000000] · 0 .

Our template refinement algorithms produce these templates automatically.

Remark 5.2 (On Probabilistic Model Checking).
The specification from (5.4) on page 169 describes a finite-state verification
problem: That is, the fragment of pGCL’s operational MDP O reachable from
the initial configuration (C,σ) with σ (sent) = 0 and σ (failed) = 0 is finite.

172 5 Automatic Loop Invariant Synthesis

Moreover, by Corollary 2.16.3 on page 72, (5.4) is equivalent to

Pr
(
O, (C,σ) |= ♦

{
(⇓, τ) | τ |= failed = 10

})

︸ ︷︷ ︸
reachability probability of O, see Section 2.2.3

≤ λ .

Verifying such bounds on reachability probabilities of finite-state MDPs
is among the key applications of probabilistic model checkers such as
Storm [HJKQ+22; DJKV17]. Interestingly, even though C appears to be rather
simple, the explicit-state engine of Storm cannot verify the above bound
for λ = 0.9 within 2 hours. This is because Storm enumerates all configura-
tions in O reachable from (C,σ), which is infeasible due to the large model
parameters — the number of packets to send and the maximal number of
retransmissions per packet. On the other hand, our approach verifies the
given bound by considering 6 program states, thus avoiding the enumeration
of all states. It is evident that, for the linear fragment of pGCL, our approach
can be considered an alternative means for tackling such probabilistic model
checking tasks. We provide an empirical comparison of our approach and
Storm in Section 5.8. The results are promising: Our tool cegispro2 is capable
of verifying bounds on reachability probabilities of models taken from the
literature that cannot be verified by Storm within the time limit of 2 hours.
However, the contrary is also the case: We show that there are simple pro-
grams and specifications which Storm verifies within a few seconds whereas
cegispro2 times out. We refer to Section 5.9 for a discussion on how these
examples could guide future investigations for improving our approach.

Chapter Outline. The remainder of this chapter is structured as follows:
Section 5.3 introduces templates. Section 5.4 provides the prerequisites for our
CEGIS loop, which is treated in Section 5.5. Section 5.6 presents the template
generator. Extensions of our approach are presented in Section 5.7. Section 5.8
provides details on our implementation and the corresponding empirical results.
Finally, in Section 5.9, we discuss future and related work.

5.3 Templated Piecewise Linear Expectations

We formalize the templates described in the previous section by introducing
templated piecewise linear expectations (or templates, for short). As the name
suggests, (appropriate) instances of these templates will be piecewise linear

5

5.3 Templated Piecewise Linear Expectations 173

expectations as introduced in Definition 4.4 on page 147.

Let TVars = {a,b,c,d, . . .} be a countably infinite set of Q-valued template vari-
ables. A template (variable) valuation is a function I : TVars→ Q, assigning to
each template variable a rational number. We start by introducing the basic
building blocks of templates — templated arithmetic and Boolean expressions.

Definition 5.2 (Templated Arithmetic Expressions).
Templated (linear) arithmetic expressions, which we denote by E and variations
thereof, in the set TAExpr adhere to the grammar

E −→ q ∈Q (rationals)

| a ∈ TVars (template variables)

| x ∈ Vars (N-valued program variables)

| a · x (multiplication of template and program variables)

| q · E (scaling by constants in Q)

| E + E . (addition)

Given a template valuation I, we denote by E [I] ∈ AExpr
Q

the instance of E under
I, which is the linear arithmetic expression over Q (cf. Definition 4.4 on page
147) obtained from substituting every template variable a in E by I(a). Recall
that the semantics ⟦E [I]⟧ of E [I] is of type States→Q.

Definition 5.3 (Templated Boolean Expressions).
Templated Boolean expressions, which we denote by B and variations thereof,
in the set TBExpr adhere to the grammar

B −→ E < E (strict inequality of arithmetic expressions)

| B ∧B (conjunction)

| ¬B . (negation)

We adapt the usual order of precedence and syntactic sugar for arithmetic
and Boolean operations from Section 3.2. Given a template valuation I, we
denote by B [I] ∈ AExpr

Q
the instance of B under I, which is the linear Boolean

expression over Q (cf. Definition 4.4 on page 147) obtained from substituting
every template variable a in B by I(a). Recall that the semantics ⟦B [I]⟧ is a
predicate in P (States). As usual, we write σ |= B [I] instead of σ ∈ ⟦B [I]⟧.

Definition 5.4 (Templates (adapted from [KMMM10])).
Templated piecewise linear expectations (templates, for short), which we denote

174 5 Automatic Loop Invariant Synthesis

by T and variations thereof, in the set TExp adhere to the grammar

T −→ [B1] · E1 + . . .+ [Bn] · En ,

where n ≥ 1 and where the Bi partition States, i.e., for all template valuations
I and all states σ , there is exactly one i with σ |= Bi [I].

We call a template T fixed-partition, if none of the Bi contains a template
variable. Otherwise, we call T variable-partition. Given a template valuation I,
we denote by T [I] the instance of T under I, which is obtained from substituting
every template variable a in T by I(a). We denote the set of instances of T by

⟨T ⟩ = {T [I] | I : TVars→Q} .
The semantics ⟦T [I]⟧ : States→Q is defined by induction on the structure of
T [I], which is analogous to Section 3.2.4. Notice that we might have T [I] <
LExp, i.e., that ⟦T [I]⟧ is not a well-defined expectation in E since we might
have ⟦T [I]⟧ (σ) < 0 for some state σ . It is therefore convenient to introduce:

Definition 5.5 (Piecewise Linear Quantities).
We denote by LQuant the set of all expressions f adhering to the grammar
from Definition 4.4 on page 147 which do not contain∞ and where we omit
the requirement that for all σ ∈ States, we have ⟦f ⟧ (σ) ≥ 0. We call elements
of LQuant piecewise linear quantities.

The semantics ⟦f ⟧ of f ∈ LQuant is of type States→Q. We lift the partial order
⊑ to functions of type States→Q in the obvious way. Notice that

FinLExp ⊂ LQuant ⊂ TExp

and that, for all templates T ∈ TExp, we have ⟨T ⟩ ⊆ LQuant.
We will often consider what we call natural templates, which take the given

loop C, the postexpectation f , and the candidate upper bound g into account.

Definition 5.6 (Natural Templates).
Let C = while (ϕ) {C′ } ∈ LpGCL and f ∈ FinLExp, g ∈ LExp. We say that a
template T ∈ TExp is natural for C,f , and g, if the following conditions hold:

1. T is of the form

[¬ϕ ∧ϕ1] · e1 + . . .+ [¬ϕ ∧ϕn] · en︸ ︷︷ ︸
equivalent to [¬ϕ]·f

+[B1] · E1 + . . .+ [Bm] · Em .

2. We have [¬ϕ] · f ⊑ [¬ϕ] · g.

5

5.4 Reasoning about Template Instances 175

We denote the set of all natural templates for C,g, and f by TnExp.

5.4 Reasoning about Template Instances

In this section, we characterize when a given template T can be instantiated to
an admissible invariant. This provides us with the prerequisites for obtaining
appropriate synthesizers as described in Section 5.2. Throughout this section,
fix a loop C = while (ϕ) {C′ } and some f ∈ FinLExp, g ∈ LExp.

As a first step, we lift the characteristic function Φ
wp
C f to templates.

Theorem 5.1 (Lifting Characteristic Functions of Loops to Templates).
There is a computable function

Θ
wp
C f : TExp→ TExp

such that for all T ∈ TExp and template valuations I, we have

T [I] ∈ LExp implies
�

Θ
wp
C f (T) [I]

�
= Φ

wp
C f (⟦T [I]⟧) .

Moreover, if T is fixed-partition (resp. natural), so is Θ
wp
C f (T).

Proof. We compute Θ
wp
C f (T) as follows. First, we apply the syntactic analo-

gous of the rules from Table 2.1 on page 60 to compute

[ϕ] ·wp⟦C′⟧ (T) + [¬ϕ] · f ,
treating the template variables as constants and ignoring that we deal with
possibly negative quantities, which is possible since the loop body C′ is loop-
free so that we do not rely on the well-definedness of least fixpoints. Second,
we apply the construction from Lemma 4.16 on page 151 to ensure that the
so-obtained (possibly templated) Boolean expressions partition States. If
T is fixed-partition, then none of the Boolean expressions obtained from
applying the rules from Table 2.1 contain template variables, in which case
step (2) can be done using the optimized Algorithm 3 on page 150. ■

176 5 Automatic Loop Invariant Synthesis

Example 5.1.
Consider the geometric loop

C = while (y = 1) { {y := 0 } [1/2] {x := x+ 1 } }
with

f = [true] · x and g = [true] · (x+ 1) .

The fixed-partition template f given by

T = [y = 1] · (a · x+ b · y + c) + [y , 1] · x
is natural for C,f ,g and we have

Θ
wp
C f (T) = [y = 1] · (1/2 · a · x+ 1/2 · a+ 1/2 · b · y + 1/2 · c+ 1/2 · x) + [y , 1] · x .

Next, we treat the construction of what we called lemmas in Section 5.2 —
constraints on the template variables asserting, e.g., inductivity of template
instances at a particular program state. For that, let σ ∈ States be a program
state. Given E ∈ TAExpr, we denote by E(σ) the linear5 expression over the
Q-valued variables TVars with coefficients in Q obtained from substituting
every program variable x in E by σ (x). Analogously, given B ∈ TBExpr, we
denote by B(σ) the Boolean combination of linear inequalities over TVars with
coefficients in Q obtained from substituting every program variable x in B by
σ (x). Notice that B(σ) is a formula in the quantifier-free fragment of linear
rational arithmetic (QF_LRA). We write I |= B(σ) to indicate that B(σ) evaluates
to true under I. Satisfiability of QF_LRA formulae, i.e.,

Does there exist I such that I |= B(σ) ?

is decidable using, e.g., Fourier-Motzkin variable elimination [Fou25; Mot36].
From now on, we assume a black box — an SMT solver6 — for deciding the
satisfiability of these formulae. Now, the lemmas from Section 5.2 are obtained
from what we call state-specific formulae:

Definition 5.7 (State-Specific Linear Arithmetic Formulae).
Let T ,T ′ ∈ TExp be given by

T = [B1] · E1 + . . .+ [Bn] · En and T ′ =
[B′1

] · E ′1 + . . .+
[B′m

] · E ′m .
5More precisely, this expression is generally affine but we adopt SMT terminology here.
6Our implementation uses the SMT solver Z3 [MB08]. See Section 5.8 for details.

5

5.4 Reasoning about Template Instances 177

Moreover, let h ∈ LExp in GNF be given by

h = [ϑ1] · ẽ1 + . . .+ [ϑk] · ẽk .
Finally, let σ ∈ States. We define the following QF_LRA formulae:

1. The formula 0�σ T is defined as
n∧

i=1

Bi(σ) =⇒ 0 ≤ Ei(σ) .

2. The formula T �σ T ′ is defined as
n∧

i=1

m∧

j=1

(
Bi(σ)∧Bj (σ)

)
=⇒ Ei(σ) ≤ Ej (σ) .

3. The formula T �σ h is defined as
n∧

i=1

k∧

j=1

(
Bi(σ)∧

�
ϑj

�
(σ)

︸ ︷︷ ︸
∈{true,false}

)
=⇒


true if

�
ẽj

�
(σ) =∞

Ei(σ) ≤
�
ẽj

�
otherwise .

If both T and T ′ are fixed-partition, then each of the above formulae simplifies
to a single linear inequality (or true) since, in each formula, all but one left-hand
side of the implications are equivalent to false.

Example 5.2.
Reconsider the program

C = while (y = 1) { {y := 0 } [1/2] {x := x+ 1 } } ,
and

f = [true] · x and g = [true] · (x+ 1) ,

and the following template for which we have

T = [y = 1] · (a · x+ b · y + c) + [y , 1] · x
Θ

wp
C f (T) = [y = 1] · (1/2 · a · x+ 1/2 · a+ 1/2 · b · y + 1/2 · c+ 1/2 · x)

+ [y , 1] · x .

Now let σ be a state with σ (x) = 1 and σ (y) = 1.

178 5 Automatic Loop Invariant Synthesis

1. The formula 0�σ T asserts non-negativity at σ and is given by

1 = 1 =⇒ 0 ≤ a · 1 + b · 1 + c

∧ 1 , 1 =⇒ 0 ≤ 1 ,

which can be simplified to

0 ≤ a · 1 + b · 1 + c .

2. The formula Θ
wp
C f (T)�σ T asserts inductivity at σ and is given by

1 = 1∧ 1 = 1 =⇒ 1/2 · a · 1 + 1/2 · a+ 1/2 · b · 1 + 1/2 · c+ 1/2 · 1
≤ a · 1 + b · 1 + c

∧ 1 = 1∧ 1 , 1 =⇒ 1/2 · a · 1 + 1/2 · a+ 1/2 · b · 1 + 1/2 · c+ 1/2 · 1
≤ 1

∧ 1 , 1∧ 1 = 1 =⇒ 1 ≤ a · 1 + b · 1 + c

∧ 1 , 1∧ 1 , 1 =⇒ 1 ≤ 1 ,

which can be simplified to

1/2 · a · 1 + 1/2 · a+ 1/2 · b · 1 + 1/2 · c+ 1/2 · 1 ≤ a · 1 + b · 1 + c .

3. The formula T �σ g asserts safety at σ and is given by

1 = 1∧ true =⇒ a · 1 + b · 1 + c ≤ 1 + 1

∧ 1 , 1∧ true =⇒ 1 ≤ 1 + 1 ,

which can be simplified to

a · 1 + b · 1 + c ≤ 1 + 1 .

Notice that, if the Boolean expressions T contained template variables,
those simplifications might not be applicable, yielding the state-specific
formulae to potentially have a complex Boolean structure.

The fact that state-specific formulae indeed assert non-negativity, inductivity, or
safety of template instances at a given program state formally reads as follows:

5

5.4 Reasoning about Template Instances 179

Lemma 5.2 (Properties of State-Specific Formulae).
Let T ,T ′ ∈ TExp, h ∈ LExp, σ ∈ States, and I : TVars→Q. Then:

1. I |= 0�σ T if and only if 0 ≤ ⟦T [I]⟧ (σ).

2. I |= T �σ T ′ if and only if ⟦T [I]⟧ (σ) ≤ ⟦T ′ [I]⟧ (σ).

3. I |= T �σ h if and only if ⟦T [I]⟧ (σ) ≤ ⟦h⟧ (σ).

Proof. The reasoning is analogous to Section 4.6.3.3, exploiting that the
(templated) Boolean expressions in T , T ′ , and h partition States. ■

With state-specific formulae, we characterize the existence of an admissible
invariant in ⟨T ⟩ for some given template T ∈ TExp as follows:

Theorem 5.3 (Existence of Admissible Invariants).
For every template T ∈ TExp, we have

exists I ∈ ⟨T ⟩∩AdmInv

iff exists template valuation I : for all σ ∈ States :

I |= 0�σ T
︸ ︷︷ ︸

non-negativity

∧ Θ
wp
C f (T)�σ T
︸ ︷︷ ︸

inductivity

∧ T �σ g
︸ ︷︷ ︸

safety

.

Proof. This is an immediate consequence of Lemma 5.2. ■

The question of whether the existence of an admissible invariant in ⟨T ⟩ is
decidable is open. For the special case of finite-state loops and natural templates,
the existence of an admissible invariant in ⟨T ⟩ is decidable. We say that a loop
C = while (ϕ) {C′ } is finite-state, if |⟦ϕ⟧ | <∞, i.e., if the number of states that
satisfy the loop guard ϕ is finite7.

Theorem 5.4 (Decidability for Finite-State Loops).
For finite-state C and natural templates T ∈ TnExp, the problem

Is there some I ∈ ⟨T ⟩∩AdmInv ?

is decidable. If T is fixed-partition, it is decidable via linear programming.

7Recall that, in this chapter, we assume the set Vars of program variables to be finite.

180 5 Automatic Loop Invariant Synthesis

Proof. We have

exists I ∈ ⟨T ⟩∩AdmInv

iff exists template valuation I : for all σ |= States : (Theorem 5.3)

I |= 0�σ T ∧ Θ
wp
C f (T)�σ T ∧T �σ g

iff exists template valuation I : for all σ |= ϕ : (T is natural)

I |= 0�σ T ∧ Θ
wp
C f (T)�σ T ∧T �σ g

iff exists template valuation I : (⟦ϕ⟧ is finite)

I |=
∧

σ |=ϕ
0�σ T ∧ Θ

wp
C f (T)�σ T ∧T �σ g

︸ ︷︷ ︸
QF_LRA formula

.

Hence, we have ⟨T ⟩ ∩ AdmInv , ∅ iff the above QF_LRA formula is satis-
fiable. Since the latter is decidable, the claim follows. Moreover, if T is
fixed-partition, then the above QF_LRA formula is a conjunction of linear
inequalities, which implies the claim concerning linear programming. ■

5.5 Constructing an Efficient CEGIS Loop

With the prerequisites from the preceding section at hand, we construct the
verifier and the synthesizer for our inner CEGIS loop as described in Section 5.2.
For that, fix some loop C = while (ϕ) {C′ } and f ∈ FinLExp,g ∈ LExp throughout
this section. Recall that the goal of the inner CEGIS loop is to determine whether
there is an admissible invariant I ∈ ⟨T ⟩∩AdmInv for a given template T .

5.5.1 The Verifier

The verifier determines whether a given candidate invariant I ∈ LQuant is ad-
missible, i.e., whether I ∈ AdmInv. If not, the verifier returns a counterexample
to non-negativity, inductivity, or safety of I . To formalize this, we introduce:

5

5.5 Constructing an Efficient CEGIS Loop 181

Definition 5.8 (σ-Admissible Invariants).
For a state σ ∈ States, the set of σ -admissible invariants is

AdmInv(σ) =
{
I ∈ LQuant | 0 ≤ ⟦I⟧ (σ)

︸ ︷︷ ︸
σ -non-negative

and
�

Θ
wp
C f (I)

�
(σ) ≤ ⟦I⟧ (σ)

︸ ︷︷ ︸
σ -inductive

and ⟦I⟧ (σ) ≤ ⟦g⟧ (σ)
︸ ︷︷ ︸

σ -safe

}
.

For a subset States′ ⊆ States of states, we define

AdmInv(States′) =
⋂

σ∈States′
AdmInv(σ) .

Now let I ∈ LQuant. Clearly, if I < AdmInv, then I < AdmInv(σ) for some σ ∈
States, i.e., state σ is a counterexample to non-negativity, inductivity, or safety
of I . We denote by CounterEx(I) ⊆ States the set of all counterexamples of I .

Theorem 5.5 (Existence of Effective Verifiers).
There is a computable function

Verify : LQuant→ {true} ∪States ,

called a verifier, such that for all I ∈ LQuant, we have

1. Verify(I) = true if and only if I ∈ AdmInv, and

2. Verify(I) = σ implies σ ∈ CounterEx(I).

Proof. We employ the reduction from quantitative entailments to satisfiabil-
ity of Boolean expressions in LBExpr

Q
from Section 4.6.3.3, which generalizes

from LExp to LQuant since it does not rely on non-negativity. We have

I ∈ AdmInv

iff CEX⊑ ([true] · 0, I)∨CEX⊑
(

Θ
wp
C f (I), I

)
∨CEX⊑ (I,g)

︸ ︷︷ ︸
∈LBExpr

Q
(cf. Definition 4.4 on page 147)

is unsatisfiable .

182 5 Automatic Loop Invariant Synthesis

The latter is decidable by Lemma 4.15. Thus, in case of unsatisfiability, we let

Verify(I) = true .

In case of satisfiability, SMT solvers such as Z3 provide a concrete program
state σ satisfying at least one of the above disjuncts and we let

Verify(I) = σ . ■

5.5.2 The Synthesizer

Let T ∈ TExp be a template. The synthesizer is provided with a finite subset
States′ ⊆ States of states — the counterexamples provided by the verifier —
and determines whether there is some instance I ∈ ⟨T ⟩ of T which is admissible
for all states in States′, i.e., I ∈ ⟨T ⟩ ∩ AdmInv(States′). If so, the synthesizer
returns such an I . If not, the synthesizer returns false.

Now let FinStates ⊆ P (States) be the set of finite subsets of states.

Theorem 5.6 (Existence of Effective Synthesizers).
Let T ∈ TExp be a template. There is a computable function

SyntT : FinStates→ ⟨T ⟩∪ {false}
such that for all States′ ∈ FinStates and all I ∈ LQuant, we have

1. if SyntT (States′) = I , then I ∈ ⟨T ⟩∩AdmInv(States′), and

2. SyntT (States′) = false if and only if ⟨T ⟩ ∩AdmInv(States′) = ∅.
For fixed-partition T , SyntT can be implemented via linear programming.

Proof. We reduce computing SyntT (States′) to a satisfiability problem of
QF_LRA formulae, which is decidable. Lemma 5.2 and Theorem 5.3 yield

exists I ∈ ⟨T ⟩∩AdmInv(States′)
iff exists template valuation I :

I |=
∧

σ∈States′
0�σ T ∧ Θ

wp
C f (T)�σ T ∧T �σ g

︸ ︷︷ ︸
QF_LRA formula

.

5

5.5 Constructing an Efficient CEGIS Loop 183

Algorithm 6: Synthesis of Admissible Template Instances
input: A template T ∈ TExp

output :


false only if ⟨T ⟩ ∩AdmInv = ∅
I only if I ∈ ⟨T ⟩∩AdmInv

1 States′←∅
2 while SyntT (States′) , false do
3 I ← SyntT (States′)
4 result← Verify(I)
5 if result = true then
6 return I /* Verifier returns true, we have I ∈ AdmInv */

7 States′← States′ ∪ {result} /* result is a counterexample */

8 return false /* ⟨T ⟩ ∩AdmInv = ∅ */

Figure 5.2: Implementation of the inner CEGIS loop from Figure 5.1.

Hence, if the above QF_LRA formula is unsatisfiable, we let

SyntT (States′) = false .

In case of satisfiability, SMT solvers such as Z3 provide a concrete template
valuation I satisfying all of the above conjuncts and we let

SyntT (States′) = T [I] .

If T is fixed-partition, then the above QF_LRA formula is a conjunction of
linear inequalities, which implies the claim concerning linear programming.■

For finite-state loops, we obtain the following completeness result:

Theorem 5.7 (Synthesizer Completeness for Finite-State Loops).
For finite-state C and natural templates T ∈ TnExp, we have

SyntT (⟦ϕ⟧) ∈ AdmInv or ⟨T ⟩ ∩AdmInv = ∅ .
Using the synthesizer and the verifier in concert is then intuitive as in Algo-
rithm 6 on page 183. We incrementally ask our synthesizer to provide an
instance I ∈ ⟨T ⟩ of T which is σ -admissible for all states σ ∈ States′. Unless

184 5 Automatic Loop Invariant Synthesis

the synthesizer returns false, we ask the verifier whether I is admissible for all
states. If so, we return I ; otherwise, we get a counterexample σ and add it to
States′ before synthesizing the next candidate. If the synthesizer returns false,
we ask the template generator for a refined template. See Section 5.6 for details.

Cooperative Verifiers. The verifier from Theorem 5.5 may return any coun-
terexample. Without further restrictions, a verifier might start enumerating
these counterexamples, which can yield a bad performance.

Example 5.3.
Consider the finite-state loop C given by

while (y = 0∧ z < 100) { {x := x+ 1 } [0.99] {y := 1 } } ,
the postexpectation

f = [y = 1] · 1 + [y , 1] · 0 ,
and the fixed-partition template

T = [y = 0∧ z < 100] · (a · x+ b · y + c) + [y = 1] + [y = 0∧ z ≥ 100] · 0 .
Assume that the verifier returns two consecutive states σ1,σ2 with σi(y) = 0
and σi(x) = i for i ∈ {1,2}. The formulae asserting inductivity at σi are

Θ
wp
C f (T)�σi T = 0.99 · ((i + 1) · a+ c) + 0.01 ≤ i · a+ c .

The two constraints are very similar in the sense that there is only a little
information gained from the formula Θ

wp
C f (T) �σ2

T obtained from σ2.
Formulae obtained from more diverse states such as σ ′ with, e.g., σ ′(x) = 98,
prune more undesired template instances.

We therefore consider cooperative verifiers, which are parameterized by a dis-
tance measure µ : States×States→Q on states8. Additionally to I , the verifier
is provided with the last counterexample σlast and a lower bound q ∈ Q. The
verifier then prefers to return new counterexamples σ with µ(σ,σlast) ≥ q.

8In our implementation, we use the Manhattan distance on the (relevant) program variables, i.e.,
the distance measure µ is defined as µ(σ,σ ′) =

∑
x∈Vars |σ (x)− σ ′(x)|.

5

5.6 The Template Generator 185

Definition 5.9 (Cooperative Verifiers).
A cooperative verifier is a computable function

CVerifyµ : States×Q→ (LQuant→ {true} ∪States)

such that for all I ∈ LQuant, σ,σlast ∈ States, and q ∈Q, we have

1. CVerifyµ(σ,q) is a verifier, and

2. if CVerifyµ(σlast,q)(I) = σ , then

µ(σ,σlast) ≥ q or for all σ ′ ∈ CounterEx(I) : µ(σ ′ ,σlast) ≤ q .
Furthermore, we can easily generalize the cooperative verifier beyond taking
into account only the last counterexample. In our implementation, rather than
fixing a value q, we adapt q during runtime: We start with q = 1. If we succeed in
finding two counterexamples that were q apart, we update q← q · d, otherwise,
q← q · 1/d for suitable values of d.

5.6 The Template Generator

Throughout this section, fix some loop C = while (ϕ) {C′ } and f ∈ FinLExp, g ∈
LExp and let Vars = {x1, . . . ,xm}. We describe (i) the construction of the initial
template T1 given to the synthesizer and (ii) the three approaches we have imple-
mented for obtaining a refined template Ti+1 constructed when the synthesizer
reports that for the current template Ti we have ⟨Ti⟩ ∩AdmInv = ∅.

5.6.1 Constructing the Initial Template

We start with a natural9 fixed-partition template T1 ∈ TnExp constructed auto-
matically from the syntactic structure of the given loop C = while (ϕ) {C′ } and
the piecewise linear postexpectation f ∈ LExp in GNF. Intuitively, T partitions
the state space according to the possible branches through the loop body C′ and
the postexpectation f . To put this more formally, let

f = [ϑ1] · e1 + . . .+ [ϑk] · ek .

Since the loop body C′ is loop-free, we can compute linear Boolean expressions
ϕ1, . . . ,ϕn ∈ LBExpr

Z
partitioning the set ⟦ϕ⟧ of states satisfying the loop guard

9We assume that [¬ϕ] · f ⊑ [¬ϕ] · g, which is decidable by Lemma 4.17 on page 154.

186 5 Automatic Loop Invariant Synthesis

ϕ such that the lifted characteristic function Θ
wp
C f of C w.r.t. f can be written

in such a way that for all h ∈ LExp, we have

Θ
wp
C f (h)

=
(n∑

i=1

[ϕ ∧ϕi] ·
(ni∑

j=1

pi,j · h
[
updi,j

])

︸ ︷︷ ︸
[ϕ]·wp⟦C′⟧(h)

)
+ [¬ϕ ∧ϑ1] · e1 + . . .+ [¬ϕ ∧ϑk] · ek
︸ ︷︷ ︸

[¬ϕ]·f

,

where the pi,j are appropriate rational probabilities and the updi,j are appropri-
ate substitutions of variables by arithmetic expressions corresponding to the
assignment statements in the loop body C′. We construct T1 by associating to
each partition ϕ ∧ϕi a templated arithmetic expression over {x1, . . . ,xm}:

T1 =
(n∑

i=1

[ϕ ∧ϕi] ·
(
bi +

m∑

j=1

ai,j · xj
))

+ [¬ϕ ∧ϑ1] · e1 + . . .+ [¬ϕ ∧ϑk] · ek︸ ︷︷ ︸
[¬ϕ]·f

,

where the Boolean expressions in T1 partition States by construction.

Example 5.4.
Consider the following loop C ∈ LpGCL:

while (x ≤ 1) {
{y := 1 } [1/2] {y := 2 } ;
if (z = 0) {

x := x+ 1

}else {
x := x+ 2

}
}

Moreover, fix the postexpectation

f = [y = 1] · 1 + [y , 1] · 0 .

5

5.6 The Template Generator 187

We have for every h ∈ LExp,

Θ
wp
C f (h)

= [x ≤ 1∧ z = 0] · (1/2 · h [y,x/1,x+ 1] + 1/2 · h [y,x/2,x+ 1])

+ [x ≤ 1∧¬(z = 0)] · (1/2 · h [y,x/1,x+ 2] + 1/2 · h [y,x/2,x+ 2])

+ [¬(x ≤ 1)∧ y = 1] · 1 + [¬(x ≤ 1)∧ y , 1] · 0 .

Hence, the initial template T1 is given by

T1 = [x ≤ 1∧ z = 0] · (b1 + a1,1 · x+ a1,2 · y + a1,3 · z)
+ [x ≤ 1∧¬(z = 0)] · (b2 + a2,1 · x+ a2,2 · y + a2,3 · z)
+ [¬(x ≤ 1)∧ y = 1] · 1 + [¬(x ≤ 1)∧ y , 1] · 0 .

5.6.2 Template Refinement

We describe three template refinement strategies. The performance of these
strategies is evaluated empirically in Section 5.8.

Static Hyperrectangle Refinement for Finite-State Loops. This strategy pro-
duces fixed-partition templates. For finite-state loops, we assume that each
program variable is upper-bounded by a given constant. Hence, the (relevant)
state space is (a subset of) a bounded hyperrectangle. We obtain template Ti
for i > 1 by splitting each dimension of this hyperrectangle into i equally-sized
parts10, thus obtaining (at most) im hyperrectangles. Let these hyperrectangles
be described by the Boolean expressions η1, . . . ,ηk and assume that the initial
template T1 is given by

[B1] · E1 + . . .+ [Bn] · En +
∑

i

[ϑi] · ei
︸ ︷︷ ︸

[¬ϕ]·f

.

10if possible, i.e., if i does not exceed the size of the dimension

188 5 Automatic Loop Invariant Synthesis

Then, Ti+1 is given by

(k∑

j=1

[
B1 ∧ ηj

]
· E1,j

)
+ . . . +

(k∑

j=1

[
Bn ∧ ηj

]
· En,j

)
+

∑

i

[ϑi] · ei
︸ ︷︷ ︸

[¬ϕ]·f

,

where the El,j are templated arithmetic expressions over {x1, . . .xm}.

Example 5.5.
Let T1 be the template

T1 = [x < 10∧ y < 10] · (a · x+ b · y + c) + [¬(x < 10∧ y < 10)] · 1 .

The static hyperrectangle refinement produces

T2 = [x < 10∧ y < 10∧ x < 5∧ y ≥ 5] · (a1 · x+ b1 · y + c1)

+ [x < 10∧ y < 10∧ x < 5∧ y < 5] · (a2 · x+ b2 · y + c2)

+ [x < 10∧ y < 10∧ x ≥ 5∧ y ≥ 5] · (a3 · x+ b3 · y + c3)

+ [x < 10∧ y < 10∧ x ≥ 5∧ y < 5] · (a4 · x+ b4 · y + c4)

+ [¬(x < 10∧ y < 10)] · 1 .

Dynamic Hyperrectangle Refinement. This technique does not require the
given loop to be finite-state and produces variable-partition templates. We
proceed as for static hyperrectangle refinement but do not fix where we split the
hyperrectangle, i.e., we introduce template variables in the Boolean expressions
encoding the boundaries of the hyperrectangles.

Example 5.6.
Let T1 be the template

T1 = [x < 10∧ y < 10] · (a · x+ b · y + c) + [¬(x < 10∧ y < 10)] · 1 .

The dynamic hyperrectangle refinement produces

T2 = [x < 10∧ y < 10∧ x < d1 ∧ y ≥ d2] · (a1 · x+ b1 · y + c1)

+ [x < 10∧ y < 10∧ x < d1 ∧ y < d2] · (a2 · x+ b2 · y + c2)

5

5.7 Extensions for Termination and Lower Bounds 189

+ [x < 10∧ y < 10∧ x ≥ d1 ∧ y ≥ d2] · (a3 · x+ b3 · y + c3)

+ [x < 10∧ y < 10∧ x ≥ d1 ∧ y < d2] · (a4 · x+ b4 · y + c4)

+ [¬(x < 10∧ y < 10)] · 1 .

Inductivity-Guided Refinement. This technique produces fixed-partition
templates. Suppose the synthesizer reports that for the current template Ti ,
we have ⟨Ti⟩ ∩ AdmInv = ∅. We refine using a hint, namely the last partially
admissible instance I ∈ ⟨Ti⟩ provided by the synthesizer. Let

I =
[
η′1

] · a′1 + . . .+
[
η′k
]
· a′k′ +

∑

i

[ϑi] · ei
︸ ︷︷ ︸

[¬ϕ]·f

,and

Θ
wp
C f (I) = [η1] · a1 + . . .+ [ηk] · ak +

∑

i

[ϑi] · ei
︸ ︷︷ ︸

[¬ϕ]·f

.

We adapt the construction for computing pointwise minima of piecewise linear
expectations from Section 4.6.3.4 to partition States into those parts where I is
inductive, i.e., Θ

wp
C f (I) ⊑ I , and where it is not. We obtain Ti+1 by letting

Ti+1 =
k∑

i=1

k′∑

j=1

[
ηi ∧ η′j ∧ ai ≤ a′j

]
· Ei,j,1 +

[
ηi ∧ η′j ∧ ai > a′j

]
· Ei,j,2

+
∑

i

[ϑi] · ei
︸ ︷︷ ︸

[¬ϕ]·f

.

Where the Ei,j,1 and Ei,j,2 are templated arithmetic expressions over {x1, . . . ,xm}.

5.7 Extensions for Termination and Lower Bounds

We extend our approach to (i) proving universal positive almost-sure termination
(UPAST) — termination in finite expected runtime on all inputs — by synthesiz-
ing piecewise linear upper bounds on expected runtimes, and to (ii) verifying

190 5 Automatic Loop Invariant Synthesis

lower bounds on possibly unbounded expected outcomes.

5.7.1 Verifying Positive Almost-Sure Termination

We leverage Kaminski et al.’s weakest preexpectation-style ert calculus for
reasoning about expected runtimes [KKMO16; KKMO18]:

Theorem 5.8 (Reasoning about Expected Runtimes of Loops).
For every loop C = while (B) {C′ } ∈ pGCL, the monotone function

Φert
C : E→ E , Φert

C (X) = 1 + Φ
wp
C 0(X) ,

obtained from Φ
wp

0 C (cf. Definition 2.21 on page 63) satisfies

(
lfp Φert

C

)
(σ) =

“expected number of loop guard evaluations
when executing C on σ " .

In particular,

C is UPAST iff for all σ ∈ States :
(
lfp Φert

C

)
(σ) <∞ .

All properties of Φ
wp
C 0 relevant to our approach carry over to Φert

C , thus enabling
the synthesis ert-superinvariants from FinLExp, i.e.,

I ∈ FinLExp with Φert
C (I) ⊑ I
︸ ︷︷ ︸

I is ert-superinvariant (of C)

.

Such I upper-bound the expected number of loop iterations for every initial state
[KKMO16, Theorem 3] and, since instances I ∈ ⟨T ⟩ of templates T ∈ TExp never
evaluate to infinity, I witnesses UPAST of the given loop. We refer to [Kam19,
Chapter 7] for an in-depth treatment of the ert-calculus.

Example 5.7.
Consider the geometric loop C given by

while (y = 1) { {y := 0 } [1/2] {x := x+ 1 } } .
Then C is UPAST as witnessed by the ert-superinvariant

I = [y = 1] · 3 + [y , 1] · 1 .
I being an ert-superinvariant tells us that the expected number of loop
guard evaluations when executing C on an initial state σ with σ (y) = 1 is at

5

5.7 Extensions for Termination and Lower Bounds 191

most 3. To see that I is an ert-superinvariant, consider the following:

Φert
C (I)

= 1 + Φ
wp
C 0(I)

= 1 + [y = 1] · (1/2 · 1 + 1/2 · 3) + [y , 1] · 0
= [y = 1] · 3 + [y , 1] · 1
⊑ I .

Our implementation synthesizes I automatically.

5.7.2 Verifying Lower Bounds on Expected Outcomes

Consider the problem of verifying a lower bound g ⊑ wp⟦C⟧ (f) for some loop
C = while (ϕ) {C′ } ∈ LpGCL and f ,g ∈ FinLExp. It is straightforward to modify
our approach for the synthesis of wp-subinvariants from FinLExp, i.e.,

I ∈ LExp with I ⊑ Φ
wp
C f (I)

︸ ︷︷ ︸
I is wp-subinvariant (of C w.r.t. f)

.

As mentioned in Section 2.4.4, it is important to note that wp-subinvariants do
not necessarily lower-bound wp⟦C⟧ (f). Therefore, Hark et al. [HKGK20] have
proposed a more involved yet sound induction rule for lower bounds.

Theorem 5.9 (Adapted from Hark et al. [HKGK20]).
Let T ∈ TnExp be a natural template and let C = while (ϕ) {C′ } and f ∈ LExp
not containing∞. Moreover, let I ∈ ⟨T ⟩. If

1. I ∈ FinLExp,

2. I ⊑ Φ
wp
C f (I),

3. C is UPAST (cf. Section 5.7.1), and

4. there is β ∈R≥0 such that for all σ |= ϕ, we havea

Φ
wp
C f

(
|I − ⟦I⟧ (σ)|

)
(σ) ≤ β

︸ ︷︷ ︸
I is conditionally difference bounded (c.d.b.)

,

then

I ⊑ wp⟦C⟧ (f) .

192 5 Automatic Loop Invariant Synthesis

aFor X ∈ E and α ∈R≥0, we define |X −α| = λσ. |X(σ)−α|.

Analogously to Theorem 5.1, given T ∈ TExp, we can compute T ′ ∈ TExp such that

for all template valuations I :

T [I] ∈ LExp implies
�T ′ [I]

�
= λσ. Φ

wp
C f (|T [I]− ⟦T [I]⟧ (σ)|) (σ) ,

which facilitates the extension of our verifier and synthesizer for encoding
and checking conditional difference boundedness. Hence, we can employ our
framework for verifying g ⊑ wp⟦C⟧ (f) by (i) proving UPAST of C as described
in Section 5.7.1 and (ii) synthesizing a c.d.b. sub-invariant I with g ⊑ I . We refer
to [Har21] for an in-depth and more general treatment of Theorem 5.9.

Example 5.8.
Reconsider the geometric loop C given by

while (y = 1) { {y := 0 } [1/2] {x := x+ 1 } } .
and suppose we aim to verify by Theorem 5.9 that g ⊑ wp⟦C⟧ (f) holds for

g = f = x .

For that, we choose

I = [y = 1] · (x+ 1) + [y , 1] · x ∈ FinLExp .

We have seen that Φ
wp
C f (I) = I so, in particular, I ⊑ Φ

wp
C f (I), i.e., I is a wp-

subinvariant of C w.r.t. f . Moreover, C is UPAST by Example 5.7. Finally, I
is c.d.b. for β = 1 because we have for all σ |= ϕ,

Φ
wp
C f

(
|I − ⟦I⟧ (σ)|

)
(σ)

=
(

1/2 · (|I − ⟦I⟧ (σ)|) [y/0] + 1/2 · (|I − ⟦I⟧ (σ)|) [x/x+ 1]
)
(σ)

=
(

1/2 · (|x − ⟦I⟧ (σ)|) + 1/2 · (|x+ 1− ⟦I⟧ (σ)|)
)
(σ)

=
(

1/2 · (|σ (x)− (σ (x) + 1)|) + 1/2 · (|σ (x) + 1− (σ (x) + 1)|)
)
(σ)

= 1/2 · 1 + 1/2 · 0 ≤ 1 .

Our implementation automatically proves UPAST and synthesizes I and β.

5

5.8 Implementation and Experiments 193

5.8 Implementation and Experiments

We have implemented a prototype11 of our techniques called cegispro2 —
CEGIS for PRObabilistic PROgrams — in Python 3.11 using the SMT solver
Z3 [MB08] and the solver-API PySMT [GM15]. We investigate the applicability
and scalability of our approach with a focus on the expressive power of piecewise
linear expectations. Moreover, we compare with three state-of-the-art tools —
Storm [HJKQ+22; DJKV17], Absynth [NCH18], and Exist [BTPH+22] — on
subsets of their benchmarks fitting into our framework.

Finite-State Loops. Figure 5.3a depicts experiments on verifying upper
bounds on expected outcomes of finite-state loops, including the model of the
bounded retransmission protocol (brp) from Section 5.2 and the IPv4 zeroconf
protocol (zeroconf) [CAG05] adapted from [BK08, Chapter 10]. The size of the
relevant state space — the number of states satisfying the loop guard — ranges
from 105 to 1016. For each benchmark, i.e., program and specification with
increasingly sharper upper bounds on expected outcomes, we evaluate cegis-
pro2 on all template refinement strategies (cf. Section 5.6.2). More details on
these experiments are provided in Appendix 3.1. We compare to both explicit-
and symbolic-state engines of the probabilistic model checker Storm 1.6.3 with
exact arithmetic. Storm implements efficient linear programming-based model
checking methods. Figure 5.3a depicts the runtime of the best configuration for
Storm and cegispro2, respectively. Details are provided in Table 1 on page 276.
Results. (i) Our CEGIS approach synthesizes admissible invariants for a variety
of programs. We mostly find syntactically small invariants with a small number
of counterexamples compared to the size of the relevant state space (cf. Table 1).
This indicates that piecewise linear expectations can be sufficiently expressive
for the verification of finite-state programs. The overall performance of cegis-
pro2 depends highly on the sharpness of the given bounds. (ii) Our approach
can outperform state-of-the-art explicit- and symbolic-state model checking tech-
niques and can scale to huge state spaces. There are also simple programs where
our method fails to find an admissible invariant (gridbig, cf. Appendix 3.1) or
finds admissible invariants only for rather simple properties while requiring
many counterexamples (gridsmall). Whether we need more sophisticated tem-
plate refinements or whether these programs are not amenable to piecewise
linear expectations is left for future work. (iii) There is no clear winner be-
tween the template refinement strategies producing fixed-partition templates

11The prototype is available open-source from https://github.com/moves-rwth/cegispro2.

https://github.com/moves-rwth/cegispro2

194 5 Automatic Loop Invariant Synthesis

1 5 20 100

1000
3000

1

5

20

100

1000

3000

M
O
/TO

MO/TO

cegispro2

St
or

m

(a) Verifying upper bounds for
finite-state loops (TO=2h).

0.01

0.5

5 50

0.01

0.5

5

50

cegispro2
(exact arithmetic)

A
bs
yn

th
(u

se
s

fl
oa

ts
)

(b) Verifying UPAST.

1 5 10 20 40 100
200

1

5
10
20
40

100
200

M
O
/TO

MO/TO

cegispro2

E
xi
st

(c) Synthesizing wp-subinvariants
(TO=5min).

1 5 10 20 40 100
200

1

5
10
20
40

100
200

M
O
/TO

MO/TO

cegispro2
(sound)

ce
gi
sp
ro

2
(s
u
b
on

ly
)

(d) Synthesizing wp-subinvariants
only vs. verifying lower bounds
by Theorem 5.9 (TO=5min).

Figure 5.3: Performance of cegispro2 vs. state-of-the-art tools on three verifica-
tion tasks (time in seconds, log-scaled; MO=8GB). Markers above the
solid line depict benchmarks where cegispro2 is faster (in different
orders of magnitude marked by the dashed lines), and vice versa.

5

5.8 Implementation and Experiments 195

— the static hyperrectangle refinement and the inductivity-guided refinement
(cf. Table 1). We further observe that the strategy producing variable partition
templates — the dynamic hyperrectangle refinement — is not competitive as sig-
nificantly more time is spent in the synthesizer to solve formulae with Boolean
structures12. We conclude that searching for suitable fixed-partition templates
in a separate outer loop (cf. Figure 5.1 on page 168) can pay off.

Verifying UPAST. Figure 5.3b depicts experiments on proving UPAST of
(possibly infinite-state) loops taken from [NCH18] restricted to linear loops
with flattened nested loops. We compare to the linear programming-based
tool Absynth [NCH18] for computing upper bounds on expected runtimes.
These benchmarks do not require template refinements. More details on these
experiments are provided in Appendix 3.2 and Table 2 on page 282.
Results. cegispro2 can prove UPAST of various infinite-state programs from
the literature using very few counterexamples. Absynth mostly outperforms
cegispro213. The runtime bounds synthesized by cegispro2 are often as tight as
the bounds synthesized by Absynth (cf. Table 2).

Verifying Lower Bounds. Figure 5.3c depicts experiments aiming to verify
lower bounds on expected outcomes of (possibly infinite-state) loops taken
from [BTPH+22]. We compare to Exist [BTPH+22]14, which combines CEGIS
with sampling- and ML-based techniques. However, Exist synthesizes wp-
subinvariants only, which might be unsound for proving lower bounds (cf.
[Kam19, Counterexample 5.8]). Thus, for a fair comparison, Figure 5.3c depicts
experiments where both Exist and cegispro2 synthesize wp-subinvariants only.
More details on these experiments are provided in Appendix 3.3. In Figure 5.3d,
we compare cegispro2 that finds wp-subinvariants only with cegispro2 that
additionally proves UPAST and c.d.b., thus soundly verifying lower bounds by
Theorem 5.9 on page 191. No benchmark requires template refinements.
Results. cegispro2 is capable of verifying lower bounds on expected out-
comes and outperforms Exist (on 30/32 benchmarks) for synthesizing wp-
subinvariants. Additionally verifying UPAST and c.d.b. naturally requires more
time. A manual inspection reveals that, for most TO/MO cases in Figure 5.3d,

12Recall from Theorem 5.6 that, for fixed-partition templates, the synthesizer can be implemented
via linear programming.

13Absynth uses floating-point arithmetic whereas cegispro2 uses exact arithmetic.
14Exist supports parametric probabilities, which are not supported by our tool. We have instantiated

these parameters with varying probabilities to enable a comparison.

196 5 Automatic Loop Invariant Synthesis

there is no suitable c.d.b. wp-subinvariant. One benchmark times out because
we could not prove UPAST for that benchmark.

5.9 Future and Related Work

Future Work. We have restricted to piecewise linear expectations. A natural
direction for future work is to investigate whether our approach can be extended
to piecewise polynomial expectations in a practically feasible manner. This is
unclear since, e.g., a straightforward extension would yield the verifier to reason
about undecidable nonlinear integer arithmetic. Another direction for future
work is to investigate more sophisticated template refinement strategies.

The gridbig benchmark mentioned in the previous section emphasizes the
relevance of pursuing the aforementioned directions: For C given by

while (x < 1000∧ y < 1000) {
{x := x+ 1 } [1/2] {y := y + 1 }

} ,

Storm verifies the specification

wp⟦C⟧ ([y = 1000]) ⊑ [x = 0∧ y = 0] · 0.99 + [¬(x = 0∧ y = 0)] ·∞
within 11 seconds whereas cegispro2 times out after 2 hours. One could argue
that both the program C itself and the above specification are rather simple
since for the initial state σ with σ (x) = σ (y) = 0, we have

wp⟦C⟧ ([y = 1000]) (σ) = 0.5 .

The reason for cegispro2’s bad performance is unclear and needs to be investi-
gated: While there certainly is a piecewise linear admissible invariant, namely

I =
∑

σ |=x<1000∧y<1000

[x = σ (x)∧ y = σ (y)] ·wp⟦C⟧ ([y = 1000]) (σ)

+ [¬(x < 1000∧ y < 1000)∧ y = 1000] · 1
+ [¬(x < 1000∧ y < 1000)∧ y , 1000] · 0 ,

this invariant is not particularly concise in the sense that its syntactic repre-
sentation enumerates all (relevant) states. The question of whether there is a
significantly more concise piecewise linear admissible invariant remains open.

5

5.9 Future and Related Work 197

If this is the case, we could investigate how to improve our template refine-
ment strategies for finding suitable templates. Otherwise, we could investigate
whether, e.g., polynomial expectations are more suited.

Moreover, our CEGIS framework can be combined with k-induction for prob-
abilistic programs from Chapter 4: One could try to synthesize k-inductive
invariants for k > 1, which might mitigate the need for template refinements
and yield more concise invariants. Finally, it would be interesting to extend our
framework to weighted programs [15], which might, e.g., enable the automatic
competitive analysis of online algorithms [BE98].

Related Work. Besides the comparisons in Section 5.8, we discuss works in
invariant synthesis, probabilistic model checking, and symbolic inference.

Invariant Synthesis. Template-based (qualitative) invariant synthesis for non-
probabilistic programs was pioneered by Colón and et al. [CSS03]. In the
nonprobabilistic setting, ICE [GLMN14] is a template-based, counterexample
guided technique for learning invariants. [UTK21] presents a CEGIS-based ap-
proach for the relational verification of programs. [KUH21] combines decision-
tree learning with CEGIS for verifying program termination. More inductive
synthesis approaches are surveyed in [ABDF+15; FB18].

Our approach is largely inspired by template-based quantitative invariant
synthesis for probabilistic programs, which was pioneered by Katoen et al.
[KMMM10]. They consider the synthesis of wp-subinvariants for loops over
R-valued program variables, which allows to leverage Motkzin’s transposition
theorem [Mot36] to derive constraints on the template variables characterizing
all inductive instances of a given template. Rather than solving these constraints
in a counterexample-guided manner, they are solved in one shot using quantifier
elimination for nonlinear real arithmetic [Tar48]. The approach has been imple-
mented in the tool Prinsys [GKM13; Gre16], which, in contrast to our approach,
also supports nonlinear programs and invariants as well as parametric proba-
bilities for probabilistic choices. However, templates have to be provided by
the user and automatic template refinement — in case, e.g., the given template
does not admit an inductive instance — is not considered. Moreover, [GKM13;
Gre16] considers benchmarks with rather small templates (at most 3 summands
and at most 3 template variables). On the other hand, we have shown that our
incremental counterexample-guided approach for the piecewise linear setting
scales to templates with up to 23 summands and ca. 60 template variables. It
would be interesting to investigate whether the quantifier elimination-based
techniques employed by Prinsys can also scale to such larger templates. A

198 5 Automatic Loop Invariant Synthesis

direct comparison of cegispro2 and Prinsys is, however, not meaningful since
cegispro2 synthesizes inductive invariants for verifying a given bound, whereas
Prinsys synthesizes all inductive instances of a given template without consid-
ering a given bound. Moreover, Prinsys cannot synthesize wp-superinvariants
for upper-bounding expected outcomes.

Other constraint solving-based approaches [FZJZ+17; CHWZ15] also aim to
synthesize (non-piecewise) polynomial invariants for proving lower bounds on
expected outcomes of programs over R-valued program variables. In particu-
lar, [CHWZ15] also obtains constraints from counterexamples ensuring certain
conditions on candidate invariants. Apart from various technical differences, we
identify the following conceptual differences: (i) we support piecewise defined
expectations; (ii) we consider strategies for refining templates; (iii) we focus on
the integration of fast verifiers over efficiently decidable theories; and (iv) we
do not need assumptions on the boundedness of expectations.

Various martingale-based approaches, such as [CS13; CFG16; CNZ17; FC19;
FH15; ACN18; MBKK21], aim to synthesize quantitative invariants over R-
valued variables. In particular, [TOUH21; TOUH18] provide surveys on
martingale-based approaches for approximating reachability probabilities
in (possibly nondeterministic and polynomial) probabilistic programs. By
combining martingale-, fixpoint-, and category-theoretic observations, they
obtain new martingale-based proof rules. These rules are combined with (linear
and polynomial) template-based techniques, yielding new synthesis algorithms.
Our approach — when restricted to reachability probabilities15 — might benefit
from these observations. Finally, [BEFH16] synthesizes bounds on expected
outcomes using a symbolic construction based on Doob’s decomposition, which,
however requires user-supplied hints.

[AGR21] employs a CEGIS loop to train a neural network dedicated to learn-
ing a ranking supermartingale witnessing UPAST of (possibly continuous) prob-
abilistic programs. They also use SMT solvers to check the supermartingale
condition and use the provided counterexamples to guide the learning pro-
cess. Besides the discussed tool Absynth [NCH18], the tools KoAT [MHG21],
eco-imp [AMS20], pRaML [WKH20], and the approach from [WFGC+19] also
consider the automatic synthesis of bounds on expected runtimes (or more gen-
eral resources) of (possibly nondeterministic) probabilistic programs. [KG23;
GABE+17] combine constraint solving with dependency pairs [AG00] to auto-
matically prove almost-sure termination of probabilistic term rewriting.

All of these synthesis techniques can be classified into two categories:

15e.g., when reasoning about expected outcomes of the form wp⟦C⟧ ([ϑ])

5

5.9 Future and Related Work 199

1. Correct-by-construction techniques use, e.g., quantifier elimination over
the reals to decide whether there exist an admissible invariant I in a given
template T . This obviates the need for a verifier.

2. Counterexample-guided techniques, like our CEGIS approach, which po-
tentially produce non-admissible invariants in a guess-and-check loop.

Except for our CEGIS approach and [GLMN14; AGR21; UTK21; KUH21;
CHWZ15; BTPH+22], all of the above-mentioned works apply correct-by-
construction techniques. An advantage of correct-by-construction techniques
is that16 they can decide whether there is an admissible invariant in a given
template T . For our approach, this is guaranteed only for finite-state loops
(cf. Theorem 5.7). We have opted for a counterexample-guided approach for
two reasons: First, to the best of our knowledge, all correct-by-construction
techniques assume a continuous state space (e.g., R≥0-valued program vari-
ables) rather than a discrete one (e.g., N-valued program variables) so that
quantifier elimination techniques apply. In a setting like ours where we are
actually considering N-valued program variables, this is a problem relaxation: A
template T might give rise to an admissible invariant for N-valued program
variables even though this is not the case for R≥0-valued program variables.
Correct-by-construction methods over continuous state spaces might, therefore,
“miss” admissible invariants. Investigating the practical relevance of this
aspect and whether there are correct-by-construction methods for N-valued
program variables is an interesting direction for future work. Second, producing
counterexamples and thereby partially admissible invariants is crucial for our
inductivity-guided template refinement strategy (cf. Section 5.6.2).

Our CEGIS framework is related to quantifier instantiation techniques
implemented in modern SMT solvers. These can be classified into conflict-
based [RTM14; Bar17], model-based [GM09; RTGK+13], enumerative [RBF18],
counterexample-guided [BJ15; RDKB+15], and syntax-guided techniques
[PNB17; NPRB+21]. Our CEGIS framework can be considered a mixture
of model-based and syntax-guided instantiation techniques tailored to the
verification of bounds on expected outcomes of probabilistic loops.

The recurrence solving-based approaches in [BKS19; BKS20b] synthesize non-
linear invariants for moments of program variables. The underlying algebraic
techniques are confined to the subclass of prob-solvable loops.

Probabilistic Model Checking. Symbolic probabilistic model checking mostly uses

16when restricting the class of considered programs and specifications appropriately (e.g., when
restricting to linear loops and piecewise linear expectations over R≥0-valued program variables)

200 5 Automatic Loop Invariant Synthesis

algebraic decision diagrams [BCHK+97; AKNP+00], representing the transition
relation symbolically and using equation solving or value iteration [BKLP+17;
HK20; QK18] on that representation. Alternative CEGIS approaches synthesize
Markov chains [CHJK21] and probabilistic programs [ACJK21; ACJK+21].

Symbolic Inference. Finite-horizon probabilistic inference employs weighted
model counting via either decision diagrams annotated with probabili-
ties as in Dice [HvM20; HJVM+21] or approximate versions by SAT/SMT-
solvers [CFMV15; CMMV16; CDM17; RWKY+14; BPv15]. PSI [GMV16] de-
termines symbolic representations of exact distributions. Prodigy [CKKW22]
decides whether a probabilistic loop agrees with an (invariant) specification.

6

201

6 Property Directed Reachability

This chapter is based on our prior publications [7; 6].

Aaron R. Bradley’s algorithm IC3 (shorthand for Incremental construction of
Inductive clauses for Indubitable correctness) [Bra11a] has been a leap forward
in symbolic model checking of transition systems. One year after IC3 was
published, Een, Mischenko, and Brayton [EMB11] proposed some improvements
for Bradley’s algorithm and coined their variant Property Directed Reachability
(PDR, for short), which is nowadays among the state-of-the-art approaches in
the field of symbolic hardware and software model checking1.

Markov decision processes can be thought of as probabilistic extensions of
transition systems. Given the success of IC3, this raises the question:

Can we transfer the key principles underlying IC3 to the probabilistic setting to
obtain a scalable algorithm for reasoning about safety of Markov decision processes?

Our goal is to develop theoretical foundations to answer this question. Towards
this end, we present PrIC3 (pronounced pricy-three) — a conservative and truly
quantitative extension of IC3 to symbolic model checking of MDPs. Our main
focus is to develop the theory underlying PrIC3. Alongside, we present a first
implementation of PrIC3 for model checking finite-state probabilistic programs
in a symbolic manner by leveraging the weakest preexpectation calculus.

Chapter Outline. In Section 6.1, we treat the key principles underlying IC3.
Equipped with these key principles, we then present our PrIC3 framework for
reasoning about safety of Markov decision processes in Section 6.2.

6.1 Foundations of IC3 for Transition Systems

In this section, we aim to obtain an understanding of the key principles under-
lying Bradley’s IC3 algorithm with adaptions from PDR. The results presented

1Even though we adapt some of the improvements from PDR, we will mostly stick to the original
name IC3 since most of our results are inspired by Bradley’s seminal work.

202 6 Property Directed Reachability

in this section are not new. However, the presentation differs from [Bra11a;
EMB11]: Bradley as well as Een, Mischenko, and Brayton’s presentation is tai-
lored to the symbolic nature of IC3, i.e., to the fact that IC3 heavily exploits the
symbolic encodings of the transition systems it operates on. We, on the other
hand, abstract from such encodings and present IC3 in fixpoint-theoretic terms2

to focus on its essence. It is for this reason that we will moreover omit several
optimizations of IC3, which are inessential to its soundness.

Section Outline. Section 6.1.1 details the input to IC3 and the decision prob-
lem it tackles. Inductive invariants for verifying safety and the (loop) invariants
IC3 maintains throughout its execution are treated in Section 6.1.1.1 and Sec-
tion 6.1.1.2, respectively. The IC3 main loop is presented in Section 6.1.2.
Strengthening in IC3 — a procedure invoked by the IC3 main loop — is discussed
in Section 6.1.3. Finally, in Section 6.1.3, we discuss a key ingredient for IC3’s
scalability called (inductive) generalization.

6.1.1 Setting

As with k-induction and BMC (cf. Section 4.2), IC3 verifies or refutes invariant
properties of (finite-state) transition systems, i.e., whether the set of states
reachable in a given transition system covers all states in a given set of “safe”
states. To align the problem tackled by IC3 with the one tackled by PrIC3 for
MDPs (cf. Section 6.2.1), we present a variant3 of IC3 for solving an equivalent
problem: Throughout this section, fix a finite-state transition system4

TS = (S , −→, {sI }) and a set B ⊆ S of “bad” states .

IC3 verifies or refutes whether some state in B is reachable from the initial
state sI . To formalize this, we define the set of states reaching B as

♦B = {s ∈ S | exists finite execution fragment s0 . . . sn : s0 = s and sn ∈ B} .
We call TS safe if sI < ♦B. The goal of IC3 can thus be cast as:

Verify or refute that TS is safe.

2The foundations of this perspective on IC3 have been laid in [4, Chapter 3] of the author’s
master thesis. The formalization presented here is improved and aligned with the subsequently
developed results presented in Section 6.2 and treats inductive generalization more formally.

3bearing close resemblance to what [EMB11] calls “dual PDR ”, which is detailed in [SS17].
4cf. Section 2.1.1.

6

6.1 Foundations of IC3 for Transition Systems 203

Refuting safety of TS boils down to determining a single finite execution frag-
ment from sI to some state in B — a counterexample to safety. For verifying safety,
IC3 computes an inductive invariant, which is detailed in Section 6.1.1.1.

Adopting IC3 terminology, we call sets F ⊆ S of states frames. We will often
identify frames F with their indicator functions of type S → {0,1}, i.e.,

F (s) =


1 if s ∈ F
0 otherwise .

In particular, we have F (s) ≤ 0 iff s < F and F (s) > 0 iff s ∈ F . Now, given a
frame F , we define set of (direct) predecessors of states in F as

Preds(F) = {s ∈ S | exists t ∈ F : s −→ t} .

We moreover define the qualitative Bellman operator as the frame transformer

Ψ : (S → {0,1})→ (S → {0,1}) , Ψ (F) = B∪ Preds(F) .

The operator Ψ can be shown to be monotone and continuous w.r.t. complete
lattice (P (S) , ⊆) induced by TS. Hence, lfp Ψ exists uniquely by Tarski’s Theo-
rem 2.1 on page 20. Crucially, we have

♦B = lfp Ψ .

6.1.1.1 Inductive Frames

If TS is safe, IC3 finds a frame F ∈ S → {0,1} such that (i) the initial state sI does
not belong to F and (ii) applying the qualitative Bellman operator Ψ to F does
not take us up in the partial order ⊆ on frames, i.e.,

(i) F (sI) ≤ 0 and (ii) Ψ (F) ⊆ F .

Intuitively, (i) postulates the hypothesis that sI cannot reach B and (ii) expresses
that F is closed under adding bad states and taking predecessors, thus affirming
the hypothesis. Frames satisfying the above conditions are called inductive
invariants in IC3. We adopt this terminology. By Park induction (Lemma 2.4 on
page 28), which in our setting reads

Ψ (F) ⊆ F implies lfp Ψ = ♦B ⊆ F ,

204 6 Property Directed Reachability

an inductive invariant F witnesses that TS is safe because

(♦B) (sI) =
(
lfp Ψ

)
(sI) ≤ F (sI) ≤ 0 .

Such an inductive invariant exists iff TS is safe, which can be seen by taking
F = ♦B. If no inductive invariant exists, then IC3 will find a counterexample to
safety: a finite execution fragment from the initial state sI to a bad state in B.

6.1.1.2 The IC3 invariants

IC3 aims to find the inductive invariant by maintaining a sequence of frames

F0 ⊆ F1 ⊆ F2 ⊆ . . .

such that Fi overapproximates the set

♦≤iB of states reaching B within at most i steps ,

which we characterize using the qualitative Bellman operator: For any i ≥ 0,

♦≤iB = Ψ i+1(∅) .

Notice that the set ♦B of states reaching B in an unbounded number of steps is

♦B

= lfp Ψ

(∗)
=

⋃
{Ψ n(∅) | n ∈N}

=
⋃{
♦≤nB | n ∈N

}
,

where (∗) is a consequence of Kleene’s Theorem 2.2 on page 22.
The sequence F0 ⊆ F1 ⊆ F2 ⊆ . . . maintained by IC3 should frame-wise overap-

proximate the sequence Ψ (∅) ⊆ Ψ 2(∅) ⊆ Ψ 3(∅) Pictorially:

F0 ⊆ F1 ⊆ F2 ⊆ . . . ⊆ Fk

⊆ ⊆ ⊆ ⊆

∅ ⊆ Ψ (∅) ⊆ Ψ 2(∅) ⊆ Ψ 3(∅) ⊆ . . . ⊆ Ψ k+1(∅)
However, the sequence Ψ (∅),Ψ 2(∅),Ψ 3(∅), . . . will never explicitly be known to
IC3. Instead, IC3 will ensure the above frame-wise overapproximation property
implicitly by enforcing the so-called IC3 invariants on the frame sequence:

6

6.1 Foundations of IC3 for Transition Systems 205

Definition 6.1 (IC3 Invariants).
Let k ≥ 0. We say that the frames F0, . . . ,Fk satisfy the IC3 invariants, a fact we
denote by IC3Inv (F0, . . . ,Fk), if all of the following hold:
1. Initiality: F0 = Ψ (∅)
2. Chain Property: for all 0 ≤ i < k : Fi ⊆ Fi+1
3. Frame-Safety: for all 0 ≤ i < k : Fi(sI) ≤ 0
4. Relative Inductivity: for all 0 ≤ i < k : Ψ (Fi) ⊆ Fi+1

Notice that Fk possibly contains sI , which is an adaption from PDR [EMB11].
The IC3 invariants enforce the above picture: The chain property ensures

F0 ⊆ F1 ⊆ . . . ⊆ Fk .
Moreover, we have Ψ (∅) = F0 ⊆ F0 by initiality. Assuming Ψ i+1(∅) ⊆ Fi as
induction hypothesis, monotonicity of Ψ and relative inductivity imply

Ψ i+2(∅) ⊆ Ψ (Fi) ⊆ Fi+1 .

By overapproximating Ψ (∅),Ψ 1(∅),Ψ 2(∅), . . ., the frames F0, . . . , Fk indeed over-
approximate the sets ♦≤0B, ♦≤1B, ♦≤2B, . . .:

Lemma 6.1 (IC3 Invariants yield Overapproximations).
Let F0, . . . ,Fk be frames satisfying the IC3 invariants. Then

for all i ∈ {0, . . . , k} : ♦≤iB ⊆ Fi .
In particular, a sequence of frames F0, . . . ,Fk satisfying the IC3 invariants wit-
nesses that sI cannot reach B within i ∈ {0, . . . , k − 1} steps by frame-safety.

Given two frames F ,F ′ , we say that F ′ is a strengthening of F , if F ′ ⊆ F . We
say that a sequence F ′0 , . . . ,F ′k of frames is a strengthening of F0, . . . ,Fk , if F ′i is a
strengthening of Fi for all i ∈ {0, . . . , k}.

Lemma 6.2 (Step-Bounded Safety via Strengthenings).
Let F0, . . . ,Fk be frames satisfying the IC3 invariants. There is a strengthening
F ′0 , . . . ,F ′k of F0, . . . ,Fk satisfying

1. IC3Inv
(
F ′0 , . . . ,F ′k

)
, and

2. F ′k (sI) ≤ 0

if and only if sI < ♦
≤kB.

As for proving that sI cannot reach B in an unbounded number of steps, it
suffices to find two consecutive frames, say Fi and Fi+1, that coincide:

206 6 Property Directed Reachability

Algorithm 7: IC3 (TS, B)
input: Finite transition system TS, set of bad states B with sI < B
output : true, if TS is safe; otherwise false

1 F0← Ψ (∅); F1←S ; k← 1
2 while true do
3 success, F0, . . . ,Fk ← Strengthen (F0, . . . ,Fk)
4 if ¬success then return false // sI ∈ ♦B
5 Fk+1←S
6 F0, . . . ,Fk+1← Propagate (F0, . . . ,Fk+1)
7 if ∃1 ≤ i ≤ k : Fi = Fi+1 then return true // sI < ♦B
8 k← k + 1

Figure 6.1: The IC3 main loop.

Lemma 6.3 (Inductive Invariants from IC3 Invariants).
Let F0, . . . ,Fk be frames satisfying the IC3 invariants. Then

exists i < k : Fi = Fi+1 implies sI < ♦B .

Proof. Fi = Fi+1 and relative inductivity yield

Ψ (Fi) ⊆ Fi+1 = Fi .
With frame-safety, i.e., Fi(sI) ≤ 0, this renders Fi an inductive invariant. ■

6.1.2 The IC3 Main Loop

Lemma 6.3 provides IC3’s angle of attack for proving a TS safe. Repeatedly
add and strengthen frames while preserving the IC3 invariants until two
consecutive frames coincide, yielding an inductive invariant. This approach
is taken by the main loop IC3 depicted in Algorithm 7. As input, IC3 takes a
transition system TS = (S , −→, SI) and a set B ⊆ S of bad states with5 sI < B.
Since the input is never changed, we assume it to be globally available, also to
subroutines. As output, IC3 returns true if TS is safe, and it returns false if B is

5This assumption simplifies the presentation and can be easily checked upfront.

6

6.1 Foundations of IC3 for Transition Systems 207

reachable from sI . Let us go through the individual steps of IC3.

How IC3 works. Recall that IC3 maintains a sequence of frames F0, . . . ,Fk
which is initialized in l. 1 with k = 1, F0 = Ψ (∅), and F1 = S , which implies
IC3Inv (F0, . . . ,Fk). The while-loop in l. 2 maintains IC3Inv (F0, . . . ,Fk) at all times.
In l. 3, procedure Strengthen — detailed in Section 6.1.3 — is called to de-
termine whether sI ∈ ♦≤kB. By Lemma 6.2, this is equivalent to determining
whether the sequence of frames can be strengthened while preserving the IC3
invariants and ensuring Fk(sI) ≤ 0. It either returns true if successful or re-
turns false if it was unable to do so. The latter case indicates that TS is unsafe.
Formally, Strengthen meets the following specification:

Definition 6.2 (Specification of Strengthen).
Procedure Strengthen is sound, if for all k ≥ 1 and all sequences F0, . . . ,Fk of
frames with IC3Inv (F0, . . . ,Fk), we have:

1. If

Strengthen (F0, . . . ,Fk) = true, F ′0 , . . . ,F ′k ,
then

IC3Inv
(
F ′0 , . . . ,F ′k

)
and Fk(sI) ≤ 0 .

2. If Strengthen (F0, . . . ,Fk) = false, then sI ∈ ♦B.

If Strengthen returns true, then a new frame Fk+1 = S is created in l. 5 and the
extended sequence F0, . . . ,Fk+1 of frames again satisfies the IC3 invariants.

Propagation (l. 6) aims to speed up termination by updating Fi+1(s) by Fi(s)
if this does not violate the IC3 invariants. Consequently, the previously men-
tioned properties remain unchanged. Since propagation can be regarded as an
optimization, we omit the details to focus on the fundamental aspects of IC3.

In l. 7, we check whether we have produced two identical consecutive frames.
If so, TS is safe by Lemma 6.3. Consequently, IC3 returns true. Otherwise, we
increment k and are in the same setting as upon entering the loop, now with an
extended frame sequence; IC3 then performs another iteration.

IC3 terminates for unsafe TS. The following argument requires termination of
Strengthen and Propagate, which we justify in the next section. If TS is unsafe,
then there exists a step-bound n ∈N, such that

sI ∈ ♦≤nB .

208 6 Property Directed Reachability

Algorithm 8: Strengthen (F0, . . . ,Fk)
input: Frames F0, . . . ,Fk with k ≥ 1 and IC3Inv (F0, . . . ,Fk)
output : See Definition 6.2 on page 207

1 Q← {(k,sI)}
2 while Q not empty do
3 (i, s)←Q.popMin() /* pop obligation with minimal frame index */
4 if i = 0 then

/* TS is unsafe */
5 return false,Q.states();

/* check whether Fi(s)← 0 violates relative inductivity */
6 if Ψ (Fi−1)(s) > 0 then choose s′ ∈ Fi−1 with s −→ s′

/* determine whether s′ reaches B within i − 1 steps */
7 Q.push((i − 1, s′) , (i, s))
8 else

/* resolve (i, s) without violating relative inductivity */
9 F1(s)← 0; . . . ;Fi(s)← 0

/* Q empty; all obligations have been resolved */
10 return true, F0, . . . ,Fk

Figure 6.2: Strengthening in IC3. If Strengthen returns false, then Q.states() is
a set of states forming a finite execution fragment from sI to B.

The specification of Strengthen implies that it returns false as soon as it is
invoked on some sequence F0, . . .Fn+1 of length n+ 2 because the frames cannot
be strengthened accordingly by Lemma 6.2. Consequently, IC3 terminates in l. 4.

IC3 terminates for safe TS. Assume again that Strengthen and Propagate ter-
minate. The specification of Strengthen implies that it never returns false.
Since TS is finite-state, every infinite chain F0 ⊆ F1 ⊆ . . . eventually stabilizes6,
yielding IC3’s inductivity check in l. 7 to eventually succeed.

6

6.1 Foundations of IC3 for Transition Systems 209

6.1.3 Strengthening in IC3

When the loop of IC3 invokes Strengthen, we have IC3Inv (F0, . . . ,Fk) and Fk(sI) =
1. The task of Strengthen is to determine whether the frames can be strength-
ened in such a way that the IC3 invariants remain valid and Fk(sI) ≤ 0, which,
by Lemma 6.2, is equivalent to determining whether it holds that

sI ∈ ♦≤kB .

To this end, Strengthen generates (proof) obligations: The first obligation is to
prove that state s = sI cannot reach B within i = k steps. Such an obligation
is denoted by (i, s). To prove that s cannot reach B within i steps, we have to
prove that each direct successor s′ of s cannot reach B within i − 1 steps. For that,
Strengthen considers the frame Fi−1 which, by Lemma 6.1, overapproximates
the set of states reaching B within i −1 steps: If there is no s′ ∈ Fi−1 with s −→ s′ ,
we have proven that indeed s < ♦≤iB. We can then resolve the obligation (i, s) by
excluding s from Fi without violating the IC3 invariants because, intuitively, Fi−1

is strong enough to support the claim s < ♦≤iB.
If, on the other hand, there is an s′ ∈ Fi−1 with s −→ s′ , there are two possibili-

ties: We either have (i) s < ♦≤iB but Fi−1 is not yet strong enough to support this
claim and must hence be strengthened accordingly or (ii) we have s′ ∈ ♦≤i−1B

and thus s ∈ ♦≤iB. To determine which of these possibilities holds, Strengthen
spawns a new obligation (i − 1, s′), which is attempted to be resolved before
reconsidering (i, s).

This way, Strengthen eventually excludes sI from Fk without violating the IC3
invariants, thereby proving that sI < ♦

≤kB, or eventually spawns an obligation
of the form (0, s) with s ∈ B. In the latter case, Strengthen determined a finite
execution fragment from sI to some state in B, witnessing unsafety of TS.

Strengthen is given by the pseudo code in Algorithm 8. It preserves
IC3Inv (F0, . . . ,Fk) at all times. To keep track of unresolved obligations (i, s),
Strengthen employs a priority queue Q which pops obligations with minimal
frame index i first. This queue is initialized in l. 1 with (sI , k). The subsequently
executed while-loop then checks whether Q is empty. If so, all obligations have
been resolved and Fk(sI) ≤ 0. If not, we pop some obligation (i, s) with minimal
frame index i from Q in l. 3. If i = 0, then s ∈ B and the states Q.states() form a
finite execution fragment from sI to s ∈ B, yielding Strengthen to return false
in l. 5. Otherwise, Strengthen checks whether frame Fi−1 is strong enough to

6This is because the complete lattice (P (S) , ⊆) induced by TS has finite height.

210 6 Property Directed Reachability

support the claim s < ♦≤iB in l. 6. Notice that

Ψ (Fi−1)(s) > 0

iff s ∈ B∪ Preds(Fi−1)

iff s ∈ Preds(Fi−1)
(s < B because sI reaches s in k − i steps and sI < ♦

≤k−iB by Lemma 6.1)

iff exists s′ ∈ Fi−1 : s −→ s′ .

If such an s′ exists, we push both the new obligation (i − 1, s′) and the current
obligation (i, s) onto Q. If Ψ (Fi−1)(s) ≤ 0, then Fi−1 is strong enough to support
the claim s < ♦≤iB and (i, s) can be resolved by excluding s from all frames
F1, . . . ,Fi without violating the IC3 invariants.

Strengthen terminates. We now show that Strengthen as in Algorithm 8 termi-
nates. The only scenario in which Strengthen may not terminate is if it keeps
spawning obligations in l. 7. Let us thus look closer at how obligations are
spawned: Whenever we detect that resolving an obligation (i, s) would violate
relative inductivity for some direct successor s′ of s (l. 6), we first need to update
the value of this successor in frame i−1, i.e., we push the obligation (i − 1, s′).
Since the obligation queue Q pops obligations with minimal frame index first,
resolving (i − 1, s′) either eventually succeeds or yields Strengthen to return
false. Hence, for every state s, Strengthen spawns at most |Succs(s)| obligations,
which implies termination since TS is finite-state.

Example 6.1 (IC3 on a Safe Transition System).
Let us consider an example run of IC3 on a safe transition system. Consider
the transition system depicted in Figures 6.3 to 6.5. We have B = {s4}
(colored in red). Figure 6.3 depicts the frames maintained by IC3 right after
the first iteration. Figure 6.4 and Figure 6.5 depict the frames right after
the second and third iteration, respectively. IC3 terminates after the third
iteration since F1 and F2 coincide.

Example 6.2 (IC3 on an Unsafe Transition System).
Figure 6.6 depicts the frames maintained by IC3 on the given transition
system at the beginning of the third iteration. The transition system is
unsafe since sI reaches B in 3 steps. IC3 determines this via the subsequent

6

6.1 Foundations of IC3 for Transition Systems 211

sI

s1

s2

s3 s4

s5

F0

F1

Figure 6.3: Frames for the transition system considered in Example 6.1 right
after the first iteration of IC3. Here B = {s4}.

212 6 Property Directed Reachability

sI

s1

s2

s3 s4

s5

F0

F2

F1

Figure 6.4: Frames for the transition system considered in Example 6.1 right
after the second iteration of IC3. Here B = {s4}.

6

6.1 Foundations of IC3 for Transition Systems 213

sI

s1

s2

s3 s4

s5

F0

F3

F1 = F2

Figure 6.5: Frames for the transition system considered in Example 6.1 right
after the third iteration of IC3. Here B = {s4}.

214 6 Property Directed Reachability

sI

s1

s2

s3 s4

s5

F0

F2

F1

F3

Figure 6.6: Frames for the transition system considered in Example 6.2 at the
beginning of the third iteration of IC3. Here B = {s4}.

6

6.1 Foundations of IC3 for Transition Systems 215

call to Strengthen, which spawns the obligations

(3, sI) then (2, s1) then (1, s3) then (0, s4) .

Since s4 cannot be excluded from F0 without violating initiality, the obliga-
tion queue (Q.states()) contains a finite execution fragment from the initial
state to the bad state s4. Consequently, Strengthen and IC3 return false.

6.1.4 On Generalization in IC3

Examples 6.1 and 6.2 illustrate that IC3 basically performs a breadth-first search
from the initial state until it either finds an inductive invariant or a finite
execution fragment to some bad state. One might — for good reason — ask:
Why does IC3 even work in such an incremental manner by maintaining a
sequence of frames? Why not simply perform the breadth-first search in a single
frame? These questions are reasonable as maintaining and refining ever more
frames even seems to introduce some overhead.

So far, we have omitted one of the key components for IC3’s scalability. This
ingredient is called (inductive) generalization. Generalization is not essential for
soundness or termination but makes IC3 scale. For generalization, it is crucial
that the given transition system is represented in a symbolic manner. The idea
is then to exploit this symbolic representation to abstract — or “generalize” —
individual states appearing in some proof obligation to a whole set of states,
thereby excluding more than just a single state at a time when resolving an
obligation in Strengthen. In what follows, we first describe the conceptual
idea underlying generalization in Section 6.1.4.1. We then exemplify in Sec-
tion 6.1.4.2 how generalization is realized in bit-level IC3 for finite transition
systems. An in-depth treatment of generalization and additional optimizations
of IC3 is outside the scope of this thesis. Rather, our goal is to identify the
fundamental ideas in order to transfer them to the probabilistic setting.

6.1.4.1 Generalization: Conceptually

Generalization in IC3 takes place right before l. 9 in Strengthen (Algorithm 8
on page 208). Suppose an obligation (i, s) can be resolved without violating the
IC3 invariants by executing

F1(s)← 0; . . . ;Fi(s)← 0 . (6.1)

216 6 Property Directed Reachability

Generalization aims to exclude more states than just s without violating the IC3
invariants to accelerate the search for an inductive invariant. Put more formally,
the goal is to heuristically guess a frame F such that

(i) F (s) ≤ 0 and (ii) Ψ (Fi) ⊆ F

We call such an F a generalization of s w.r.t. Fi . Instead of updating the frames
by executing (6.1), we then update the frames using the generalization F :

F1←F1 ∩F ; . . . ;Fi ←Fi ∩F ,

Condition (ii) implies that this update will not violate the IC3 invariants, and
Condition (i) yields that we indeed resolve the obligation (i, s).

This already reveals an advantage of maintaining a sequence F0, . . . ,Fk of
frames satisfying the IC3 invariants: By Lemma 6.1, frame Fi is an overapproxi-
mation of the states reaching B within i steps, i.e.,

♦≤iB ⊆ Fi .
Hence, for any frame F ,

Ψ (Fi) ⊆ F
is a sufficient condition for F being an overapproximation of the states reaching
Bwithin i+1 steps that only requires us to reason about a single step of the transition
relation. To see this, consider the following:

♦≤iB ⊆ Fi (Lemma 6.1 on page 205)

implies Ψ
(
♦≤iB

)
⊆ Ψ (Fi) (monotonicity of Ψ)

implies ♦≤i+1B ⊆ Ψ (Fi) (by definition)

implies ♦≤i+1B ⊆ F . (assumption and transitivity of ⊆)

6.1.4.2 Generalization in Bit-Level IC3 by Example

In bit-level IC3 [Bra11a], states are represented symbolically as assignments
from propositional variables — called state-variables — to truth values. The
transition relation is represented symbolically as a propositional formula over
these state variables. This enables (i) to represent gigantic but structured
transition systems in a concise manner and (ii) to leverage the efficiency of

6

6.1 Foundations of IC3 for Transition Systems 217

¬x1¬x2x3x4 ¬x1x2x3x4 x1¬x2x3x4 x1x2x3x4

x1¬x2¬x3x4

¬x1¬x2¬x3x4 ¬x1x2¬x3x4 x1x2¬x3x4 ¬x1¬x2x3¬x4 ¬x1x2x3¬x4

Figure 6.7: A symbolic transition system with four {0,1}-valued state-variables.
6 irrelevant states are omitted. B = {¬x1x2x3¬x4}.

SAT solvers for reasoning about, e.g., direct successors of sets of states, as it is
required by the relative inductivity, check in l. 6 of Strengthen (Algorithm 8 on
page 208). We do not treat such symbolic encodings in great detail. Rather, we
outline — on a conceptual level — how bit-level IC3 leverages these symbolic
encodings to obtain suitable generalizations, which is key to making IC3 scale.

Consider the transition system TS depicted in Figure 6.7 on page 217 as an
example. IC3 without generalization requires 5 iterations to find an inductive
invariant. We will now see that IC3 with generalization requires only 3 iterations.
The states of this transition system are given as assignments from the finite
ordered sequence Vars = (x1, . . . ,x4) of state-variables to {0,1}, i.e.,

S = {s | s : Vars→ {0,1}} .
Frames can thus be represented as propositional formulae over Vars. We intro-
duce some terminology. A cube is a conjunction of literals, e.g.,

¬x1 ∧ x2 ∧ x3 ∧¬x4 which we denote more concisely by ¬x1x2x3¬x4 .

A clause is a negated cube, e.g.,

¬(x3¬x4) .

The above clause represents the set of states satisfying it, i.e., the frame

{s | s(x3) = 0 or s(x4) = 1} .
A run of IC3 with generalization. In the first iteration, IC3 maintains the frames

F1 = true and F0 = B = ¬x1x2x3¬x4 .

218 6 Property Directed Reachability

¬x1¬x2x3x4 ¬x1x2x3x4 x1¬x2x3x4 x1x2x3x4

x1¬x2¬x3x4

¬x1¬x2¬x3x4 ¬x1x2¬x3x4 x1x2¬x3x4 ¬x1¬x2x3¬x4 ¬x1x2x3¬x4

F0

F1

Figure 6.8: The frames after the first iteration of IC3 with generalization.

The subsequent call to Strengthen excludes

sI = ¬x1¬x2x3x4

from F1. This can be done by conjoining the clause obtained from negating this
cube to F1, i.e.,

F1 ← F1 ∧¬(¬x1¬x2x3x4) .

Now, when applying generalization, rather than just excluding this single state
from F1, IC3 heuristically guesses an entire set of states containing sI that can be
excluded from F1 without violating the IC3 invariants. The heuristic proposed
by Bradley [Bra11a] works as follows: We gradually “drop literals” — from
left to right, say — from the cube representing sI . We drop as many literals as
possible such that excluding all states represented by the so-obtained cube from
F1 does not violate relative inductivity. In our example, it turns out that we can
exclude all states represented by the cube x4 because we have

Ψ (F0) ⊆ ¬(x4) .

We thus update F1, which is now given by

F1 = ¬(x4) .

So, instead of one state, we have excluded 23 = 8 states from F1. This situation
is depicted in Figure 6.8 on page 218. Notice that we excluded a state which

6

6.1 Foundations of IC3 for Transition Systems 219

reaches B, namely x1x2¬x3x4. Consequently, there is no way that F1 becomes
the sought-after inductive invariant in future iterations since IC3 never adds
states back to some frame. We are now facing one of the main reasons for IC3’s
incremental nature. Let us consider the next iteration.

We initialize a new frame F2 so that our sequence of frames is given by

F2 = true F1 = ¬(x4) F0 = B .

The subsequent call to Strengthen now aims to exclude sI from F2 without
violating relative inductivity. First, observe that this is possible without spawning
obligations for F1 because there is no direct successor of sI in F1. Again, IC3 aims
to exclude more states from F2 by dropping literals from

sI = ¬x1¬x2x3x4 .

This time, however, we cannot exclude all states satisfying x4 from F2 without
violating relative inductivity: The state x1x2¬x3x4 has a direct successor in F1,
namely ¬x1¬x2x3¬x4. We can, however, exclude the states represented by

x3x4 ,

from F2 without violating inductivity. Hence, the updated sequence of frames is

F2 = ¬(x3x4) F1 = ¬(x4)∧¬(x3x4) F0 = B .

The situation is depicted in Figure 6.9 on page 220. Notice that F2 is an inductive
invariant. In the next iteration7, IC3 will determine this by strengthening the
new frame F3 in such a way that

F2 = F3 .

Discussion. Bradley’s heuristic is rather aggressive as it tries to drop as many
literals as possible. We have seen that this heuristic can — in some sense –
be too aggressive as it potentially excludes states from frames that reach B.
However, as the maintained sequence of frames grows, IC3 learns which literals
to drop to obtain an inductive invariant. In our example, F1 merely served as
an intermediate proof step — or “lemma” [Bra11a] — yielding IC3 to realize in
subsequent iterations that x3 should not be dropped from sI .

7With propagation (l. 6 in Algorithm 7 on page 206), IC3 even terminates after 2 iterations: When-
ever this does not violate relative inductivity, Propagate (F0, . . . ,Fk+1) conjoins the clauses com-
prising Fi to Fi+1. Since F2 is an inductive invariant, all clauses comprising F2 can be conjoined
to the new frame F3, thus yielding F2 = F3 without a further iteration. We omit further details.

220 6 Property Directed Reachability

¬x1¬x2x3x4 ¬x1x2x3x4 x1¬x2x3x4 x1x2x3x4

x1¬x2¬x3x4

¬x1¬x2¬x3x4 ¬x1x2¬x3x4 x1x2¬x3x4 ¬x1¬x2x3¬x4 ¬x1x2x3¬x4

F0

F1

F2

Figure 6.9: The frames after the second iteration of IC3 with generalization.

As mentioned in the previous section, it is evident that a crucial advantage of
maintaining a sequence of frames satisfying the IC3 invariants is that, at any
point in time, it suffices to reason about one step of the transition relation. Hence,
in practice, IC3’s relative inductivity checks can be implemented as (relatively)
cheap SAT queries. This is in contrast to, e.g., bounded model checking (cf.
Section 4.2.1) or k-induction for transition systems (cf. Section 4.2.2), which
potentially reason about many steps of the transition relation at once, which
can be expensive.

6

6.2 PrIC3: Property Directed Reachability for MDPs 221

6.2 PrIC3: Property Directed Reachability for MDPs

In this section, we present our conservative and quantitative extension of IC3
for reasoning about safety of Markov decision processes.

Section Outline. We set the stage in Section 6.2.1 by describing the input to
PrIC3 and the decision problem it tackles. Section 6.2.2 discusses in which sense
our algorithm conservatively extends IC3 for transition systems. In Section 6.2.3,
we address the challenges of developing PrIC3. Section 6.2.4 details the core
loop of PrIC3, quantitative inductive invariants for verifying safety of Markov
decision processes, and the loop invariants PrIC3 preserves throughout its
execution. Strengthening in PrIC3 is discussed in Section 6.2.5. In contrast to IC3,
PrIC3 requires an additional outermost loop, which is presented in Section 6.2.6.
Finally in Section 6.2.7, we present practical PrIC3 for probabilistic programs,
where we marry PrIC3 with the weakest preexpectation calculus, yielding a
symbolic model checking algorithm. We provide first ideas for (inductive)
generalization in PrIC3 and present our implementation alongside experimental
results. Finally, in Section 6.3, we discuss future and related work.

6.2.1 Setting

Throughout this section, fix a finite-state8

MDPM = (S , Act, P), an initial state sI ∈ S ,
a set B ⊆ S of “bad” states, and a threshold probability λ ∈ [0,1]∩Q .

PrIC3 verifies or refutes that the maximal probability9 to reach some state in B
from the initial state sI is at most λ, i.e.,

MaxPr (sI |= ♦B) ≤ λ .

We callM safe if the above inequality holds. In other words,M is safe if the
probability of reaching B from sI is at most λ regardless of how the nondeterminism
inM is resolved. The goal of PrIC3 can thus be cast as:

Verify or refute thatM is safe.

8cf. Section 2.2
9cf. Section 2.2.3

222 6 Property Directed Reachability

sI s1s2s4 s3 s5
1/2a1/2

1/2

1/2

1/2 2/3
b

1

1/2

1/3

1 1

Figure 6.10: A finite-state MDP with B = {s5} serving as a running example. For
states s without outgoing action label, we assume that Act(s) = {a}.

Whereas IC3 operates on functions of type States→ {0,1}, PrIC3 operates on
functions of type States→ [0,1], assigning a probability to each state of M.
Adapting IC3 terminology, throughout this section, frames F are functions of
type States→ [0,1]. We denote by (V≤1, ⊑) the complete lattice of frames, where

V≤1 = {F | F : S → [0,1]} and F ⊑ F ′ iff for all s ∈ S : F (s) ≤ F ′(s) .
Our theoretical development is based on the max-Bellman operator from Defi-
nition 2.15 on page 41 characterizing maximal reachability probabilities. Since
we restrict to reachability probabilities rather than more general reachability-
rewards, we simplify the presentation by adapting its definition as follows:

Definition 6.3 (Bellman Operator for Reachability Probabilities).
Given a set Act′ ⊆ Act of actions, we define the Bellman operator for Act′ as

ΦAct′ : V≤1→ V≤1 , ΦAct′ (F) = λs.



1 if s ∈ B
max
a∈Act′

∑

s′∈S
P (s,a, s′) · F (s′) otherwise .

Moreover, we write Φa for Φ{a} and Φ for ΦAct and call Φ the Bellman operator.

The Bellman operator Φ is continuous w.r.t. the complete lattice (V≤1, ⊑) and
we have [BK08, Theorem 10.100]

for all s ∈ S : MaxPr (s |= ♦B) = (lfp Φ) (s) ,

where the least fixpoint lfp Φ of the Bellman operator is guaranteed to exist
uniquely by Tarski’s Fixpoint Theorem 2.1 on page 20.

6

6.2 PrIC3: Property Directed Reachability for MDPs 223

Example 6.3.
The MDPM in Figure 6.10 consists of 6 states with initial state sI and bad
states B = {s5}. In s2, actions a and b are enabled; in all other states, only a
is enabled. We have

(lfp Φ)(sI) = MaxPr (sI |= ♦B) = 2/3 .

Hence,M is safe for all λ ≥ 2/3 and unsafe for all λ < 2/3.

6.2.2 Recovering IC3 for Transition Systems

We aim to develop PrIC3 in such a way that it conservatively extends IC3 for
transition systems. We will therefore accompany the presentation by recovery
statements to justify this backward compatibility.

As a first prerequisite, we observe that the verification problem tackled by
PrIC3 generalizes the problem tackled by IC3. We say that MDPM is a transition
system10, if there is at most one successor for each state-action-pair, i.e., if

for all s ∈ S and all a ∈ Act : |Succsa(s)| ∈ {0,1} .
This terminology is justified by the fact that, in case the above property holds,
M can indeed be identified with the transition system

TSM = (S , −→, {sI }) , where s −→ s′ iff exists a ∈ Act : s′ ∈ Succsa(s) .

With this notion at hand, it becomes evident that the verification problem
tackled by PrIC3 generalizes IC3’s objective: We have

MDPM is safe iff transition system TSM is safe

or, put more symbolically,

MaxPr (s |= ♦B) ≤ 0 iff sI < ♦B holds for TSM .

In the aforementioned recovery statements, we will speak of the qualitative
setting, referring to the situation where the given MDPM is a transition system
and the threshold probability λ is 0. We moreover call a frame F qualitative, if
F (s) ∈ {0,1} for all s ∈ S , and we denote by Ψ the qualitative Bellman operator of
TSM as introduced in Section 6.1. Recall that in Section 6.1, we often identified

10Notice furthermore that every transition system can be identified with an MDP where all transi-
tion probabilities are either 0 or 1.

224 6 Property Directed Reachability

sets of states with their indicator function, which we adopt here: Given a
qualitative frame F , we consider Ψ (F) a well-defined application of Ψ to the
set of states described by F . This yields our first recovery statement:

Recovery Statement 1.
In the qualitative setting, we have for all qualitative frames F ,

Φ (F) = Ψ (F) .

6.2.3 Challenges

Our motivation is to investigate whether and how IC3 for transition systems can be
generalized to reason about probabilistic safety of MDPs. In this section, we address
the challenges of answering this question. Throughout, we will refer to these
challenges to justify the design choices we made.

Challenge 1 (Leaving the Boolean Domain).
IC3 iteratively computes frames, which are overapproximations of sets of
states that reach B in a bounded number of steps. For MDPs, Boolean reach-
ability becomes a quantitative reachability probability. This requires a shift:
frames become real-valued functions rather than sets of states. Thus, there
are infinitely many possible frames — even for finite-state MDPs — just
as for infinite-state software [CGMT16; LNNK20a; Lan18] and hybrid sys-
tems [SI20]. Moreover, if in a given TS a state reaches B within k steps, this
fact remains true when increasing k. The step-bounded reachability proba-
bilities in MDPs, on the other hand, may increase for increasing step bounds
k. This complicates ensuring the termination of an IC3-style algorithm for
MDPs.

Challenge 2 (Single Paths as Counterexamples are Insufficient).
For TSs, a single finite execution fragmenta from the initial to a bad state
suffices to refute safety. This is not true in the probabilistic setting [HKD09].
Instead, proving that the maximal probability of reaching B exceeds the
threshold λ possibly requires a set of possibly cyclic paths — e.g., represented
as a subMDP [CV10] — whose probability mass exceeds λ.

aIn [HB12], tree-like counterexamples are used for non-linear predicate transformers in IC3.

Example 6.4.
For our running example from Figure 6.10 on page 222, the most probable

6

6.2 PrIC3: Property Directed Reachability for MDPs 225

path from sI to B has probability 1/4 whereas we have MaxPr (sI |= ♦B) = 2/3.
Hence, refuting safety for any λ with

1/4 < λ < 2/3

requires to consider more than just a single path from sI to B.

Challenge 3 (Strengthening).
Recall from Section 6.1.3 that IC3 turns a proof obligation of type (i) “state s
does not reach B” into type (ii) “the successors of s do not reach B”. In the
probabilistic setting, obligations of type (i) read “s reaches B with at most
probability δ”. However, the strengthened type (ii) obligation must then read:
“the weighted sum over the reachability probabilities of the successors of s is at
most δ”. In general, there are infinitely many possible choices of obligations
for the successors of s in order to satisfy the original obligation because —
grossly simplified — there are infinitely many possibilities for α and β to
satisfy weighted sums such as

1
3 ·α + 2

3 · β ≤ δ .

While we only need one choice of probabilities, picking a good one is approxi-
mately as hard as solving the entire problem altogether. We hence require a
heuristic, which is guided by a user-provided oracle.

Challenge 4 (Generalization).
“One of the key components of IC3 is [inductive] generalization” [Bra11b].
Recall from Section 6.1.4 that generalization abstracts single states. It makes
IC3 scale but is not essential for soundness or termination. To facilitate
generalization, systems should be encoded symbolically via, e.g., proposi-
tional formulae. IC3’s generalization guesses sets of states. We, however,
need to guess this set and a probability for each state. To be effective, these
guesses should moreover eventually yield an inductive invariant, which is
often highly nonlinear. We proceed as in Section 6.1: We first present PrIC3
for MDPs without generalization in a non-symbolic manner to understand
its fundamentals. Then, in Section 6.2.7, we marry PrIC3 with the weakest
preexpectation calculus, yielding a more symbolic variant of PrIC3 operating
on probabilistic programs, which can be thought of as symbolic representa-
tions of MDPs. We then provide first ideas on how to exploit such symbolic
encodings to obtain suitable generalizations.

226 6 Property Directed Reachability

6.2.4 The Core PrIC3 Algorithm

In this section, we explain the rationale underlying PrIC3. Moreover, we describe
the core of PrIC3 — called PrIC3H— which bears a close resemblance to the
main loop of IC3 for transition systems (Algorithm 7 on page 206).

6.2.4.1 Inductive Frames

Analogously to IC3, the rationale of PrIC3 is to find a frame F ∈ V≤1 such that
(i) F postulates that the maximal probability of sI to reach B is at most the
threshold λ and (ii) applying the Bellman operator Φ to F does not take us up
in the partial order on frames, i.e.,

(i) F (sI) ≤ λ and (ii) Φ (F) ⊑ F .

As with IC3, we call frames satisfying the above conditions inductive invariants.
By Park induction (Lemma 2.4 on page 28), which in our setting reads

Φ (F) ⊑ F implies lfp Φ = λs.MaxPr (s |= ♦B) ⊑ F ,

an inductive invariant F would indeed witness thatM is safe because

MaxPr (sI |= ♦B) =
(
lfp Φ

)
(sI) ≤ F (sI) ≤ λ .

Such an inductive invariant exists iffM is safe, which can be seen by taking
F = lfp Φ . If no inductive invariant exists, then IC3 finds a counterexample:
a finite execution fragment from the initial state sI to a bad state in B, which
serves as a witness to refute. Analogously, PrIC3 will find a counterexample,
but of a different kind: Since single paths are insufficient as counterexamples in
the probabilistic realm (Challenge 2), PrIC3 will instead find a subsystem ofM
witnessing MaxPr (sI |= ♦B) > λ, which we will define formally in Section 6.2.6.1.

6.2.4.2 The PrIC3 Invariants

Analogously to IC3, PrIC3 aims to find the inductive invariant by maintaining
a sequence of frames F0 ⊑ F1 ⊑ F2 ⊑ . . . such that Fi(s) overapproximates the
maximal probability of reaching B from s within at most i steps. This i-step-
bounded maximal reachability probability MaxPr

(
s |= ♦≤iB

)
can be characterized

using the Bellman operator: Φ (0) is11 the 0-step probability; it is 1 for every

11We slightly abuse notation and often denote by 0 (resp. 1) the constant frame λs.0 (resp. λs.1).

6

6.2 PrIC3: Property Directed Reachability for MDPs 227

s ∈ B and 0 otherwise. For any i ≥ 0, we have

MaxPr
(
s |= ♦≤iB

)
= Φ i(Φ (0))(s) = Φ i+1(0)(s) .

The unbounded reachability probability is given by

MaxPr (s |= ♦B)

=
(
lfp Φ

)
(s)

(∗)
= sup {Φ n(0)(s) | n ∈N}
= sup

{
MaxPr

(
s |= ♦≤nB

)
| n ∈N

}
,

where (∗) is a consequence of Kleene’s Fixpoint Theorem 2.2.
The sequence F0 ⊑ F1 ⊑ F2 ⊑ . . . maintained by PrIC3 should frame-wise

overapproximate the sequence Φ (0) ⊑ Φ 2(0) ⊑ Φ 3(0) Pictorially:

F0 ⊑ F1 ⊑ F2 ⊑ . . .

⊑ ⊑ ⊑

0 ⊑ Φ (0) ⊑ Φ 2(0) ⊑ Φ 3(0) ⊑ . . .

However, the sequence Φ (0),Φ 2(0),Φ 3(0), . . . will never explicitly be known
to PrIC3. Instead, PrIC3 will ensure the above frame-wise overapproximation
property implicitly by enforcing the so-called PrIC3 invariants on the frame
sequence F0,F1,F2, Apart from allowing for a threshold 0 ≤ λ ≤ 1 on the
maximal reachability probability, these invariants are analogous to the IC3
invariants from Definition 6.1 on page 205 (where λ = 0 is fixed). Formally:

Definition 6.4 (PrIC3 Invariants).
Let k ≥ 0. We say that the frames F0, . . . ,Fk satisfy the PrIC3 invariants, a fact
we denote by PrIC3Inv (F0, . . . ,Fk), if all of the following conditions hold:
1. Initiality: F0 = Φ (0)
2. Chain Property: for all 0 ≤ i < k : Fi ⊑ Fi+1
3. Frame-Safety: for all 0 ≤ i < k : Fi(sI) ≤ λ
4. Relative Inductivity: for all 0 ≤ i < k : Φ (Fi) ⊑ Fi+1

Notice that Fk must not necessarily satisfy Fk(sI) ≤ λ. The PrIC3 invariants
enforce the above picture: The chain property ensures

F0 ⊑ F1 ⊑ . . . ⊑ Fk .

228 6 Property Directed Reachability

Moreover, we have Φ (0) = F0 ⊑ F0 by initiality. Assuming Φ i+1(0) ⊑ Fi as
induction hypothesis, monotonicity of Φ and relative inductivity imply

Φ i+2(0) ⊑ Φ (Fi) ⊑ Fi+1 .

Now, by overapproximating Φ (0),Φ 2(0), . . . ,Φ k+1(0), the frames F0, . . . , Fk in
effect bound the maximal step-bounded reachability probability of every state:

Lemma 6.4 (PrIC3 Invariants yield Overapproximations).
Let F0, . . . ,Fk be frames satisfying the PrIC3 invariants. Then

for all s ∈ S and all i ≤ k : MaxPr
(
s |= ♦≤iB

)
≤ Fi(s) .

In particular, a sequence F0, . . . ,Fk of frames satisfying the PrIC3 invariants
witnesses that the maximal probability to reach B from sI within i ∈ {0, . . . , k −1}
steps is at most λ by Lemma 6.4 and frame-safety.

Given two frames F ,F ′ , we say that F ′ is a strengthening of F , if F ′ ⊑ F . We
say that a sequence F ′0 , . . . ,F ′k of frames is a strengthening of F0, . . . ,Fk , if F ′i is a
strengthening of Fi for all i ∈ {0, . . . , k}.

Lemma 6.5 (Step-Bounded Probabilistic Safety via Strengthenings).
Let F0, . . . ,Fk be frames satisfying the PrIC3 invariants. There is a strengthen-
ing F ′0 , . . . ,F ′k of F0, . . . ,Fk satisfying

1. PrIC3Inv
(
F ′0 , . . . ,F ′k

)
, and

2. F ′k (sI) ≤ λ

if and only if MaxPr
(
sI |= ♦≤kB

)
≤ λ.

As for proving that the unbounded reachability probability is also at most λ,
it suffices to find two consecutive frames, say Fi and Fi+1, that coincide:

Lemma 6.6 (Inductive Invariants from PrIC3 Invariants).
Let F0, . . . ,Fk be frames satisfying the PrIC3 invariants. Then

exists i < k : Fi = Fi+1 implies MaxPr (sI |= ♦B) ≤ λ .

Proof. Fi = Fi+1 and relative inductivity yield

Φ (Fi) ⊑ Fi+1 = Fi .
With frame-safety, i.e., Fi(sI) ≤ λ, this renders Fi an inductive invariant. ■

6

6.2 PrIC3: Property Directed Reachability for MDPs 229

Algorithm 9: PrIC3H (M, sI , B, λ)
input: MDPM, initial state sI ∈ S , set of bad states B with sI < B,

threshold λ ∈ [0,1]∩Q
output : true or (false and a subset of the states ofM)

1 F0← Φ (0); F1← 1; k← 1; oldSubsystem←∅
2 while true do
3 success, F0, . . . ,Fk , subsystem← StrengthenH (F0, . . . ,Fk)
4 if ¬success then return false,subsystem
5 Fk+1← 1
6 F0, . . . ,Fk+1← Propagate (F0, . . . ,Fk+1)
7 if ∃1 ≤ i ≤ k : Fi = Fi+1 then return true
8 if oldSubsystem = subsystem then return false,subsystem
9 k← k + 1; oldSubsystem← subsystem

Figure 6.11: PrIC3H parameterized by a heuristic H : S ×Act× [0,1]→ [0,1]∗.

Recovery Statement 2.
In the qualitative setting, we have for all qualitative frames F0, . . . ,Fk ,

PrIC3Inv (F0, . . . ,Fk) iff IC3Inv (F0, . . . ,Fk) .

6.2.4.3 Operationalizing the PrIC3 Invariants for Proving Safety

Lemma 6.6 gives us a clear angle of attack for proving an MDP safe: Repeatedly
add and strengthen frames overapproximating maximal step-bounded reacha-
bility probabilities for more and more steps by preserving the PrIC3 invariants
until two consecutive frames coincide.

Analogously to IC3, this approach is taken by the core loop PrIC3H depicted
in Algorithm 9; differences to the main loop of IC3 (Algorithm 7 on page 206)
are highlighted in red. A particular difference is that PrIC3H is parameterized
by a heuristicH for finding suitable probabilities (see Challenge 3). Since the
precise choice of H is irrelevant to the soundness of PrIC3H, we defer a detailed
discussion of suitable heuristics to Section 6.2.7.3.

As input, PrIC3H takes an MDPM = (S , Act, P), an initial state sI ∈ S , a set

230 6 Property Directed Reachability

B ⊆ S of bad states with12 sI < B, and a threshold λ ∈ [0,1]∩Q. Since the input
is never changed, we assume it to be globally available, also to subroutines. As
output, PrIC3H returns true if two consecutive frames become equal. We hence
say that PrIC3H is sound, if it returns true only ifM is safe, i.e., if

PrIC3H (M, sI , B, λ) = true implies MaxPr (sI |= ♦B) ≤ λ .

Let us briefly go through the individual steps of PrIC3H and convince ourselves
that it is indeed sound. After that, we discuss why PrIC3H terminates and what
happens if it is unable to prove safety by finding two equal consecutive frames.

How PrIC3H works. The sequence of frames F0, . . . ,Fk maintained by PrIC3H
is initialized in l. 1 with k = 1, F0 = Φ (0), and F1 = 1, which implies
PrIC3Inv (F0, . . . ,Fk). The while-loop in l. 2 maintains PrIC3Inv (F0, . . . ,Fk) at
all times. In l. 3, procedure StrengthenH — detailed in Section 6.2.5 — is called
to determine whether MaxPr

(
sI |= ♦≤kB

)
≤ λ. By Lemma 6.5, this is equivalent

to determining whether the frames can be strengthened while preserving the
PrIC3 invariants and such that Fk(sI) ≤ λ. StrengthenH either returns true if
successful or returns false and a subsystem ofM if it was unable to do so.

Definition 6.5 (Specification of StrengthenH).
Procedure StrengthenH is sound, if for all k ≥ 1 and all sequences F0, . . . ,Fk
of frames with PrIC3Inv (F0, . . . ,Fk), we have

StrengthenH (F0, . . . ,Fk) = true, F ′0 , . . . ,F ′k ,
implies PrIC3Inv

(
F ′0 , . . . ,F ′k

)
and F ′k (sI) ≤ λ .

If StrengthenH returns false, then it failed to strengthen the frames accordingly
and PrIC3H terminates returning false (l. 4). In contrast to IC3, this does not
necessarily mean thatM is unsafe. Returning false (also possible in l. 8) has by
specification no effect on the soundness of PrIC3H.

If StrengthenH returns true, then a new frame Fk+1 = 1 is created in l. 5 and
the extended sequence F0, . . . ,Fk+1 of frames again satisfies the PrIC3 invariants.
Propagation (l. 6) aims to speed up termination by updating Fi+1(s) by Fi(s) if this
does not violate the PrIC3 invariants. Consequently, the previously mentioned
properties remain unchanged. We then check whether there exist two identical
consecutive frames (l. 7). If so, Lemma 6.6 yields that the MDP M is safe;
consequently, PrIC3H returns true. Otherwise, we increment k and are in the

12This assumption simplifies the presentation and can be easily checked upfront.

6

6.2 PrIC3: Property Directed Reachability for MDPs 231

same setting as upon entering the loop, now with an extended frame sequence;
PrIC3H then performs another iteration. Hence:

Theorem 6.7 (Soundness of PrIC3H).
If StrengthenH is sound and Propagate preserves the PrIC3 invariants, then
PrIC3H is sound, i.e.,

PrIC3H (M, sI , B, λ) = true implies MaxPr (sI |= ♦B) ≤ λ .

Next, we discuss why PrIC3H terminates by distinguishing the cases where
M is safe and where it is unsafe. We moreover assume that StrengthenH and
Propagate terminate, which we justify in Section 6.2.5.

PrIC3H terminates for unsafe MDPs. IfM is unsafe, then there exists a step-bound
n ∈N witnessing this fact, i.e., there exists some n ∈N with

MaxPr
(
sI |= ♦≤nB

)
> λ .

Any sound implementation of StrengthenH (cf. Definition 6.5) either imme-
diately terminates PrIC3H by returning false or keeps returning strengthened
frames. If the former case never arises, then StrengthenH will eventually return
true on a sequence of frames F0, . . . ,Fn+1 of length n+ 2. By Lemma 6.4, we then
have Fn(sI) ≥MaxPr

(
sI |= ♦≤nB

)
> λ, contradicting frame-safety.

PrIC3H terminates for safe MDPs. IC3 terminates on safe finite TSs as there are
only finitely many different frames, making every ascending chain of frames
eventually stabilize. For us, frames map states to probabilities (Challenge 1),
yielding infinitely many possible frames even for finite-state MDPs. In particular,
the complete lattice (V≤1, ⊑) of frames does not have finite height. Hence,
StrengthenH need not ever yield a stabilizing chain of frames. In this case,
StrengthenH continuously reasons about the same set of states and we give up.
PrIC3H checks this by comparing the subsystem StrengthenH operates on with
the one it operated on in the previous loop iteration (l. 8). In summary:

Theorem 6.8 (Termination of PrIC3H).
If StrengthenH and Propagate terminate, then PrIC3H terminates.

PrIC3H is incomplete. If StrengthenH returns false, PrIC3H returns a subsystem
of the MDPM provided by StrengthenH. However, StrengthenH cannot detect
whetherM is indeed unsafe. Reporting false thus only means that the given
MDP may be unsafe; the returned subsystem has to be analyzed further. The
full PrIC3 algorithm presented in Section 6.2.6 addresses this issue.

232 6 Property Directed Reachability

It. 1 2 3 4 5
Fi F1 F1 F2 F1 F2 F3 F1 F2 F3 F4 F1 F2 F3 F4 F5
sI 5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9
s1 1 11/18 1 11/18 11/18 1 11/18 11/18 11/18 1 11/18 11/18 11/18 11/18 1
s2 1 1/2 1 1/2 1/2 1 1/2 1/2 1/2 1 1/2 1/2 1/2 1/2 1
s3 1 1 1 2/3 1 1 2/3 2/3 1 1 2/3 2/3 2/3 1 1
s4 1 1 1 1 1 1 0 1 1 1 0 0 1 1 1
s5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(a) Threshold λ = 5/9.

It. 1 2 3 4
Fi F1 F1 F2 F1 F2 F3 F1 F2 F3 F4
sI 9/10 9/10 9/10 9/10 9/10 9/10 9/10 9/10 9/10 9/10

s1 1 99/100 1 99/100 99/100 1 99/100 99/100 99/100 1
s2 1 81/100 1 81/100 81/100 1 81/100 81/100 81/100 1
s3 1 1 1 1 1 1 1 1 1 1
s4 1 1 1 0 1 1 0 0 1 1
s5 1 1 1 1 1 1 1 1 1 1

(b) Threshold λ = 9/10.

Figure 6.12: Two runs of PrIC3H on the Markov chain induced by selecting
action a in the MDP from Figure 6.10 on page 222. For every
iteration, frames are recorded after invocation of StrengthenH.

6

6.2 PrIC3: Property Directed Reachability for MDPs 233

Example 6.5.
We consider two example executions of PrIC3H on a simplified version
of the MDP from Figure 6.10 on page 222, where b has been removed.
For every state, exactly one action is enabled, i.e., we consider a Markov
chain. Figure 6.12 depicts the frame sequences computed by PrIC3H (for a
reasonable H) on that Markov chain for two safe thresholds:

5/9 = MaxPr (sI |= ♦B) and 9/10 .

In particular, notice that proving the coarser bound of 9/10 requires fewer
frames than proving the exact bound of 5/9. See Example 6.6 on page 235 for
more details on the run of PrIC3H for the threshold 5/9.

6.2.5 Strengthening in PrIC3

When the loop of PrIC3H invokes Strengthen, we have PrIC3Inv (F0, . . . ,Fk) and
Fk(sI) = 1. The task of StrengthenH is to determine whether it holds that

MaxPr
(
sI |= ♦≤kB

)
≤ λ .

By Lemma 6.5, this is equivalent to determining whether the frames can be
strengthened while preserving the PrIC3 invariants and such that Fk(sI) ≤ λ.

Analogously to IC3, our first obligation is to lower the value in frame i = k for
state s = sI to δ = λ ∈ [0,1]. We denote such an obligation by (i, s,δ). Notice that
obligations in PrIC3 have an additional entry δ. In the qualitative setting, this
entry is always equal to 0. An obligation (i, s,δ) requires us to prove that

MaxPr
(
s |= ♦≤iB

)
≤ δ , (6.2)

and it is resolved by updating the values assigned to state s in all frames F1, . . . ,Fi
to at most δ without violating the PrIC3 invariants. That is, for all j ≤ i, we set
Fj(s) to the minimum of δ and the original value Fj(s). Since such an update
may violate relative inductivity, i.e., Φ (Fi−1) ⊑ Fi , we thus first check whether
Fi−1 is strong enough to support (6.2), i.e., if

Φ (Fi−1)(s) ≤ δ which is the case iff for all a ∈ Act(s) : Φa(Fi−1)(s) ≤ δ .

If so, (i, s,δ) can be resolved without violating the PrIC3 invariants. If not, there
is some action a ∈ Act(s) with

Φa(Fi−1)(s) > δ ,

234 6 Property Directed Reachability

Algorithm 10: StrengthenH (F0, . . . ,Fk)
input: Frames F0, . . . ,Fk with k ≥ 1 and PrIC3Inv (F0, . . . ,Fk)
output : See Definition 6.5 on page 230

1 Q← {(k,sI ,λ)}
2 while Q not empty do
3 (i, s,δ)←Q.popMin() /* pop obligation with minimal frame index */
4 if i = 0 ∨ (s ∈ B∧ δ < 1) then

/* possible counterexample given by subsystem consisting of
states popped from Q at some point */

5 return false, , Q.touched();
/* check whether Fi(s)← δ violates relative inductivity */

6 if ∃a ∈ Act(s) : Φa(Fi−1)(s) > δ then for such an a
7 {s1, . . . , sn} ← Succsa(s)
8 δ1, . . . ,δn←H (s,a,δ)
9 Q.push((i − 1, s1,δ1) , . . . , (i − 1, sn,δn) , (i, s,δ))

10 else /* resolve (i, s,δ) without violating relative inductivity */
11 F1(s)←min(F1(s),δ); . . . ;Fi(s)←min(Fi(s),δ)

/* Q empty; all obligations have been resolved */
12 return true, F0, . . . ,Fk ,Q.touched()

Figure 6.13: Strengthening in PrIC3. HereH is a fixed heuristic of type S ×Act×
[0,1]→ [0,1]∗ for selecting probabilities and Q.touched() is the set
of states that eventually appeared in Q.

and we have to spawn further obligations for the states in Succsa(s) to decrease
the entries for these states in Fi−1 before being able to resolve (i, s,δ).

StrengthenH by example. StrengthenH is given by the pseudo code in Algo-
rithm 10; differences to IC3’s strengthening (Algorithm 8 on page 208) are
highlighted in red. Intuitively, StrengthenH attempts to recursively resolve all
obligations while preserving the PrIC3 invariants or it detects a potential coun-
terexample justifying why it is unable to do so. We first consider an execution
where the latter does not arise:

6

6.2 PrIC3: Property Directed Reachability for MDPs 235

Example 6.6.
We zoom in on Example 6.5: Prior to the second iteration, we have created
the following three frames:

F0 = (0,0,0,0,0,1), F1 = (5/9,1,1,1,1,1), and F2 = 1 .

To keep track of unresolved obligations (i, s,δ), StrengthenH employs a
priority queue Q which pops obligations with minimal frame index i first.
Our first step is to ensure frame-safety of F2, i.e., alter F2 so that F2(sI) ≤ 5/9;
we thus initialize the queue Q with the initial obligation (2, sI ,5/9) (l. 1).
To do so, we check whether updating F2(sI) to 5/9 would violate relative
inductivity (l. 6). This is indeed the case:

Φ (F1)(sI) = 1/2 · F1(s1) + 1/2 · F1(s2) = 1 ≰ 5/9 .

StrengthenH thus spawns one new obligation for each relevant successor of
sI . These have to be resolved before retrying to resolve the old obligation.a

In contrast to standard IC3, spawning obligations involves finding suitable
probabilities δ (l. 8). In our example, we have to spawn two obligations

(1, s1,δ1) and (1, s2,δ2) such that 1/2 · δ1 + 1/2 · δ2 ≤ 5/9 .

There are infinitely many choices for δ1 and δ2 satisfying this inequality. As-
sume some heuristic H chooses δ1 = 11/18 and δ2 = 1/2; we push obligations
(1, s1,11/18), (1, s2,1/2), and (2, sI ,5/9) (ll. 7, 9). In the next iteration, we first
pop obligation (1, s1,11/18) (l. 3) and find that it can be resolved without
violating relative inductivity (l. 6). Hence, we set F1(s1) to 11/18 (l. 11); no
new obligation is spawned. Obligation (1, s2,1/2) is resolved analogously;
the updated frame is

F1 = (5/9,11/18,1/2,1,1,1) .

Thereafter, our initial obligation (2, sI ,5/9) can be resolved; we have
PrIC3Inv (F0,F1,F2) and F2(sI) ≤ λ. Hence, StrengthenH returns true, the
updated frames, and the set Q.touched() that eventually appeared in Q.

aWe assume that the set Succsa(s) of a-successors of state s is given in some fixed order.

StrengthenH is sound. Let us discuss why Algorithm 10 meets the specification
from Definition 6.5: First, we observe that Algorithm 10 alters the frames —
and thus potentially invalidates the PrIC3 invariants — only in l. 11 by resolving

236 6 Property Directed Reachability

an obligation (i, s,δ) with Φ (Fi−1)(s) ≤ δ (due to the check in l. 6). Resolving
obligation (i, s,δ) in l. 11 lowers the values assigned to state s to at most δ without
violating the PrIC3 invariants, which can be seen by taking

F = λs′ .


δ if s′ = s

1 otherwise

in the following more general theorem:

Theorem 6.9 (Preservation of the PrIC3 Invariants).
Let k ≥ 1 and let F0, . . . ,Fk be frames with PrIC3Inv (F0, . . . ,Fk). Moreover, let
i ∈ {1, . . . , k} and let F be a frame with Φ (Fi) ⊑ F . Then the strengthened
sequence of frames F ′0 , . . . ,F ′k of frames given by

F ′j =


Fj ⊓F if j ∈ {1, . . . , i}
Fj otherwise

satisfies the PrIC3 invariants as well, i.e., PrIC3Inv
(
F ′0 , . . . ,F ′k

)
. If moreover

i = k and F (sI) ≤ λ, then additionally F ′k (sI) ≤ λ.

The specification of StrengthenH (Definition 6.5 on page 230) guarantees that
the PrIC3 invariants hold initially. Since these invariants are preserved by Theo-
rem 6.9, Algorithm 10 is a sound implementation of StrengthenH if Fk(sI) ≤ λ
whenever it returns true, i.e., once it leaves the loop with an empty obligation
queue Q (ll. 11–12). Now, an obligation (i, s,δ) is only popped from Q in l. 3. As
(i, s,δ) is added to Q upon reaching l. 9, the size of Q can only ever be reduced
(without returning false) by resolving (i, s,δ) in l. 11. Hence, Algorithm 10 does
not return true unless it establishes Fk(sI) ≤ λ by resolving, amongst all other
obligations, the initial obligation (k,sI ,λ). Consequently:

Lemma 6.10 (Soundness of StrengthenH).
StrengthenH satisfies the specification from Definition 6.5.

Theorem 6.11 (Soundness of PrIC3H).
Procedure PrIC3H satisfies the specification from Theorem 6.7.

Remark 6.1 (On Generalization).
Analogously to IC3 (cf. Section 6.1.4), resolving an obligation in l. 11 may be
accompanied by generalization. That is, we attempt to update the values of
multiple states at once without violating the PrIC3 invariants. Generalization
is, however, highly non-trivial in a probabilistic setting. We discuss three

6

6.2 PrIC3: Property Directed Reachability for MDPs 237

possible approaches to generalization in Section 6.2.7.4.

StrengthenH terminates. We now show that StrengthenH as in Algorithm 10
terminates. The only scenario in which StrengthenH may not terminate is if
it keeps spawning obligations in l. 9. Let us thus look closer at how obliga-
tions are spawned: Whenever we detect that resolving an obligation (i, s,δ)
would violate relative inductivity for some action a (l. 6), we first need to up-
date the values of the successor states s1, . . . , sn ∈ Succsa(s) in frame i−1, i.e.,
we push the obligations (i−1, s1,δ1), . . . , (i−1, sn,δn) which have to be resolved
first (ll. 8–9). It is noteworthy that, in the qualitative setting, i.e., if M is
a transition system, then a single action leads to a single successor state s1.
StrengthenH employs a heuristic H to determine the probabilities required for
pushing obligations (l. 8). Assume for an obligation (i, s,δ) that the check in
l. 6 yields ∃a ∈ Act(s) : Φa(Fi−1)(s) > δ. Then H takes s, a, δ and reports some
probability δj for every a-successor sj of s. However, an arbitrary heuristic
of type H : S × Act × [0,1]→ [0,1]∗ may lead to non-terminating behavior: If
δ1, . . . ,δn = Fi−1(s1), . . . ,Fi−1(sn), then the heuristic has no effect. It is thus natural
to require that an adequate heuristic H yields probabilities such that the check
Φa(Fi−1)(s) > δ in l. 6 cannot succeed twice for the same obligation (i, s,δ) and
same action a. Formally, this is guaranteed by the following:

Definition 6.6 (Adequate Heuristics).
We say that heuristic H is adequate, if for all frames F , states s, s1, . . . , sn,
actions a with Succsa(s) = {s1, . . . , sn}, and probabilities δ, we have:

1. If there exist probabilities δ1, . . . ,δn with

Φa(F [s1 7→ δ1] . . . [sn 7→ δn])(s) ≤ δ ,

then H returns such probabilities, i.e.,

H(s,a,δ) = δ′1, . . . ,δ
′
n

implies Φa(F [
s1 7→ δ′1

]
. . .

[
sn 7→ δ′n

]
)(s) ≤ δ .

2. If such probabilities do not exist, then

H(s,a,δ) = 0, . . . ,0 .

Details regarding our implementation of heuristicH are given in Section 6.2.7.3.

For an adequate heuristic, the termination argument is analogous to the
argument for IC3’s strengthening: Attempting to resolve an obligation (i, s,δ) (ll.
3 – 11) either succeeds after spawning it at most |Act(s)| times or StrengthenH

238 6 Property Directed Reachability

returns false. By a similar argument, attempting to resolve an obligation (i >
0, s,) leads to at most

∑
a∈Act(s) |{s′ ∈ S | P (s,a, s′) > 0}| other obligations of the

form (i−1, s′ ,). Consequently, the total number of obligations spawned by
Algorithm 10 is bounded sinceM is finite-state. Since Algorithm 10 terminates
if all obligations have been resolved (l. 11) and each of its loop iterations either
returns false, spawns obligations, or resolves an obligation, we conclude:

Lemma 6.12 (Termination of StrengthenH).
StrengthenH(F0, . . . ,Fk) terminates for every adequate heuristic H.

Recovery Statement 3.
Let H be adequate. Then, in the qualitative setting, all obligations spawned
by StrengthenH are of the form (i, s,0).

StrengthenH returns false. There are two cases in which StrengthenH returns
false. The first case (the left disjunct of l. 4) is that we encounter an obligation
for frame F0. Resolving such an obligation would inevitably violate initiality;
we thus return false. The second case (the right disjunct of l. 4) is that we
encounter an obligation (i, s,δ) for a bad state s ∈ B with a probability δ < 1
(though, obviously, all s ∈ B have probability 1). Resolving such an obligation
would inevitably prevent us from preserving relative inductivity: If we updated
Fi(s) to δ, we would have Φ (Fi−1)(s) = 1 > δ = Fi(s). Notice that, in contrast to
IC3, this second case can occur in PrIC3:

Example 6.7.
Assume we have to resolve an obligation (i, s3,1/2) for the MDP in Fig-
ure 6.10 on page 222. This involves spawning obligations (i−1, s4,δ1) and
(i−1, s5,δ2), where s5 is a bad state, such that 1/3 · δ1 + 2/3 · δ2 ≤ 1/2. Even for
δ1 = 0, this is only possible if

δ2 ≤ 3/4 < 1 .

StrengthenH cannot refute safety. If StrengthenH returns false, there are two
possible reasons: Either the MDP is indeed unsafe, or the heuristic H at some
point selected probabilities in a way such that StrengthenH is unable to restore
the PrIC3 invariants (even though the MDP might in fact be safe). StrengthenH
thus only returns a potential counterexample which either proves unsafety or
indicates that our heuristic H was inappropriate.

Counterexamples in our case consist of subsystems rather than a single path
(see Challenge 2). StrengthenH hence returns the set Q.touched() of all states
that eventually appeared in the obligation queue. Finally, in the special case of

6

6.2 PrIC3: Property Directed Reachability for MDPs 239

the qualitative setting, StrengthenH can detect unsafety ofM:

Recovery Statement 4.
Let H0 be the adequate heuristic mapping every state to 0. Then, in the
qualitative setting, StrengthenH0

returns false only ifM is unsafe.

This yields our final recovery statement:

Recovery Statement 5.
Let H0 be the adequate heuristic mapping every state to 0. Then, in the
qualitative setting, PrIC3H0

and IC3 coincide, i.e.,

PrIC3H0
(M, sI , B, 0) = IC3 (TSM, B) .

Hence, in particular, PrIC3H0
(M, sI , B, 0) returns true iffM is safe. Moreover,

the frames computed by PrIC3H0
and IC3 coincide on every loop iteration.

6.2.6 Dealing with Potential Counterexamples

Recall that our core algorithm PrIC3H is incomplete for a fixed heuristic H: It
cannot give a conclusive answer whenever it finds a potential counterexample
for two possible reasons: Either the heuristic H turned out to be inappropriate
or the MDP is indeed unsafe. The idea to overcome the former is to call PrIC3H
finitely often in an outer loop that generates new heuristics until we find an
appropriate one: If PrIC3H still does not report safety of the MDP, then it is
indeed unsafe. We do not blindly generate new heuristics, but use the potential
counterexamples returned by PrIC3H to refine the previous one.

Let us consider the procedure PrIC3 in Algorithm 11 which wraps our core
algorithm PrIC3H in more detail: First, we create an oracle Ω : S → [0,1] which
(roughly) estimates the maximal probability of reaching B for every state. A
perfect oracle would yield precise maximal reachability probabilities, i.e.,

for all s ∈ S : Ω(s) = MaxPr (s |= ♦B) .

We construct oracles by user-supplied methods (highlighted in blue). Our
implementation of this method is discussed in Section 6.2.7.2.

Assuming the oracle is good, but not perfect, we construct an adequate
heuristic H selecting probabilities based on the oracle13 for all successors of a
given state: There are various options. The simplest is to pass-through the oracle
values. A version that is more robust against noise in the oracle is discussed in

13We thus assume that heuristic H invokes the oracle whenever it needs to guess some probability.

240 6 Property Directed Reachability

Algorithm 11: PrIC3(M, sI ,B,λ)
input: MDPM, initial state sI ∈ S , set of bad states B with sI < B,

threshold λ ∈ [0,1]∩Q
output : true ifM is safe; false otherwise

1 Ω← Initialize()
2 touched← {sI }
3 do
4 H← CreateHeuristic(Ω)
5 safe,subsystem← PrIC3H (M, sI , B, λ)
6 if safe then return true
7 if CheckRefutation(subsystem) then return false
8 touched← Enlarge(touched,subsystem)
9 Ω← Refine(Ω, touched)

10 while touched , S
11 return Ω(sI) ≤ λ

Figure 6.14: The outermost loop dealing with possibly imprecise heuristics and
potential counterexamples to safety.

6

6.2 PrIC3: Property Directed Reachability for MDPs 241

Section 6.2.7.3. We then invoke PrIC3H. If PrIC3H reports safety, the MDP is
indeed safe by the soundness of PrIC3H.

6.2.6.1 Check Refutation

If PrIC3H does not report safety, it reports a subsystem that hints to a potential
counterexample. Formally, this subsystem is a subMDP14 ofM containing the
states that were “visited” during the invocation of StrengthenH.

Definition 6.7 (subMDPs (adapted from [CV10])).
Given a subset S ′ ⊆ S of states with sI ∈ S , we call the structure

MS ′ = (S ′ , Act, P ′) ,

where P ′ : S ′ ×Act×S ′→ [0,1] is given by

for all s, s′ ∈ S ′ and all a ∈ Act : P ′(s,a, s′) = P (s,a, s′) ,

the subMDP ofM induced by S ′ .
MS ′ may be substochastic where, intuitively, the missing probability mass never
reaches a bad state. Definition 2.8 on page 32 is thus relaxed: For all states
s ∈ S ′ and all actions a ∈ Act, we require that

∑
s′∈S ′ P (s,a, s′) ≤ 1. The notion of

maximal reachability probabilities carries over to subMDPs. Crucially, if the
subMDP is unsafe, we can conclude that the original MDPM is also unsafe:

Lemma 6.13 (Unsafety of subMDPs [JDKK+16]).
IfMS ′ is a subMDP ofM, then

MaxPr (MS ′ , sI |= ♦B) > λ implies MaxPr (M, sI |= ♦B) > λ .

The role of CheckRefutation is to establish whether the subsystem is indeed a
true counterexample or a spurious one. Formally, we require that

CheckRefutation (subsystem) = true iff Msubsystem is unsafe .

We remark that the procedure CheckRefutation invoked in l. 7 is a classical
fallback; it can be implemented using the standard LP-based characterization
of maximal reachability probabilities in finite-state MDPs ([BK08, Theorem
10.105]). In the worst case, i.e., for S ′ = S , we thus solve exactly our problem
statement via this standard approach.

14Recall that we fix an M = (S , Act, P), an initial state sI ∈ S , a set B ⊆ S of bad states, and a
threshold probability λ.

242 6 Property Directed Reachability

6.2.6.2 Refine Oracle

Whenever we have neither proven the MDP safe nor unsafe, we refine the
oracle to prevent generating the same subsystem in the next invocation of
PrIC3H. To ensure termination, oracles should only be refined finitely often.
That is, we need some progress measure. The set touched overapproximates all
counterexamples encountered in some invocation of PrIC3H and we propose
to use its size as the progress measure. While there are several possibilities
to update touched through the user-defined procedure Enlarge (l. 8), every
implementation should hence satisfy

|Enlarge(touched,)| > |touched| .

Consequently, after finitely many iterations, the oracle is refined with respect to
all states. We may then as well rely on solving the characteristic LP problem:

Lemma 6.14 (Soundness and Termination of PrIC3).
The algorithm PrIC3 in Algorithm 11 terminates and is sound, if Refine(Ω,S)
returns a perfect oracle Ω (with S is the set of all states).

Notice that the above lemma does not rely on the abstract concept that heuristic
H provides suitable probabilities after finitely many refinements.

6.2.7 Practical PrIC3 for Probabilistic Programs

So far, we gave a conceptual view on PrIC3. In this section, we take a more
practical stance: We marry PrIC3 with the weakest preexpectation calculus to
obtain a practical algorithm for model checking finite-state probabilistic loops.

6.2.7.1 Setting

We operate in the setting from Chapter 5: We assume the set Vars of program
variables to be finite and that program variables x ∈ Vars are N-valued. We
employ PrIC3 to tackle the following problem: Given a fully probabilistic15

and finite-state16 loop C = while (ϕ) {C′ } ∈ LpGCL in the linear fragment of
pGCL (cf. Definition 4.3 on page 146), a linear Boolean expression η ∈ LBExpr

Z

describing a set of “bad” final states, an initial program state σI with σI |= ϕ,
and a threshold probability λ ∈ [0,1]∩Q,

15Extending our results to nondeterministic programs is possible but left for future work.
16Recall that we call C finite-state, if |⟦ϕ⟧ | <∞.

6

6.2 PrIC3: Property Directed Reachability for MDPs 243

Verify or refute that wp⟦C⟧ ([η]) (σI) ≤ λ.

Due to the tight connection between weakest preexpectations and expected
reachability-rewards in pGCL’s operational MDP O discussed in Section 2.4.5,
instantiating PrIC3 for tackling the above problem requires almost no adaptions.
To see this, we associate with the loop C the Markov chain17

MC = (States, PC) , where PC(σ,σ ′) = ⟦if (ϕ)
{
C′

}
else {skip }⟧σ (σ ′)

︸ ︷︷ ︸
probability of reaching σ ′ from σ

via one guarded loop iteration
(cf. Definition 2.18 on page 50)

.

Notice that, even thoughMC is infinite-state since States is infinite, there are
only finitely many relevant states — those reachable from σI . Notice furthermore
that both PC and the set

Succs(σ) =
{
σ ′ ∈ States | PC(σ,σ ′) > 0

}
︸ ︷︷ ︸

finite

are computable18 for all σ ∈ States since the loop body C′ is loop-free. We
invoke PrIC3 on this Markov chain. Consequently, frames F are of type
States→ [0,1], i.e., 1-bounded expectations. The set of bad states is

B = ⟦¬ϕ ∧ η⟧ ,
i.e., states where C has terminated and that satisfy η. Exploiting that states
satisfying ¬ϕ ∧¬η never reach a bad state, we define the Bellman operator as

Φ (F) = λσ.



0 if σ |= ¬ϕ ∧¬η
1 if σ |= ¬ϕ ∧ η∑

σ ′∈States

PC(σ,σ ′) · F (σ ′) otherwise .

This Bellman operator in fact coincides with the wp-characteristic function Φ
wp
C [η]

of C w.r.t. [η] when restricting its domain to 1-bounded expectations because
we have for every frame F ,

Φ
wp
C [η](F)

17Recall that a Markov chain is an MDP where, in every state, exactly one action is enabled. We
assume here that the set Act of actions is a singleton and omit it for the sake of readability.

18Our implementation uses Storm.

244 6 Property Directed Reachability

= [ϕ] ·wp⟦C′⟧ (F) + [¬ϕ] · [η] (Definition 2.21 on page 63)

= λσ.



0 if σ |= ¬ϕ ∧¬η
1 if σ |= ¬ϕ ∧ η
wp⟦C′⟧ (F) (σ) otherwise .

= λσ.



0 if σ |= ¬ϕ ∧¬η
1 if σ |= ¬ϕ ∧ η∑

σ ′∈States

⟦C′⟧σ (σ ′) · F (σ ′) otherwise .

(Corollary 2.16 on page 72)

= λσ.



0 if σ |= ¬ϕ ∧¬η
1 if σ |= ¬ϕ ∧ η∑

σ ′∈States

⟦if (ϕ)
{
C′

}
else {skip }⟧σ (σ ′) · F (σ ′) otherwise .

(we have σ |= ϕ in the third case)

= λσ.



0 if σ |= ¬ϕ ∧¬η
1 if σ |= ¬ϕ ∧ η∑

σ ′∈States

PC(σ,σ ′) · F (σ ′) otherwise .
(by definition)

= Φ (F) .

In particular, we have for every state σ ,

(lfp Φ) (σ) = Pr (σ |= ♦B) =
(
lfp Φ

wp
C [η]

)
(σ) = wp⟦C⟧ ([η]) (σ) .

Hence, we can verify or refute whether wp⟦C⟧ ([η]) (σI) ≤ λ holds by invoking
PrIC3(MC ,σI ,B,λ), where the wp-characteristic function replaces the Bellman
operator. Notice that, due to the above reasoning, PrIC3 actually computes a
wp-superinvariant of C w.r.t. [η] to proveMC safe.

We represent frames as piecewise linear19 expectations in LExp (cf. Defini-
tion 4.4 on page 147). Resolving an obligation (i,σ ,δ) in StrengthenH (l. 11 in
Algorithm 10) is realized using the construction for pointwise minima from
Lemma 4.18 on page 154, i.e.,

Fi(σ)←min(Fi(σ),δ) becomes Fi ←Fi ⊓ ([σ] · δ+ [¬σ] ·∞) ,

19In Section 6.2.7.4, we present a technique which produces piecewise polynomial expectations but
all required properties carry over.

6

6.2 PrIC3: Property Directed Reachability for MDPs 245

where [σ] is the characteristic expectation of state σ given by

[σ] =
[∧

x∈Vars

x = σ (x)
]

= λσ ′ .


1 if σ ′ = σ

0 otherwise .

Since every frame Fi maintained by the core PrIC3H loop is initialized by the
constant-1-frame, Fi will always be of the form

Fi = F ′1 ⊓ . . .⊓F ′m
for some m ∈N and some frames F ′1 , . . . ,F ′m. In our implementation, we track
this set of “conjuncts” for each frame Fi maintained by PrIC3H. Since Algo-
rithm 10, l. 11 always updates not only Fi but all F1, . . . ,Fi , we can check whether
two frames Fi and Fi+1 coincide (l. 7 in Algorithm 9) in a syntactic manner by
checking whether the set of conjuncts of Fi and Fi+1 coincide20.

6.2.7.2 Obtaining and Refining Oracles

Recall that the outermost PrIC3 loop (Algorithm 11) requires user-supplied
methods for initializing (l. 1) and refining (l. 9) an oracle Ω : States→ [0,1],
which roughly estimates the probability of reaching B for every state σ . In this
section, we describe the methods we chose for our implementation.

Orcale initialization. States σ |= ¬ϕ ∧ η are bad. For such states, we thus let

Ω(σ) = 1 .

Conversely, states satisfying σ |= ¬ϕ ∧¬η never reach a bad state and we let

Ω(σ) = 0 .

It remains to assign probabilities to the states satisfying the loop guard ϕ. For
that, we use Storm to compute a finite set States′ of states reachable from
the initial state σI in breadth-first search manner and such that |States| =
min(|⟦ϕ⟧ |,5000). For all states with σ < States′ and σ |= ϕ, we let

Ω(σ) = 1 .

20This is analogous to bit-level IC3’s syntactic termination check (cf. Section 6.1.4.2): There, frames
Fi are conjunctions of clauses and two frames Fi and Fi+1 coincide iff their corresponding sets
of clauses coincide.

246 6 Property Directed Reachability

For all remaining states, i.e., for all σ ∈ States′ with σ |= ϕ, we introduce a
[0,1]-valued variable aσ and solve the following linear equation system:

∧

σ∈States′
σ |=ϕ

aσ =
∑

σ ′∈Succs(σ)

PC(σ,σ ′) ·



0 if σ ′ |= ¬ϕ ∧¬η
1 if σ ′ |= ¬ϕ ∧ η or σ ′ < States′

aσ ′ if σ ′ ∈ States′ .

We then let

Ω(σ) = aσ .

The above equation system bears a close resemblance to the standard equa-
tion system for computing reachability probabilities in finite-state Markov
chains (cf. [BK08, Theorem 10.19]), where states σ ′ < States′ are considered bad.

Oracle refinement. Denote by Ω the current oracle and by touched ⊆ States the
finite set of states maintained by the outermost PrIC3 loop (Algorithm 11). Now
introduce a [0,1]-valued variable aσ for all σ ∈ touched. We obtain the refined
oracle Ω′ by solving the following linear equation system:

∧

σ∈States′
σ |=ϕ

aσ =
∑

σ ′∈Succs(σ)

PC(σ,σ ′) ·



0 if σ ′ |= ¬ϕ ∧¬η
1 if σ ′ |= ¬ϕ ∧ η
Ω(σ ′) if σ ′ |= ϕ and σ ′ < touched

aσ ′ if σ ′ |= ϕ and σ ′ ∈ touched .

We then let

Ω′ = λσ.


Ω(σ) if σ ̸|= ϕ or σ < touched

aσ otherwise .

Finally, if touched covers all states in ⟦ϕ⟧, we fall back to the standard procedure
for computing reachability probabilities in finite-state Markov chains ([BK08,
Theorem 10.19])) to ensure that

Ω′(σI) = Pr (σI |= ♦B) .

Enlarging touched. Finally, we implement Enlarge as

Enlarge(touched,subsystem)

= touched∪


subsystem if subsystem ⊈ touched
⋃
σ∈touched Succs(σ) otherwise

6

6.2 PrIC3: Property Directed Reachability for MDPs 247

so that touched contains all relevant states after finitely many iterations, which
yields PrIC3 (Algorithm 11) to terminate.

6.2.7.3 Obtaining Adequate Heuristics

Recall that StrengthenH invokes a heuristic21 H : States × [0,1]→ [0,1]∗ (l. 8
in Algorithm 10). We use the oracle Ω : States → [0,1] maintained by the
outermost PrIC3 loop to construct an adequate heuristic: Suppose we encounter
an obligation of the form (i,σ ,δ) with Succs(σ) = {σ1, . . . ,σn}. We obtain the
probabilities δ1, . . . ,δn for these successors as follows: If δ = 0, we let

H(σ,δ) = δ1, . . . ,δn = 0, . . . ,0 .

If δ > 0, then we attempt to solve the following optimization problem22:

minimize
n∑

i=1
σi<B

∣∣∣ δi∑n
j=1 δj

− Ω(σi)∑n
j=1Ω(σj)

∣∣∣

subject to δ =
n∑

i=1

PC(σ,σi) · δi

∧
n∧

i=1
σi∈B

δi = 1

∧ 0 ≤ δ1, . . . ,δn ≤ 1 ,

where we let 0.5 = Ω(σ1) = . . . = Ω(σn) in case
∑n
j=1Ω(σj) = 0. The objective

function aims to preserve the ratio between the probabilities suggested by the
oracle Ω. Now, if the above optimization problem has a solution, we let

H(σ,δ) = δ1, . . . ,δn .

If the problem does not have a solution, then it is impossible to strengthen the
frames in such a way that resolving the obligation (i,σ ,δ) preserves the PrIC3
invariants. In this case, at least one state σ ′ ∈ Succs(σ) is bad and we let

H(σ,δ) = 0, . . . ,0 .

This yields StrengthenH to return false (l. 5) as soon as it pops the obligation (i−
1,σ ′ ,0). In our implementation, we apply a minor optimization by immediately
returning false instead of spawning new obligations.
21We omit the Act component since we restrict to Markov chains.
22Our implementation uses Z3’s extension for Optimization Modulo Theories [BPF15].

248 6 Property Directed Reachability

6.2.7.4 Generalization in PrIC3

Analogously to IC3 for transition system, generalization in PrIC3 takes place
right before l. 11 in Algorithm 10. Suppose an obligation (i,σ ,δ) can be resolved
without violating the PrIC3 invariants by executing

F1(σ)←min(F1(σ),δ); . . . ;Fi(σ)←min(Fi(σ),δ) . (6.3)

Generalization aims to update more values than just those at σ without violating
the PrIC3 invariants. The goal is thus to heuristically guess a frame F with

(i) F (σ) ≤ δ and (ii) Φ (Fi) ⊑ F

to accelerate the search for an inductive invariant. We call such an F a general-
ization of (σ,δ) w.r.t. Fi . Instead of updating the frames by executing (6.3), we
then update the frames using the generalization F :

F1←F1 ⊓F ; . . . ;Fi ←Fi ⊓F ,

Since we represent both the frames maintained by PrIC3 and the frame F as
piecewise linear expectations, we can employ the techniques from Section 4.6.3
to decide the above conditions (i) and (ii) and for computing pointwise minima
in a fully symbolic manner via SMT solving techniques.

In what follows, we discuss three approaches for obtaining generalizations
based on polynomial interpolation. Since the given loop C is finite-state, we
assume that each program variable x from the finite set Vars is upper-bounded
by a given constant ux ∈N.

Linear generalization. This technique is depicted in Algorithm 12 on page 249.
LinearGeneralization takes as input a frame F , a state σ , and a probability δ
with Φ (F)(σ) ≤ δ. The result is a generalization F ′ of (σ,δ) w.r.t. F . For that,
F ′ is initialized in l. 1 by

[σ] · δ+ [¬σ] ·∞ ,

which is a valid generalization by assumption. We then attempt to strengthen
F ′ further by doing the following for each variable x ∈ Vars: We aim to find a
generalization F ′′ of the form

[ϑ] · e+ [¬ϑ] ·∞ with ϑ = σ (x) ≤ x ≤ ux ∧
∧

y∈Vars\{x}
y = σ (y) ,

6

6.2 PrIC3: Property Directed Reachability for MDPs 249

Algorithm 12: LinearGeneralization(F ,σ ,δ)

input: Frame F , state σ , and probability δ with Φ (F)(σ) ≤ δ
output : A generalization F ′ of (σ,δ) w.r.t. F

1 F ′← [σ] · δ+ [¬σ] ·∞
2 for x ∈ Vars do

/* try to generalize between x’s current and maximal value */
3 ϑ ← σ (x) ≤ x ≤ ux ∧

∧
y∈Vars\{x} y = σ (y)

/* obtain e of the form q · x+ r passing through the given points */
4 e← Interpolate ({(σ (x),δ), (ux,Φ (F)(σ [x 7→ ux]))})
5 F ′′← [ϑ] · e+ [¬ϑ] ·∞
6 if Φ (F) ⊑ F ′′ then

/* generalizing with F ′′ is possible */
7 F ′←F ′ ⊓F ′′
8 return F ′

Figure 6.15: Linear generalization in PrIC3.

i.e., we aim to lower the values of x in the interval [σ (x),ux]. For that, we assign
to e the affine expression in x interpolating between the points

(σ (x),δ) and (ux,Φ (F)(σ [x 7→ ux])) .

If the resulting F ′′ satisfies Φ (F) ⊑ F ′′ , we strengthen F ′ by F ′′ in l. 7.

Polynomial generalization. This technique, depicted in Algorithm 13 on page
250, is an extension of linear generalization. In addition to F , σ , and δ,
PolynomialGeneralization takes as input some natural number n, which bounds
the number of so-called counterexamples to generalization (CTGs). Considering
CTGs is inspired by [HBS13] and works as follows: We proceed as for linear
generalization. However, if the frame F ′′ obtained from interpolating between

(σ (x),δ) and (ux,Φ (F)(σ [x 7→ ux]))

does not satisfy Φ (F) ⊑ F ′′ , we do not immediately give up. Rather, we obtain
a state σ ′ with Φ (F)(σ ′) > F ′′(σ ′) in l. 10 — a CTG — and add the point
(σ ′(x),Φ (F)(σ ′)) to the points used for interpolation. In the next iteration, we

250 6 Property Directed Reachability

Algorithm 13: PolynomialGeneralization(F ,σ ,δ,n)

input: Frame F , state σ , probability δ with Φ (F)(σ) ≤ δ, and n ∈N
output : A generalization F ′ of (σ,δ) w.r.t. F

1 F ′← [σ] · δ+ [¬σ] ·∞
2 for x ∈ Vars do

/* try to generalize between x’s current value and maximal value */
3 ϑ ← σ (x) ≤ x ≤ ux ∧

∧
y∈Vars\{x} y = σ (y)

4 points← {(σ (x),δ), (ux,Φ (F)(σ [x 7→ ux]))}
5 i← 0
6 do

/* obtain univariate polynomial in x of degree |points| − 1 */
7 e← Interpolate (points)
8 F ′′← [ϑ] · e+ [¬ϑ] ·∞
9 if ¬(0 ⊑ [ϑ] · e ⊑ 1) then break /* ensure well-typedness */

10 if ∃σ ′ : Φ (F)(σ ′) > F ′′(σ ′) then for such a σ ′
/* σ ′ is a counterexample to generalization */

11 points← points∪ {(σ ′(x),Φ (F)(σ ′)}
12 else

/* generalizing with F ′′ is possible */
13 F ′←F ′ ⊓F ′′
14 break

15 i← i + 1
16 while i ≤ n
17 return F ′

Figure 6.16: Polynomial generalization in PrIC3.

6

6.2 PrIC3: Property Directed Reachability for MDPs 251

Algorithm 14: Propagate (F0, . . . ,Fk+1)

input: F0, . . . ,Fk+1 with PrIC3Inv (F0, . . . ,Fk+1)
output :strengthening F ′0 , . . . ,F ′k+1 of F0, . . . ,Fk+1 with PrIC3Inv

(
F ′0 , . . . ,F ′k

)

1 for i = 1, . . . , k do
/* let Fi = F ′1 ⊓ . . .⊓F ′m */

2 for j = 1, . . . ,m do
3 if Φ (Fi) ⊑ F ′j then

/* propagating F ′j to Fi+1 is possible */

4 Fi+1←Fi+1 ⊓F ′j
5 return F0, . . . ,Fk+1

Figure 6.17: Propagation in PrIC3.

thus possibly obtain a univariate polynomial in x of degree greater than 1.
Hence, PolynomialGeneralization produces piecewise polynomial expectations.
The techniques from Section 4.6.3 for deciding23 quantitative entailments and
computing pointwise minima carry over to these expectations. Moreover, we
have to take care: The resulting polynomials are not necessarily [0,1]-valued.
Whenever we obtain a polynomial that is not [0,1]-valued, we give up (l. 9).

Hybrid generalization. We proceed as for polynomial generalization. However,
to avoid reasoning about non-linear arithmetic, we soundly approximate the
obtained piecewise polynomial expectations by piecewise linear expectations.

6.2.7.5 Propagation in PrIC3

Recall that propagation takes place in Algorithm 9, l. 6. Propagate takes as
input a sequence F0, . . . ,Fk+1 frames satisfying the PrIC3 invariants. For each
frame Fi with i ≥ 1, it then aims to “propagate” values of states to higher frames
whenever this does not violate the PrIC3 invariants.

23For this, we relax the problem of deciding quantitative entailments by assuming the program
variables to be R≥0-valued, i.e., we employ satisfiability checking for decidable non-linear real
arithmetic. This is sound yet incomplete: It might be the case that a quantitative entailment
f ⊑ g holds for N-valued variables but not for R≥0-valued program variables.

252 6 Property Directed Reachability

PrIC3 Storm
w/o lin pol hyb

Prog |S| Pr
(
σI |=♦B

)
λ t |subsys| t |subsys| t |subsys| t |subsys| sp dd

BRP 103 0.035
0.1 TO – TO – TO – TO –

<0.1 0.120.01 47.56 324 509.46 324 TO – 663.93 324
0.005 10.98 188 210.44 188 TO – TO –

ZeroConf 104 0.5

0.9 TO – TO – 0.51 0 0.39 0

<0.1 281.64
0.75 TO – TO – 0.52 0 0.46 0
0.52 TO – TO – 0.40 0 0.41 0
0.45 <0.1 1 <0.1 1 <0.1 1 <0.1 1

ZeroConf 109 0.55

0.9 TO – TO – 1.05 0 TO –

MO TO
0.75 TO – TO – 1.06 0 TO –
0.52 TO – TO – TO – TO –
0.45 <0.1 1 <0.1 1 <0.1 1 <0.1 1

Chain 103 0.394

0.9 139.78 0 TO – 0.76 0 0.56 0

<0.1 0.12
0.4 153.42 0 TO – 0.78 0 TO –

0.354 142.04 431 TO – TO – TO –
0.3 76.24 357 554.08 357 TO – TO –

Chain 104 0.394

0.9 TO – TO – 0.78 0 0.57 0

<0.1 4.91
0.48 TO – TO – 0.85 0 TO –
0.4 TO – TO – 0.81 0 TO –
0.3 TO – TO – TO – TO –

Chain 1012 0.394
0.9 TO – TO – 0.78 0 TO –

MO TO
0.4 TO – TO – 0.79 0 TO –

DoubleChain 103 0.215

0.9 TO – TO – 1.66 0 1.73 0

<0.1 0.12
0.3 TO – TO – 1.64 0 1.74 0

0.2164 TO – TO – 130.48 0 TO –
0.15 TO – TO – TO – TO –

DoubleChain 104 0.22
0.94 TO – TO – 1.68 0 1.67 0

<0.1 2.990.3 TO – TO – 1.64 0 1.694 0
0.24 TO – TO – 1.67 0 TO –

Table 6.1: Experimental results. TO=15min, MO=8GB, time in seconds.

Propagate is given by the pseudo code in Algorithm 14 on page 251. We do
the following for each frame Fi , where i ranges from 1 to k: We consider each of
the “conjuncts” F ′j comprising Fi . Notice that, in the presence of generalization,
F ′j could be a non-constant piecewise linear (polynomial) expectation. We
then check whether Fi+1 can be strengthened by F ′j without violating the PrIC3
invariants, which is the case if Φ (Fi) ⊑ F ′j by Theorem 6.9 on page 236.

6.2.8 Implementation and Experiments

We assess how PrIC3 may contribute to the state-of-the-art in probabilistic
model checking. We do some early empirical evaluation showing that PrIC3 is

6

6.2 PrIC3: Property Directed Reachability for MDPs 253

feasible. We see ample room for further improvements to the prototype24.

Setup. We have implemented a prototype of PrIC3 based on Section 6.2.7 in
Python. The input25 is represented using efficient data structures provided by
the model checker Storm. We use Z3 for SMT solving, i.e., for obtaining and
refining oracles, for solving the optimization problem which implements our
heuristic H, for checking relative inductivity, and for obtaining generalizations.
We support all discussed generalizations (none, linear, polynomial, hybrid).

We choose a combination of models from the literature (BRP [HSV93; DJJL01],
ZeroConf [CAG05]) and some structurally straightforward variants of grids
(Chain, DoubleChain). Since our prototype is more sensitive to the precise
encoding of a model, i.e., the program describing it, we have generated new
encodings for all models. We use a 15 minute time-limit and report TO oth-
erwise. Memory is limited to 8GB; we report MO if it is exceeded. To give an
impression of the runtimes, we compare our prototype to both the explicit- (sp)
and symbolic-state (dd) engine of the model checker Storm 1.5.1.

Results. In Table 6.1, we present the runtimes for various invocations of our
prototype on an Intel Core i5-7360U 2.3GHz. In particular, we give the model
name and the number of (relevant) states in the particular instance, and the
(estimated) actual probability to reach B from the fixed initial state. For each
model, we consider multiple thresholds λ. The next 8 columns report on the
four variants of PrIC3 with varying generalization schemes. Besides the scheme
with the run times, we report for each scheme the number of states of the
largest (last) subsystem that CheckRefutation in Algorithm 11 was invoked
upon (column |subsys|). The last two columns report on the run times for Storm
that we provide for comparison. In each row, we mark with violet MDPs that
are unsafe. We highlight the best configurations of PrIC3.

Discussion. Our experiments give a mixed picture of the performance of our
implementation of PrIC3. On the one hand, Storm significantly outperforms
PrIC3 on most models. On the other hand, PrIC3 is capable of reasoning about
huge, yet simple, models with up to 1012 states that Storm is unable to analyze
within the time and memory limits. There is more empirical evidence that PrIC3
may complement the state-of-the-art:

First, the size of thresholds matters. Our benchmarks show that more “wiggle

24The prototype is available open-source from https://github.com/moves-rwth/PrIC3.
25Our prototype accepts programs written in the PRISM language with a single module. These

programs can be interpreted as a single-loop in pGCL – see [HJVM+21] for an explicit translation.

https://github.com/moves-rwth/PrIC3

254 6 Property Directed Reachability

room” between the precise reachability probability and the threshold generally
leads to better performance. PrIC3 may thus prove bounds for large models
where a precise quantitative reachability analysis is out of scope.

Second, PrIC3 enjoys the benefits of partial state space exploration. In some cases,
e.g., ZeroConf for λ = 0.45, PrIC3 refutes very fast as it does not need to explore
the whole model.

Third, if PrIC3 proves the mode safe, it does so without relying on checking
large subsystems in the CheckRefutation step.

Fourth, generalization is crucial. Without generalization, PrIC3 is unable
to prove safety for any of the considered models with more than 103 states.
With generalization, however, it can prove safety for very large systems and
thresholds close to the exact reachability probability. For example, it proved
safety of the Chain benchmark with 1012 states for a threshold of 0.4 which
differs from the exact reachability probability by 0.006.

Fifth, there is no best generalization. There is no clear winner out of the consid-
ered generalization approaches. Linear generalization is the worst-performing.
In fact, it performs worse than no generalization at all. The hybrid approach,
however, occasionally has the edge over the polynomial approach. This indicates
that more research is required to find suitable generalizations.

6.3 Future and Related Work

6.3.1 Future Work

We identify several directions for future work. A first direction is to investigate
more sophisticated heuristics and generalizations. The recent works by Kori et
al. [KABB+23; KUKS+22] provide various encouraging insights yielding such
improvements, which we discuss in the next section. We plan to integrate the
more expressive piecewise defined templates from Chapter 5 into our PrIC3
framework and to investigate whether this yields suitable generalizations.

Krishnan et al. [KVGG19] propose kAvy, which combines classical k-induction
for transition systems with IC3/PDR and show that the so-obtained algorithm
can be orders of magnitude faster than k-induction or PDR on their own. We
hence consider it a promising direction to investigate whether our generalization
of k-induction from Chapter 4 can be combined with PrIC3.

We have so far restricted to finite-state programs. However, our marriage
of PrIC3 and the weakest preexpectation calculus from Section 6.2.7 strongly
suggests that our framework can be extended for reasoning about infinite-state

6

6.3 Future and Related Work 255

probabilistic programs. We plan to investigate the practical feasibility of such an
extension as well as sufficient criteria for termination. We believe that insights
by Kori et al. [KABB+23; KUKS+22] could yield such criteria.

Finally, we conjecture that the fact that PrIC3 requires a heuristic H— in a
sense which needs to be formalized — is closely related to the fact that there
does not exist a probabilistic analog of strongest postconditions [Jon90, p. 135].
The recent work by Kori et al. [KABB+23] on exploiting adjoints in IC3/PDR
strengthens this conjecture.

6.3.2 Related Work

IC3 for finite-state transition system has been proposed by Bradley [Bra11a]. The
improved algorithm PDR is due to Een et al. [EMB11]. IC3/PDR as has been ex-
tensively studied in the field of hardware verification [GI15; KVGG19; DKR10;
VG14; HBS13; GSV14; GR16] and extended and adapted to infinite-state soft-
ware model checking [Lan18; CGMT16; LNNK20b; LNN15; Wel13; LS16; CG12;
CGMT14; BBW14; KBGM15; KGC14; BG15], hybrid systems [HB12; SI20], and
generalized Petri nets [ADH22]. In particular, Hoder and Bjørner propose gener-
alized property directed reachability [HB12] for non-linear predicate transformers
where counterexamples unfold into trees rather than single finite execution
fragments, thus encountering a problem similar to our Challenge 2.

To the best of our knowledge, PrIC3 was the first truly probabilistic general-
ization of IC3. Polgreen et al. propose pIC3 [PBFA19], where the IC3-like part
of the algorithm reasons about qualitative reachability in Markov chains. Most
closely related to PrIC3 are the recent works by Kori et al. discussed below.

LT-PDR [KUKS+22]. Our goal was to conservatively extend IC3 for transition
systems to the more general quantitative setting of Markov decision processes.
Kori et al. went one step further: They have generalized IC3/PDR to the even
more general setting of verifying or refuting upper bounds on least fixpoints of
continuous functions over complete lattices, coining their framework LT-PDR.
From a conceptual point of view, this is similar to our generalization of classical
k-induction for transition system to the latticed setting from Chapter 4.

Kori et al. instantiate their framework for reasoning about safety of Markov
decision processes. This instance is called PDRIB-MDP, which is compared — both
theoretically and empirically — to our PrIC3 algorithm. As pointed out in
[KUKS+22]: “PDRIB-MDP shares many essences with PrIC3 ”. Indeed, apart from
minor optimizations, our core PrIC3H loop can be considered an instance of Kori
et al.’s framework with two key differences: First, as pointed out in [KUKS+22],

256 6 Property Directed Reachability

proof obligations in our StrengthenH procedure never directly refute safety of
the given MDP. Rather, we check for refutation in our separate outer PrIC3 loop.
Kori et al., on the other hand, show how (their analogs of) proof obligations
can be used to refute safety, which is more similar to how IC3 refutes safety
of transition systems. Second PDRIB-MDP adapts an optimized relative inductivity
check from IC3. Put more formally, the condition

Φ (Fi) ⊑ F
from Theorem 6.9 on page 236 is replaced by the weaker26 condition

Φ (Fi ⊓F) ⊑ F .

This optimization is inessential to soundness or termination. It would, however,
be interesting to investigate under which circumstances this optimized check
yields a better performance. Finally, Kori et al. provide a further instantiation
of their framework to obtain an algorithm for reasoning about upper bounds on
more general expected accumulated rewards in Markov chains.

AdjointPDR. In [KABB+23], Kori et al. enhance their framework by exploiting
adjoints — a well-studied notion from category theory [Car08] and abstract
interpretation [Cou21]. In particular, they show how adjoints enable the deriva-
tion of — phrased in our terminology — improved adequate heuristics. These
heuristics have been implemented and empirically compared to PrIC3. The
results are strongly encouraging: Without generalization, their implementation
outperforms PrIC3 on all benchmarks, indicating that their derived heuristics
indeed advance the state-of-the-art which moreover enables further research
on, e.g., obtaining suitable generalizations.

26Notice that Φ (Fi ⊓F) ⊑ Φ (Fi) by monotonicity of Φ .

7

257

7 Conclusion and Outlook

We have studied both foundational and practical aspects of the automated
deductive verification of probabilistic programs via weakest preexpectation
reasoning. We now draw some final conclusions and provide a brief outlook.

On the more foundational side, we have presented an expressive formal lan-
guage Exp of expectations in Chapter 3. Our language Exp is nowadays a key
ingredient of the modern semi-automated deductive probabilistic program veri-
fier Caesar [18]. Caesar benefits from the fact that reasoning with Exp enables
the relatively complete verification of probabilistic programs as discussed in
Section 3.5. Moreover, the empirical results presented in [18] indicate that
the semi-automated verification with Exp is feasible: Caesar verifies various
specifications of programs taken from the literature. Hence, we conclude:

The results from Chapter 3 provide a principled foundation
for the automated deductive verification of probabilistic programs.

On the more practical side, we have presented three different approaches
for the fully automatic verification of piecewise linear bounds on expected
outcomes and expected runtimes of linear loops. The empirical results are
promising: Our approaches automatically verify various loops taken from the
literature with both finite and infinite state spaces. A particularly promising
application of automatic wp-reasoning is probabilistic model checking: Our CEGIS
approach (Chapter 5) and PrIC3 (Chapter 6) verify huge probabilistic models
for which the state-of-the-art probabilistic model checker Storm fails. This is
due to the symbolic nature of our approaches, which can obviate the need for
state space enumeration. Even though it is important to note that the models
we have considered are structurally rather simple when compared to, e.g., many
models from the Quantitative Verification Benchmark Set1, we may conclude:

The results from Chapters 4 to 6 advance the state-of-the-art of the automatic
verification of probabilistic programs. Moreover, we identify automatic wp-reasoning

as a promising direction for complementing probabilistic model checking.

1https://qcomp.org/

https://qcomp.org/

258 7 Conclusion and Outlook

Outlook. In the preceding chapters, we have already discussed several direc-
tions for future work. Let us take a final and more unifying perspective on
possible directions for future work.

Nondeterminism. In Chapter 3, in our implementation of k-induction and
BMC from Chapter 4, in Chapter 5, and in our implementation of PrIC3 from
Chapter 6, we have restricted to fully probabilistic programs that do not contain
nondeterministic choices. Extending the presented results to nondeterministic
probabilistic programs is a promising direction for future work. This has partly
been done: The semi-automated deductive verifier Caesar supports k-induction
and BMC for possibly nondeterministic programs.

A particularly promising direction is to extend our CEGIS framework from
Chapter 5 to nondeterministic programs. We have shown in [19] that — loosely
speaking — quantitative invariants of nondeterministic probabilistic loops
yield specification-preserving program-level strategies which resolve the nondeter-
minism in a program with probabilistic safety or liveness guarantees. Hence,
automatic quantitative invariant synthesis also yields automatic strategy synthe-
sis for possibly infinite-state loops. The synthesis of strategies for resolving the
nondeterminism has various applications in planning and artificial intelligence.

Probabilistic programming and conditioning. In probabilistic programming, the
main task is probabilistic inference: Given a (conditional) probability distri-
bution encoded as a probabilistic programs, compute, e.g., the (conditional)
expected value of a given random variable. There are dedicated weakest
preexpectation-style calculi for reasoning about conditional expected outcomes
of probabilistic programs [OGJK+18]. We consider it a promising direction to
extend our results for tackling the aforementioned task, which might yield
automatic quantitative loop invariant-based probabilistic inference techniques.

Combining our approaches. Finally, we have already outlined in Section 6.3
that, e.g., classical k-induction for transition systems has been combined with
IC3/PDR [KVGG19]. We hence consider it a promising direction is to investigate
how the strengths of our approaches from Chapters 4 to 6 can be combined to
further improve automatic wp-reasoning.

7

259

Declaration of Authorship

Eidesstattliche Erklärung

I, Kevin Stefan Batz declare that this thesis and the work presented in it are my
own and has been generated by me as the result of my own original research.

Hiermit erkläre ich an Eides statt / I do solemnely swear that:

1. This work was done wholly or mainly while in candidature for the doctoral
degree at this faculty and university;

2. Where any part of this thesis has previously been submitted for a degree
or any other qualification at this university or any other institution, this
has been clearly stated;

3. Where I have consulted the published work of others or myself, this is
always clearly attributed;

4. Where I have quoted from the work of others or myself, the source is
always given. This thesis is entirely my own work, with the exception of
such quotations;

5. I have acknowledged all major sources of assistance;

6. Where the thesis is based on work done by myself jointly with others,
I have made clear exactly what was done by others and what I have
contributed myself;

7. Parts of this work have been published before as detailed in Section 1.5.

Kevin Stefan Batz, January 2025, Aachen

A

261

A Appendix

1 Appendix to Chapter 2 263

1 Appendix to Chapter 2

1.1 Appendix to Section 2.2

We consider Markov chains induced by memorlyess schedulers1.

Definition A.1 (Markov Chains Induced by Memoryless Schedulers).
Let M = (S , Act, P) be an MDP and let S ∈ MLScheds be a memoryless
scheduler. The Markov chain ofM induced by S is defined as

M(S) = (S , Act, PS) ,

where PS is the transition probability function given by

PS(s,a, s′) =


P (s,a, s′) if a = S(s)

0, otherwise .

We require the following auxiliary result: The least fixpoint of the min-Bellman
operator Φmin

M rew gives rise to a memoryless scheduler S such that the least
fixpoint of Φmin

M rew and the least fixpoint of the Bellman operator ΦM(S) rew w.r.t.
the Markov chainM(S) induced by S coincide:

Lemma A.1.
LetM = (S , Act, P) be an MDP, let rew : T →R

∞
≥0 be a reward function, and

let ≼ be some total order on Act. Moreover, define the memoryless scheduler
S as

S(s) =



a ∈ Act(s) if s ∈ T
argmin
α∈Act(s)

∑

s′∈Succsa(s)

P (s,a, s′) ·
(
lfp Φmin

M rew

)
(s′) otherwise .

where in case the above definition does not yield a unique action, we choose
the least action w.r.t. ≼. Then, for the Markov chainM(S) induced by S,

lfp Φmin
M rew = lfp ΦM(S) rew .

Proof. The proof is inspired by the techniques presented in [19]. We prove

1Restricting to memorlyess schedulers suffices for our purposes. One can more generally define
Markov chains induced by history-dependent schedulers [BK08, Definition 10.92].

264 A Appendix

the two inequalities

lfp Φmin
M rew ⊑ lfp ΦM(S) rew and lfp ΦM(S) rew ⊑ lfp Φmin

M rew .

The claim then follows from antisymmetry of ⊑. The first inequality is
straightforward. For the second inequality, by Park induction (Lemma 2.4), it
suffices to show

ΦM(S) rew

(
lfp Φmin

M rew

)
⊑ lfp Φmin

M rew . ■

For that, we reason as follows:

ΦM(S) rew

(
lfp Φmin

M rew

)

= λs.



rew(s) if s ∈ T∑

s′∈SuccsS(s)(s)

P (s,S(s), s′) ·
(
lfp Φmin

M rew

)
(s′) otherwise

(Definition 2.15)

= λs.



rew(s) if s ∈ T
min

a∈Act(s)

∑

s′∈Succsa(s)

P (s,a, s′) ·
(
lfp Φmin

M rew

)
(s′) otherwise .

(by construction of S)

= lfp Φmin
M rew (Definition 2.15.1 and fixpoint property)

⊑ lfp Φmin
M rew . (reflexivity of ⊑)

Lemma A.2.
Let M = (S , Act, P) be an MDP, rew : T → R

∞
≥0 be a reward function, S ∈

Scheds, and let s ∈ S . We have:

1. MinER (M, s |= ♦rew) = inf
S∈Scheds

sup
n∈N

ERS

(
M, s |= ♦≤nrew

)

2. MaxER (M, s |= ♦rew) = sup
S∈Scheds

sup
n∈N

ERS

(
M, s |= ♦≤nrew

)

Moreover, ifM is a Markov chain, then

3. ER (M, s |= ♦rew) = sup
n∈N

ER
(
M, s |= ♦≤nrew

)
.

1 Appendix to Chapter 2 265

Proof. It suffices to show that

ERS (M, s |= ♦rew) = sup
n∈N

ERS

(
M, s |= ♦≤nrew

)
.

We have

Paths(s,T) =
⋃

n∈N
Paths≤n(s,T) .

Hence, the set
{
ER

(
M, s |= ♦≤nrew

)
| n ∈N

}

=



∑

s0...sm∈Paths≤n(s,T)

ProbS(s0 . . . sm) · rew(sm) | n ∈N


covers all partial sums of

ERS (M, s |= ♦rew) =
∑

s0...sm∈Paths(s,T)

ProbS(s0 . . . sm) · rew(sm) .
■

1.1.1 Proof of Lemma 2.8

We have to show Lemma 2.8 on page 42:

LetM = (S , Act, P) be an MDP and let rew : T →R
∞
≥0. We have:

1. for all n ∈N : Φmin n+1
M rew (0) = λs.MinER

(
s |= ♦≤nrew

)

2. for all n ∈N : Φmax n+1
M rew (0) = λs.MaxER

(
s |= ♦≤nrew

)

Moreover, ifM is a Markov chain, then

3. for all n ∈N : Φn+1
M rew (0) = λs.ER

(
s |= ♦≤nrew

)
.

Proof. We prove the claim for the min-Bellman operator by induction on n.
The proof for the max-Bellman operator is completely analogous.

266 A Appendix

Base case n = 0. We have

Φmin 1
M rew(0)

= λs.



rew(s) if s ∈ T
min

a∈Act(s)

∑

s′∈Succsa(s)

P (s,a, s′) · 0 otherwise (Definition 2.15.1)

= λs.


rew(s) if s ∈ T
0 otherwise

= λs. inf
S∈Scheds

∑

s0∈Paths≤0(s,T)

ProbS(s0)
︸ ︷︷ ︸

=1

·rew(s0) (Paths≤0(s,T) = {s} ∩ T)

= λs. inf
S∈Scheds

ERS

(
M, s |= ♦≤0rew

)
. (Definition 2.13.3)

Induction step. Let s ∈ S . If s ∈ T , then

Φmin n+2
M rew (0)(s) = rew(s) = MinER

(
M, s |= ♦≤n+1rew

)

follows immediately. For s < T , consider the following: Given a scheduler S
and some action a ∈ Act(s), define the scheduler (s,a) ·S as

((s,a) ·S) (s0 . . . sm) =


a if s0 . . . sm = s

S(s0 . . . sm) otherwise . ■

Φmin n+2
M rew (0)(s)

= min
a∈Act(s)

∑

s′∈Succsa(s)

P (s,a, s′) · Φmin n+1
M rew (0)(s′) (Definition 2.15.1)

= min
a∈Act(s)

∑

s′∈Succsa(s)

P (s,a, s′) ·MinER
(
M, s′ |= ♦≤nrew

)
(I.H.)

= min
a∈Act(s)

∑

s′∈Succsa(s)

P (s,a, s′)

·

 inf
S∈Scheds

∑

s0...sm∈Paths≤n(s′ ,T)

ProbS(s0 . . . sm) · rew(sm)




(Definition 2.13.3)

1 Appendix to Chapter 2 267

= min
a∈Act(s)

∑

s′∈Succsa(s)

inf
S∈Scheds

∑

s0...sm∈Paths≤n(s′ ,T)

P (s,a, s′) · ProbS(s0 . . . sm) · rew(sm)

(· distributes over inf and finite sums)

= min
a∈Act(s)

inf
S∈Scheds

∑

s′∈Succsa(s)∑

s0...sm∈Paths≤n(s′ ,T)

P (s,a, s′) · ProbS(s0 . . . sm) · rew(sm)

(the sets Paths≤n(s′ ,T) are pairwise disjoint)

= min
a∈Act(s)

inf
S∈Scheds

∑

s0...sm∈Paths≤n+1(s,T)

Prob(s,a)·S(s0 . . . sm) · rew(sm)

(de-factorize a-successors)

= inf
S∈Scheds

∑

s0...sm∈Paths≤n+1(s,T)

ProbS(s0 . . . sm) · rew(sm)

(schedulers cover minimum over a-successors)

= MinER
(
M, s |= ♦≤n+1rew

)
.

1.1.2 Proof of Theorem 2.9

We have to show Theorem 2.9 on page 42:

LetM = (S , Act, P) be an MDP and rew : T →R
∞
≥0. We have:

1. lfp Φmin
M rew = λs.MinER (M, s |= ♦rew)

2. lfp Φmax
M rew = λs.MaxER (M, s |= ♦rew)

Moreover, ifM is a Markov chain, then

3. lfp ΦM rew = λs.ER (M, s |= ♦rew) .

Proof. Theorem 2.9.3 follows from Theorem 2.9.1 (or Theorem 2.9.2). Since
the proof of Theorem 2.9.1 is more involved, we first prove Theorem 2.9.2 .

268 A Appendix

For that, consider the following:

lfp Φmax
M rew

=
⊔

n∈N
Φmax n

M rew(0) (Theorem 2.7.2)

=
⊔

n∈N
λs.MaxER

(
M, s |= ♦≤nrew

)
(Lemma 2.8.2)

=
⊔

n∈N
λs. sup

S∈Scheds
ERS

(
M, s |= ♦≤nrew

)
(Definition 2.13.5)

= λs. sup
n∈N

sup
S∈Scheds

ERS

(
M, s |= ♦≤nrew

)
(suprema defined pointwise)

= λs. sup
S∈Scheds

sup
n∈N

ERS

(
M, s |= ♦≤nrew

)
(suprema commute)

= λs.MaxER (M, s |= ♦rew) . (Lemma A.2.2)

Recall that this already implies Theorem 2.9.3. In the above reasoning, we
have exploited that suprema commute. This step is what yields the proof of
Theorem 2.9.1 to be more involved. In this proof, we encounter an analogous
situation but instead of swapping two suprema we have to swap suprema and
infima. Suprema and infima do generally not commute. We will, however,
employ Lemma A.1 to see that the suprema and infima considered in this
proof do commute. Now consider the following:

lfp Φmin
M rew

=
⊔

n∈N
Φmin n

M rew(0) (Theorem 2.7.2)

=
⊔

n∈N
λs.MinER

(
M, s |= ♦≤nrew

)
(Lemma 2.8.1)

=
⊔

n∈N
λs. inf

S∈Scheds
ERS

(
M, s |= ♦≤nrew

)
(Definition 2.13.3)

= λs. sup
n∈N

inf
S∈Scheds

ERS

(
M, s |= ♦≤nrew

)
(suprema defined pointwise)

1 Appendix to Chapter 2 269

Assume for the moment that for all s ∈ S , we have

sup
n∈N

inf
S∈Scheds

ERS

(
M, s |= ♦≤nrew

)
= inf

S∈Scheds
sup
n∈N

ERS

(
M, s |= ♦≤nrew

)

(1)

With this assumption and the above reasoning, we obtain the desired claim:

lfp Φmin
M rew

= λs. inf
S∈Scheds

sup
n∈N

ERS

(
M, s |= ♦≤nrew

)

(above reasoning and assumption)

= λs.MinER (M, s |= ♦rew) . (Lemma A.2.1)

It hence remains to prove Equation (1). For that, we prove that both

sup
n∈N

inf
S∈Scheds

ERS

(
M, s |= ♦≤nrew

)
≤ inf

S∈Scheds
sup
n∈N

ERS

(
M, s |= ♦≤nrew

)

(2)

and

sup
n∈N

inf
S∈Scheds

ERS

(
M, s |= ♦≤nrew

)
≥ inf

S∈Scheds
sup
n∈N

ERS

(
M, s |= ♦≤nrew

)
.

(3)

The claim then follows from antisymmetry of ≤. Inequality 2 holds since
supinf . . . ≤ infsup . . . holds in every complete lattice. For Inequality 3, ob-
serve that for every scheduler S′ ,

sup
n∈N

ERS′
(
M, s |= ♦≤nrew

)
≥ inf

S∈Scheds
sup
n∈N

ERS

(
M, s |= ♦≤nrew

)
.

Hence, the claim follows if there is a scheduler S′ with

sup
n∈N

ERS′
(
M, s |= ♦≤nrew

)
= sup

n∈N
inf

S∈Scheds
ERS

(
M, s |= ♦≤nrew

)
.

We claim that S′ is given by the scheduler constructed in Lemma A.1, since

sup
n∈N

ERS′
(
M, s |= ♦≤nrew

)

= sup
n∈N

ER
(
M(S′), s |= ♦≤nrew

)
(Definition A.1)

270 A Appendix

= ER (M(S′), s |= ♦rew) (Lemma A.2.3)

= lfp ΦM(S′) rew (Theorem 2.9.3)

= lfp Φmin
M rew (Lemma A.1)

= sup
n∈N

Φmin n
M rew(0) (Theorem 2.2)

= sup
n∈N

inf
S∈Scheds

ERS

(
M, s |= ♦≤nrew

)
. (Lemma 2.8.1)

This completes the proof. ■

1.2 Appendix to Section 2.3

Lemma A.3.
Let C ∈ pGCL and X ∈ E. We have:

1.

dwp⟦C⟧ (X)

= λσ. min
a∈Act(C,σ)

∑

(C,σ)
a,p−−→ c′

p ·

X(τ) if c′ = (⇓, τ)

dwp⟦C′⟧ (X) (σ ′) if c′ = (C′ ,σ ′)

2.

awp⟦C⟧ (X)

= λσ. max
a∈Act(C,σ)

∑

(C,σ)
a,p−−→ c′

p ·

X(τ) if c′ = (⇓, τ)

awp⟦C′⟧ (X) (σ ′) if c′ = (C′ ,σ ′)

Proof. By induction on C. We prove the claim for dwp. The reasoning for
awp is completely analogous. Now let σ ∈ States.

The case C = skip. We have

dwp⟦skip⟧ (X) (σ)

= X(σ) (Table 2.1)

1 Appendix to Chapter 2 271

= min
a∈Act(C,σ)

∑

(C,σ)
a,p−−→ c′

p ·

X(τ) if c′ = (⇓, τ)

dwp⟦C′⟧ (X) (σ ′) if c′ = (C′ ,σ ′) .

(Act(skip,σ) = {N } and (skip,σ)
N,1−−−→ (⇓,σ) by Figure 2.9)

The case C = x := A. We have

dwp⟦x := A⟧ (X) (σ)

= X(σ [x 7→ A(σ)]) (Table 2.1)

= min
a∈Act(C,σ)

∑

(C,σ)
a,p−−→ c′

p ·

X(τ) if c′ = (⇓, τ)

dwp⟦C′⟧ (X) (σ ′) if c′ = (C′ ,σ ′) .

(Act(x := A,σ) = {N } and (x := A,σ)
N,1−−−→ (⇓,σ [x 7→ A(σ)]) by Figure 2.9)

The case C = C1 ; C2. First observe that by the rules in Figure 2.9 we encounter
exactly one of the following cases:

1. We have Act(C1,σ) = {N } and C1,σ
N,1−−−→ ⇓, τ . Hence, also

Act(C1 ; C2,σ) = {N } and (C1 ; C2,σ)
N,1−−−→ (C2, τ).

2. For every a ∈ Act(C1,σ), all configurations in Succsa(C1,σ) are of the
form (C′1,σ

′). Hence, for every a ∈ Act(C1 ; C2,σ), all configurations in
Succsa(C1 ; C2,σ) are of the form (C′1 ; C2,σ

′).

We proceed by distinguishing these two cases. For the first case, we have

dwp⟦C1 ; C2⟧ (X) (σ)

= dwp⟦C1⟧ (dwp⟦C2⟧ (X)) (σ) (Table 2.1)

= min
a∈Act(C1,σ)

∑

(C1,σ)
a,p−−→ c′

p ·


dwp⟦C2⟧ (X) (τ) if c′ = (⇓, τ)

dwp⟦C′⟧ (dwp⟦C2⟧ (X)) (σ ′) if c′ = (C′ ,σ ′) .

(I.H.)

= dwp⟦C2⟧ (X) (τ) (assumption)

= min
a∈Act(C1 ; C2,σ)

∑

(C1 ; C2,σ)
a,p−−→ c′

p ·

X(τ) if c′ = (⇓, τ)

dwp⟦C′⟧ (X) (σ ′) if c′ = (C′ ,σ ′) .

(above reasoning for the first case)

272 A Appendix

For the second case, we have

dwp⟦C1 ; C2⟧ (X) (σ)

= dwp⟦C1⟧ (dwp⟦C2⟧ (X)) (σ) (Table 2.1)

= min
a∈Act(C1,σ)

∑

(C1,σ)
a,p−−→ c′

p ·


dwp⟦C2⟧ (X) (τ) if c′ = (⇓, τ)

dwp⟦C′⟧ (X) (σ ′) if c′ = (C′ ,σ ′) .
(I.H.)

= min
a∈Act(C1,σ)

∑

(C1,σ)
a,p−−→ (C′1,σ ′)

p ·dwp⟦C′1⟧ (dwp⟦C2⟧ (X)) (σ ′)

(assumption)

= min
a∈Act(C1,σ)

∑

(C1,σ)
a,p−−→ (C′1,σ ′)

p ·dwp⟦C′1 ; C2⟧ (X) (σ ′) (Table 2.1)

= min
a∈Act(C1 ; C2,σ)

∑

(C1 ; C2,σ)
a,p−−→ c′

p ·

X(τ) if c′ = (⇓, τ)

dwp⟦C′⟧ (X) (σ ′) if c′ = (C′ ,σ ′) .

(above reasoning for the second case)

The cases C = {C1 } [p] {C2 }, C = {C1 }2 {C2 }, and C = if (B) {C1 } else {C2 }
follow immediately from the I.H.

The case C = while (B) {C′ }. Since dwp⟦while (B) {C′ }⟧ (X) is a fixpoint of
Φ

dwp
C X , we have

dwp⟦while (B)
{
C′

}
⟧ (X) = [B] ·dwp⟦C′ ; while (B)

{
C′

}
⟧ (X) + [¬B] ·X .

(4)

Now distinguish the cases σ |= B and σ |= ¬B. If σ |= ¬B, then

dwp⟦while (B)
{
C′

}
⟧ (X) (σ)

= X(σ) (Equation (4))

= min
a∈Act(while(B){C′ },σ)

1 Appendix to Chapter 2 273

∑

(while(B){C′ },σ)
a,p−−→ c′

p ·

X(τ) if c′ = (⇓, τ)

dwp⟦C′′⟧ (X) (σ ′) if c′ = (C′′ ,σ ′) ,

(see below)

where the last step holds since σ ̸|= B implies Act(while (B) {C′ } ,σ) = {N }
and (while (B) {C′ } ,σ)

N,1−−−→ (⇓,σ) by Figure 2.10.
If σ |= B, then

min
a∈Act(while(B){C′ },σ)

∑

(while(B){C′ },σ)
a,p−−→ c′

p ·

X(τ) if c′ = (⇓, τ)

dwp⟦C′′⟧ (X) (σ ′) if c′ = (C′′ ,σ ′)

= dwp⟦C′ ; while (B)
{
C′

}
⟧ (X) (σ) (see below)

= dwp⟦while (B)
{
C′

}
⟧ (X) (σ) , (Equation (4))

where the one but last step holds since σ |= B implies Act(while (B) {C′ } ,σ) =

{N } and (while (B) {C′ } ,σ)
N,1−−−→ (C′ ; while (B) {C′ },σ) by Figure 2.10. ■

Lemma A.4.
Let T ∈ {dop,aop}. For all C1,C2 ∈ pGCL and all X ∈ E, we have

T ⟦C1⟧ (T ⟦C2⟧ (X)) ⊑ T ⟦C1 ; C2⟧ (X) .

Proof. We prove the claim for dop. The reasoning for aop is completely
analogous. First notice that by Definition 2.23 on page 69 and Theorem 2.7
on page 41, we have for all σ ∈ States,

dop⟦C1⟧ (dop⟦C2⟧ (X)) (σ)

=
(⊔{

Φmin n
O rewdop⟦C2⟧(X)

(0) | n ∈N
})

((C1,σ)) .

It hence suffices to prove that for all n ∈N, C1 ∈ pGCL, σ ∈ States, and X ∈ E,

Φmin n
O rewdop⟦C2⟧(X)

(0)((C1,σ)) ≤ dop⟦C1 ; C2⟧ (X) (σ) . ■

We proceed by induction on n. The base case n = 0 is trivial. For the induction

274 A Appendix

step, consider the following:

Φmin n+1
O rewdop⟦C2⟧(X)

(0)((C1,σ))

= Φmin
O rewdop⟦C2⟧(X)

(
Φmin n
O rewdop⟦C2⟧(X)

(0)
)

((C1,σ))

= min
a∈Act(C1,σ)

∑

(C1,σ)
a,p−−→ c′

p ·


rewdop⟦C2⟧(X)(c′) if c′ = (⇓, τ)

Φmin n
O rewdop⟦C2⟧(X)

(0)((C′ ,σ ′))) if c′ = (C′ ,σ ′)
(Definition 2.17 and Definition 2.15)

≤ min
a∈Act(C1,σ)

∑

(C1,σ)
a,p−−→ c′

p ·


rewdop⟦C2⟧(X)(c′) if c′ = (⇓, τ)

dop⟦C′ ; C2⟧ (X) (σ ′) if c′ = (C′ ,σ ′)
(I.H.)

= min
a∈Act(C1,σ)

∑

(C1,σ)
a,p−−→ c′

p ·


dop⟦C2⟧ (X) (τ) if c′ = (⇓, τ)

dop⟦C′ ; C2⟧ (X) (σ ′) if c′ = (C′ ,σ ′) .
(definition of rewdop⟦C2⟧(X))

= min
a∈Act(C1,σ)

∑

(C1 ; C2,σ)
a,p−−→ c′′

p ·

X(τ) if c′′ = (⇓, τ)

dop⟦C′′⟧ (X) (σ ′) if c′′ = (C′′ ,σ ′) .
(see below)

= dop⟦C1 ; C2⟧ (X) (σ) ,
(for all C and σ , dop⟦C⟧ (X) (σ) = (lfp Φmin

O X)((C,σ)))

where the one but last step is an immediate consequence of the fact that by
Figure 2.9 on page 48, we have

c′ = (⇓, τ) iff c′′ = (C2, τ) and c′ = (C′ ,σ ′) iff c′′ = (C′ ; C2,σ
′) .

2 Appendix to Chapter 4 275

2 Appendix to Chapter 4

Lemma A.5 (Deciding Well-Definedness of Piecewise Linear Expectations).
For all expressions f adhering to the grammar from Definition 4.4 on page
147, it is decidable whether it holds that

for all σ ∈ States : ⟦f ⟧ (σ) ≥ 0 ,

i.e., whether ⟦f ⟧ is a well-defined expectation in E.

Proof. We construct a Boolean expression ϑ ∈ LBExpr
Q

such that

ϑ is unsatisfiable iff ⟦f ⟧ ∈ E .

This implies the claim since satisfiability of ϑ is decidable by Lemma 4.15 on
page 148. For that, let

f = [ϑ1] · ẽ1 + . . .+ [ϑn] · ẽn .

The sought-after Boolean expression ϑ is given by
∨

(
(ρ1,ã1),...,(ρn,ãn)∈×ni=1

{
(ϑi ,ẽi),(¬ϑi ,0)

})


false if ãi =∞ for some i(∧n

i=1ρi
)
∧∑n

i=1 ãi < 0 . otherwise
■

276 A Appendix

Storm cegispro2
induct.-guided static dynamic

Prog |⟦ϕ⟧ | sp dd best |States′ | |I | ts% t |States′ | |I | ts% t |States′ | |I | ts% t

boundedrwmultistep 1 · 105

MO TO 3 33 10 40 3 – – – TO – – – TO

MO TO 10 55 16 36 10 – – – TO – – – TO

MO TO – – – – TO – – – TO – – – TO

brp 1 · 1010

MO TO 11 56 23 40 11 70 10 35 18 – – – TO

MO TO 54 138 42 63 253 125 17 27 54 – – – TO

MO TO 56 104 41 54 111 122 17 30 56 – – – TO

brpfinitefamily 16 · 1013

TO TO 8 53 7 72 10 67 7 44 8 54 9 52 29

TO TO 17 64 13 74 17 215 19 66 373 – – – TO

TO TO 18 68 12 68 18 231 19 80 731 – – – TO

chain 1 · 1012

MO TO 1 97 6 68 10 66 3 50 1 – – – TO

MO TO 24 – – – TO 116 5 86 24 – – – TO

MO TO 4933 – – – TO 503 23 81 4933 – – – TO

chainselectstepsize 3 · 107

MO TO 9 156 7 71 29 156 7 71 29 81 7 49 9

MO TO 96 – – – TO 179 15 70 96 – – – TO

MO TO 66 – – – TO 164 15 58 66 – – – TO

gridbig 1 · 106 11 – – – – – TO – – – TO – – – TO

gridsmall 1 · 102
<1 32 1 15 7 36 1 46 10 37 3 20 5 39 2

<1 32 2 26 11 35 2 77 17 32 10 71 10 82 59

zeroconf 1 · 108

MO TO <1 7 3 22 <1 7 3 26 <1 7 3 31 <1

MO TO <1 105 22 60 32 9 5 39 <1 156 7 92 215

MO TO 63 – – – TO 173 23 59 63 – – – TO

zeroconffamily 1 · 1016

TO TO 2 48 3 49 2 48 3 49 2 59 3 52 3

TO TO 6 – – – TO 77 9 56 6 252 13 81 854

TO TO 20 – – – TO 99 9 70 20 164 13 73 265

Table 1: Storm vs. cegispro2. TO=2h, MO=8GB, time in seconds.

3 Appendix to Chapter 5

3.1 Details on the Comparison of Storm and cegispro2

Table 1 depicts the results for finite-state loops; the corresponding programs
and specifications are given further below. We employ a cooperative verifier with
d = 2. Column “Prog” depicts the name of the program and |⟦ϕ⟧ | is the size of
the relevant state space, i.e., the number of states satisfying the loop guard ϕ.
“sp” and “dd” are the runtimes of Storm’s sparse and decision diagram-based
engines, respectively. “best” is the best runtime under all CEGIS configurations,
which are then listed. We show the number |States′ | of counterexamples, the

3 Appendix to Chapter 5 277

size |I | of the inductive invariant (in terms of the number of summands), the
fraction ts% of time spent in the synthesizer, and the total time t.

Programs and Specifications. In the following,

[ϑ] =⇒ ẽ is a shorthand for [ϑ] · ẽ+ [¬ϑ] ·∞ .

boundedrwmultistep is the following program:

while (0 < x∧ x < 200000∧ 1 ≤ y ∧ y ≤ 5) {
{x := x − 1}
[1/2]

{
if (x = 1) {

y := unif (1,5)

}else {
x := x+ y

}
}

} ,

where y := unif (1,5) is a shorthand for the program which samples uniformly
from {1, . . . ,5} and assigns the result to y. The specifications are:

1. wp⟦C⟧ ([x = 200000]) ⊑ [x = 1] =⇒ 0.4

2. wp⟦C⟧ ([x = 200000]) ⊑ [x = 1] =⇒ 0.3

3. wp⟦C⟧ ([x = 200000]) ⊑ [x = 1] =⇒ 0.2

brp is the following program:

while (sent < 8000000000∧ failed < 10) {
{

failed := failed + 1

} [0.01] {

278 A Appendix

failed := 0; sent := sent + 1

}
}

The specifications are:

1. wp⟦C⟧ ([failed = 10]) ⊑ [failed = 0∧ sent = 0] =⇒ 0.001

2. wp⟦C⟧ ([failed = 10]) ⊑ [failed = 0∧ sent = 0] =⇒ 0.0001

3. wp⟦C⟧ ([failed = 10]) ⊑ [failed = 0∧ sent = 0] =⇒ 0.00001

brpfinitefamily is the following program:

while (sent < N ∧ failed < 5∧N < 8000000) {
{

failed := failed + 1

} [0.01] {
failed := 0; sent := sent + 1

}
}

The specifications are:

1. wp⟦C⟧ ([failed = 5]) ⊑ [failed = 0∧ sent = 0] =⇒ 0.05

2. wp⟦C⟧ ([failed = 5]) ⊑ [failed = 0∧ sent = 0] =⇒ 0.01

3. wp⟦C⟧ ([failed = 5]) ⊑ [failed = 0∧ sent = 0] =⇒ 0.005

chain is the following program:

while
(
y = 0∧ x < 1016

)
{

{y := 1 } [0.000000000001] {x := x+ 1 }
}

The specifications are:

1. wp⟦C⟧ ([y = 1]) ⊑ [y = 0∧ x = 0] =⇒ 0.8

3 Appendix to Chapter 5 279

2. wp⟦C⟧ ([y = 1]) ⊑ [y = 0∧ x = 0] =⇒ 0.7

3. wp⟦C⟧ ([y = 1]) ⊑ [y = 0∧ x = 0] =⇒ 0.641

chainselectstepsize is the following program:

while
(
y = 0∧ x < 107 ∧ z ≤ 10

)
{

if (z = 0) {
z := unif (1,10)

}else {
if (z ≤ 2) {

{y := 1 } [0.0000001] {x := x+ z }
}else {
if (z ≤ 4) {
{y := 1 } [0.0000002] {x := x+ z }

}else {
if (z ≤ 6) {
{y := 1 } [0.0000003] {x := x+ z }

}else {
if (z ≤ 8) {
{y := 1 } [0.0000004] {x := x+ z }

}else {
{y := 1 } [0.0000005] {x := x+ z }

}
}
}
}
}
}

The specifications are:

1. wp⟦C⟧ ([y = 1]) ⊑ [y = 0∧ x = 0∧ z = 0] =⇒ 0.7

2. wp⟦C⟧ ([y = 1]) ⊑ [y = 0∧ x = 0∧ z = 0] =⇒ 0.6

280 A Appendix

3. wp⟦C⟧ ([y = 1]) ⊑ [y = 0∧ x = 0∧ z = 0] =⇒ 0.55

gridbig is the following program:

while (x < 1000∧ y < 1000) {
{x := x+ 1 } [1/2] {y := y + 1 }

}

The specifications are:

1. wp⟦C⟧ ([y = 1000]) ⊑ [x = 0∧ y = 0] =⇒ 0.99

gridsmall is the following program:

while (x < 10∧ y < 10) {
{x := x+ 1 } [1/2] {y := y + 1 }

}

The specifications are:

1. wp⟦C⟧ ([y = 10]) ⊑ [x = 0∧ y = 0] =⇒ 0.8

2. wp⟦C⟧ ([y = 10]) ⊑ [x = 0∧ y = 0] =⇒ 0.7

zeroconf is the following program:

while
(
x < 108 ∧ y = 0∧ z ≤ 1

)
{

if (z = 1) {
{z := 0 } [1/2] {z := 0; y := 1 }

}else {
{x := x+ 1 } [0.999999999] {z := 1; x := 0 }

}

The specifications are:

1. wp⟦C⟧ ([y = 1]) ⊑ [z = 1∧ x = 0∧ y = 0] =⇒ 0.53

2. wp⟦C⟧ ([y = 1]) ⊑ [z = 1∧ x = 0∧ y = 0] =⇒ 0.526

3 Appendix to Chapter 5 281

3. wp⟦C⟧ ([y = 1]) ⊑ [z = 1∧ x = 0∧ y = 0] =⇒ 0.5251

zeroconffamily is the following program:

while
(
x < N ∧ y = 0∧ z ≤ 1∧ 108 ≤N ∧N ≤ 108

)
{

if (z = 1) {
{z := 0 } [1/2] {z := 0; y := 1 }

}else {
{x := x+ 1 } [0.999999999] {z := 1; x := 0 }

}

The specifications are:

1. wp⟦C⟧ ([y = 1]) ⊑ [z = 1∧ x = 0∧ y = 0] =⇒ 0.555

2. wp⟦C⟧ ([y = 1]) ⊑ [z = 1∧ x = 0∧ y = 0] =⇒ 0.553

3. wp⟦C⟧ ([y = 1]) ⊑ [z = 1∧ x = 0∧ y = 0] =⇒ 0.5251

3.2 Details on the Comparison of Absynth and cegispro2

Table 2 depicts the results on the UPAST benchmarks with programs adapted
from [NCH18]. We employ the baseline verifier from Theorem 5.5 on page
181. “Prog” is the name of the benchmark, t denotes the runtime in seconds
required by the tools and “bound” indicates their respective synthesized bounds.
|States′ | depicts the number of counterexamples required by cegispro2.

3.3 Details on the Comparison of Exist and cegispro2

Tables 3 and 4 depicts the results on the wp-subinvariant benchmarks with
programs and specifications adapted from [BTPH+22]. We employ the baseline
verifier from Theorem 5.5 on page 181. “Prog” is the name of the bench-
mark, t denotes the runtime in seconds required by the tools, I denotes the
wp-subinvariants computed by each tool, and |States′ | depicts the number of
counterexamples required by cegispro2.

282 A Appendix

Absynth cegispro2
Prog t bound |S ′ | t bound
bayesiannetwork 0.15 1 + 2 max(0, n) 1 2.99 (n * 2.0)

ber ≤0.01 1 + 2 max(0, n - x) 3 0.08 ((x * -2.0) + (n * 3.0))

cowboyduel ≤0.01 1 + 1.2 max(0, flag) 1 0.06 11/5

C4Bt09 0.02 1 + max(0, -j + x) 15 0.37 max[((j * -1.0) + x + 1.0), ((j * -1.0) + x + 1.0)]

C4Bt13 0.02 1 + 2 max(0, x) + max(0, y) 8 0.25 ((x * 2.0) + y)

C4Bt19 0.04 3 + max(0, 51 + i + k) + 2 max(0, i) 16 0.42 ((i * 2.0) + k + -46.0)

C4Bt61 0.02 2 + max(0, l) 15 0.43 (l + -3.0)

condand ≤0.01 1 + 2 max(0, m) 4 0.09 ((m * 2.0) + 1.0)

coupon 0.05 10 max(0, 5 - i) 5 0.25 max[149/12, 137/12, 61/6, 17/2, (i * 3/2)]

fcall ≤0.01 1 + 4 max(0, n - x) 3 0.09 ((x * -3.0) + (n * 3.0))

fillingvol 0.09 1 + 0.666667 max(0, 10 - vM + vTF) 10 0.35
max[((vM * -1/36) + (vTF * 1/36) + 2.0),
((vM * -2/3) + (vTF * 2/3) + -583/180)]

geo ≤0.01 3 1 0.06 3.0

linear01 ≤0.01 1 + 0.6 max(0, x) 1 0.06 x

trappedminer 0.03 1 + 11.5 max(0, -i + n) 72 3.58 ((i * -3.0) + (n * 3.0) + 1.0)

noloop ≤0.01 2 1 0.06 2.0

prdwalk 0.05 1 + 0.571429 max(0, 4 + n - x) 6 0.27 ((x * -4/7) + (n * 4/7) + 37/21)

prseq 0.04 0.65 max(0, x - y) + 0.35 max(0, y) 266 13.63 ((x * 13/20) + (y * -1/2) + 47/20)

prspeed 0.04
1 + 2 max(0, m - y)

+ 0.666667 max(0, n - x) 18 0.41
max[((y * -2.0) + (m * 2.0) + (n * 2/3) + 1/3),

((x * -2/3) + (n * 2/3) + 1/3)]

race 0.17 1 + 0.666667 max(0, 9 - h + t) 32 1.95 ((h * -2/3) + (t * 2/3) + 13/3)

rejectionsampling 4.03 1 + 5 max(0, n) 20 0.53 ((n * 5.0) + 1.0)

rfindmc ≤0.01 1 + max(0, -i + k) 1 0.07 (k * 2.0)

rfindlv ≤0.01 1 + 2 max(0, flag) 1 0.05 3.0

rdseql 0.02 1 + 2.25 max(0, x) + max(0, y) 13 0.29 ((x * 9/4) + y + -1/4)

rdspeed 0.03
1 + 2 max(0, m - y)

+ 0.666667 max(0, n - x) 18 0.44
max[((y * -2.0) + (m * 2.0) + (n * 2/3) + 1/3),

((x * -2/3) + (n * 2/3) + 1/3)]

sprdwalk ≤0.01 1 + 2 max(0, n - x) 3 0.08 ((x * -3.0) + (n * 3.0))

Table 2: Absynth vs. cegispro2. TO=20min, MO=8GB, time in seconds.

3 Appendix to Chapter 5 283

Exist cegispro2
Prog t I |States′ | t I

BiasDir1_0 78.31 x+ [x = y] · (−0.5 · x+−0.5 · y + 0.1) 0 0.15 [ϕ] · 0 + [¬ϕ] · x
BiasDir1_1 97.29 x+ [x = y] · (−0.5 · x+−0.5 · y + 0.5) 1 0.08 [ϕ] · 0.5 + [¬ϕ] · x
BiasDir2_0 66.42 x+ [x = y] · (−0.5 · x+−0.5 · y + 0.1) 0 0.07 [ϕ] · 0 + [¬ϕ] · x
BiasDir2_1 171.83 x+ [x = y] · (−0.5 · x+−0.5 · y + 0.5) 1 0.08 [ϕ] · 0.5 + [¬ϕ] · x
BiasDir3_0 66.55 x+ [x = y] · (−0.3 · x+−0.3 · y) 0 0.08 [ϕ] · 0 + [¬ϕ] · x
BiasDir3_1 99.23 x+ [x = y] · (−0.5 · x+−0.5 · y + 0.5) 1 0.08 [ϕ] · 0.5 + [¬ϕ] · x
Bin01_0 53.19 x+ [n > 0] · 0 1 0.06 [ϕ] · x+ [¬ϕ] · x
Bin02_0 83.04 x+ [n > 0] · 0 1 0.06 [ϕ] · x+ [¬ϕ] · x
Bin03_0 53.13 x+ [n > 0] · 0 1 0.06 [ϕ] · x+ [¬ϕ] · x
Bin11_0 32.52 x+ [n <M] · 0 1 0.06 [ϕ] · x+ [¬ϕ] · x
Bin11_1 TO – 3 0.08 [ϕ] · (−0.5 ∗n+ x+ 1/2 ∗M) + [¬ϕ] · x
Bin12_0 78.19 x+ [n <M] · 0 1 0.06 [ϕ] · x+ [¬ϕ] · x
Bin12_1 218.17 x+ [n <M] · (−0.1 ·n+ 0.1 ·M) 3 0.09 [ϕ] · (−0.1 ∗n+ x+ 0.1 ∗M) + [¬ϕ] · x
Bin13_0 32.95 x+ [n <M] · 0 1 0.05 [ϕ] · x+ [¬ϕ] · x
Bin13_1 TO – 3 0.08 [ϕ] · (−0.9 ∗n+ x+ 0.9 ∗M) + [¬ϕ] · x
Bin21_0 54.12 x+ [n > 0] · 0 2 0.06 [ϕ] · x+ [¬ϕ] · x

Table 3: Exist vs. cegispro2. TO=5min, MO=8GB, time in seconds.

284 A Appendix

Exist cegispro2
Prog t I |States′ | t I

Detm1_0 22.8 count + [x <= 10] · 0 3 0.06 [ϕ] · count + [¬ϕ] · count
Detm1_1 57.72 count + [x <= 10] · (1) 3 0.08 [ϕ] · (count + 1) + [¬ϕ] · count
Duel1_0 TO – 5 0.12 [ϕ] · 10/19 + [¬ϕ] · t
Duel2_0 TO – 1 0.09 [ϕ] · 10/11 + [¬ϕ] · t
Fair1_0 30.29 count + [c1 + c2 = 0] · 0 2 0.08 [ϕ] · count + [¬ϕ] · count
Fair1_1 37.05 count + [c1 + c2 = 0] · (1.0 · 1) 2 0.1 [ϕ] · (count + 1) + [¬ϕ] · count
Gambler01_0 35.81 z+ [(x > 0)&(y > x)] · 0 2 0.07 [ϕ] · z+ [¬ϕ] · z
Geo01_0 31.71 z+ [f lip = 0] · 0 1 0.05 [ϕ] · z+ [¬ϕ] · z
Geo01_1 68.53 z+ [f lip = 0] · (0.5 · 1) 1 0.05 [ϕ] · (0.5 ∗ z+ 0.5) + [¬ϕ] · z
Geo01_2 73.85 z+ [f lip = 0] · (1.0 · 1) 2 0.09 [ϕ] · (z+ 0.5) + [¬ϕ] · z
Geo11_0 42.13 z+ [f lip = 0] · 0 1 0.05 [ϕ] · z+ [¬ϕ] · z
Geo21_0 37.1 z+ [f lip = 0] · 0 1 0.05 [ϕ] · z+ [¬ϕ] · z
GeoAr01_0 122.83 x+ [z! = 0] · (1.0 · y) 2 0.06 [ϕ] · x+ [¬ϕ] · x
GeoAr01_1 33.81 x+ [z! = 0] · 0 2 0.08 [ϕ] · (x+ y) + [¬ϕ] · z
LinExp1_0 189.11 z+ [n > 0] · (n1.0 · 2) 7 0.53 [ϕ] · (16/21 ∗ z+ 2 ∗n) + [¬ϕ] · z
LinExp1_1 196.32 z+ [n > 0] · (1.0 ·n+ 1.0 · 1) 3 0.52 [ϕ] · (z+ 2) + [¬ϕ] · z
PrinSys1_0 13.27 [x = 1] · 1 + [x = 0] · 0 0 0.06 [x = 1] ∗ 1 + [x , 1] ∗ 0
RevBin1_0 179.97 z+ [x > 0] · (x1 · 2) 2 0.09 [ϕ] · (x+ z) + [¬ϕ] · z
RevBin1_1 52.03 z+ [x > 0] · 0 1 0.05 [ϕ] · z+ [¬ϕ] · z
Sum01_0 TO – 4 0.09 [ϕ] · (0.25 ∗n+ x) + [¬ϕ] · x
Mart1_0 84.39 rounds+ [b > 0] · 0 − TO –
Mart1_1 TO – − TO –

Table 4: Exist vs. cegispro2. TO=5min, MO=8GB, time in seconds.

4 A Note on Contributions of the Author 285

4 A Note on Contributions of the Author

I am obliged to discuss my contributions to the publications I have co-authored
as a doctoral researcher at RWTH Aachen University. It was my pleasure to
collaborate with great researchers, some of which became good friends. Each of
my collaborators took their part in the respective publications. I will not discuss
their contributions in great detail. Rather, I will (i) mention who provided the
initial idea and (ii) discuss my contributions to the respective publications.

[19] K. Batz, T. J. Biskup, J.-P. Katoen, and T. Winkler. “Programmatic Strategy
Synthesis: Resolving Nondeterminism in Probabilistic Programs.” Proc. ACM
Program. Lang. 8.POPL (2024), pages 2792–2820

The initiative for conducting this research came from me. I have contributed
significantly to the theory, the case studies, and the writing of the paper.

[18] P. Schröer, K. Batz, B. L. Kaminski, J.-P. Katoen, and C. Matheja. “A Deductive
Verification Infrastructure for Probabilistic Programs.” Proc. ACM Program.
Lang. 7.OOPSLA2 (2023), pages 2052–2082

The initiative for conducting this research came from Christoph Matheja. I
have contributed significantly to the the theory, the case studies, and the
writing of the paper. The tool has been developed by Philipp Schröer.

[17] K. Batz, B. L. Kaminski, J.-P. Katoen, C. Matheja, and L. Verscht. “A Calculus
for Amortized Expected Runtimes.” Proc. ACM Program. Lang. 7.POPL (2023),
pages 1957–1986

The initiative for conducting this research came from Benjamin Kaminski. I
have contributed significantly to the theory, the case studies, and the writing
of the paper.

[16] K. Batz, M. Chen, S. Junges, B. L. Kaminski, J.-P. Katoen, and C. Matheja.
“Probabilistic Program Verification via Inductive Synthesis of Inductive In-
variants.” TACAS (2). Volume 13994. Lecture Notes in Computer Science.
Springer, 2023, pages 410–429

The initiative to employ CEGIS for the automatic synthesis of quantitative
loop invariants came from Sebastian Junges. I then contributed ideas on
concrete algorithms. This includes the inner CEGIS loop as well as iden-
tifying the need for template refinement strategies and the corresponding

286 A Appendix

algorithms. I have contributed significantly to the algorithms, the theory, the
case studies, the implementation of the tool, and the writing of the paper.

[15] K. Batz, A. Gallus, B. L. Kaminski, J.-P. Katoen, and T. Winkler. “Weighted
Programming: A Programming Paradigm for Specifying Mathematical Mod-
els.” Proc. ACM Program. Lang. 6.OOPSLA1 (2022), pages 1–30

The initiative for conducting this research came for Benjamin Kaminski
and Tobias Winkler. I have contributed significantly to the theory, the case
studies, and the writing of the paper.

[14] K. Batz, I. Fesefeldt, M. Jansen, J.-P. Katoen, F. Keßler, C. Matheja, et al.
“Foundations for Entailment Checking in Quantitative Separation Logic.”
ESOP. Volume 13240. Lecture Notes in Computer Science. Springer, 2022,
pages 57–84

The initiative for conducting this research came from Christoph Matheja and
Thomas Noll. I have contributed significantly to the theory, the case studies,
and the writing of the paper.

[12] K. Batz, B. L. Kaminski, J.-P. Katoen, and C. Matheja. “Relatively Com-
plete Verification of Probabilistic Programs: An Expressive Language for
Expectation-based Reasoning.” Proc. ACM Program. Lang. 5.POPL (2021),
pages 1–30

The initiative for conducting this research came from Benjamin Kaminski. I
have contributed significantly to the theory and the writing of the paper.

[11] K. Batz, M. Chen, B. L. Kaminski, J.-P. Katoen, C. Matheja, and P. Schröer.
“Latticed k-Induction with an Application to Probabilistic Programs.” CAV
(2). Volume 12760. Lecture Notes in Computer Science. Springer, 2021,
pages 524–549

The initiative for conducting this research came from me. I have contributed
significantly to the theory, the case studies, the implementation of the tool,
and the writing of the paper.

[9] L. Klinkenberg, K. Batz, B. L. Kaminski, J.-P. Katoen, J. Moerman, and T.
Winkler. “Generating Functions for Probabilistic Programs.” LOPSTR. Vol-
ume 12561. Lecture Notes in Computer Science. Springer, 2020, pages 231–
248

4 A Note on Contributions of the Author 287

The initiative for conducting this research came from Benjamin Kaminski.
I helped to develop the theory by numerous discussions and contributed
significantly to the writing of the paper.

[6] K. Batz, S. Junges, B. L. Kaminski, J.-P. Katoen, C. Matheja, and P. Schröer.
“PrIC3: Property Directed Reachability for MDPs.” CAV (2). Volume 12225.
Lecture Notes in Computer Science. Springer, 2020, pages 512–538

The initiative for conducting this research came from Sebastian Junges, Ben-
jamin Kaminski, and Christoph Matheja, who supervised my master thesis
[4] on a probabilistic generalization of IC3. However, the approach presented
in [6; 7] and this thesis differs significantly from the approach given in [4].
The foundations of the fixpoint-theoretic perspective on IC3 have been laid in
[4, Chapter 3]. I have contributed significantly to the algorithms, the theory,
the case studies, the implementation of the tool, and the writing of the paper.

[5] K. Batz, B. L. Kaminski, J.-P. Katoen, C. Matheja, and T. Noll. “Quantitative
Separation logic: A Logic for Reasoning about Probabilistic Pointer Pro-
grams.” Proc. ACM Program. Lang. 3.POPL (2019), 34:1–34:29

The initiative for conducting this research came from Benjamin Kaminski
and Christoph Matheja. I was happy to support the development of QSL
as a student assistant. I have contributed significantly to formal proofs and
case studies. The paper was mostly authored by Joost-Pieter Katoen, Thomas
Noll, Benjamin Kaminski, and Christoph Matheja.

[2] K. Batz, B. L. Kaminski, J.-P. Katoen, and C. Matheja. “How long, O Bayesian
network, will I sample thee? - A program analysis perspective on expected
sampling times.” ESOP. Volume 10801. Lecture Notes in Computer Science.
Springer, 2018, pages 186–213

This work emerged from my bachelor thesis [1] which has been supervised
by Benjamin Kaminski and Christoph Matheja. My task was to investigate
classes of loops for which expected runtimes can be computed automati-
cally. The idea to consider i.i.d. loops is due to me. The idea to apply the
so-obtained techniques to Bayesian networks is due to Christoph Matheja. I
have contributed significantly to the theory, the case studies, and the imple-
mentation of the tool.

288 A Appendix

289

Bibliography

References

[ABDF+15] R. Alur, R. Bodík, E. Dallal, D. Fisman, P. Garg, G. Juniwal, H.
Kress-Gazit, P. Madhusudan, M. M. K. Martin, M. Raghothaman,
S. Saha, S. A. Seshia, R. Singh, A. Solar-Lezama, E. Torlak, and A.
Udupa. “Syntax-Guided Synthesis.” Dependable Software Systems
Engineering. Volume 40. IOS Press, 2015, pages 1–25 (cited on
pages 165, 197).

[ABFG+22] V. Astrauskas, A. Bílý, J. Fiala, Z. Grannan, C. Matheja, P. Müller,
F. Poli, and A. J. Summers. “The Prusti Project: Formal Verifica-
tion for Rust.” NFM. Volume 13260. Lecture Notes in Computer
Science. Springer, 2022, pages 88–108 (cited on page 3).

[ACJK+21] R. Andriushchenko, M. Ceska, S. Junges, J.-P. Katoen, and S.
Stupinský. “PAYNT: A Tool for Inductive Synthesis of Probabilis-
tic Programs.” CAV (1). Volume 12759. Lecture Notes in Com-
puter Science. Springer, 2021, pages 856–869 (cited on page 200).

[ACJK21] R. Andriushchenko, M. Ceska, S. Junges, and J.-P. Katoen. “In-
ductive Synthesis for Probabilistic Programs Reaches New Hori-
zons.” TACAS (1). Volume 12651. Lecture Notes in Computer
Science. Springer, 2021, pages 191–209 (cited on page 200).

[ACN18] S. Agrawal, K. Chatterjee, and P. Novotný. “Lexicographic rank-
ing supermartingales: an efficient approach to termination of
probabilistic programs.” Proc. ACM Program. Lang. 2.POPL
(2018), 34:1–34:32 (cited on page 198).

[ADH22] N. Amat, S. Dal-Zilio, and T. Hujsa. “Property Directed Reach-
ability for Generalized Petri Nets.” TACAS (1). Volume 13243.
Lecture Notes in Computer Science. Springer, 2022, pages 505–
523 (cited on page 255).

290 Bibliography

[AG00] T. Arts and J. Giesl. “Termination of term rewriting using depen-
dency pairs.” Theor. Comput. Sci. 236.1-2 (2000), pages 133–178
(cited on page 198).

[AGR21] A. Abate, M. Giacobbe, and D. Roy. “Learning Probabilistic Ter-
mination Proofs.” CAV (2). Volume 12760. Lecture Notes in Com-
puter Science. Springer, 2021, pages 3–26 (cited on pages 118,
198, 199).

[AJ95] S. Abramsky and A. Jung. “Domain Theory.” Handbook of Logic in
Computer Science (Vol. 3): Semantic Structures. Oxford University
Press, Inc., 1995, pages 1–168 (cited on page 11).

[AKNP+00] L. de Alfaro, M. Z. Kwiatkowska, G. Norman, D. Parker, and
R. Segala. “Symbolic Model Checking of Probabilistic Processes
Using MTBDDs and the Kronecker Representation.” TACAS. Vol-
ume 1785. Lecture Notes in Computer Science. Springer, 2000,
pages 395–410 (cited on page 200).

[AMS20] M. Avanzini, G. Moser, and M. Schaper. “A modular cost analysis
for probabilistic programs.” Proc. ACM Program. Lang. 4.OOP-
SLA (2020), 172:1–172:30 (cited on page 198).

[AO19] K. R. Apt and E. Olderog. “Fifty years of Hoare’s logic.” Formal
Aspects Comput. 31.6 (2019), pages 751–807 (cited on page 119).

[Apt81] K. R. Apt. “Ten Years of Hoare’s Logic: A Survey - Part 1.” ACM
Trans. Program. Lang. Syst. 3.4 (1981), pages 431–483 (cited on
page 119).

[Bar17] H. Barbosa. “New techniques for instantiation and proof produc-
tion in SMT solving. (Nouvelles techniques pour l’instanciation
et la production des preuves dans SMT).” PhD thesis. University
of Lorraine, Nancy, France, 2017 (cited on page 199).

[BBBK+22] H. Barbosa, C. W. Barrett, M. Brain, G. Kremer, H. Lachnitt, M.
Mann, A. Mohamed, M. Mohamed, A. Niemetz, A. Nötzli, A.
Ozdemir, M. Preiner, A. Reynolds, Y. Sheng, C. Tinelli, and Y.
Zohar. “cvc5: A Versatile and Industrial-Strength SMT Solver.”
TACAS (1). Volume 13243. Lecture Notes in Computer Science.
Springer, 2022, pages 415–442 (cited on pages 3, 128).

291

[BBW14] J. Birgmeier, A. R. Bradley, and G. Weissenbacher. “Counterex-
ample to Induction-Guided Abstraction-Refinement (CTIGAR).”
CAV. Volume 8559. Lecture Notes in Computer Science. Springer,
2014, pages 831–848 (cited on page 255).

[BCHK+97] C. Baier, E. M. Clarke, V. Hartonas-Garmhausen, M. Z. Kwiatkowska,
and M. Ryan. “Symbolic Model Checking for Probabilistic Pro-
cesses.” ICALP. Volume 1256. Lecture Notes in Computer
Science. Springer, 1997, pages 430–440 (cited on page 200).

[BDW15] D. Beyer, M. Dangl, and P. Wendler. “Boosting k-Induction with
Continuously-Refined Invariants.” CAV (1). Volume 9206. Lec-
ture Notes in Computer Science. Springer, 2015, pages 622–640
(cited on pages 127, 163).

[BDW18] D. Beyer, M. Dangl, and P. Wendler. “A Unifying View on
SMT-Based Software Verification.” J. Autom. Reason. 60.3 (2018),
pages 299–335 (cited on page 129).

[BE98] A. Borodin and R. El-Yaniv. “Online computation and com-
petitive analysis.” Cambridge University Press, 1998 (cited on
page 197).

[BEFH16] G. Barthe, T. Espitau, L. M. F. Fioriti, and J. Hsu. “Synthesizing
Probabilistic Invariants via Doob’s Decomposition.” CAV (1). Vol-
ume 9779. Lecture Notes in Computer Science. Springer, 2016,
pages 43–61 (cited on pages 118, 198).

[BEGG+18] G. Barthe, T. Espitau, M. Gaboardi, B. Grégoire, J. Hsu, and
P. Strub. “An Assertion-Based Program Logic for Probabilistic
Programs.” ESOP. Volume 10801. Lecture Notes in Computer
Science. Springer, 2018, pages 117–144 (cited on page 5).

[Bel57] R. Bellman. “A Markovian Decision Process.” Indiana University
Mathematics Journal 6 (1957), pages 679–684 (cited on pages 31,
39).

[Ber49] J. Bertrand. “Traité d’Arithmétique.” Libraire de L. Hachette et
Cie., 1849 (cited on pages 95, 104).

[BG15] N. S. Bjørner and A. Gurfinkel. “Property Directed Polyhedral
Abstraction.” VMCAI. Volume 8931. Lecture Notes in Computer
Science. Springer, 2015, pages 263–281 (cited on page 255).

292 Bibliography

[BHK19] C. Baier, H. Hermanns, and J.-P. Katoen. “The 10, 000 Facets
of MDP Model Checking.” Computing and Software Science. Vol-
ume 10000. Lecture Notes in Computer Science. Springer, 2019,
pages 420–451 (cited on page 4).

[BJ15] N. S. Bjørner and M. Janota. “Playing with Quantified Satisfac-
tion.” LPAR (short papers). Volume 35. EPiC Series in Computing.
EasyChair, 2015, pages 15–27 (cited on page 199).

[BK08] C. Baier and J.-P. Katoen. “Principles of model checking.” MIT
Press, 2008 (cited on pages 4, 12, 24, 26, 32, 35, 38, 43, 124, 193,
222, 241, 246, 263).

[BK11] D. Beyer and M. E. Keremoglu. “CPAchecker: A Tool for Config-
urable Software Verification.” CAV. Volume 6806. Lecture Notes
in Computer Science. Springer, 2011, pages 184–190 (cited on
pages 4, 127).

[BKLP+17] C. Baier, J. Klein, L. Leuschner, D. Parker, and S. Wunderlich.
“Ensuring the Reliability of Your Model Checker: Interval Iter-
ation for Markov Decision Processes.” CAV (1). Volume 10426.
Lecture Notes in Computer Science. Springer, 2017, pages 160–
180 (cited on pages 163, 164, 200).

[BKS19] E. Bartocci, L. Kovács, and M. Stankovic. “Automatic Generation
of Moment-Based Invariants for Prob-Solvable Loops.” ATVA.
Volume 11781. Lecture Notes in Computer Science. Springer,
2019, pages 255–276 (cited on page 199).

[BKS20a] G. Barthe, J.-P. Katoen, and A. Silva. “Foundations of Probabilis-
tic Programming.” Cambridge University Press, 2020 (cited on
page 5).

[BKS20b] E. Bartocci, L. Kovács, and M. Stankovic. “Mora - Automatic Gen-
eration of Moment-Based Invariants.” TACAS (1). Volume 12078.
Lecture Notes in Computer Science. Springer, 2020, pages 492–
498 (cited on page 199).

[Bla67] D. Blackwell. “Positive dynamic programming.” Proceedings of
the 5th Berkeley Symposium on Mathematical Statistics and Proba-
bility. Volume 1. University of California Press, 1967, pages 415–
418 (cited on page 73).

293

[BLNR+09] C. Borralleras, S. Lucas, R. Navarro-Marset, E. Rodríguez-
Carbonell, and A. Rubio. “Solving Non-linear Polynomial
Arithmetic via SAT Modulo Linear Arithmetic.” CADE. Vol-
ume 5663. Lecture Notes in Computer Science. Springer, 2009,
pages 294–305 (cited on page 128).

[BPF15] N. S. Bjørner, A. Phan, and L. Fleckenstein. “νZ - An Optimizing
SMT Solver.” TACAS. Volume 9035. Lecture Notes in Computer
Science. Springer, 2015, pages 194–199 (cited on page 247).

[BPv15] V. Belle, A. Passerini, and van den Broeck, G. “Probabilistic
Inference in Hybrid Domains by Weighted Model Integration.”
IJCAI. AAAI Press, 2015, pages 2770–2776 (cited on page 200).

[Bra11a] A. R. Bradley. “SAT-Based Model Checking without Unrolling.”
VMCAI. Volume 6538. Lecture Notes in Computer Science.
Springer, 2011, pages 70–87 (cited on pages 7, 31, 201, 202, 216,
218, 219, 255).

[Bra11b] A. R. Bradley. “SAT-Based Model Checking without Unrolling.”
VMCAI. Volume 6538. LNCS. Springer, 2011, pages 70–87 (cited
on page 225).

[BTPH+22] J. Bao, N. Trivedi, D. Pathak, J. Hsu, and S. Roy. “Data-Driven
Invariant Learning for Probabilistic Programs.” CAV (1). Vol-
ume 13371. Lecture Notes in Computer Science. Springer, 2022,
pages 33–54 (cited on pages 118, 193, 195, 199, 281).

[CAG05] S. Cheshire, B. Aboba, and E. Guttman. “Dynamic Configuration
of IPv4 Link-Local Addresses.” RFC 3927 (2005), pages 1–33
(cited on pages 193, 253).

[Car08] J. Carter. “Categories for the working mathematician: making
the impossible possible.” Synth. 162.1 (2008), pages 1–13 (cited
on page 256).

[CBRZ01] E. M. Clarke, A. Biere, R. Raimi, and Y. Zhu. “Bounded Model
Checking Using Satisfiability Solving.” Formal Methods Syst. Des.
19.1 (2001), pages 7–34 (cited on pages 6, 124, 125, 163).

[CC79] P. Cousot and R. Cousot. “Constructive versions of Tarski’s
fixed point theorems.” Pacific Journal of Mathematics 82.1 (1979),
pages 43–57 (cited on pages 26, 27, 137, 140).

294 Bibliography

[CCMS07] R. Chadha, L. Cruz-Filipe, P. Mateus, and A. Sernadas. “Reason-
ing about probabilistic sequential programs.” Theor. Comput. Sci.
379.1-2 (2007), pages 142–165 (cited on page 5).

[CDDG+15] C. Calcagno, D. Distefano, J. Dubreil, D. Gabi, P. Hooimeijer,
M. Luca, P. W. O’Hearn, I. Papakonstantinou, J. Purbrick, and D.
Rodriguez. “Moving Fast with Software Verification.” NFM. Vol-
ume 9058. Lecture Notes in Computer Science. Springer, 2015,
pages 3–11 (cited on pages 4, 124).

[CDM17] D. Chistikov, R. Dimitrova, and R. Majumdar. “Approximate
counting in SMT and value estimation for probabilistic pro-
grams.” Acta Informatica 54.8 (2017), pages 729–764 (cited on
page 200).

[CFG16] K. Chatterjee, H. Fu, and A. K. Goharshady. “Termination Anal-
ysis of Probabilistic Programs Through Positivstellensatz’s.”
Computer Aided Verification - 28th International Conference, CAV
2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part
I. Edited by S. Chaudhuri and A. Farzan. Volume 9779. Lecture
Notes in Computer Science. Springer, 2016, pages 3–22 (cited on
pages 118, 198).

[CFMV15] S. Chakraborty, D. Fried, K. S. Meel, and M. Y. Vardi. “From
Weighted to Unweighted Model Counting.” IJCAI. AAAI Press,
2015, pages 689–695 (cited on page 200).

[CFNH16] K. Chatterjee, H. Fu, P. Novotný, and R. Hasheminezhad. “Al-
gorithmic analysis of qualitative and quantitative termination
problems for affine probabilistic programs.” POPL. ACM, 2016,
pages 327–342 (cited on page 118).

[CFNH18] K. Chatterjee, H. Fu, P. Novotný, and R. Hasheminezhad. “Al-
gorithmic Analysis of Qualitative and Quantitative Termination
Problems for Affine Probabilistic Programs.” ACM Trans. Pro-
gram. Lang. Syst. 40.2 (2018), 7:1–7:45 (cited on page 118).

[CG12] A. Cimatti and A. Griggio. “Software Model Checking via IC3.”
CAV. Volume 7358. Lecture Notes in Computer Science. Springer,
2012, pages 277–293 (cited on page 255).

[CGMT14] A. Cimatti, A. Griggio, S. Mover, and S. Tonetta. “IC3 Mod-
ulo Theories via Implicit Predicate Abstraction.” TACAS. Vol-
ume 8413. Lecture Notes in Computer Science. Springer, 2014,
pages 46–61 (cited on page 255).

295

[CGMT16] A. Cimatti, A. Griggio, S. Mover, and S. Tonetta. “Infinite-state
invariant checking with IC3 and predicate abstraction.” FMSD
49.3 (2016), pages 190–218 (cited on pages 224, 255).

[CGSS13] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani. “The
MathSAT5 SMT Solver.” TACAS. Volume 7795. Lecture Notes
in Computer Science. Springer, 2013, pages 93–107 (cited on
pages 3, 128).

[CHJK21] M. Ceska, C. Hensel, S. Junges, and J.-P. Katoen. “Counterexample-
guided inductive synthesis for probabilistic systems.” Formal As-
pects Comput. 33.4-5 (2021), pages 637–667 (cited on page 200).

[CHLP10] H. Christiansen, C. T. Have, O. T. Lassen, and M. Petit. “In-
ference with constrained hidden Markov models in PRISM.”
Theory Pract. Log. Program. 10.4-6 (2010), pages 449–464 (cited
on page 4).

[CHWZ15] Y. Chen, C. Hong, B. Wang, and L. Zhang. “Counterexample-
Guided Polynomial Loop Invariant Generation by Lagrange In-
terpolation.” CAV (1). Volume 9206. Lecture Notes in Computer
Science. Springer, 2015, pages 658–674 (cited on pages 198, 199).

[CKKW22] M. Chen, J.-P. Katoen, L. Klinkenberg, and T. Winkler. “Does a
Program Yield the Right Distribution? Verifying Probabilistic
Programs via Generating Functions.” CAV (1). Volume 13371.
Lecture Notes in Computer Science. Springer, 2022, pages 79–
101 (cited on page 200).

[Cla76] E. M. Clarke. “Completeness and Incompleteness Theorems for
Hoare-like Axiom Systems.” PhD thesis. Cornell University, USA,
1976 (cited on page 119).

[CMMV16] S. Chakraborty, K. S. Meel, R. Mistry, and M. Y. Vardi. “Approxi-
mate Probabilistic Inference via Word-Level Counting.” AAAI.
AAAI Press, 2016, pages 3218–3224 (cited on page 200).

[CNZ17] K. Chatterjee, P. Novotný, and D. Zikelic. “Stochastic invariants
for probabilistic termination.” POPL. ACM, 2017, pages 145–160
(cited on pages 118, 198).

[Coo78] S. A. Cook. “Soundness and Completeness of an Axiom System
for Program Verification.” SIAM J. Comput. 7 (1978), pages 70–90
(cited on pages 77, 96, 115, 119).

296 Bibliography

[Cou21] P. Cousot. “Principles of Abstract Interpretation.” MIT Press,
2021 (cited on page 256).

[CS13] A. Chakarov and S. Sankaranarayanan. “Probabilistic Program
Analysis with Martingales.” CAV. Volume 8044. Lecture Notes
in Computer Science. Springer, 2013, pages 511–526 (cited on
pages 118, 198).

[CSS03] M. Colón, S. Sankaranarayanan, and H. Sipma. “Linear Invariant
Generation Using Non-linear Constraint Solving.” CAV. Vol-
ume 2725. Lecture Notes in Computer Science. Springer, 2003,
pages 420–432 (cited on pages 145, 197).

[CV10] R. Chadha and M. Viswanathan. “A counterexample-guided
abstraction-refinement framework for Markov decision pro-
cesses.” ACM Trans. Comput. Log. 12.1 (2010), 1:1–1:49 (cited on
pages 224, 241).

[DHKR11] A. F. Donaldson, L. Haller, D. Kroening, and P. Rümmer. “Soft-
ware Verification Using k-Induction.” SAS. Volume 6887. Lecture
Notes in Computer Science. Springer, 2011, pages 351–368 (cited
on pages 125, 127, 163).

[Dij75] E. W. Dijkstra. “Guarded Commands, Nondeterminacy and
Formal Derivation of Programs.” Commun. ACM 18.8 (1975),
pages 453–457 (cited on pages 6, 53, 117).

[Dij76] E. W. Dijkstra. “A Discipline of Programming.” Prentice-Hall,
1976 (cited on pages 26, 45, 53, 117).

[DJJL01] P. R. D’Argenio, B. Jeannet, H. E. Jensen, and K. G. Larsen.
“Reachability Analysis of Probabilistic Systems by Successive
Refinements.” PAPM-PROBMIV. Volume 2165. Lecture Notes
in Computer Science. Springer, 2001, pages 39–56 (cited on
pages 56, 121, 169, 253).

[DJKV17] C. Dehnert, S. Junges, J.-P. Katoen, and M. Volk. “A Storm is
Coming: A Modern Probabilistic Model Checker.” CAV (2). Vol-
ume 10427. Lecture Notes in Computer Science. Springer, 2017,
pages 592–600 (cited on pages 4, 122, 172, 193).

[DKR10] Donaldson, Kroening, and Rümmer. “Automatic Analysis of
Scratch-Pad Memory Code for Heterogeneous Multicore Proces-
sors.” TACAS. 2010 (cited on pages 163, 255).

297

[DKR11] Donaldson, Kroening, and Rümmer. “Automatic analysis of
DMA races using model checking and k-induction.” Formal
Methods Syst. Des. 39.1 (2011) (cited on page 163).

[DKV09] M. Droste, W. Kuich, and H. Vogler. “Handbook of Weighted
Automata.” 1st. Springer Publishing Company, Incorporated,
2009 (cited on page 41).

[Ech05] F. Echenique. “A short and constructive proof of Tarski’s fixed-
point theorem.” Int. J. Game Theory 33.2 (2005), pages 215–218
(cited on page 27).

[EFT94] H. Ebbinghaus, J. Flum, and W. Thomas. “Mathematical logic (2.
ed.)” Undergraduate texts in mathematics. Springer, 1994 (cited
on page 85).

[EMB11] N. Eén, A. Mishchenko, and R. K. Brayton. “Efficient implemen-
tation of property directed reachability.” FMCAD. FMCAD Inc.,
2011, pages 125–134 (cited on pages 201, 202, 205, 255).

[FB18] G. Fedyukovich and R. Bodík. “Accelerating Syntax-Guided In-
variant Synthesis.” TACAS (1). Volume 10805. Lecture Notes
in Computer Science. Springer, 2018, pages 251–269 (cited on
page 197).

[FC19] H. Fu and K. Chatterjee. “Termination of Nondeterministic Prob-
abilistic Programs.” VMCAI. Volume 11388. Lecture Notes in
Computer Science. Springer, 2019, pages 468–490 (cited on
pages 118, 198).

[FH15] L. M. F. Fioriti and H. Hermanns. “Probabilistic Termination:
Soundness, Completeness, and Compositionality.” POPL. ACM,
2015, pages 489–501 (cited on pages 118, 198).

[Flo67] R. W. Floyd. “Assigning Meanings to Programs.” Mathematical
Aspects of Computer Science 19.19-32 (1967), page 1 (cited on
page 1).

[Fon08] G. Fontaine. “Continuous Fragment of the mu-Calculus.” CSL.
Volume 5213. Lecture Notes in Computer Science. Springer,
2008, pages 139–153 (cited on page 23).

[Fou25] J. Fourier. “Analyse des travaux de l’Académie royale des sciences
pendant l’année 1824: rapport lu dans la séance publique de
l’Institut le 24 avril 1825. Partie mathématique.” Institut (Paris).
Institut royal de France, 1825 (cited on page 176).

298 Bibliography

[FPS11] P. Flajolet, M. Pelletier, and M. Soria. “On Buffon Machines and
Numbers.” SODA. SIAM, 2011, pages 172–183 (cited on page 78).

[FZJZ+17] Y. Feng, L. Zhang, D. N. Jansen, N. Zhan, and B. Xia. “Finding
Polynomial Loop Invariants for Probabilistic Programs.” ATVA.
Volume 10482. Lecture Notes in Computer Science. Springer,
2017, pages 400–416 (cited on pages 118, 198).

[GABE+17] J. Giesl, C. Aschermann, M. Brockschmidt, F. Emmes, F. Frohn,
C. Fuhs, J. Hensel, C. Otto, M. Plücker, P. Schneider-Kamp, T.
Ströder, S. Swiderski, and R. Thiemann. “Analyzing Program
Termination and Complexity Automatically with AProVE.” J.
Autom. Reason. 58.1 (2017), pages 3–31 (cited on page 198).

[Gha15] Z. Ghahramani. “Probabilistic machine learning and artificial
intelligence.” Nat. 521.7553 (2015), pages 452–459 (cited on
page 4).

[GHNR14] A. D. Gordon, T. A. Henzinger, A. V. Nori, and S. K. Rajamani.
“Probabilistic programming.” FOSE. ACM, 2014, pages 167–181
(cited on page 4).

[GI15] A. Gurfinkel and A. Ivrii. “Pushing to the Top.” FMCAD. IEEE,
2015, pages 65–72 (cited on page 255).

[GI17] A. Gurfinkel and A. Ivrii. “K-induction without unrolling.” FM-
CAD. IEEE, 2017, pages 148–155 (cited on pages 125, 163).

[GKKN15] A. Gurfinkel, T. Kahsai, A. Komuravelli, and J. A. Navas. “The
SeaHorn Verification Framework.” CAV (1). Volume 9206. Lec-
ture Notes in Computer Science. Springer, 2015, pages 343–361
(cited on page 4).

[GKM13] F. Gretz, J.-P. Katoen, and A. McIver. “Prinsys - On a Quest
for Probabilistic Loop Invariants.” QEST. Volume 8054. Lecture
Notes in Computer Science. Springer, 2013, pages 193–208 (cited
on page 197).

[GKM14] F. Gretz, J.-P. Katoen, and A. McIver. “Operational versus weak-
est pre-expectation semantics for the probabilistic guarded com-
mand language.” Perform. Evaluation 73 (2014), pages 110–132
(cited on pages 69, 73).

299

[GLMN14] P. Garg, C. Löding, P. Madhusudan, and D. Neider. “ICE: A
Robust Framework for Learning Invariants.” CAV. Volume 8559.
Lecture Notes in Computer Science. Springer, 2014, pages 69–87
(cited on pages 197, 199).

[GM09] Y. Ge and L. M. de Moura. “Complete Instantiation for Quan-
tified Formulas in Satisfiabiliby Modulo Theories.” CAV. Vol-
ume 5643. Lecture Notes in Computer Science. Springer, 2009,
pages 306–320 (cited on page 199).

[GM15] Gario and Micheli. “PySMT: A solver-agnostic library for fast
prototyping of SMT-based algorithms.” SMT Workshop. 2015
(cited on pages 155, 193).

[GMV16] T. Gehr, S. Misailovic, and M. T. Vechev. “PSI: Exact Symbolic
Inference for Probabilistic Programs.” CAV (1). Volume 9779.
Lecture Notes in Computer Science. Springer, 2016, pages 62–83
(cited on page 200).

[Göd31] K. Gödel. “Über formal unentscheidbare Sätze der Principia
Mathematica und verwandter Systeme I.” Monatshefte für Mathe-
matik und Physik 38.1 (1931), pages 173–198 (cited on pages 95,
96, 98, 100).

[GR16] A. Griggio and M. Roveri. “Comparing Different Variants of
the ic3 Algorithm for Hardware Model Checking.” IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 35.6 (2016), pages 1026–
1039 (cited on page 255).

[Gre16] F. Gretz. “Semantics and loop invariant synthesis for probabilis-
tic programs.” PhD thesis. RWTH Aachen University, Germany,
2016 (cited on page 197).

[GSV14] O. Grumberg, S. Shoham, and Y. Vizel. “SAT-based Model Check-
ing: Interpolation, IC3, and Beyond.” Software Systems Safety.
Volume 36. NATO Science for Peace and Security Series, D: Infor-
mation and Communication Security. IOS Press, 2014, pages 17–
41 (cited on page 255).

[GTC16] N. D. Goodman, J. B. Tenenbaum, and T. P. Contributors. “Prob-
abilistic Models of Cognition.” http://probmods.org/v2. Ac-
cessed: 2024-4-29. 2016 (cited on page 4).

http://probmods.org/v2

300 Bibliography

[Har21] M. Hark. “Towards complete methods for automatic complexity
and termination analysis of (probabilistic) programs.” PhD
thesis. RWTH Aachen University, Germany, 2021 (cited on
page 192).

[Har99] J. den Hartog. “Verifying Probabilistic Programs Using a Hoare
like Logic.” ASIAN. Volume 1742. Lecture Notes in Computer
Science. Springer, 1999, pages 113–125 (cited on page 5).

[HB12] K. Hoder and N. Bjørner. “Generalized Property Directed Reach-
ability.” SAT. Volume 7317. LNCS. Springer, 2012, pages 157–
171 (cited on pages 224, 255).

[HBS13] Z. Hassan, A. R. Bradley, and F. Somenzi. “Better generalization
in IC3.” FMCAD. IEEE, 2013, pages 157–164 (cited on pages 249,
255).

[Her90] T. Herman. “Probabilistic Self-Stabilization.” Inf. Process. Lett.
35.2 (1990), pages 63–67 (cited on page 4).

[HFC18] M. Huang, H. Fu, and K. Chatterjee. “New Approaches for
Almost-Sure Termination of Probabilistic Programs.” APLAS.
Edited by S. Ryu. Volume 11275. Lecture Notes in Computer
Science. Springer, 2018, pages 181–201 (cited on page 118).

[HFCG19] M. Huang, H. Fu, K. Chatterjee, and A. K. Goharshady. “Mod-
ular verification for almost-sure termination of probabilistic
programs.” Proc. ACM Program. Lang. 3.OOPSLA (2019), 129:1–
129:29 (cited on page 118).

[HJKQ+22] C. Hensel, S. Junges, J.-P. Katoen, T. Quatmann, and M. Volk.
“The probabilistic model checker Storm.” Int. J. Softw. Tools Tech-
nol. Transf. 24.4 (2022), pages 589–610 (cited on pages 4, 122,
172, 193).

[HJVM+21] S. Holtzen, S. Junges, M. Vazquez-Chanlatte, T. D. Millstein,
S. A. Seshia, and van den Broeck, G. “Model Checking Finite-
Horizon Markov Chains with Probabilistic Inference.” CAV (2).
Volume 12760. Lecture Notes in Computer Science. Springer,
2021, pages 577–601 (cited on pages 200, 253).

[HK20] A. Hartmanns and B. L. Kaminski. “Optimistic Value Iteration.”
CAV (2). Volume 12225. Lecture Notes in Computer Science.
Springer, 2020, pages 488–511 (cited on pages 163, 200).

301

[HKD09] T. Han, J.-P. Katoen, and B. Damman. “Counterexample Genera-
tion in Probabilistic Model Checking.” IEEE Trans. Software Eng.
35.2 (2009), pages 241–257 (cited on page 224).

[HKGK20] M. Hark, B. L. Kaminski, J. Giesl, and J.-P. Katoen. “Aiming low
is harder: induction for lower bounds in probabilistic program
verification.” Proc. ACM Program. Lang. 4.POPL (2020), 37:1–
37:28 (cited on pages 68, 191).

[HKNP06] A. Hinton, M. Z. Kwiatkowska, G. Norman, and D. Parker.
“PRISM: A Tool for Automatic Verification of Probabilistic Sys-
tems.” TACAS. Volume 3920. Lecture Notes in Computer Science.
Springer, 2006, pages 441–444 (cited on page 4).

[HMM05] J. Hurd, A. McIver, and C. Morgan. “Probabilistic guarded com-
mands mechanized in HOL.” Theoretical Computer Science 346.1
(2005). Quantitative Aspects of Programming Languages (QAPL
2004), pages 96–112 (cited on page 159).

[Hoa62] C. A. R. Hoare. “Quicksort.” The Computer Journal 5.1 (1962),
pages 10–16 (cited on page 4).

[Hoa69] C. A. R. Hoare. “An Axiomatic Basis for Computer Program-
ming.” Commun. ACM 12.10 (1969), pages 576–580 (cited on
pages 1, 31).

[HSP82] S. Hart, M. Sharir, and A. Pnueli. “Termination of Probabilistic
Concurrent Programs.” POPL. ACM Press, 1982, pages 1–6 (cited
on page 5).

[HSV93] L. Helmink, M. P. A. Sellink, and F. W. Vaandrager. “Proof-
Checking a Data Link Protocol.” TYPES. Volume 806. Lecture
Notes in Computer Science. Springer, 1993, pages 127–165 (cited
on pages 56, 121, 169, 253).

[Hüt10] H. Hüttel. “Transitions and Trees - An Introduction to Struc-
tural Operational Semantics.” Cambridge University Press, 2010
(cited on page 15).

[HV02] J. den Hartog and E. P. de Vink. “Verifying Probabilistic Pro-
grams Using a Hoare Like Logic.” Int. J. Found. Comput. Sci. 13.3
(2002), pages 315–340 (cited on pages 5, 119).

[HvM20] S. Holtzen, van den Broeck, G., and T. D. Millstein. “Scaling exact
inference for discrete probabilistic programs.” Proc. ACM Pro-
gram. Lang. 4.OOPSLA (2020), 140:1–140:31 (cited on page 200).

302 Bibliography

[JÁZW+12] N. Jansen, E. Ábrahám, B. Zajzon, R. Wimmer, J. Schuster, J.-P.
Katoen, and B. Becker. “Symbolic Counterexample Generation
for Discrete-Time Markov Chains.” FACS. Volume 7684. Lecture
Notes in Computer Science. Springer, 2012, pages 134–151 (cited
on page 163).

[JD16] D. Jovanovic and B. Dutertre. “Property-directed k-induction.”
FMCAD. IEEE, 2016, pages 85–92 (cited on pages 125, 163).

[JDKK+16] N. Jansen, C. Dehnert, B. L. Kaminski, J.-P. Katoen, and L. West-
hofen. “Bounded Model Checking for Probabilistic Programs.”
ATVA. Volume 9938. Lecture Notes in Computer Science. 2016,
pages 68–85 (cited on pages 163, 241).

[Jon90] C. Jones. “Probabilistic non-determinism.” PhD thesis. Univer-
sity of Edinburgh, UK, 1990 (cited on page 255).

[KABB+23] M. Kori, F. Ascari, F. Bonchi, R. Bruni, R. Gori, and I. Hasuo.
“Exploiting Adjoints in Property Directed Reachability Analy-
sis.” CAV (2). Volume 13965. Lecture Notes in Computer Science.
Springer, 2023, pages 41–63 (cited on pages 254–256).

[Kam19] B. L. Kaminski. “Advanced Weakest Precondition Calculi for
Probabilistic Programs.” PhD thesis. RWTH Aachen University,
Germany, 2019 (cited on pages 5, 6, 16, 31, 50, 53, 60, 64, 66, 68,
77, 92, 190, 195).

[Kat16] J.-P. Katoen. “The Probabilistic Model Checking Landscape.”
LICS. ACM, 2016, pages 31–45 (cited on page 4).

[KBGM15] A. Komuravelli, N. S. Bjørner, A. Gurfinkel, and K. L. McMil-
lan. “Compositional Verification of Procedural Programs using
Horn Clauses over Integers and Arrays.” FMCAD. IEEE, 2015,
pages 89–96 (cited on page 255).

[KBT14] T. King, C. W. Barrett, and C. Tinelli. “Leveraging Linear and
Mixed Integer Programming for SMT.” SMT. Volume 1163.
CEUR Workshop Proceedings. CEUR-WS.org, 2014, page 65
(cited on page 148).

[KCÁ16] G. Kremer, F. Corzilius, and E. Ábrahám. “A Generalised Branch-
and-Bound Approach and Its Application in SAT Modulo Non-
linear Integer Arithmetic.” CASC. Volume 9890. Lecture Notes
in Computer Science. Springer, 2016, pages 315–335 (cited on
page 128).

303

[KG23] J. Kassing and J. Giesl. “Proving Almost-Sure Innermost Ter-
mination of Probabilistic Term Rewriting Using Dependency
Pairs.” CADE. Volume 14132. Lecture Notes in Computer Sci-
ence. Springer, 2023, pages 344–364 (cited on page 198).

[KGC14] A. Komuravelli, A. Gurfinkel, and S. Chaki. “SMT-Based Model
Checking for Recursive Programs.” CAV. Volume 8559. Lecture
Notes in Computer Science. Springer, 2014, pages 17–34 (cited
on page 255).

[KK15] B. L. Kaminski and J.-P. Katoen. “On the Hardness of Almost-
Sure Termination.” MFCS (1). Volume 9234. Lecture Notes in
Computer Science. Springer, 2015, pages 307–318 (cited on
pages 5, 115, 117).

[KK17] B. L. Kaminski and J.-P. Katoen. “A weakest pre-expectation
semantics for mixed-sign expectations.” LICS. IEEE Computer
Society, 2017, pages 1–12 (cited on page 59).

[KKM19] B. L. Kaminski, J.-P. Katoen, and C. Matheja. “On the hardness of
analyzing probabilistic programs.” Acta Informatica 56.3 (2019),
pages 255–285 (cited on pages 5, 66, 115, 117).

[KKMO16] B. L. Kaminski, J.-P. Katoen, C. Matheja, and F. Olmedo. “Weak-
est Precondition Reasoning for Expected Run-Times of Proba-
bilistic Programs.” ESOP. Volume 9632. Lecture Notes in Com-
puter Science. Springer, 2016, pages 364–389 (cited on pages 118,
190).

[KKMO18] B. L. Kaminski, J.-P. Katoen, C. Matheja, and F. Olmedo. “Weak-
est Precondition Reasoning for Expected Runtimes of Random-
ized Algorithms.” J. ACM 65.5 (2018), 30:1–30:68 (cited on
pages 118, 190).

[KMMM10] J.-P. Katoen, A. McIver, L. Meinicke, and C. C. Morgan. “Linear-
Invariant Generation for Probabilistic Programs: - Automated
Support for Proof-Based Methods.” SAS. Volume 6337. Lecture
Notes in Computer Science. Springer, 2010, pages 390–406 (cited
on pages 118, 145, 147, 149, 151, 153, 169, 173, 197).

[KNP02] M. Z. Kwiatkowska, G. Norman, and D. Parker. “PRISM: Proba-
bilistic Symbolic Model Checker.” Computer Performance Evalua-
tion / TOOLS. Volume 2324. Lecture Notes in Computer Science.
Springer, 2002, pages 200–204 (cited on page 4).

304 Bibliography

[Koz82] D. Kozen. “Results on the Propositional µ-Calculus.” ICALP.
Volume 140. Lecture Notes in Computer Science. Springer, 1982,
pages 348–359 (cited on pages 11, 21, 23, 25, 26).

[Koz83] D. Kozen. “A Probabilistic PDL.” STOC. ACM, 1983, pages 291–
297 (cited on pages 5, 6, 53, 72).

[Koz85] D. Kozen. “A Probabilistic PDL.” J. Comput. Syst. Sci. 30.2 (1985),
pages 162–178 (cited on pages 5, 6, 53, 72).

[KR92] E. Kushilevitz and M. O. Rabin. “Randomized Mutual Exclusion
Algorithms Revisited.” PODC. ACM, 1992, pages 275–283 (cited
on pages 157, 159).

[Kri63] S. Kripke. “Semantical Considerations on Modal Logic.” Acta
Philosophica Fennica 16 (1963), pages 83–94 (cited on page 12).

[KUH21] S. Kura, H. Unno, and I. Hasuo. “Decision Tree Learning in
CEGIS-Based Termination Analysis.” CAV (2). Volume 12760.
Lecture Notes in Computer Science. Springer, 2021, pages 75–98
(cited on pages 197, 199).

[KUKS+22] M. Kori, N. Urabe, S. Katsumata, K. Suenaga, and I. Hasuo.
“The Lattice-Theoretic Essence of Property Directed Reachability
Analysis.” CAV (1). Volume 13371. Lecture Notes in Computer
Science. Springer, 2022, pages 235–256 (cited on pages 254, 255).

[KVGG19] H. G. V. Krishnan, Y. Vizel, V. Ganesh, and A. Gurfinkel. “In-
terpolating Strong Induction.” CAV (2). Volume 11562. Lecture
Notes in Computer Science. Springer, 2019, pages 367–385 (cited
on pages 6, 163, 254, 255, 258).

[LAH23] J. M. Li, A. Ahmed, and S. Holtzen. “Lilac: A Modal Separation
Logic for Conditional Probability.” Proc. ACM Program. Lang.
7.PLDI (2023), pages 148–171 (cited on page 5).

[Lan18] T. F. Lange. “IC3 software model checking.” PhD thesis. RWTH
Aachen University, Germany, 2018 (cited on pages 125, 224,
255).

[Lea00] C. League. “Lambda Calculi: A Guide for Computer Scientists
by Chris Hankin.” SIGACT News 31.1 (2000), pages 8–13 (cited
on page 87).

305

[Lei10] K. R. M. Leino. “Dafny: An Automatic Program Verifier for Func-
tional Correctness.” LPAR (Dakar). Volume 6355. Lecture Notes
in Computer Science. Springer, 2010, pages 348–370 (cited on
page 3).

[LMSS56] K. de Leeuw, E. F. Moore, C. E. Shannon, and N. Shapiro. “Com-
putability by Probabilistic Machines.” Automata Studies. (AM-
34), Volume 34. Edited by C. E. Shannon and J. McCarthy. Prince-
ton University Press, 1956, pages 183–212 (cited on page 4).

[LNN15] T. Lange, M. R. Neuhäußer, and T. Noll. “IC3 Software Model
Checking on Control Flow Automata.” FMCAD. IEEE, 2015,
pages 97–104 (cited on page 255).

[LNNK20a] T. Lange, M. R. Neuhäußer, T. Noll, and J.-P. Katoen. “IC3 Soft-
ware Model Checking.” STTT (2020) (cited on page 224).

[LNNK20b] T. Lange, M. R. Neuhäußer, T. Noll, and J.-P. Katoen. “IC3 soft-
ware model checking.” Int. J. Softw. Tools Technol. Transf. 22.2
(2020), pages 135–161 (cited on page 255).

[LNS82] J. Lassez, V. L. Nguyen, and L. Sonenberg. “Fixed Point Theo-
rems and Semantics: A Folk Tale.” Inf. Process. Lett. 14.3 (1982),
pages 112–116 (cited on page 140).

[LS16] X. Li and K. Schneider. “Control-flow guided property directed
reachability for imperative synchronous programs.” MEM-
OCODE. IEEE, 2016, pages 23–33 (cited on page 255).

[LS87] J. Loeckx and K. Sieber. “The Foundations of Program Verifica-
tion, 2nd ed.” Wiley-Teubner, 1987 (cited on page 94).

[LSS84] J. Loeckx, K. Sieber, and R. Stansifer. “The Foundations of Pro-
gram Verification.” Wiley Teubner Series on Applicable Theory
in Computer Science Series. John Wiley, 1984 (cited on pages 79,
96, 119).

[Lum13] J. O. Lumbroso. “Optimal Discrete Uniform Generation from
Coin Flips, and Applications.” CoRR abs/1304.1916 (2013) (cited
on page 160).

[MB08] L. M. de Moura and N. S. Bjørner. “Z3: An Efficient SMT Solver.”
TACAS. Volume 4963. Lecture Notes in Computer Science.
Springer, 2008, pages 337–340 (cited on pages 3, 128, 148, 155,
176, 193).

306 Bibliography

[MBKK21] M. Moosbrugger, E. Bartocci, J.-P. Katoen, and L. Kovács. “Au-
tomated Termination Analysis of Polynomial Probabilistic Pro-
grams.” ESOP. Volume 12648. Lecture Notes in Computer Sci-
ence. Springer, 2021, pages 491–518 (cited on page 198).

[MHG21] F. Meyer, M. Hark, and J. Giesl. “Inferring Expected Runtimes
of Probabilistic Integer Programs Using Expected Sizes.” TACAS
(1). Volume 12651. Lecture Notes in Computer Science. Springer,
2021, pages 250–269 (cited on page 198).

[Mil89] R. Milner. “Communication and concurrency.” PHI Series in
computer science. Prentice Hall, 1989 (cited on page 164).

[MM05] A. McIver and C. Morgan. “Abstraction, Refinement and Proof
for Probabilistic Systems.” Monographs in Computer Science.
Springer, 2005 (cited on pages 5, 6, 16, 31, 45, 53).

[MM99] C. Morgan and A. McIver. “PGCL: Formal reasoning for random
algorithms.” South African Computer Journal 22 (Nov. 1999) (cited
on page 45).

[MMS96] C. Morgan, A. McIver, and K. Seidel. “Probabilistic Predicate
Transformers.” ACM Trans. Program. Lang. Syst. 18.3 (1996),
pages 325–353 (cited on pages 5, 6, 53).

[Mot36] T. Motzkin. “Beitraege zur Theorie der linearen Ungleichungen.”
Universitaet Basel, 1936 (cited on pages 176, 197).

[MP95] Z. Manna and A. Pnueli. “Temporal verification of reactive sys-
tems - safety.” Springer, 1995 (cited on pages 31, 124).

[NCH18] V. C. Ngo, Q. Carbonneaux, and J. Hoffmann. “Bounded expecta-
tions: resource analysis for probabilistic programs.” PLDI. ACM,
2018, pages 496–512 (cited on pages 118, 193, 195, 198, 281).

[NN07] H. R. Nielson and F. Nielson. “Semantics with Applications:
An Appetizer.” Undergraduate Topics in Computer Science.
Springer, 2007 (cited on page 75).

[NPRB+21] A. Niemetz, M. Preiner, A. Reynolds, C. W. Barrett, and C.
Tinelli. “Syntax-Guided Quantifier Instantiation.” TACAS (2).
Volume 12652. Lecture Notes in Computer Science. Springer,
2021, pages 145–163 (cited on page 199).

307

[OGJK+18] F. Olmedo, F. Gretz, N. Jansen, B. L. Kaminski, J. Katoen, and
A. McIver. “Conditioning in Probabilistic Programming.” ACM
Trans. Program. Lang. Syst. 40.1 (2018), 4:1–4:50 (cited on
page 258).

[OKKM16] F. Olmedo, B. L. Kaminski, J.-P. Katoen, and C. Matheja. “Reason-
ing about Recursive Probabilistic Programs.” LICS. ACM, 2016,
pages 672–681 (cited on page 79).

[Old80] E. Olderog. “General Equivalence of Expressivity Definitions
Using Strongest Postconditions Resp. Weakest Preconditions.”
Universität Kiel. Institut für Informatik und Praktische Mathe-
matik, 1980 (cited on page 119).

[Orn69] D. Ornstein. “On the existence of stationary optimal strategies.”
Proceedings of the American Mathematical Society 20.2 (1969),
pages 563–569 (cited on page 44).

[Par69] D. Park. “Fixpoint Induction and Proofs of Program Properties.”
Machine Intelligence 5 (1969) (cited on pages 28, 66).

[PBFA19] E. Polgreen, M. Brain, M. Fränzle, and A. Abate. “Verifying
Reachability Properties in Markov Chains via Incremental In-
duction.” CoRR abs/1909.08017 (2019) (cited on page 255).

[Plo04] G. D. Plotkin. “The origins of structural operational semantics.”
J. Log. Algebraic Methods Program. 60-61 (2004), pages 3–15 (cited
on page 47).

[PNB17] M. Preiner, A. Niemetz, and A. Biere. “Counterexample-Guided
Model Synthesis.” TACAS (1). Volume 10205. Lecture Notes in
Computer Science. 2017, pages 264–280 (cited on page 199).

[Pou07] D. Pous. “Complete Lattices and Up-To Techniques.” APLAS. Vol-
ume 4807. Lecture Notes in Computer Science. Springer, 2007,
pages 351–366 (cited on page 164).

[PS12] D. Pous and D. Sangiorgi. “Enhancements of the bisimulation
proof method.” Advanced Topics in Bisimulation and Coinduc-
tion. Volume 52. Cambridge tracts in theoretical computer sci-
ence. Cambridge University Press, 2012, pages 233–289 (cited
on page 164).

[Put94] M. L. Puterman. “Markov Decision Processes: Discrete Stochastic
Dynamic Programming.” Wiley Series in Probability and Statis-
tics. Wiley, 1994 (cited on pages 31, 44).

308 Bibliography

[QK18] T. Quatmann and J. Katoen. “Sound Value Iteration.” CAV (1).
Volume 10981. Lecture Notes in Computer Science. Springer,
2018, pages 643–661 (cited on pages 163, 200).

[Ram79] L. Ramshaw. “Formalizing the analysis of algorithms.” PhD the-
sis. Stanford University, USA, 1979 (cited on page 5).

[RBF18] A. Reynolds, H. Barbosa, and P. Fontaine. “Revisiting Enumer-
ative Instantiation.” TACAS (2). Volume 10806. Lecture Notes
in Computer Science. Springer, 2018, pages 112–131 (cited on
page 199).

[RDKB+15] A. Reynolds, M. Deters, V. Kuncak, C. W. Barrett, and C. Tinelli.
“On Counterexample Guided Quantifier Instantiation for Synthe-
sis in CVC4.” CoRR abs/1502.04464 (2015) (cited on page 199).

[Rey02] J. C. Reynolds. “Separation Logic: A Logic for Shared Mutable
Data Structures.” LICS. IEEE Computer Society, 2002, pages 55–
74 (cited on pages 118, 119).

[RICB15] H. Rocha, H. Ismail, L. C. Cordeiro, and R. S. Barreto. “Model
Checking Embedded C Software Using k-Induction and Invari-
ants.” SBESC. IEEE Computer Society, 2015, pages 90–95 (cited
on page 163).

[RKSB+21] F. Ronquist, J. Kudlicka, V. Senderov, J. Borgström, N. Lartillot,
D. Lundén, L. Murray, T. B. Schön, and D. Broman. “Universal
probabilistic programming offers a powerful approach to sta-
tistical phylogenetics.” Communications Biology 4.1, 244 (2021)
(cited on page 4).

[Rob49] J. Robinson. “Definability and Decision Problems in Arithmetic.”
J. Symb. Log. 14.2 (1949), pages 98–114 (cited on page 97).

[RS09] Rabehaja and Sanders. “Refinement Algebra with Explicit Prob-
abilism.” TASE. 2009 (cited on page 143).

[RTGK+13] A. Reynolds, C. Tinelli, A. Goel, S. Krstic, M. Deters, and C. W.
Barrett. “Quantifier Instantiation Techniques for Finite Model
Finding in SMT.” CADE. Volume 7898. Lecture Notes in Com-
puter Science. Springer, 2013, pages 377–391 (cited on page 199).

[RTM14] A. Reynolds, C. Tinelli, and L. M. de Moura. “Finding conflicting
instances of quantified formulas in SMT.” FMCAD. IEEE, 2014,
pages 195–202 (cited on page 199).

309

[RWKY+14] M. N. Rabe, C. M. Wintersteiger, H. Kugler, B. Yordanov, and Y.
Hamadi. “Symbolic Approximation of the Bounded Reachability
Probability in Large Markov Chains.” QEST. Volume 8657. Lec-
ture Notes in Computer Science. Springer, 2014, pages 388–403
(cited on page 200).

[RZ15] R. Rand and S. Zdancewic. “VPHL: A Verified Partial-Correctness
Logic for Probabilistic Programs.” MFPS. Volume 319. Elec-
tronic Notes in Theoretical Computer Science. Elsevier, 2015,
pages 351–367 (cited on page 5).

[SI20] K. Suenaga and T. Ishizawa. “Generalized Property-Directed
Reachability for Hybrid Systems.” VMCAI. Volume 11990. LNCS.
Springer, 2020, pages 293–313 (cited on pages 224, 255).

[SO19] A. Schreuder and C. L. Ong. “Polynomial Probabilistic Invariants
and the Optional Stopping Theorem.” CoRR abs/1910.12634
(2019) (cited on page 118).

[SRBE05] A. Solar-Lezama, R. M. Rabbah, R. Bodík, and K. Ebcioglu.
“Programming by sketching for bit-streaming programs.” PLDI.
ACM, 2005, pages 281–294 (cited on page 165).

[SS17] T. Seufert and C. Scholl. “Sequential Verification Using Re-
verse PDR.” MBMV. Shaker Verlag, 2017, pages 79–90 (cited on
page 202).

[SSS00] M. Sheeran, S. Singh, and G. Stålmarck. “Checking Safety Prop-
erties Using Induction and a SAT-Solver.” FMCAD. Volume 1954.
Lecture Notes in Computer Science. Springer, 2000, pages 108–
125 (cited on pages 6, 125–127, 163).

[STBS+06] A. Solar-Lezama, L. Tancau, R. Bodík, S. A. Seshia, and V. A.
Saraswat. “Combinatorial sketching for finite programs.” ASP-
LOS. ACM, 2006, pages 404–415 (cited on page 165).

[Stu22] B. Sturgis. “Automatic Verification of Loop Invariants in Weighted
Programs.” RWTH Aachen University, Germany, 2022 (cited on
page 163).

[Tar48] A. Tarski. “A Decision Method for Elementary Algebra and
Geometry.” Project rand. Rand Corporation, 1948 (cited on
page 197).

310 Bibliography

[Tar55] A. Tarski. “A LATTICE-THEORETICAL FIXPOINT THEOREM
AND ITS APPLICATIONS.” Pacific Journal of Mathematics 5
(1955), pages 285–309 (cited on pages 20, 136).

[TCA09] M. Tatsuta, W. Chin, and M. F. A. Ameen. “Completeness of
Pointer Program Verification by Separation Logic.” Software En-
gineering and Formal Methods. IEEE Computer Society, 2009,
pages 179–188 (cited on pages 94, 119).

[TCA19] M. Tatsuta, W. Chin, and M. F. A. Ameen. “Completeness and
expressiveness of pointer program verification by separation
logic.” Inf. Comput. 267 (2019), pages 1–27 (cited on pages 94,
119).

[TOUH18] T. Takisaka, Y. Oyabu, N. Urabe, and I. Hasuo. “Ranking and
Repulsing Supermartingales for Reachability in Probabilistic
Programs.” ATVA. Volume 11138. Lecture Notes in Computer
Science. Springer, 2018, pages 476–493 (cited on pages 118, 198).

[TOUH21] T. Takisaka, Y. Oyabu, N. Urabe, and I. Hasuo. “Ranking and
Repulsing Supermartingales for Reachability in Randomized
Programs.” ACM Trans. Program. Lang. Syst. 43.2 (2021), 5:1–
5:46 (cited on pages 118, 198).

[Tur37] A. M. Turing. “On computable numbers, with an application to
the Entscheidungsproblem.” 2.1 (1937), pages 230–265 (cited on
page 2).

[UTK21] H. Unno, T. Terauchi, and E. Koskinen. “Constraint-Based Re-
lational Verification.” CAV (1). Volume 12759. Lecture Notes
in Computer Science. Springer, 2021, pages 742–766 (cited on
pages 197, 199).

[VG14] Y. Vizel and A. Gurfinkel. “Interpolating Property Directed
Reachability.” CAV. Volume 8559. Lecture Notes in Computer
Science. Springer, 2014, pages 260–276 (cited on page 255).

[WBB09] R. Wimmer, B. Braitling, and B. Becker. “Counterexample Gen-
eration for Discrete-Time Markov Chains Using Bounded Model
Checking.” VMCAI. Volume 5403. Lecture Notes in Computer
Science. Springer, 2009, pages 366–380 (cited on page 163).

[Wel13] T. Welp. “Program Verification with Property Directed Reacha-
bility.” PhD thesis. University of California, Berkeley, USA, 2013
(cited on page 255).

311

[WFGC+19] P. Wang, H. Fu, A. K. Goharshady, K. Chatterjee, X. Qin, and W.
Shi. “Cost analysis of nondeterministic probabilistic programs.”
PLDI. ACM, 2019, pages 204–220 (cited on page 198).

[Wil07] D. R. Wilkins. “Course 221: Hilary Term 2007. Section 6: The
Extended Real Number System.” Lecture Notes. Accessed online
November 20, 2023. 2007 (cited on page 35).

[Win93] G. Winskel. “The formal semantics of programming languages
- an introduction.” Foundation of computing series. MIT Press,
1993 (cited on pages 21, 22, 77, 79, 82, 93, 94, 96, 102, 110, 119).

[WK23a] T. Winkler and J.-P. Katoen. “Certificates for Probabilistic Push-
down Automata via Optimistic Value Iteration.” TACAS (2). Vol-
ume 13994. Lecture Notes in Computer Science. Springer, 2023,
pages 391–409 (cited on pages 7, 123, 163).

[WKH20] D. Wang, D. M. Kahn, and J. Hoffmann. “Raising expectations:
automating expected cost analysis with types.” Proc. ACM Pro-
gram. Lang. 4.ICFP (2020), 110:1–110:31 (cited on page 198).

[YFKZ+24] T. Yang, H. Fu, J. Ke, N. Zhan, and S. Wu. “Piecewise Linear Ex-
pectation Analysis via k-Induction for Probabilistic Programs.”
CoRR abs/2403.17567 (2024) (cited on pages 7, 123).

313

Co-authored Publications

Cited publications

[1] K. Batz. “Proof Rules for Expected Runtimes of Probabilistic Programs.”
RWTH Aachen University, Germany, 2017. doi: https://doi.org/10.
5281/zenodo.11576700 (cited on page 287).

[2] K. Batz, B. L. Kaminski, J.-P. Katoen, and C. Matheja. “How long, O
Bayesian network, will I sample thee? - A program analysis perspective
on expected sampling times.” ESOP. Volume 10801. Lecture Notes in
Computer Science. Springer, 2018, pages 186–213 (cited on pages 9,
287).

[3] K. Batz, B. L. Kaminski, J.-P. Katoen, C. Matheja, and T. Noll. “Quantita-
tive Separation Logic.” CoRR abs/1802.10467 (2018) (cited on pages 69,
73).

[4] K. Batz. “IC3 for Probabilistic Systems.” RWTH Aachen University,
Germany, 2019. doi: https://doi.org/10.5281/zenodo.11576982
(cited on pages 202, 287).

[5] K. Batz, B. L. Kaminski, J.-P. Katoen, C. Matheja, and T. Noll. “Quantita-
tive Separation logic: A Logic for Reasoning about Probabilistic Pointer
Programs.” Proc. ACM Program. Lang. 3.POPL (2019), 34:1–34:29 (cited
on pages 9, 47, 69, 73, 118, 287).

[6] K. Batz, S. Junges, B. L. Kaminski, J.-P. Katoen, C. Matheja, and P.
Schröer. “PrIC3: Property Directed Reachability for MDPs.” CAV (2).
Volume 12225. Lecture Notes in Computer Science. Springer, 2020,
pages 512–538 (cited on pages 7, 8, 201, 287).

[7] K. Batz, S. Junges, B. L. Kaminski, J.-P. Katoen, C. Matheja, and P.
Schröer. “PrIC3: Property Directed Reachability for MDPs.” CoRR
abs/2004.14835 (2020) (cited on pages 201, 287).

[8] K. Batz, B. L. Kaminski, J.-P. Katoen, and C. Matheja. “Relatively Com-
plete Verification of Probabilistic Programs.” CoRR abs/2010.14548
(2020) (cited on pages 75, 101, 111).

[9] L. Klinkenberg, K. Batz, B. L. Kaminski, J.-P. Katoen, J. Moerman, and
T. Winkler. “Generating Functions for Probabilistic Programs.” LOPSTR.
Volume 12561. Lecture Notes in Computer Science. Springer, 2020,
pages 231–248 (cited on pages 9, 286).

https://doi.org/https://doi.org/10.5281/zenodo.11576700
https://doi.org/https://doi.org/10.5281/zenodo.11576700
https://doi.org/https://doi.org/10.5281/zenodo.11576982

314 Bibliography

[10] K. Batz, M. Chen, B. L. Kaminski, J.-P. Katoen, C. Matheja, and P. Schröer.
“Latticed k-Induction with an Application to Probabilistic Programs.”
CoRR abs/2105.14100 (2021) (cited on pages 121, 137, 138, 155).

[11] K. Batz, M. Chen, B. L. Kaminski, J.-P. Katoen, C. Matheja, and P. Schröer.
“Latticed k-Induction with an Application to Probabilistic Programs.”
CAV (2). Volume 12760. Lecture Notes in Computer Science. Springer,
2021, pages 524–549 (cited on pages 6, 8, 121, 155, 286).

[12] K. Batz, B. L. Kaminski, J.-P. Katoen, and C. Matheja. “Relatively Com-
plete Verification of Probabilistic Programs: An Expressive Language
for Expectation-based Reasoning.” Proc. ACM Program. Lang. 5.POPL
(2021), pages 1–30 (cited on pages 6, 8, 60, 75, 83, 84, 286).

[13] K. Batz, M. Chen, S. Junges, B. L. Kaminski, J.-P. Katoen, and C. Matheja.
“Probabilistic Program Verification via Inductive Synthesis of Inductive
Invariants.” CoRR abs/2205.06152 (2022) (cited on page 165).

[14] K. Batz, I. Fesefeldt, M. Jansen, J.-P. Katoen, F. Keßler, C. Matheja, and
T. Noll. “Foundations for Entailment Checking in Quantitative Separa-
tion Logic.” ESOP. Volume 13240. Lecture Notes in Computer Science.
Springer, 2022, pages 57–84 (cited on pages 8, 286).

[15] K. Batz, A. Gallus, B. L. Kaminski, J.-P. Katoen, and T. Winkler.
“Weighted Programming: A Programming Paradigm for Specifying
Mathematical Models.” Proc. ACM Program. Lang. 6.OOPSLA1 (2022),
pages 1–30 (cited on pages 8, 55, 163, 197, 286).

[16] K. Batz, M. Chen, S. Junges, B. L. Kaminski, J.-P. Katoen, and C. Matheja.
“Probabilistic Program Verification via Inductive Synthesis of Inductive
Invariants.” TACAS (2). Volume 13994. Lecture Notes in Computer
Science. Springer, 2023, pages 410–429 (cited on pages 7, 8, 165, 285).

[17] K. Batz, B. L. Kaminski, J.-P. Katoen, C. Matheja, and L. Verscht. “A
Calculus for Amortized Expected Runtimes.” Proc. ACM Program. Lang.
7.POPL (2023), pages 1957–1986 (cited on pages 8, 69, 73, 285).

[18] P. Schröer, K. Batz, B. L. Kaminski, J.-P. Katoen, and C. Matheja. “A
Deductive Verification Infrastructure for Probabilistic Programs.” Proc.
ACM Program. Lang. 7.OOPSLA2 (2023), pages 2052–2082 (cited on
pages 6, 8, 79, 145, 157, 257, 285).

315

[19] K. Batz, T. J. Biskup, J.-P. Katoen, and T. Winkler. “Programmatic Strat-
egy Synthesis: Resolving Nondeterminism in Probabilistic Programs.”
Proc. ACM Program. Lang. 8.POPL (2024), pages 2792–2820 (cited on
pages 8, 47, 258, 263, 285).

317

Index

κ-induction, 135
σ -admissible invariant, 181
k-induction, 125
(upper) n-fold iteration, 27
(upper) n-fold iteration, 21
κ-induction operator, 130
IC3 invariants, 205
PrIC3 invariants, 227

admissible invariant, 167
arithmetic expression, 80

linear over Z, 146

Boolean expression, 81
linear over Z, 146

bound variable, 82
bounded model checking (BMC),

124

capture-avoiding substitution, 88
characteristic expectation, 110
characteristic function, 63
complete lattice, 18

greatest element, 18
least element, 18

continuous function, 21
counterexample of I , 181

Dedekind cut, 104
Dedekind-characteristic formula,

104

expectation, 58
piecewise linear (syntactic),

147
syntactic, 81

expressive, 77

finite-state loop, 179
first-order arithmetic formula, 96
fixpoint, 19

greatest, 136
least, 19

fixpoint iteration, 22
frame, 203, 222
free variable, 83

Gödel number, 99
Gödelization, 99
guarded normal form (GNF), 149

inductive, 130
infimum quantifier, 81
invariant property, 124
Iverson bracket, 59

lambda expression, 11
linear fragment of pGCL

linear (single) loop, 146
lower n-fold iteration, 132

Markov decision process, 32
a-successor, 32

318 INDEX

(reachability-)reward function,
36

action, 32
Bellman operator, 222
enabled action, 32
expected (reachability-)reward,

36
finite-state, 32
history-dependent scheduler,

34
induced path probability, 35
infinite-state, 32
Markov chain, 32
max-Bellman operator, 41
max-optimal scheduler, 44
memoryless scheduler, 34
min-Bellman operator, 41
min-optimal scheduler, 44
path, 33
reachability probability, 38
safe, 221
scheduler, 34
state, 32
subMDP, 241
transition probability function,

32
uniformly max-optimal

scheduler, 44
uniformly min-optimal

scheduler, 44
value function, 40

monotone function, 19

natural number, 11
natural template, 174

operational MDP, 50
configuration, 47
final configuration, 47

operational weakest preexpectation,
69

Park induction, 28
partial order, 17

antisymmetric, 17
infimum, 18
lower bound, 17
reflexive, 17
supremum, 17
transitive, 17
upper bound, 17

piecewise linear quantity, 174
probabilistic guarded command

language, 45
(program) state, 45
arithmetic expression, 46
fully probabilistic, 46
guard, 46
linear fragment, 146
loop-free, 46
loopy, 46
non-probabilistic, 46
nondeterministic, 46
predicate, 45
program variable, 45
rational probability, 46
subdistribution of final states,

51
value (of a program variable),

45

quantitative entailment, 115

rational number, 11
real number, 11

solution domain, 15
state-specific formula, 177
subinvariant, 191

INDEX 319

superinvariant, 66
supremum quantifier, 81
synthesizer, 182

template instances, 174
template valuation, 173
template variable, 173
transition system, 12

(direct) predecessors, 203
(direct) successor, 12
counterexample to safety, 203
finite execution fragment, 13
finite-state, 12
finitely branching, 12
infinite execution fragment, 14
infinite-state, 12
infinitely branching, 12

initial state, 12
qualitative Bellman operator,

203
reachability operator, 15
reachable state, 14
safe, 202
state, 12
state reaching B, 202
transition relation, 12

verifier, 181
cooperative, 185

weakest preexpectation, 61
angelic, 61
demonic, 61

	Introduction
	Classical Deductive Program Verification
	Probabilistic Programs
	Deductive Verification of Probabilistic Programs
	Contributions and Synopsis
	Origins

	Foundations
	Fixpoint Theory
	Motivating Example: Reachability in Transition Systems
	Partial Orders and Complete Lattices
	Existence of Least Fixpoints
	Constructive Fixpoint Theorems
	Park Induction for Upper Bounds on Least Fixpoints

	Markov Decision Processes
	Definition and Basic Notions
	Expected Reachability-Rewards
	Properties of Expected Reachability-Rewards
	Expected Reachability-Rewards via Least Fixpoints
	Existence of Optimal Schedulers

	Probabilistic Programs
	The Probabilistic Programming Language pGCL
	Operational MDP Semantics of pGCL

	Deductive Verification of Probabilistic Programs
	Motivation: Reasoning about Expected Outcomes
	Expectations
	The Weakest Preexpectation Calculus
	Quantitative Loop Invariants
	Soundness of the Weakest Preexpectation Calculus

	Relatively Complete Verification
	Motivation and Problem Statement
	The Language Exp of Syntactic Expectations
	Syntax of Arithmetic Expressions
	Syntax of Boolean Expressions
	Syntax of Expectations
	Semantics of Expressions and Expectations
	Capture-Avoiding Substitutions of Variables

	Expressiveness for Loop-Free Programs
	Expressiveness for Loopy Programs
	Overview
	Gödelization for Syntactic Expectations
	Dedekind-Characteristic Formulae
	Sums and Products of Syntactic Expectations
	Expressiveness of Syntactic Expectations

	Discussion
	Relative Completeness of Probabilistic Program Verification
	Termination Probabilities
	Reachability Probabilities
	Distribution of Final States
	Ranking Functions and Supermartingales

	Future and Related Work

	Latticed k-Induction
	Preview: Automatic Verification of Loops
	Reasoning about Safety of Transition Systems
	Bounded Model Checking
	k-Induction
	Excursus: Infinite-State Software Model Checking

	Latticed k-Induction: Theory and Algorithm
	Latticed versus Classical k-Induction
	Latticed Bounded Model Checking
	k-Induction and BMC for Probabilistic Programs
	Instantiating Latticed k-Induction and BMC
	Automatic Reasoning about Loops
	Linear pGCL and Piecewise Linear Expectations
	Implementation and Experiments

	Future and Related Work

	Automatic Loop Invariant Synthesis
	Motivation and Problem Statement
	Overview: Loop Invariants via CEGIS
	Templated Piecewise Linear Expectations
	Reasoning about Template Instances
	Constructing an Efficient CEGIS Loop
	The Verifier
	The Synthesizer

	The Template Generator
	Constructing the Initial Template
	Template Refinement

	Extensions for Termination and Lower Bounds
	Verifying Positive Almost-Sure Termination
	Verifying Lower Bounds on Expected Outcomes

	Implementation and Experiments
	Future and Related Work

	Property Directed Reachability
	Foundations of IC3 for Transition Systems
	Setting
	The IC3 Main Loop
	Strengthening in IC3
	On Generalization in IC3

	PrIC3: Property Directed Reachability for MDPs
	Setting
	Recovering IC3 for Transition Systems
	Challenges
	The Core PrIC3 Algorithm
	Strengthening in PrIC3
	Dealing with Potential Counterexamples
	Practical PrIC3 for Probabilistic Programs
	Implementation and Experiments

	Future and Related Work
	Future Work
	Related Work

	Conclusion and Outlook
	Declaration of Authorship
	Appendix
	Appendix to chap:preliminaries
	Appendix to sec:mdp
	Appendix to sec:prelim:wp

	Appendix to chap:kind
	Appendix to chap:cegis
	Details on the Comparison of Storm and cegispro2
	Details on the Comparison of Absynth and cegispro2
	Details on the Comparison of Exist and cegispro2

	A Note on Contributions of the Author

	Bibliography
	Index

