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Introduction

Celestial origins At the end of the nineteenth century, the field of celestial mechanics was
revolutionized by Poincaré’s ideas. Straying away from the quest for exact solutions, which
had characterized the previous mathematical research on celestial mechanics, Poincaré instead
proposed a qualitative study, where the long term behaviour of the motion is to be investigated
without the need of an exact formula to express its solutions. He introduced a global, geometric
approach to the study of mechanics. These ideas have been so successful that the qualitative
study of dynamical systems is still arguably the main branch of dynamical systems theory.

A deceptively simple model, intensely studied by Poincaré and whose dynamical richness es-
capes a complete understanding to this day, is the circular planar restricted three body problem
(CPR3BP). This is a dynamical system approximating the motion of a small satellite moving
under the influence of the gravitational field produced by two large celestial bodies, called the
primaries, which are assumed to be unperturbed by the satellite. The motion of the satellite is
assumed to take place in the plane defined by the Keplerian motion of the two primaries. A
concrete example would be the study of the motion of a satellite in the gravitational field of
the Earth and the Sun. If we introduce a non-autonomous change of coordinates which rotates
with the Keplerian motion of the primaries, so that they remain fixed in time after the change of
coordinates, surprisingly, the dynamical system remains described by an autonomous Hamil-
tonian on a four-dimensional phase space, and the treatment can thus be restricted to the study
of a flow on a three-dimensional energy level.

Global surfaces of section One of the deepest insights of Poincaré is the idea of finding a
global surface of section for the flow on the energy level. This is a surface embedded in the
energy level, whose boundary consists of closed orbits of the flow, whose interior is transverse
to the vector field generating the flow, and moreover for which every orbit other than the ones
on the boundary must eventually collide with the interior. The existence of a global surface
of section hence reduces a complicated 3-dimensional flow to a discrete dynamical system on
a surface, as the first return map associated to this section captures all of the dynamics of the
higher dimensional flow. In particular, the periodic points of the first return map represent
closed orbits of the flow.

Since the flow in question happens on an energy level of a Hamiltonian in a 4-dimensional
phase space, any global surface of section is endowed with a natural area form induced by the
ambient symplectic form. The first return map associated to the global surface of section can
be shown to be area-preserving.

Poincaré proved the existence of a global surface of section in certain regimes of the CPR3BP.
Namely, assuming that the mass ratio of the primaries approaches zero, and that the satellite
moves near the heavy primary, Poincaré was able to show through perturbative methods the
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existence of two closed orbits, called direct and retrograde orbits, and to show that these orbits
spanned an annulus-shaped global surface of section. The two spanning orbits always twist in
opposite directions, so the problem of finding further closed orbits is reduced to the study of
an area-preserving map on the annulus which twists the boundaries in opposite directions.

The Poincaré-Birkhoff theorem Area preserving maps of the annulus are definitely not sim-
ple objects, and already exhibit the full spectrum of dynamical behaviours, from integrable to
chaotic. We give an example in figure 1. With the quest for periodic orbits in the CPR3BP in
mind, Poincaré, in one of his last papers [35], conjectured the following theorem:

Theorem An area preserving map of the annulus which twists the boundary in opposite directions
must possess at least two fixed points in its interior.

Unfortunately Poincaré died shortly thereafter, and was unable to give a complete proof of
this result. Birkhoff, one year later, proved this theorem [9], which in the dynamical systems
community is now known as the Poincaré-Birkhoff theorem. If one only assumes that the map
has different rotation numbers on the two boundaries, then one may evince the existence of
at least two periodic points. By an iteration argument one may prove that such a map must
additionally have infinitely many periodic points with growing primitive periods. Applied
to the conjectural annulus shaped global surface of section in the CPR3BP, this result would
imply the existence of infinitely many closed orbits.

For a more complete account of the theory of global surfaces of section in celestial mechan-
ics, the reader may consult the wonderful book by U. Frauenfelder and O. Van Koert [18].

Legacy of the Poincaré-Birkhoff theorem The Poincaré-Birkhoff theorem is regarded as a
landmark, foreshadowing the development of symplectic topology and dynamics. It is suffi-
cient to mention that an interpretation of this theorem by Arnol’d led him to his famous con-
jecture on the number of fixed points of a Hamiltonian diffeomorphism on a closed symplectic
manifold, as explained in Appendix 9 of his celebrated book on mechanics [6]. The effort to
prove the Arnol’d conjecture led to the development of Floer homology, which is without
a doubt one of the most powerful tools in the study of symplectic topology and dynamics.
Floer theory combines two revolutionary developments which happened in the eighties: the
holomorphic curve techniques of Gromov with the ideas of Conley concerning homotopical
invariants of gradient-like flows. It makes explicit the fundamental role that periodic orbits of
Hamiltonian dynamical systems play in the surprising rigidity phenomena found throughout
symplectic geometry. Zehnder’s account of this story [43] is a must-read.

The introduction of Floer theoretical techniques led to the understanding that the interplay
between topology and dynamics in the symplectic world is embodied, in its most fundamen-
tal form, by conditions which force the existence of periodic orbits in Hamiltonian systems.
A compelling representation of this link between topology and dynamics is given by a conjec-
ture on Hamiltonian dynamical systems, first formulated by Hofer and Zehnder, which can be
stated loosely as follows [29]: a Hamiltonian diffeomorphism on a closed symplectic manifold
possessing more than the minimal required amount of fixed points, imposed by Arnol’d-type

ii



bounds, must have infinitely many periodic points. In other words, the existence of an “unnec-
essary” fixed point implies infinitely many periodic points. This conjecture has been verified
in many cases, e.g. [21, 27, 39].

On non-closed symplectic manifolds, like the standard linear phase space or the annulus, it
is less clear what an “unnecessary” fixed point should be. The example of a rigid rotation of the
plane by an angle which is not a rational multiple of 2π shows that there can be Hamiltonian
diffeomorphisms all whose orbits are bounded, but which possess very few fixed points, and
no periodic points at all. The main theme of this thesis is to define and explore one concept
of unnecessary fixed point, namely a fixed point with a twisting condition similar to the one
found in the Poincaré-Birkhoff theorem, which applies to arbitrary-dimensional asymptoti-
cally linear Hamiltonian dynamical systems on the standard linear phase space.

Asymptotically linear Hamiltonian systems

From the annulus to the plane The main theorem of this thesis is inspired by the Poincaré-
Birkhoff theorem for area preserving maps of the annulus. In order to explain the connection
between the two, it is necessary to first discuss an application of the Poincaré-Birkhoff theorem
to a simple class of Hamiltonian diffeomorphisms of the standard symplectic plane.

Let ϕ ∈ Ham(R2) be a Hamiltonian diffeomorphism such that there exists a compact set
K ⊂ R2 out of which ϕ coincides with a rotation of the plane of angle θ∞ ∈ R. Assume that
ϕ admits a fixed point z0 ∈K , and that the rotation number of the linearized flow around this
fixed point is θ0 ̸= θ∞. Let D ⊃ K be a large disc whose boundary is an invariant circle and
consider the (degenerate) annulus D× = D \ z0. The Poincaré-Birkhoff theorem applied to
ϕ|D× implies that ϕ admits infinitely many periodic points.

Asymptotically linear Hamiltonian systems and their periodic orbits In order to gener-
alize this simple result to higher dimensions and to a wider class of Hamiltonian diffeomor-
phisms, we give the following definition. Here S1 =R/Z.

Definition A 1-periodic non-autonomous Hamiltonian H ∈ C∞
�

S1×R2n� is said to be
asymptotically quadratic if there exists a 1-periodic smooth path of symmetric 2n×2n-matrices
A: S1→ Sym(2n) such that

H (t , z) =
1
2
〈A(t )z, z〉+ h(t , z)

with h ∈ C∞(S1 ×R2n) a bounded function such that ∇h(t , z) = o(|z |) as |z | → ∞ for all
t ∈ S1.

The path A defines a non-autonomous quadratic form Q(t , z) = 1
2 〈A(t )z, z〉 which we

call the quadratic Hamiltonian at infinity. The time-1 map of the flow of an asymptotically
quadratic Hamiltonian is called an asymptotically linear Hamiltonian diffeomorphism. We call
the time-1 map of the quadratic Hamiltonian at infinity the linear map at infinity.

Since the flow of the quadratic Hamiltonian at infinity Q is a flow of linear symplectomor-
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phisms, we can associate to it a mean Conley-Zehnder index, which we call mean index at
infinity, denoted ind∞H . Similarly we can define the index at infinity of an asymptotically
quadratic Hamiltonian to be the Conley-Zehnder index of the path generated by the quadratic
Hamiltonian at infinity (see Definitions 1.13 and 1.14). Equivalently, it is the Conley-Zehnder
index of the origin as a 1-periodic orbit of the quadratic Hamiltonian at infinity. We interpret
the mean index at infinity as a generalization of the rotation number at the “outer” boundary
component in the Poincaré-Birkhoff theorem. For the plane maps discussed above, the mean
index at infinity is precisely twice the rotation angle of the rotation which the map coincides
with outside a compact set.

We assume further that the quadratic Hamiltonian at infinity Q is a non-degenerate Hamil-
tonian. Equivalently, the linear map at infinity is represented by a symplectic matrix whose
spectrum does not contain 1. This means that the time-1 map of the linear flow generated by
the quadratic Hamiltonian at infinity admits only the origin as a fixed point; no other point
returns to itself in time 1. In this case, we say that the corresponding asymptotically linear
Hamiltonian diffeomorphism is non-degenerate at infinity.

To generalize the condition of being a rotation outside a compact set, we assume that the
linear map at infinity ϕ1

Q is an unitary map, ϕ1
Q ∈U(n)⊂ Sp(2n).

The twisting condition in the Poincaré-Birkhoff theorem is generalized in the following
way. A 1-periodic orbit whose mean Conley-Zehnder index is different from the mean index
at infinity will be called a twist orbit, and the corresponding fixed point of ϕ will be called a
twist fixed point.

Finally, a fixed point of a Hamiltonian diffeomorphism is said to be homologicaly visible if it
is isolated and its local Floer homology is non-vanishing. In terms of generating functions, this
is equivalent to the non-triviality of the local Morse homology of the corresponding critical
point of a generating function for the diffeomorphism in a neighborhood of the fixed point
in question. For example, if the Lefschetz index of the isolated fixed point is non-zero, then
it is homologically visible (but not the viceversa). Another example is a non-degenerate fixed
point, namely, such that the differential of the diffeomorphism at the fixed point does not have
the eigenvalue one.

Homological visibility is the minimal required hypothesis which allows Floer theoretical
techniques to be applied to the problem. It guarantees that the fixed point in question has a mild
persistence property, that is, it cannot disappear under small perturbations of the dynamical
system.

We are ready to state the main theorem of the thesis.

Theorem Let ϕ be an asymptotically linear Hamiltonian diffeomorphism, non-degenerate and
unitary at infinity. Assume that ϕ admits a homologically visible twist fixed point. Then ϕ has in-
finitely many fixed points, or ϕ has infinitely many periodic points with growing primitive period.

This theorem generalizes the planar version of the Poincaré-Birkhoff theorem, since the class
of Hamiltonians in analysis is much wider, and there is no restriction on the dimension of the
phase space.
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Short history of the problem Around 1980 Amann and Zehnder [4, 5] combine the cel-
ebrated variational approach of Rabinowitz with their finite-dimensional saddle-point reduc-
tion to attack the existence problem for asymptotically linear Hamiltonian systems with non-
degenerate linear system at infinity. They assume that the linear system at infinity is au-
tonomous, and that the asymptotically quadratic Hamiltonian has bounded Hessian. They
find the existence of at least one non-trivial periodic orbit for this class of systems.

Shortly after, Conley and Zehnder [12] extend these results to non-autonomous behaviour
at infinity. They prove the existence of one periodic orbit for systems non-degenerate at infinity
and find a Morse inequality involving the number of non-degenerate periodic orbits and their
indices. An interesting consequence of the Morse inequalities is that if the periodic orbit is
assumed to be non-degenerate with index different than the index at infinity, then another
non-trivial periodic orbit must exist. In general the Morse inequalities are shown to imply
the existence of an odd number of periodic orbits, one of which must have index equal to the
index at infinity, and the remaining having index difference one. The techniques used to prove
these results are still based on a finite-dimensional reduction in the style of Amann-Zehnder,
combined with ideas from Conley’s index theory.

It is important to note that the discovery of Morse inequalities involving periodic orbits
and their indices foreshadowed the existence of some kind of homology theory, generated by
periodic orbits and graded by the index, whose Poincaré-Hilbert series would recover these
inequalities. Such homology theory appeared shortly thereafter: Floer homology.

All the results mentioned above assume boundedness of the Hessian of the Hamiltonian
function, in order to apply the finite-dimensional reduction scheme of Amann. This hypoth-
esis is removed in the work of Abbondandolo [1–3], where ideas from infinite dimensional
relative Morse theory are introduced which allow to bypass the finite-dimensional reduction
scheme, and additionally the existence of “subharmonics” (non-trivial higher period periodic
orbits) is proven. It is interesting to note that the case of systems degenerate at infinity is also
covered.

A more complete account of this story can be found in [3, Chapter 5] or [10].

Floer homology for asymptotically linear Hamiltonian systems One of the most success-
ful non-perturbative tools used to probe the existence of periodic orbits in Hamiltoinan dy-
namical systems is Floer homology. This is a kind of infinite dimensional analogue of Morse
homology, which is suitable to analyze the critical point theory of strongly indefinite func-
tionals like the Hamiltonian action functional of classical mechanics. A construction of Floer
homology for asymptotically linear Hamiltonian systems is explained in this thesis. Consid-
erable focus is pointed at the invariance properties of Floer homology. In fact, such properties
permit an immediate recovery of the seminal result obtained by Conley and Zehnder [12],
which was already mentioned above:

Theorem An asymptotically linear Hamiltonian diffeomorphism which is non-degenerate at in-
finity has at least one fixed point. If this fixed point is non-degenerate and its index is different from
the index at infinity, there is a second fixed point. If every fixed point of the asymptotically linear
Hamiltonian diffeomorphism is non-degenerate, then there are an odd number of fixed points. One
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of the fixed points must have index equal to the index at infinity, while the remaining form index
difference 1 pairs.

It is worth to note that the techniques which Conley and Zehnder developed to show the
above theorem led them to solve the Arnol’d conjecture on the torus [11]. This was the first
arbitrary-dimensional instance where the Arnol’d conjecture could be solved.

Technical remarks

Techniques of proof The proof of the Poincaré-Birkhoff type theorem is related in spirit to
Salamon and Zehnder’s approach [38], and inspired by the treatment of Gürel [25] for the case
of compact perturbations of a linear, hyperbolic and autonomous Hamiltonian system. The
original contribution of the thesis lies in the techniques developed to make such arguments
applicable to the context.

The proof strategy involves the analysis of the continuation morphisms between the fil-
tered Floer homologies of different iterations of the same Hamiltonian. In the case of a closed
symplectically aspherical symplectic manifold, continuation morphisms always exist and are
always isomorphisms. This fact, combined with estimates on the action shift of a continuation
morphism and on the growth of the index of the iteration of a fixed point, is the fundamental
underlying reason which makes the Salamon-Zehnder approach work. On non-closed sym-
plectic manifolds instead continuation morphisms are not always defined, and when they are
they might not be isomorphisms.

In the case of asymptotically quadratic Hamiltonians, it is shown in this thesis that if two
Hamiltonians have the same index at infinity, then the continuation morphisms exist and are
isomorphisms. These continuation morphisms are found to exist even without requiring that
the non-quadratic part of the asymptotically quadratic Hamiltonian is bounded. Therefore the
Floer homology does indeed depend on the Hamiltonian, but only through its index at infinity.
It can be argued that this is the philosophical reason why a Salamon-Zehnder style argument
works for the case of asymptotically hyperbolic Hamiltonian systems. More precisely, since
the mean index of a hyperbolic linear flow is zero, as we iterate the Hamiltonian system the
index at infinity does not grow. It is therefore reasonable to expect that continuations between
different iterations of the same Hamiltonian have properties similar to the closed case: the
Floer homologies of different iterations of the same Hamiltonian remain always “in reach” of
each other.

By contrast, when the dynamics at infinity is unitary, the mean index is never zero, and
the index at infinity grows linearly with the iteration. This allows the Floer homologies of
different iterations of the same Hamiltonian to “walk away” from each other and not be related
by continuations with suitable properties. Now, since the problem is only “at infinity”, to
surmount it we compose the Hamiltonian system with loops of linear symplectomorphisms
which “unwind” the dynamics at infinity, changing the index at infinity, but which do not have
any effect on the action value of periodic orbits. The effect on Floer homology is to shift the
grading in a controlled manner while maintaining the action filtration. We call this procedure
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re-indexing at infinity. It allows us to have well defined continuations between Hamiltonians
generating different iterates of the same map.

However, even at this point the continuations found are not suitable. Namely, they do not
seem to have a useful action shift estimate: the estimate found grows too fast with the iteration.
So to gain a better control on the action shift, an interpolation technique is introduced. The
end result is two Hamiltonians whose Floer homologies are computable in terms of the Floer
homologies of the iterates, but whose quadratic forms at infinity coincide, making it possible
to execute simpler continuations, with action shift estimate suitable for the proof.

The combination of these techniques with some asymptotic properties of prime numbers
allow an argument resembling the proof of the main theorem in [25] to be applied.

Abbondandolo’s conjecture There is a conjecture of Abbondandolo [3, pg. 130] stating
that an asymptotically linear Hamiltonian system should have one or infinitely many periodic
orbits. In particular, if the system has an unnecessary orbit different from the one continuing
from the linear system at infinity, then it should have infinitely many periodic orbits. As far
as the author knows, this conjecture in this generality is wide open.

The results in this thesis can be interpreted as a solution of a homological version of this
conjecture, under additional restrictions on the type of system at infinity and the index of
the unnecessary orbit. Some of these restrictions might be avoidable. Perhaps using a better
interpolation argument, it should be possible to remove the assumptions of unitarity at infinity.
It also seems absolutely natural and desirable to remove the hypothesis of boundedness of the
non-quadratic part of the Hamiltonian, but to do so one must produce energy estimates on
Floer cylinders whose behaviour under iteration is suitable for the proof, or change the proof
strategy entirely.

The presence of twist, instead, is much more substantial, as shown by the example of a linear
symplectic diffeomorphism all whose iterates are non-degenerate. In fact, conservative flows
with few periodic orbits seem to have strong restrictions, especially on the index spectrum, see
e.g. [23, 24] and [13]. Inspired by the theory of pseudo-rotations, the author wonders whether
one can find an example of an asymptotically linear Hamiltonian diffeomorphism with more
than one fixed point, all fixed points with the same mean index, and no primitive periodic
points with period higher than one.

Comparisons and contrasts Other kinds of Poincaré-Birkhoff type theorems have appeared
recently in the literature. We would like to compare and contrast the present work with some
of these results.

In the paper by Gürel [25], Hamiltonian diffeomorphism which are equal to an autonomous
hyperbolic linear symplectic diffeomorphism outside a compact set are studied. There it is
proven that if the Hamiltonian diffeomorphism admits a fixed point with non-vanishing local
Floer homology and whose mean Conley-Zehnder index is not zero, then there are infinitely
many periodic orbits. Here we are interpreting the request of non-vanishing mean Conley-
Zehnder index as a twist condition, since an asymptotically hyperbolic Hamiltonian system
always has zero mean index at infinity. The proof schema of the main theorem of this thesis is
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inspired by the proof found there. The difference is that we admit a larger class of Hamiltonians
and that the behaviour at infinity is, in some sense, the opposite of hyperbolic.

Another interesting development is found in Moreno and Van Koert’s paper [34], where a
kind of Poincaré-Birkhoff theorem is proven for certain “twist” Hamiltoinan diffeomorphisms
in the completion of Liouville domains which have infinite dimensional symplectic homology.
The present work compares to it because one could interpret our class of Hamiltonian systems
as such kind of “twist” Hamiltonian diffeomorphims in the completion of an ellipsoid inR2n .
The difference is that the symplectic homology of the ball is vanishing, so our techniques cover
an orthogonal case.

Shelukhin’s paper [39] is also related to the present work, in fact, a very special case of the
main theorem in the thesis follows from it. In this paper, the homological Hofer-Zehnder
conjecture is proven on closed symplectic manifolds similar to CP n . If in the main theorem
of the thesis one assumes that the Hamiltonian diffeomorphism is equal to a unitary linear
map outside of a compact set, then it is possible to extend it to CP n . Such extension has n
non-degenerate fixed points induced by the linear part of the map, and one additional fixed
point which is guaranteed to exist by continuation from infinity. This additional fixed point
could be twist or not. In case it is twist, a higher iteration of the map has a fixed point with
Conley-Zehnder index different from the one at infinity, implying the existence of yet another
fixed point continuing from infinity. In case it is not, in the main theorem of the thesis the
existence of an additional one which is twist and homologically visible is assumed. All in all,
possibly after iterating, we have n+2 fixed points, all homologically visible, therefore the local
Floer homologies of these fixed points all contribute non-trivially to the homological count.
Arnold’s homological lower bound would then be exceeded, and Shelukhin’s theorem gives in-
finitely many periodic points. If instead we only require the Hamiltonian diffeomorphism to
be generated by an asymptotically quadratic Hamiltonian, then the diffeomorphism extends,
but only as a homeomorphism of CP n . Therefore, the main theorem of this thesis does not
follow from the proof of the Hofer-Zehnder conjecture. It is also important to remark that
the techniques in the proof of the Hofer-Zehnder conjecture are very different than the ones
developed here, which are in some sense simpler. Shelukhin’s techniques rely on a detailed anal-
ysis of the behaviour of the Floer barcode and the equivariant pants product of a Hamiltonian
diffeomorphism under iteration.

Structure of the thesis In chapter 1 we revise some linear symplectic geometry and give
a definition of the Conley-Zehnder index. In chapter 2 we introduce asymptotically linear
Hamiltonian systems and show that their 1-periodic orbits are contained in a compact subset
ofR2n . In chapter 3, we gather some aspects of the analysis of the Floer equation, and study the
spaces of solutions of the Floer equation, especially their compactifications. In chapter 4 we
explain the construction of the filtered Floer homology for asymptotically linear Hamiltonian
systems, and give a somewhat detailed account of the invariance properties of filtered Floer
homology. This will lead to a definition of Floer homology for degenerate Hamiltoinans, and
to the study of the local Floer homology of isolated fixed points. In chapter 5 we introduce two
techniques, which are new as far as the author knows, to relate the Floer homologies of differ-
ent iterates of the same asymptotically linear Hamiltonian system. One is a procedure which

viii



changes the index of the linear system at infinity without changing the action filtration on the
Floer homology, the other is an interpolation procedure to change the quadratic Hamiltonian
at infinity. These two techniques are then applied in the proof of the Poincaré-Birkhoff type
theorem. There are three appendices: Appendix A, Appendix B and C. In the first, we explain
some elementary concepts of Fredholm theory. In the second, we gather some elementary
facts in number theory which are necessary for the proof of the main theorem are collected.
In the third we lay out the conventions used in this thesis, in an effort to avoid the headaches
typical of students of symplectic geometry, of which the author has suffered plenty.
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Figure 1. Phase plots of area preserving maps of the annulus, from simple to complicated. All these
maps twist the boundary of the annulus in opposite directions. Points of the same color belong to
the same orbit (unfortunately there is a finite number of colors available for the plot, so sometimes
they repeat for different orbits). The first is the pendulum, regarded as an area preserving map of
the annulus. The successive maps are obtained by perturbing the pendulum with a periodic forcing
term. The transition from integrable, to nearly integrable, to chaotic is shown by the growth of the
“hyperbolic sea” which develops from a homoclinic intersection at the hyperbolic equilibrium point.
It is interesting that even very far from the integrable model, the map still seems to admit invariant
tori which survive the perturbation, implying that many periodic orbits survive the perturbation.
Some evidence for this fact is given by the last image, which is a zoom into the interesting invariant
set of the map at its left. Perhaps with an even larger perturbation these tori might disappear.
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1. Linear Symplectic Geometry and the
Conley-Zehnder Index

In this chapter we recall some elementary facts about linear symplec-
tic geometry and construct a homotopy invariant of paths into the
symplectic group starting at the identity: the Conley-Zehnder index.

1.1. Elementary properties of the Symplectic Group

In this section we give the preliminary facts that we need for the definition of the Conley-
Zehnder index. Nothing here is new and almost everything can be found in [33].

A symplectic vector space is a real vector space V equipped with a non-degenerate skew bi-
linear formω : V ×V →R. A simple induction argument shows that in the finite-dimensional
case, V must have even dimension, dimV = 2n. Given two symplectic vector spaces (V ,ω),
(V ′,ω′) we say that a linear map ϕ : V → V ′ is a (linear) symplectomorphism if ϕ∗ω′ = ω,
i.e. for any v, w ∈ V we have ω′(ϕ(v),ϕ(w)) = ω(v, w). In particular, ϕ∗ω′ is a symplectic
form, hence ϕ must be an isomorphism. Even more is true: every symplectic vector space
V of dimension 2n has a basis {v1, . . . , vn , w1, . . . , wn} such that ω(vi , wi ) = 1 = −ω(wi , vi ),
ω(vi , w j ) =ω(vi , v j ) =ω(wi , w j ) = 0 for i ̸= j . This means that it is symplectically isomor-
phic to the symplectic vector space (R2n ,ω0) where we equip the real vector space with the
symplectic formω0 whose Gram matrix in the canonical basis is

Ω0 =
�

On In
−In On

�

Such a basis is usually called a symplectic basis for the symplectic vector space. To study the
group of linear symplectomorphisms ϕ : (V ,ω)→ (V ,ω), one may just as well choose a sym-
plectic basis and study the linear symplectomorphisms ϕ : (R2n ,ω0)→ (R2n ,ω0). We denote
this group by Sp(2n).

1.1.1. Algebraic and differential properties

Having chosen the canonical symplectic basis for our symplectic 2n-space, the group of sym-
plectomorphisms is canonically isomorphic to a matrix subgroup of the general linear group.
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Definition 1.1 A matrix M ∈ GL(2n,R) is said to be a symplectic matrix if M TΩ0M = Ω0.
The set of symplectic matrices is denoted by Sp(2n).

Remark In most treatments of linear symplectic geometry, one starts with the matrix J0 =
−Ω0 and defines a symplectic matrix as a matrix satisfying M T J0M = J0. I decided to use
Ω0 instead because J0 is thought of as the complex structure of R2n , while Ω0 is the matrix
representing the symplectic structure, and in the conventions of this thesis they are not the
same matrix.

The following Lemma follows from a computation.

Lemma 1.1.1 The set Sp(2n) is a group under matrix multiplication.

A more interesting property is that Sp(2n) sits inside SL(2n).

Proposition 1.1.1 (Linear Liouville Theorem) Symplectic matrices have determinant 1.

Proof. Clearly symplectic matrices have determinant of absolute value 1: if M ∈ Sp(2n) then
1 = detΩ0 = det M TΩ0M = (det M )2. To see that they have determinant exactly 1, it is more
convenient to think of the associated linear symplectomorphism ϕ : (R2n ,ω0) → (R2n ,ω0).
Such a linear map has matrix whose determinant is 1 if and only if preserves the orientation
of a chosen basis. In terms of exterior algebra, this is equivalent to saying that the linear map
preserves the canonical volume form onR2n : ϕ∗(e1∧ . . .∧ e2n) = e1∧ . . .∧ e2n . Now, sinceω0 is
a skew symmetric bilinear form, we can express it as a 2-form: by inspecting the Gram matrix
it is easy to see thatω0 =

∑n
i=1 ei ∧ en+i . But now

ω∧n
0 = n! e1 ∧ e2 ∧ . . .∧ e2n =⇒

ω∧n
0

n!
= e1 ∧ . . .∧ e2n

Hence if ϕ is a linear symplectomorphism

ϕ∗(e1 ∧ . . .∧ e2n) = ϕ
∗ω
∧n
0

n!
=
(ϕ∗ω)∧n

n!
=
ω∧n

0

n!
= e1 ∧ . . .∧ e2n

Like most groups underlying geometric structures, the symplectic group is a Lie group.

Proposition 1.1.2 Sp(2n) is a Lie subgroup of the Lie group GL(2n,R).

Proof. All we have to show is that it’s a submanifold. Define the map

f : M2n×2n(R)→M2n×2n(R)

M 7→ f (M ) =M TΩ0M

2



First of all notice that

f (M )T =
�

M TΩ0M
�T
=−M TΩ0M =− f (M )

meaning that the image of f is contained in the Lie algebra of SO(2n), the matrix algebra
so(2n) = {B ∈ M2n×2n(R) : BT = −B}. Therefore we can restrict the range of the map and
think of it as a function

f : M2n×2n(R)→ so(2n)

Since Sp(2n) = f −1(Ω0), if we show thatΩ0 is a regular value, then by the submersion theorem
we’ve shown that Sp(2n) is a submanifold. This can be done with a simple computation.

Corollary 1.1.1 The Lie algebra is TI2n
Sp(2n) = ker d f (I2n) hence

sp(2n) = ker d f (I2n) =
¦

R ∈M2n×2n(R) : RTΩ0+Ω0R=O2n

©

Lemma 1.1.2 The Lie algebra of the symplectic group Sp(2n) is equivalently described as

sp(2n) = {Ω0A : A∈ Sym(2n)}

Proof. Indeed if A is a symmetric matrix,

(Ω0A)TΩ0+Ω0Ω0A=AT −A=O2n

while if R ∈ sp(2n) then the matrix A=−Ω0R is clearly symmetric and R=Ω0A.

Remark The exponential map exp: sp(2n)→ Sp(2n) is not surjective, reflecting the fact that
Sp(2n) is not a compact group. For example, the matrix diag(−2,−1/2) ∈ Sp(2) is not the
exponential of any matrix in sp(2). Indeed, if it were, it would have a matrix logarithm in
sp(2). But clearly any logarithm of this matrix will have complex coefficients.

1.1.2. Complex aspects

Real symplectic space (R2n ,ω0) is an even-dimensional real vector space. As such, it has also a
natural complex structure.

Definition 1.2 A complex structure on a 2n-dimensional real vector space V is an endomor-
phism J : V →V such that J 2 =−idV . A complex linear map between vector spaces V ,V ′ with
complex structures resp. J , J ′ is a linear map ϕ : V →V ′ such that ϕ ◦ J = J ′ ◦ϕ.

Clearly Cn seen as a real 2n-vector space has the complex structure given by multiplication
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by i . Namely, we have the real vector space isomorphism

R2n =Rn ⊕Rn→Cn

�

x
y

�

7→ z = x + i y

Then multiplication by i acts as the map
�

x
y

�

7→ x + i y 7→ i x − y 7→
�

−y
x

�

Hence there is a canonical complex structure on R2n given in block matrix form by

J0 =
�

On −In
In On

�

Remark Notice that as matrices J0 = Ω
T
0 = Ω

−1
0 = −Ω0, hence when we endow R2n with

the standard symplectic form, the bilinear formω0(·, J0·) is nothing but the standard Euclidean
inner product ofR2n . In this senseω0 and J0 are compatible, andR2n is Kähler. Obviously given
two out of three between standard inner product 〈·, ·〉, complex structure J0 and symplectic
structureω0, we can recover the third. Moreover when seen on Cn , we have that the standard
hermitian form h is h = 〈·, ·〉+ iω0.

Lemma 1.1.3 1. The group homomorphism

ι : GL(n,C)→GL(2n,R)

Z = F + iB 7→ ι(Z) =
�

F −B
B F

�

is injective. Moreover ι(U(n))⊂ Sp(2n).
2. Identify GL(n,C),U(n) with their image inside GL(2n,R), Sp(2n). Then

U(n) =O(2n)∩ Sp(2n) =GL(n,C)∩ Sp(2n)
u(n) = so(2n)∩ sp(2n) = gl(n,C)∩ sp(2n)

Proof. 1. That ι is a morphism can be easily seen by a computation. Clearly ι(X+iY ) = I2n
if and only if X = In and Y =On , so if and only if X + iY = In . Notice that ι (iIn) = J0,
which is just another way of saying that J0 is multiplication by i . U ∈ U(n) means
U †U = In . Now notice that ι

�

U †
�

= ι(U )T , so

ι(U )T J0ι(U ) = ι
�

U †i U
�

= ι (iI) = J0 ⇐⇒ ι(U ) ∈ Sp(2n).
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2. Continuing the reasoning from the previous line,

I2n = ι(In) = ι
�

U †U
�

= ι(U )T ι(U ) ⇐⇒ ι(U ) ∈O(2n).

so U ∈ U(n) ⇐⇒ ι(U ) ∈ Sp(2n)∩O(2n). Now if we have a Z ∈ GL(n,C) such that
ι(Z) ∈ Sp(2n), then

ι
�

Z†Z
�

= ι(Z)T ι(Z) =−J0ι(Z)
−1J0ι(Z) =−J0J0 = I2n = ι(In)

Therefore we conclude that Z†Z = In , i.e. Z ∈U(n). The other inclusion is trivial.

From now on, we slightly abuse notation by forgetting the homomorphism in the distinc-
tion between the complex matrix groups and their image inside the larger real groups. To avoid
confusion, we give the following definition.

Definition 1.3 Let M ∈ Mn×n(C)⊂ M2n×2n(R). The complex determinant of M is the deter-
minant of M seen as a complex linear map:

M =
�

F −B
B F

�

=⇒ detC(M ) := det(F + iB) ∈C

1.1.3. Topology of the symplectic group

In this section we’ll show that the inclusion U(n) ,→ Sp(2n) is a homotopy equivalence.

Lemma 1.1.4 Let P ∈ Sp(2n) ∩ Sym(2n) be a symmetric positive definite symplectic matrix.
Then Pα ∈ Sp(2n) ∀α≥ 0.

Proof. Since P is symmetric and symplectic, it is symplectically diagonalizable, so without
loss of generality we may assume that in the canonical basis {e1, . . . , e2n} the matrix is diagonal,
P = diag (λ1, . . . ,λ2n) for not necessarily distinct λk > 0. In this basis, clearly

ω(ei , e j ) =ω(Pei , Pe j ) = λiλ jω(ei , e j )

Since P is symplectic,ω(ei , e j ) = 0 or λiλ j = 1. In any case

ω(ei , e j ) = (λiλ j )
αω(ei , e j ) =ω(λ

α
i ei ,λ

α
j e j ) =ω(P

αei , Pαe j )

which means that Pα is symplectic.

The following lemma is crucial and easily proven by a calculation.
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Lemma 1.1.5 Every symplectic matrix M ∈ Sp(2n) has a symplectic polar decomposition

M =U P, U =M
�

M T M
�− 1

2 ∈U(n), P =
�

M T M
�

1
2 ∈ Sp(2n)

where P is positive definite and symmetric.

Remark Notice that this decomposition realizes a symplectic matrix as the product of expo-
nentials of matrices in sp(2n). Indeed the unitary part is the image of the exponential of a
matrix in u(n), since U(n) is a compact and connected Lie group, and the positive definite part
is also an exponential, since real symmetric positive definite matrices have a real and symmetric
logarithm.

Lemma 1.1.6 The set S+ Sp(2n) of positive definite, symmetric symplectic matrices is contractible.

Proof. As remarked just above, real symmetric positive definite matrices have a real and sym-
metric logarithm, which is also unique. Therefore the logarithm gives a homeomorphism
S+ Sp(2n)≃ Sym(2n)∩ sp(2n) which is a vector space.

Proposition 1.1.3 The inclusion U(n) ,→ Sp(2n) is a homotopy equivalence.

Proof. Consider the map

f : [0,1]× Sp(2n)→ Sp(2n)

(t , M ) 7→M
�

M T M
�−t/2

First of all, this is a well defined continuous map. Clearly, f (0, M ) = M =⇒ f (0,−) =
idSp(2n). Moreover, f (1, M ) = M (M T M )−1/2 ∈ U(n). Finally if M ∈ U(n), then M ∈ O(2n)
and M (M T M )−t/2 =M I−t/2 =M , meaning that

f |[0,1]×U(n) = idU(n)

so f is a strong deformation retraction of Sp(2n) on U(n).

1.1.3.1. Topology of the Unitary Group

Here we work with complex coefficients, i.e. we don’t think of Mn×n(C) as a subset of real
matrices. To underline the difference and avoid confusion we continue to write detC instead
of det.

Lemma 1.1.7 1. U(n) is homeomorphic to U(1)× SU(n).
2. SU(n) is simply connected.
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Proof. 1. Define the maps

h : U(1)× SU(n)→U(n)

(e iθ,V ) 7→ diag(e iθ, 1, . . . , 1)V
g : U(n)→U(1)× SU(n)

U 7→
�

detCU , diag
�

(detCU )−1 , 1, . . . , 1
�

U
�

These maps are obviously well defined and continuous. A direct calculation shows they
are inverse to each other.

2. The proof is by induction. For n = 1, SU(1) = {1}which is simply connected. Next, for
the induction step, let’s think of SU(n) as the matrices of change of coordinates between
oriented orthonormal bases of Cn . This means that in the canonical basis of Cn , the
columns of a matrix V ∈ SU(n) are just another orthonormal basis of Cn . Hence they
are vectors belonging to the unit sphere in Cn . This way we have the map

SU(n)→ S2n−1

V =
�

vi j

�n

i , j=1
7→
�

v1 j

�n

j=1

This is a surjective map. The fiber over one fixed vector of S2n−1 is the orthonormal
basis of Cn with one vector fixed, hence equivalent to the set of orthonormal bases of
Cn−1. This can be identified with SU(n − 1), which by inductive hypothesis is simply
connected. We constructed a fiber bundle SU(n)→ S2n−1 with fiber SU(n − 1). Now
we use the long exact sequence of homotopy groups to obtain the exact sequence

π1 (SU(n− 1))→π1 (SU(n))→π1
�

S2n−1�

Since n > 1, S2n−1 is simply connected. Hence π1 (SU(n)) = 0.

Corollary 1.1.2 The fundamental group of U(n), hence of Sp(2n), is Z.

Remark The isomorphism is realized by the (complex) determinant:

π1 (U(n))→π1 (U(1))
∼=−→Z

[Ut ] 7→ [detCUt ]→ deg detCUt

1.1.4. The Maslov Index

We can do something analogous for Sp(2n) by using this map and the symplectic polar decom-
position.
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Definition 1.4 Let Ψ : S1→ Sp(2n), Ψ (t ) =Mt be a continuous loop of symplectic matrices.
The symplectic polar decomposition Mt = Ut Pt gives an unique loop of unitary matrices
Ut ∈U(n), so we have a well defined map

Mt 7→ deg detCUt =Mas(Ψ )

called the Maslov index of the loop Ψ .

The following proposition gathers the defining properties of the Maslov index, all which can
be easily shown by calculations.

Proposition 1.1.4 The Maslov index has the following properties.
1. The Maslov index is a complete homotopy invariant of based loops of symplectic matrices,

i.e. two loops starting at the identity are homotopic if and only if they have the same Maslov
index. Hence it induces the isomorphism Mas: π1 (Sp(2n))→Z.

2. For any two continuous loops Ψ1,Ψ2 : S1→ Sp(2n) one has

Mas(Ψ1Ψ2) =Mas(Ψ1)+Mas(Ψ2)

In particular the constant loop Ψ (t ) = I has Mas(Ψ ) = 0.
3. Let n′+n′′ = n and identify Sp(2n′)×Sp(2n′′) as a subgroup of Sp(2n) by sending matrices
(M ′, M ′′) ∈ Sp(2n′)× Sp(2n′′) to the block matrix

M ′⊕M ′′ =
�

M ′ On′×n′′

On′′×n′ M ′′

�

Given two loops Ψ ′ : S1→ Sp(2n′), Ψ ′′ : S1→ Sp(2n′′), we have

Mas(Ψ ′⊕Ψ ′′) =Mas(Ψ ′)+Mas(Ψ ′′)

4. The loop Ψ : S1→ Sp(2) given by

Ψ (t ) =
�

cos(2πt ) − sin(2πt )
sin(2πt ) cos(2πt )

�

has Mas(Ψ ) = 1.

Remark One may show that these properties characterize the Maslov index uniquely, i.e. any
map with such properties is equal to the Maslov index.

1.1.5. The spectrum of a Symplectic Matrix

We study of the spectrum of a symplectic matrix, but from the point of view of a natural
extension of the concept to C2n . The standard extension of a matrix P ∈ M2n×2n(R) to C2n is
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by setting
Pζ = P (x + i y) = P x + i P y, ∀ζ = x + i y ∈C2n

Let h be the standard Hermitian product on C2n , h(u, v) = u†v = ūT v.

Definition 1.5 Introduce the inner product on C2n

g (ζ0,ζ1) = h (ζ0,−i J0ζ1)

A g -unitary matrix is a matrix M ∈M2n×2n(C) such that g (M u, M v) = g (u, v). Equivalently,
M is g -unitary if and only if M †J0M = J0.

Notice that a g -unitary matrix M with real coefficients is just a symplectic matrix. Notice
further that a real matrix which is both h-unitary and g -unitary is a matrix in U(n)⊂ Sp(2n),
and viceversa.

Denote the spectrum of a matrix M as σ(M ). Being g -unitary has the following conse-
quences on the spectrum, which follow immediately from M = J−1

0 M−†J0:

U(1)

1
2 2

1p
2
+ 1p

2
i

1p
2
− 1p

2
i

−1+ i

−1− i

− 1
2 +

1
2 i

− 1
2 −

1
2 i

R

iR

Figure 1.1. Existence of an eigenvalue of one color implies the existence of all eigenvalues of the same
color.

Lemma 1.1.8 The spectrum of a g -unitary matrix M has the following symmetry: λ ∈ σ(M ) =⇒
λ−1 ∈ σ(M ). Moreover if M is also real, i.e. M ∈ Sp(2n), then λ ∈ σ(M ) =⇒ λ̄ ∈ σ(M ) and the
eigenvalues ±1 always have even algebraic multiplicity.

In other words, the eigenvalues of a symplectic matrix come in the following tuples (see
figure 1.1):
⋄ If ±1 ∈ σ(M ) then it has even multiplicity.
⋄ If λ ∈ σ(M )∩R then λ−1 ∈ σ(M ).
⋄ If λ ∈ σ(M )∩U(1) then λ̄ ∈ σ(M ).
⋄ If λ ∈ σ(M ) \ (R∪U(1)) then λ−1, λ̄,λ−1 ∈ σ(M )
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1.1.5.1. Uniformly non-resonant iterations of a symplectic matrix

Here we state the first original result of the thesis. It is going to be crucial for the proof of the
Poincaré-Birkhoff type theorem, but it only concerns the spectrum of a symplectic matrix.

Proposition 1.1.5 Let M ∈ Sp(2n) be a symplectic matrix with 1 /∈ σ(M ). Then there exists a
c > 0 and an increasing sequence (p j ) j∈N of prime numbers such that:

1. The spectrum of the p j th iterate of M remains uniformly away from 1:

dU(1)
�

σ
�

M p j
�

, 1
�

> c

2. The gaps in this sequence of primes are distributed like the gaps in the sequence of all primes:

p j+m − p j = o
�

p j

�

as j →∞ ∀m ∈N

Proof. We aim to apply Vinogradov’s equidistribution theorem on prime multiples of irra-
tional numbers [30, 41] (see also Appendix B).

Notice that the only part of the spectrum that may possibly approach 1 as we iterate is
given by the eigenvalues on U(1). So let {e±iα1 , . . . , e±iαl } be the eigenvalues on U(1), listed
repeating the multiple eigenvalues, when necessary. Let α1, . . . ,αl be choices of arguments of
these eigenvalues, again repeated according to their multiplicity, and a j = α j/2π. These are
well defined numbers mod 1. There are two cases: the set {1,a1, . . . ,al } spans a Q-subspace
of R of rank 1, or it spans a Q-subspace of R of rank at least 2. In the first case, each a j is a
rational number, or equivalently we have that every eigenvalue of M on the unit circle is a root
of unity. In this case it suffices to take a prime number p0 >> 2 larger than the largest prime
factor of any order of these roots of unity, and pi , i ≥ 1 will be all the prime numbers larger
than p0 listed in increasing order. By the prime number theorem, this sequence satisfies the
second point. For c > 0 we can now choose

c =min
�

2π
j

: j order of root of unity in σ(M )
�

> 0

Now, assume that {1,a1, . . . ,al } spans aQ-subspace of rank q ≥ 2. This is equivalent to saying
that there are exactly q rationally independent irrational numbers in {a1, . . . ,al }. Without loss
of generality we may assume that a1, . . . ,aq are such numbers, and that ai =

∑q
j=1 ri j a j for

all i ≥ q + 1 where ri j ∈ Q for all i ≥ q + 1 and j ≤ q . Set ri j = δi j when i , j ≤ q . Now,
since {a1, . . . ,aq} is a rationally independent set of irrational numbers, we can use Vinogradov’s
equidistribution theorem [41] combined with [30, Theorem 6.3] to conclude that the sequence
(Pa⃗)P prime ⊂ Rq is equidistributed mod 1, where a⃗ = (a1, . . . ,aq ). This means that for every
measurable C ⊂ [0,1]q of measure |C | it holds that

lim
N→∞

#{P prime : P ≤N , Pa⃗ mod 1 ∈C }
π(N )

= |C | (1.1)
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Rq/Zq

Π/Zq

C b
e

Figure 1.2. The black lines are Π/Zq . Notice that the “boundary box” is included, since ri j = δi j

when i , j ≤ q . The magenta area represents their e -thickening. The white area represents C b
e , which

by construction has measure ≥ 1 − b . As long as this is positive, the prime iterates which stay
uniformly away from resonances are equidistributed mod 1.

Hereπ : N→N is the prime counting function,π(N ) = #{P prime : P ≤N}. We are therefore
finished if we can show that there exists a set C ⊂ Rq/Zq of positive measure and a c > 0
such that Pa⃗ mod 1 ∈ C =⇒ dS1

�

σ(M P ), 1
�

> c . Notice that 1 ∈ σ(M P ) if and only if
Pai = 0 mod 1 for at least one i ∈ {1, . . . , l}. Consider the following collection of hyperplanes
in Rq :

Πi =

(

x ∈Rq :
q
∑

j=1

ri j x j = 0

)

, Π =
n
⋃

i=1

Πi

The set Π is the union of finitely many hyperplanes defined by equations with rational co-
efficients. Therefore, its projection Π/Zq ⊂ Rq/Zq is a finite collection (see Figure 1.2) of
hyperplanes such that Pa⃗ mod 1 ∈Π/Zq ⇐⇒ 1 ∈ σ(U P ). Moreover, sinceΠ/Zq is a proper
closed subset of zero measure, for any 0< b < 1 there exists an e > 0 such that

C b
e = (R

q/Zq ) \
⋃

x∈Π/Zq

Be (x)

has measure
�

�

�C b
e

�

�

� ≥ 1− b . Clearly e → 0 as b → 0, so we can choose b small enough so that
e < 1/2. By construction

Pa⃗ mod 1 ∈C b
e =⇒ dU(1)

�

σ(U P ), 1
�

> 2πe = c

This finishes the proof: by equidistribution, since |C b
e | ≥ 1− b > 0, there is an increasing
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sequence (p j ) j≥1 of prime numbers such that p j a⃗ mod 1 ∈C b
e for every j , and moreover from

(1.1) their cumulative distribution function satisfies (see Lemma B.1):

#
¦

j ∈N : p j ≤N
©

=
�

�

�C b
e

�

�

�π(N )+ o(π)

Therefore our sequence (p j ) j∈N also satisfies the prime number theorem, since it is distributed
like the primes up to an irrelevant multiplicative constant (see Lemma B.2). This implies the
estimate on the gaps.

Remark Fast-forwarding one moment, call a symplectic matrix non-degenerate when it does
not have 1 as an eigenvalue (see Definition 1.11 for the relevance of this concept). What is
shown here is that given a non-degenerate symplectic matrix, there exists a wealth of iterates
which not only are non-degenerate themselves, but stay uniformly far from having the 1 in the
spectrum. We call these iterates the uniformly non-resonant iterations of the matrix.

1.2. The Conley-Zehnder index

In this section we study the spectrum of a symplectic matrix and use its properties to construct
a homotopy invariant of paths M : [0,1]→ Sp(2n) with M (0) = I, called the Conley-Zehnder
index. The rough idea is to track how many times the eigenvalues on the unit circle wind
around as t ∈ [0,1]. Complications arise because the spectrum of a symplectic matrix is quite
symmetric, and because conjugate eigenvalues might collide and leave the unit circle. To sur-
mount them, one labels the eigenvalues with their Krein signature.

For the Krein theory, we follow the beautiful book of Ekeland [14]. For the definition
of the Conley-Zehnder index and its properties we follow sometimes Abbondandolo [3] and
sometimes other sources, like [12, 26].

The origins of the Conley-Zehnder index can be traced to before the times of Conley and
Zehnder themselves, and lie in the work of Gel’fand and Lidskĭı, [19], on the theory of strong
stability in linear Hamiltonian systems. From this point of view, the Conley-Zehnder index
counts the instants at which the linear system leaves the region of strong stability. This should
be compared to the interpretation of the Morse index of a geodesic in terms of the count of con-
jugate points along it. A good source for this theory is the book by Yakubovich and Starzhin-
skĭı, [42], and also the aforementioned book by Ekeland.

1.2.1. Rudiments of Krein theory

Recall from Definition 1.5 the inner product g on C2n defined by g = h ◦ [I× (−i J0)] where
h(u, v) = ūT v is the standard Hermitian product. Let M be a g -unitary matrix. For λ ∈ σ(M ),
denote by Eλ the generalized eigenspace ofλ, i.e. the space of vectors inC2n annihilated by some
power of M −λI.

Lemma 1.2.1 Let M be a g -unitary matrix. If λ,µ ∈ σ(M ) are such that λµ ̸= 1, then Eλ and
Eµ are g -orthogonal.

12



Proof. Let u ∈ Eλ and v ∈ Eµ be non-zero vectors. Then there exist a, b such that

(M −λI)a u = 0, (M −µI)b v = 0.

Set m = a+ b and argue by induction on m. For m = 2, u and v are eigenvectors and we can
directly calculate

0= g (M u −λu, M v −µv) = (1−λµ)g (u, v)

so since λµ ̸= 1 we must conclude g (u, v) = 0.
Now assume the result holds for all 2≤ a+b ≤N−1. Set m =N and define u ′ = (M−λI)u,

v ′ = (M −µI)v. Notice that

(M −λI)a−1 u ′ = 0, (M −µI)b−1 v ′ = 0.

By the induction hypothesis, we conclude that

g
�

u ′, v
�

= g
�

u, v ′
�

= g
�

u ′, v ′
�

= 0.

Substituting the definition of u ′ and v ′ in these three equations, we get the three equations

g (M u, v) = λg (u, v), g (u, M v) =µg (u, v)

g (M u, M v)−λg (u, M v)−µg (M u, v)+λµg (u, v) = 0

Combining them together we obtain (1−λµ)g (u, v) = 0, which leads to the conclusion.

By taking λ=µ in this lemma, we obtain

Corollary 1.2.1 If λ ∈ σ(M ) and |λ| ≠ 1, then Eλ is g -isotropic.

These results motivate the following notation.

Definition 1.6 Let M be a g -unitary matrix. Set:
¨

Fλ = Eλ⊕ E
λ−1 , if |λ| ≠ 1

Fλ = Eλ, if |λ|= 1

Then we have λ ̸=µ =⇒ Fλ⊥g Fµ and hence a g -orthogonal splitting

C2n =
⊕

λ∈σ(M ), |λ|≤1

Fλ

Definition 1.7 Let λ ∈ σ(M ) be an eigenvalue of a g -unitary matrix M , and Fλ ⊂ C2n the
spaces entering the g -orthogonal splitting as above. The Krein signature (κλ, κ̄λ) of λ is the
signature of g |Fλ . If g |Fλ is positive, resp. negative definite, then we say that λ is positive, resp.
negative Krein-definite. Otherwise we say λ is Krein-indefinite.
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Recall that an eigenvalue is said to be semi-simple when its algebraic multiplicity coincides
with its geometric multiplicity. This means that every irreducible invariant subspace of its
generalized eigenspace is 1-dimensional. In other words, the generalized eigenspace splits into
genuine eigenspaces.

Lemma 1.2.2 Let λ ∈ σ(M ) be an eigenvalue of a g -unitary matrix M .
1. If λ ∈U(1) is not semi-simple, then there is a g -isotropic vector in Eλ.
2. If |λ| ≠ 1 then κλ = κ̄λ.

In particular a Krein-definite eigenvalue is always unitary and semi-simple, and all other eigenval-
ues are Krein-indefinite.

Proof. 1. Since the eigenvalueλ is not semi-simple, there is an irreducible invariant subspace
in Eλ which has dimension at least 2. Therefore there exists a vector u ∈ Eλ and an
eigenvector v of eigenvalue λ such that M u = λu + v. Now

g (u, v) = g (M u, M v) = |λ|2 g (u, v)+λg (v, v) =⇒ g (v, v) = 0.

2. g is non-degenerate on Fλ, Fλ = Eλ ⊕ E
λ−1 and both factors are isotropic subspaces of

(complex) dimension equal to the geometric multiplicity of λ.
The last statement is the contrapositive of the first.

Remark A good intuitive picture to have is that a non-semi-simple eigenvalue λ counts as
κλ + κ̄λ eigenvalues, κλ of which are positive Krein-definite, and κ̄λ of which are negative
Krein-definite.

Let’s focus now on the relevant case of a symplectic matrix, i.e. g -unitary and real. Then
we can say a little bit more about the Krein signature of eigenvalues, and we can say something
about the eigenvalues ±1.

Lemma 1.2.3 Let M ∈ Sp(2n) be a symplectic matrix. If {λ, λ̄} ⊂ σ(M ), then the Krein signature
of λ̄ is opposite to the Krein signature of λ:

�

κλ̄, κ̄λ̄
�

= (κ̄λ,κλ). In particular, if ±1 ∈ σ(M ), then
they are always Krein-indefinite eigenvalues, with κ±1 = κ̄±1.

Proof. Indeed Eλ̄ = Eλ implies that every w ∈ Eλ̄ is of the form w = v̄ for an unique v ∈ Eλ.
Hence

g (w, w) = h
�

v̄, i J0v̄
�

= h(v, i J0v) =−g (v, v) =−g (v, v)

for all w = v̄ ∈ Eλ.

Remark We now have a complete picture of the Krein signature of the eigenvalues of a sym-
plectic matrix. The only Krein-definite eigenvalues are semi-simple eigenvalues on U(1)\{±1},
all the other eigenvalues are Krein-indefinite. Moreover, if λ ∈ σ(M )∩U(1) is positive Krein-
definite, then λ̄ ∈ σ(M )∩U(1) is negative Krein-definite.
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1.2.2. Eigenvalues of the first kind

Definition 1.8 Let M ∈ Sp(2n) and λ ∈ σ(M ). We say that λ is an eigenvalue of the first kind
if |λ|< 1, or |λ|= 1 and λ is positive Krein-definite.

Remark The eigenvalues of the “second kind” are the unitary, negative Krein-definite eigen-
values. We shall not need this terminology in the following, but kept it to conform to the
existing literature.

Recall that if λ ∈ σ(M ) is positive Krein-definite, then it must be semi-simple and unitary.
Moreover λ−1 = λ̄ is then negative Krein-definite. Therefore the spectrum of a symplectic
matrix M ∈ Sp(2n) can always written as

σ(M ) =
�

λ1, . . . ,λn ,λ−1
1 , . . . ,λ−1

n
	

where λ1, . . . ,λn are of the first kind and perhaps repeated according to their (algebraic) multi-
plicity.

A very important property of the spectrum of a symplectic matrix is that the collection of
eigenvalues of the first kind depends continuously on the matrix. The proof of this proposition
can be found in [42, p. 191].

Proposition 1.2.1 Let the permutation group Sn act on Cn by permutation of coordinates. The
map Sp(2n)→ Cn/Sn associating to any M ∈ Sp(2n) the unordered n-tuple of its eigenvalues of
the first kind, repeated with multiplicity, is continuous.

Corollary 1.2.2 Let M : [0,1]→ Sp(2n) be a continuous, resp. smooth path of symplectic ma-
trices. There exist continuous, resp. smooth paths λ1, . . . ,λn : [0,1]→C such that λ1(t ), . . . ,λn(t )
are the eigenvalues of the first kind of M (t ), repeated with multiplicity, and the map Λ : [0,1]→
Cn/Sn given by t 7→ [λ1(t ), . . . ,λn(t )] is continuous.

Remark Unless we give a definition of what smoothness means for maps into a singular space,
we can’t really say that Λ is smooth.

1.2.3. Weighted complex determinant

Definition 1.9 The weighted complex determinant wdetC : Sp(2n) → U(1) of a symplectic
matrix is defined as

wdetC(M ) =
∏

λ∈σ(M ),
λ 1st kind

λ

|λ|
=

∏

λ∈σ(M ), |λ|≤1

�

λ

|λ|

�κλ

Remark The function wdetC was introduced by Gel’fand and Lidskĭı in [19]. In the literature
wdetC is sometimes called rotation function, and sometimes not named at all. We propose the
name “weighted complex determinant” since wdetC coincides with detC on U(n), as we shall
see below.
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Lemma 1.2.4 We can rewrite wdetC as

wdetC(M ) = (−1)m
∏

λ∈σ(M )∩U(1)\{±1}
λκλ

where 2m is the total geometric multiplicity of the negative real eigenvalues of M .

Proof. Indeed, if |λ| < 1, λ /∈ R, then λ̄ ̸= λ. By Lemma 1.2.2.2 and Lemma 1.2.3 the Krein
signature of λ̄ is the same of λ, so we see the following two terms in the product:

�

λ

|λ|

�κλ
�

λ

|λ|

�κ
λ

=
�

λλ

|λ|2

�κλ

= 1.

If λ ∈R, 0< λ≤ 1, then its corresponding term is equal to 1. Finally if instead −1≤ λ < 0, its
term contributes with a (−1)κλ . Now again by Lemma 1.2.2.2 and Lemma 1.2.3.2, its Krein
signature is of the form (κλ,κλ), and so the geometric multiplicity of λ is even. Therefore the
total geometric multiplicity of the negative real eigenvalues is always even. To multiply out
these contributions one has to calculate

∑

λ∈σ(M ), −1≤λ<0

κλ =
1
2

∑

λ∈σ(M ), −1≤λ<0

dim Fλ = m

which is our claim.

The following proposition collects the properties of the weighted complex determinant.

Proposition 1.2.2 The weighted complex determinant has the following properties:
1. wdetC is continuous.
2. wdetC is a linear symplectic invariant: wdetC(L

−1M L) =wdetC(M ) for all L, M ∈ Sp(2n).
3. wdetCU = detCU for all U ∈U(n)⊂ Sp(2n).
4. If M has no eigenvalues on U(1), then wdetC(M ) =±1.
5. wdetC(M

′⊕M ′′) =wdetC(M
′)wdetC(M ).

6. wdetC(M
k ) =wdetC(M )

k for all M ∈ Sp(2n) and all k ∈Z.

Proof. 1. This follows from continuity of the unordered set of eigenvalues of the first kind.
2. The spectrum and the Krein signatures are g -unitary invariants.
3. The spectrum of a matrix in U ∈U(n)⊂ Sp(2n) is always on U(1) and each eigenvalue

is semi-simple. Therefore each eigenvalue is Krein-definite, and

wdetC(U ) =
∏

λ∈σ(U )
λκλ

Let V ± ⊂ C2n be the eigenspaces of J0 corresponding to the eigenvalues ±i . Notice
that g |V + is positive definite. Notice further that if UC ∈U(n)⊂GL(n,C) denotes the
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unitary matrix corresponding to U thought of as acting onCn , then U |V + =UC. Since
J0U =U J0, all the Eλ for λ ∈ σ(U ) are J0-invariant, and

V + =
⊕

λ∈σ(U )
Eλ ∩V +

Since g is positive definite on V +, κλ = dim Eλ ∩V +. Hence

detCU = det UC =
∏

λ∈σ(U )
λdim Eλ∩V + =

∏

λ∈σ(U )
λκλ =wdetCU

4. M has no Krein definite eigenvalue, so wdetCM = (−1)m where 2m is the total multi-
plicity of the negative real eigenvalues of M .

The remaining points are found by direct calculation.

Remark To define the Conley-Zehnder index, one may work directly with the complex de-
terminant. But it does not have the nice property 6 found above, which is very useful when
thinking about the index of iterations of periodic orbits.

An interesting property that is implied by the point 3 above is the following

Lemma 1.2.5 Let L : [0,1]→ Sp(2n) be a continuous loop of symplectic matrices based at I. Then

degwdetC ◦L=Mas(L)

1.2.4. Non-degenerate symplectic matrices

Definition 1.10 The Maslov cycle is the subset

Sp0(2n) = {M ∈ Sp(2n) : det (M − I) = 0}

Its complement is called the set of non-degenerate symplectic matrices, and is denoted by

Sp∗(2n) = {M ∈ Sp(2n) : det (M − I) ̸= 0}

Notice that

Sp∗(2n) = Sp+(2n)⊔ Sp−(2n), Sp±(2n) = {M ∈ Sp∗(2n) :±det (M − I)> 0} .

Lemma 1.2.6 A matrix M ∈ Sp∗(2n) lies in Sp+(2n) if and only if the total multiplicity of real,
positive eigenvalues smaller than 1 is even.

Lemma 1.2.7 The connected components of Sp∗(2n) are precisely Sp±(2n).

The proof of the two lemmata above is done via the study of normal forms of symplectic
matrices, which would make us stray away from the aim of this chapter, namely the definition
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of the Conley-Zehnder index. A complete proof may be found in any of these references: [3,
26, 31].

Sketch of proof of 1.2.7. It is convenient to fix a distinguished element in each Sp±(2n). We
take:

W − =





2 0
0 1

2
−I



 ∈ Sp−(2n), W + =−I ∈ Sp+(2n).

Any symplectic matrix can be perturbed in an arbitrarily small way to a symplectic matrix
all whose eigenvalues are distinct, complex and non-unitary. If the resulting matrix lies in
Sp+(2n), it can be connected to a matrix all whose eigenvalues are equal to −1. The resulting
matrix always has a real logarithm, so can be connected to the matrix W +. For Sp−(2n) the
argument is similar, but involves more intricate perturbation.

We chose the two matrices W ± because it is very easy to calculate their weighted complex
determinant. Indeed, from Lemma 1.2.4 it’s immediate to calculate

wdetCW − = (−1)n−1, wdetCW + = (−1)n

This fact will be important in order to define the Conley-Zehnder index by tracking the degree
of wdetC along a path of symplectic matrices.

Non-degeneracy is a crucial property for the definition of the Conley-Zehnder index. The
reason lies in the following lemma, which can be interpreted as a rule to define the “argument”
of a symplectic matrix.

Lemma 1.2.8 There exist continuous functions θ1, . . . ,θn : Sp∗(2n)→ [0,2π]with the following
property. If λ1, . . . ,λn are the eigenvalues of the first kind of M ∈ Sp∗(2n), repeated according to
their multiplicity, then

λ j

|λ j |
= e iθ j (M )

In particular
wdetCM = e i

∑

j θ j (M )

Remark By re-ordering the eigenvalues of the first kind of M , we can always assume that
0≤ θ1(M )≤ θ2(M )≤ · · · ≤ θn(M )≤ 2π.

Proof. Let M ∈ Sp∗(2n) and λ ∈ σ(M ) be an eigenvalue of the first kind. If λ is unitary or λ is
real and negative, the formula

λ

|λ|
= e iθ

defines θ ∈ (0,2π) uniquely (when λ < 0 obviously we’re setting θ=π). The problem is only
when λ > 0, since we could set θ = 0 or θ = 2π. If M ∈ Sp+(2n), then it has an even number
of positive eigenvalues of the first kind, counted with multiplicity. We choose the θ j so that
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the number of them which equal 0 is always the same as the number of them which equal 2π.
If M ∈ Sp−(M ), we know that it has an odd number 2l + 1 of positive eigenvalues of the first
kind, counted with multiplicity. In this case choose θ to be 0 for l of these eigenvalues, and 2π
for the remaining l + 1. With this choice, θ1|Sp−(2n) = 0. This choice for the values of the θ j
in the case of positive real eigenvalues of the first kind guarantees that the θ j are continuous
functions.

Remark 1. Notice that by construction no matrix M ∈ Sp∗(2n) can have θ j (M ) = 0 for
every j or θ j (M ) = 2π for every j .

2. The proof of the lemma shows that we can choose the θ j such that θ j (W
+) = π for all

j and θ1(W
−) = 0,θ2(W

−) = θ3(W
+) = · · ·=π.

Lemma 1.2.9 Any loop in Sp∗(2n) is contractible in Sp(2n).

Proof. It suffices to show that for any loop t 7→ Mt in Sp∗(2n) we have that t 7→ wdetCMt ∈
U(1) is a contractible loop. But this is clear from the existence and the first property of the
functions θ j remarked above.

Remark The fact that every loop in Sp∗(2n) is contractible in Sp(2n) is an indicator of the
fact that the Maslov index can be interpreted with some care as an intersection number of a
loop with the Maslov cycle. The difficulty lies in the fact that the Maslov cycle is a singular
set. Moreover, we consider almost only loops based at I, which lies in the singular part of the
Maslov cycle.

An illustration of the situation for n = 1 can be found in Figure 1.3.

1.2.5. Definition of the Conley-Zehnder index

In this section we use the constructions developed above to give a homotopy invariant of paths
of linear symplectomorphisms.

Definition 1.11 Define

SP(2n) =
�

M ∈C 0 ([0,1], Sp(2n)) : M (0) = I
	

We call this the space of based paths in Sp(2n). Define

SP∗(2n) =
�

M ∈C 0 ([0,1], Sp(2n)) : M (0) = I, M (1) ∈ Sp∗(2n)
	

We call this the space of non-degenerate based paths in Sp(2n).

Remark We commit a small abuse of notation by denoting matrices and paths of matrices
with the same symbols. Usually we denote time-dependence as so: Mt =M (t ).
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−ISp+(2)

Sp0(2)

Sp−(2)

I

Figure 1.3. The group Sp(2) is diffeomorphic to a solid torus without its border, parametrized by
coordinates (θ, r,τ) ∈ [0,2π)×[0,1)×[0,2π). Hereθ is the angle which goes around the “horizontal”
circle, where (0,0,0) = I, while τ parametrizes the “vertical” circle. The coordinate r gives the
distance of the point from the central horizontal circle, i.e. the radius at which the point lies on
its corresponding slice θ = const. The explicit parametrization can be found in [3]. The subgroup
U(1)⊂ Sp(2) is the set {(θ, 0, 0)}, the circle at the core of the torus passing through ±I. The singular
surface, drawn inside with solid colors, is the set of matrices with double eigenvalue ±1, which can
be seen to be parametrized as {(θ, r,τ) : r = sin2θ}. This surface has two connected components,
one drawn in yellow and one in purple. The yellow part is the connected component corresponding
to the matrices with double eigenvalue −1, containing in particular −I. This component lies inside
Sp+(2). The purple surface is the Maslov cycle Sp0(2), which contains the matrix I. The circles
drawn in red are to denote where the surface touches the boundary of the solid torus. The Maslov
cycle breaks Sp∗(2) into the two connected components Sp∗(2) = Sp+(2)⊔Sp−(2). These are depicted
by the shaded areas, the yellow shaded area being Sp+(2) and the blue shaded area being Sp−(2). One
thing that cannot be seen well in this drawing is that the Maslov cycle bounds within it a piece of
Sp+(2), not Sp−(2). In fact U(1)\{I} ⊂ Sp+(2), and the same is true in higher dimensions. Notice that
every loop in Sp−(2) is contractible in Sp(2) but there are loops in Sp−(2)which are not contractible
in Sp−(2). This does not happen for Sp+(2).
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We endow the spaces SP(2n), SP∗(2n) with the compact open topology. The connected
components of SP∗(2n) are the homotopy classes of paths in Sp(2n) which are based at I and
whose unfixed endpoint never touches Sp0(2n).

Definition 1.12 For a path M : [0,1]→ Sp(2n) choose any function θ : [0,1]→R such that

wdetCM (t ) = e iθ(t )

Define, for τ ∈ [0,1],

∆(M ,τ) =
θ(τ)−θ(0)

π
(1.2)

This number represents twice the total angle swept by t 7→ wdetC(M (t )) up to time τ in
units of 2π. It does not depend on the choice of θ.

Remark Since wdetC is multiplicative under direct sums, we see that∆(·,τ) is additive under
direct sums for all τ.

Now let M ∈ Sp∗(2n). Then either M ∈ Sp+(2n) or M ∈ Sp−(2n). Choose a continuous
path γM : [0,1]→ Sp∗(2n) such that γM (0) = M and γM (1) =W ± according to whether M ∈
Sp±(2n). Notice that∆(γM , 1) does not depend on the choice of γM , since all loops in Sp∗(2n)
are contractible in Sp(2n). Therefore we can define a function

R : Sp∗(2n)→R, R(M ) =∆(γM , 1)

Lemma 1.2.10 |R|< n.

Proof. Indeed since γM (t ) ∈ Sp∗(2n) for all t , we can set θ(t ) =
∑

j θ j (γM (t )), where the θ j are
the functions constructed in Lemma 1.2.8. Recall that we chose to order the eigenvalues of the
first kind of a matrix M ∈ Sp∗(2n) in such a way that 0≤ θ1(M )≤ θ2(M )≤ · · · ≤ θn(M )≤ 2π.
We can calculate

R(M ) =∆(γM , 1) =
1
π

n
∑

j=1

θ j (W
±)−θ j (M )

where as before we have chosen W ± according to where M is. If M ∈ Sp+(2n), then we have
chosen θ j such that θ j (W

+) =π for all j . We see that

M ∈ Sp+(2n) =⇒ |R(M )| ≤ 1
π

n
∑

j=1

�

�

�π−θ j (M )
�

�

�< n

the strictness of the last inequality following from the fact that the numbers θ j (M ) are never all
equal to 0 or all equal to 2π. If instead M ∈ Sp−(2n), then we know that θ1(W

−) = θ1(M ) = 0,
and the rest are equal to π. Therefore analogously as above,

M ∈ Sp−(2n) =⇒ |R(M )|= 1
π

�

�

�

�

�

�

n
∑

j=2

π−θ j (M )

�

�

�

�

�

�

≤ n− 1
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Definition 1.13 The Conley-Zehnder index of a path M ∈ SP∗(2n) is defined as

CZ (Mt : t ∈ [0,1]) =∆(M , 1)+R (M (1))

Remark We chose to use the notation above because it is very convenient when dealing with
iterates and periodic orbits. When the time domain is clear from the context, for brevity we
write CZ(Mt ) =CZ(Mt : t ∈ [0,1]).

Theorem 1 The Conley-Zehnder index is an integer valued function. In fact,

CZ (Mt : t ∈ [0,1]) = degwdet2
C ◦M

Two paths M , M ′ ∈ SP∗(2n) belong to the same path component of SP∗(2n) if and only if their
Conley-Zehnder indices coincide.

Proof. For notational convenience, if two paths γ0,γ1 : [0,1] → Sp(2n) are such that γ0(1) =
γ1(0), denote by γ1 ∧ γ0 the concatenation of γ1 after γ0, i.e.

γ1 ∧ γ0(t ) =
¨

γ0(2t ), t ∈ [0,1/2]
γ1(2t − 1), t ∈ [1/2,1]

Let M ∈ SP∗(2n) and fix a γM : [0,1] → Sp∗(2n) such that γM (0) = M (1) and γM (1) = W ±

according to whether M (1) ∈ Sp±(2n). Notice that by definition the Conley-Zehnder index is
twice the total angle, in units of 2π, swept by wdetC on the concatenation of M with γM , or
equivalently the total angle in units of 2π swept by the path

[0,1] ∋ t 7→ (wdetC(γM ∧M (t )))2 ∈U(1)

Since γM (1) = W ± and wdetCW ± = ±1, we see that this path is actually a loop based at
1 ∈U(1), so the total angle swept by it in units of 2π is its degree.

To show that two paths in SP∗(2n) are in the same path component if and only if their indices
coincide, notice that two paths M , M ′ ∈ SP∗(2n) are in the same path component if and only
if they end both in Sp+(2n) or both in Sp−(2n) and the loop given by the concatenation

ξ =M ′ ∧ γM ′ ∧ γM ∧M

where M ′ denotes the path M ′ traversed in reverse, is contractible. But this is equivalent to
saying that the two loops γM ∧M ,γM ′ ∧M ′ are homotopic, which is equivalent to them having
the same degree.

Remark One could just as well take the formula for the Conley-Zehnder index in terms of
the degree as a definition, and derive the formula in terms of∆ andR as a theorem. We chose
to take this point of view because∆(M , 1) andR(M (1)) are useful concepts also for the rest of
this chapter.
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Proposition 1.2.3 The Conley-Zehnder has the following properties:
1. If M ∈ SP∗(2n) and N ∈ Sp(2n), then

CZ
�

N−1Mt N
�

=CZ (Mt ) (1.3)

2. If M ∈ SP∗(2n) is such that σ(Mt )∩U(1) =∅ for all t , then CZ(Mt ) = 0.
3. If M ∈ SP∗(2n0) and M ′ ∈ SP∗(2n1), then

CZ
�

Mt ⊕M ′t
�

=CZ (Mt )+CZ
�

M ′t
�

(1.4)

4. If M ∈ SP∗(2n) then
CZ

�

M−1
t
�

=CZ
�

M T
t

�

=−CZ (M )

5. If M ∈ SP∗(2n) and L : [0,1]→ Sp(2n) is a loop based at I, then

CZ (Lt Mt ) =CZ(Mt )+ 2Mas(L) (1.5)

where Mas denotes the Maslov index, see Definition 1.4.
6. The parity of the Conley-Zehnder index depends only on the endpoint of the path, and is

determined as follows:
(−1)n−CZ(Mt ) = signdet (I−M1)

7. If Mt = exp(−J0At ) with A∈ Sym(2n) such that |A|< 2π, then

CZ(Mt ) =
1
2

signA

where signA denotes the signature of A, i.e. the number of positive eigenvalues minus the
number of negative eigenvalues of A.

Proof. 1. This follows from symplectic invariance of wdetC.
2. For such a path, wdetC(Mt ) =±1 for all t .
3. This follows from the fact that wdetC(Mt ⊕M ′t ) = wdetC(Mt )wdetC(M

′
t ) (see Proposi-

tion 1.2.2.5).
4. The first equality follows from the first point, because M−1 = J−1

0 M T J0. The last equality
follows from Proposition 1.2.2.6.

5. The product t 7→ Lt Mt is homotopic to the concatenation L∧M .

CZ(Lt Mt ) = degwdet2
C ◦ (L∧M ) = 2degwdetC L+ degwdet2

C ◦M

The last equality follows from the fact that t 7→wdetC Lt is already a loop. The conclu-
sion follows from Lemma 1.2.5.

6. Let γ : [0,1]→ Sp∗(2n) be a path such that γ (1) =W ±. Notice that degwdet2
C ◦γ is even

whenever wdetC γ (1) = 1, and odd whenever wdetC γ (1) =−1. Recall that wdetCW + =
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(−1)n and wdetCW − = (−1)n−1 = −wdetCW +. For γ = γM ∧M , γ (1) =W ± ⇐⇒
signdet(I−M1) =±1. Putting everything together we obtain the claim.

7. We can assume without loss of generality that A= diag(a1, b1, . . . ,an , bn) in a symplectic
splitting (R2n ,ω0) = (R2,ω0)⊕ · · · ⊕ (R2,ω0). Since |A| < 2π, exp(−J0A) ∈ Sp∗(2n).
From points 2 and 3 above, the only blocks of Mt = exp(−J0At ) that contribute to the
index are the blocks with eigenvalues on the unit circle. Therefore we can assume with-
out loss of generality that a j b j > 0 for all j , i.e. they always have the same sign. This is
because blocks with a j of different sign than b j generate hyperbolic blocks, which have
eigenvalues off the unit circle at all times. Now, in the j th factor of the splitting, the lin-
ear flow is the flow of a harmonic oscillator, which can be deformed, without changing
the homotopy class of the flow, to a rotation in the plane of angle strictly less than 2π.
This rotation is counter-clockwise when a j > 0 and clockwise when a j < 0. To finish
the proof, it suffices to look at Section 1.2.7 for an explicit calculation of the index of a
non-degenerate rotation depending only on its definition.

Remark These properties characterize the Conley-Zehnder index uniquely, as shown in e.g.
[26].

1.2.5.1. Extension to degenerate paths

In applications, it is useful to define a Conley-Zehnder index also for paths which end up on
the Maslov cycle. This extension is not canonical, and there are a few different choices one
can make, depending on the kind of properties one needs. Following [3], we think of the
Conley-Zehnder index as a kind of Morse index for the critical points of the action functional.
The Morse index is lower-semicontinuous (LSC), so we take the maximal LSC-extension of the
Conley-Zehnder index.

Specifically, let M ∈ SP(2n) be a based path, perhaps degenerate. Notice that SP∗(2n) ⊂
SP(2n) is an open dense subset. Set

CZ (Mt : t ∈ [0,1]) = liminf
M ′→M ,

M ′∈SP∗(2n)

CZ
�

M ′t : t ∈ [0,1]
�

Since∆(·, 1) : SP(2n)→R is already continuous,

Lemma 1.2.11 It holds that

CZ (Mt : t ∈ [0,1]) =∆(M , 1)+R (M1)

whereR : Sp(2n)→R is the maximal LSC-extension ofR :

R(N ) = liminf
N ′→N

N ′∈Sp∗(2n)

R(N ′)
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The functionR has a similar bound asR , which is proven in a completely analogous way:

Lemma 1.2.12 |R| ≤ n.

Remark The possible equality is because we cannot guarantee that not all θ j are 0 or 2π.

The index of a degenerate path has the same properties of the non-degenerate counterpart
except continuity. We list the ones we need:

Proposition 1.2.4 The lower semicontinuous extension CZ: SP(2n)→Z of the Conley-Zehnder
index satisfies the following properties:

1. If M ∈ SP(2n) and N ∈ Sp(2n), then

CZ
�

N−1Mt N
�

=CZ (Mt )

2. If M ∈ SP(2n0) and M ′ ∈ SP(2n1), then

CZ
�

Mt ⊕M ′t
�

=CZ (Mt )+CZ
�

M ′t
�

3. If M ∈ SP(M ) then
CZ

�

M−1
t
�

=CZ
�

M T
t

�

=−CZ (Mt )

4. If M ∈ SP(2n) and L : [0,1]→ Sp(2n) is a loop based at 1, then

CZ (Lt Mt ) =CZ(Mt )+ 2Mas(Lt )

In particular, if L is a loop based at I, CZ(Lt ) = 2Mas(Lt ).

1.2.6. Iterations and the mean Conley-Zehnder index

In the study of the Conley-Zehnder index of periodic orbits, it is important to understand the
index of an iterated orbit. Here we study the linear theory.

Let M ∈ SP∗(2n). We extend it periodically to a map M : R → Sp(2n) by setting Mt+1 =
Mt M1. In particular, Mk = M k

1 . The reason for this choice is that this rule is fulfilled by the
matrizants of linear Hamiltonian equations with 1-periodic coefficients.

We need some preliminaries. Let M ∈ SP∗(2n) be extended to R as just explained, and pick
a function θ : R→R such that

wdetCM (t ) = e iθ(t )

For τ ∈R, define, analogously as in (1.2),

∆(M ,τ) =
θ(τ)−θ(0)

π
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Lemma 1.2.13 For M ∈ SP∗(2n) extended periodically and k ∈Z,

∆(M , k) = k∆(M , 1)

Proof. Consider the following homotopy

Γ : [0,1]× [0,1]→ Sp(2n), Γ (s , t ) =M ((1− s)t )

Notice that Γ (0, t ) =Mt for all t and Γ (1, t ) = I for all t . Therefore Γ is a homotopy between
M and the constant path at I. Extend Γ periodically to a function

Γ : [0,1]×R→ Sp(2n), Γ (s , t + 1) = Γ (s , t )Γ (s , 1)

In particular, whenever k ∈Z we have Γ (s , k) = Γ (s , 1)k . Let θ : [0,1]×R→R be a choice of
a continuous function such that

wdetCΓ (s , t ) = e iθ(s ,t ) ∀(s , t ), θ(s , 0) = 0 ∀s

Notice that

∆(M , k)− k∆(M , 1) =
1
π
[θ(0, k)−θ(0,0)− kθ(0,1)+ kθ(0,0)] =

1
π
[θ(0, k)− kθ(0,1)]

Now,

wdetCΓ (s , k) =wdetC
�

Γ (s , 1)k
�

= (wdetCΓ (s , 1))k ∀k ∈Z ∀s ∈ [0,1]

This implies that for each s ∈ [0,1], θ(s , k)− kθ(s , 1) is an integer multiple of 2π. Since θ is
continuous in s , θ(s , k)− kθ(s , 1) must therefore be constant in s . Since θ(0, t ) = 0 for all t
the claim is proven.

Definition 1.14 Let k ∈Z. Define

CZ (Mt : t ∈ [0, k]) =CZ (Mk t : t ∈ [0,1]) , CZ (Mt : t ∈ [0,1]) = lim
k→∞

1
k

CZ (Mt : t ∈ [0, k])

The quantity CZ(Mt : t ∈ [0,1]) is called mean Conley-Zehnder index.

Remark Notice that if σ(M1) contains a kth root of unity, then Mk is degenerate, so CZ(Mt :
t ∈ [0, k]) has to be interpreted with the LSC extension explained above.

Lemma 1.2.14 The mean Conley-Zehnder index is well defined and

CZ (Mt : t ∈ [0,1]) =∆(M , 1)

Proof. Lemma 1.2.13 together with Lemma 1.2.12 implies that CZ(Mt : t ∈ [0, k]) has linear
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growth in k. Indeed

lim
k→∞

CZ (Mt : t ∈ [0, k])
k

= lim
k→∞

∆(M , k)+R
�

M k
1

�

k
= lim

k→∞

k∆(M , 1)
k

+
R
�

M k
1

�

k
︸ ︷︷ ︸

| · |≤ n
k→0

=∆(M , 1)

Proposition 1.2.5 For every k ∈Z we have the estimate

kCZ(Mt )− n ≤CZ(Mt : t ∈ [0, k])≤ kCZ(Mt )+ n

The inequalities are strict whenever Mk =M k
1 ∈ Sp∗(2n).

Proof. Notice first of all that Lemma 1.2.13 together with Lemma 1.2.14 implies that

CZ(Mt : t ∈ [0, k]) = kCZ(Mt : t ∈ [0,1])

Now, notice that

CZ (Mt : t ∈ [0, k])− kCZ (Mt : t ∈ [0,1]) =∆(M , k)+R (Mk )− k∆(M , 1) =R (Mk )

The claim follows from Lemma 1.2.12.

Remark Looking at the proof of Lemma 1.2.10, we see that the inequality is strict for iterates
with at least one eigenvalue different from 1. This kind of paths are called weakly non-degenerate
after the work of Salamon and Zehnder [38].

The following proposition will be crucial in the proof of the main theorem of the thesis.

Proposition 1.2.6 Assume that k , l ∈ Z are such that M k
1 and M l

1 are non-degenerate. If k and
l have the same parity, then CZ (Mt : t ∈ [0, k]) and CZ (Mt : t ∈ [0, l ]) have the same parity.

Proof. By Proposition 1.2.3, point (6), we see that it suffices to show that M l
1 and M k

1 belong
to the same connected component of Sp∗(2n), that is,

M l
1 ∈ Sp±(2n) ⇐⇒ M k

1 ∈ Sp±(2n) ∀k , l odd

By induction it is sufficient to prove this for k = l + 2, i.e. M k
1 = M l

1 M 2
1 . Recall further from

Lemma 1.2.6 that N ∈ Sp+(2n) if and only if the total multiplicity of real positive eigenvalues of
N smaller than 1 is even, and N ∈ Sp−(2n) if and only if the total multiplicity of real positive
eigenvalues of N smaller than 1 is odd. The claim is thus reduced to showing that the total
multiplicity of real positive eigenvalues of M l

1 smaller than 1 cannot change when multiplying
it on the right by M 2

1 . But this is obvious, because it will change the total multiplicity of the
eigenvalues by an even number.
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Remark This result is also true for iterations k , l which are degenerate, but we will not really
need it in the proof of the main theorem of the thesis.

1.2.7. The Conley-Zehnder index of a non-degenerate unitary path

The proof of the main theorem of the thesis involves some index calculations in the special
case where the paths in analysis are autonomous, unitary and non-degenerate. Therefore, to
conclude the chapter, we give a general formula for the index of an autonomous unitary and
non-degenerate path.

Let U : [0,1]→ U(n) ⊂ Sp(2n) be an autonomous non-degenerate unitary path. Then by
definition Ut = exp(Θt ) for some matrix Θ ∈ u(n) ⊂ sp(2n). Recall that Θ ∈ u(n) ⊂ sp(2n)
if and only if J0Θ = ΘJ0 and moreover ΘT = −Θ. These properties imply that there exists
a symplectic splitting

�

R2n ,ω0
�

=
�

R2,ω0
�

⊕ · · · ⊕
�

R2,ω0
�

and real numbers α1, . . . ,αn such
that in this splitting

Θ =















0 −α1
α1 0

...
0 −αn
αn 0















(1.6)

This is easily seen by unitarily diagonalizing the corresponding Hermitian matrix.

Remark It is worth to stress that α j ∈ R, so when reaching time 1 the flow generated by Θ
may wind around many times and also in both directions.

We found that an autonomous path of unitary matrices can be unitarily diagonalized for all
times and split into rotations in symplectic planes. Therefore by symplectic invariance (1.3)
the sum formula (1.4) it suffices to calculate the Conley-Zehnder index of a rotation on R2.
The same is true for the mean Conley-Zehnder index, since∆(·, 1) is also additive under direct
sums.

For a rotation of the plane, non-degeneracy means that the rotation angle is not equal to an
integer multiple of 2π. So let α ∈R \ 2πZ and consider

Ut = exp
�

0 −αt
αt 0

�

=
�

cosαt − sinαt
sinαt cosαt

�

(1.7)

The spectrum of Ut is
σ (Ut ) =

�

e iαt , e−iαt	

We have to determine which one is the positive Krein-definite eigenvalue. The eigenspaces in
C2 of the eigenvalues λt = e iαt , λ̄t = e−iαt are respectively

Eλt
=
��

i
1

��

, Eλ̄t
=
��

−i
1

��
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which don’t depend on t . It’s immediate to see that λt is always positive Krein-definite eigen-
value, while λ̄t is always negative Krein-definite. This does not depend on the sign of α, and
confirms that wdetCUt = detCUt = e iαt .

We can immediately calculate the mean Conley-Zehnder index:

Lemma 1.2.15 Let Ut = expΘt with Θ = J0 diag (α1, . . . ,αn ,α1, . . . ,αn). Then

CZ (Ut : t ∈ [0,1]) =
1
π

n
∑

j=1

α j

Proof. As just explained, the situation is reduced to a rotation of the plane by additivity. For
Ut as in (1.7), we can choose θ(t ) = αt in the definition of the function∆(U , ·). In particular

∆(U , 1) =
θ(1)−θ(0)

π
=
α

π
=CZ (Ut : t ∈ [0,1])

the last equality being Lemma 1.2.14.

Remark This calculation is valid even if some α j ∈ 2πZ.

The fact that U ∈ SP∗(2) implies that U1 has no real positive eigenvalues. In fact it has no
real eigenvalues at all, unless α= (2k+1)π for some k ∈Z, which implies U1 =−I. Therefore
U1 ∈ Sp+(2) always. Compare this with figure 1.3.

Define ⟦ ·⟧ : R→Z, r 7→ ⟦r⟧ to be the identity on Z and the nearest odd integer on R \Z.

Lemma 1.2.16 For U =Ut a non-degenerate rotation of the plane of angle α ∈R \ 2πZ,

CZ (Ut : t ∈ [0,1]) =
�α

π

�

(1.8)

Therefore if Ut = expΘt for Θ as in (1.6), we have

CZ (Ut : t ∈ [0, k]) =
n
∑

j=1

�

kα j

π

�

∀k ∈Z

Proof. The only thing to prove is the formula (1.8). Since U1 ∈ Sp+(2) for anyα, to calculateCZ
we have to connect U1 to W + =−Iwithout passing through I. If α= (2k+1)π then U1 =−I
and CZ(Ut ) =∆(U , 1) = 2k+1= ⟦α/π⟧. If α /∈πZ then to connect U1 to−Iwithout passing
through I we proceed as follows. There is always some k ∈ Z such that α ∈ ((2k − 1)π, (2k +
1)π). If α ∈ ((2k − 1)π, 2kπ) then γU is the paths of rotations in the opposite direction until
we reach −I, and so CZ(Ut ) = 2k − 1 = ⟦α/π⟧. If α ∈ (2kπ, (2k + 1)π) then γU is the path
of rotations in the same direction until we reach −I, and so CZ(Ut ) = 2k + 1 = ⟦α/π⟧. The
claim is proven.
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Remark Notice that we’ve also just shown that in dimension 2, the Conley-Zehnder index
of a non-degenerate path of rotations is always odd, and clearly every odd integer is reached
as the Conley-Zehnder index of a non-degenerate path of rotations. This is not true in higher
dimensions: we can obtain any integer as the Conley-Zehnder index of an autonomous unitary
non-degenerate path.
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2. Asymptotically linear Hamiltonian systems

In this chapter we introduce the class of asymptotically linear Hamil-
tonian systems. We show that each Hamiltonian system in such class
has the property that for any fixed period T there exists a compact
set which contains all the T -periodic orbits of the system. On the
way, we analyze linear Hamiltonian systems and obtain a crucial in-
version formula for the linear operator representing a linear Hamil-
tonian system.

2.1. Hamiltonian systems on linear phase space

Consider R2n with coordinates z = (q , p), q = (q1, . . . , qn), p = (p1, . . . , pn). We equip R2n

with the standard euclidean product 〈·, ·〉 : R2n ×R2n → R given by 〈z0, z1〉 = zT
0 z1 and an

identification with Cn by sending z = (q , p) to q + i p ∈ Cn . Notice that multiplication by
i ∈C on Cn is represented by the linear map J0 : R2n→R2n given by the matrix

J0 =
�

On −In
In On

�

in the splitting R2n =Rn
q ⊕Rn

p .

The standard symplectic form on R2n is the 2-formω0 ∈Ω2
�

R2n�,

ω0 =
∑

i

d qi ∧ d pi

This is a symplectic form in the sense that dω0 = 0 and ω∧n ̸= 0. As a bilinear form, it is
represented by the matrix −J0 =Ω0:

ω0(u, v) = 〈u,−J0v〉=−uT J0v ∀u, v ∈R2n (2.1)

Any smooth function H ∈ C∞(R2n) defines a vector field XH ∈X (R2n), called its Hamil-
tonian vector field, by the equation

d H = iXH
ω0

where iXH
ω0 ∈ Ω1(R2n) is the 1-form v 7→ iXH

ω0(v) = ω0(XH , v). A Hamiltonian system is
the ODE defined by a Hamiltonian vector field, and the flow of a Hamiltonian vector field is
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called a Hamiltonian flow. Usually we denote the flow of a Hamiltonian vector field ϕXH
by

ϕH since XH is uniquely defined by H up to addition of a constant to H . The flow at any fixed
time defines a diffeomorphism which we call an (autonomous) Hamiltonian diffeomorphism.

We can enlarge the class of systems under study by considering smooth, non-autonomous
Hamiltonians H ∈ C∞

�

[0,T ]×R2n� and defining the non-autonomous Hamiltonian vector
field by the same equations:

d Ht = iXHt
ω0

where Ht (z) =H (t , z). Using the representation (2.1) we find that

XH (t , z) =−J0∇Ht (z)

where∇ is the gradient with respect to z only.

2.1.1. On non-autonomous differential equations and subharmonics

Recall that a non-autonomous vector field X : [0,T ]×R2n → R2n , X = Xt (z), defines a non-
autonomous flow, that is a map (s , t , z) 7→ ϕ s ,t

X (z) defined by the ODE

¨ d
d t ϕ

s ,t
X (z) =Xt

�

ϕ s ,t
X (z)

�

, t ≥ s
ϕ s ,s

X (z) = z

In general, the non-autonomous flow might not be defined everywhere. Using uniqueness
of solutions of Cauchy problems, the non-autonomous flow is seen to satisfy the following
properties:

ϕ t ,t
X (z) = z, ϕ s ,t+t ′

X = ϕ t ,t ′
X ◦ϕ s ,t

X ,

i.e. the flow depends on both the initial and final times, and not only on the elapsed time.
There is no reason to expect that a general non-autonomous flow admits periodic orbits.

We therefore restrict our study to non-autonomous systems with periodic coefficients. To be
clear, there is still no reason to expect that a non-autonomous but periodic differential equation
admits periodic solutions in general, but such an assumption helps. This is because if a non-
autonomous vector field, say X =Xt (z), is periodic in time with period T , i.e. Xt+T =Xt for
all t ∈R, then its non-autonomous flow satisfies

ϕ s ,t+T
X = ϕ s ,t

X

by uniqueness of solutions of differential equations. Therefore also the non-autonomous flow
is somewhat periodic and might define periodic solutions. In particular, we have a well defined
map ϕT

X = ϕ
0,T
X . The T -periodic orbits correspond precisely to the fixed points of ϕT

X , and
moreover for every k ∈Z

�

ϕT
X

�k
= ϕ0,T

X ◦ · · · ◦ϕ0,T
X = ϕ(k−1)T ,kT

X ◦ · · · ◦ϕT ,2T
X ◦ϕ0,T

X = ϕ0,kT
X
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so even the kT -periodic orbits are fixed points of the k-th iteration of ϕT
X . This is the reason

that in older literature, higher-period periodic orbits are also sometimes called “subharmonics”.
We will only consider non-autonomous Hamiltonian systems with periodic coefficients,

namely, the Hamiltonians will always have a periodic dependence on time. We will see them
as smooth functions H ∈ C∞

�

R/TZ×R2n�. Notice that if H is such a Hamiltonian, then
T H (T t , z) is a 1-periodic Hamiltonian whose flow is just a re-parametrized version of the
flow of H . So without loss of generality we can always take T = 1 and consider smooth
Hamiltonians H ∈C∞(S1×R2n), where here and below S1 =R/Z. We write ϕ1

H = ϕ
0,1
XH

.

Remark We make a distinction between S1 = R/Z, the unit length circle, and U(1) ⊂ C the
unit radius circle.

2.2. Asymptotically quadratic Hamiltonians

The class of all Hamiltonian systems on R2n is too wild to study, for example, “most” Hamil-
tonians don’t generate a complete flow on R2n . Moreover, it is quite easy to come up with
Hamiltonian systems onR2n without any periodic orbits, like a constant non-zero vector field,
which is generated by a linear Hamiltonian.

A simple class of Hamiltonian systems, which we have secretly already studied in the previ-
ous chapter and will pick up again in Section 2.3.1, is given by non-autonomous linear Hamil-
tonian systems. These are the Hamiltonian systems defined by non-autonomous linear Hamil-
tonian vector fields, and hence non-autonomous quadratic Hamiltonians, which we take to
be with 1-periodic coefficients, as explained above. The question of periodic orbits for linear
Hamiltonian systems is reduced to the study of the spectrum of the linear map representing
the time-1 flow of the linear Hamiltonian vector field.

A more interesting and much less understood class of Hamiltonian systems is obtained by
deforming the linear Hamiltonian systems with sub-quadratic terms.

Definition 2.1 Consider a smooth function H : S1×R2n→R.
1. We say that H is weakly asymptotically quadratic if there exists a smooth loop of symmet-

ric matrices A∈C∞(S1, Sym(2n)) such that

sup
t∈S1
|∇Ht (z)−At z |= o (|z |) as |z | →∞

We refer to the quadratic form Qt (z) =
1
2〈At z, z〉 as the quadratic Hamiltonian at infinity.

Usually we denote by
ht (z) =Ht (z)−Qt (z)

the non-quadratic part of H .
Let H =Q + h be a weakly asymptotically quadratic Hamiltonian.
2. We say that the quadratic Hamiltonian at infinity Q is non-degenerate if the spectrum of
ϕ1

Q does not contain the eigenvalue 1.
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3. We say that H is asymptotically quadratic if h is bounded:

∥h∥L∞(S1×R2n) <∞

It is convenient to fix the following notation.

wH=
�

H ∈C∞
�

S1×R2n� :
weakly asympototically quadratic Hamiltonian

with non-degenerate quadratic Hamiltonian at infinity.

�

H=
�

H ∈C∞
�

S1×R2n� :
asympototically quadratic Hamiltonian

with non-degenerate quadratic Hamiltonian at infinity.

�

Remark The condition of being weakly asymptotically quadratic is well defined, since if H =
Q + h =Q ′+ h ′ with both∇h,∇h ′ of sublinear growth, then h ′ =Q −Q ′+ h, so

�

�∇h ′t (z)
�

�≥
�

�

�

At −A′t
�

z
�

�− |∇ht (z)|

If A ̸= A′ then the first always grows linearly as |z | → ∞. So for ∇h ′ to grow sublinearly, it
must hold A′ = A, and therefore also h = h ′. A fortiori also asymptotically quadratic Hamil-
tonians are well defined.

Definition 2.2 If ϕ ∈ Ham(R2n) is a Hamiltonian diffeomorphism such that ϕ = ϕ1
H for

H some (weakly) asymptotically quadratic Hamiltonian, we say ϕ is a (weakly) asymptotically
linear Hamiltonian diffeomorphism. The linear symplectomorphism ϕ1

Q is called the linear
map at infinity.

Lemma 2.2.1 The linear map at infinity of a weakly asymptotically linear Hamiltonian diffeo-
morphism does not depend on the chosen generating weakly asymptotically quadratic Hamiltonian.

Proof. Assume ϕ = ϕ1
H = ϕ

1
H ′ with H =Q + h and H ′ =Q ′+ h ′. Fix 0≤ τ ≤ 1 and z ∈R2n .

Let’s estimate:
�

�

�ϕτH (z)−ϕ
τ
Q (z)

�

�

�=
�

�

�

�

∫ τ

0
XH

�

ϕ t
H (z)

�

−XQ

�

ϕ t
Q (z)

�

d t
�

�

�

�

=
�

�

�

�

∫ τ

0
∇Ht

�

ϕ t
H (z)

�

−At ·ϕ
t
Q (z)d t

�

�

�

�

≤

≤
∫ τ

0

�

�∇Ht
�

ϕ t
H (z)

�

−At ·ϕ
t
H (z)

�

�d t + ∥A∥L∞

∫ τ

0

�

�

�ϕτH (z)−ϕ
τ
Q (z)

�

�

�d t =

=
∫ τ

0

�

�∇ht
�

ϕ t
H (z)

��

�d t + ∥A∥L∞

∫ τ

0

�

�

�ϕτH (z)−ϕ
τ
Q (z)

�

�

�d t

(2.2)

Now, since ∇ht is o(|z |), for any ϵ > 0 there exists an Mϵ > 0 such that if |ζ | > Mϵ then
|∇ht (ζ )|< ϵ|ζ |. Therefore define

Iϵ = {t ∈ [0,τ] : |ϕ t
H (z)|>Mϵ} , Jϵ = {t ∈ [0,τ] : |ϕ t

H (z)| ≤Mϵ}
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and we can estimate
∫ τ

0

�

�∇ht
�

ϕ t
H (z)

��

�d t =
∫

Iϵ

�

�∇ht
�

ϕ t
H (z)

��

�d t +
∫

Jϵ

�

�∇ht
�

ϕ t
H (z)

��

�d t ≤

≤ ϵ
∫ τ

0
|ϕ t

H (z)|d t +τ max
t∈S1, |ζ |≤Mϵ

|∇ht (ζ )| ≤

≤ ϵ
�∫ τ

0

�

�

�ϕ t
H (z)−ϕ

t
Q (z)

�

�

�d t +
∫ τ

0

�

�

�ϕ t
Q (z)

�

�

�d t
�

+τCϵ ≤

≤ ϵ
∫ τ

0

�

�

�ϕ t
H (z)−ϕ

t
Q (z)

�

�

�d t + ϵ ·B−1(eBτ − 1)|z |+τCϵ

where B = ∥A∥L∞ , Cϵ =maxt∈S1, |ζ |≤Mϵ
|∇ht (ζ )|. Combining with (2.2) we get

�

�

�ϕτH (z)−ϕ
τ
Q (z)

�

�

�≤ (B + ϵ)
∫ τ

0

�

�

�ϕ t
H (z)−ϕ

t
Q (z)

�

�

�d t + ϵ · eBτ |z |+τCϵ

Dividing by |z | both sides and then using Grönwall’s lemma, we obtain that for every ϵ > 0
there exists an Mϵ > 0 such that

�

�

�ϕ1
H (z)−ϕ

1
Q (z)

�

�

�

|z |
≤
�

ϵ
eB − 1

B
+

Cϵ
|z |

�

eB+ϵ ϵ=|z |
−1

−−−→
|z |→∞

0

This is because, taking ϵ = |z |−1, either Mϵ stays bounded as |z | → ∞, or it goes to infinity.
In the second case, Cϵ =maxt∈S1, |ζ |≤Mϵ

|∇ht (ζ )| either stays bounded, or runs off to infinity,
but by definition, slower than |z |. In the first case the same conclusion is reached even more
easily. Therefore in any case

�

�

�ϕ1
H (z)−ϕ

1
Q (z)

�

�

�= o(|z |) as |z | →∞

The exact same estimates hold for the other flows, so
�

�

�ϕ1
H ′(z)−ϕ

1
Q ′(z)

�

�

� = o(|z |) as |z | →∞.
Therefore

�

�

�ϕ1
Q (z)−ϕ

1
Q ′(z)

�

�

�≤
�

�

�ϕ1
H (z)−ϕ

1
Q (z)

�

�

�+
�

�

�ϕ1
H ′(z)−ϕ

1
Q ′(z)

�

�

�+
�

�

�ϕ1
H (z)−ϕ

1
H ′(z)

�

�

�=

=
�

�

�ϕ1
H (z)−ϕ

1
Q (z)

�

�

�+
�

�

�ϕ1
H ′(z)−ϕ

1
Q ′(z)

�

�

�= o(|z |) as |z | →∞

But since both ϕ1
Q and ϕ1

Q ′ are linear maps, this is possible if and only if ϕ1
Q = ϕ

1
Q ′ .

2.2.1. Index of a fixed point and index at infinity

Given a fixed point of a Hamiltonian diffeomorphism and a generating Hamiltonian, we can
talk about the (mean) index of the fixed point with respect to the given Hamiltonian:
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Definition 2.3 Let H ∈C∞(S1×R2n) be any Hamiltonian and z0 ∈ Fixϕ1
H . We denote

CZ(z0, H ) =CZ
�

dϕ t
H (z0) : t ∈ [0,1]

�

, CZ(z0, H ) = lim
j→∞

CZ
�

dϕ t
H (z0) : t ∈ [0, j ]

�

j

In the specific case of asymptotically linear Hamiltonian diffeomorphism, the choice of gen-
erating Hamiltonian also induces a choice of linear isotopy connecting the linear map at infinity
with the identity. With this isotopy we can give a notion of index at infinity:

Definition 2.4 Given H weakly asymptotically quadratic, define the index at infinity ind∞(H )
and the mean index at infinity ind∞(H ) of H as

ind∞(H ) =CZ (0,Q) =CZ
�

ϕ t
Q : t ∈ [0,1]

�

, ind∞(H ) =CZ (0,Q)

Both the index of a fixed point and the index at infinity depend on the chosen generating
Hamiltonian. Namely, the change of index formula (1.5) implies immediately the following

Lemma 2.2.2 Let F ,G ∈wH be weakly asymptotically quadratic Hamiltonians such that

ϕ1
F = ϕ

1
G = ϕ.

1. If z0 ∈ Fixϕ, then
CZ (z0, F ) =CZ (z0,G)+ 2µ

where µ ∈Z is the Maslov index of the loop Λ : S1→ Sp(2n) given by

Λ(t ) = dϕ t
F (z0)

�

dϕ t
G (z0)

�−1 .

2. Writing F = P + f and G =Q + g , we have

ind∞ F = ind∞G+ 2µ′

where µ′ ∈Z is the Maslov index of the loop Λ′ : S1→ Sp(2n) given by

Λ′(t ) = ϕ t
P ◦
�

ϕ t
Q

�−1
.

2.3. Dynamical properties of systems non-degenerate at infinity

The non-degeneracy at infinity of a weakly asymptotically linear Hamiltonian system has im-
portant consequences on the corresponding dynamics. Namely, for every fixed period, there
exists a compact set containing all periodic orbits of that period. This is the minimal required
amount of compactness needed for the analysis of the problem of periodic orbits.

36



2.3.1. (Invertible) linear Hamiltonian systems

We start with the linear theory, where one may describe the periodic orbits completely. In
particular, one may show that linear Hamiltonian systems which are non-degenerate have only
one 1-periodic orbit, which is the stationary solution at the origin. The consequences of this
will be of central importance for the construction of Floer homology.

Let Qt (z) =
1
2 〈At z, z〉 be a quadratic Hamiltonian. Its Hamiltonian vector field

XQ (t , z) =−J0At z

is linear. Therefore, its flow is by linear symplectomorphisms.
Define the matrizant, or fundamental solution, of the linear ODE associated to Q to be the

path of symplectic matrices M : [0,1]→ Sp(2n) defined by the matrix ODE
¨

Ṁt =−J0At Mt

M0 = I
(2.3)

The name “fundamental solution” comes from the fact that a curve [0,1] ∋ t 7→ zt solves the
linear ODE defined by XQ with initial datum z0 if and only if zt =Mt z0.

The proof of the next lemma follows [14, III, Proposition 2].

Lemma 2.3.1 The operator

ΛA : W 1,2 �S1,R2n�⊂ L2 �S1,R2n�→ L2 �S1,R2n� , ΛAξ = J0ξ̇ −Atξ

is a self-adjoint closed operator. Its image imΛA ⊂ L2 is closed in L2 and its kernel kerΛA has
dimension at most 2n. Moreover, its kernel is the L2-orthogonal complement to its image:

L2 = kerΛA⊕ imΛA

Finally, the double restriction
ΛA : W 1,2 ∩ imΛA→ imΛA

is an isomorphism with compact inverse.

Proof. It is immediate to check that 〈ΛAξ ,η〉L2 = 〈ξ ,ΛAη〉L2 , hence Λ∗A = ΛA. From this it
follows that Λ∗A has dense domain in L2, hence also that ΛA is closed, as Λ∗∗A =−Λ

∗
A=ΛA.

Invertibility of ΛA is equivalent to saying that the equation J0ξ̇ −Atξ = η has an unique
solution for any η ∈ L2(S1,R2n). The variations of constants formula immediately gives us the
proposed solution in terms of the fundamental solution t 7→ Mt of the linear ODE, i.e. the
solution to the equation (2.3):

ξ (t ) =Mtξ (0)−
∫ t

0
M−1
τ J0η(τ)dτ (2.4)
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Clearly ξ ∈W 1,2
�

[0,1],R2n� and ΛAξ = η. Now, we must impose ξ (0) = ξ (1). Calculating

ξ (1) =M1ξ (0)−
∫ 1

0
M−1
τ J0η(τ)dτ =M1ξ (0)+ η̄

where η̄ = −
∫ 1

0 M−1
τ J0η(τ)dτ ∈ R2n is just a vector uniquely determined by A and η. We

obtain the relation
(M1− I)ξ (0) = η̄

If 1 /∈ σ(M1) then there is an unique solution to this equation, and thus ΛA is invertible. If
1 ∈ σ(M1), then we found that

∫ 1

0
M−1
τ J0η(τ)dτ ∈ im (M1− I)⊂R

2n (2.5)

This characterizes the image of ΛA, and shows that its codimension in L2 is at most 2n.
Since ΛA is self-adjoint and densely defined, we have

kerΛA= kerΛ∗A= (imΛA)
⊥L2 .

which shows that L2 = kerΛA⊕ imΛA. From this and the closed graph theorem we obtain
that ΛA : W 1,2 ∩ imΛA → imΛA is an isomorphism. As W 1,2

�

S1,R2n� ⊂ C 0
�

S1,R2n�, the
map W 1,2 ∋ ξ 7→ M1ξ (0) ∈R2n is continuous. We conclude compactness of the inverse from
formula (2.4).

We are interested in the consequences of this Lemma to the linear Hamilton equations.

Corollary 2.3.1 Let Qt (z) =
1
2 〈At z, z〉 be a quadratic Hamiltonian, and define the linear oper-

ator
DA : W 1,2 �S1,R2n�→ L2 �S1,R2n� , DAξ = ξ̇ + J0Atξ .

The operator DA is a Fredholm index zero operator. DA is invertible and only if Q is a non-
degenerate quadratic Hamiltonian. The inverse D−1

A : L2
�

S1,R2n�→W 1,2
�

S1,R2n� is given by

D−1
A η(t ) =Mt

�

(I−M (1))−1
∫ 1

0
M (τ)−1η(τ)dτ+

∫ t

0
M (τ)−1η(τ)dτ

�

(2.6)

Proof. Notice that DA = −J0ΛA. Since kerΛA is L2-orthogonal to imΛA, ΛA is a Fredholm
index 0 operator. Hence the same is true for DA. The invertibility of DA is equivalent to the
invertibility ofΛA, which by the previous Lemma we found to be equivalent to non-degeneracy
of the quadratic Hamiltonian Q, and the formula for the inverse is just an application of the
variation of constants formula.
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2.3.2. Periodic orbits of systems non-degenerate at infinity

Recall the classical variational set-up for the periodic orbit problem in Hamiltonian systems
onR2n . Let H ∈C∞(S1×R2n). We consider the Hilbert space L2

�

S1,R2n�= L2 and its dense
subspace W 1,2

�

S1,R2n�=W 1,2. Define the action functional on W 1,2 by

AH (x) =
∫

S1

�

1
2
〈J0 ẋ, x〉−Ht ◦ x

�

d t

Proposition 2.3.1 The differential of the action functional is given by

dAH |xξ =
∫

S1
ω0 (ẋ −XH ◦ x,ξ )

Therefore the critical points of the action functionalAH on W 1,2 are precisely the 1-periodic orbits
of H .

Remark In principle, the critical points ofAH on W 1,2 are weak solutions of the Hamilton’s
equations. But it is not difficult to bootstrap from W 1,2 to smooth (actual) solutions, given the
smoothness of the Hamiltonian vector field, see e.g. [29].

Proof. We can compute the (Fréchet) differential in terms of the (Gateaux) directional deriva-
tive as follows:

dAH |xξ =
d

dσ
AH (x +σξ )

�

�

�

�

�

σ=0

=

=
d

dσ

∫ 1

0

1
2

¬

J0

�

ẋ +σξ̇
�

, x +σξ
¶

−Ht (x +σξ )d t

�

�

�

�

�

σ=0

=

=
∫ 1

0

1
2

�

〈J0 ẋ,ξ 〉+
¬

J0ξ̇ , x
¶�

−〈∇Ht (x) ,ξ 〉d t

Now, notice that
¬

J0ξ̇ , x
¶

=
d
d t
〈J0ξ , x〉+ 〈J0 ẋ,ξ 〉

Moreover,
∫ 1

0

d
d t
〈J0ξ , x〉d t = 〈J0ξ (1), x(1)〉− 〈J0ξ (0), x(0)〉= 0

Putting these facts together,

dAH |xξ =
∫ 1

0
〈J0 ẋ,ξ 〉− 〈∇Ht (x) ,ξ 〉d t =

∫ 1

0
〈J0 ẋ −∇Ht ◦ x,ξ 〉d t =

=
∫

S1
ω0 (ẋ −XH (t , x),ξ )d t
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as claimed. In the last equality we used the identity

ω0(u, v) = 〈J0u, v〉

i.e. the fact that −J0 is the Gram matrix of ω0. That the critical points are 1-periodic orbits
now follows from non-degeneracy ofω0 as a bilinear form.

Borrowing the terminology of Floer [16], we define the “unregularized gradient” ofAH by
the identity

〈∇L2AH (x),ξ 〉L2 = dAH |xξ ∀ξ ∈W 1,2

Therefore, the previous proposition shows that

∇L2AH (x) = J0 ẋ −∇Ht ◦ x

Remark The specific choice of the complex structure made here, namely the use of J0, is not
essential. Given any compatible almost-complex structure, the same formula holds mutatis
mutandis.

Lemma 2.3.2 Let H be a weakly asymptotically quadratic Hamiltonian with A its associated path
of symmetric matrices. For every ϵ > 0 there exists a δ > 0 such that

∥∇H ◦ x −Ax∥L2 ≤ ϵ∥x∥L2 +δ ∀x ∈W 1,2 (2.7)

Proof. Since H is weakly asymptotically quadratic,∇Ht (z)−At z = o(|z |) as |z | →∞. Namely
for every ϵ > 0 there exists an Mϵ > 0 such that if |z | > Mϵ then |∇Ht (z)− At z | < ϵ|z |.
Therefore

∥∇H ◦ x −Ax∥2L2 =
∫

S1
|∇Ht (xt )−At xt |

2 d t =

=
∫

{t :|xt |<Mϵ}
|∇Ht (xt )−At xt |

2 d t +
∫

{t :|xt |>Mϵ}
|∇Ht (xt )−At xt |

2 d t ≤

≤ max
(t ,z)∈S1×BMϵ

(0)
|∇Ht (z)−At z |2+ ϵ2∥x∥2L2

Set max(t ,z)∈S1×BMϵ
(0) |∇Ht (z)−At z |2 = δ2. We obtain

∥∇H ◦ x −Ax∥L2 ≤ ϵ∥x∥L2 +δ

as claimed.

The non-degeneracy condition at infinity is equivalent to the fact that the Hamiltonian sys-
tem approaches an invertible linear Hamiltonian system at infinity. This translates into the
following crucial property of the action functional, which can be seen as a sort of properness
of the unregularized gradient. Here we follow Conley and Zehnder’s [12].
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Lemma 2.3.3 Let H ∈wH. There exist constants ν,δ > 0 such that

∥∇L2AH (x)∥L2 = ∥ẋ −XH ◦ x∥L2 ≥
ν

2
∥x∥L2 −δ (2.8)

Proof. Let A: S1 → Sym2n be the corresponding loop of symmetric matrices defining the
linear system at infinity. With a small abuse of notation denote by J0A the operator on L2

given by multiplication by J0A: x 7→ J0Ax(t ) = J0At x(t ). Since the quadratic Hamiltonian
at infinity of H is non-degenerate, the operator DA =

d
d t + J0A: W 1,2 → L2 is invertible. Set








D−1
A










op
= ν−1. We obtain the first estimate

∥DAx∥L2 ≥ ν∥x∥L2 (2.9)

Now notice that ẋ −XH ◦ x − J0DAx =−∇Ht ◦ x +Ax. Therefore

∥ẋ −XH ◦ x∥L2 = ∥J0DAx − (J0DAx − ẋ +XH ◦ x)∥L2 ≥
≥ ∥DAx∥L2 −∥∇H ◦ x −Ax∥L2

(2.10)

Now we use Lemma 2.3.2 with ϵ = ν
2 , and combine the estimate (2.7) with (2.9) and (2.10) to

get
∥ẋ −XH ◦ x∥L2 ≥

ν

2
∥x∥L2 −δ

as claimed. Notice that δ depends only on ν and h, and ν depends only on the behaviour of
the linear system at infinity.

The main consequence of the above result is that the 1-periodic orbits of H are contained in
a fixed compact set.

Lemma 2.3.4 Let H ∈wH. There exists a constant R> 0 such that if x : S1→R2n is a 1-periodic
orbit of H then

∥x∥L∞ ≤ R

Proof. From the estimate (2.8) applied to a 1-periodic orbit x ∈W 1,2

∥x∥L2 ≤
2δ
ν
=C0

Let A: S1→ Sym2n be the loop of symmetric matrices defining the linear system at infinity.
Similarly as the previous lemma, notice that

DAx = J0 (At x −∇Ht ◦ x)

From Lemma 2.3.2 with ϵ= 1 we obtain

∥DAx∥L2 = ∥∇H ◦ x −Ax∥L2 ≤ ∥x∥L2 +C1
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where C1 > 0 depends only on H . Now, recall that non-resonance at infinity is equivalent
to DA : W 1,2 → L2 being an invertible operator. Moreover any 1-periodic (weak) solution is
a bounded function, since W 1,2(S1,R2n) compactly embeds in L∞(S1,R2n) by the Sobolev
inequalities. Therefore we get

∥x∥L∞ ≤C2∥x∥W 1,2 ≤C2








D−1
A










op
∥DAx∥L2 ≤

≤C3 (∥x∥L2 +C1)≤C3(C0+C1) =: R

where R now depends only on H .

Remark Up to this point, we don’t know that an asymptotically linear Hamiltonian system
non-degenerate at infinity admits at least one periodic orbit. We shall show this using Floer
theory, but this was already known to Amann, Conley and Zehnder [4, 5, 12].

2.4. Non-degenerate Hamiltonians

In this last section, we investigate a special class of Hamiltonians, those which have only non-
degenerate 1-periodic orbits. They will become important for the Fredholm theory of the
Floer equation. The aim of the section is to show that they are dense (in fact residual) in the
set of all Hamiltonians.

Definition 2.5 Let H be a smooth Hamiltonian. We say that a 1-periodic orbit of H is non-
degenerate if the linearization of the flow along it is given by a non-degenerate path of symplectic
matrices. If all orbits of H are non-degenerate, we say that H is non-degenerate. It is convenient
to fix the following notation:

wH∗ = {H ∈wH : H non-degenerate }
H∗ = {H ∈H : H non-degenerate}

Denote by Per1 H ⊂ C∞
�

S1,R2n� the set of 1-periodic orbits of XH . A first, extremely
important property of non-degenerate periodic orbits is that they are always isolated.

Proposition 2.4.1 Let H ∈wH and γ ∈ Per1 H be a non-degenerate orbit. Then γ is isolated as
a 1-periodic orbit: there exists an open neighborhoodU ⊂ S1×R2n of the graph of γ which does
not intersect the graph of any other 1-periodic orbit of H .

Proof. This follows immediately from the fact that det
�

I−Dϕ1
H (γ (0))

�

̸= 0.

Remark Non-degenerate 1-periodic orbits correspond to non-degenerate critical points of the
action functionalAH . Indeed, from Proposition 2.3.1 we know that the first variation of the
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action functional is given by

dAH (γ )ξ =
∫

S1
ω0 (γ̇ −XH (γ ),ξ )

A similar calculation shows that the second variation of the action functional at a critical point
γ is

HessAH (γ ) (ξ0,ξ1) =
∫

S1
ω0

�

ξ̇0−DXH (γ )ξ0,ξ1

�

The second variation at the critical point γ thus has a kernel if and only if the linearized Hamil-
ton equations along γ have a solution, which is equivalent to the orbit γ being degenerate.

As a corollary of this together with Lemma 2.3.4 we obtain a first important property of non-
degenerate, asymptotically quadratic Hamiltonian systems with non-degenerate linear system
at infinity:

Corollary 2.4.1 If H ∈wH∗ then H has finitely many 1-periodic orbits.

We equip the set wH with the C∞loc -topology, i.e. a sequence
�

H (k)
�

k∈N ⊂wH converges to
an H ∈ wH if and only if it converges uniformly on compact sets with all derivatives. With
this topology, wH is a Fréchet space, so a Baire space, i.e. every residual set in wH is dense.
Notice that it is not a Banach space.

A very useful property of non-degenerate Hamiltonians is that any Hamiltonian has an ar-
bitrarily C∞-close non-degenerate Hamiltonian. To show this, we follow [15, §3.1].

First we introduce a Banach space of perturbations of Hamiltonians, called Floer’s C∞ϵ space.
Let ϵ = (ϵk )k∈N, ϵk → 0 be a sequence of real numbers converging to zero. Denote by
C∞ϵ (Rm) the set of functions h : Rm→R such that

∥h∥ϵ =
∞
∑

k=0

ϵk ∥h∥C k (Rm) <∞

The space C∞ϵ (Rm) equipped with the above norm is a Banach space. Notice that if ϵ′ is a
sequence converging to zero faster than ϵ, then there is a continuous inclusion C∞ϵ′ (R

m) ⊂
C∞ϵ (Rm). We therefore are free to choose the sequence ϵ to converge as fast as we need.

The following important property of Floer’s C∞ϵ space is proven in Floer’s original paper
[16].

Lemma 2.4.1 If ϵ converges to zero fast enough, then C∞ϵ (Rm) contains functions with arbitrary
small compact support near any point, and attaining any value at that point.

Proof. Let ρ : R→ [0,1] be a smooth function such that ρ(r ) = 0 for all r ≤ 0 and ρ(r ) = 1
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for all r ≥ 1. Let p ∈R2n , δ ∈ (0,∞)m and α ∈R be fixed. Define

hp,δ,α(z) = α
m
∏

j=1



1−ρ





�

�

�z j − p j

�

�

�

δ j









This function is a smooth function with support contained in a rectangle around p, attaining
the value α at p. The rectangle is as small as we want by choosing δ suitably. Define

ϵk =
1

kk ∥ρ∥C k

Then obviously hp,δ,α ∈C∞ϵ (Rm).

When we write C∞ϵ
�

S1×R2n� we mean the closed subspace of C∞ϵ
�

R1+2n� of functions
1-periodic in the first variable. See Appendix A for the necessary concepts and theorems in
Fredholm theory.

Proposition 2.4.2 wH∗ ⊂wH is dense.

Proof. Denote C∞ϵ
�

S1×R2n�=C∞ϵ . We show that for every H (0) ∈wH there exists an ϵ and
a residual set P⊂C∞ϵ such that h ∈P =⇒ H (0)+h ∈wH∗.

First of all, Lemma 2.4.1 shows that there exists an ϵ such that if h ∈C∞ϵ , then H (0)+h ∈wH

and ind∞H (0)+h= ind∞H (0).
Notice that H ∈wH∗ is equivalent to the set of its 1-periodic orbits Per1 H ⊂W 1,2

�

S1,R2n�

being transversely cut out. Consider f : E0 =W 1,2
�

S1,R2n�×C∞ϵ → L2
�

S1,R2n�= E1 defined
by

f (x,h) = ẋ −XH (0)+h ◦ x = ẋ −XH (0) ◦ x −Xh ◦ x

Define Σ = f −1(0). This is the solution set Σ =
�

(x,h) : ẋ =XH (0)+h ◦ x
	

. Now, for fixed h,
the map f (·,h) : W 1,2→ L2 is an index zero Fredholm map. Indeed, for any ξ ∈W 1,2,

D f (x,h)(ξ , 0) = ξ̇ −DXH (0)+h(x)ξ = ξ̇ + J0Atξ

where we set At = Hess
�

H (0)+h
�

(t , x(t )) ∈ Sym(2n). All the following facts follow from
Lemma 2.3.1 and its Corollary 2.3.1: first, we see that D f (x,h)(ξ , 0) = DAξ and we know
that DA has Fredholm index zero. Further, it’s immediate to check that

D f (x,h) (ξ ,g) = ξ̇ −DXH (0)+h(x)ξ −Xg ◦ x

for every (ξ ,g) ∈ E0. We use this formula to show that D f (x,h) : E0 → E1 is onto for every
(x,h) ∈Σ . Indeed, for fixed θ ∈ E1, we have to find suitable (ξ ,g) ∈ E0 for which

ξ̇ −DXH (0)+h(x)ξ −Xg(x) = θ ⇐⇒ ξ̇ + J0Atξ = η ⇐⇒ DAξ = η
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where η(t ) = θ(t )+Xg(t , x(t )) ∈ L2. That the equation admits a solution for a suitable choice
of g follows from the characterization of the image ofΛA given in equation (2.5), which implies
that the image of DA is characterized by

η ∈ im DA ⇐⇒
∫ 1

0
Mt M−1

τ η(τ)dτ ∈ im (M1− I)⊂R
2n .

Finally, ker D f (x,h) splits, because it is finite dimensional.
We conclude by Theorem A.1 thatΣ ⊂E0 is a smooth submanifold. Now, let p2 : E0→C∞ϵ

be the projection. The restriction p = p2|Σ : Σ → C∞ϵ is a Fredholm map of index zero, by
Lemma A.4. By the Sard-Smale theorem (Theorem A.3), there is a residual set P ⊂ C∞ϵ of
regular values for p. But the regular values of p are exactly the functions h ∈ C∞ϵ such that
H (0)+h ∈wH∗.

To show that wH∗ is dense in wH in the C∞loc -topology, it suffices to observe that for any

fixed H (0) ∈wH we can choose some sequence hk ∈P with







hk









ϵ
→ 0 as k→∞ and

H (k) =H (0)+hk ∈wH∗

Then H (k)→H (0) even in the strong C∞-topology of uniform convergence over all S1×R2n

together with all derivatives, so a fortiori in the C∞loc -topology too.

Remark 1. With a bit more effort, one may show that the set wH∗ ⊂wH is even residual,
and not just dense.

2. The proof shows that in order to perturb a degenerate Hamiltonian to a non-degenerate
one, it suffices to add a C∞ϵ -perturbation with compact support containing the (com-
pact) set of 1-periodic orbits of the original Hamiltonian.
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3. Elements of Analysis of the Floer equation

In this chapter we study some aspects of the analysis of the Floer
equation in order to discuss the moduli spaces of its solutions. In
particular, we will argue that the solutions of various versions of the
Floer equation come in smooth manifolds which admit a compacti-
fication by adding boundary and corners.

3.1. The Floer equation: two points of view

Unregularized gradient flow Recall from the previous chapter that the unregularized gra-
dient of the action functional∇L2AH : W 1,2→ L2 is given by

∇L2AH (x) = J0 ẋ −∇Ht (x) = J0 [ẋ −XH (x)] , ∀x ∈W 1,2

Floer’s idea is to build a Morse-Smale-Witten complex where the generators are critical points
of the action functional – so 1-periodic orbits of the Hamiltonian sytstem in study – and the dif-
ferential counts “unregularized anti-gradient flow trajectories”. These anti-gradient flow trajec-
tories are maps from the cylinder u : R×S1→R2n seen as paths of loops s 7→ u(s , ·) : S1→R2n

which solve the gradient descent equation obtained using the unregularized gradient∇L2AH .
Namely, for u to be an “anti-gradient trajectory” of the action functional, it must solve the
equation

∂s u =−∇L2AH (u(s , ·))

Substituting the formula for the unregularized gradient and putting everything on one side,
we obtain

∂s u + J0 [∂t u −XH (u)] = 0

This is Floer’s equation for the couple (H , J0).
Notice that we have implicitly chosen J0 as complex structure on R2n . This is a natural

choice, but is not the only one. In fact, below we will develop the analysis of the Floer equation
for a general almost-complex structure depending on all variables (s , t , z) ∈R× S1×R2n .

Warning Clearly the unregularized gradient is not a vector field on W 1,2 so it is not correct
to claim that the Floer equation is really giving an anti-gradient flow, since it is not giving a
flow at all. The miracle is that it acts as a surrogate for an anti-gradient flow equation in all the
ways that matter for building a Morse complex.
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Perturbation of Cauchy-Riemann equations
�

R2n , J0
�

can be seen as the complex manifold
(Cn , i), andR×S1 is also a complex curve when equipped with the complex structure j0 defined
by j0∂s = ∂t , j0∂t = −∂s where (s , t ) ∈ R× S1 are the coordinates on the cylinder. From
this point of view the Floer equation can be seen as a perturbation of the Cauchy-Riemann
equations for maps u : (R× S1, j0) →

�

R2n , J0
�

. Namely, the Cauchy-Riemann equations for
such a map are the equations

d u ◦ j0 = J0 ◦ d u

which simply say that the differential of u is a complex-linear map. Writing in coordinates:

d u = ∂s ud s + ∂t ud t , J0 ◦ d u ◦ j0 = J0 ◦ [∂t ud s − ∂s ud t ] = (J0∂t u)d s +(−J0∂s u)d t

Equating this last expression with −d u we obtain
¨

J0∂t u =−∂s u
−J0∂s u =−∂t u

The second equation is just −J0 multiplied the first, so we are left with

∂s u + J0∂t u = 0

We define ∂ j0,J0
= ∂s+J0∂t the Cauchy-Riemann operator associated to ( j0, J0). The Floer equa-

tion may be seen as a perturbation of this operator, by adding the non-linear term∇Ht (u). The
asymptotic linearity implies that the operator u 7→ ∇Ht (u) is compact (the image of a bounded
sequence has a converging subsequence) on suitable Sobolev spaces, hence the operator defin-
ing the Floer equation is a compact perturbation of the Cauchy-Riemann operator. This will
be an important point of view to obtain elliptic estimates on its solutions.

3.1.1. Almost complex structures

As mentioned above, to guarantee that the solutions of the Floer equation come in smooth
families, in general we must perturb the complex structure J0. We introduce the class of objects
within which the perturbation occurs.

Definition 3.1 An almost-complex structure onR2n is a smooth section of the endomorphism
bundle J : R2n→ EndR2n such that J 2 =−I. An almost-complex structure J is compatible with
the symplectic structureω0 if the family of bilinear forms

gJ (z) (v0, v1) =ω0 (v0, J (z)v1)

defines a Riemannian metric on R2n . Similarly if Σ is some smooth manifold, a Σ -family of
almost complex structures is a smooth map J : Σ ×R2n → EndR2n which gives a section for
every fixed point in Σ , and such that J (σ , z)2 = −I for all (σ , z) ∈ Σ ×R2n . Such a family is
ω0-compatible if

gJ (σ , z) =ω0 ◦ (I× J (σ , z))
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defines a Σ -parameter family of Riemannian metrics on R2n .

The proof of the following lemma can be found in [32].

Lemma 3.1.1 The set of ω0-compatible almost-complex structures is non-empty and contractible
in the C∞loc -topology.

3.1.2. The full-fledged Floer equation

We are ready to introduce the equation we will actually work with. We also discuss the most
general form of the Floer equation needed, that is, the equation needed to define the so-called
continuation morphisms on Floer homology. These will be of utmost importance for the whole
treatment.

Definition 3.2 Consider a smooth function H : R× S1 ×R2n → R, H (s , t , z) = H s
t (z),

with the following properties.
1. There exists a bounded closed interval S ⊂ R such that H depends on s only in S .

We set H 0
t (z) =H s

t (z) for some (and then all) s <minS and H 1
t (z) =H s

t (z) for some
(and then all) s >maxS .

2. There exists a smooth A=As
t : R× S1→ Sym(2n) such that A depends on s only in S ,

and
sup

(s ,t )∈R×S1
|∇H s

t (z)−A
s
t z |= o(|z |) as |z | →∞

We set A0
t =As

t for some s <minS and A1
t =As

t for some s >maxS .
3. Ai : S1→ Sym(2n) both generate non-degenerate linear systems. In other words, H 0 and

H 1 belong to wH.
We call such anH an asymptoticaly quadratic continuation between the Hamiltonians H 0 and
H 1.

Remark We do not assume that As ∈ C∞
�

S1, Sym(2n)
�

generates a non-degenerate linear
system for all s ∈S .

We also fix the behaviour of the families of almost-complex structures required to define
the Floer equation. A family of almost-complex structures J : R × S1 × R2n → EndR2n ,
J (s , t , z) =Js ,t (z) is said to be adequate if

1. There exists a bounded closed interval S ⊂R such that J depends on s only in S .
2. Js ,t isω0-compatible for all (s , t ) ∈R× S1.
3. ∥J ∥L∞(R2n ,EndR2n) <∞.

We say that a path of almost-complex structures J : S1 × R2n → EndR2n is adequate if the
corresponding s -constant family Js ,t ≡ Jt is adequate.

Finally, ifH and J are as above, we call the couple (H ,J ) an adequate pair.
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Given an adequate family of almost-complex structuresJ , we define a family of Riemannian
metrics on R2n by

gJ (s , t , z) (u, v) =ω0
�

u,Js ,t (z)v
�

Often we suppress the dependence on (s , t ) and simply write gJ . The associated family of
norms is denoted by | · |gJ . Notice that since ∥J ∥L∞ <∞, all of these norms can be compared

with the standard euclidean metric via an uniform constant: setting C =
p

∥J ∥L∞ we see that

1
C
|v | ≤ |v |gJ (s ,t ,z)

≤C |v | ∀v ∈R2n ∀(s , t , z) ∈R× S1×R2n (3.1)

Given a smooth functionF : R× S1×R2n→R, we define its J -gradient by the identity

gJ (s , t , z)
�

∇JF (s , t , z), v
�

= dzF (s , t , z)v ∀v ∈R2n

where dzF is the differential with respect to the R2n -coordinates only. Recall that the Hamil-
tonian vector field XF =XF (s , t , z) of a functionF as above is defined by the identity

iXF (s ,t , · )ω0 = dzF (s , t , · )

It follows that since gJ =ω0 ◦ (I×J ), we have the identity

XF (s , t , z) =−J (s , t , z)∇JF (s , t , z).

Similar constructions apply when J : S1 ×R2n → EndR2n is an adequate almost-complex
structure independent of s ∈R.

Definition 3.3 Let H ∈wH and J : S1×R2n → EndR2n an adequate almost-complex struc-
ture. LetH be an asymptotically quadratic continuation andJ : R× S1×R2n→ EndR2n an
adequate almost-complex structure.

1. A map u : R× S1→R2n is said to solve the (autonomous) (H , J )-Floer equation when

∂s u + Jt (u) [∂t u −XH (t , u)] = 0

The Floer operator associated to the adequate pair (H , J ) is the non-linear operator de-
fined by

∂ H ,J u = ∂s u + Jt (u)∂t u +∇J H (t , u)

2. A map u : R× S1→R2n is said to solve the continuation (H ,J )-Floer equation when

∂s u +Js ,t (u) [∂t u −XH s (s , t , u)] = 0

The Floer operator, associated to the adequate pair (H ,J ) is the non-linear operator
defined by

∂ H ,J u = ∂s u +J (s , t , u)∂t u +∇JH (s , t , u)
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3.1.2.1. Energy of a Floer trajectory

Definition 3.4 1. Let H ∈ wH and J be an adequate almost-complex structure. The
(H , J )-energy of a map u : R× S1→R2n is defined to be

EH ,J (u) =
1
2

∫

R×S1
|∂s u|2gJ

+ |∂t u −XH (t , u)|2gJ
d s ∧ d t

2. LetH be an asymptotically quadratic continuation andJ an adequate almost-complex
structure. The (H ,J )-energy of a map u : R× S1→R2n is defined to be

EH ,J (u) =
1
2

∫

R×S1
|∂s u(s , t )|2gJ + |∂t u(s , t )−XH s (t , u(s , t ))|2gJ d s ∧ d t

If u solves the continuation Floer equation for (H ,J ), then

EH ,J (u) =
∫

R×S1
|∂s u|2gJ

and analogously for the autonomous case of a solution of the (H , J )-Floer equation. Combined
with the comparison between the gJ -metrics and the standard euclidean metric of (3.1), we
see that

∥∂s u∥2L2(R×S1) ≤ ∥J ∥
2
L∞ · EH ,J (u) (3.2)

Therefore a bound on the energy corresponds to a bound on the L2-norm of ∂s u.
A useful and simple observation is that zero-energy Floer trajectories must be constant in the

s -coordinate, and therefore coincide with some 1-periodic orbit of our Hamiltonian system.
This follows immediately from the estimate (3.2). This simple fact justifies calling 1-periodic
orbits of H the “constant solutions” of the Floer equation, by abusing the analogy between the
Floer equation and the gradient flow of a function. Viceversa, cylinders with positive energy
will be sometimes called “non-constant solutions”.

Remark The definition of energy for a Floer trajectory already gives us a glimpse of the kind
functional space we will be working in. For the energy to be finite, one might want to require
our maps u to be W 1,2. Notice that p = 2 is precisely the critical exponent in the Sobolev
embedding theorem for maps from 2-dimensional manifolds, meaning in particular that there
are W 1,2 maps from the cylinder which are not continuous. Thus we will have to ask our
solutions to be W 1, p with p > 2. This strays us from the Hilbert world and forces us to work
in a Banach setting.

3.2. Analysis of the Floer equation: an overview

We will not explain in detail the complete analytical apparatus which is involved in the con-
struction of Floer homology, because the treatment found in [7] can be easily modified to
work also for the class of asymptotically linear Hamiltonian systems. Instead, we explain the
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main ideas needed to construct Floer homology and carry out a few proofs which, according
to the author’s taste, capture the peculiar techniques the analytical study of the Floer equation
necessitates.

Strategy We want to use Floer’s equation as a surrogate equation, replacing the ill behaved
gradient descent equation for the action functional. Therefore we want to study the space of
its finite-energy solutions and show that it has all the properties necessary to define a kind of
Morse-Smale-Witten complex for the action functional.

1. The first analytical task is to show that the Floer equation has the regularizing properties
typical of elliptic operators. This is usually called elliptic bootstrapping: the task is to
show that a weak solution of possibly low regularity is actually smooth and thus a strong
solution. In particular, the moduli spaces of solutions are contained in spaces of smooth
maps.

2. The second analytical task is to show that finite-energy solutions are asymptotic to criti-
cal points. This is the minimal required property to interpret them as gradient trajecto-
ries between critical points.

3. The third analytical task is to show that the Floer operator can be seen as a Fredholm sec-
tion of a Banach bundle of maps, and that, up to choosing the Hamiltonian and almost-
complex structure adequately, it intersects the zero section transversely. These two facts
together combine to imply that the zero locus, which is nothing but the set of solutions
of Floer’s equation, is a finite-dimensional smooth manifold with (local) dimension the
Fredholm index of the linearization. Such index can be computed in terms of asymptotic
data at the ends, namely, the Conley-Zehnder indices of the asymptotic periodic orbits.

4. The fourth analytical task is to study the compactification of the moduli spaces of tra-
jectories with fixed ends. This is divided in roughly two sub-tasks. The first is to show
compactness of the moduli space of finite-energy trajectories in the C∞loc topology. Here
our treatment must deviate slightly from [7], because their approach works only for
compact target symplectic manifolds. Our target is R2n which is not compact. There-
fore, in Section 3.3.1 we explain in detail the missing estimates. The second sub-task is
to describe the boundary in the compactification in terms of lower-dimensional moduli
spaces, via the process of gluing.

3.3. Elliptic regularity and its consequences

An in-depth treatment of the elliptic regularity theory we sketch here can be found in Mc-
Duff and Salamon’s [32, Appendix B] for the case of the Cauchy-Riemann operator (which is
morally the only case), and for the Floer operator in [7, Chapter 12]

Elliptic regularity is the fundamental primum movens over which the rest of the analysis of
the Floer equation rests. It can be loosely described as a bootstrapping process which imbues
low regularity weak solutions with the same regularity as the coefficients of the equation. This
is to be contrasted, for example, with the case of weak solutions of hyperbolic partial differential
equations, which are known to develop shocks, or discontinuities, in finite time.
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Elliptic regularity for the linear Cauchy-Riemann equation Let p, q , r ∈ R be such that
2< p ≤∞, 1≤ r ≤∞ and 1

p +
1
q =

1
r . LetΩ ⊂C be an open subset, with coordinates (s , t ) =

s+ i t ∈Ω ⊂C. Let J ∈W 1, p
loc

�

Ω,EndR2n� be such that J 2 =−I. Denote by ∂ J = ∂s+J (s , t )∂t

the (domain-dependent, but linear) Cauchy-Riemann operator. Finally let η ∈ Lr
loc

�

Ω,R2n�.

Definition 3.5 We say that a function u ∈ Lq
loc

�

Ω,R2n� is a weak solution of the Cauchy-
Riemann equation

∂ J u = η

if it satisfies the integral equation
∫

Ω

¬

∂sϕ+ J T ∂tϕ, u
¶

=−
∫

Ω
〈ϕ,η+(∂t J ) u〉 ∀ϕ ∈C∞c

�

Ω,R2n�

Any actual solution with the necessary regularity satisfies this integral equation, as one can
see by a few integrations by parts. A weak solution instead doesn’t have a priori enough regu-
larity to be a true solution.

The following proposition gives the fundamental elliptic estimates we need to prove elliptic
regularity.

Proposition 3.3.1 Let p, q , r ∈ R be such that 2 < p ≤ ∞, 1 ≤ r ≤ ∞ and 1
p +

1
q =

1
r .

Let Ω ⊂ C be an open set. Let J ∈W 1, p
loc

�

Ω,EndR2n� be a domain-dependent almost complex
structure. For every pre-compact open subsets U ⊂V ⊂ Ω with U ⊂V , there exists a c > 0 such
that

∥u∥W 1,r (U ) ≤ c
�







∂ J u









Lr (V )
+ ∥u∥Lq (V )

�

∀u ∈W 1,r
loc

�

Ω,R2n�

In principle, a weak solution isn’t even W 1,r
loc

. This missing first jump in regularity is

Proposition 3.3.2 Let p, q , r and J be as above, and consider an η ∈ Lr
loc(Ω,R2n). Any weak

solution u ∈ Lq
loc

�

Ω,R2n� of ∂ J u = η is actually of regularity W 1,r
loc

and satisfies the equation

∂ J u = η almost everywhere.

A proof of both these results can be found in [32, Lemma B.4.6]. They are a consequence of
the corresponding regularizing properties of the Laplacian. These propositions, together with
a smart choice of Sobolev exponents and induction, show the following important result.

Corollary 3.3.1 LetΩ ⊂C be an open set, k ≥ 1 a fixed integer and p > 2. Let J ∈W k , p
loc

�

Ω,EndR2n�

be an almost-complex structure and η ∈W k , p
loc

�

Ω,R2n�. For every pre-compact open U ⊂V ⊂Ω
with U ⊂V there exists a c > 0 such that

∥u∥W k+1, p (U ) ≤ c
�







∂ J u









W k , p (V )
+ ∥u∥W k , p (V )

�
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In particular, if J and η are smooth, and u ∈ Lp
loc

�

Ω,R2n� is a weak solution of the Cauchy-

Riemann equation ∂ J u = η, then u is a smooth function.

Roughly, the proof of smoothness goes as follows. Any weak solution is actually W 1, p
loc

, so
has one weak derivative in Lp

loc
. Now if we look at v = ∂s u, we get that ∂s v+J∂t v = η′ weakly

for some new η′ ∈ Lp
loc

. So we are again in the hypotheses of the Proposition 3.3.2, and we have

that v ∈W 1, p
loc

itself! Moreover ∂t u =−J∂s u, and hence v ∈W 1, p
loc
=⇒ u ∈W 2, p

loc
. We pulled

ourselves from the bootstraps jumping from zero derivatives to one, then to two. . . inductively
we reach infinity. The full proof can be found in [32, Prop. B.4.9].

Elliptic regularity for the Floer equation Similar regularizing properties for the non-linear
Cauchy-Riemann operator can actually be derived from this linear result. These can be ex-
tended without substantial troubles to the case of the Floer equation. Indeed fix p > 2. If we
have an adequate couple (H ,J ) and a function u ∈W 1, p

loc
(R× S1,R2n) such that

∂t u −J s
t (u) [∂t u −XH (s , t , u)] = 0

weakly, then we can set J s
t = J s

t (u(s , t )), η(s , t ) = ∇JH (s , t , u(s , t )). Since p > 2, u is a

continuous function. This implies, together with the smoothness ofH andJ , that J ∈W 1, p
loc

and η ∈W 1, p
loc

. Therefore u solves the equation ∂ J u = η in the weak sense.

Remark Notice that one must require a bit more regularity at the start here, since if u is only
Lq

loc
like in the linear theory, we cannot expect thatJ ◦u and∇JH ◦u will result to be W 1, p

loc
,

as u might not even be continuous.

This sketch of an argument is the fundamental reason why the next proposition holds. A
complete proof can be found in [7, §12.4].

Proposition 3.3.3 Let p > 2 and (H ,J ) an adequate pair. If u ∈W 1, p
loc
(R× S1,R2n) solves the

Floer equation for (H ,J ), then u ∈C∞(R× S1,R2n).

Let M (H ,J ) ⊂ W 1, p
loc

�

S1×R,R2n� be the set of solutions of the Floer equation associ-
ated to the adequate pair (H ,J ). The previous proposition can be restated by saying that
M (H ,J )⊂C∞

�

S1×R,R2n�. In principle, the spaceM (H ,J ) is equipped with the W 1, p
loc

topology, since it is defined as a subspace of W 1, p
loc

�

S1×R,R2n�, while C∞
�

R× S1,R2n� has a

natural topology, the C∞loc topology, which is much finer than the W 1, p
loc

topology. But elliptic
regularity implies that on the space of solutions, these two topologies coincide:

Proposition 3.3.4 Let u j ∈M (H ,J ) be a sequence of solutions of the Floer equation for the

adequate pair (H ,J ). If u j → u in W 1, p
loc

for some p > 2, then u ∈M (H ,J ) and u j → u in

C∞loc . In other words the C∞loc and the W 1, p
loc

topologies coincide onM (H ,J ).
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Proof sketch. That the limit is a solution follows immediately from W 1, p
loc

convergence alone.
By Proposition 3.3.3 the limit u is smooth.

To show that the convergence holds also in the C∞loc topology, we show that the limit holds

in the W k , p
loc

topology for all k ≥ 1. We identify R × S1 ≃ C \ {0} = Ω ⊂ C using coor-

dinates (s , t ) 7→ e s+i t . By induction, assume that the convergence is in W k , p
loc
(Ω), for some

k ≥ 1. Define J j (s , t ) = J s
t (u j (s , t )) and η j (s , t ) = ∇JH

�

s , t , u j (s , t )
�

. Since u j → u

in W k , p
loc

with p > 2, then J j → J and η j → η in W k , p
loc

, where J (s , t ) = J s
t (u(s , t )) and

η(s , t ) =∇JH (s , t , u(s , t )). Notice that the hypotheses of p > 2 and k ≥ 1 are crucial for this

to hold. Now, clearly u j solves ∂ J j
u j = η j for all j and consequently ∂ J u = η. Now look at

v j = u − u j . Since ∂ J j
u j = η j and ∂ J u = η,

∂ J j
v j = ∂s

�

u − u j

�

+ J j∂t

�

u − u j

�

= ∂s u + J∂t u − J∂t u + J j∂t u − ∂s u j − J j∂t u j =

= η−η j +(J j − J )∂t u =Θ j

Notice that since u is smooth and by our inductive assumption, Θ j → 0 and v j → 0, both in

W k , p
loc

. By Corollary 3.3.1 for any pre-compact open U ⊂V ⊂Ω there exists a constant c > 0
such that








v j










W k+1, p (U )
≤ c

�








∂ J j
v j










W k , p (V )
+







v j










W k , p (V )

�

=

= c
h







Θ j










W k , p (V )
+







v j










W k , p (V )

i

→ 0 as j →∞

This implies that u j → u in W k+1, p
loc

.

3.3.1. A priori uniform estimates

Since R2n is a non-compact target manifold, nothing guarantees that families of solutions of
the Floer equation must be uniformly bounded. This is the minimal requirement needed to
obtain compactness properties of families of solutions. Therefore, we must argue in some way
that an uniform L∞ bound may be reached for solutions of the Floer equation.

We derive the uniform L∞ bounds in the most general case we need, that of a Floer cylinder
solving the Floer equation for an asymptotically quadratic continuation.

Proposition 3.3.5 Let H : R× S1 × R2n → R be an asymptotically quadratic continuation
between Hamiltonians H 0, H 1 ∈ wH, and J : R× S1×R2n → EndR2n an adequate family of
almost complex structures. For every E > 0 there exists an R > 0 with the following significance.
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If u : R× S1→R2n solves the continuation Floer equation for the pair (H ,J ) and

EH ,J (u) =
∫

R×S1
|∂s u|2J < E

then we have
∥u∥L∞ < R

Proof. We can assume that the interval S ⊂ R whereH depends on s is the same as the one
for J . The uniform energy bound together with (3.2) gives

∥∂s u∥L2 =
∫

R×S1
|∂s u|2 < E ′

where E ′ depends only on E andJ . Since each H i has non-degenerate quadratic Hamiltonian
at infinity, there exist constants ν,δ > 0 such that

∥∇L2AH s (x)∥L2(S1) ≥
ν

2
∥x∥L2 −δ ∀x ∈W 1,2(S1,R2n) ∀s ∈R \S

Here the weak-L2 gradient is with respect to the L2-metric arising from the euclidean inner
product. Notice that u(s , ·) ∈ W 1,2(S1) for all s ∈ R by the regularity theory of the Floer
equation. Since u solves the Floer equation, and using again (3.2),

∥∂s u(s , ·)∥L2(S1) ≥ B ∥∇L2AH s (u(s , ·))∥L2(S1) ≥
ν ′

2
∥u(s , ·)∥L2(S1)−δ

′ ∀s ∈R \S (3.3)

Consider an arbitrary α > 0 to be determined later. Define

Sα =
¦

s ∈R : ∥∂s u(s , ·)∥L2(S1) ≤ α
©

Notice that (3.3) implies

∥u(s , ·)∥L2(S1) ≤
2 (α+δ)

ν ′
=: Rα ∀s ∈ Sα \S (3.4)

The length of the complement of Sα can be estimated as

|R \ Sα| ≤
1
α2

∫

R
∥∂s u(s , ·)∥2L2(S1)d s ≤ E ′

α2
= Lα

Therefore if I ⊂ R is an interval of length |I | = L > Lα, the previous estimate implies that

Sα∩ I ̸=∅ so there exists some s∗ ∈ Sα∩ I . Now, if we fix α <
Ç

E ′
|S | , then Lα > |S | so we can
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assume that s∗ ∈ (Sα \S )∩ I . Using the identity

u(s , t ) = u(s∗, t )+
∫ s

s∗

∂s u(σ , t )dσ

and estimate (3.4) we obtain ∀s ∈ I

∥u(s , ·)∥L2(S1) =
∫

S1
|u(s , t )|2d t ≤ 2

�

∫

S1
|u(s∗, t )|2d t +

∫

S1

∫ s

s∗

|∂s u(σ , t )|2dσd t

�

≤

≤ 2
�

R2
α+ LE ′

�

= B2
0

Integrating over I , we obtain that if Lα < |I |<∞ then

∥u∥L2(I×S1) ≤
p

|I |B0 (3.5)

Now, let I ⊂ R be an interval of length L = Lα + 1 and I ′ ⊃ I an interval of length at most
2L. Denote ∂ J u = ∂s u +Js ,t (u)∂t u the Cauchy-Riemann operator associated to J . By the
Calderòn-Zygmund inequality, for every p ∈ [2,∞) there exists a constant Cp > 0 such that

∥∇u∥Lp (I×S1) ≤Cp

h

∥u∥Lp (I ′×S1)+







∂ J u









Lp (I ′×S1)

i

∀ j ∈Z (3.6)

The constant Cp depends only on p and the length of I , i.e. L. Moreover ∂ J u =∇JH ◦ u,
where ∇JH is the gradient ofH with respect to gJ . SinceH is asymptotically linear, we
can use Lemma 2.3.2 to estimate







∂ J u









Lp (I ′×S1)
=









�

∇JH
�

◦ u









Lp (I ′×S1)
≤









�

∇JH
�

◦ u −Au









Lp (I ′×S1)
+ ∥Au∥Lp (I ′×S1) ≤

≤ B1

�

∥u∥Lp (I ′×S1)+ 1
�

(3.7)

where B1 > 0 depends only on H , A and J . Now fix p = 2 and using the estimates (3.5),
(3.6), (3.7) we obtain

∥u∥W 1,2(I×S1) ≤ ∥u∥L2(I×S1)+∥∇u∥L2(I×S1) ≤
p

2LB0+Cp

�p
2LB0+B1

�p
2LB0+ 1

��

=M1

By the Sobolev embedding theorem for every 2≤ p <∞ there is a constant Rp > 0 such that

∥u∥Lp (I×S1) ≤ Rp∥u∥W 1,2(I×S1) = Rp M1

where Rp depends only on the lenght of I . So applying Calderon-Zygmund again we have

∥u∥W 1, p (I×S1) ≤ ∥u∥Lp (I ′×S1)+ ∥∇u∥Lp (I ′×S1) ≤M2
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and again M2 depends only on p and the length L of I . We are now allowed to take a fixed
p > 2 and use the Sobolev embedding theorem again to reach our conclusion:

∥u∥L∞(I×S1) ≤ Bp∥u∥W 1, p (I×S1) ≤ Bp M2 = R

where we are again the Sobolev constant Bp depends only on the length of I . Covering R by
intervals of length L≤ I ≤ 2L therefore supplies us with the wanted estimate. All in all, since
L depends only on E and J , we have that R depends only on E , J andH . The estimate is
therefore independent of the particular solution u.

3.3.2. First compactness result: uniform energy bounds

Combining the elliptic regularity estimates with the uniform L∞-estimates, we obtain the first
compactness result, which states that the space of solutions with uniformly bounded energy
is compact. A key step is to show that an uniform energy bound implies an uniform gradient
bound. Here the important concept of “bubbling of holomorphic curves” shows up.

Let us introduce some convenient notation.

Definition 3.6 1. Let H ∈wH and J ∈C∞
�

S1×R2n ,EndR2n� an adequate almost-complex
structure. For E > 0, define

M (E ; H , J ) =
¦

u ∈C∞
�

S1×R,R2n� : ∂ H ,J u = 0, EH ,J (u)≤ E
©

2. LetH be an asymptotically quadratic continuation andJ ∈C∞
�

R× S1×R2n ,EndR2n�

an adequate almost-complex structure. For E > 0, define

M (E ;H ,J ) =
¦

u ∈C∞
�

S1×R,R2n� : ∂ H ,J u = 0, EH ,J (u)≤ E
©

These sets of solutions of Floer equations are usually called spaces of bounded trajectories (as
in e.g. [29]), in analogy with finite-dimensional Morse theory.

Preparatory lemmata The first result we need is that there are no non-constant holomorphic
planes inR2n . This follows from Gromov’s removal of singularities theorem, and will be used
in the bubbling argument which produces uniform gradient bounds from energy bounds.

Lemma 3.3.1 Let J ∈ C∞(R2n ,EndR2n) be an ω0-compatible almost-complex structure and
v : C→R2n a J -holomorphic map with finite energy and bounded image. Then v is constant.

Proof. By Gromov’s removal of singularities theorem (see e.g. [32]), the map v extends to a
J -holomorphic sphere. If v is non-constant, it must have positive ω0-energy, in contradiction
to Stokes’ theorem.

The second preparatory lemma we need is an abstract result in metric spaces. It’s usually
called Hofer’s lemma or Half-Maximum lemma.
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Lemma 3.3.2 Let (X , d ) be a complete metric space and f : X →R a continuous, positive func-
tion. For every x ∈X and δ > 0 there exists a y ∈X and ϵ ∈ (0,δ] such that:

1. d (x, y)≤ 2δ
2. δ f (x)≤ ϵ f (y)
3. supBϵ(x)

f ≤ 2 f (y).

The proof of this lemma and similar results can be found in [14, Chapter IV].

Gradient bounds from bubbling Here we prove the key step, namely, that energy bounds
imply gradient bounds. The proof hinges on the conformal “almost-symmetry” of the Floer
equation.

Proposition 3.3.6 For any E > 0 there exists a B > 0 such that

u ∈M (E ;H ,J ) =⇒ ∥∇u∥L∞ < B

Proof. Assume by contradiction that there is a sequence (σk ,τk ) such that

lim
k→∞

|∇uk (σk ,τk )|=+∞

Choose a sequence δk → 0 such that we still have

lim
k→∞

δk |∇uk (σk ,τk )|=+∞

Using Hofer’s lemma we obtain sequences ϵk <δk → 0 and (sk , tk ) ∈R× S1 such that

|(σk − sk , tk −τk )| ≤ 2δk → 0,
ϵk |∇uk (sk , tk )| ≥ δk |∇uk (σk ,τk )| →+∞,

2 |∇uk (sk , tk )| ≥ max
(s ,t )∈Bϵk

((sk ,tk ))
|∇uk (s , t )|

(3.8)

Set Rk = |∇uk (sk , tk )|, so that ϵk Rk →+∞. Define

vk (s , t ) = uk

�

s
Rk
− sk ,

t
Rk
− tk

�

Hk (s , t , z) =
1

Rk
H

�

s
Rk
− sk ,

t
Rk
− tk , z

�

Jk (s , t , z) =J
�

s
Rk
− sk ,

t
Rk
− tk , z

�

Notice that since the uk are solutions of the (H ,J )-Floer equation,

∂s vk +Jk (s , t , vk )
�

∂s vk −XHk
(s , t , vk )

�

= 0.
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First, we claim that vk is never a constant function. This follows from

∇vk (s , t ) =
1

Rk
∇uk

�

s
Rk
− sk ,

t
Rk
− tk

�

=⇒ |∇vk (0,0)|= 1 ∀k

Next, we claim that the sequence of functions

vk : Bϵk Rk
(0,0)→R2n

has a C 0
loc-converging subsequence. Indeed, by the last inequality in (3.8),

|∇vk (s , t )|=
�

�

�

�

�

1
Rk
∇uk

�

s
Rk
− sk ,

t
Rk
− tk

�

�

�

�

�

�

≤ 2
Rk
|∇uk (sk , tk )| ≤ 2 ∀(s , t ) ∈ Bϵk Rk

(0,0).

This implies that the sequence vk is equicontinuous. Moreover, notice that

sup
k

EH ,J (uk )≤ E =⇒ sup
k
∥uk∥L∞ ≤ R

for an R> 0 given by Proposition 3.3.5. We conclude that

sup
k
∥vk∥L∞

�

Bϵk Rk
(0,0)

� ≤ R

since vk is just a shifted and rescaled version of uk . Hence the Ascoli-Arzelà theorem implies
that there exists a subsequence, still denoted by vk , such that vk → v in C 0

loc where v : R2→R2n

is a continuous function. Using the elliptic regularity machine of Section 3.3, we can promote
this limit to a C∞loc limit, so that we obtain a further subsequence, denoted still by vk , which
converges C∞loc to a smooth v : R2→R2n .

Since the vk solve equation 3.3.2, we claim that, up to choosing a further subsequence, v
solves the holomorphic curve equation ∂ J v = 0 for an appropriate almost-complex structure
J on R2n . Indeed, since all the vk have image contained in the ball BR(0), we can estimate,
remembering thatH depends on s only on a bounded interval S ⊂R,

�

�

�XHk
(s , t , vk (s , t ))

�

�

�=

�

�

�

�

�

1
Rk

XH

�

s
Rk
− sk ,

t
Rk
− tk , vk (s , t )

�

�

�

�

�

�

≤ 1
Rk

max
S ×S1×BR(0)

|XH | −−−→
k→∞

0

This shows that the Hamiltonian term vanishes in the limit. To find the almost-complex struc-
ture, there are two possible cases: either sk is bounded or it is unbounded. In case it is bounded,
we extract a converging sequence sk → s∗. Since tk ∈ S1 always, we also can assume tk → t∗.
Hence we can set J (z) =J (−s∗,−t∗, z). In case it is unbounded, we can extract a subsequence
sk →−∞ or a subsequence sk →+∞. In both cases, sinceJ depends on s only on a bounded
subset S of R, we are allowed to set J (z) =J (s ,−t∗, z) for s >maxS or s <minS accord-
ingly.

Finally notice that |∇v(0,0)|= 1, ∥∇v∥L∞ ≤ 2. So we found that v is a non-constant (i , J )-
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holomorphic plane, almost a contradiction. If we show that its energy is bounded, then a
contradiction is reached. Set Bk = Bϵk

((sk , tk )).

∫

Bϵk Rk
(0,0)
|∇vk |

2
gJ
=
∫

Bk

|∇uk |
2
gJ
≤
∫

Bk

|∇uk |
2
gJ
≤

≤
∫

Bk

|∂s uk |
2
gJ
+ |∂t uk −XH ◦ uk |

2
gJ
+
∫

Bk

|XH ◦ uk |
2
gJ
≤

≤ EH ,J (uk )+
∫

Bk

|XH ◦ uk |
2
gJ
≤ E + ek

Now ek → 0 because Bk = Bϵk
((sk , tk )) which shrinks to 0 as k →∞. We conclude from this

that EJ (v)≤ E . So by removal of singularities v extends to a non-constant holomorphic sphere
v : S2→R2n of finite energy, which is a contradiction.

Remark The holomorphic sphere which was found in the contradiction argument is called a
bubble, and the rescaling and limiting process which leads to it is called bubbling. It is worth
to note that bubbling is ruled out only because we are studying the Floer equation in an exact
symplectic manifold, in which Lemma 3.3.1 holds. A more general situation where the same
result holds would be the case of symplectically aspherical manifolds, which are those symplec-
tic manifolds in which the symplectic form evaluates to zero over every spherical homology
class. In more general situations, bubbling cannot be avoided, and is a true obstruction to
compactness which has to be reckoned with by different means.

The first compactness theorem Proposition 3.3.6 lets us obtain a first compactness theorem.

Theorem 2 Let H ∈ wH, J an adequate almost-complex structure, and E > 0. The space
M (E ; H , J ) is compact in the C∞loc topology. The same can be said for the space M (E ;H ,J )
whereH is an asymptotically quadratic continuation and J an adequate almost-complex struc-
ture.

Proof. We prove the theorem forM (E ;H ,J ) as the autonomous case follows from that. Let
(uk ) ⊂ M (E ;H ,J ) be any sequence. By Proposition 3.3.5 and Proposition 3.3.6 we can
apply Ascoli-Arzelà and obtain a C 0

loc converging subsequence uk → u. By elliptic regularity
3.3.4 this limit is promoted to a C∞loc limit. It follows that u ∈M (E ;H ,J ) which concludes
the proof.

3.4. Asymptotics of trajectories

The Floer equation is not really a gradient flow for the action functional. So the asymptotics of
a solution don’t follow immediately from its definition. We nevertheless can prove that Floer
curves are asymptotic to periodic orbits at their ends.
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Let H ∈ wH, i.e. a weakly asymptotically quadratic Hamiltonian with non-degenerate
quadratic Hamiltonian at infinity, and J an adequate almost-complex structure. In this sec-
tion we work with half-cylinder solutions u : [S0,+∞)× S1→R2n of the Floer equation

∂s u + Jt (u) [∂t u −XH (t , u)] = 0

as this permits the result to be applied to both the autonomous and continuation Floer equa-
tion. This is because we take continuations to be eventually independent of the s -coordinate.
Completely analogous properties hold when one works with a negative half-cylinder.

Theorem 3 Let u : [S0,+∞)×S1→R2n be a Floer half-cylinder with finite energy and bounded
image. For every sequence σ+

k
→+∞ there exist a subsequence σ+

k j
→+∞ and a 1-periodic orbit

γ+ : S1→R2n of XH such that

lim
j→∞

u
�

σ+k j
, ·
�

= γ, lim
j→∞

∂s u
�

σ+k j
, ·
�

= 0 in C∞

Proof. Let
�

σ+
k

�

⊂R be a monotone sequence diverging to +∞. Define the maps

uk : [S0,+∞)× S1→R2n uk (s , t ) = u(s +σ+k , t )

These are of course smooth maps, and, since J and XH are independent of the s -coordinate,
they are also solutions of the Floer equation. We claim that the sequence uk converges (up to
subsequences) in C∞loc to a Floer cylinder u+∞. We know that the sequence uk is uniformly
bounded, since u has bounded image. With a bubbling argument completely analogous to the
one found in Proposition 3.3.6, one shows that uk must be C 1-bounded. By Ascoli-Arzelà,
uk → u+∞ in C 0

loc up to a subsequence. By the elliptic regularity machine we can extract a
(further) subsequence which converges in C∞loc to a u+∞ ∈ C∞([S0,+∞)× S1,R2n). This
function u+∞ must be a solution of the Floer equation, because it is the C∞loc limit of solutions
of the Floer equation.

Now we have to estimate the energy of u+∞. Since J is adequate, there is a constant depend-
ing only on J such that

EH ,J (u+∞)≤C lim
S→∞

∫ S

−S





∂s u+∞(s , ·)






2
L2(S1)

But now, since |∂s u| ∈ L2
�

R× S1
�

, and using Fatou’s lemma, for any S > 0

∫ S

−S





∂s u+∞(s , ·)






2
L2(S1) =

∫ S

−S
lim

k→∞








∂s u(s +σ+k , ·)









2

L2(S1)
d s ≤

≤ liminf
k→∞

∫ S+σ+
k

−S+σ+
k

∥∂s u(s , ·)∥2L2(S1) d s = 0
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Hence our Floer cylinder has zero energy EH ,J (u) = 0. But this implies that ∂s u+∞ = 0, so
setting γ+(t ) = u+∞(t ), the Floer equation reads

Jt (γ+)
�

γ̇+−XH (t ,γ+)
�

= 0 ⇐⇒ γ̇+ =XH (t ,γ+)

To obtain the limit of the s -derivative, one simply uses the Floer equation and the C∞ conver-
gence found above.

By Proposition 3.3.5, autonomous and continuation Floer cylinders have an a priori uniform
L∞-bound. Hence, a half-cylinder obtained by chopping off one end from a Floer cylinder has
bounded image. From this the next corollary follows.

Corollary 3.4.1 1. Let H ∈ wH and J be an adequate almost complex structure. Let u ∈
M (E ; H , J ) for some E > 0. For every σ±

k
→±∞ there exist 1-periodic orbits γ± ∈ Per1 H

such that, up to a subsequence,

lim
k→∞

u
�

σ±k , t
�

= γ±(t ), lim
k→∞

∂s u
�

σ±k , t
�

= 0 in C∞

2. LetH be an asymptotically quadratic continuation between Hamiltonians H± ∈wH and
J an adequate almost-complex structure. Let u ∈M (E ;H ,J ) for some E > 0. For every
σ±

k
→±∞ there exist 1-periodic orbits γ± ∈ Per1 H± such that, up to a subsequence,

lim
k→∞

u
�

σ±k , t
�

= γ±(t ), lim
k→∞

∂s u
�

σ±k , t
�

= 0 in C∞

Remark We would like to stress that the limit orbit obtained is not unique, and depends on the
sequence σk →+∞ chosen. Different choices of sequences can lead to different asymptotic or-
bits. Examples of this phenomenon are known in other contexts, see e.g. the paper of Siefring
[40] for non-uniqueness of the limiting orbit of a holomorphic plane in the symplectization of
a degenerate contact manifold. It is therefore natural to expect that such phenomenon arises
also in Floer homology. Uniqueness is guaranteed only when orbits are isolated, for example
in the non-degenerate case, as we shall discuss in the next section.

3.4.1. Uniqueness of the asymptotics

The goal here is to show that if the 1-periodic orbits of a Hamiltonian are isolated, then the
asymptotics of its Floer trajectories are unique. From the uniqueness of the asymptotics we
will obtain an energy calculation for Floer cylinders with non-degenerate ends.

We will also derive a kind of quantitative refinement of this phenomenon, which states that
when a piece of Floer cylinder has small enough energy, its image must be contained in a
neighborhood of a fixed 1-periodic orbit. This is known in the trade as the “long cylinders
with small energy” lemma.
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3.4.1.1. Uniqueness of the asymptotics and an energy calculation

Definition 3.7 A 1-periodic orbit γ : S1→R2n is said to be isolated when there exists an open
neighborhoodU ⊂ S1×R2n of the graph of γ which does not contain the graph of any other
1-periodic orbit.

From isolation and Theorem 3 it follows immediately that

Proposition 3.4.1 Let H ∈ wH and J be an adequate almost complex structure. Assume that
all the 1-periodic orbits of H are isolated. If u : [S0,+∞)× S1 → R2n is a finite-energy Floer
half-cylinder with bounded image, then there exists an unique γ+ ∈ Per1 H such that

lim
s→+∞

u (s , t ) = γ+(t ), lim
s→+∞

∂s u (s , t ) = 0 in C∞

Having unique asymptotics is useful in order to estimate the energy of a Floer trajectory.
This is contained in the following calculation.

Lemma 3.4.1 LetH =H s be a asymptotically quadratic continuation between weakly asymp-
totically quadratic Hamiltonians H± all whose 1-periodic orbits are isolated. LetJ be an adequate
almost-complex structure. Take γ± ∈ Per1 H±. If u ∈ C∞

�

R× S1,R2n� solves the continuation
Floer equation for (H ,J ) with asymptotic orbits γ± as s →±∞, then

EH ,J (u) =AH−
�

γ−
�

−AH+
�

γ+
�

−
∫

R×S1
(∂sH ) (s , t , u(s , t ))d s d t

Proof. Recall that if u ∈C∞(R× S1,R2n) solves the continuation Floer equation

∂s u +J s
t (u)[∂t u −XH s

t
(u)] = 0

then its energy satisfies

EH ,J (u) = ∥∂s u∥2L2(gJ )
=
∫

R×S1
(ω0)u(s ,t ) (J

s
t (u(s , t ))∂s u(s , t ),∂s u(s , t ))d s d t

Here we’ve used the formula for the associated family of Riemannian structures:

gJ (s , t , z)(u, v) =ω0 (u,J s
t (z)v)

Recall further that the differential of the action functionalAH : W 1,2(S1,R2n)→R is given by

dAH |γξ =
∫

S1
(ω0)γ (t ) (γ̇ (t )−XH ◦ γ (t ),ξ (t ))d t ∀ξ ∈W 1,2 �γ ∗TR2n�

Thinking of u as an s -family of loops from γ− to γ+, and using the continuation Floer equa-
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tion, we can compute:

EH ,J (u) =
∫

R×S1
(ω0)u(s ,t ) (∂s u(s , t ),J s

t (u(s , t ))∂s u(s , t ))d s d t =

=
∫

R×S1
(ω0)u (−J

s
t (u) [∂t u −XH (u)] ,J

s
t (u)∂s u)d s d t =

=−
∫

R

∫

S1
(ω0)u (∂t u −XH (u),∂s u)d s d t =−

∫

R
dAH s |u(s ,·) ∂s u(s , ·)d s =

Now, we use the chain rule and compute

−
∫

R
dAH s |u(s ,·) ∂s u(s , ·)d s =−

∫

R

�

d
d s
[AH s (u(s , ·))]−

∂AH s

∂ s
(u(s , ·))

�

d s =

=−AH s (u (s , ·))|s→+∞s→−∞+
∫

R

∂AH s

∂ s
(u(s , ·))d s =

=AH−
�

γ−
�

−AH+
�

γ+
�

−
∫

R×S1
(∂sH ) (s , t , u(s , t ))d s d t

which was our claim.

Remark In particular, in the autonomous case, we obtain the well known energy formula: if
H ∈ wH has only isolated 1-periodic orbits, J adequate and u ∈ M (E ; H , J ) for some E > 0,
then

EH ,J (u) =AH
�

γ−
�

−AH
�

γ+
�

(3.9)

where u(s , ·)→ γ± as s →±∞.

3.4.1.2. Long cylinders with small energy

Now we give a refinement of Theorem 3 in the case that the orbits are non-degenerate. It shows
that cylinders with small energy must approach 1-periodic orbits and stay within a neighbor-
hood of them for long times. It is completely analogous to one of the main theorem in [28].

Let F ∈wH have only isolated 1-periodic orbits. Since by Lemma 2.3.4 these are contained
in a compact set, they must come in a finite number. Therefore, the set of 1-periodic orbits

Per1 F =
�

γ ∈C∞
�

S1,R2n� : γ̇ =XF ◦ γ
	

⊂C∞(S1,R2n)

admits a neighborhoodW in the C∞-topology with the property that every connected com-
ponent ofW contains only one periodic orbit.

Define the “quantum of energy” associated to F by

ħhF =min
�

|AF (γ1)−AF (γ0)| : γ0,γ1 ∈ Per1 F , AF (γ0) ̸=AF (γ1)
	

By finiteness of the set of orbits we conclude that ħhF > 0.
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Proposition 3.4.2 Let F ∈ wH have only isolated 1-periodic orbits and W ⊂ C∞(S1,R2n) as
above. Choose any adequate almost complex structure J . For every neighborhoodW ′ ⊂ W there
exists a constant S > 0 with the following property. If S > S, u ∈ C∞([−S, S]× S1,R2n) is a
non-constant solution of the (F , J )-Floer equation with

EF ,J (u)< ħhF

and bounded image, then

u(s , ·) ∈W ′ ∀s ∈
�

−S + S, S − S
�

Proof. We argue by contradiction. Assume there exists a non-decreasing sequence Sk → ∞
with S0 > S, a sequence uk ∈C∞

�

[−Sk , Sk]× S1,R2n� of non-constant solutions of the (F , J )-
Floer equation with EF ,J (uk )< ħhF for all k but

uk (sk , ·) /∈W ′ for some sequence sk ∈
�

−Sk + S, Sk − S
�

Shifting everything by sk we can actually assume that uk (0, ·) /∈W ′. By a bubbling off analysis
completely analogous to the one in Proposition 3.3.6, we conclude that the gradients of uk
are uniformly bounded. Bootstrapping gives us C∞loc convergence, up to subsequences, to a
solution u : R× S1→ R2n of the (F , J )-Floer equation. The solution u must be non-constant
because for s = 0 it leaves the neighborhoodW ′, so it is not close to any periodic orbit of F .
The uniform energy bound along the sequence gives EF ,J (u)< ħhF . But since u is non-constant,
by (3.9) we know that EF ,J (u) =AF (γ1)−AF (γ0)< ħhF for some γ1 ̸= γ0. But this is possible
only ifAF (γ0) =AF (γ1), by definition of ħhF . In that case, EF ,J (u) = 0, which implies that u
must be a constant solution. This is a contradiction.

Remark Notice that by the way we have chosen the neighborhood W , it follows that there
exists a 1-periodic orbit γ ∈ Per1 F and a neighborhoodU of γ (S1) where u enters and stays
within for a long enough time.

Remark We gain the following picture of the set of Floer trajectories with bounded energy, at
least in the non-degenerate case (see Figure 3.1): a sequence of Floer trajectories with bounded
energy has a converging subsequence, whose limit also has bounded energy. The limit there-
fore also is asymptotic to some 1-periodic orbits, but they don’t necessarily coincide with the
asymptotics of cylinders in the initial sequence. We will see how to refine this picture in the
next section.

3.5. Transversality and moduli spaces

Here we delve in the description of the moduli spaces with fixed asymptotics. The main goal is
to show that families of Floer cylinders with fixed asymptotics are smooth manifolds. We will
refer to the relevant chapters in [7] for the proofs of the statements which we present. There it
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M (E ; H , J )

u∞

u∞

u ′∞

{uk}

�

u ′k
	

u0 = u ′0

u0

γ0 γ0

γ1

γ1

γ

γ ′

Figure 3.1. We know that the set of trajectories with bounded energy is C∞loc -compact, and that in the
non-degenerate case trajectories with bounded energy have unique asymptotics. But the limit of a
sequence with fixed asymptotics is not guaranteed to have the same asymptotics of the sequence con-
verging to it. This phenomenon is the starting observation behind the theory of broken convergence.

is assumed that the target symplectic manifold is compact. We substitute this assumption with
the uniform L∞-estimates found above. Once that is done, the proofs all follow almost word
by word, the only difference being that regarding the continuation Floer equation, one must
provide the uniform energy bounds needed to guarantee the uniform L∞-bounds.

In the definition of Floer homology, we need three types of moduli spaces of Floer cylinders
with fixed asymptotics: the autonomous, non-autonomous, and parametrized moduli spaces.
The first is necessary for the definition of the differential of the Floer chain complex, the sec-
ond for the definition of continuation morphisms on Floer homology, and the third for the
definition of chain homotopies of continuation morphisms. All three have mostly similar dif-
ferential topological properties. To show that they are smooth finite-dimensional manifolds,
one shows that the Floer operator is a Fredholm section of some Banach bundle, and that, up
to a generic choice, it intersects the zero section of this bundle transversely. Moreover their
dimension, which is the Fredholm index of the operator defining the linearization of the Floer
equation, is computed in terms of the algebraic invariants attached to the ends of the cylinders,
i.e. the Conley-Zehnder indexes of the asymptotic orbits.
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3.5.1. Transversality theory for the Floer equation

The solution set of the Floer equation can be interpreted geometrically as a subset of a suitable
Banach bundle, given by the intersection of the zero section with the section defined by the
Floer operator. The linearization of the Floer equation gives rise to a Fredholm operator,
which means that the Floer operator is a Fredholm section of the Banach bundle in question.
These two facts combined with the Sard-Smale theorem give us a way to show that the moduli
spaces of Floer trajectories are smooth manifolds of finite dimension, and a way to compute
their dimension. We treat the case of the “autonomous” Floer equation, i.e.

∂s u + Jt (u) [∂t u −XH (t , u)] = 0, lim
s→±∞

u(s , ·) = γ± ∈ Per1 H

for an adequate pair (H , J ) with H ∈ wH∗. The case of the continuation Floer equation is,
in some sense, easier: in the non-autonomous case of the continuation Floer equation, there
is a “larger” space of perturbations which makes transversality more likely to be reached. We
follow again [15, §3.2].

3.5.1.1. Setting up the Fredholm theory

Fix once and for all a p > 2. Let γ± ∈ Per1 H . Let u0 ∈ C∞
�

R× S1,R2n� be a smooth map
such that there exists an s0 > 0 for which

u(s , t ) = γ−(t ) ∀s ≤−s0, u(s , t ) = γ+(t ) ∀s ≥ s0.

Define B0 = u0 +W 1, p �R× S1,R2n� and E1 = Lp �R× S1,R2n�. B0 is to be thought of as
an affine space modelled over W 1, p �R× S1,R2n�. In particular, if u ∈ B0, then TuB0 =
W 1, p �R× S1,R2n� is the set of W 1, p -vector fields along u.

The Floer operator is a section

∂ H ,J :B0→E1, ∂ H ,J (u) = ∂s u + Jt (u) [∂t u −XH (u)]

We need to show that if u ∈ C∞
�

R× S1,R2n� solves the Floer equation and has finite en-
ergy, then it belongs to B0 for suitably chosen γ±. We know that for a given finite-energy
solution u, since the Hamiltonian is non-degenerate, there exist unique γ± ∈ Per1 H to which
u tends as s → ±∞. Now, non-degeneracy of the asymptotic orbits is a crucial hypothesis
to obtain estimates on the rate of convergence of this limit, which are necessary to show that
u ∈B0. In order to do that we need the the linearization of the Floer operator, i.e. its deriva-
tive D∂ H ,J (u) : W 1, p �R× S1,R2n�→ Lp �R× S1,R2n�. A simple computation shows that the

linearization of ∂ H ,J at an u ∈B0 applied to a Y ∈W 1, p is given by

D∂ H ,J (u)Y = ∂s Y +DJt (u)Y · [∂t u −XH (u)]+ Jt (u) [∂t Y + J0 Hess H (u)Y ] =

= ∂s Y + J̃s ,t∂t Y + J̃s ,t J0 Hess Ht (u)Y +D
¦

J̃s ,t Vs ,t

©

Y − J̃s ,t DVs ,t ·Y
(3.10)
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We abbreviated J̃s ,t = Jt (u(s , t )) and V = ∂t u−XH (u). Notice that this is a linear operator of
the form

D∂ H ,J (u)Y = ∂s Y + J̃s ,t [∂t Y + J0As
t Y ]+ηs ,t Y

where
J̃s ,t = Jt (u(s , t )), As

t =Hess H (t , u(s , t )), ηs ,t −−−→s→±∞
O

the limit of ηs ,t being zero since ∂t u −XH (u) → 0 as s → ±∞. Moreover, notice that the
operator

DAs
t
= ∂t + J0As

t

tends to invertible operators as s →±∞, by non-degeneracy of the asymptotic orbits. These
invertible operators are called asymptotic operators.

We now have the following estimates for functions solving the linear Floer equation with
non-degenerate asymptotic operator.

Proposition 3.5.1 Let J̃ ∈ C∞
�

R× S1,EndR2n� be a family of ω0-compatible domain depen-
dent complex structures, A ∈ C∞

�

R× S1, Sym(2n)
�

, η ∈ C∞
�

R× S1,EndR2n�. Assume that
J̃s ,t → J±t some ω0-compatible t -dependent complex structures as s →±∞, As

t → A±t some loops
of symmetric matrices generating non-degenerate paths of symplectic matrices as s → ±∞ and
ηs ,t → O as s → ±∞, all limits being C∞ limits. If Y : R× S1 → R2n is a function such that
sups∈R ∥Y (s , · )∥L2(S1) <∞ and which weakly solves the equation

∂s Y + J̃s ,t [∂t Y + J0As
t Y ]+ηs ,t Y = 0

then Y ∈C∞
�

R× S1,R2n� and there exists constants b , c > 0 such that

|Y (s , t )| ≤ b e−c |s | ∀(s , t ) ∈R× S1

The proof can be found essentially in [7, §8.9]. The idea is that using invertibility of the
asymptotic operators, one may show that the function f (s) = 1

2 ∥Y (s)∥L2(S1) solves a differen-
tial inequality of the form f ′′ ≥−c f for a c > 0 and |s | large, and that g (s , t ) = |Y (s , t )|2 solves
a differential inequality of the form∆g ≥−αg for an α > 1 and |s | large. The estimates follow
from standard estimates of decay for solutions of these differential inequalities.

This proposition can be used to show that a finite-energy solution u of the (H , J )-Floer
equation belongs toB0 for γ± its non-degenerate asymptotic orbits. Indeed, set Y = ∂s u. The
finite energy condition implies that sups∈R ∥∂s u(s , · )∥L2(S1) <∞. Moreover,

∂s Y =−DJt (u)Y [∂t u −XH (u)]− Jt (u) [∂t Y −DXH (u)Y ] =

=−J̃s ,t [∂t Y + J0As
t Y ]−ηs ,t Y

with J̃s ,t , As
t and ηs ,t satisfying the hypotheses of the Proposition 3.5.1. Therefore we obtain

an estimate
|∂s u(s , t )| ≤ b e−c |s | ∀(s , t ) ∈R× S1
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Iterating this reasoning on higher-order derivatives in s we conclude that for every α ∈N, α≥ 1
there exist bα, cα > 0 such that

|∂ αs u(s , t )| ≤ bαe−cα|s | ∀(s , t ) ∈R× S1

From these estimates it follows immediately that u ∈B0.

Remark We stress the fact that these estimates were reached under two crucial hypotheses,
which, as far as the author knows, cannot be removed: the solution u has finite energy and its
asymptotic orbits are non-degenerate.

3.5.1.2. The transversality theorem

In this section we explain the following properties of the Floer equation. First of all, that ∂ H ,J
is a (smooth) Fredholm map. Then the Fredholm index of its linearization at a solution u is
given by the difference of the Conley-Zehnder indices of the asymptotic orbits γ± of u. Finally,
for every fixed H ∈wH∗ there exists a residual set of adequate almost-complex structures J such
that 0 is a regular value for ∂ H ,J for all choices of asymptotic orbits γ±.

Proposition 3.5.2 ∂ H ,J :B0→E1 is a Fredholm map.

Proof sketch. The equation (3.10) shows that the operator D∂ H ,J (u) : W 1, p → Lp is of the form

D∂ H ,J (u)Y = ∂s Y + J̃s ,t∂t Y +Θs ,t Y =
�

∂ J̃ +Θ
�

Y

where we have set

Θ(s , t ) =D [Jt (u) (∂t u −XH (t , u))]− Jt (u)D [∂t u −XH (t , u)]

The local elliptic estimates for the linear Cauchy-Riemann operator found in Proposition 3.3.1
and the characterization of pre-Fredholm operators found in Lemma A.1 can be used to show
that D∂ H ,J (u) has finite dimensional kernel and closed range, i.e. it is a pre-Fredholm opera-
tor. To conclude that it is a Fredholm operator, we apply a similar treatment to its L2-adjoint
operator, concluding that it is pre-Fredholm. If an operator and its adjoint are pre-Fredholm,
then they are obviously both Fredholm. The argument is standard and can be found e.g. in
Salamon’s lecture notes [37] or in [7, §8.7].

The computation of the Fredholm index of the linearized Floer operator is the following
proposition. Its proof hinges on the invariance of the Fredholm index under perturbations
by compact operators, and invariance under homotopy. This reduces the problem to a very
simple, explicit model where the kernel and cokernel may be exhibited explicitly via a compu-
tation. This strategy of proof is the one of [7, §8.8], and we do not repeat it here.
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Proposition 3.5.3 If u ∈ B0 is a solution of the Floer equation, then D∂ H ,J (u) has Fredholm
index

ind D∂ H ,J (u) =CZ
�

γ−, H
�

−CZ
�

γ+, H
�

Remark Another interesting approach is via the spectral flow of a path of self-adjoint oper-
ators, which measures the net change in the number of negative eigenvalues along the path.
This is the approach chosen by Robbin and Salamon [36]. The appeal of this approach is that
philosophically, it justifies the idea that the difference of Conley-Zehnder indices is a kind of
relative Morse index, where the Morse index itself is not well defined. In the work of Abbon-
dandolo [2, 3] one may find a definition of the relative Morse index and its relation with the
Conley-Zehnder index.

Denote by J the space of S1-families of adequate almost-complex structures, i.e. smooth
ω0-compatible t ∈ S1-dependent almost-complex structures which are bounded, in the sense
that ∥J∥L∞(S1×R2n ,EndR2n) <∞ for all J ∈ J (see Definition 3.2). For a fixed J ∈ J, the tangent
space of J at J is given by the set of smooth maps j : S1×R2n→ EndR2n such that

ω0 (jt (z)v0, v1)+ω0 (v0, jt (z)v1) = 0, jt (z)Jt (z)+ Jt (z)jt (z) = 0

Similarly as we did for Hamiltonians, we need our almost-complex structures to belong to a
Banach space, in order to use the inverse function theorem for Banach spaces. Therefore we
must define a Banach space of rapidly vanishing perturbations and a corresponding Banach
manifold of almost complex structures. Choose a sequence ϵ = (ϵk )k∈N with ϵk → 0, and
define

∥j∥ϵ =
∞
∑

k=0

ϵk ∥j∥C k (S1×R2n ,EndR2n)

For a fixed J ∈ J, denote by C∞ϵ (J ) the Banach space of maps j as above such that ∥j∥ϵ is finite.

Notice that if j ∈C∞ϵ (J ), then J̃t (z) = Jt (z)exp (−Jt (z)jt (z)) defines anotherω0-compatible

almost-complex structure with ∥J̃∥L∞ < ∞. Therefore C∞ϵ (J ) provides a suitable space of
perturbations for the almost-complex structures. We will use it to define a Banach chart of
nearby almost-complex structures as follows.

Definition 3.8 Fix a reference J∗ ∈ J, a sequence ϵ= (ϵk )k∈N converging to zero and a δ > 0.
Define

U (J∗,ϵ,δ) =
¦

J = J∗ exp(−J∗j) : ∥j∥ϵ <δ
©

Clearly U (J∗,ϵ,δ) is a Banach manifold forδ small enough, as it has a global parametrization
in terms of Bδ(0)⊂C∞ϵ (J ), an open ball in a Banach space.

Lemma 3.5.1 For every J∗ ∈ J there exists a δ > 0 such that U (J∗,ϵ,δ) is a Banach manifold,
irregardless of ϵ, and U (J∗,ϵ,δ)⊂ J.

Remark It is not true that U (J∗,ϵ,δ) is a submanifold of J, where J is considered with its
natural Fréchet manifold structure in the C∞loc topology. It is just a subset, and with the subspace
topology it would not be a submanifold.
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Theorem 4 For every H ∈wH∗ there exists a neighborhoodU⊂ J of J0 and a residual setRJ0
⊂ U

such that for every J ∈R, the operator ∂ H ,J :B0→E1 has 0 as a regular value.

Proof. We give a sketch of the proof following in part the seminal paper of Floer, Hofer and
Salamon [17].

Fix H ∈ wH∗ and the reference almost-complex structure J∗ ≡ J0. Define the universal
ambient space E0 =B0×U (J0,ϵ,δ), where ϵ and δ are chosen as in Lemma 3.5.1. This is a
Banach manifold.

The Floer operator gives a map

F : E0→E1, F (u, J ) = ∂ H ,J (u) = ∂s u − Jt (u) [∂t u −XH (u)]

The universal moduli space is by definition the preimage of zero via this function:

UM =F−1(0) =
¦

(u, J ) : ∂ H ,J (u) = 0
©

We first want to show that this is a smooth manifold, by showing that 0 is a regular value, i.e.
DF is surjective at all points ofUM . A simple calculation shows that for every (u, J ) ∈UM ,

DF (u, J ) (ξ , j) =D∂ H ,J (u)ξ + jt (u) [∂t u −XH (u)]

By Proposition 3.5.2, D∂ H ,J (u) is Fredholm. So by Corollary A.1, the image of DF (u, J )
is closed. To show surjectivity we therefore only have to show that the image of DF (u, J ) is
dense. The proof of this is by contradiction. Let q > 1 be chosen such that 1

p +
1
q = 1. Fix

(u, J ) ∈UM . Assume that 0 ̸= η ∈ Lq �R× S1,R2n� is such that

∫

R×S1
〈η(s , t ),θ(s , t )〉= 0 ∀θ ∈ im DF (u, J )⊂ Lp �R× S1,R2n�

i.e. η as a functional on Lp annihilates every element in the image of DF (u, J ). Since θ ∈
im DF (u, J ), we conclude that η is a weak solution of a Cauchy-Riemann type equation. By
boostrapping (Propositions 3.3.1, 3.3.2) we conclude that η is actually smooth. Since η is
smooth and by assumption non-zero, there exists some open subset Ω ⊂ R× S1 such that
η(s , t ) ̸= 0 for all (s , t ) ∈Ω. Now, one uses the fact that the set of regular points of Floer trajec-
tories (the analog of injective points of J -holomorphic curves) are dense inR×S1, in particular,
in Ω, to construct a ξ ∈W 1, p such that

∫

R×S1
〈η(s , t ), [DF (u, J )ξ ] (s , t )〉 ̸= 0

in contradiction to the hypothesis on η. For the details of the construction of ξ starting from
the existence of (at least) one injective point inΩ we refer to [32, pg. 51]. See also [17, pp. 267–
269]. By Lemma A.3 we see that DF (u, J ) has a right inverse. Using Theorem A.1, we con-
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clude that the universal moduli spaceUM ⊂E0 is a smooth Banach submanifold.
Set U=U (J0,ϵ,δ). This is an open neighborhood of J0 in the C∞ϵ topology, which is finer

than the C∞loc topology. The projection p2 : E0→ U restricts to p = p2|UM :UM → U, which

is a Fredholm map, as shown by Lemma A.4, of the same index of D∂ H ,J , which is computed
by Propostion 3.5.3. By the Sard-Smale theorem A.3, there is a residual set RJ0

⊂ U of regular
values of the projection. The almost-complex structures in this set are precisely the ones for
which 0 is a regular value of ∂ H ,J .

Remark One may obtain a residual set R⊂ J in the C∞loc -topology on J by following Taubes’
argument as in [32, Theorem 3.1.6 (ii), pg. 54-56]. See also Remark 3.2.7 ibid.

In the following subsections, we give the consequences of the above theorem and its variant
for continuation Floer cylinders and a parametrized version for the definition of chain homo-
topies.

3.5.2. Autonomous moduli spaces

Autonomous moduli spaces are moduli spaces of cylinders which solve the “autonomous”
Floer equation, i.e. the Floer equation where (H , J ) do not depend on the evolution variable
s ∈R but only on the “internal” variable t ∈ S1.

Definition 3.9 Let H ∈wH∗, J an adequate almost complex structure, and γ0,γ1 ∈ Per1(H ).
Denote

M (γ0,γ1; H , J ) =











u ∈C∞
�

R× S1,R2n� :
∂s u + Jt (u) [∂t u −XH (u)] = 0,
u→ γ0 as s →−∞,
u→ γ1 as s →+∞











This set is well defined by uniqueness of the limits. We call this the moduli space of Floer
cylinders between γ0 and γ1. In principle, the space M (γ0,γ1; H , J ) is equipped with the W 1, p

loc
topology, which is suitable for the Fredholm theory of the Floer equation. By Proposition
3.3.4, we know that on M (γ0,γ1; H , J ) the C∞loc and W 1, p

loc
topology coincide. Therefore we

state our theorems for the C∞loc topology.

3.5.2.1. Transversality and dimension, autonomous case

From Theorem 4 we may conclude the following proposition. For a complete proof one may
consult [7, Chapter 8] or the seminal paper of Floer, Hofer and Salamon [17].

Proposition 3.5.4 There exists a residual set of adequate 1-parameter family of almost complex
structures J : S1×R2n → EndR2n near J0 such that for any γ0,γ1 1-periodic orbits of H , the space
M (γ0,γ1; H , J ) in the C∞loc topology is a smooth finite-dimensional manifold of dimension

dim M (γ0,γ1; H , J ) =CZ(γ0, H )−CZ(γ1, H )
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Definition 3.10 A pair (H , J ) for which Proposition 3.5.4 holds is called a regular pair.

Let (H , J ) be a regular pair. Notice that there is a naturalR-action on M (γ ,γ ′; H , J ) given by
translations in the s -direction, i.e. (σ , u) 7→ σ ·u where σ ·u(s , t ) = u(s+σ , t ). This is because
H and J do not depend on the s -coordinate, i.e. the Floer equation in analysis is autonomous.
It is easy to see that this action is smooth, proper and free (unless γ = γ ′) so the quotient
M
�

γ ,γ ′; H , J
�

=M (γ ,γ ′; H , J )/R is again a smooth manifold. The dimension formula tells us
that

M
�

γ ,γ ′; H , J
�

=CZ(γ , H )−CZ(γ ′, H )− 1

So if CZ(γ , H ) =CZ(γ ′, H ) then we conclude that the moduli space of cylinders M (γ ,γ ′; H , J )
must be empty, unless γ = γ ′ and then it can contain only the trivial cylinder u = γ .

3.5.3. Non-autonomous moduli spaces

Non-autonomous moduli spaces are moduli spaces of cylinders which solve the continuation
Floer equation for continuation datum (H ,J ). Since the continuation datum depends on the
evolution variable s , we think of this equation as non-autonomous.

Let H± ∈wH∗ andH an asymptotically quadratic continuation between them. Let J be
an adequate family of almost complex structures. Fix γ± ∈ Per1 (H±). Denote

M
�

γ−,γ+;H ,J
�

=
¨

u ∈C∞
�

R× S1,R2n� :
∂s u +Js ,t (u) [∂t u −XH (s , u)] = 0,

u→ γ± as s →±∞

«

We call this the moduli space of continuation Floer cylinders between γ− and γ+, and refer to
the collection of moduli spaces of continuation Floer cylinders as the non-autonomous moduli
spaces.

Similar remarks on the topology which this moduli space carries hold as for the autonomous
ones. Namely, we are thinking of M (γ−,γ+;H ,J ) as equipped with the C∞loc topology,

which coincides with the W 1, p
loc

topology on it.

3.5.3.1. Transversality and dimension, non-autonomous case

The proof of this proposition is the content of [7, §11.1.b].

Proposition 3.5.5 There exists a residual set of adequate 2-parameter family of almost complex
structures J : R× S1 → EndR2n near J0 such that for any γ± 1-periodic orbits of H±, the space
M (γ−,γ+;H ,J ) with the C∞loc topology is a smooth finite-dimensional manifold of dimension

M
�

γ−,γ+;H ,J
�

=CZ
�

γ−, H−
�

−CZ
�

γ+, H+
�

Definition 3.11 A pair (H ,J ) as above for which Proposition 3.5.5 holds, is called a regular
pair.
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We cannot conclude that zero-dimensional non-autonomous moduli spaces are necessarily
trivial, as there is no natural R-action whenH and J depend on s .

3.5.4. Parametrized moduli spaces

We need one last technical ingredient, which is used to show that continuation morphisms on
Floer homology do not depend on the chosen continuation Hamiltonian. The proofs of the
statements in this subsection can be found in [7, §11.3-4].

Let H± ∈ wH∗, J± adequate almost-complex structures such that (H±, J±) are two regu-
lar pairs, and (H ,J ), (G ,I ) be two regular pairs of asymptotically quadratic continuations
and adequate almost-complex structures between them. Let H : [0,1]×R× S1 ×R2n → R,
H=H(ρ, s , t , z) be a homotopy of asymptotically quadratic continuations which is constantly
equal toH when ρ is near 0, and constantly equal to G when ρ is near 1. Let J be a homo-
topy of adequate almost-complex structures with similar boundary conditions. We denote by
Hρ,Jρ the asymptotically quadratic continuations obtained by fixing ρ inH,J.

We are interested in the Floer equation

∂s uρ+ Jρ(s , t , uρ) [∂t uρ−XHρ(s , t , uρ)] = 0 (3.11)

which depends on the parameter ρ. We form the fiber product, called parametrized moduli
space

M
�

γ−,γ+;H,J
�

=
�

(ρ, uρ) : ρ ∈ [0,1], uρ sol. of (3.11), uρ→ γ± as s →±∞
	

Notice that the ends of the cylinders are fixed for every parameter ρ, and that we have a pro-
jectionM (γ−,γ+;H,J)→ [0,1] whose fiber over ρ ∈ [0,1] isM (γ−,γ+;Hρ,Jρ). We equip
this space with the natural fiber product topology, which is the subspace topology given by
the inclusion M(γ−,γ+;H,J) ⊂ [0,1] ×W 1, p (R × S1,R2n). As in the previous cases con-
cerning the topologies on moduli spaces, first of all M (γ−,γ+;H,J) actually lies in [0,1]×
C∞

�

R× S1,R2n�, and by Proposition 3.3.4 the moduli space can be equipped with the sub-
space topology given by this inclusion, where [0,1]×C∞

�

R× S1,R2n� is equipped with the
product of the standard topology with the C∞loc topology.

3.5.4.1. Transversality and dimension, parametrized case

This parametrized moduli space has more or less similar transversality and compactness prop-
erties to the ones explained above for the moduli spaces of Floer cylinders explained above.
This is shown in [7, §11.3.b].

Proposition 3.5.6 There exists a residual set of adequate 3-parameter families of almost complex
structures J near J0 such that for any γ± 1-periodic orbits of H±, the spaceM(γ−,γ+;H,J) with
the fiber product C∞loc topology is a smooth finite-dimensional manifold of dimension

dimM
�

γ−,γ+;H,J
�

=CZ
�

γ−, H 1�−CZ
�

γ+, H+
�

+ 1
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Definition 3.12 A pair (H,J) for which Proposition 3.5.6 holds is called regular pair.

Remark It is not true in general that every fiberM (γ−,γ+;Hρ,Jρ) is transversely cut out
for each fixed ρ ∈ (0,1). For example, when studying the case of dimM (γ−,γ+;H,J) = 0, it
is inevitable that for some ρ ∈ (0,1) the fiberM (γ−,γ+;Hρ,Jρ) contains cylinders of index
−1. In fact, these cylinders of index −1 are precisely the ones we want to count to define a
chain homotopy between the continuation morphisms induced by the regular pairs (H ,J )
and (G ,I ), as we shall see below.

Notice that differently from the previous two cases, the parametrized moduli spaces are
manifolds with boundary. The boundary is easy to describe: since we chose the homotopy to
be stationary near ρ= 0,1, it is easily proven that

∂M
�

γ−,γ+;H,J
�

= {0}×M
�

γ−,γ+;H ,J
�

∪{1}×M
�

γ−,γ+;G ,I
�

.

We call this the regular boundary of the parametrized moduli space. This does not mean that
the moduli space is compact; in fact, we will have to compactify the moduli space by adding
an exceptional part of the boundary.

3.6. Broken convergence and gluing

In the previous section we’ve seen that families of Floer cylinders of various flavors form
smooth manifolds. In general, these are open manifolds, possibly with boundary, like in the
parametrized case. In this section we first provide a suitable notion of compactification of the
moduli spaces. To describe the compactification of the moduli spaces, one must introduce the
notion of broken convergence of Floer cylinders. This leads to defining the boundary of the
compactification of the moduli spaces in terms of broken configurations of Floer cylinders.

The cylinders entering the broken configurations are points in a lower-dimensional moduli
space. This means that the boundary of a moduli space of Floer cylinders can be described
in terms of lower-dimension moduli spaces. A theory of gluing of Floer trajectories permits
us to equip the one dimensional compactified moduli spaces with the structure of a smooth
manifold with boundary.

3.6.1. Broken convergence and compactification

The aim of this section is to investigate how one can exploit the compactness property of
the set of Floer cylinders with bounded energy, that is to say Theorem 2, and the (eventual)
translational symmetry of the Floer equation, to compactify the space of cylinders with fixed
asymptotics. We will treat the autonomous case somewhat in detail. The non-autonomous
and parametrized cases are quite analogous to it.
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3.6.1.1. The autonomous case

Let H ∈wH∗ and J be an adequate almost-complex structure. We are interested in describing
the limit of a sequence of solutions to the Floer equation defined by (H , J ) with fixed asymp-
totics. Given that the asymptotics are fixed, we have an uniform energy bound on the sequence,
so by Theorem 2 the sequence has a limit. The problem is that we cannot guarantee that the
limit cylinder has the same asymptotics as the cylinders in the sequence. This means that the
moduli space with fixed asymptotics is not compact. But, inspired by Morse theory, by choos-
ing a suitable translation of the sequence, we might “access” different cylinders which, as we
will show, connect at intermediate 1-periodic orbits of H . This is the phenomenon of broken
convergence, and we will use it to define the compactification of the moduli space with fixed
asymptotics.

Proposition 3.6.1 Let γ ,γ ′ be any 1-periodic orbits of H ∈wH∗. Let (uk )k ⊂M
�

γ ,γ ′; H , J
�

be
a sequence of Floer cylinders where J is an adequate almost-complex structure.

There exists a subsequence (uk j
) j of (uk )k , 1-periodic orbits γ0 = γ ,γ1, . . . ,γl+1 = γ ′ of H ,

sequences (σ r
j ) j for r ∈ {0, . . . , l} and Floer cylinders u r ∈ M

�

γr ,γr+1; H , J
�

for r ∈ {0, . . . , l}
such that, denoting by (σ · u) (s , t ) = u(σ + s , t ),

lim
j→∞

σ r
j · uk j

= u r in C∞loc ∀r ∈ {0, . . . , l}.

Moreover, if (H , J ) is a regular pair, then the dimension formula for the moduli spaces gives a bound
on the maximum number of cylinders in a broken Floer cylinder:

l <CZ(γ , H )−CZ(γ ′, H )

The collection of Floer cylinders which appear as limits of the shifted sequence found above
is called a broken Floer cylinder, and the phenomenon of convergence to a broken cylinder is
referred to as breaking.

Proof. The following proof was inspired by a conversation I had with Dr. Urs Fuchs.
LetW ⊂C∞

�

S1,R2n� be a neighborhood of Per1 H such that every connected component
ofW contains an unique orbit of H . This exists and has finitely many connected components
because H ∈ wH∗ is non-degenerate up to infinity. Recall that H ∈ wH∗ implies that there is
a quantum of energy ħhH > 0 below which any long enough piece of (H , J )-Floer trajectory
must remain within one connected component ofW (Proposition 3.4.2).

Take u ∈ M
�

γ ,γ ′; H , J
�

⊂ M (E ; H , J ) where we set E = AH (γ )−AH (γ
′). We chop up

the cylinder into pieces with small energy, as follows. Fix an arbitrary 0 < e < ħhH . Define
−∞= σ−1(u)<σ0(u)≤ · · · ≤ σL(u)<σL+1(u) = +∞∈R by

EH ,J

�

u|(σ r (u),σ r+1(u))

�

= e ∀− 1≤ r ≤ L

Notice that L is a finite number because E < ∞, so we can estimate L ≤ E/ħhH , and that
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−∞ < σ0(u), . . . ,σL(u) < +∞ are all finite because u must enter the fixed neighborhood of
γ as s →−∞ and the fixed neighborhood of γ ′ as s →+∞.

Now take a sequence (uk )⊂ M
�

γ ,γ ′
�

⊂ M (E ; H , J ). Define σ r
k = σ

r (uk ) for r = 0, . . . , Lk .
A priori Lk depends on k. But clearly there is a subsequence of the uk for which it is eventually
constant in k, since EH ,J (uk ) = E for every k. Therefore without loss of generality we assume
Lk = L for all k.

The tuple of sequences
�

σ r
k

�

r,k
will give us the shifts needed to capture the cylinders breaking

in the limit. By Theorem 2 each sequence

σ r
k · uk (s , t ) = uk

�

σ r
k + s , t

�

converges up to a subsequence to a limit u r ∈ M (E ; H , J ) in C∞loc . We will still index the
subsequence by k in order to keep the notation light. Define a pre-order on sequences (σk )⊂R
by setting

(σk )≼
�

σ ′k
�

⇐⇒ limsup
k→∞

�

σk −σ
′
k

�

<+∞.

We denote by ∼ the equivalence relation defined by the pre-order, that is,

(σk )∼
�

σ ′k
�

⇐⇒ (σk )≼
�

σ ′k
�

and
�

σ ′k
�

≼ (σk ) (3.12)

We apply the equivalence relation (3.12) on the finite set of sequences
�

σ0
k

�

, . . . ,
�

σL
k

�

. By con-
struction it always holds that

q < r =⇒ σ q
k
<σ r

k ∀k =⇒
�

σ q
k

�

≼
�

σ r
k

�

.

Lemma 3.6.1 If
�

σ q
k

�

∼
�

σ r
k

�

then there exists a σ∗ ∈R such that u r = σ∗ · uq .

Proof. Assume without loss of generality that q < r . Set

0<σ∗ = limsup
k→∞

�

σ r
k −σ

q
k

�

<+∞

Let k j →∞ be such that σ r
k j
−σ q

k j
→ σ∗ as j →∞. Then, up to a further subsequence,

u r ←−−
∞← j

σ r
k j
· uk j

=
�

σ r
k j
−σ q

k j
+σ q

k j

�

· uk j
=
�

σ r
k j
−σ q

k j

�

·σ q
k j
· uk j
−−→
j→∞

σ∗ · u
q

We conclude by uniqueness of the C∞loc limit.

This last claim means that uq = u r in M
�

γ ,γ ′
�

for some γ ,γ ′ ∈ Per1 H . Notice that

�

σ q
k

�

∼
�

σ r
k

�

, q < k =⇒
�

σ q
k

�

∼
�

σ p
k

�

∀q < p < r

Thus we can discard all the sequences in the same equivalence class but one, and re-naming
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them incrementally according to the pre-order ≼ we end up with a possibly smaller tuple
�

σ0
k

�

, . . . ,
�

σ l
k

�

, l ≤ L. As before, up to a subsequence,

σ r
k · uk

C∞loc−−−→
k→∞

u r , 0≤ r ≤ l .

with the difference that now all the cylinders u r are distinct, even up to shifts.
It is clear that u0→ γ as s →−∞ and u l → γ ′ as s →+∞.

Lemma 3.6.2 If u r → γr+1 ∈ Per1 H as s →+∞, then u r+1→ γr+1 as s →−∞.

Proof. Since we discarded equivalent sequences, we have that

Ik =
�

σ r
k ,σ r+1

k

�

has unbounded length in k. Moreover, by definition

EH ,J

�

uk |Ik

�

= e < ħhH ∀k

Hence by (a minor modification of) Proposition 3.4.2 for every k large enough there exists an
Sk > 0 such that

∅ ̸= I ′k =
�

σ r
k + Sk ,σ r+1

k − Sk

�

⊂ Ik , and uk (s , ·) ∈W ∀s ∈ I ′k (3.13)

Equivalently

σ r
k · uk (s , ·) ∈W ∀s ∈

�

Sk ,
�

σ r+1
k −σ r

k

�

− Sk

�

⊂
�

0,σ r+1
k

�

There are two cases. Either
�

σ r+1
k
−σ r

k

�

− Sk < C for some C > 0 independent of k, or it is
unbounded. In the first case, combining with (3.13) we see that

σ r+1
k −σ r

k −C ≤ Sk ≤ σ
r+1
k −σ r

k ∀k

But this means that Sk is unbounded, which implies that eventually
�

Sk ,
�

σ r+1
k −σ r

k

�

− Sk

�

=∅

which is impossible, as it implies that I ′k = ∅. Therefore
�

σ r+1
k
−σ r

k

�

− Sk is always un-
bounded. Passing to the limit on a subsequence which diverges, we conclude that uk (s , ·) is
in the componentW

�

γr+1
�

ofW around γr+1 for all s ∈ I ′k , since by hypothesis u r → γr+1 as
s →+∞.

On the other hand,

σ r+1
k · uk (s , ·) ∈W

�

γr+1
�

∀s ∈
�

σ r
k −σ

r+1
k + Sk ,−Sk

�

⊂
�

σ r
k −σ

r+1
k , 0

�
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Arguing identically as before we can show that σ r −σ r+1+Sk must diverge to−∞, so we can
pass to the limit and conclude that u r+1→ γr+1 as s →−∞.

Finally, when (H , J ) is a regular pair, the bound on l follows immediately from the transver-
sality theory (Proposition 3.5.4). This concludes the proof of the proposition.

This proposition tells us that to compactify the moduli space, one should add to it configu-
rations of Floer cylinders with pair-wise matching ends, and the notion of convergence should
be C∞loc up to shifts. Moreover, the proof shows that to really capture all the breaking that hap-
pens along the sequence, the shifts should be chosen appropriately. This prompts the following
definition.

Definition 3.13 Let
�

σ r
k

�

⊂R, (uk )⊂ M
�

γ ,γ ′
�

and
�

u0, . . . , u l � ∈ M (γ ,γ1)× · · · ×M
�

γl ,γ
′�

be such that σ r
k · uk → u r in C∞loc for all 1≤ r ≤ l .

1. We say that the tuple of shifts
�

σ r
k

�

r,k
is ordered if (σ r

k ) ≼ (σ
r+1
k
) for every r . We say

that it is totally ordered if ≼ is a total order on the tuple of sequences.
2. We say that an ordered tuple of shifts

�

σ r
k

�

r,k
is exhaustive when it fulfills the following

properties. Set for convenience σ−1
k
= −∞ and σ l+1

k
= +∞. Let (σk ) ⊂ R be any

sequence.

a) If there exists an 1≤ r ≤ l and a C > 0 such that
�

�

�σk −σ r
k

�

�

�< C , then there exists
a σ∗ ∈R such that σk · uk → σ∗ · u r in C∞loc up to a subsequence.

b) If
�

�

�σk −σ r
k

�

�

� → ∞ as k → ∞ for every r , then σk · uk → γr in C∞loc up to sub-

sequences, where −1 ≤ r ≤ l + 1 is such that σ r
k ≤ σk ≤ σ r+1

k
for the relevant

sub-sequence and we set γ−1 = γ , γl+1 = γ
′.

Remark Given a tuple of shifts, we can always assume it is ordered by re-naming its compo-
nents. If an ordered tuple is exhaustive, we can identify the components which are at a bounded
distance to obtain a totally ordered exhaustive tuple of shifts.

We are now ready to compactify the space M (γ ,γ ′; H , J ). Set, for (H , J ) a regular pair,

d =CZ
�

γ ′; H
�

−CZ (γ , H )− 1= dim M
�

γ ,γ ′; H , J
�

The proposition tells us that we should add to it the set of broken configurations of Floer cylinders

M d �γ ,γ ′
�

=
⋃

�

M (γ ,γ1)× · · ·×M
�

γl ,γ
′� : l ≤ d , γr ∈ Per1 H , CZ (γr )<CZ

�

γr+1
�	

(3.14)

Important With a substantial abuse of notation, we denote the compactification of M
�

γ ,γ ′
�

with the same symbol, that is, from now on M
�

γ ,γ ′
�

means the quotiented moduli space united
with M d �γ ,γ ′

�

.

The topology on M
�

γ ,γ ′
�

is defined as so:
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Definition 3.14 A sequence (uk )⊂M
�

γ ,γ ′
�

converges to a broken configuration
�

u0, . . . , u l �

in M d �γ ,γ ′
�

when, for any choice of lifts of uk to M
�

γ ,γ ′
�

, there exist an exhaustive, totally
ordered l -tuple of sequences

�

σ r
k

�

⊂R, such that σ r
k · uk → u r in C∞loc for every r ∈ {1, . . . , l}.

The integer l +1 will be called the number of levels of the broken configuration, and the index
r will be called the level.

This topology coincides with the quotient by the R-action of the C∞loc topology on the inte-
rior. The same notion of convergence applies to points in M d �γ ,γ ′

�

, as we can work level by
level. This shows that

Theorem 5 The space M
�

γ ,γ ′
�

with the broken convergence topology is compact.

Remark For now, the set of broken Floer cylinders M d �γ ,γ ′
�

only provides us with the
boundary of M

�

γ ,γ ′
�

in the sense of topology. But M
�

γ ,γ ′
�

has the structure of a smooth
manifold. Later we shall see some hints pointing towards the fact that the set of broken con-
figurations gives the boundary and corners of the moduli space as a smooth manifold.

Global convergence à la Gromov We conclude the section with a proposition which elu-
cidates the “global nature” of the notion of convergence by breaking. It justifies the intuitive
picture that most working Floer theorists have of broken convergence.

Fix a smooth strictly increasing diffeomorphism S : (−1,1)→ R such that S(τ)→ ±∞ as
τ→±1, for example S(τ) = tan πτ

2 . If v ∈ M
�

γ ,γ ′
�

, define a map V : [−1,1]× S1→ R2n by
setting

V (τ, t ) =











γ (t ), τ =−1
v (S(τ), t ) , τ ∈ (−1,1)
γ ′(t ), τ = 1

Since v converges to γ and γ ′ at its ends with exponential decay of all its s -derivatives, V is a
continuous function.

Let
�

u0, . . . , u l � ∈ M (γ ,γ1)× · · · × M
�

γl ,γ
′�. Similarly as just explained, extend these to

maps U 0, . . . , U l : [−1,1]× S1→R2n . Define a map U : [−1,1]× S1→R2n by setting

U (τ, t ) =U r ((l + 1)τ+ l − 2r, t ) ∀τ ∈
�

−1+
2r

l + 1
,−1+

2(r + 1)
l + 1

�

, ∀0≤ r ≤ l

It’s easy to see that U is a continuous map, because each u r converges exponentially fast to its
ends, and the positive end of each cylinder matches with the negative end of the next.

Remark The specific formula for U is not important. The idea is that the map U gives the
stacked-up broken configuration defined by our tuple (u0, . . . , u l ). The intuitive picture which
most working Floer theorists have in mind is that broken convergence happens as in figure 3.2.

Finally, let (uk ) ⊂ M
�

γ ,γ ′
�

be some sequence and Uk : [−1,1]×R2n the extensions of the
maps.
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Proposition 3.6.2 If uk →
�

u0, . . . , u l � in M
�

γ ,γ ′
�

then there exist homeomorphisms

ϕk : [−1,1]× S1→ [−1,1]× S1

such that Uk ◦ϕk →U uniformly.

Uk ◦ϕk
C 0

−−−→
k→∞

U 0

U r

U r+1

U l

«

U

Figure 3.2.

Proof. Assume that uk →
�

u0, . . . , u l � in M
�

γ ,γ ′
�

. Choose arbitrary lifts of uk to M
�

γ ,γ ′
�

and obtain the totally ordered exhaustive tuple of shifts
�

σ r
k

�

r,k
, such that σ r

k ·uk → u r in C∞loc .

Since
�

σ r
k

�

r,k
is exhaustive and totally ordered, we know that

uk

�

σ r+1
k
−σ r

k

2
, ·
�

→ γr in C∞
�

S1,R2n�

Set for notational convenience s r
k =

σ r+1
k
−σ r

k
2 . Define

τ r
k = S−1 �s r

k

�

, τr =−1+
2r

l + 1
, 1≤ r ≤ l

Let ϕk : [−1,1]× S1 → [−1,1]× S1, ϕk (τ, t ) = ( fk (τ), t ) where fk : [−1,1] → [−1,1] is a
continuous strictly increasing function chosen so that fk (±1) = ±1 and fk

�

τ r
k

�

= τr . In or-
der to avoid pathological situations, we choose the piece-wise linear function fulfilling these
requirements. Since σ r

k · uk → u r in C∞loc , we know already that

Uk ◦ϕk →U in C 0
loc

 

[−1,1] \
l
⋃

r=1

τr

!
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Let’s focus on a breaking point τr . Recall the quantum of energy ħhH > 0 from the theory of
long cylinders with small energy. Let s∗ > 0 be chosen such that

EH ,J

�

u r |[s∗,+∞)
�

< ħhH , EH ,J

�

u r+1
�

�

�

(−∞,−s∗]

�

< ħhH .

Define ϵ= 1− S−1(s∗)> 0. From the C∞loc convergence it follows that

Uk ◦ϕk (τr ± ϵ, · )→U (τr ± ϵ, · ) in C∞
�

S1�

In particular, the actions of the corresponding loops must also converge. Unpacking what this
means in terms of the uk and u r , u r+1 and using the fact that both S and fk are non-decreasing
functions, we see that given our ϵ > 0 there exists a δ > 0 and a sequence s ′k with s ′k ≤ S ′

�

τ r
k

�

δ
such that

AH
�

uk
�

s r
k − s ′k , ·

��

→AH

�

u r
�

s∗+ S
�

−2+
2r

l + 1

�

, ·
��

Given the piece-wise linearity of fk one could even express δ explicitly in terms of ϵ, τk
r and

τr . Since both s r
k · uk and u r are asymptotic to γr as s →+∞,

EH ,J

�

uk |[s r
k
−s ′

k
,+∞)

�

→ EH ,J

�

u r |[s∗+S(−2+2r/(l+1)),+∞)

�

< ħhH

Thus eventually the left-hand side is less than ħhH . Applying the long cylinders with small
energy Proposition 3.4.2, for any isolating C∞-neighborhood W (γr ) of γr we find an s ′′k <
s r
k − s ′k such that

uk |[s r
k
−s ′

k
+s ′′

k
,+∞) ⊂W (γr ) ∀k large enough.

Let δ ′ > 0 be such that τ r
k −δ

′ = S−1
�

s r
k − s ′k + s ′′k

�

and ϵ′ ≤ ϵ such that

fk
�

τr + ϵ
′�= τ r

k −δ
′.

What we gain is that Uk ◦ϕk (τ, ·) ∈W (γr ) for all τ ∈
�

τr − ϵ′,τr
�

for every k large enough.
Arguing similarly for the other side using the smallness of the energy of u r+1, we can show
that the same holds on

�

τr − ϵ′,τr + ϵ
′� perhaps with a smaller ϵ′. What we’ve shown is that

for any small enough neighborhoodW (γr ) of γr in the loop space, there exists an ϵ′ > 0 such
that Uk ◦ϕk (τ, ·) and U (τ, ·) are both inW (γr ) for every τ ∈ [τr−ϵ′,τr+ϵ

′] and every k large
enough. This implies that Uk ◦ ϕk → U in C 0 on a neighborhood of τr , and that concludes
the proof.

Remark It’s not so hard to see that actually also the converse is true. For the other direction,
the uniform convergence of the maps Uk ◦ϕk to U implies the C 0

loc convergence up to shifts of
the maps uk . Bootstrapping then gives C∞loc convergence.

Remark If we have a sequence of cylinders with a tuple of shifts which is not exhaustive, then
there could be some energy concentration which we do not keep track of, implying that we
are forgetting some cylinder that breaks off. In this case, the proposition cannot be true.
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3.6.1.2. The non-autonomous case

LetH be an asymptotically quadratic continuation between H± ∈ wH∗ and J an adequate
almost-complex structure. Similarly as in the previous section, we have the following notion
of broken convergence of sequences of (H ,J )-Floer cylinders with fixed asymptotics.

Proposition 3.6.3 Let γ± be any 1-periodic orbits of H±. Assume that H is chosen such that
there exists an E = E(γ−,γ+,H ,J ) for which

u ∈M
�

γ−,γ+;H ,J
�

=⇒ EH ,J (u)< E

Let (uk )k ⊂M (γ−,γ+;H ,J ) be a sequence of Floer cylinders. There exists a subsequence (uk j
) j

of (uk )k , 1-periodic orbits γ−0 = γ
−, . . . ,γ−

l−
of H−, 1-periodic orbits γ+1 , . . . ,γ+

l++1
= γ+ of H+,

sequences (σ r,−
j ) j for r ∈ {0, . . . , l−} tending to −∞, sequences (σ r,+

j ) j for r ∈ {1, . . . , l+ + 1}
tending to +∞, Floer cylinders u r,− ∈ M

�

γ−r ,γ−r+1; H−, J−
�

for r ∈ {0, . . . , l−}, Floer cylinders

u r,+ ∈ M
�

γ+r ,γ+r+1; H−, J−
�

for r ∈ {1, . . . , l+}, and a Floer cylinder u∗ ∈M
�

γ−
l−

,γ+1 ;H ,J
�

such that
lim

j→∞
σ r,−

j · uk j
= u r,−, lim

j→∞
σ r,+

j · uk j
= u r,+, lim

j→∞
uk j
= u∗.

All these limits are intended in C∞loc . Moreover, if (H ,J ) is a regular pair, then the dimension
formula for the moduli spaces gives a bound on the maximum number of cylinders in a broken
Floer cylinder:

l−+ l+ ≤CZ(γ−, H−)−CZ(γ+, H+)

The proof of this proposition is completely analogous to its autonomous counterpart, since
braking happens in the “autonomous regions” whereH is s -constant.

Remark The presence of an uniform energy bound in the case of continuation Floer cylinders
is not automatic, and it is crucial, because it is necessary to prove the compactness of the space
of finite-energy trajectories. Below we will present some cases in which this uniform energy
bound is achieved.

In the same way as in the autonomous case, we can define the set of broken configurations of
Floer cylinders, and this proposition defines the topology of the compactification of the moduli
space of Floer cylinders between two fixed orbits. This time the set of broken configurations
is as follows: we set d =CZ (γ−)−CZ (γ+) and define

M d (γ0,γ1) =
⋃



























M
�

γ−,γ−1
�

× . . .

· · ·×M
�

γ−l− ,γ+1
�

× . . .

· · ·×M
�

γ+l+ ,γ+
�

:

l++ l− ≤ d ,

ξ ±r ∈ Per1 H±,

CZ
�

ξ ±r
�

<CZ
�

ξ ±r+1

�

,

CZ
�

γ−l−
�

≤CZ
�

γ+1
�



























Again we denote the compactification of the moduli spaces with the same symbols as their
non-compactified counterparts. Similar considerations on the compactness and global conver-
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gence properties hold also in this non-autonomous case, as the breaking always happens in the
autonomous regions.

3.6.1.3. Parametrized case

LetH ,G be two asymptotically quadratic continuations between H± ∈wH∗ and J ,I two
adequate almost-complex structures. Let (H,J) be a homotopy between (H ,J ) and (G ,I ).

Here we describe the suitable notion of broken convergence.

Proposition 3.6.4 Fix 1-periodic orbits γ± of H±. Assume that H is chosen in such a way that
there exists an e > 0 for which the following holds:

(ρ, uρ) ∈M
�

γ−,γ+;H,J
�

=⇒ EHρ,Jρ (u
ρ)< e (3.15)

For every sequence (ρn , uρn
n ) ∈M(γ−,γ+) there exists a subsequence (ρn j

, u
ρn j
n j
), 1-periodic orbits

γ−0 = γ
−,γ−1 , . . . ,γ−

l−
of H−, 1-periodic orbits γ+1 , . . . ,γ+

l++1
= γ+ of H+, real sequences (σ r,−

j )⊂
R for r ∈ {0, . . . , l−} tending to−∞, real sequences (σ r,+

j )⊂R for r ∈ {1, l++1} tending to+∞,

Floer cylinders u r,− ∈M
�

γ−r ,γ−r+1

�

for r ∈ {0, . . . , l−−1}, Floer cylinders u r,+ ∈M
�

γ+r ,γ+r+1

�

for r ∈ {1, . . . , l+} and a pair (ρ∗, uρ∗) ∈M
�

γ−
l−

,γ+1
�

such that

lim
j→∞

σ r,−
j · u

ρn j
n j
= u r,−, lim

j→∞
σ r,+

j · u
ρn j
n j
= u r,+, lim

j→∞
u
ρn j
n j
= uρ∗ , lim

j→∞
ρn j
= ρ∗

where all limits except the last are in C∞. Moreover, when all pairs (H ,J ), (G ,I ) and (H,J)
are regular, we can estimate l−+ l+ ≤CZ (γ−, H−)−CZ (γ+, H+)+ 1.

This proposition prompts us with the correct notion of broken Floer trajectory and defines
the convergence in the compactification of this moduli space. The compactification will again
be denoted by the same symbol of the non-compactified moduli space.

Remark Notice that the energy bound (3.15) can also be weakened to a ρ-pointwise uniform
energy bound, by compactness of [0,1]. Therefore there is basically no additional requirement
here other than the ones already present in the compactness theory of the non-autonomous
moduli spaces.

3.6.2. Gluing theory

In the previous three sections we’ve seen how a sequence of Floer cylinders converges to a
broken configuration of Floer cylinders coming from lower-dimensional moduli spaces. In
this section we show a sort of converse to this phenomenon, where a broken configuration
with two levels is shown to have a 1-parameter family of Floer cylinders converging to it. A
more elaborate treatment would lead us to conclude that the compactified moduli spaces can
be endowed with the structure of compact smooth manifolds with boundaries and corners.
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We will give an overview of gluing in the autonomous case, which already presents all the
analytical difficulties of the theory, following the analogous treatment for holomorphic spheres
in the book by McDuff and Salamon [32, Chap. 10]. The non-autonomous and parametrized
cases are similar in spirit, always because of the fact that the continuation Hamiltonians and
homotopy Hamiltonians considered are stationary outside compact sets of the parameters.

3.6.2.1. Gluing up two Floer cylinders

Let (H , J ) be a regular pair and γ0,γ1,γ2 ∈ Per1 H be orbits with indices satisfying

CZ (γ0, H )>CZ (γ1, H )>CZ (γ2, H ) .

Consider two (H , J )-Floer cylinders u0, u1 and assume that u0 ∈M (γ0,γ1) and u1 ∈M (γ1,γ2).
Therefore, the images u0(R× S1) and u1(R× S1) intersect at the orbit γ1. We can thus “pre-
glue” the two cylinders as follows. Fix a smooth non-decreasing function χ : R→ [0,1] such
that χ (s) = 0 for all s ≤ 0, χ (s) = 1 for all s ≥ 1, χ ′(s) ≤ 2 for all s and

�

�χ ′′(s)
�

� ≤ 8 for all s .
For every R> 0 large, define the “pre-glued cylinders” by the formula

u0
c#Ru1(s , t ) =



































u0 (s +R, t ) s ≤−R
2 − 1

χ
�

−s − R
2

�

u0 (s +R, t )+
�

1−χ
�

−s − R
2

��

γ1(t ), −
R
2 − 1≤ s ≤−R

2

γ1(t ), −R
2 ≤ s ≤ R

2
�

1−χ
�

s − R
2

��

γ1(t )+χ
�

s − R
2

�

u1 (s −R, t ) , R
2 ≤ s ≤ R

2 + 1

u1 (s −R, t ) s ≥ R
2 + 1

(3.16)
This formula clearly gives us a smooth map u0

c#Ru1 : R× S1→R2n which is asymptotic to γ0

as s →−∞ and to γ2 as s → +∞. Moreover, u0
c#Ru1(s , t ) = γ1(t ) for all s ∈ [−ϵ,ϵ]. Recall

the affine spaceB0 from Section 3.5.1.1 with asymptotic orbits γ0,γ2. It is immediate to see
that u0

c#Ru1 ∈ B0, because of the exponential decay of the s -derivatives of both u0 and u1.
From the formula it also follows that

Lemma 3.6.3 u0
c#Ru1 converges in C∞loc to γ1 as R→+∞, which is a (constant) solution of the

(H , J )-Floer equation. Moreover (−R) ·
�

u0
c#Ru1

�

→ u0 and R ·
�

u0
c#Ru1

�

→ u1 both in C∞loc as
R→+∞.

Hence, it is plausible to expect that for every R large enough the implicit function theorem
will give us an actual solution which is near to the pre-glued cylinder. The aim of this section
is to prove this claim. First, let’s formulate a function-analytical model. According to the
author’s taste, the clearest account of this is McDuff and Salamon’s [32, Prop. A.3.4].

Lemma 3.6.4 (Newton-Picard iteration) Let E , F be Banach spaces, U ⊂ E an open set and
f : U → F a C 1 map. Let u ∈U be such that D f (u) : E → F is surjective and has a bounded right
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inverse G : F → E. Choose δ, c > 0 such that ∥G∥op ≤ c, B E
δ
(u)⊂U and





D f
�

u ′
�

−D f (u)






op ≤
1
2c

∀u ′ ∈ B E
δ (u).

Assume that w ∈ E satisfies

∥ f (w)∥F <
δ

4c
, ∥w − u∥E <

δ

8

Then there exists an unique v ∈ E such that

f (v) = 0, v −w ∈ imG, v ∈ B E
δ (u).

Moreover we have the estimate

∥v −w∥E ≤
3c
2
∥ f (w)∥F .

M

imG = E/kerT

B E
δ
(u)

B E
δ/8(u)

u

w

v
v −w ∈ imG

Figure 3.3. Schematic picture of the Newton-Picard iteration scheme in the Banach setting.

The proof can be found in [32, Prop. A.3.4]. We wish to apply this lemma to

E =W 1, p �R× S1,R2n� , F = Lp �R× S1,R2n� , f = ∂ H ,J , wR = u0
c#Ru1
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Since (H , J ) is a regular pair, D f (u) is a Fredholm operator with bounded right inverse for
every u ∈ f −1(0) (see Theorem 4). The problem is that we don’t know this for wR = u0

c#Ru1.
So first one must construct an approximate inverse for D f (wR).

Lemma 3.6.5 Let (H , J ) be a regular pair and γ0,γ1,γ2 ∈ Per1 H with CZ (γ0) > CZ (γ1) >
CZ (γ2). There exist constants R0, c > 0 and a smooth map assigning to every u0 ∈ M (γ0,γ1),
u1 ∈M (γ1,γ2) and R> R0 a bounded linear operator

QR : Lp �R× S1,R2n�→W 1, p �R× S1,R2n�

with the following property. Denote by wR = u0
c#Ru1 and

TR =D∂ H ,J (wR) : W 1, p �R× S1,R2n�→ Lp �R× S1,R2n�

Then for any η ∈ Lp and R> R0 we have the estimates

∥TRQRη−η∥Lp ≤
1
2
∥η∥Lp , ∥QRη∥W 1, p ≤ c ∥η∥Lp

Here are some comments on the construction of this operator-valued map. Recalling the
definition of the pre-glued cylinder (3.16), set

u0
R(s , t ) =

¨

u0
c#Ru1(s , t ), s ≤ 0

γ1(t ), s ≥ 0
, u1

R(s , t ) =
¨

γ1(t ), s ≤ 0
u0
c#Ru1(s , t ), s ≥ 0.

From the formula, it is clear that

wR(s , t ) =
¨

u0
R(s , t ), s ≤ 0

u1
R(s , t ), s ≥ 0.

Notice further that u0
R is a W 1, p -small perturbation of (−R) ·u0 as R→+∞. The same can be

said for u1
R and R · u1. Therefore, the operator D∂ H ,J

�

u0
R

�

gets arbitrarily close in the strong

topology to D∂ H ,J
�

(−R) · u0
�

as R→+∞, which is onto because (H , J ) is a regular pair, and
the same can be said about the corresponding operators for u1

R and R · u1. This can be seen
from scrutinizing the formula (3.10). We conclude that there exists an R0 > 0 such that the
operator

fTR =D∂ H ,J
�

u0
R

�

⊕D∂ H ,J
�

u1
R

�

: W 1, p ×W 1, p → Lp × Lp

is onto for every R> R0. Therefore, we can define

ÝQR : Lp × Lp →W 1, p ×W 1, p

to be the unique right inverse of fTR whose range is L2-orthogonal to the kernel of fTR. It can
be shown that (see [32, Lemma 10.6.1]) there exists a c > 0 and a (new) R0 > 0 (possibly the
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same as before, but likely larger), such that









ÝQR
�

η0,η1�









W 1, p×W 1, p
≤ c










�

η0,η1�









Lp×Lp
∀R> R0, ∀

�

η0,η1� ∈ Lp × Lp .

The construction now proceeds exactly as in [32, Prop. 10.5.1].
Given the approximate right inverse QR to TR, we can easily define a true right inverse

GR : Lp →W 1, p , GR =QR (TRQR)
−1

which has the same image as our approximate right inverse TR. It is now a simple matter to
check that this family of right inverses has an uniform bound on their norm, obtaining

Lemma 3.6.6 There exists a c > 0 and an R0 > 0 such that

∥GR∥op ≤ c ∀R> R0

Combining Lemmata 3.6.3, 3.6.4 and 3.6.6 we conclude that there exists an R0 > 0 such that
for every R> R0, there exists an unique solution

u0#Ru1 ∈M (γ0,γ2)

such that








u0#Ru1− u0
c#Ru1










W 1, p
≤

3∥GR∥op

2








∂ H ,J

�

u0
c#Ru1

�









Lp
→ 0 as R→∞ (3.17)

3.6.2.2. Gluing a 2-level broken configuration to the interior

We can arrange the glued solutions into a smooth map

β : M (γ0,γ1)×M (γ1,γ2)× (R0,+∞)→M (γ0,γ2) , β
�

u0, u1, R
�

= u0#Ru1

The smoothness of this map follows from the smoothness of all the operations involved in
defining it. We implicitly chose an s -parametrization for each cylinder. The result does not
depend on the chosen parametrizations, since it is a solution of the autonomous Floer equation.

Lemma 3.6.7 β
�

u0, u1, R
�

converges to the broken configuration (u0, u1) ∈M (γ0,γ1)×M (γ1,γ2)
as R→+∞. Viceversa, let (uk )⊂M (γ0,γ2) be a sequence. If uk converges to the broken configu-
ration

�

u0, u1
�

∈M (γ0,γ1)×M (γ1,γ2), then for every k large enough there exist Rk ∈ [R0,+∞)
such that uk =β

�

u0, u1, Rk
�

.

Proof sketch. Recall that (−R) · u0
c#Ru1→ u0 in C 0

loc as R→+∞ and R · u0
c#Ru1→ u1 in C 0

loc

as R→+∞. This combined with (3.17) gives W 1, p
loc

convergence of the corresponding shifts of
u0#Ru1. Elliptic regularity gives C∞loc convergence. Viceversa, recall that broken convergence
is equivalent to “global convergence”, in the sense of Proposition 3.6.2. Therefore, for k large
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enough, uk belongs to a neighborhood of the pre-glued trajectory. But then by the uniqueness
in Lemma 3.6.4 it must be that uk is of the claimed form.

Proposition 3.6.5 The map β is a smooth embedding.

Proof sketch. The details of this proof can be found in [32, Theorem 10.1.2]. Lemma 3.6.7
implies that β is proper. Next one shows that it is an immersion. To do this, it suffices to
prove that

D (#R)
�

u0, u1� : Tu0 M (γ0,γ1)⊕Tu1 M (γ1,γ2)→ Tu0#R u1 M (γ0,γ2)

is injective. Consider a smooth path

[−ϵ,ϵ] ∋ τ 7→
�

u0,τ , u1,τ� ∈M (γ0,γ1)×M (γ1,γ2) .

Denote by wτ
R = u0,τ

c#Ru1,τ , vτR = u0,τ#Ru1,τ and wτ
R − vτR = ητR. Denote further T τ

R =
D∂ H ,J (w

τ
R) and Gτ

R its right inverse. From the Newton-Picard Lemma 3.6.4 we know that

∥ητR∥W 1, p ≤
3∥Gτ

R∥op

2








∂ H ,J wτ
R










Lp
≤C0








∂ H ,J wτ
R










Lp

The constant C0 > 0 doesn’t depend on R as long as it is large enough, by Lemma 3.6.6. In [32,
Proposition 10.5.4] it is shown that:
















dητR
dτ
















W 1, p

≤
C0

R2/p

�















d u0,τ

dτ
















L2

+
















d u1,τ

dτ
















L2

�

This is the crucial estimate of the proof. Notice that since d u i ,τ

dτ is a tangent vector to a trans-
versely cut out moduli space, it belongs to a finite-dimensional space, so the choice of the L2

norm here is somewhat arbitrary.
Next, by the chain rule

d wτ
R

dτ
=D

�

c#R

�

�

u0,τ , u1,τ�
�

d u0,τ

dτ
,

d u1,τ

dτ

�

Obviously by definition of the pre-gluing map, whenever η0 ∈ Tu0 M (γ0,γ1) = ker D∂ H ,J (u
0)

and η1 ∈ Tu1 M (γ1,γ2) = ker D∂ H ,J (u
1), we have








D
�

c#R

�

�

u0, u1� �η0,η1�









2

L2
≥







η0









2

L2((−∞,R−1]×S1)
+







η1









2

L2([R+1,+∞)×S1)
≥

≥C1

�







η0









2

L2
+







η1









2

L2

�

The last inequality follows because each ηi is in the kernel of some linear Cauchy-Riemann type
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operator, so one may use the unique continuation properties of solutions of linear Cauchy-
Riemann type equations (see e.g. [17]) to show that the L2 norm on a half-infinite cylinder
controls the L2 norm of the whole cylinder. Also here the choice of L2 norm is somewhat
arbitrary.

Now, we combine the previous estimates:















d vτR
dτ
















W 1, p

≥















d wτ
R

dτ
















W 1, p

−















dητR
dτ
















W 1, p

≥

≥
�

C1−
C0

R2/p

�

�















d u0,τ

dτ
















L2

+
















d u1,τ

dτ
















L2

�

which is positive as long as R is large enough. This shows that when R is large enough, D#R is
injective.

Finally one shows that β is injective, which concludes the proof. This is done as follows.
The uniform estimates on the inverse of Lemma 3.6.6 can be used to show that for R large
enough, the gluing map is injective on sufficiently small W 1, p -balls. Then, since (−R) ·u0#Ru1

is arbitrarily close to u0 and R · u0#Ru1 is arbitrarily close to u1 as R → +∞, two couples
with the same image under the gluing map must be W 1, p -close as much as we want by taking
R large. But then they lie within a sufficiently small W 1, p -ball, where we know the gluing map
is injective.

3.6.2.3. A sketch of the general case

The gluing construction can be generalized to glue up a broken configuration of Floer cylin-
ders. Namely, let γ ,γ ′ ∈ Per1 H and recall the space M d �γ ,γ ′

�

defined in (3.14), with d =
CZ (γ )−CZ

�

γ ′
�

− 1. The space M d �γ ,γ ′
�

can be stratified into the subspaces of configura-
tions with number of levels exactly l ≤ d . For a fixed stratum, define a map

β : M (γ ,γ1)× · · ·×M
�

γl ,γ
′�× (R0,+∞)l →M (γ0,γ1)

by setting
β(u0, . . . , u l , R1, . . . , Rl ) = u0#R1

u1#R2
. . . #Rl−1

u l−1#Rl
u l

Here the right hand side is obtained in an analogous way as for two cylinders, by defining a
pre-glued cylinder and running a similar analysis as the two cylinder case. One must take care
that the pre-gluing is defined in such a way that the single flattened-out cylinders don’t interact
for any R> 0.

Remark One might think that one could obtain a gluing map on a general broken configu-
ration by gluing up the cylinders iteratively, i.e. gluing the first two, then gluing the result to
the third, and so forth. This procedure does not allow us to obtain a smooth embedding of the
interior of a corner into the interior of the moduli space, so it is not the correct strategy.

This map will turn out to have similar properties as the two level case, in particular, it is a
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smooth embedding of the stratum as a corner of the moduli space M
�

γ ,γ ′
�

.

Remark To show that the compactified moduli space M
�

γ ,γ ′
�

really is a manifold with bound-
ary and corners, the mapβ is not sufficient. In fact, we haven’t shown that the map gives an em-
bedding including the boundary, which would correspond to the case that R1, . . . , Rl = +∞.
Also, the set up sketched above is not suitable to discuss coordinate changes, as there is no “am-
bient space” containing all the moduli spaces entering the corner structure. Hence the gluing
theory sketched here cannot be used to give an atlas consisting of corner charts in the usual
sense. The author was not able to find a full discussion of such issues in the “traditional” lit-
erature on Floer homology. It is reasonable to expect that these issues could be resolved via
polyfold technology, but the author could not find a written down account of this as of the
writing of the thesis.

3.6.3. Parametrizing the boundaries via gluing

Finally, we conclude our study of the moduli spaces of Floer trajectories with fixed asymptotics
by gathering together the broken convergence and gluing theories to describe their boundaries
in terms of lower dimensional moduli spaces. We do this only in the cases relevant for the
definition of Floer homology, namely, only when the moduli space involved has dimension 1.

3.6.3.1. Boundary of autonomous moduli spaces

Let (H , J ) be a regular pair. The proof of the following proposition can be also found in detail
in [7, §9.2-6].

Proposition 3.6.6 Let γ ,γ ′ ∈ Per1(H ) be such that CZ(γ , H )−CZ(γ ′, H ) = 2. Then the bound-
ary of the compactified moduli space M (γ ,γ ′; H , J ) is given by

∂ M
�

γ ,γ ′; H , J
�∼=

⋃

γ1∈Per1(H ):
CZ(γ ,H )=CZ(γ0,H )−1

M (γ ,γ1; H , J )×M
�

γ1,γ ′; H , J
�

(3.18)

3.6.3.2. Boundary of non-autonomous moduli spaces

Let H± ∈wH∗. Let (H ,J ) be a regular pair of continuation data, withH an asymptotically
quadratic continuation. Similarly as before, one may consult [7, §11.2] for a complete proof
of the following proposition.

Proposition 3.6.7 Let γ± ∈ Per1(H±) be such that CZ(γ−, H−)−CZ(γ+, H+) = 1. Then the
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M (γ ,γ1)×M
�

γ1,γ ′
�

M
�

γ ,γ ′
�

M
�

γ ,γ ′1
�

×M
�

γ ′1,γ ′
�

u0

u1

γ

γ ′

γ1 uk

γ

γ ′

vk

γ

γ ′

γ ′1

v0

v1

Figure 3.4. Schematic drawing of the compactification of one connected component of a one-
dimensional quotiented moduli space.

boundary of the compactified moduli spaceM (γ−,γ+;H ,J ) is given by

∂M
�

γ−,γ+;H ,J
�∼=

⋃

γ−1 ∈Per1(H−):
CZ(γ−1 ,H−)=CZ(γ−,H−)−1

M
�

γ−,γ−1 ; H−, J−
�

×M
�

γ−1 ,γ+;H ,J
�

⊔

⊔
⋃

γ+1 ∈Per1(H+):
CZ(γ+1 ,H+)=CZ(γ−,H−)

M
�

γ−,γ+1 ;H ,J
�

×M
�

γ+1 ,γ+; H+, J+
�

(3.19)

3.6.3.3. Boundary of parametrized moduli spaces

Let H± be as in the previous section, (H ,J ) and (G ,I ) two regular pairs of continuation
data between H− and H+, and (H,J) a regular homotopy between the continuations.

Proposition 3.6.8 Let γ± ∈ Per1(H±) be such that CZ(γ+, H+) = CZ(γ−, H−). Then the
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M
�

γ−,γ−1
�

×M
�

γ−1 ,γ+
�

M (γ−,γ+) M
�

γ−,γ+1
�

×M
�

γ+1 ,γ+
�

γ− γ− γ−

γ+ γ+ γ+

γ−1 γ+1uk vk

u0,−

v1,+u∗

v∗

Figure 3.5. Schematic drawing of the compactification of a component of a one-dimensional non-
autonomous moduli space. The wavy cylinders are meant to represent solutions of the non-
autonomous Floer equation. The sequence uk has l− = 1, l+ = 0, while the sequence vk has
l− = 0, l+ = 1.

boundary of the compactified moduli spaceM (γ−,γ+;H,J) is given by

∂M
�

γ−,γ+;H,J
�∼= {0}×M

�

γ−,γ+;H ,J
�

⊔{1}×M
�

γ−,γ+;G ,I
�

⊔

⊔
⋃

γ−1 ∈Per1(H−):
CZ(γ−1 ,H−)=CZ(γ−,H−)−1

M
�

γ−,γ−1 ; H−, J−
�

×M
�

γ−1 ,γ+;H,J
�

⊔

⊔
⋃

γ+1 ∈Per1(H+):
CZ(γ+1 ,H+)=CZ(γ+,H+)+1

M
�

γ−,γ+1 ;H,J
�

×M
�

γ+1 ,γ+; H+, J+
�

(3.20)

Remark It can be useful to make a small distinction between the two main components of the
boundary, namely the first line in (3.20) and the bottom two. The first component, given in
terms of non-autonomous moduli spaces, is already present before the compactification given
by broken convergence. We call this first component the regular part of the boundary, and the
second component the exceptional part. This is because of the following property: if the couple
(Hρ,Jρ) is a regular pair of continuation data for every fixed ρ, the exceptional part of the
boundary is always empty. Indeed, notice that all the moduli spaces entering the exceptional
part of the boundary have dimension zero. Therefore, if each pair (Hρ,Jρ) is regular for every
fixed ρ ∈ (0,1), then these moduli spaces must be empty, otherwise we are in contradiction
with the standing assumption that both (H ,J ) and (G ,I ) are regular pairs.
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0 ρ∗ [0,1] ρ∗∗ 1

M
( γ
−,γ

+;H
,J
)

M
( γ
−,γ

+;G
,I
)

M (γ−,γ+)

(0, u0) (1, u1)

(ρ∗, uρ∗ , u1,+) (ρ, uρ) (ρ∗∗, uρ∗∗ , u0,−)

γ− γ− γ− γ−

γ+ γ+ γ+ γ+

γ+1 γ−1u0

uρ∗

u1,+

uρ
u0,−

uρ∗∗

u1

Figure 3.6. Schematic drawing of the compactification of a parametrized moduli space of dimen-
sion 1. The moduli space fibers over [0,1], which is depicted at the bottom. The exceptional
part of the boundary is denoted by diamond shaped points. In order not to clutter the pic-
ture too much, the cylinder corresponding to the compactification of the half-open branch issuing
back from M (γ−,γ+;G ,I ) was not represented. Such half-open branches may also issue out of
M (γ−,γ+;H ,J ). Notice the closed boundary-less component. If (Hρ,Jρ) is a regular pair for all
ρ ∈ [0,1], then half-open and open branches cannot exist, andM(γ−,γ+) provides us with a cobor-
dism betweenM (γ−,γ+;H ,J ) andM (γ−,γ+;G ,I ).
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4. Floer homology for asymptotically linear
Hamiltonian systems

Now that we have a rough understanding of the moduli spaces of
Floer trajectories and their topological properties, we are ready to
use the combinatorics of the low-dimensional moduli spaces to de-
fine Floer homology. This will be the homology of a chain complex
generated by 1-periodic orbits, graded by their Conley-Zehnder in-
dex, and whose differential is given in terms of a count of Floer tra-
jectories connecting two fixed orbits. Since we are only interested in
existence of periodic orbits, it suffices to work with chain complexes
with Z/2-coefficients. We will also explain how to treat the case of
degenerate Hamiltonians, leading to local Floer homology and its
interactions with filtered Floer homology.

4.1. Floer homology

Let (H , J ) be a regular pair, which we recall consists in an asymptotically quadratic, non-
degenerate Hamiltonian, non-degenerate at infinity and a 1-periodic family of adequate almost
complex structures such that all moduli spaces of Floer trajectories are transversally cut out.
Recall that the 1-periodic orbits of such a Hamiltonian come in a finite number.

We define a chain complex, for each k ∈Z,

CFk (H , J ) = spanZ/2
�

γ ∈C∞(S1,R2n) : γ̇ =XH ◦ γ , CZ(γ , H ) = k
	

i.e. the free Z/2-vector space with generators the 1-periodic orbits of H of Conley-Zehnder
index k. By the remark above, this space is finite-dimensional for any k.

Often we identify a 1-periodic orbit γ of H with a fixed point z = γ (0) of ϕ1
H , and we think

of CFk (H , J ) as generated by fixed points.
We define a boundary operator on the generators as follows

dH ,J : CFk (H , J )→CFk−1 (H , J )

γ 7→
∑

γ ′
#Z/2M

�

γ ,γ ′; H , J
�

γ ′

where #Z/2 denotes the parity of the cardinality. Since CZ(γ ) =CZ(γ ′)+1, the quotient of the
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moduli space is zero-dimensional and compact, and its cardinality is finite.

Remark One may take coefficients in a more general abelian group by discussing suitable
Z-orientations of the moduli spaces, and replacing the parity of the cardinality with a signed
count.

Lemma 4.1.1 dH ,J ◦ dH ,J = 0.

Proof. Abbreviate d = dH ,J . It suffices to show the claim on a generator γ ∈ Per1(H ) of index
CZ(γ , H ) = k.

d dγ =
∑

γ ′∈Per1(H ):
CZ(γ ,H )=k−2

∑

γ1∈Per1(H ):
CZ(γ ,H )=k−1

#Z/2M (γ ,γ1; H , J ) · #Z/2M
�

γ1,γ ′; H , J
�

γ ′

Comparing this with the description of the boundary (3.18), we see that
∑

γ1∈Per1(H ):
CZ(γ ,H )=k−1

#Z/2M (γ ,γ1; H , J ) · #Z/2M
�

γ1,γ ′; H , J
�

= #Z/2∂ M
�

γ ,γ ′; H , J
�

But since M (γ ,γ ′; H , J ) is a smooth 1-dimensional manifold, the cardinality of its boundary is
even. This concludes the proof.

Define the Floer homology of the Hamiltonian H to be the homology of the Floer chain
complex:

HFk (H ) =Hk
�

CF∗(H , J ), dH ,J
�

From the definition only, it is not clear whether HF(H ) depends on J or H , although the
chosen notation suggests the answer. To show that it is independent on J and only “mildly
dependent” on H , we construct continuation isomorphisms.

4.1.1. Continuation morphisms

We aim to explore the dependence of Floer homology on H and J . Let (H±, J±) and (H ,J ) be
regular pairs, whereH is an asymptotically quadratic continuation between H− and H+ in the
sense of Definition 3.2. The idea is to use (H ,J ) as a “homotopy of data”, and hope that the
moduli spaces of the corresponding continuation Floer equation have sufficient compactness
to define a morphism, in the following way:

C (H ,J ) : CF∗
�

H−, J−
�

→CF∗
�

H+, J+
�

γ− 7→
∑

γ+∈Per1(H+)
CZ(γ+,H+)=CZ(γ−,H−)

#Z/2M
�

γ−,γ+;H ,J
�

γ+ (4.1)
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Of course, here the count makes sense only if the moduli space is compact. Proposition 3.6.3
tells us that this is possible when the HamiltonianH leads to an uniform energy bound across
all relevant moduli spaces. Namely, if u ∈M (γ−,γ+;H ,J ), then we know that

EH ,J (u)≤AH−(γ
−)−AH+(γ

+)+
∫

R×S1
∂sH (s , t , u)d s d t .

In order to obtain the necessary compactness of the moduli spaces, one must guarantee that
there exists a B > 0 such that

∫

R×S1
∂sH (s , t , u)d s d t < B ∀u ∈M

�

γ−,γ+;H ,J
�

.

Assuming that such a B exists for our chosenH , one may show

Lemma 4.1.2 C (H ,J ) : CF∗ (H
−, J−)→CF∗ (H

+, J+) is a morphism of chain complexes.

Proof. Set for simplicity d± = dH±,J± and C (H ,J ) =C . We have to show

d+ ◦C =C ◦ d−

It suffices to show this equality on a generator γ− ∈ Per1(H−) of index CZ(γ−, H−) = k. The
left hand side reads:

d+C γ− =
∑

γ+∈Per1(H+):
CZ(γ+,H+)=k−1

∑

γ+1 ∈Per1(H+):
CZ(γ+1 ,H+)=k

#Z/2M
�

γ−,γ+1 ;H ,J
�

· #Z/2M
�

γ+1 ,γ+; H+, J+
�

γ+ (4.2)

The right hand side reads:

C d−γ− =
∑

γ+∈Per1(H+):
CZ(γ+,H+)=k−1

∑

γ−1 ∈Per1(H−):
CZ(γ−1 ,H−)=k−1

#Z/2M
�

γ−,γ−1 ; H−, J−
�

· #Z/2M
�

γ−1 ,γ+;H ,J
�

γ+ (4.3)

Now, we subtract the right hand sides of equations (4.2) and (4.3) and compare the result with
the description of the boundary of the moduli spaceM (γ−,γ+;H ,J ) given in (3.19). What
we find is

�

d+ ◦C −C ◦ d−
�

γ− =
∑

γ+∈Per1(H+):
CZ(γ+,H+)=k−1

#Z/2∂M
�

γ−,γ+;H ,J
�

γ+

SinceM (γ−,γ+;H ,J ) is a compact 1-dimensional smooth manifold, the cardinality of its
boundary is even. This concludes the proof.
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Therefore, assuming for a moment that the continuation Hamiltonian allows us to reach the
uniform energy bounds, we obtain a well defined morphism on the Floer homologies

C (H ,J ) : HF∗(H
−)→HF∗(H

+)

defined by equation (4.1). The first question to settle is dependence on the chosen homotopy.

Lemma 4.1.3 If (H ,J ) and (G ,I ) are regular pairs of continuation data between (H−, J−)
and (H+, J+) which lead to an uniform energy bound for their Floer cylinders, then C (H ,J ) is
chain homotopic to C (G ,I ).

Proof. This will follow from defining a chain homotopy using the parametrized moduli space
M(γ−,γ+;H,J) of dimension zero, and then basically from understanding the description of
the boundary via Proposition 3.6.8. Therefore take γ± ∈ Per1(H±) such that

CZ
�

γ−, H 1�+ 1=CZ
�

γ+, H+
�

We use the zero-dimensional parametrized moduli spaces to define a putative chain homotopy

X (H,J) : CF∗
�

H−, J−
�

→CF∗+1
�

H+, J+
�

given on generators by the count

X(H,J)γ− =
∑

γ+∈Per1(H+)
CZ(γ+,H+)=CZ(γ−,H−)+1

#Z/2M
�

γ−,γ+;H,J
�

γ+

By compactness of the zero-dimensional parametrized moduli spaces M (γ−,γ+;H,J), this
morphism is well defined.

Set for simplicity X = X(H,J) and d± = dH±,J± . We have to show that it is truly a chain
homotopy between C (H ,J ) and C (G ,I ), i.e.

C (H ,J )−C (G ,I ) =X ◦ d−+ d+ ◦X

We have to show this equality mod 2, so signs are not important. We write this equation
applied to one generator γ− of degree CZ(γ−, H−) = k. The right hand side reads:

Xd−γ−+ d+Xγ− =

=
∑

γ+∈Per1(H+):
CZ(γ+,H+)=k

∑

γ−1 ∈Per1(H−):
CZ(γ−1 ,H−)=k−1

#Z/2M (γ−,γ−1 ; H−, J−) · #Z/2M
�

γ−1 ,γ+;H,J
�

γ++

+
∑

γ+∈Per1(H+):
CZ(γ+,H+)=k

∑

γ+1 ∈Per1(H+):
CZ(γ+1 ,H+)=k+1

#Z/2M(γ
−,γ+1 ;H,J) · #Z/2M

�

γ+1 ,γ+; H+, J+
�

γ+
(4.4)
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The left hand side reads:

C (H ,J )γ−−C (G ,I )γ− =
∑

γ+∈Per1(H+):
CZ(γ+)=k

�

#Z/2M
�

γ−,γ+;H ,J
�

− #Z/2M
�

γ−,γ+;G ,I
�

�

γ+ (4.5)

Remember that the coefficients we take are Z/2, so signs are somewhat inconsequential in all
the above equations. Subtracting the right hand sides of the equalities (4.4) and (4.5), we obtain
the following sum:

∑

γ+∈Per1(H+):
CZ(γ+,H+)=k

�

#Z/2M
�

γ−,γ+;H ,J
�

− #Z/2M
�

γ−,γ+;G ,I
�

+

−
∑

γ−1 ∈Per1(H−):
CZ(γ−1 ,H−)=k−1

#Z/2M (γ−,γ−1 ; H−, J−) · #Z/2M
�

γ−1 ,γ+;H,J
�

+

−
∑

γ+1 ∈Per1(H+):
CZ(γ+1 ,H+)=k+1

#Z/2M(γ
−,γ+1 ;H,J) · #Z/2M

�

γ+1 ,γ+; H+, J+
�











γ+

Comparing the above sum with the description of the boundary of the parametrized moduli
space (3.20), we see that

�

C (H ,J )−C (G ,I )−X ◦ d−− d+ ◦X
�

γ− =

=
∑

γ+∈Per1(H+):
CZ(γ+,H+)=k

#Z/2∂M
�

γ−,γ+;H,J
�

γ+

But since M(γ−,γ+;H,J) is a compact 1-manifold, its boundary must have even cardinality.
This concludes the proof.

Remark Notice that if one can arrange the homotopy of continuations datum (H,J) to give
regular pairs (Hρ,Jρ) for every fixed ρ, then the morphisms C (H ,J ) and C (G ,I ) can be
shown to be equal on the level of chain complexes, and not just chain homotopic (so equal on
the level of homology). This is because the “error” given by the non-emptiness of the excep-
tional part of the boundary of the parametrized moduli spaces is zero.

4.1.1.1. Functoriality of continuations

Continuation morphisms enjoy a certain kind of functoriality under concatenation of continu-
ation Hamiltonians. To state it, fix three regular pairs (H−, J−), (H ∗, J ∗), (H+, J+). Assume we
can define continuations between all the three Hamiltonians, via continuation data (H ,J ),
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resp. (G ,I ), resp. (F ,L ) between (H−, J−) and (H ∗, J ∗), resp. (H−, J−) and (H+, J+), resp.
(H ∗, J ∗) and (H+, J+).

Lemma 4.1.4 1. Let H ∈wH∗. The continuation morphism induced by the constant contin-
uationH s =H is the identity.

2. C (G ,I ) is chain homotopic to C (F ,L ) ◦C (H ,I ).

The proof of the first point is obvious from the definition of the continuation morphisms.
The proof of the second point is as follows: one translates F andH in the s -direction until
they can be concatenated in the region where they equal H ∗, and then shows that the induced
morphism is exactlyC (F ,L ) ◦C (H ,I ). This step follows fundamentally from the gluing
theorem, and can be found in [7, §11.5]. Finally since we found a asymptotically quadratic
continuation between H− and H+ inducing C (F ,L ) ◦C (H ,I ), by the previous Lemma
it must be chain homotopic to C (G ,I ).

As an immediate corollary of the above two lemmata, we obtain

Lemma 4.1.5 HF∗(H ) doesn’t depend on J .

Proof. Let J− and J+ be almost-complex structures such that (H , J−) and (H , J+) are both
regular pairs. Consider a homotopy of almost-complex structures J such that (H ,J ) is a
regular pair, where H is considered as the constant homotopy. Then clearly ∂s H = 0 so there
is no issue of compactness in defining the continuation morphism as in (4.1). Flipping the
direction of J gives the homotopy inverse continuation morphism.

4.1.2. Uniform energy bounds along asymptotically quadratic continuations

It remains to show that one may indeed find a asymptotically quadratic continuation produc-
ing the adequate compactness, and the same for homotopies of continuations. By our L∞-
estimate found in Proposition 3.3.5, we have to provide Hamiltonians which reach uniform
energy bounds across their moduli spaces. The brunt of the argument will be showing this for
asymptotically quadratic continuations, because for homotopies of continuations we can work
point-wise in the homotopy parameter.

4.1.2.1. Hamiltonians with the same quadratic form at infinity

The simplest case, which is also relevant for the proof of the Poincaré-Birkhoff theorem, is
when H−, H+ are such that H± =Q + h±, i.e. they have the same quadratic form at infinity.
For this kind of Hamiltonians, we can define

H s
t (z) =Qt (z)+χ (s)h

+
t (z)+ (1−χ (s))h

−
t (z)

where χ : R → [0,1] is a smooth non-decreasing function such that χ (s) = 0 for all s ≤ 0
and χ (s) = 1 for all s ≥ 1. Pick an adequate family J of almost complex structures and fix
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asymptotics γ± ∈ Fixϕ1
H± . Clearly

EH ,J (u)≤AH−
�

γ−
�

−AH+(γ
+)−

∫

R×S1
∂sH

s
t (u(s , t ))d s d t =

=AH−
�

γ−
�

−AH+(γ
+)−

∫ 1

0

∫ 1

0
χ ′(s)

�

h+t (u(s , t ))− h−t (u(s , t ))
�

d s d t ≤

≤AH−
�

γ−
�

−AH+(γ
+)− min

(t ,ζ )∈S1×R2n

�

h+t (ζ )− h−t (ζ )
�

≤

≤AH−
�

γ−
�

−AH+(γ
+)+





h+− h−






L∞

Notice that here it is crucial that H± are asymptotically quadratic, and not just weakly asymp-
totically quadratic.

4.1.2.2. Weakly asymptotically quadratic Hamiltonians with the same index at infinity

Here we show that an uniform energy estimate is reachable in a much wider context, namely,
that two Hamiltonians H− and H+ ∈wH which have the same index at infinity may be con-
nected by an asymptotically quadratic continuation reaching the uniform energy bound, and
moreover such that the linear system at infinity of this asymptotically quadratic continuation
is always non-degenerate.

Let (H±, J±) be two regular pairs, where H±t = Q±t + h±t ∈ wH and Q±t (z) =
1
2




A±t z, z
�

are non-degenerate quadratic Hamiltonians. Assume that H± have the same index at infinity.
Then there is a path of loops A : [0,1]× S1 → Sym(2n), such that A0 = A−, A1 = A+, and
As : S1 → Sym(2n) defines a non-degenerate linear Hamiltonian system for all s ∈ [0,1]. We
extend A constantly outside s ∈ [0,1] to a smooth A : R× S1→ Sym(2n).

Take a non-decreasing smooth χ : R→ [0,1] such that χ (s) = 0 ∀s ≤ 0, χ (s) = 1 ∀s ≥ 1
and χ ′ ≤ 2. Fix a β ∈ (0,1). We define a family of asymptotically quadratic continuations
depending on β:

H β,s
t (z) =

1
2

¬

Aβs
t z, z

¶

+(1−χ (βs)) h0(t , z)+χ (βs)h1(t , z) =:Q s
t (z)+K

s
t (z)

Notice that H β,s ∈ wH for all s ∈ R. Moreover notice that it depends on s only for s ∈
[0,β−1] =S . Therefore we know from Lemma 2.3.3 that there exist constants νs ,δs > 0 such
that

∥ẋ −XH β,s (x)∥L2 ≥
νs

2
∥x∥L2 −δs ∀x ∈W 1,2 �S1,R2n�

Recall from the proof of Lemma 2.3.3 that νs =







D−1
As










−1

op
, and thatδs is the L∞-norm of∇K s

t

over a ball whose radius depends only on νs . We set

ν = min
s∈[0,1]

νs , δ = max
s∈[0,1]

δs
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Finally, pick an adequate family of almost-complex structures J . The following proposition
shows that an uniform energy bound may be reached adiabatically.

Proposition 4.1.1 Let γ± be 1-periodic orbits of H±. Set CA = ∥∂sA∥L∞([0,1]×S1,Sym2n). If

β≤ ν2

4CA
, then there exists a C =C (H±) such that

EH β,J (u)≤AH−(γ
−)−AH+(γ

+)+C (4.6)

for all u ∈M
�

γ−,γ+;H β,J
�

.

Proof. Set∆A =AH−(γ
−)−AH+(γ

+). We start from the usual estimate:

EH β,J (u)≤∆A +
∫

R×S1

�

�

�

�

∂sH
β,s

t

�

(u(s , t ))
�

�

�d s d t ≤

≤∆A +
∫

S ×S1

1
2

�

�

�

¬

∂s

�

Aβs
t

�

u(s , t ), u(s , t )
¶
�

�

�+

+
∫

S ×S1
βχ ′(βs)

�

�h+t (u(s , t ))− h−t (u(s , t ))
�

�d s d t ≤

≤∆A + ν
2

8
∥u∥2L2(S ×S1)+ 2

�





h− ◦ u






L1(S ×S1)+




h+ ◦ u






L1(S ×S1)

�

(4.7)

Now, recall that H± are weakly asymptotically quadratic. The sublinearity of∇h± as |z | →∞
implies that h± is sub-quadratic as |z | → ∞. Therefore, analogously as in Lemma 2.3.2, we
can show that for every ϵ > 0 there exist constants D±ϵ > 0 such that





h± ◦ x






L1(S1) ≤
ϵ

4
∥x∥2L2(S1)+D±ϵ ∀x ∈W 1,2 �S1,R2n�

Setting Dϵ =max{2D−ϵ , 2D+ϵ } we can estimate the last term in (4.7) and obtain, for any fixed
ϵ > 0,

EH β,J (u)≤∆A +Dϵ+
�

ν2

8
+ ϵ

�

∥u∥2L2(S ×S1) (4.8)

On the other hand, since the quadratic Hamiltonian defined by As is non-degenerate for all
s ∈R,

EH β,J (u) = ∥∂s u∥2L2 = ∥∂t u −XH β ◦ u∥2L2 ≥

≥
∫

S
∥∂t u(s , ·)−XH β(u(s , ·))∥2L2(S1) d s ≥

∫

S

�

ν

2
∥u(s , ·)∥L2(S1)−δ

�2
d s d t =

=
ν2

4
∥u∥2L2(S ×S1)−δν∥u∥L2(S ×S1)+ |S |δ

2

(4.9)

Comparing the estimates (4.8) and (4.9), we obtain that for any ϵ > 0 there exists a Dϵ > 0 such
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that

ν2

4
∥u∥2L2(S ×S1)−δν∥u∥L2(S ×S1)+ |S |δ

2
≤∆A +Dϵ+

�

ν2

8
+ ϵ

�

∥u∥2L2(S ×S1) ⇐⇒
�

ν2

4
− ϵ

�

∥u∥2L2(S ×S1)−δν∥u∥L2(S ×S1) ≤−|S |δ
2
+∆A +Dϵ

As long as ϵ < ν2

4 , the coefficient of the leading quadratic term is positive. But then, ∥u∥L2(S ×S1)

must be uniformly bounded. Re-inserting such fact in (4.8) and fixing, for example, ϵ = ν2

8 ,
gives the wanted uniform bound of the energy.

Remark The specific form ofH β constructed here is not crucial to the proof. It has only
been chosen this way to make the calculations simpler and the constants a bit more explicit.

Having obtained an uniform energy bound over the moduli space, one may construct con-
tinuation morphisms as explained above. For the purposes of filtered Floer homology, we state
the following

Corollary 4.1.1 Let H± ∈wH andβ be as above. There exits a compact set K =K(H β) and a
constant e = e(H β) such that

EH β,J (u)≤AH−(γ
−)−AH+(γ

+)+




h−− h+






L∞(S1×K)+ e

for all u ∈M
�

γ−,γ+;H β,J
�

.

Proof. By Propositions 3.3.5 and 4.1.1 there exists a compact set K where all solutions of the
continuation Floer equation u ∈ M (γ−,γ+;H ,J ) are contained. Now look at (4.7). The
conclusion is reached by setting

e =
1
2
∥∂sA∥L∞ · (diamK)2

and estimating the term |h−t ◦ u − h+t ◦ u| over K .

On chain homotopies From the above calculation, we see that the necessary uniform energy
bound on the parametrized moduli spaces arising in the definition of a chain homotopy as
in Lemma 4.1.3 is reached when all the asymptotically quadratic continuations involved are
between Hamiltonians with the same index at infinity.

4.1.2.3. Intermediate case: close quadratic Hamiltonians at infinity

We need a last case, which is somewhat intermediate between the easy case of Hamiltoinans
in H with the same quadratic Hamiltonian at infinity, and Hamiltonians in wH with the same
index at infinity. It will be important for the proof of invariance of filtered Floer homology.
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Let H i ∈ wH, H = Q i + h i , and Q i
t (z) =

1
2




Ai
t z, z

�

, i = 0,1. If A0 and A1 are sufficiently
C 0 close, then clearly ind∞H 0 = ind∞H 1, and we can obtain an uniform energy bound. We
would like to obtain a manageable action shift estimate which is small with the distance of the
quadratic Hamiltonians at infinity. The task is to find an explicit path of symmetric matrices
which generate a family of non-degenerate quadratic Hamiltonians.

Lemma 4.1.6 For every A0 ∈C∞
�

S1, Sym(2n)
�

there exists a constant α > 0 with the following
property. Let A1 ∈ C∞

�

S1, Sym(2n)
�

be such that ∥A0 −A1∥L∞ < α. Denote by Mi : [0,1]→
Sp(2n), t 7→M t

i the paths of symplectic matrices representing the flow of the linear symplectic vector
fields−J0Ai

t . If M 1
0 does not have the eigenvalue 1, then the pathA : [0,1]×S1→ Sym(2n) defined

by
As

t = (1− s)A0
t + sA1

t

generates a homotopy of paths M : [0,1]× S1 → Sp(2n), (s , t ) 7→ Mt
s between M0 and M+ such

thatM1
s never has the eigenvalue 1. In particular CZ

�

M t
0

�

=CZ
�

M t
+
�

.

Proof. Let A1 ∈ C∞
�

S1, Sym(2n)
�

be such that ∥A0−A1∥L∞ < 1. For fixed s ∈ [0,1], denote
the flow of the linear vector field −J0As by

Ms : [0,1]→ Sp(2n), Mt
s = ϕ

t
−J0As

We estimate

�

�Mτs −M τ
−
�

�=
�

�

�

�

∫ τ

0
s
�

A1
t −A0

t
�

Mt
s +A0

tM
t
s −A0

t M t
−d t

�

�

�

�

≤

≤ s







A0−A1









L∞
∥Ms∥L1([0,1],Sp(2n))+








A0









L∞

∫ τ

0

�

�Mt
s −M t

−
�

�d t

Now,

|Mτs | ≤
∫ τ

0

�

�

�s
�

A1
t −A0

t
�

+A0
t

�

�

� · |Mt
s |d t ≤

�







A0









L∞
+ 1

�

∫ τ

0
|Mt

s |d t =⇒

∥Ms∥L1([0,1],Sym(2n)) ≤
∫ 1

0
e(∥A0∥L∞+1)τdτ =

e∥A0∥L∞+1− 1
∥A0∥L∞ + 1

= c0

Hence we obtain that

�

�Mτs −M τ
−
�

�≤ c0








A0−A1









L∞
+







A0









L∞

∫ τ

0

�

�Mt
s −M t

−
�

�d t

Using Grönwall lemma again, we obtain the estimate
�

�

�M1
s −M 1

−

�

�

�≤C ·







A0−A1









L∞
, C = c0e∥A0∥L∞

Now, since the matrix M 1
− does not have the eigenvalue 1, there exists a constant C− > 0 such
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that
�

�

�M 1
−z − z

�

�

�≥C−|z | ∀z ∈R2n

Hence we can estimate
�

�

�M1
s z − z

�

�

�=
�

�

�M1
s z −M 1

−z +M 1
−z − z

�

�

�≥

≥
�

�

�M 1
−z − z

�

�

�−
�

�

�

�

M1
s −M 1

−
�

z
�

�

�≥
h

C−−C







A0−A1









L∞

i

|z |

Now, if we take







A0−A1









L∞
<min

�

C−
C

, 1
�

= α

then the path t 7→ Mt
s never has the eigenvalue 1. The constant α clearly depends only on

A0.

This lemma justifies the following definition.

Definition 4.1 Let Q i be quadratic Hamiltonians, with Q i
t (z) =

1
2




Ai
t z, z

�

. Define the dis-
tance of the quadratic Hamiltonians by

d
�

Q0,Q1�=







A0−A1









L∞

Now letH be the following asymptotically quadratic continuation

H s
t (z) = (1−χ (s))H

0
t (z)+χ (s)H

1
t (z) (4.10)

where χ : R→ [0,1] is a smooth non-decreasing function with χ (s) = 0 for all s ≤ 0, χ (s) = 1
for all s ≥ 1 and χ ′ ≤ 2 and H i = Q i + h i . By the Lemma above there exists an α > 0
depending only on Q0 such that if d

�

Q0,Q1
�

<α, this asymptotically quadratic continuation
H has non-degenerate quadratic Hamiltonians at infinity for every s ∈ R. Moreover, since
|∂sAs

t | ≤ 2|A1
t −A0

t |, up to choosing A0 closer to A1 we are in the hypotheses of Proposition
4.1.1. By Corollary 4.1.1 we therefore have proven the following

Proposition 4.1.2 For every H 0 =Q0+ h0 ∈wH there exists a constant α > 0 depending only
on Q0 with the following property. If H 1 =Q1+ h1 ∈wH is such that d

�

Q0,Q1
�

<α, then there
exists a compact set K ⊂R2n for which

EH ,J (u)≤AH 0

�

γ 0�−AH 1

�

γ 1�+







h0− h1









L∞(S1×K)
+ d

�

Q0,Q1� · (diamK)2 (4.11)

whereH is defined in (4.10) and J is an adequate almost-complex structure.
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4.1.3. Global calculation of Floer homology

The uniform energy estimate for a continuation between Hamiltonians with the same index
at infinity implies already a surprising fact. Indeed, if H ∈wH∗ with quadratic form at infinity
Q, then Q as a Hamiltonian has the same index at infinity of H . Therefore the Floer homology
of H can be computed directly from the quadratic form Q:

HF∗ (H )∼=HF∗ (Q) =
¨

Z/2, ∗= ind∞(H )
0, otherwise

It is worth to use this global calculation to show an existence theorem for 1-periodic orbits
in asymptotically linear Hamiltonian systems, recovering the results of Conley and Zehnder
in [12].

Theorem 6 Let H ∈ wH∗. Then XH has at least one 1-periodic orbit γ0. If CZ(γ0) ̸= ind∞H ,
then XH has another 1-periodic orbit γ1 with |CZ (γ0)−CZ (γ1)| = 1. Finally, XH always has an
odd number of 1-periodic orbits, one of which always has index equal to ind∞H , and all the others
having index difference 1. In particular, if it has two, it has three, and one of them has index equal
to ind∞H .

Proof. By the global calculation above, we see immediately that XH must have at least one
1-periodic orbit γ0. If its index is ind∞H , we cannot say anything more. If its index is not
ind∞H , then first of all there must be a 1-periodic orbit γ∞whose index is CZ(γ∞) = ind∞H .
There must also be a third 1-periodic orbit γ1 with index CZ(γ1) =CZ(γ0)± 1 otherwise the
homology of CF(H , J ) would not be the one computed. Similarly, if there are m orbits, then
one must have index ind∞H and all the others must pair up in couples with index difference
1 for them to kill each other off and not show up in the homology.

Remark Notice that with these formal algebraic arguments we cannot go beyond the existence
of one or three 1-periodic orbits.

Another approach to the proof of the theorem above is the following. Define the Hilbert-
Poincaré series

pC (t ) =
∑

k

dimCFk (H , J ) t k , pH (t ) =
∑

k

dim HFk (H ) t
k

Then defining d =min{CZ(γ ) : γ ∈ Per1 H}, we have the relation

pC (t ) = pH (t )+ t−d (1+ t )Q(t )

where Q is some polynomial in t with non-negative integer coefficients. The global calculation
implies that

pH (t ) = t ind∞H
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If the 1-periodic orbits are γ0, . . . ,γm with indices k0, . . . , km , then

pC (t ) =
m
∑

l=0

t kl =⇒
m
∑

l=0

t kl = t ind∞H + t−d (1+ t )Q(t )

From this equality, all the claims in the theorem can be proven by comparison of values of the
polynomials.

4.2. Filtered Floer homology

The global calculation of Floer homology found above does not allow us to gain access to finer
dynamical information, as it is sensitive only to the index at infinity of the Hamiltonian system.
As the Floer chain complex formally encodes the Morse theory of the action functional, we
can equip it with a filtration given by the action value of the periodic orbits. We will show that
continuation morphisms are filtered morphisms only up to a shift in the filtration, so that we
can use this shift to gain further information which gets lost in the continuation at the global
level.

4.2.1. Action filtration on the Floer chain complex

Let H ∈ wH∗ and J a generic adequate almost-complex structure such that (H , J ) is a regular
pair. Since CFr (H , J ) is generated by 1-periodic orbits of H of index r , for any a ∈ R we can
consider the subspaceCF(−∞,a]

r (H , J ) generated by the 1-periodic orbits γ of actionAH (γ )≤ a.
The energy calculation of a Floer trajectory implies that the differential dH ,J decreases the
action, so the chain complex

�

CF(−∞,a]
∗ (H , J ), dH ,J

�

is a sub-complex of the Floer chain complex. Set, for b > a,

CF(a,b ]
∗ (H , J ) = CF(−∞,b ]

∗ (H , J )
À

CF(−∞,a]
∗ (H , J )

which is equivalently the space generated by the orbits with action in (a, b ]. CF(a,b ]
∗ (H , J ) is

a chain complex when endowed with the quotient differential. Its homology is filtered Floer
homology, denoted by HF(a,b ]

∗ (H ).
If a < b < c , then there is an obvious exact sequence of chain complexes

0→CF(a,b ]
∗ (H , J )→CF(a,c]

∗ (H , J )→CF(b ,c]
∗ (H , J )→ 0

where the first non-trivial map is an inclusion and the second a quotient, which induces a long
exact sequence in homology

· · · →HF(a,b ]
∗ (H )→HF(a,c]

∗ (H )→HF(b ,c]
∗ (H )→HF(a,b ]

∗−1 (H )→ . . . (4.12)
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Following [20], we call the first arrow i : HF(a,b ]
∗ (H )→ HF(a,c]

∗ (H ) the inclusion morphism,
and the middle arrow q : HF(a,c]

∗ (H )→HF(b ,c]
∗ (H ) the quotient morphism.

As an important particular case, consider b > a and C > 0. Consider first the long exact
sequence (4.12) with a < b < b +C , and then with a < a+C < b +C . We obtain

· · · HF(a,b ]
∗ (H ) HF(a,b+C ]

∗ (H ) HF(b ,b+C ]
∗ (H ) · · ·

· · · HF(a,a+C ]
∗ (H ) HF(a,b+C ]

∗ (H ) HF(a+C ,b+C ]
∗ (H ) · · ·

i q

i q

The composition of the upper inclusion with the lower quotient is called inclusion-quotient
morphism:

Φ(a,b ](C ) : HF(a,b ]
∗ (H )→HF(a+C ,b+C ]

∗ (H ) (4.13)

The window (a, b ] and the shift C are almost always clear from the context, so we usually
denote this only by Φ. Also, when I = (a, b ], we denote I +C = (a+C , b +C ].

4.2.2. Action shift of continuation morphisms

We now explain the effect of continuations on the filtered Floer homology, which is without
a doubt one of the most crucial elements in the proof of the Poincaré-Birkhoff theorem.

Let H 0, H 1 ∈ wH∗ have the same index at infinity. LetH be the asymptotically quadratic
continuation defined as in Proposition 4.1.1, with a β> 0 fixed as explained there, and J an
adequate generic almost-complex structure. The uniform energy estimate given in (4.6) implies
that a necessary condition for the moduli space of continuation Floer trajectories between fixed
1-periodic orbits γ 0,γ 1 to be non-empty is that

0< EH ,J (u)<AH 0

�

γ 0�−AH 1

�

γ 1�+C =⇒ AH 1

�

γ 1�<AH 0

�

γ 0�+C

We see that the continuation morphism C (H ,J ) : CF∗(H
0, J 0) → CF∗(H

1, J 1) is a filtered
chain complex morphism only up to a shift:

C (H ,J ) : CF(−∞,a]
∗ (H 0, J 0)→CF(−∞,a+C ]

∗ (H 1, J 1)

Therefore the continuation descends to a morphism of filtered complexes

C : CF(a,b ]
∗

�

H 0, J 0�→CF(a,b ]+C
∗

�

H 1, J 1�

and induces a morphism on the filtered homologies

C : HF(a,b ]
∗

�

H 0�→HF(a,b ]+C
∗

�

H 1�

The naturality of the long exact sequence in homology implies that the long exact sequence
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(4.12) is functorial with respect to continuations:

· · · HF(a,b ]
∗

�

H 0
�

HF(a,c]
∗

�

H 0
�

HF(b ,c]
∗

�

H 0
�

· · ·

· · · HF(a+C ,b+C ]
∗

�

H 1
�

HF(a+C ,c+C ]
∗

�

H 1
�

HF(b+C ,c+C ]
∗

�

H 1
�

· · ·

i

C

q

C C

i q

This fact implies the following lemma:

Lemma 4.2.1 The inclusion-quotient commutes with continuations, i.e. the following square
commutes:

HF(a,b ]
∗

�

H 0
�

HF(a,b ]+C
∗

�

H 1
�

HF(a,b ]+D
∗

�

H 0
�

HF(a,b ]+C+D
∗

�

H 1
�

C

Φ(a,b ](D) Φ(a,b ]+C (D)

C

In the proof of the Poincaré-Birkhoff theorem, at the crucial diagram (5.5), we used the
following particular form of functoriality “up to a shift”:

Lemma 4.2.2 Let H i = Q i + h i ∈ wH∗, i ∈ {0,1}, a < b ∈ R and I = (a, b ]. Let C be the
continuation morphism from H 0 to H 1 and C be the continuation morphism from H 1 back to
H 0. Then C ◦C factors the inclusion-quotient morphism Φ(a,b ](2C ):

HFI+C
∗

�

H 1
�

HFI
∗
�

H 0
�

HFI+2C
∗

�

H 0
�

C

ΦI (2C )

C

Proof sketch. LetC be induced on homology by a choice of asymptotically quadratic continua-
tion and generic adequate almost-complex structure (H ,J ). Then we can choose the reversed
continuation G s =H 1−s with a generic adequate almost-complex structure I to induce C .
Functoriality implies that the morphisms

¨

C (H ,J ) : CF∗
�

H 0, J 0
�

→CF∗
�

H 1, J 1
�

,
C (G ,I ) : CF∗

�

H 1, J 1
�

→CF∗
�

H 0, J 0
�

are homotopy inverses. Hence C and C are inverses on the total homologies. At the fil-
tered level, they are inverse to each other only up to shifts. Namely, C ◦ C : HFI

∗(H
0) →

HFI+2C
∗ (H 0)maps all classes with action in I ∩ (I +2C ) to themselves, while all the others are

mapped to zero. This is precisely the inclusion-quotient morphism.
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We end this section with a very simple but important result which shows that the filtered
Floer homology of a Hamiltonian H does not change unless the filtration crosses a critical
value. This property justifies the intuition that Floer homology is a kind of Morse homology
for the Hamiltonian action functional. The proof follows immediately from the existence of
the inclusion-quotient morphism.

Definition 4.2 Denote by S(H ) the set of critical values of AH , i.e. the set of actions of
1-periodic orbits of H . This is called the action spectrum of H .

Proposition 4.2.1 Let H ∈wH∗ and a, b ∈R. For every λ ∈R such that

(a, b ]∩S(H ) = (a+λ, b +λ]∩S(H )

we have that
HF(a,b ]

∗ (H )∼=HF(a,b ]+λ
∗ (H )

4.3. Floer homology for degenerate Hamiltonians and local Floer homology

In this section we start by investigating to which extent the filtered Floer homology depends
on the Hamiltonian chosen to define it. It turns out that the filtered Floer homology is, in
some sense, locally constant in the Hamiltonian. This makes it possible to define filtered Floer
homology groups also for degenerate Hamiltonians, by a small C∞-perturbation to a non-
degenerate Hamiltonian.

We start with an important property of the action spectrum, which holds for any Hamilto-
nian in wH. We follow [29].

Theorem 7 Let H ∈wH. The set S(H ) is compact and nowhere dense in R.

Proof. Let’s show that the set of critical points of AH is compact in the C∞-topology on
C∞(S1,R2n). Let γk ∈ Per1 H be a sequence of 1-periodic orbits. Recall that since H ∈ wH
has non-degenerate quadratic form at infinity, there exists an R> 0 such that ∥γk∥L∞ < R for
all k. The sequence is therefore uniformly bounded. Moreover,

|γ̇k |= |XH ◦ γk | ≤ max
(t ,z)∈S1×BR(0)

|∇Ht (z)|

hence the sequence is equicontinuous. By the Ascoli-Arzelà theorem, the sequence admits a
subsequence, which abusing notation we denote again by γk , which converges C 0 to some
γ ∈C 0(S1,R2n). We can iterate this reasoning on the derivatives to conclude that γk converges
uniformly with all derivatives to γ , which is thus smooth and a solution of the Hamilton equa-
tions. This means that the set of critical points ofAH is C∞-compact.

To show that S(H ) is nowhere dense, we show that S(H ) is contained in the set of critical
values of a smooth function fromR2n toR. After that, the claim follows from Sard’s theorem.
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Let χ : [0,1] → [0,1] be a smooth function, constantly equal to 1 near 0 and to 0 near 1.
Define ψ : [0,1]×R2n→R2n by

ψ(t , z) = χ (t )ϕ t
H (z)+ (1−χ (t ))ϕ

t
H

�

�

ϕ1
H

�−1 (z)
�

Notice that ψ(1, z) = ψ(0, z) = z for all z ∈ R2n . Moreover, if z0 ∈ Fixϕ1
H , then ψ(t , z0) =

ϕ t
H (z0). Define the function

f : R2n→R, f (z) =AH (ψ(·, z))

Notice that the loop t 7→ψ(t , z) is smooth for all z, so the function z 7→ψ(·, z)mapsR2n into
W 1,2(S1,R2n). The action functionalAH is smooth on W 1,2(S1,R2n) (see e.g. [29, Appendix
3]). Moreover, if z0 ∈ Fixϕ1

H then z0 ∈ Crit f . Since f is smooth, its set of critical values is
nowhere dense. This concludes the proof.

4.3.1. Non-degenerate perturbations

The next lemma is a perturbation result for non-degenerate periodic orbits bifurcating out of a
possibly degenerate periodic orbit. Since the C∞-topology on C∞(S1,R2n) is metrizable, we
can choose a metric dC∞ which induces it. Recall from Section 3.5.1 that wH is equipped with
the C∞loc -topology.

Lemma 4.3.1 For every H ∈ wH and every δ > 0 there exists a neighborhood U ⊂ wH of H
with the following property. If H̃ ∈U∩wH∗ and ξ ∈ Per1 H̃ is a 1-periodic orbit, then there exists
a γ ∈ Per1 H such that

dC∞ (γ ,ξ )<δ

Proof. We argue by contradiction: assume that there is aδ > 0 such that for any neighborhood
U⊂wH of H in the C∞loc topology, the 1-periodic orbits of any H̃ ∈ U∩wH∗ stay at distance
at least δ from all 1-periodic orbits of H . As the C∞-strong topology is finer than the C∞loc -
topology, we can further assume that there exists a δ > 0 and a sequence (H (k))k∈N ⊂ wH∗
with H (k) = H + h(k) such that h(k) → 0 uniformly on the whole R2n together with all their
derivatives, and a sequence ξk ∈ Per1 H (k) such that

dC∞ (ξk ,γ )≥ δ ∀γ ∈ Per1 H (4.14)

Since H (k)→H in the strong C∞-topology, the same can be said about the paths of symmetric
matrices defining their quadratic Hamiltonians at infinity. Hence, inspecting the proofs of
Lemmata 2.3.2, 2.3.3 and 2.3.4 one may conclude that there is a compact set K ⊂ R2n such
that ξk (S

1)⊂K for all k. Therefore (ξk )k is an uniformly bounded sequence of smooth maps.
Since

�

�

�ξ̇k

�

�

�= |XH (k) ◦ ξk | ≤ ϵk +max
S1×K
|∇H | , for some ϵk → 0
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by Ascoli-Arzelà we find a subsequence (ξkl
)l∈N which C 0-converges to some continuous loop

γ ∈ C 0
�

S1,R2n�. Since the Hamiltonians H (k) strongly C∞-converge to H as k →∞, we
can iterate the reasoning and diagonalize to obtain a C∞-converging subsequence, therefore
γ ∈ C∞(S1,R2n). Now, the limit γ is a 1-periodic orbit of XH , since the Hamiltonians C∞-
converge. Therefore we found a subsequence ξkl

C∞-converging to a 1-periodic orbit of H , in
contradiction with (4.14).

Remark This result implies that for every H ∈ wH and ϵ > 0 there exists a neighborhood
U ⊂ wH of H with the following property. If H̃ ∈ U ∩wH∗ and ξ ∈ Per1 H̃ is a 1-periodic
orbit, then there exists an a0 ∈ S(H ) such that

�

�AH̃ (ξ )− a0
�

�< ϵ

In fact, the action spectrum S(H ) as a function of H is a lower semicontinuous multivalued
function, as observed in [8].

4.3.2. Homotopy invariance of filtered Floer homology

In this section we investigate in which way filtered Floer homology depends on the Hamilto-
nian chosen to define it. We follow the line of thought of [8, 15].

Let a < b ∈R and define

wHa,b
(∗) =

¦

H ∈wH(∗) : a, b /∈ S(H )
©

Notice that wHa,b ⊂wH is open. Therefore, wHa,b
∗ ⊂wHa,b is dense.

Two Hamiltonians H 0, H 1 ∈ wHa,b are in the same path component of wHa,b if and only
if they can be connected by an asymptotically quadratic continuation H = H s such that
a, b /∈ S(H s ) for all s .

Proposition 4.3.1 Any two Hamiltonians H 0, H 1 ∈ wHa,b
∗ in the same path component of

wHa,b have isomorphic homologies HF(a,b ]
∗ (H 0)∼=HF(a,b ]

∗ (H 1).

Proof. Let H =Q+ h ∈wHa,b be fixed. First we show that there exists a small enough strong
C∞-neighborhood U of H such that any H−, H+ ∈U∩wHa,b

∗ have isomorphic filtered Floer
homologies. Choose an ϵ > 0 so small that

S(H )∩ [a− 4ϵ,a+ 4ϵ] =∅= S(H )∩ [b − 4ϵ, b + 4ϵ]

This is possible because S(H ) ⊂ R is compact and nowhere dense, and because a, b /∈ S(H ).
The proof of Lemma 4.3.1 shows that there exists a strong C∞-neighborhood U ⊂ wHa,b of
H such that every G ∈U satisfies

S(G)∩ [a− 4ϵ,a+ 4ϵ] =∅= S(G)∩ [b − 4ϵ, b + 4ϵ]
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By taking U smaller, we can assume that every G = P + g ∈ U is such that d (P,Q) < α,
where d denotes the distance of the quadratic forms introduced in Definition 4.1, and α > 0
is the constant, depending only on Q, of Proposition 4.1.2, where H 0 = H and H 1 = G.
Therefore, for any H± =Q±+h± ∈U there exists a compact set K ⊂R2n for which the energy
estimate (4.11) in Proposition 4.1.2 holds. By taking U even smaller, we can also assume that
H± =Q±+ h± ∈U are such that





h−− h+






L∞(S1×K) <
ϵ

2
, d

�

Q−,Q+
�

<min

¨

ϵ

2 (diamK)2
,α

«

In particular, , we can use the continuation Hamiltonian as in (4.10) to define a continuation
from H− to H+ (or viceversa). By the energy estimate (4.11) such continuation will shift the
action at most by





h−− h+






L∞(S1×K)+ d
�

Q−,Q+
�

· (diamK)2 < ϵ

Set U∗ = U∩wH∗. Looking at the proof of Proposition 2.4.2, we see that wH∗ is residual
in wH even in the strong C∞-topology, so U∗ is dense in U. Take H± ∈ U∗. A continuation
morphism from H− to H+ will give

C : HF(a,b ]
∗

�

H−
�

→HF(a,b ]+ϵ
∗

�

H+
�∼=HF(a,b ]

∗
�

H+
�

A continuation morphism from H+ to H− will give

C : HF(a,b ]
∗

�

H+
�

→HF(a,b ]+ϵ
∗

�

H−
�∼=HF(a,b ]

∗
�

H−
�

The isomorphisms written at the end are from Proposition 4.2.1. The composition of these
continuations will give a morphism

C ◦C : HF(a,b ]
∗

�

H−
�

→HF(a,b ]+2ϵ �H+
�∼=HF(a,b ]

∗
�

H+
�

By Lemma 4.2.2, this composition gives the inclusion-quotient morphism, which is an iso-
morphism by Proposition 4.2.1 and the choice of action window and ϵ. This proves the claim.
Now, if H 0, H 1 ∈ wHa,b

∗ are in the same path component, we can find a continuous path
[0,1] ∋ s 7→H s ∈wH connecting them such that H s ∈wHa,b for all s . We can cover its image
by finitely many strong C∞-neighborhoods having the property that any two non-degenerate
Hamiltonians within these neighborhoods have isomorphic Floer homologies. Composing
these finitely many isomorphisms gives the claimed isomorphism between the filtered Floer
homologies of H 0 and H 1.

4.3.3. Construction of filtered Floer homology for a degenerate Hamiltonian

Proposition 4.3.1 implies that two close enough non-degenerate perturbations of any Hamil-
tonian H ∈wHa,b have isomorphic Floer homologies. This means that we can take the Floer
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homology of any such non-degenerate Hamiltonian as the Floer homology of the degenerate
one.

Definition 4.3 Let H ∈wHa,b . Let H̃ (k) ∈wHa,b
∗ be such that H (k) =H + h(k) and h(k)→ 0

uniformly with all their derivatives on the whole R2n . Define

HF(a,b ]
∗ (H ) =HF(a,b ]

∗
�

H̃ (k)
�

where k > 0 is so large that HF(a,b ]
∗

�

H̃ (k0)
�∼=HF(a,b ]

∗
�

H̃ (k1)
�

for all k0, k1 > k. That such a k
exists follows from the proof of Proposition 4.3.1.

This notion is well defined because any two sequences of non-degenerate Hamiltonians con-
verging to H will eventually lie in a small enough strong C∞-neighborhood, so by Proposition
4.3.1 their filtered Floer homologies will be eventually all isomorphic.

Remark Notice moreover that the proof of Proposition 2.4.2 implies that we can even take
the h(k) to have compact support, as long as it is always containing the compact set where all
the 1-periodic orbits of H lie.

Remark It is also possible to define a genuine filtered chain complex whose filtered homology
computes the same filtered Floer homology for a degenerate Hamiltonian. This is done by
taking the colimit of the Floer chain complexes of non-degenerate Hamiltonians converging
C∞-strong to H . The algebraic details though are a bit more involved, so this shorter route
was chosen.

Important observation All the lemmata and propositions regarding filtered Floer homol-
ogy explained in Sections 4.2 and 4.2.2 continue to hold for degenerate Hamiltonians, since
they hold for non-degenerate ones. The only thing to be careful of is that the end-points of the
action windows must be guaranteed not to lie in the action spectrum of the degenerate Hamilto-
nian, since in that case there is no canonical definition of filtered Floer homology. Therefore,
versions of those lemmata and propositions for degenerate Hamiltonians must include in their
hypotheses that the extrema of the action windows in consideration do not touch the action
spectrum.

4.3.3.1. Global calculation, degenerate case

Let H ∈ wH. Since S(H ) is compact, there exists a∞, b∞ ∈ R such that a∞, b∞ /∈ S(H ) and
S(H )⊂ (a∞, b∞]. We set by definition

HF∗(H ) =HF(a∞,b∞]
∗ (H )

Let H =Q + h. Since Q is a non-degenerate quadratic Hamiltonian,

HF∗ (H )∼=HF∗(Q) =
¨

Z/2, ∗= ind∞(H )
0, otherwise
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As a corollary we again recover one of the main results in [12].

Theorem 8 Let H ∈wH. Then H has at least one 1-periodic orbit γ0. If this 1-periodic orbit is
non-degenerate and has index different from ind∞H , then there is at least one other periodic orbit
γ1. If this second periodic orbit is also non-degenerate, there is a third 1-periodic orbit. One of the
three 1-periodic orbits must have index equal to ind∞H

Remark 1. We say that the 1-periodic orbit with index ind∞H is continuing from infinity.
Notice that it’s not clear whether the corresponding fixed point is twist or not. Indeed,
it has the same CZ-index as the index at infinity, but the indices of its iterates don’t
necessarily have to match up with the index at infinity of the iterates.

2. The global calculation above shows that any fixed point, other than the one continuing
from infinity, is “unnecessary” in the sense of the Hofer-Zehnder conjecture ([29, pg.
263]). Abbondandolo [3, pg. 129-130] conjectures that the existence of two 1-periodic
orbits should imply infinitely many periodic orbits. The main theorem in this thesis
gives a positive answer to this conjecture in the case that the additional 1-periodic orbit,
not continuing from infinity, is twist, and the linear map at infinity is unitary.

4.3.4. Local Floer homology

In the filtered Floer homology of a degenerate Hamiltonian H , the 1-periodic orbits of the
original Hamiltonian H cannot be interpreted as generators, unless they are non-degenerate
orbits. The generators are instead the non-degenerate infinitesimal bifurcations of the degener-
ate orbits. Therefore to understand the Floer homology of a degenerate Hamiltonian, it might
be helpful to localize the perturbation process around the 1-periodic orbits. This is meaningful
only in the case of isolated 1-periodic orbits.

Let H ∈wH. Recall that γ ∈ Per1 H is said to be isolated when there exists a neighborhood
U ⊂ S1×R2n of the graph of γ such that no graph of any other ξ ̸= γ ∈ Per1 H may intersect
U . We call such anU an isolating neighborhood of the periodic orbit.

Since γ (S1) is compact inR2n , we can assume thatU is compact in S1×R2n , i.e. U is a pre-
compact neighborhood of the graph of γ . We need a notation for non-degenerate perturbations
of H withinU . Denote

wH(∗) (H ,U ) =
¦

G ∈wH : G|S1×R2n\U = H |S1×R2n\U , (G|U non-degenerate)
©

The setwH (H ,U )⊂wH is a C∞-open neighborhood of H , becauseU is compact. Therefore
wH∗ (H ,U ) ⊂ wH (H ,U ) is dense. The following Lemma is an immediate consequence of
Lemma 4.3.1.

Lemma 4.3.2 LetU be a pre-compact isolating neighborhood of γ . For every V ⊂U isolating
neighborhood of γ there exists a neighborhood V ⊂ wH (H ,V ) of H such that whenever G ∈
V∩wH∗ (H ,V ) the graphs of all 1-periodic orbits of G are either contained in V or outsideU .

117



In other words, all non-degenerate 1-periodic orbits bifurcating out of γ are contained in its
isolating neighborhood when the perturbation is small enough.

Let γ0 ∈ Per1 H be an isolated 1-periodic orbit with isolating neighborhood U . We can
always take U small enough such that its closure is compact. For G ∈ wH(H ,U ), denote
by Per1 G ∩U the set of 1-periodic orbits of G whose graph is contained in U . Define the
following Z/2-vector space:

CFloc
r (G,U ) =

⊕
�

Z/2 : ξ ∈ Per1 G ∩U , CZ (ξ ,G) = r
	

This is simply the free vector space generated by the 1-periodic orbits of G with graph inU .
We would like to define a differential dG,J : CFloc

r (G,U )→CFloc
r−1 (G,U ) by counting Floer

cylinders which connect orbits of G inU .
First of all, we need a notion of adequate almost complex structure which is tuned to the

problem at hand. We may assume that the almost complex structures are fixed outsideU , for
example are equal to J0 outsideU . A pair (G, J ) where G ∈wH∗ (H ,U ) will be called regular
if transversality is achieved for the Floer cylinders asymptotic to orbits withinU . For this to
be well defined, we must guarantee that these Floer cylinders remain in U whenever G is a
small enough perturbation of H .

Proposition 4.3.2 For every V ⊂ U there exists an open neighborhood W ⊂ wH (H ,V ) of
H with the following property. For every G ∈W∩wH∗ (H ,V ), every adequate almost-complex
structure J and ξ ± ∈ Per1 G ∩V , any u ∈M (ξ −,ξ +;G, J ) is such that u

�

R× S1
�

⊂V .

Proof. We argue by contradiction. Assume that there exists a sequence G(k) ∈ wH∗ (H ,V )
with G(k) → H in C∞, sequences ξ (k)± ∈ Per1 G(k) ∩V with ξ (k)± → γ in C∞, a sequence of

adequate almost complex structures J (k) and a sequence u (k) ∈ M
�

ξ (k)− ,ξ (k)+ ;G(k), J (k)
�

such

that graph u (k) (sk , ·)⊈ V for some sk ∈R. Notice that under these hypotheses,

EG(k),J (k)
�

u (k)
�

→ 0 as k→∞

Up to shifting each u (k) by sk in the s -direction, we may assume that graph u (k)(0, ·) ⊈ V .
But by Proposition 3.4.2, we see that as k →∞ u (k)(0, ·) must get arbitrarily close to some
1-periodic orbit of G(k) within U . But the isolation hypothesis together with Lemma 4.3.2
implies that no such orbit may exist.

This last result implies that one may define a Floer chain complex which is generated by the
bifurcating 1-periodic orbits and whose differential counts the Floer cylinders between them.
For the sake of transversality, we can restrict our attention to almost-complex structures J
which coincide with J0 outside a compact set. All results in Section 3.5.1 hold for this class,
namely, transversality can be achieved by choosing a generic almost-complex structure in this
class (see e.g. [15], where this is proven explicitly).

An argument completely analogous to the proof of Proposition 4.3.2 shows that continu-
ation Floer cylinders between 1-periodic orbits of two small enough perturbations also stay
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within a pre-compact neighborhood of the degenerate orbit, and similarly for the cylinders
entering the definition of a homotopy between continuations. Combined with an argument
analogous to the proof of Proposition 4.2.1, this implies the following proposition.

Proposition 4.3.3 There exists an open neighborhood U ⊂ wH(H ,U ) such that if G0,G1 ∈
U∩wH∗(H ,U ) and J 0, J 1 are generic adequate almost-complex structures, then

�

CFloc
∗
�

G0, J 0� , dG0,J 0

�

is quasi-isomorphic to
�

CFloc
∗
�

G1, J 1� , dG1,J 1

�

namely, there exist morphisms between them which are homotopy inverses to each other.

The following definition is thusly justified.

Definition 4.4 Let H ∈wH and γ ∈ Per1 H be an isolated 1-periodic orbit with a fixed, small,
pre-compact isolating neighborhood U . Let z0 ∈ Fixϕ1

H be the corresponding fixed point.
The local Floer homology of z0 is

HFloc
∗ (H , z0) =H∗

�

CFloc (G,U ) , dG,J

�

where G ∈wH∗ (H ,U ) is within a neighborhood of H so small that all the results above hold,
and J is a generic adequate almost complex structure for which transversality is achieved.

We do not make much difference between 1-periodic orbits and fixed points, since we carry
the generating Hamiltonian in the notation.

Remark Recall that non-degenerate 1-periodic orbits are always isolated. Therefore their local
Floer homologies are computed immediately without need of perturbation. They will have
one generator in the degree corresponding to the Conley-Zehnder index of the orbit, and will
be zero in all other degrees. From this point of view, the local Floer homology of a degenerate
1-periodic orbit can be regarded as a kind of derived object, in the spirit of the famous derived
intersection numbers of Serre for non-transverse intersections of algebraic varieties. Here the
non-transverse intersection would be between the diagonal and the graph of the Hamiltonian
diffeomorphism in the product, locally around the fixed point. This is an intersection of La-
grangian submanifolds.

4.3.4.1. Properties of local Floer homology

We start with identifying in which degrees the local Floer homology can be non-trivial.

Lemma 4.3.3 Let z0 ∈ Fixϕ1
H be an isolated fixed point. Define

degsupp HFloc
∗ (H , z0) =

¦

s ∈Z : HFloc
s (H , z0) ̸= {0}

©

(4.15)

Then we have
degsupp HFloc

∗ (H , z0)⊆
�

CZ (z0, H )− n,CZ (z0, H )+ n
�
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The proof of this lemma is an immediate consequence of the fact that we are taking the lower
semicontinous extension of the Conley-Zehnder index when dealing with degenerate orbits,
namely, it follows from the estimate in Lemma 1.2.12. In fact, a tighter bound can be proven
in terms of the nullity of the periodic orbit, but we don’t need it.

Another important property of local Floer homology, which in some sense justifies its name,
is that it depends on the Hamiltonian only in a neighborhood of the fixed point in analysis.
The proof of this fact follows immediately from its definition.

Lemma 4.3.4 Let H = H s be a 1-parameter family of Hamiltonians such that there exists a
z0 ∈ R2n with the following property: the orbit t 7→ ϕ t

H s (z0) = γ
s (t ) is a 1-periodic orbit ofH s

for every s , and there exists a neighborhood U0 of the orbit γ s , independent of s , such that γ s is
the only 1-periodic orbit in U0. Then

HFloc
∗ (H

s0 ,γ s0)∼=HFloc
∗ (H

s1 ,γ s1) ∀s0, s1

In particular, if F ,G are Hamiltonians such that there exists a z0 ∈ Fixϕ1
F ∩Fixϕ1

G and anU0
isolating the 1-periodic orbits of both F and G stemming from z0, and such that F |U0

=G|U0
,

then HFloc
∗ (F , z0)∼=HFloc

∗ (G, z0).
Using the isolation hypothesis, it is not too hard to prove the following lemma.

Proposition 4.3.4 Let z0 ∈ Fixϕ1
H be an isolated fixed point such that its critical valueAH (z0) =

a ∈R is isolated: there is an ϵ > 0 is such that I = (a− ϵ,a+ ϵ] contains no critical values other
than a. Then there exists an injective morphism

HFloc
∗ (H , z0) ,→HF(a−ϵ,a+ϵ]

∗ (H )

Proof. Recall that the Floer homology of H in action window (a − ϵ,a + ϵ] is by definition
the Floer homology of any small enough non-degenerate perturbation H̃ in the same action
window. It is clear that choosing a G ∈ wH∗(H ,U ) there always exists a H̃ ∈ wH∗ which
coincides with G inU . In particular, there is an inclusion of chain complexes CFloc

∗ (G,U ) ,→
CF(a−ϵ,a+ϵ]
∗

�

H̃ , J
�

whenever J is used to define the differential of the local chain complex. What
we have to show is that this morphism remains an injection at the level of homologies, when
G and H̃ are chosen close enough to H .

We argue by contradiction. Set γ (t ) = ϕ t
H (z0) the 1-periodic orbit corresponding to z0.

Assume there exist sequences H̃ (k) ∈wH∗, G(k) ∈wH∗(H ,U ) converging to H in C∞, such
that G(k)|U = H̃ (k)|U , J (k)→ J adequate generic almost complex structures, ϵk → 0 and chains
0 ̸= ck ∈ CFloc

∗
�

G(k),U
�

for which ck ∈ Im dH̃ (k),J (k) ⊂ CF(a−ϵk ,a+ϵk ]
�

H̃ (k), J
�

. In particular

there are sequences of 1-periodic orbits ξk ,χk ∈ Per1 H̃ (k) with

a− ϵk <AH (k)(χk ),AH (k)(ξk )≤ a+ ϵk (4.16)

and (H̃ (k), J (k))-Floer cylinders uk with uk (s , ·)→ χk as s →−∞ and uk (s , ·)→ ξk as s →+∞
for all k. We can even assume that χk lie outsideU because the case of χk insideU does not
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contradict the claim. From (4.16) we see that

EH (k),J (k) (uk )→ 0

Up to shifting uk we can assume that graph uk (0, ·)∩ ∂U ̸= ∅ for all k. By compactness we
can assume that uk → u in C∞loc where u is a non-constant (H , J )-Floer cylinder of zero energy,
i.e. a 1-periodic orbit of H . Since uk touches ∂U for all k, also this 1-periodic orbit must
intersectU . But this contradicts isolation of γ = ϕ t

H (z0).

As a corollary, we state the following

Lemma 4.3.5 Assume that Fixϕ1
H is a discrete set. Then since it is contained in a compact set, it

is finite. In particular, if a ∈R is a critical value ofAH , then it is isolated as a critical value and

HF(a−ϵ,a+ϵ]
∗ (H )∼=

⊕¦

HFloc �H , z ′
�

: z ′ ∈ Fixϕ1
H , AH

�

z ′
�

= a
©

for any ϵ > 0 such that (a− ϵ,a+ ϵ] contains only a as a critical value.

Remark When defining the filtered Floer homology with a chain complex model, the rela-
tionship between local and filtered Floer homology arises in the guise of the spectral sequence
associated to the action filtration.

Finally, it is important to know how local Floer homology behaves under iteration.

Lemma 4.3.6 Let H ∈wH and z0 ∈ Fixϕ1
H . Assume that HFloc

∗ (H , z0) ̸= {0}. Then for every
k ∈ Z which is not a multiple of any order of root of unity in the spectrum of dϕ1

H (z0), we have
that HFloc

∗ (H
×k , z0) ̸= {0}.

A proof of this lemma which applies also to our situation can be found in [22]. In fact, much
more can be proven: these local homologies are isomorphic up to a shift in degree, depending
on the iteration. Moreover the growth rate of this shift in degree as one iterates can be shown
to be exactly the mean Conley-Zehnder index of the 1-periodic orbit in analysis.

Remark Local Floer homology does not have to be restricted to isolated 1-periodic orbits. It
can in fact be defined for any isolated invariant set, since an isolated invariant set bifurcates into
a finite collection of non-degenerate 1-periodic orbits when perturbing to a non-degenerate
Hamiltonian. It would be interesting to understand how this invariant compares with the
Conley index.
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5. A Poincaré-Birkhoff theorem for ALHDs

In this chapter, in order to prove our main application to dynamical
systems, we develop two techniques whose aim is to make it possible
to relate the Floer homologies of different iterates of the same asymp-
totically quadratic Hamiltonian. The first is a procedure, called re-
indexing at infinity, which can be used to change the index at infinity
of an asymptotically quadratic Hamiltonian without changing its pe-
riodic points nor their action value. The second is an interpolation
at infinity, which starts with two Hamiltonians with the same index
at infinity and produces two Hamiltonians with the same quadratic
form at infinity, without creating new 1-periodic orbits. The Floer
homology of the new Hamiltonian can be related to the old one.
These techniques are employed to prove the Poincaré-Birkhoff theo-
rem through a contradiction argument.

5.1. Proof of the Poincaré-Birkhoff theorem

We start the chapter by proving the main application to dynamical systems, a Poincaré-Birkhoff
theorem for ALHDs. In order to streamline the argument, we would like to first state a propo-
sition that incapsulates the constructions which are developed below, and show how to con-
clude the Poincaré-Birkhoff theorem from it.

Proposition 5.1.1 Let ϕ be an ALHD whose linear map at infinity ϕ∞ ∈ Sp(2n) is non-
degenerate and unitary. Assume that ϕ has finitely many fixed points and that the set of primitive
periods of periodic points of ϕ is also finite. Then there exist:

(a) an increasing sequence of prime numbers (p j ) j∈N, with p0 larger than the largest primitive
period of any periodic point of ϕ,

(b) an asymptotically quadratic Hamiltonian H , non-degenerate at infinity, generating ϕ,
(c) a sequence of asymptotically quadratic Hamiltonians G j such that ϕ p j = ϕ1

G j

such that for any fixed m ∈N, we have the following properties:

1. The spectrum of ϕ
p j
∞ never contains 1.

2. p j+m − p j = o(p j ), i.e. the gaps in the sequence (p j ) j∈N are distributed like the gaps in the
sequence of all primes.
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3. For any z ∈ Fixϕ1
G j
= Fixϕ p j = Fixϕ we have















AG j
(z) =AH×p j (z) = p jAH (z),

CZ
�

z,G j

�

=CZ(z, H×p j ), CZ
�

z,G j

�

=CZ(z, H×p j ) = p jCZ (z, H )
HFloc

�

G j , z
�∼=HFloc �H×p j , z

�

(5.1)

Moreover, for any fixed m ∈ N, there exists a sequence
�

σ j ,m

�

j∈N
of integers and a sequence of

asymptotically quadratic Hamiltonians F j ,m such that:

4.
�

p j+m − p j

�

ind∞H − n ≤ σ j ,m ≤
�

p j+m − p j

�

ind∞H + n.

5. G j and F j ,m have the same quadratic Hamiltonian at infinity. Moreover








G j − F j ,m










L∞
=O

�

p j+m − p j

�

(5.2)

6. Every p j+m -periodic orbit of H is a 1-periodic orbit of F j ,m , and viceversa. Moreover, for
every z ∈ Fixϕ1

F j ,m
= Fixϕ p j+m = Fixϕ, we have

(

AF j ,m
(z) =AH×p j+m (z) = p j+mAH (z),

CZ
�

z, F j ,m

�

=CZ
�

z, H×p j+m
�

= p j+mCZ(z, H )
(5.3)

and finally, for every z ∈ Fixϕ1
F j ,m
= Fixϕ p j+m = Fixϕ, we have

(

CZ
�

z, F j ,m

�

=CZ
�

z, H p j+m
�

−σ j ,m ,

HFloc
∗

�

F j ,m , z
�∼=HFloc

∗+σ j ,m

�

H×p j+m , z
� (5.4)

The proof of this proposition will be shown in Section 5.2.3. Now, we are ready to state
and prove the main theorem of the paper. Recall that a fixed point z0 ∈ Fixϕ is said to be
twist, when CZ(z0, H ) ̸= ind∞H for some generating asymptotically quadratic Hamiltonian
H , and that it is said to be homologically visible when HFloc(H , z0) ̸= {0} for some generating
asymptotically quadratic Hamiltonian H . Both these conditions do not depend on the choice
of generating Hamiltonian.

Theorem 9 Let ϕ be an ALHD with non-degenerate and unitary linear map at infinity ϕ∞ ∈
U(n)⊂ Sp(2n). Assume that ϕ admits a homologically visible twist fixed point z0 ∈ Fixϕ. Then ϕ
has infinitely many fixed points or infinitely many periodic points with increasing primitive period.

The proof is inspired by the proof of Gürel [25].

Proof. Assume by contradiction that ϕ has finitely many fixed points and finitely many inte-
gers appear as primitive periods of periodic points of ϕ. Therefore, Proposition 5.1.1 holds.
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p j+m(a0− ϵ) a−

a−+ 2C j ,m

p j+ma0 a+

a++ 2C j ,m

p j+m (a0+ ϵ)

I

I + 2C j ,m

Figure 5.1. Special action windows. For clarity, set a± = p j+m

�

a0±
ϵ
3

�

Since ϕ has finitely many fixed points, the action value a0 = AH (z0) of the 1-periodic or-
bit corresponding to the fixed point z0 is isolated. Therefore there exists an ϵ > 0 such that
(a0− ϵ,a0+ ϵ] contains only a0 as critical value of the action functional.

Notice that by construction, since p0 is larger than the largest primitive period of any pe-
riodic point of ϕ, all p j -periodic points are iterates of fixed points for all j , which come in a
finite number. Therefore, also p j a0, resp. p j+ma0 is an isolated critical value of AG j

, resp.
AF j ,m

. In fact, these two functionals have no critical value other than p j a0, resp. p j+ma0, in
�

p j (a0− ϵ) , p j (a0+ ϵ)
�

, resp.
�

p j+m (a0− ϵ) , p j+m (a0+ ϵ)
�

.

First, we analyze the filtered Floer homology of F j ,m in action windows around the critical
value p j+ma0 and identify action windows for which a certain inclusion-quotient morphism is
non-vanishing (see Section 4.2.2 and specifically (4.13)).

Set C j ,m =







F j ,m −G j










L∞
. This is the action shift given by a continuation between F j ,m

and G j , see Section 4.2.2. Since C j ,m = O(p j+m − p j ) = o(p j ) by point (2) in Proposition
5.1.1, we know that for any δ > 0 there exists a j0 > 0 such that δ p j+m > δ p j > 6C j ,m for
every j > j0. So take δ = ϵ as above and set

I =
�

p j+m

�

a0−
ϵ

3

�

, p j+m

�

a0+
ϵ

3

�i

Then we have (see Figure 5.1)

I ∪
�

I +C j ,m

�

∪
�

I + 2C j ,m

�

⊂
�

p j+m(a0− ϵ), p j+m(a0+ ϵ)
�

p j+ma0 ∈ I ∩
�

I +C j ,m

�

∩
�

I + 2C j ,m

�







∀ j > j0

Since p j+ma0 is an isolated critical value, we know that

HFJ
∗
�

F j ,m

�∼=
⊕

n

HFloc
∗

�

F j ,m , z
�

: z ∈ Fixϕ1
F j ,m
= Fixϕ, AF j ,m

(z) = p j+ma0

o

∀J ∈
¦

I , I + 2C j ,m

©

see Lemma 4.3.5. Therefore by Lemma 4.3.6 the local Floer homology of z0 contributes non-
trivially to this sum, since p j+m is by construction never a multiple of the order of the roots
of unity in the spectrum of dϕ(z0). Moreover, as we take j > j0 large enough, we see that the
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supports in degree (see (4.15)) of the local Floer homology summands corresponding to fixed
points with different mean Conley-Zehnder index become disjoint. This lets us conclude that

HFJ
s

�

F j ,m

�∼=
⊕











HFloc
s

�

F j ,m , z
�

:

z ∈ Fixϕ,
AF j ,m

(z) = p j+ma0,

CZ (z, H ) =CZ (z0, H )











∀s ∈ degsupp HFloc
�

F j ,m , z0

�

, ∀J ∈
¦

I , I + 2C j ,m

©

Recall from (5.4) that

HFloc
∗

�

F j ,m , z0

�∼=HFloc
∗+σ j ,m

�

H×p j+m , z0
�

.

Hence (Lemma 4.3.3)

deg supp HFloc
�

F j ,m , z0

�

⊆∆(z0, j , m) =

=
�

p j+mCZ (z0, H )−σ j ,m − n, p j+mCZ (z0, H )−σ j ,m + n
�

As remarked above, since z0 is homologically visible and p j+m is a large prime, we can apply
Lemma 4.3.6 together with (5.4) and conclude that

{0} ̸=HFloc
∗
�

H×p j+m , z0
�∼=HFloc

∗

�

F j ,m , z0

�

In particular

{0} ̸=HFJ
∗
�

F j ,m

�∼=HFloc
∗

�

F j ,m , z0

�

⊕ · · · ∀J ∈ {I , I + 2C j ,m}

This implies that the inclusion-quotient morphism (see (4.13)) from action window I to action
window I + 2C j ,m is non-zero:

0 ̸= Φ : HFI
∗

�

F j ,m

�

→HF
I+2C j ,m
∗

�

F j ,m

�

Moreover, by definition, the classes corresponding to HFloc
∗

�

F j ,m , z0

�

are sent to themselves
under Φ.

Now, since F j ,m and G j have the same quadratic Hamiltonian at infinity, we can perform a

continuation between their filtered Floer homologies with action shift C j ,m =







F j ,m −G j










L∞
(Section 4.2.2):







C : HFJ
∗
�

F j ,m

�

→HF
J+C j ,m
∗

�

G j

�

,

C : HFJ
∗
�

G j

�

→HF
J+C j ,m
∗

�

F j ,m

� ∀J ⊂R

The inclusion quotient morphism is factored by the composition of these morphisms, see
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Lemma 4.2.2:

HF
I+C j ,m
∗

�

G j

�

HFI
∗

�

F j ,m

�

HF
I+2C j ,m
∗

�

F j ,m

�

C

Φ

C

(5.5)

We derive a contradiction from this factorization, by comparing the degrees where Φ is cer-
tainly non-zero with the degrees where C ,C are both certainly zero.

As observed above, Φ is certainly non-zero for some degrees s ∈ ∆(z0, j , m) for all j large
enough and all m. On the other hand,C andC are non-zero only in the degrees corresponding
to the supports in degree of local Floer homologies of fixed points of G j . These in turn are:

deg supp HFloc
∗

�

G j , z
�

⊆ Γ (z, j ) =
�

p jCZ(z, H )− n, p jCZ(z, H )+ n
�

There are two cases: either z ∈ Fixϕ is such that CZ(z, H ) = CZ(z0, H ), or not. In the first
case, we use the twist condition. Recalling that by Proposition 5.1.1 we have

�

p j+m − p j

�

ind∞H − n ≤ σ j ,m ≤
�

p j+m − p j

�

ind∞H + n

it follows that

∆(z0, j , m)∩Γ (z, j ) ̸=∅ ⇐⇒
�

�

�

�

p j+m − p j

�

CZ(z0, H )−σ j ,m

�

�

�< 2n

⇐⇒ p j+m − p j <
2n

�

�

�CZ(z0)− ind∞H
�

�

�

But p j+m− p j > 2m, so we can choose m large enough to make∆(z0, j , m) andΓ (z, j ) disjoint.

If instead CZ(z, H ) ̸=CZ(z0, H ), then

∆(z0, j , m)∩Γ (z, j ) ̸=∅ ⇐⇒
�

�

�p j+mCZ(z0, H )−σ j ,m − p jCZ(z, H )
�

�

�< 2n

Notice that point (1) in Proposition 5.1.1 implies that p j+m/p j → 1 as j →∞ and point (3)
that σ j ,m/p j → 0 as j →∞. Therefore dividing everything by p j we see

1
p j

�

�

�p j+mCZ(z0, H )−σ j ,m − p jCZ(z, H )
�

�

�−−→
j→∞

�

�

�CZ(z0, H )−CZ(z, H )
�

�

�> 0

But since p j is unbounded in j , also
�

�

�p j+mCZ(z0, H )−σ j ,m − p jCZ(z, H )
�

�

�must be, and hence
eventually larger than 2n. So for every j large enough and with no condition on m,∆(z0, j , m)
and Γ (z, j ) are disjoint.

This concludes the proof, because we found that for every j large enough there always exists
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an m such that Φ is non-zero for some degrees in∆(z0, j , m) whileC andC are both zero for
all degrees in∆(z0, j , m).

5.2. Re-indexing and interpolation at infinity

In this section we first explain the constructions involving the proof of Proposition 5.1.1, and
then tie everything together to prove Proposition 5.1.1.

We start with some notation.

Definition 5.1 Choose a smooth non-decreasing step function ρ : [0,1] → [0,1] such that
ρ′(t )< 2. If F ,G are two Hamiltonians, define

(F #G)t (z) = Ft (z)+Gt

�

�

ϕ t
F

�−1 (z)
�

,

(F ∧G)t (z) =

(

2ρ′(2t )Gρ(2t )(z), t ∈
�

0, 1
2

�

2ρ′(2t − 1)Fρ(2t−1)(z), t ∈
�

1
2 , 1
�

Denote by F t (z) =−Ft
�

ϕ t
F (z)

�

.

The proof of the following lemma is a simple calculation.

Lemma 5.2.1 These Hamiltonians generate the following flows:

ϕ t
F
=
�

ϕ t
F

�−1 , ϕ t
F #G = ϕ

t
F ◦ϕ

t
G , ϕ t

F∧G =

(

ϕρ(2t )
G , t ∈

�

0, 1
2

�

ϕρ(2t−1)
F ◦ϕ1

G , t ∈
�

1
2 , 1
�

In particular ϕ1
F #G = ϕ

1
F ◦ϕ

1
G = ϕ

1
F∧G and ϕ1

F
=
�

ϕ1
F

�−1.

5.2.1. Re-indexing at infinity

In general, the index at infinity of an asymptotically quadratic Hamiltonian grows linearly
under iteration. This implies that as we iterate a Hamiltonian system, the different iterates will
in general lie in different homotopy classes of linear systems at infinity. Since we can expect
the continuation morphisms to be isomorphisms only within a fixed homotopy class of linear
systems at infinity, we must find a way to modify the index at infinity without producing or
destroying periodic orbits. To do this, we try our best to forget the flow and focus on the time-
k maps only. The k-periodic orbits of H are in 1-1 correspondence with Fixϕk . Now, for
k ∈N, ϕk can be generated by the Hamiltonian H×k , but this is not the only possible choice.
In fact, if we are only interested in Fixϕk , we have the freedom to compose any Hamiltonian
generating ϕk with a Hamiltonian generating a loop of Hamiltonian diffeomorphisms. Since
all we have to do is change the index at infinity, linear loops suffice.
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We start with a useful lemma. Recall from Section 2.2 that H is the set of asymptotically
quadratic Hamiltonians with non-degenerate quadratic Hamiltonian at infinity. The difference
with wH is that the non-quadratic part of the Hamiltonian is assumed to be bounded.

Lemma 5.2.2 Let G ∈ wH, Gt = Rt + gt , and Pt (z) =
1
2 〈Bt z, z〉 a quadratic Hamiltonian

generating a loop in U(n)⊂ Sp(2n), ϕ t
P =: N t ∈U(n), N 0 =N 1 = I. Then:

1. P#G ∈wH. If G ∈H then also P#G ∈H.
2. For every z ∈ Fixϕ1

P#G = Fixϕ1
G , we have

AP#G(z) =AG(z)

Proof. 1. By definition P#Gt = P# (Rt + gt ) = Pt +Rt ◦ (N t )−1+ gt ◦ (N t )−1. Clearly
�

�

�∇
�

gt ◦ (N
t )−1

�

(z)
�

�

�=
�

�

�∇gt

�

(N t )−1 z
�
�

�

�= o(|z |) as |z | →∞

since N t ∈U(n). If g is bounded, then also g ◦ (N t )−1 is bounded. Since the time-1 map
is untouched by composition with ϕ t

P , it is still non-degenerate at infinity.
2. We calculate

AP#G (z) =
∫ 1

0

1
2

­

N tϕ t
G(z), J0

d
d t

�

N tϕ t
G(z)

�

·

− P#Gt
�

N tϕ t
G(z)

�

d t =

=
∫ 1

0

1
2




N tϕ t
G(z),At N tϕ t

G(z)
�

− Pt
�

N tϕ t
G(z)

�

d t+

+
∫ 1

0




N tϕ t
G(z), J0N t ϕ̇ t

G(z)
�

−Gt
�

ϕ t
G(z)

�

d t =

=
∫ 1

0




ϕ t
G(z), J0ϕ̇

t
G(z)

�

−Gt
�

ϕ t
G(z)

�

d t =AG(z)

since 〈N t v, J0N t w〉 =



N t v, (N t )−T J0w
�

=



(N t )−1N t v, J0w
�

= 〈v, J0w〉. Notice that
the assumption on P to generate a loop is only needed to conclude that the fixed point
sets coincide, Fixϕ1

G = Fixϕ1
P#G .

Remark The calculation above also shows that the action of a fixed point of a linear flow is
always zero in these conventions. In fact, we are tacitly imposing a normalization condition
on linear symplectomorphisms: we are asking our linear flows to be generated by genuine
quadratic forms, so the freedom of adding a constant to the quadratic Hamiltonian is ruled
out.

This lemma tells us that if we compose our Hamiltonian H with a quadratic Hamiltonian
generating a loop, we might be able to change the index at infinity without changing the fixed
points nor their action.
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Let Ht =Qt + ht ∈wH, ϕ = ϕ1
H and ϕ∞ = ϕ

1
Q . Recall that

ind∞
�

H×k
�

=CZ
�

ϕ t
Q×k : t ∈ [0,1]

�

=CZ
�

ϕ t
Q : t ∈ [0, k]

�

,

ind∞(H ) = lim
k→∞

1
k

ind∞
�

H×k
�

If k is a multiple of an order of a root of unity in the spectrum of ϕ1
Q , then the index at time k

is defined by lower-semicontinuous extension as in Section 1.2.5.1.
Fix two odd integers k > l ≥ 1 which are not multiples of orders of roots of unity in σ(ϕ∞).

Then by Proposition 1.2.6 the parity of the indices at infinity of the iterates H×k and H×l are
the same, so that

ind∞
�

H×k
�

− ind∞
�

H×l
�

= 2µ

for some µ ∈ Z. Notice that Proposition 1.2.5 implies an automatic bound on µ in terms of
the mean index at infinity, namely

(k − l )ind∞H − n ≤ 2µ≤ (k − l )ind∞H + n

Let Pµt (z) =
1
2




Bµt z, z
�

be a quadratic Hamiltonian generating a loop N t = ϕ t
Pµ ∈ U(n) ⊂

Sp(2n) such that the Maslov index of [0,1] ∋ t 7→N t is precisely µ. By the elementary theory
of the Maslov index (Propositions 1.1.2 and 1.1.4) such a path of unitary matrices always exists,
and correspondingly a generating quadratic Hamiltonian Pµ. Define the following Hamilto-
nian

H k⊖l =
�

Pµ#H×(k−l )
�

∧H×l

Lemma 5.2.3 The Hamiltonian H k⊖l has the following properties.
0. H k⊖l ∈wH.
1. It generates ϕk

H in time 1.

2. ind∞
�

H k⊖l �= ind∞
�

H×l �. Moreover if z̄ ∈ Fixϕk
H = Fixϕ1

H k⊖l then

CZ
�

z̄, H k⊖l
�

=CZ
�

z̄, H×k
�

− 2µ

3. If z0 ∈ Fixϕ1
H is seen as a k-periodic point, thenAH k⊖l (z0) =AH×k (z0) = kAH (z0).

Proof. 0. This is just Lemma 5.2.2.
1. Pµ generates a loop based at the identity in time 1, and H×(k−l ) ∧H×l generates ϕk in

time 1.
2. The path t 7→ ϕ t

H k⊖l is Hamiltonian-isotopic to the path t 7→
�

ϕ t
Pµ
�−1◦ϕk t

H , which is gen-

erated by the Hamiltonian P
µ

#H×k . The quadratic form at infinity of this Hamiltonian
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is P
µ

#Q×k . Therefore

ind∞
�

H k⊖l
�

=CZ
�

�

ϕ t
Pµ
�−1 ◦ϕ t

Q×k : t ∈ [0,1]
�

=

=CZ
�

ϕ t
Q×k : t ∈ [0,1]

�

+ 2Mas
�

�

ϕ t
Pµ
�−1 : t ∈ [0,1]

�

=

= ind∞
�

H×k
�

− 2µ= ind∞
�

H×k
�

The calculation of the index of periodic orbits is completely analogous.
3. Notice that z0 ∈ Fixϕ1

H =⇒ z0 ∈ Fixϕ l
H ∩Fixϕk−l

H . So we are reduced to the situation
of two Hamiltoinans F ,G and a point z0 ∈ Fixϕ1

F ∩Fixϕ1
G . Then z0 ∈ Fixϕ1

F ◦ϕ
1
G and

AF∧G(z0) =
∫

1
2

0

�

ϕρ(2 · )G (z0)
�∗
λ0− 2ρ′(2t )Gρ(2t ) ◦ϕ

ρ(2t )
G (z0)d t+

+
∫ 1

1
2

�

ϕρ(2 ·−1)
F ◦ϕ1

G(z0)
�∗
λ0− 2ρ′(2t )Fρ(2t−1) ◦ϕ

ρ(2t−1)
F ◦ϕ1

G(z0)d t

=
∫ 1

0

�

ϕ·G(z0)
�∗λ0−Gt ◦ϕ

t
G(z0)d t +

∫ 1

0
(ϕ·(z0))

∗λ0− Ft ◦ϕ
t
F (z0)d t =

=AG(z0)+AF (z0)

Using Lemma 5.2.2, we calculate

AH k⊖l (z0) =AH×l (z0)+AP
µ

#H k−l (z0) = lAH (z0)+ (k − l )AH (z0) = kAH (z0)

5.2.1.1. Action of linear loops on Floer homology

Re-indexing at infinity has a simple effect on the Floer homology: it shifts the grading of the
Floer homology by an explicit integer and does not shift the action filtration at all.

Lemma 5.2.4 Let Pt (z) =
1
2 〈Bt z, z〉 be a quadratic Hamiltonian generating a loop of linear

symplectomorphisms N t = ϕ t
P , N 0 = N 1 = I of Maslov index µ ∈ Z. Consider H ∈ wH∗. Let

I ⊂R be an interval. Let J be an adequate family of almost-complex structures onR2n with (H , J )
a regular pair. We have

CFI
∗ (P#H ,N ∗J )∼=CFI

∗−2µ(H , J )

Proof. To exhibit the isomorphism, it suffices to give a bijection of sets of 1-periodic orbits and
a bijection of moduli spaces of Floer cylinders.

The bijection on the orbits is given by sending a 1-periodic orbit γ of H to ξ =N ·γ which is
a 1-periodic orbit of P#H , since N is a loop. By Lemma 5.2.2 we already know thatAH (γ ) =
AP#H (ξ ), so the bijection respects the filtration on the chain complexes. Moreover by the
change of index formula (Equation (1.5)) for the Conley-Zehnder index of the composition of
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a loop in Sp(2n) with a non-degenerate path in Sp(2n), we get

CZ (N · γ ) =CZ(γ )+ 2µ

therefore this bijection sends the generators of CFI
∗(P#H , J ) to the generators of CFI

∗−2µ

�

H , J̃
�

where J̃ is to be determined by studying the corresponding bijection on the moduli spaces of
Floer cylinders.

Namely, if we take u : R× S1 → R2n solving the Floer equation for (H , J ), then v(s , t ) =
N t u(s , t ) solves the Floer equation for (P#H ,N ∗J )where (N ∗J )(t ,z) = [(N

t )∗ Jt ]z . Notice that
since N is a loop of linear symplectomorphisms, the family N ∗J is still an adequate family of
almost-complex structures.

All in all, the bijection extends by linearity to a chain complex isomorphism as claimed.

Remark Since filtered Floer homology groups are independent of the almost-complex struc-
tures used to define the chain complex, we see that this chain complex isomorphism descends
to an isomorphism between HFI

∗ (P#H ) and HFI
∗−2µ (H ).

Corollary 5.2.1 Let H ∈wH, k > l two odd numbers, and 2µ= ind∞H×k−ind∞H×l . Then
for any fixed point z0 ∈ Fixϕ1

H we have

HFloc
∗

�

H k⊖l , z0

�∼=HFloc
∗+2µ

�

H×k , z0

�

5.2.2. Interpolations at infinity

Consider two asymptotically quadratic Hamiltonians H 0, H 1, both non-degenerate at infinity.
Assume that the two systems have the same index at infinity. In this situation, it is possible
to define continuation maps between the Floer homologies of H 0 and H 1, as we’ve seen in
Section 4.1.2.2. But a problem arises in trying to find a good estimate for the action shift of
the continuation Floer morphism. In this section we explain how to circumvent this problem
in the case that the quadratic forms generate linear unitary flows, by interpolating one of the
two quadratic forms to the other. The result is a new Hamiltonian which has the same fixed
points as the starting one, and equal to it in a large ball. This will permit us to obtain a better
control of the action shift constant.

We start with a preliminary lemma on dynamical systems.

Lemma 5.2.5 Let Xt = Et + Ft be a vector field on Rm such that Et (0) = 0, |DEt (z)|< C and
|Ft (z)|= o (|z |) as |z | →∞ for all t . If there exist M0,C0 > 0 such that

�

�

�ϕ1
E (z)− z

�

�

�>C0|z | ∀|z |>M0

then there exist M1,C1 > 0 such that
�

�

�ϕ1
X (z)− z

�

�

�>C1 ∀|z |>M1
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Proof. The argument is just a routine application of the Grönwall lemma. Fix a z ∈Rm and a
τ ∈ [0,1]. First of all let’s estimate the distance between ϕτE (z) and ϕτX (z).

|ϕτX (z)−ϕ
τ
E (z)| ≤

∫ τ

0

�

�Xt ◦ϕ
t
X (z)− Et ◦ϕ

t
E (z)

�

�d t ≤

≤
∫ τ

0
|Xt ◦ϕ

t
X (z)− Et ◦ϕ

t
X (z)|+

�

�Et ◦ϕ
t
X (z)− Et ◦ϕ

t
E (z)

�

�d t ≤

≤
∫ τ

0
|Ft ◦ϕ

t
X (z)|d t +C

∫ τ

0

�

�ϕ t
X (z)−ϕ

t
E (z)

�

�d t

(5.6)

We have to estimate the first integral. To do this, fix an arbitrary ϵ ∈ (0,1). Then ∃Mϵ > 0 such
that |x|>Mϵ =⇒ |Ft (x)|< ϵ|x|. Set

Iϵ = {t ∈ [0,τ] : |ϕ t
X (z)| ≤Mϵ} , Jϵ = {t ∈ [0,τ] : |ϕ t

X (z)|>Mϵ}

We obtain
∫ τ

0
|Ft ◦ϕ

t
X (z)|d t =

∫

Iϵ

|Ft ◦ϕ
t
X (z)|d t +

∫

Jϵ

|Ft ◦ϕ
t
X (z)|d t ≤

≤ max
(t ,x)∈[0,1]×BMϵ

(0)
|Ft (x)|+

∫

Jϵ

ϵ |ϕ t
X (z)|d t ≤Dϵ+ ϵ

∫ τ

0
|ϕ t

X (z)|d t

Notice that Dϵ becomes possibly very big as ϵ→ 0. Now
∫ τ

0
|ϕ t

X (z)|d t ≤
∫ τ

0

�

�ϕ t
X (z)−ϕ

t
E (z)

�

�d t +
∫ τ

0

�

�ϕ t
E (z)

�

�d t

but since Et (0) = 0 for all t and |DEt (z)|<C , we can estimate using the Grönwall lemma
�

�ϕ t
E (z)

�

�=
�

�ϕ t
E (z)−ϕ

t
E (0)

�

�≤ eC t |z |

Plugging in these estimates in (5.6), we obtain

|ϕτX (z)−ϕ
τ
E (z)| ≤Dϵ+ ϵ ·

�

eCτ − 1
�

C
|z |+(C + ϵ)

∫ τ

0

�

�ϕ t
X (z)−ϕ

t
E (z)

�

�d t

We can apply the Grönwall lemma to obtain the estimate, for τ = 1,

�

�

�ϕ1
X (z)−ϕ

1
E (z)

�

�

�≤ eC+ϵ

�

Dϵ+
ϵ
�

eC − 1
�

C
|z |
�

≤ Sϵ+ ϵT |z |
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where Sϵ = eC+1Dϵ, T = eC+1 eC−1
C . Now, take |z |>M0. Then

�

�

�ϕ1
X (z)− z

�

�

�≥
�

�

�ϕ1
E (z)− z

�

�

�−
�

�

�ϕ1
X (z)−ϕ

1
E (z)

�

�

�≥

≥C0|z | − Sϵ− ϵT |z |= (C0− ϵT ) |z | − Sϵ

To conclude, we take ϵ < C0
T so that C0− ϵT > 0. Then M1 =

Sϵ
C0−ϵT + 1, C1 =C0− ϵT .

Next, we work at the linear level: we interpolate the quadratic forms without creating fixed
points.

Proposition 5.2.1 Let Q0 and Q1 be two non-degenerate quadratic Hamiltonians of the same
index, i.e. ϕ1

Q i does not contain 1 in its spectrum for both i = 0,1 and

CZ
�

ϕ t
Q0 : t ∈ [0,1]

�

=CZ
�

ϕ t
Q1 : t ∈ [0,1]

�

.

Assume that ϕ t
Q i ∈U(n) for all t and all i = 0,1. Then for every R0 > 0 there exists an R1 > R0

and a Hamiltonian K ∈C∞(S1×R2n) with the following properties:
1. K interpolates between Q0 and Q1:

Kt |BR0
=Q0

t , Kt |R2n\BR1
=Q1

t

2. K has no non-trivial 1-periodic orbits:

Fixϕ1
K = {0}

Proof. Write Q i
t (z) =

1
2




Ai
t z, z

�

for Ai : S1 → Sym(2n). Let A : [0,1]× S1 → Sym(2n) be a
homotopy of symmetric matrices such that A0 = A0, A1 = A1, As : S1 → Sym(2n) is non-
degenerate for all s , and−J0As

t ∈ u(n) for all s , t . This exists because Q0 and Q1 have the same
index at infinity, and their flows are unitary at all times.

Fix an arbitrary R0 > 0 and a R1 > R0 to be determined later. Consider a non-decreasing
smooth function χ : [0,∞) → [0,1] such that χ (r ) = 0 for all r < R0 and χ (r ) = 1 for all
r > R1. We want to determine R1 so that the Hamiltonian system defined by

K(t , z) =
1
2

­

Aχ (|z |
2)

t z, z
·

has only 0 ∈R2n as 1-periodic orbit. We calculate the Hamiltonian vector field

XK (t , z) =−J0A
χ (|z |2)
t z −χ ′

�

|z |2
�

*

∂ As
t

∂ s

�

�

�

�

�

s=χ (|z |2)
z, z

+

J0z
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The Hamilton equations can thus be written as

ẋ + J0A
χ (|x|2)
t x =−χ ′

�

|x|2
�

*

∂ As
t

∂ s

�

�

�

�

�

s=χ (|x|2)
x, x

+

J0x

Let’s show that the norm of an integral curve of K is constant. Indeed, if x : [0,T ]→R2n is
an integral curve of K ,

1
2

d
d t
|x|2 = 〈x, ẋ〉=−

­

x, J0A
χ (|x|2)
t x

·

−χ ′
�

|x|2
�

*

∂ As
t

∂ s

�

�

�

�

�

s=χ (|x|2)
x, x

+

〈x, J0x〉= 0

because J0As
t ∈ u(n)⊂ o(2n) which is the set of skew symmetric matrices. Therefore, if we set

r0 = |x(0)|2, χ0 = χ (r0), χ
′
0 = χ

′(r0), we can use the fact that As generates a non-degenerate

system for all s to invert the operator d
d t + J0A

χ0
t using the variation of constants method, as

in Lemma 2.3.1 and its Corollary 2.3.1. We obtain the integral expression (see equation (2.6))

xt =M
χ0
t



x0−
∫ t

0
χ ′0

*

∂ As
t

∂ s

�

�

�

�

�

s=χ0

xτ , xτ

+

�

Mχ0
τ
�−1 J0xτdτ





whereMs : [0,1]→U(n)⊂ Sp(2n) is the path of symplectic matrices generated byAs . We use
this formula to estimate

|x1− x0|=

�

�

�

�

�

�

Mχ0
1 x0− x0−

∫ 1

0
χ ′0

*

∂ As
t

∂ s

�

�

�

�

�

s=χ0

xτ , xτ

+

Mχ0
1−τxτdτ

�

�

�

�

�

�

≥

≥

�

�

�

�

�

�

�

�Mχ0
1 x0− x0

�

�−

�

�

�

�

�

�

∫ 1

0
χ ′0

*

∂ As
t

∂ s

�

�

�

�

�

s=χ0

xτ , xτ

+

Mχ0
1−τxτdτ

�

�

�

�

�

�

�

�

�

�

�

�

(5.7)

Since the systems defined by A are all non-degenerate, there exists a C0 > 0 such that

|Ms
1z − z |>C0|z | ∀z ∈R2n ∀s ∈ [0,1]

Therefore to reach our conclusion we have to bound from above the integral in the second part
of equation (5.7) by C0|x0|. We start with

�

�

�

�

�

�

∫ 1

0
χ ′0

*

∂ As
t

∂ s

�

�

�

�

�

s=χ0

xτ , xτ

+

Mχ0
1−τxτdτ

�

�

�

�

�

�

≤
∫ 1

0
C1χ

′ �|x0|
2� |x0|

3dτ =C1χ
′(r0)r

3/2
0

where C1 = ∥∂sA∥L∞ . We are led to impose the point-wise constraint

χ ′(r )≤
C0

C1 r
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R0 R1

0

1

C0

C1 r

χ ′

χ

Figure 5.2. Construction of the step function χ . The smoothing is done in such a way that the pink
area contributes e.g. 1

4 to the total area and the blue striped area contributes 1 to the total area. The
resulting primitive, which is our χ , is drawn below.

Observe that
∫

Rχ
′ = 1, while r−1 has diverging integral. Therefore given any fixed R0 > 0,

let R1 > R0 be such that

∫ R1

R0

C0

C1 r
d r = 1+

1
4
⇐⇒ R1 = e

5
4

C1
C0 R0

Define χ ′ to be a smoothed out version of I[R0,R1]
C0

C1 r , where I[R0,R1]
denotes the indicator

function of [R0, R1] (see Figure 5.2). We can assume that the smoothing is done in such a way
that

∫

Rχ
′ = 1. Imposing the boundary condition that χ (R0) = 0 gives an unique primitive χ

of our χ ′ which will have the sought-for properties.

Remark We gather the formulas for the two constants C0 and C1 which enter the definition
of R1, since their behaviour under iteration is crucial for the proof of the main proposition:

C0 = min
s∈[0,1], z∈R2n

�

�Ms
1z − z

�

�

|z |
> 0, C1 = ∥∂sA∥L∞([0,1]×S1,Sym2n) (5.8)

The fact that C0 > 0 is implied by the fact that 1 /∈ σ(Ms
1) for all s ∈ [0,1].

Proposition 5.2.2 Let H i
t =Q i

t +h i
t , i ∈ {0,1} be two (weakly) asymptotically quadratic Hamil-
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tonians whose quadratic forms at infinity Q i
t (z) =

1
2




Ai
t z, z

�

are non-degenerate and generate
flows of linear unitary maps. Assume that ind∞H 0 = ind∞H 1. Then there exists an R0 > 0 and
a Hamiltonian F ∈C∞(S1×R2n) such that:

1. F is (weakly) asymptotically quadratic, has Q1 as quadratic Hamiltonian at infinity, and

Ft |BR0
= H 0

t

�

�

�

BR0

2. Fixϕ1
F = Fixϕ1

H 0 .

Proof. By Proposition 5.2.1, for any R0 > 0 we find an R1 > R0 and a K ∈ C∞(S1 ×R2n)
interpolating between Q0 and Q1 without creating 1-periodic orbits. So let R0 > 0 be so large
that BR0

(0) contains all 1-periodic orbits of H 0. This always exist because of Lemma 2.3.4. So
set

F =K + h0 =Q1+
�

K −Q1+ h0�=Q1+ eh0

The first point follow immediately from this definition. For the second point, we apply Lemma
5.2.5 to X = XF , E = XK , F = Xh0 . The hypotheses on E and F are clearly met in this case.
All in all, the resulting F will have the same fixed points as H 0, and no other fixed points.

5.2.3. Proof of the main proposition

First of all, we show that any ALHD ϕ with ϕ∞ ∈U(n) can be generated by an asymptotically
quadratic Hamiltonian H =Q + h such that ϕ t

Q ∈U(n) for all t .

Lemma 5.2.6 Let H ′t =Q ′t+h ′t ∈Hwhere ϕ1
Q ′ ∈U(n). There exists a (possibly non-autonomous)

quadratic Hamiltonian P generating a loop of unitary maps such that Ht = P#H ′t = Q + ht is
an asymptotically quadratic Hamiltoninan with autonomous quadratic form at infinity such that
ϕ t

Q ∈U(n) for all t and ϕ1
H = ϕ

1
H ′ .

Proof. The proof is standard Krein theory. Let ϕ1
Q ′ = U ∈ U(n). Since U is unitary, it has a

logarithm b = log U ∈ u(n). Notice that J0b = b J0 and b t =−b , since u(n) = o(2n)∩gl(n,C).
Set B = J0b . Then B is symmetric: BT =−b T J0 = B . Define

Q(z) =
1
2
〈B z, z〉 , P =Q#Q ′

Notice ϕ t
Q ∈U(n) and ϕ1

Q = U by construction. Then ϕ1
P = ϕ

1
Q ◦

�

ϕ1
Q ′

�

= id so ϕ t
P is a loop

of unitary matrices. Finally

P#Ht = Pt +Ht ◦
�

ϕ t
P

�−1 =Q −Q ′t ◦ϕ
t
Q ′ ◦ϕ

−t
Q +Q ′t ◦ϕ

t
Q ′ ◦ϕ

−t
Q + h ′t ◦ϕ

t
Q ′ ◦ϕ

−t
Q =

=Q + ht
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where ht = h ′t ◦
�

ϕ t
P

�−1.

Moreover, since every Hermitian matrix can be unitarily diagonalized, we can find a basis
of Cn for which Q is the following diagonal quadratic form:

Q(z) =
1
2

n
∑

r=1
αr |zr |

2 , z = (z1, . . . , zn) ∈C⊕ · · ·⊕C=C
n (5.9)

Notice that we are not imposing that αr > 0 for any r .
The Hamiltonian H of point (c) in Proposition 5.1.1 is any H which is autonomous at in-

finity and whose flow at infinity is unitary and diagonal. We have ϕ = ϕ1
H and ϕ∞ = ϕ

1
Q .

Recall that we are assuming that ϕ has finitely many fixed points and finitely many integers are
attained as primitive periods of periodic orbits of ϕ.

Next we find the sequence (p j ) j∈N. To do this, we simply apply Proposition 1.1.5 to the map
ϕ∞ and we obtain an increasing sequence of prime numbers (p j ) j which satisfies properties
(1) and (2) in Proposition 5.1.1, and such that

dU(1)

�

σ(ϕ
p j
∞), 1

�

> c

for some c > 0 independent of j . Without loss of generality we can assume that the first
element p0 of the sequence is larger than the largest primitive period of a periodic point of ϕ.

The sequence σ j ,m is defined as follows:

σ j ,m =
1
2

�

ind∞H×p j+m − ind∞H×p j
�

That this is an integer follows from the fact that p j and p j+m are odd, so the indices have the
same parity. The estimate on the growth of σ j ,m follows immediately from the estimate of the
iterated Conley-Zehnder index in terms of the mean Conley-Zehnder index.

The Hamiltonians G j are defined as G j = 0 ∧ H×p j . The properties of equation (5.1) in
Proposition 5.1.1 are clear.

Next we define F j ,m . Notice that G j and H p j+m⊖p j have the same index at infinity by con-
struction of the re-indexed Hamiltonian H p j+m⊖p j . So we aim to apply Proposition 5.2.2 to
H 0 =H p j+m⊖p j and H 1 =G j . But to gain control over the iteration process, we must construct
the non-resonant path A in the proof of Proposition 5.2.2 explicitly.

For convenience set k = p j+m and l = p j . Let’s construct H k⊖l explicitly. Here the diago-
nalization (5.9) helps to write explicit formulae. In fact we can compute explicitly the indices
at infinity and the Maslov index of the unwinding loop, and obtain

Pµ(z) =
1
2

∑

r
2π
�

(k − l )αr

2π

�

|zr |
2

138



where ⌊α⌋=max{ j ∈Z : j ≤ α}. We calculate

Pµ#H×(k−l )
t (z) =

1
2

∑

r
2π
�

(k − l )αr

2π
−
�

(k − l )αr

2π

��

|zr |
2+(k − l )h(k−l )t ◦ϕ

t
Pµ(z) =

= R(z)+ h×(k−l )
t ◦ϕ t

Pµ(z)

This gives us

H k⊖l =
�

Pµ#H×(k−l )
�

∧H×l = R∧Q×l +
�

h×(k−l ) ◦ϕ·Pµ
�

∧ h×l

By construction ind∞(H
k⊖l ) = ind∞(H

×l ) = ind∞(0∧H×l ), which is the index at infinity
of G j . Therefore we next construct an explicit non-degenerate homotopy to perform the in-

terpolation at infinity of section 5.2.1. Set for notational convenience R(z) = 1
2
∑

j βr |zr |2.
Notice that βr ∈ (0,2π). We define

Rs (z) =
1
2

∑

r
βs

r |zr |
2

where the angular velocities βs
r are determined in the following way: fix an r and notice that

the flow of Q×l fixes the r -th complex line in the decompositionCn =C⊕· · ·⊕C and restricts
to it to the map

zr 7→ e−lαr i t zr

Set ζr = e−lαr i i.e. the image of the vector 1 under the map above. Now consider the arc

γ : [0,1]→ S1 ⊂C, γ (s) = e−iβr (1−s)ζr

We know by hypothesis that γ (1) ̸= 1. If there is no s ∈ (0,1) such that γ (s) = 1, then we set
βs

r = (1− s)βr . Otherwise βs
r = (1− s) (2π−βr ), i.e. we trace the complementary arc in

the unit circle. By construction, R0 = R and R1 = 0. Therefore s 7→ Rs ∧Q×l is a homotopy
between R∧Q×l and 0∧Q×l . A moment of thought shows that for every s , the linear system
defined by Rs ∧Q×l is non-degenerate by construction, exactly because we avoid the possible
resonance which might happen if the arc traced by γ at some s hits 1 for some r . Notice that
by construction

0≤ |βs
r |< 2π =⇒ max

(s ,z)∈[0,1]×Bρ(0)
|Rs (z)|< 2πρ2

We thus define F j ,m to be the interpolation at infinity of H 0 = H p j+m⊖p j to H 1 = G j with
the non-resonant path s 7→ Rs ∧Q×l . Notice that the initial radius of interpolation R0 can be
chosen independent of j and m, because we are working under the hypothesis that all p j+m -
periodic orbits of H are iterations of fixed points, so they are all contained in the same compact
set. For this choice, the properties in equation (5.3) and equation 5.4 are clear.

The last thing to show is the estimate on the uniform distance of F j ,m and G j in equation
(5.2). Again for notational convenience we are denoting k = p j+m and l = p j . Recall the
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interpolation Hamiltonian Kt (z) = Rχ (|z |
2) ∧Q×l (z). We write F = 0∧Q×l + 0∧ h×l , G =

0∧Q×l + g where

g =K − 0∧Q×l +
�

h×(k−l ) ◦ϕ·Pµ
�

∧ h×l = Rχ ∧ 0+
�

h×(k−l ) ◦ϕ·Pµ
�

∧ h×l

Notice that z 7→
�

Rχ (|z |
2) ∧ 0

�

(z) has support precisely BR1
(0). We can therefore estimate








F j ,m −G j










L∞
≤







0∧ h×l − g









L∞
≤ 4(k − l )∥h∥L∞ + 2 max

(s ,z)∈[0,1]×BR1
(0)
|Rs (z)| ≤

≤ 4(k − l )∥h∥L∞ + 4πR2
1

We are finished if we can control R1. Recall that R1 = e
5C1
4C0 R0 where C0,C1 are defined in

(5.8). It suffices to show that we can take C0 and C1 independent of j and m, because, as
remarked above, R0 clearly can be taken independent of j and m. This is clear for C0, because
C0 = ∥∂sA∥L∞ < 2π for our path s 7→ Rs ∧Q×l . The last is C1. Our non-resonant path
never touches the eigenvalue 1 for s ∈ (0,1), but a priori the end-points might be approaching
a resonance as we iterate. This is guaranteed not to happen, because we took the uniformly
non-resonant iterations (p j ), for which the spectrum of ϕ

p j
∞ always remains at a fixed distance

from 1. Therefore R1 is also independent of j and m. This concludes the proof of the main
Proposition 5.1.1.
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Appendix A.

Rudimental Fredholm theory

A.1. Fredholm operators

In this section, when we say “Banach space”, we mean a real, separable, normed vector space
which is complete. When X ,Y are Banach spaces, we denote byB (X ,Y ) the space of contin-
uous linear operators from X to Y , equipped with the operator norm, i.e. the strong topology.

Definition A.1 Let X ,Y be Banach spaces. A bounded linear operator D : X → Y is said to
be Fredholm if it has finite-dimensional kernel and cokernel. Its index is defined as the number

ind D = dimker D − dimcoker D

The set of Fredholm operators is open inB(X ,Y ). The index is a locally constant function on
it. The adjoint D ′ : Y ′→X ′ of a Fredholm operator is always Fredholm, with index ind D ′ =
− ind D .

Definition A.2 A linear operator K : X → Y is said to be compact when for any bounded
subset W ⊂X the image KW has compact closure in Y . Compact operators are automatically
bounded. The set of compact operators is closed inB(X ,Y ). The adjoint of a compact op-
erator is always compact. The useful property of compact operators is that the image of any
bounded sequence in X has a converging subsequence in Y .

Lemma A.1 Let X ,Y,Z be Banach spaces, D : X → Y a bounded linear operator, K : X → Z a
compact operator. Assume that ∃c > 0 such that for any x ∈X , we have an estimate

∥x∥X ≤ c (∥D x∥Y + ∥K x∥Z )

Then D has finite-dimensional kernel and closed image i.e. D is a pre-Fredholm operator.

Proof. ker D is finite dimensional. To see this topologically, we can show that the unit ball
Bker D

1 (0) = ker D ∩ BX
1 (0) in ker D is compact. Let (xk )k ⊂ Bker D

1 (0) be a sequence. The
estimate says that

∥xk∥X ≤ c ∥K xk∥Z ∀k ∈N

Since KBker D
1 (0) is pre-compact, the sequence (K xk )k has a subsequence (K xnk

)k converging in
the closure. Passing to xnk

, the estimate tells us that it is Cauchy, hence it converges. So every
sequence admits a converging subsequence, meaning that Bker D

1 (0) is compact.
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To see that im D is closed, it suffices to show that if (xk )k is a sequence in X such that D xk =
yk → y ∈ Y , then y ∈ im D . Now, (xk ) is either bounded or unbounded. If (xk ) is bounded,
then (K xk ) has a converging subsequence (K xnk

). Passing to this subsequence, it still holds that
ynk
→ y. The estimate tells us








xnk










X
≤ c

�







D xnk










Y
+







K xnk










Z

�

Hence (xnk
) is bounded by converging sequences, implying it is Cauchy. So it must converge

to an x ∈ X by completeness. Finally, since D is continuous, D x = y. If (xk ) is not bounded,
then it must have a norm-diverging subsequence, which by the sake of the argument can be
taken as the full sequence. Since ker D is finite-dimensional, it has a complement in X , say
X = ker D ⊕X1. If xk ∈ ker D for all k, then there is nothing to prove, so we might as well
take xk ∈ X1 for all k ∈ N. Now set uk = xk/∥xk∥ ∈ BX1

1 (0). Clearly ∥D uk∥ → 0, and since
(K uk ) is pre-compact, it has a Cauchy subsequence. Hence the estimate again tells us that (uk )
has a converging subsequence. Now, the only possible limit is uk → 0 while ∥uk∥ = 1 for all
k. This contradiction shows that (xk ) cannot be an unbounded sequence.

If X is a Banach space, we denote by X ′ its topological dual. If D ∈B(X ,Y ), then an adjoint
D∗ : Y ′ → X ′ is defined naturally by the formula (D∗ψ) x = ψ (D x). This is clearly a linear
operator. It is continuous in the strong topology on the duals. The following lemma is obvious.

Lemma A.2 If D : X → Y and the adjoint D∗ : Y ′→X ′ are both pre-Fredholm operators, then
they are both Fredholm operators.

Towards regular values The following lemmata are used in the proof of the transversality
theorem for the projection of the universal moduli space of Floer trajectories.

Lemma A.3 Let X ,Y,Z be Banach spaces, D : X → Y a Fredholm operator, L : Z→ Y a bounded
linear operator such that D ⊕ L : X ⊕Z→ Y is surjective. Then D ⊕ L has a right inverse.

Proof. First, ker D is finite dimensional, so it has a complement X1 in X – that is, there exists
a closed Banach subspace X1 such that X1 ⊕ ker D = X . Then, coker D = Y / im D is finite
dimensional, so im D has a finite dimensional complement. Hence we may pick finitely many
vectors zν ∈ Z , ν = 1, . . . ,N such that span{Lzν : 1≤ ν ≤N} is the complement in Y to im D .
Now, D ⊕ L is surjective so for each y ∈ Y we can always choose (x, z) ∈ X ⊕ Z such that
y = D x + Lz. We may always pick x = x1 ∈ X1, because otherwise D x = 0, and we may
always pick z =

∑

ν λν zν because otherwise z ∈ im D . Hence we get the operator

Y →X ⊕Z

y 7→
�

x1,
∑

ν

λν zν

�

which by our specific choices for each y ∈ Y is obviously a right inverse to D ⊕ L.
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Corollary A.1 Let X ,Y,Z be Banach spaces, D : X → Y a Fredholm operator, L : Z → Y a
bounded linear operator. Then the operator D ⊕ L : X ⊕Z→ Y has closed image.

Lemma A.4 Let X ,Y,Z be Banach spaces, D : X → Y a Fredholm operator and L : Z → Y a
bounded linear operator, such that D ⊕ L : X ⊕Z→ Y is surjective. The operator

P : ker(D ⊕ L)→ Z
(x, z) 7→ z

given by the projection X ⊕Z → Z restricted to ker(D ⊕ L) is Fredholm with kernel ker D and
cokernel coker D. In particular ind D = ind P.

Proof. Obviously ker P ∼= ker D⊕{0}. So dimker P = dimker D <∞. Moreover, its image is

im P ={z ∈ Z : ∃x ∈X s.t. (x, z) ∈ ker(D ⊕ L)}=
= {z ∈ Z : ∃x ∈X s.t. Lz +D x = 0} ∼= L−1 (im D)

so by elementary linear algebra we get the chain of isomorphisms

coker P = Z/ im P ∼= Z/L−1(im D)∼= im L/ im L∩ im D ∼=
∼= (im L+ im D)/ im D = Y / im D = coker D

Hence the kernel and cokernel of P are finite dimensional, P is Fredholm and with the same
index of D .

A.2. Non-linear Fredholm theory

Let E0,E1 be separable Banach manifolds and f : E0 → E1 be a C 1 map. We say that f is a
Fredholm map at u ∈ E0 if the tangent map T f |u : TuE0→ T f (u)E1 is a Fredholm operator. We
say that f is a Fredholm map if it is at every point u ∈ E0. The index of a Fredholm map is the
Fredholm index of its tangent map, which is thus locally constant, since T f is a continuous
map of Banach bundles.

Fredholm maps transverse to submanifolds in their target cut out finite-dimensional sub-
manifolds in their domain. As for its finite-dimensional counterpart, this property hinges on
the inverse function theorem, which holds on (separable) Banach manifolds. Moreover, al-
ways in the Banach setting, there is a Sard-type theorem, called the Sard-Smale theorem, which
guarantees that Fredholm maps can be generically put in a transverse situation. This is the
main mechanism that is used to show that the moduli spaces of Floer trajectories are smooth
finite-dimensional manifolds.

Remark In the Fréchet setting of spaces of smooth maps, the main theorems we cited above
do not hold, specifically, there is no Fréchet inverse function theorem. This fact makes the
Proposition 3.3.4 absolutely crucial for the analysis of the Floer equation. Indeed, we can
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work with a Banach ambient space but still obtain results which hold for the C∞loc topology on
the space of solutions.

We state the two main theorems used in the transversality theory for the Floer equation. The
first is a direct consequence of the implicit function theorem, and mimics the corresponding
result in the finite-dimensional case.

Recall that a regular value of a smooth function f : E0→E1 between separable Banach man-
ifolds is a point v ∈ E1 such that for all points u ∈ f −1(v), it holds that T f |u : TuE0 → TvE1
is surjective and has a continuous right inverse, i.e. its kernel has a closed complementary
subspace.

Theorem A.1 LetE0,E1 be separable Banach manifolds and f : E0→E1 be a smooth map between
them. If v ∈ E1 is a regular value of f , then f −1(v)⊂E0 is a smooth submanifold.

Notice that if f is Fredholm, the kernel of its linearization is always finite-dimensional,
therefore always admits a closed complementary subspace. We conclude

Theorem A.2 Let E0,E1 be separable Banach manifolds and f : E0 → E1 be a smooth Fred-
holm map between them. If v ∈ E1 is a regular value of f , then f −1(v) ⊂ E0 is a smooth finite-
dimensional manifold, of dimension

dim f −1(v) = indT f |u = dimkerT f |u

where u is any point in the fiber.

Finally, one may show that the set of regular values of a smooth Fredholm map is “large” in
the target. This is the content of the famous Sard-Smale theorem, which we recall below.

Theorem A.3 (Sard-Smale theorem) The set of regular values of a Fredholm map between sepa-
rable Banach manifolds is residual in the target.
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Appendix B.

Equidistribution and prime iterates

Here we gather some lesser known facts about prime multiples of ir-
rational numbers, and some simple calculations regarding the distri-
bution of gaps of primes. These facts are used in a crucial manner for
the construction of the uniformly non-resonant sequence of prime
iterations, which is in turn crucial for the proof of the Poincaré-
Birkhoff theorem.

We start with a number-theoretical definition from [30]. There it is referred to as uniform
distribution mod 1, but we preferred to retain the nomenclature from dynamical systems.

Definition B.1 Let (x j ) j∈N ⊂ Rn be a sequence of points in Rn . We say that (x j ) is equidis-
tributed mod 1 when for any measurable subset C ⊂ [0,1]n of volume |C |, one has

lim
N→∞

#
¦

x j mod 1 : j ≤N , x j ∈C
©

N
= |C |

We are interested in the following criterion for equidistribution [30, Theorem 6.3]:

Proposition B.1 The sequence (x j ) j∈N is equidistributed mod 1 if and only if for every non-zero

lattice point h ∈Zn \ {0} the real sequence
�¬

x j , h
¶�

j
⊂R is equidistributed mod 1.

This result is combined with the following theorem of Vinogradov [41]:

Proposition B.2 Let a be an irrational number. Enumerate the prime numbers in increasing
order, 2= P1 < P2 < · · ·< Pl < · · · . Then the sequence (Pl a)l∈N is equidistributed mod 1.

From these two results, we immediately obtain the following

Corollary B.1 Let a⃗ = (a1, . . . ,aq ), q ≥ 2, be a vector of rationally independent irrational
numbers. The sequence (Pl a⃗)l∈N ⊂R

m is equidistributed mod 1.

Remark The condition for a⃗ = (a1, . . . ,aq ) to be a vector of rationally independent irrational
numbers is equivalent to saying that the set {1,a1, . . . ,aq} ⊂ R is rationally independent, so
spanning aQ-subspace of R of dimension q + 1.
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This corollary is the starting point for the construction of the uniformly non-resonant prime
iteration sequence.

Lemma B.1 Let a⃗ = (a1, . . . ,aq ) be a vector of rationally independent irrational numbers. Let
C ⊂ [0,1]q be a measurable subset of measure |C |. Denote by π the cumulative distribution of the
prime numbers, i.e. π(M ) = #{P prime : P ≤M}. Define

VC (M ) = #{P prime : P ≤M , Pa⃗ mod 1 ∈C }

Then
VC (M ) = |C |π(M )+ o(π)

Proof. Let Pk be an enumeration of the prime numbers P such that Pa⃗ mod 1 ∈C . By defini-
tion of equidistribution mod 1, we have that Pk is an infinite sequence of primes, and that

lim
N→∞

#{Pk : k ≤N , Pk a⃗ mod 1 ∈C }
N

= |C |

Define

LN =
#{Pk : k ≤N , Pk a⃗ mod 1 ∈C }

N
Notice that the function π : N → N is a monotone increasing function. Therefore we can
consider the subsequence (Lπ(M ))M∈N. We obtain thusly that

|C |= lim
M→∞

Lπ(M ) = lim
M→∞

#{Pk : k ≤π(M ), Pk a⃗ mod 1 ∈C }
π(M )

Now k ≤π(M ) if and only if Pk ≤M . Therefore we can forget k and obtain

|C |= lim
M→∞

#{P prime : P ≤M , Pa⃗ mod 1 ∈C }
π(M )

which is our claim.

Lemma B.2 Let a⃗ and C be as above. Let
�

p j

�

j∈N
be an increasing enumeration of the set

{P prime : Pa⃗ mod 1 ∈C }. Then for any fixed m ≥ 1 we have

p j+m − p j = o
�

p j

�

as j →∞

Proof. Notice that

p j+m − p j =
m−1
∑

k=0

p j+k+1− p j+k
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therefore the claim is reduced to showing that

p j+1− p j = o
�

p j

�

as j →∞.

In order to do that, we use the prime number theorem:

π(N ) =
N

logN
+ o

�

N
logN

�

where π is the prime counting function. Since VC (N ) = |C |π(N )+ o(π), we also have that

#
¦

j : p j ≤N
©

= VC (N ) = |C |
N

logN
+ o

�

N
logN

�

In particular, we have that

lim
j→∞

p j

j log j
= |C |

Hence we may compute

lim
j→∞

p j+1

p j
= lim

j→∞

p j+1

( j + 1) log( j + 1)
j log j

p j

( j + 1) log( j + 1)
j log j

=
|C |
|C |

lim
j→∞

( j + 1) log( j + 1)
j log j

= 1

whence it follows that

lim
j→∞

p j+1− p j

p j
= lim

j→∞

p j+1

p j
− 1= 0

which was our claim.
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Appendix C.

Conventions

In the following, the split forms refer to the splitting of R2n into symplectic 2-spaces R2n ∼=
R2⊕ · · ·⊕R2 with corresponding coordinates z = (z1, . . . , z2n) = (q1, p1, . . . , qn , pn).

1. ω0 =
∑

i d qi ∧ d pi =
∑n−1

i=1 d zi ∧ d zi+1.

2. J0 =
�

0 −1
1 0

�⊕n

.

Therefore we have the identity
ω0(v, w) = 〈J0v, w〉 (C.1)

where 〈·, ·〉 is the standard Euclidean inner product, 〈v, w〉= vT w. Hence, an almost-complex
structure J is compatible withω0 when the following is a Riemannian metric:

gJ =ω0 ◦ (I× J )

The Hamilton equations for a Hamiltonian H ∈C∞(R2n) are

iXH
ω0 = d H

Combining this with the identity (C.1) we obtain the formula for the Hamiltonian vector field
in these conventions:

XH =−J0∇H

We often use the following radial anti-primitive ofω0,

λ0 =
1
2

∑

i

qi d pi − pi d qi , λ0 |z (v) =
1
2
〈z, J0v〉 , −dλ0 =ω0

This gives us that the action of a curve γ : [0,1]→R2n is

AH (γ ) =
∫ 1

0
γ ∗λ0−Ht ◦ γ (t )d t =

∫ 1

0

1
2
〈γ (t ), J0γ̇ (t )〉−H (t ,γ (t ))d t
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