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Deep learning (DL) holds great promise to improve medical diagnostics, including pathology. Current
DL research mainly focuses on performance. DL implementation potentially leads to environmental
consequences but approaches for assessment of both performance and carbon footprint aremissing.
Here, we explored an approach for developing DL for pathology, which considers both diagnostic
performance and carbon footprint, calculated as CO2 or equivalent emissions (CO2eq). We evaluated
various DL architectures used in computational pathology, including a large foundationmodel, across
two diagnostic tasks of low and high complexity. We proposed a metric termed ‘environmentally
sustainable performance’ (ESPer), which quantitatively integrates performance and operational
CO2eq during training and inference. While some DL models showed comparable diagnostic
performance, ESPer enabled prioritizing those with less carbon footprint. We also investigated how
data reduction approaches can improve the ESPer of individual models. This study provides an
approach facilitating the development of environmentally friendly, sustainable medical AI.

Many studies have shown the immense potential of deep learning (DL) to
improve medical diagnostics in pathology1–8 and several DL models are
already used in clinical routine9–11. Current developments largely focus on
increasing the diagnostic accuracy (i.e., performance) of DL models.
However,model training and inference can be computationally demanding,
resulting in high electricity demands. This translates into high CO2 or
equivalent emissions (CO2eq) depending on the country’s energy mix.
Given the lack of renewable energies in most countries, increasing com-
putational demands, and ongoing climate change, considerations towards
more responsible and ecologically sustainable use ofDLmodels inmedicine
are important. We previously calculated and modeled the carbon footprint
of widespread DL model implementation in pathology12, which suggested
considerable global warming potential. That study also suggested that
ecological sustainability should be considered right from the beginning
when the models are developed to mitigate long-term detrimental effects.
However, approaches that would allow developing and benchmarking DL
models not only for their performance but also their carbon footprint, were
missing.

Here,wepropose a framework for thedevelopment andbenchmarking
of DL models for computational pathology using the environmentally

sustainable performance (ESPer) score. To develop ESPer, we tested four
commonly used weakly supervised multiple instance learning models or
models that can be used in amultiple instance learning (MIL) setting, and a
novel pathology foundation model13 for two disease classification tasks of
different complexity, i.e., kidney transplant pathology classification, where
changes can be subtle and there is overlap between classes, and renal cell
carcinoma subclassification, which has lower complexity due to strongly
different morphology and mutual exclusivity. ESPer proved helpful in
prioritizing models with lower CO2eq without loss of performance.

Results
Study outline
We used five datasets for two clinically relevant tasks in pathology, i.e., the
classification of renal cell carcinoma (RCC) subtypes (n = 1229 cases) and
kidney transplant (KTX) diseases (n = 2020 cases). Further details on the
datasets are shown in Supplementary Fig. 5. We selected four different
approaches that are currently commonly used in computational pathology
for the classification of whole slide images (WSI), i.e., transformer-based
correlated multiple instance learning (TransMIL)14, clustering-constrained
attention multiple instance learning (CLAM)15,16 InceptionV3, a vision
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transformer (ViT)17, and providence whole-slide pathology foundation
model (Prov-GigaPath)13. We calculated diagnostic accuracy, including
validation on external unseen cohorts, and carbon footprint, and integrated
both in a novel metric (Fig. 1b, c).

Diagnostic performance of the models
CLAM showed the best performance measured as mean area under the
receiver operating characteristics curve (AUROC) in the RCC-subtype
classification task (0.984 [95%-CI: 0.968–0.995]), while TransMIL achieved
the highest mean AUROC in the KTX disease classification task (0.763
[95%-CI: 0.707–0.815]) in the external unseen cohorts (Fig. 2a–g). CLAM
showed the highest performances in the training validation datasets (Sup-
plementary Fig. 1a–p). Supporting the diagnostic model performance,
gradient-weighted class activationmaps (gradCAM) revealed areas showing
typical morphology for the respective RCC subtypes (Supplementary Fig.
2a–i). Similarly, gradCAM highlighted diagnostically relevant areas in the
kidney transplant disease classification task (Supplementary Fig. 3a–i).

The performance and generalizability of all models were lower in the
more challenging classification of kidney transplants compared to RCC
subtypes (Fig. 2a–o and Supplementary Fig. 1). One of themost challenging
tasks is to differentiate between rejection and viral disease in transplant,
particularly without ancillary studies, which was reflected by the weak
performance on the KTX-classification task for the class “Viral+Other”.

CO2eq emissions of the models
In both tasks, TransMIL and CLAM showed the lowest CO2eq emissions
during training (Fig. 3a, b),while theViTand the InceptionV3 showedmore

than 600 times higher CO2eq emissions (Fig. 3a, b and Table 1). During
inference, CO2eq emissions of CLAM were slightly higher compared to
TransMIL (0.048 g [95%-CI: 0.044–0.051] and 0.046 g [95%-CI:
0.043–0.049] respectively, Fig. 3c, d and Table 1). InceptionV3 produced
more CO2eq emissions than the ViT during inference (0.073 g [95%-CI:
0.069–0.076] and 0.062 g [95%-CI: 0.059–0.064] respectively, Fig. 3c, d and
Table 1).

Additionally, we evaluated the mortality cost when using a DL
model due to the CO2eq emissions. This was based on the previously
published mortality cost of carbon18, estimating that every 4400 Tons of
CO2eq added to the 2020 baseline will result in one temperature-related
excess death globally by 2100. Setting this estimate as a threshold,
countries with a high share of renewable energy are able to producemore
electricity for every 4400 Tons of CO2eq. Conversely, these countries are
able to run model inferences more often before the CO2eq emissions
result in one excess casualty according to the mortality cost. The most
inferences, until one excess death due to CO2eq emissions occurs, could
be performed using TransMIL in countries with a high share of
renewable energy, such as Norway (Fig. 3g). Higher number of model
inference naturally results in higher impact of using such deep learning
models. Although the ranking of the models does not change depending
on the country, the local energy mix significantly impacts the actual
CO2eq emissions.

Due to model inference being required to generate heatmap visuali-
zations, each GradCAM visualization produces approximately 0.013 g
CO2eq per slide in our setting.

Fig. 1 | Model development with environmentally sustainable performance
(ESPer) and ESPer scores. Study outline and environmentally sustainable perfor-
mance (ESPer) metrics. aWorkflow example for sustainable model development
using the environmentally sustainable performance (ESPer) score (iESPer or fpE-
SPer, see below). This includes various steps, ESPer metrics used for evaluation, and
datasets. We used renal cell carcinoma subtyping (RCC) and kidney transplant
disease classification (KTX) as use cases in our study. Based on the medical task, the
weighting factor can be set upfront to prioritize between performance and ecological
sustainability. The dataset row indicates which amount of data needs to be used for
each step of model development. There are various approaches for model optimi-
zation, such as pruning, knowledge distillation, hyperparameter tuning, or

quantization. These were described before and not tested here but were included in
the figure to provide amore complete picture of model development. b Formula and
a diagram for the inference environmentally sustainable performance (iESPer),
where iESPeri;Perf is the iESPer score for model i in the comparison series and
performance metric Perf , Mi;Perf is the measured metric for model i, w is the
weighting factor, CO2eqi;inf is the CO2eq produced by model i during inference and
X0 is the range normalization operation for X. c Formula and diagram for the future
projection ESPer (fpESPer). The notation is similar to the formula in (b), with the
addition that, CO2eqi;train is the CO2eq produced bymodel i during training and that
nusage is the projected number of usages for the model.
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Fig. 2 | Performance results for RCC-subtype classification and KTX disease
classification on external validation set. Performance results of TransMIL, CLAM,
InceptionV3,ViT, and Prov-GigaPath models for RCC subtype (n = 289) and KTX
disease classification (n = 173) tasks. a, e, i,m, q show the AUROC and
b, f, j, n, r show the AUPRC for all models for the RCC-subtype classification task,
including Prov-GigaPath. c, g, k, o, s show the AUROC and d, h, l, p, t show the

AUPRC for all models for the KTX disease classification task, respectively. LF label
frequency of the corresponding class, TPR true positive rate, FPR false positive rate,
AUROC area under the receiver operating characteristics curve, PR-AUC precision-
recall area under the curve, RCC renal cell carcinoma, ccRCC clear cell renal cell
carcinoma, papRCC papillary renal cell carcinoma, chRCC chromophobe renal cell
carcinoma.
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Environmentally sustainable performance (ESPer) score
ESPer scores enable a quantitative assessment ofmodel performance and its
carbon footprint. iESPer integrates a performance metric and CO2eq
emissions of tested models for a given task at a single inference (Fig. 1b).

Training and Inference ESPer can also be integrated over time, e.g., when
used in clinical practice (Future Projection ESPer - fpESPer, Fig. 1c). The
fpESPer score is calculated based on the training CO2eq emissions of all
models. ESPer scores can be calculated using the different performance

Fig. 3 | Environmental impact of training and inference. Training and inference
impact the environment on different scales. Due to the quantity of data needed for
training and backpropagation being disabled for model inference, an inference run
consumes much less energy than training a model. a, b show the energy con-
sumption and CO2eq footprint for training (n = 1) and c, d show the mean energy
consumption (n = 15) and CO2eq footprint for inference for each evaluated model,

respectively. e shows the number of usage of amodel in a certain country, before one
temperature related excess death occurs because of the emitted CO2eq, calculated on
the basis of themortality cost of carbon18. Based on the number of usage, the number
of positive predictions are shown in (f). Panels e, fwere calculated based on themean
CO2eq of (d). AU arbitrary units, KTX kidney transplant.
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metrics, i.e., AUROC, accuracy, precision, recall, or F1-index (Tables 2, 3).
Apart from the iESPer for precision, where CLAM scored highest, Trans-
MIL had the highest iESPer scores in both tasks and across all performance
metrics, with CLAM having the second highest iESPer scores (Table 2 and
Fig. 4c–l).Wechose themost commonlyusedperformancemetric,AUROC
to assess the fpESPer.

For RCC tasks, TransMIL has the highest fpESPer from the beginning.
InceptionV3 starts with a higher fpESPer, but ViT nearly matches the score
after 5 years (Fig. 4m).

For theKTX task,while InceptionV3 initially has a better fpESPer score
than ViT, after four years of inference, ViT shows the same fpESPer as
InceptionV3, and has a higher fpESPer after that (Fig. 4n), thereby repre-
senting a more sustainable model. In the RCC task, TransMIL has the
highest fpESPer from the beginning (Fig. 4n). Prov-GigaPath consistently
performs worse due to the high combined CO2eq emissions, despite good
performances in both tasks.

For some tasks, different weighing between performance and CO2eq
emissionsmight be required. One way tomanually introduce the weighting
into the ESPer score is to multiply the normalization term with a weighting
factor w, with w∈[0,1]. Setting w to zero would completely “ignore” the
impact ofCO2eq onESPer, thereby only reflecting performance. The setting
of the w value is highly dependent on the application scenario and allows
individual setting by the experts and researchers for each specific task. The
effect of choosing different weighting factors is shown in Fig. 4k, l.

Reduction strategies improving ESPer
Approaches for reducing the carbon footprint of models while retaining
diagnostic performance would be highly desirable for sustainable and
widespread use. Here, we investigated two data reduction strategies for this,
i.e., using tiles of different sizes and resolutions and reducing the number of
tiles used per WSI. We used the architecture with the best iESPer, i.e.,
TransMIL (Fig. 5a).

The highest CO2eq emissions per case were produced using the smallest
physical tiles (corresponding to edge lengths of 128 µm) this is likely because
the number of tiles per case increases with a smaller area per tile, while the
image size (number of pixels) for each tile remains the same (resizing to
224 × 224 pixels, Fig. 5b). This translates to the lowest iESPer score of the
investigated tile sizes (Fig.5).The lowestCO2eqemissionswereproducedusing
tiles with edge lengths of 1024 µm on 224 pixels. However, this resolution did
not result in the highest iESPer scores, mainly because of low model perfor-
mance. We hypothesize, that this is due to the low level of critical structural
detail at this resolution. The best configuration resulting in the highest iESPer
score was a tile edge length of 256 µm on 224 pixels (Table 3 and Fig. 5).

Previous works suggested that testing the efficacy of the data reduction
strategies is sufficient when performed on a representative subset of the T
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Table 1 | Energy consumption and CO2eq emission for model
training and inference

Training Inference

Model Energy
(kWh)

CO2eq (kg) Energy
(Wh)

CO2eq/
Slide (g)

TransMIL 11.263 4.065 0.128 0.046

CLAM 11.713 4.228 0.132 0.048

InceptionV3 10.584 3.821 0.201 0.073

ViT 23.873 8.618 0.170 0.065

Prov-GigaPath 42.625 15.388 0.63 0.229

Energy consumption andCO2eq emission formodel training and inference for the evaluatedmodels
TransMIL, CLAM, InceptionV3, ViT, and Prov-GigaPath. The CO2eq is calculated from the energy
measured directly from low-level APIs multiplied by the local values for carbon intensity (Germany).
For training, it was assumed that each model would be trained once in the time period, for 300
epochs, with a dataset with 1000 WSIs with 1000 patches, each with resolutions of 224px/256μm.
CO2eq for inference was measured on one WSI with 1000 patches and of patch resolution of
224px/256μm.
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training and validation dataset19,20. This could reduce CO2eq emissions
duringmodeldevelopment.Additionally, early stopping canbe employed to
reduce the number of epochs trained. A comparison of iESPer scores for
different training epochs is shown in Supplementary Table 2. In this study,
we used a fixed number of training epochs for all models to allow better

comparability. For the RCC-subtype classification, only a fraction (10%) of
theWSIwas sufficient to reach anAUROCcomparable tousing 100%of the
tiles (Fig. 5e). This is likely due to the rather homogeneous growth pattern
and morphological appearance of the analyzed RCC subtypes. However, a
similar trend was observed for the more complex kidney transplant disease
classification. This is surprising since kidney rejection and some other
diseases canbe very focal,withdefining lesions only appearing in small areas
of the biopsy.

CO2eq emissions increase progressively with the share of tiles used.
With a plateauing AUROC, tracking the iESPer for the number of tiles
allows to find the optimal fraction of tiles to maintain performance while
decreasing the CO2eq footprint.

In total, ~77.8 kg CO2eq were produced to generate the results in
this work.

Discussion
Themajority of studies describing the development of novel DLmodels for
pathology focused on diagnostic accuracy. The ecological consequences of
training and using thesemodels have been largely neglected, potentially due

Table 3 | iESPer for different resolutions in the KTX task

Resolution CO2eq/
Slide (g)

AUROC iESPer
(AUROC)

95%CI

224px/
1024 μm

0.025 0.702 0.493 0.410–0.581

224px/256 μm 0.138 0.762 0.542 0.468–0.613

512px/256 μm 0.383 0.678 0.377 0.317–0.442

224px/128 μm 1.87 0.640 0.151 0.124–0.179

iESPer scores and 95% confidence intervals for the AUROC metric for different resolutions for
TransMIL.

Fig. 4 | ESPer scores. a–e show the ESPer scores calculated for the performance
metrics AUROC accuracy, precision, recall, and F1, for all investigated models for
RCC (N = 289). f–j show the same for KTX (N = 173). k, l show how changing the
weighting factor w impacts the ranking of iESPer scores for RCC and KTX,
respectively. m shows the projection of ESPer scores calculated from the AUROC
metric for 5 years, based on the number of RCCcases in the EU for 2019 (n = 90,042).

n shows the same, based on the number of kidney transplant cases in the EU for 2019
(n = 28,189). All CO2eq emissions in this figure are based on the energy mix of
Germany. AUROC area under the receiver operating characteristics curve, iESPer
inference environmentally sustainable performance, fpESPer future projection
environmentally sustainable performance, RCC renal cell carcinoma, KTX kidney
transplant.
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to the lack of data on real-world workflows and metrics enabling quanti-
tative assessment during the development and testing of DL models. In
addition, commercial DL applications are often offered as cloud solutions,
and to our knowledge, no data on the carbon footprint of such services are
publicly available.While the energy consumption andCO2eq emissions of a
single DLmodel inference are usually numerically low, the amount and size
of data processed daily in pathology diagnostics can be substantial. This
leads to a large operational carbon footprint, and widespread imple-
mentation of DL in pathology could have considerable global warming
potential12. Therefore, environmental sustainability should be considered
already during the model development process. To tackle this, we propose
an approach that allows the assessment and integration of both the per-
formance and carbon footprint of a DL model. We introduce the ESPer
score as a quantitative metric enabling consideration of ecological con-
sequences in DL model benchmarking in addition to model performance.

The ESPer score can be calculated using any performance metric and
for a single inference or including training and inferences over time. This

allows selecting themost suitablemodel for specific tasks and situations and
short- or long-term use. This is important, since for long-term use, the
inference-associated CO2eq emissions are likely dominant, which is also
true for large generative models. Using ESPer is straightforward and easy to
implement. Increasingly, scientific journals encourage researchers to
includeCO2eq emissions produced by a study. ESPer could provide the next
step of dissemination within the scientific community, e.g., including it in
checklists such as MI CLAIM5. For commercial entities, ESPer could be
included in legal and regulatory frameworks.

Several strategies can be used to lower carbon emissions while main-
taining performance, including a reduction of the number of image tiles or
selecting different tile sizes with different resolutions. In addition, model
quantization and pruning21 using toolboxes such as EfficientBioAI22, which
was specifically developed for biomedical imaging tasks, can be effective
strategies to reduce carbon footprint. However, this was not investigated in
this work, since all examined models include a component that is based on
pretrained weights. ESPer can be useful to monitor the efficiency of such

Fig. 5 | Reduction strategies. a Presents examples of different image patches with
different sizes and resolutions from the same slide. The followingmeasurements and
calculations were performed for TransMIL. b Shows the CO2eq emission for model
inference per slide (n = 15) and c, f, g, i, j Show the iESPers calculated for each image
size and resolution pairing for the KTX task (n = 173). d Demonstrates random
sampling and reduction of tiles, while e shows the AUROC progression from using

100% available patches to 10% of patches. h Shows the corresponding CO2eq
emissions and k shows the iESPer scores for each percentile measured for the tasks
RCC (n = 289) and KTX (n = 173). AUROC area under the receiver operating
characteristics curve, iESPer inference environmental sustainable performance,
RCC renal cell carcinoma, KTX kidney transplant.
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approaches allowing to simultaneously monitor diagnostic and envir-
onmentally sustainable performance. In our study, we showed that even in a
complex classification task, data reduction strategies can be implemented to
reduce the carbon footprint without compromising classification accuracy.
Albeit the data reduction strategy was effective for both our tested tasks, it
likely remains dataset and task-specific and should be tested during model
development, for which ESPer could be a helpful metric. It is worth noting
that with a large number of cases, the impact of model inference increases
and mostly outweighs the impact of model training in the long run.

The range of CO2eq emissions can vary for different tasks andmodels
in contrast to performance metrics which stay within the same range,
typically [0–1]. We approached this by normalizing the CO2eq emission
values in the range of tested models and introducing a non-linear compo-
nent tomake large variations in the exponential rangemore impactful. This
became obvious when examining the ESPer scores of Prov-GigaPath for
both tasks. For RCC task, the AUROC of Prov-GigaPath was second best
after TransMIL, slightly higher than CLAM, however the ESPer score was
consistently the lowest because of the high CO2eq emission. Similarly, for
the KTX task, where Prov-GigaPathhas higherAUROCs than InceptionV3
and ViT but worse ESPer scores.

ESPer also varies based on the chosen performance metrics. We used
the AUROC, as this is the most commonly used performance metric in
computational pathology for diagnostic classification tasks. In some set-
tings, e.g., when the classes are not evenly distributed, the AUROC is not
optimal. Therefore, we provided different ESPers for different performance
metrics. If precision were to be prioritized over AUROC, for example,
CLAM would emerge as the preferred method for RCC task.

Our study has several limitations. First, when calculating CO2eq
emissions, we only focused on energy consumption and not the whole
product life cycle. Thereby, additional sources of CO2eq emissions and
other ecologically relevant aspects, such as water usage, hardware
manufacturing, or shipping, were not considered. Therefore, our ana-
lyses likely underestimate the total CO2eq emissions. Next, while the
energy consumption of the computational devices can be measured via
low-level software interfaces, the actual CO2eq emission can only be
estimated using historical data on regional carbon intensity. The carbon
intensity of a region is dependent on the region’s energy mix and shows
the amount of CO2eq emitted per kc g/kWh23.We did not have real-time
access to the local energy mix of our region and, therefore, refer to
historical data. In theory, transformation to fully renewable electricity
sources or decarbonizing measures could provide a solution to the
CO2eq emissions due to computation. Although the share of renewable
energy has been steadily increasing in Germany, on average, it did not
change substantially in the last few years, and in the short and evenmid-
term such transformation seems not likely24. CO2eq can be calculated for
different regions where researchers and users need to train or use their
DL models.

The aim of this study was not to tackle the challenges in ecological
sustainability of the entire healthcare system. In comparison to the overall
projected CO2eq emissions of healthcare, the absolute values from our use
case within digital pathology might seem negligible. However, the focus of
this study lies in providing a framework for the evaluation of performance
and CO2eq emissions for deep learning models. Given the increasing digi-
tization and amount of data produced in healthcare requiring an increased
amount of computation, the overall impact might be larger than the con-
crete absolute values shown in our study, and certification of diagnostic
medical devices should show a conscious effort to document efforts to
reduce energy consumption, especially in high-volume applications.

Regarding data reduction strategies, we observe that the effect of such
reductionmethods is highly task dependent, as shown in section “Reduction
strategies improving ESPer”. Although the effectiveness of these reduction
strategies cannot be guaranteed, we highly recommend the exploration of
such methods using ESPer to maximize CO2eq -reduction. We did not
employ early stopping to reduce variability and tomakemodel development
more comparable.

For future works, a more comprehensive analysis of total CO2eq
emissions is required, including CO2eq produced during the production
cycle and supply chain of computational hardware and sourcing of raw
materials. Additional to CO2eq emissions, water consumption as one of the
most important natural resources should be included in the analysis as well.
Previous works have shown that state-of-the-art LLMs require an unex-
pectedly large amount of water for each generated prompt response25.
Similarly, the impact of large deep learning models in health care could be
substantial as well.

In conclusion, our study proposes a potential approach to support
researchers and developers in designing best-performative, but at the same
time ecologically sustainable DL models. Our study should foster further
development and refinement of the proposed approach, eventually leading
to more ecologically responsible medical DL26. This aligns with the sus-
tainable development goals 3 and 13 of the United Nations. We provide a
checklist for researchers as a guide for considering sustainability during
model development (Supplementary Table 1). While our study focused on
pathology, the approach is application-agnostic and could potentially also
be used for other medical areas.

Methods
Data collection
We trained on the same multi-center cohorts as in our previous study2.
In short, one cohort derived from the Amsterdam Medical Centre
(AMC) that contained 1130 biopsies (3390 whole slide images (WSI),
inclusion period: 01-01-2000 till 01-06-2018 and 01-01-2019 till 31-12-
2019) of kidney allograft biopsies and one cohort of kidney allograft
biopsies derived from the University Medical Centre Utrecht (UMCU)
that contained 717 biopsies (2151WSI, inclusion period: 01-01-2000 till
31-12-2019) were used as the training dataset by combining both
cohorts. The previously used Aachen cohort (AC) was expanded and
now includes 173 biopsies (657 WSI, inclusion period: 01-01-2019 till
31-12-2022). Each case contained WSI of PAS- (periodic acid Schiff),
HE- (hematoxylin and eosin), and silver stains (at least one of each stain
per case). Different scanners were used to obtain the WSI: the Philips
IntelliSite Ultra Fast Scanner was used in Amsterdam, which was also
used for 448 cases of the UMCU cohort. The remaining 269 cases from
UMCU were scanned with a Hamamatsu XR scanner. The previously
used Aachen cohort (AC) was expanded and now includes 173 biopsies
(657 WSI, inclusion period: 01-01-2019 till 01-01-2022). Each case
contained WSI of PAS-, HE- and silver stains (at least one of each stain
per case). The Aachen cohort was digitized using a Leica AT2 scanner.
WSI quality control was performed manually, as described before. All
cases were assigned to classes by at least two trained nephropathologists
using the newest Banff classification for guidance.

Details such as exclusion and inclusion criteria, diagnosis of cases,
and other patient characteristics can be found in ref. 2. As described
previously2, all cases were classified into 6 classes by at least two to three
experienced nephropathologists using the 2019 Banff classification:
Normal, TCMR, ABMR, Mixed, Viral and Other diseases. For the spe-
cific tasks that are investigated, the classes are combined, i.e., Class
Normal: Normal, Class Rejection: TCMR, ABMR and Mixed and Class
Other: Viral and Other diseases. Patient characteristics and diseases
included in the other diseases category can be found in the supple-
mentary material of ref. 2.

For renal cell carcinoma (RCC) subtype classification, we also trained
on a multi-center cohort, including the Cancer Genome Atlas (TCGA)
dataset and the Aachen-RCC dataset collected at our own institute. The
TCGAdataset includes three classes, clear cell renal cell carcinoma (ccRCC),
papillary renal cell carcinoma (papRCC), chromophobe renal cell carci-
noma (chRCC), and a total of 940 patients, with one HE-stained slide each.
This was used as a training dataset. The Aachen-RCC cohort includes 289
patients (inclusion period 01-01-2012 till 31-12-2019) with oneHE-stained
slide per patient, digitized using aLeicaAT2 scannerusing the 40x objective.
This cohort was used as an external testing dataset.
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Ethics declaration
Data collection and analysis in this studywas performed in accordancewith
the Declaration of Helsinki and was approved by the local ethics.

Committee (Amsterdam 19.260; Utrecht 19.482; Aachen EK-No. 315/
19). All analyses were performed retrospectively in an anonymous fashion
and the need for informed consent was waived by the local ethics and
privacy committee for all datasets.

Preprocessing
To minimize noise from unrelated structures and background artifacts, the
relevant regions containing kidney tissues without or withminimal artifacts
were found first, either by a tissue detector algorithm or manually by a
qualified professional (RDB). AllWSIs were then tessellated into tiles of size
256 uM× 256 uMand saved as 224pixel × 224pixel images.To improve the
quality of the dataset, a smoothing filter was used with a threshold of 0.15,
excluding patches that were either too blurry or contained artifacts that
obscured relevant structures. Additionally, white threshold filters with a
threshold of 0.95 were applied during the sorting process to remove patches
with insufficient information or low staining visibility.

A pretrained backbone was used for all models. In the case of Incep-
tionV3, vision transformer, and Prov-GigaPath, the model was initialized
on pretrained weights and was frozen except for the classification head.

Deep learning models
Four different deep learning models were included in the benchmarking to
represent the current state-of- the-art in MIL.

InceptionV316 and vision transformer (ViT)17 are both patch-based
architectures commonly used for image classification.

InceptionV3, a CNN based architecture, was shown by Kers et al.2 to
outperform similar networks such as ResNet-5027 or EfficientNet28 on the
kidney transplant dataset to ours. The vision transformer (ViT)publishedby
Dosovitskiy et al. 17 is based on the Transformer architecture proposed by
Vaswani et al.29 and repurposed for image classification.To take into account
recent trends in foundationmodels, we also include Prov-GigaPath13 in our
benchmarking. Prov-GigaPath is a whole-slide pathology foundationmodel
trained on H&E stained slides of various cancer datasets, which has been
shown to have promising performances on a variety of downstream tasks.

InceptionV3, ViT, and Prov-GigaPath were used as patch-based
classifiers with a pooling-based MIL approach.

CLAM15 is a feature-based MIL approach using clustering and atten-
tion-layers, which achieved success in binary classification tasks such as
renal cell carcinoma (RCC) subtype classification on the TCGA dataset.

TransMIL14 is also a feature-based MIL approach which utilizes a
hybrid architecture with Transformer based self-attention mechanisms.
TransMIL compares favorably against CLAM in various benchmarks30,31.

Performance metric
Five performance metrics were reported, namely area under the receiver
operating characteristics curve (AUROC), balanced accuracy, precision,
recall and F1-index. The mean AUROC is calculated as a macro averaged
over all class scores. These metrics represent the most widely reported
metrics for classification tasks in deep learning and they were chosen to
allow easy adaptation for existing methodology.

CO2-emission calculation
Theenergy consumptionof eachexperimentwasmeasuredusing thepublicly
available experiment-impact-tracker package (version 0.1.9) with specific
configurations of a Python environment with the following libraries: cuda-
toolkit (11.3.0), Python (3.9.16), Pytorch (2.1.0), openslide-python (1.2.0); on
Linux servers (Ubuntu 20.04.6 LTS). All measurements were conducted on a
Nvidia DGX-1 GPU server with Tesla V100 architecture with a PUE (power
usage effectiveness) of 1.58 for our local server room. For reference, one idle
GPU consumes 0.0034 kWh under the same experiment conditions.

The CO2eq was calculated by multiplying the energy consumption
with the yearly averaged carbon intensity of the geographical region of

interest. The carbon intensity shows the amount of CO2eq emitted per kWh
of energy produced in a region and is measured in g/kWh23.

The energy consumption for training was measured over 300 epochs
for all models and the energy consumption for inference on one slide was
measured by averaging the measurements over thousand slides.

While it is commonpractice to extract image features in a separate step
for simple convenience, we perform feature extraction during training- and
inference-time for feature-based MIL models to make a fair comparison to
the image-based models.

The scanning and storage process was not included in the
measurements.

Environmentally sustainable performance score
Wecombineperformancemetrics andthecarbonequivalent emissionsCO2eq
into a singular metric, the environmentally sustainable performance (ESPer)
score, which formulated for inference (iESPer) is defined as seen in Fig. 1b.

Where iESPeri;Perf is the iESPer score for model i in the comparison
series and performance metric Perf ,Mi;Perf 2 ½0; 1� is the measured metric
for model i, w 2 ½0; 1� is the weighting factor, CO2eqi;inf is the CO2eq
produced by model i during inference and X0 is the range normalization
operation for X. The square of Mi;Perf is taken to reward highly accurate
models.Anyperformancemetric canbeused forMi;Perf as long as themetric
is within the defined range of [0,1]. Choosing w ¼ 1 represents the default
configuration, w<1 decreases the weight of CO2eq and w ¼ 0 weighs per-
formance only. Choosing a suitable weighting factor is highly task-specific
andwe leave it up to the user to decide. For all experiments in this studyw is
set to one. The lowest and highest emissions in the series are used as lower
and higher bounds for normalization and an exponential function is
introduced to penalize high CO2 emissions and avoid zero-division.

When using ESPer for future usage projections, the CO2eq emissions
for inferenceCO2eqi;inf aremultiplied by a projected number of usage nusage
for the estimated time frame and added to the CO2eq of the training process
CO2eqi;train, as shown in Fig. 1c.

Data availability
The raw whole slide image data are available under restricted access for
privacy protection reasons, access can be obtained by directly contacting
Peter Boor, Institute of Pathology, RWTH Aachen University Clinic,
Aachen, Germany, pboor@ukaachen.de (for the Aachen_RCC and
Aachen_KTX datasets). In general, the requests will be evaluated within 4
weeks based on institutional policies. The prerequisite for exchanging data
ormodels is a data transfer agreement, approved by the legal departments of
the requesting researcher andby all legal departmentsof the institutions that
provided data for the study, as well as an ethics clearance. The public image
and clinical data used in this study are available in the TCGA database
(https://www.cancer.gov/ccg/research/genome-sequencing/tcga).

Code availability
The code is available at https://git-ce.rwth-aachen.de/labooratory-ai/esper.
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