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Abstract
Chebyshev polynomials have shown significant promise as an efficient tool for both classical and
quantum neural networks to solve linear and nonlinear differential equations (DEs). In this work,
we adapt and generalize this framework in a quantum machine learning setting for a variety of
problems, including the 2D Poisson’s equation, second-order linear DE, system of DEs, nonlinear
Duffing and Riccati equation. In particular, we propose in the quantum setting a modified
Self-Adaptive Physics-Informed Neural Network approach, where self-adaptive weights are applied
to problems with multi-objective loss functions. We further explore capturing correlations in our
loss function using a quantum-correlated measurement, resulting in improved accuracy for initial
value problems. We analyse also the use of entangling layers and their impact on the solution
accuracy for second-order DEs. The results indicate a promising approach to the near-term
evaluation of DEs on quantum devices.

1. Introduction

With the invention of calculus, a new era of mathematics was created by introducing differential equations
(DEs) by Sir Isaac Newton and Gottfried Leibniz [1, 2]. DEs are ubiquitous in describing physical
phenomena, beginning with classical mechanics, fluid dynamics, electromagnetism, and quantum
mechanics. To date, the search for efficient and accurate solutions to DEs has remained a challenging task
and many problems have no closed-form solution. Numerical methods have been introduced in the last
century, such as the finite element method, finite differences, or finite volume method that can be used to
solve more complex systems [3–6]. These methods remain crucial for many engineering applications and are
further investigated. Nevertheless, they also have limitations, such as the problem with discretization errors,
convergence rates, and the requirement for large computational resources.

With the recent rise in machine learning (ML) algorithms, a novel concept was introduced by Raissi et al
where physical principles were combined with data-driven techniques to solve partial DEs (PDE) [7]. The
key idea is to implement the DE together with the physical constraints of the system as additional loss terms
during the neural network training. The introduced neural networks are known as physics-informed neural
networks (PINNs) and have been used for a variety of applications such as for solving inverse problems
involving nonlinear PDEs [8], problems in fluid mechanics [9] or for the analysis of defects in materials [10].
PINNs can handle noisy or incomplete data and do not rely on any fine-grained numerical discretization.
Although PINNs have a promising future, one major problem remains: training the networks is related to
immense computation costs.
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Meanwhile, recent breakthroughs in quantum computing have suggested computational advantages in
ML and solving linear systems of equations. The seminal Harrow–Hassidim–Lloyd algorithm (HHL) [11, 12]
provides a system solution that is encoded into the amplitude of a quantum state through quantum phase
estimation and amplitude amplification. This method has been extended to solve nonlinear DEs in
computational fluid dynamics and structural mechanics [13, 14]. An alternative method for solving DEs also
using amplitude encoding employs instead employing variational quantum circuits [15, 16], where a
quantum nonlinear programming unit may efficiently calculate nonlinear product operators of the field,
even when these nonlinearities are large. A drawback of this method is however that error can propagate
iteratively in the current step depending on the previous step solution while having to deal also with
relatively deep (though narrow) circuits. Lastly, quantum kernel methods have been proposed to solve
regression as well as DEs [17], leading to an advantageous choice for the loss function that allows for efficient
multi-point training. Additional advances have been made in resolving PDEs in the context of quantum
amplitude estimation, employing Chebyshev points [18]. The resolution of advection–diffusion equations
through the use of variational quantum linear systems has been introduced in [19].

Recently, a different approach has been proposed that avoids problems from amplitude encoding by
using feature map encoding to approximate functions and solve nonlinear first-order DEs using quantum
circuits [20–22]. The approach encodes the state using a latent space representation defined in the
high-dimensional Hilbert space, benefiting from the large expressive power of quantum feature maps and
parameterized quantum circuits.

In our work, we extend the usage of the quantum Chebyshev feature map while solving a variety of DEs.
In addition, we incorporate the approach of self-adaptive weights for balancing multi-objective loss
functions while solving DEs. Particularly, we modify the method of self-adaptive weights introduced for
classical PINNs [23] into the setting of the proposed variational quantum algorithm. Moreover, we study the
use of correlated measurement observables and more entangling layers for better convergence. Our results
show that these approaches lead to a measurable improvement in the convergence and accuracy for solving
the given test cases, namely the Duffing equation, Riccati equation, system of DEs, second-order linear DE,
and the 2D Poisson’s equation.

2. Methods

The variational quantum circuit to solve DEs proposed by Kyriienko et al [21] is presented in figure 1. In this
circuit, there are three main parts, namely, a quantum feature map circuit for encoding Chebyshev
polynomials, a variational circuit optimizing the cost function, and measurement (where we test correlated
observables in the quantum loss functions). An overview of the variables used in this work is mentioned in
table 1 for the sake of clarity.

For a single independent variable xi, the quantum state for this circuit will be |fϕ,θ(xi)⟩= ÛθÛϕ(xi)|0⟩.
The real-valued classical function f(xi) is calculated by expectation value of a predefined Hermitian cost
operator Ĉ, such that, f(xi) = ⟨ fϕ,θ(xi)|Ĉ|fϕ,θ(xi)⟩. Solving DEs requires computing gradients of desired

functions with respect to the independent variable, df(x)
dx . For the given circuit, this derivative requires

considering quantum feature map (ϕ(x)), such as, dÛϕ(x)
dx =

∑
j Ûdϕ,j(x). The Chebyshev feature map which

encodes Chebyshev polynomials into the circuit is given by

Ûϕ (x) =
N⊗
j=1

RY,j (2j arccosx) , (1)

where j is the qubit index. In-depth details of this approach are available in appendix B.

2.1. Derivation of second order derivative
For solving second-order DEs, we need to compute second-order derivatives of circuits. For a problem solved

in section 3.3, the second derivative
d2upred
d(xif)

2 in equation (24) considering the quantum Chebyshev feature map

(refer equation (1)) is calculated using chain rule as follows,

2
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Figure 1. Quantum circuit for solving DEs. On the left, a feature map (ϕ(xi)) block is used for encoding the value of a function at
a specific input xi, followed by a variational parameter block Ûθ , in which θ is a set of variational parameters optimized over cost
function. In the end, the desired function ( f(xi)) in the DE is evaluated as an expectation value of the circuit based on a chosen
operator Ĉ.

Table 1. Overview of used variables.

Variables

N f Set of collocation points
Nb Set of boundary points
xif Collocation grid points
xib Boundary points
u/utrue True solution
upred Predicted solution
αf Residual loss weight
αb Boundary loss weight
Ûϕ Quantum feature map
Ûθ Variational quantum circuit

d2upred

d
(
xif

)2 =
d

dxif

(
dupred
dxif

)
,

=
d

dxif

∑
j

dupred

dϕj

(
xif

) dϕj

(
xif

)
dxif

 ,

=
∑
j,k

d2upred

dϕj

(
xif

)
dϕk

(
xif

)
 4jk

1−
(
xif

)2


+
∑
j

dupred

dϕj

(
xif

)
 −2j xif(

1−
(
xif

)2) 3
2

 .

(2)

Notice that equation (2) contains a term where the denominator can become zero in case of xif = 1.0 leading
to numerical instability. Therefore in the problem of solving second-order DE (refer section 3.3), the last
collocation point is chosen with x30f = 0.99. Correspondingly, the Dirichlet boundary conditions are
evaluated at this point.

2.2. Self-adaptive weights for multi-objective loss function
In the weighted multi-objective loss function, the weights balancing the total loss function can be treated as
variables instead of constants as shown in appendix A. The Self-Adaptive PINNs [23] also referred to as
SAPINNs, allow these weights to be trainable and they are applied to each training point individually. The
idea behind SAPINNs is to maximize the weights and minimize the losses. We explore the applicability of
this classical method for the variational quantum algorithm proposed in this work. If the variational
parameters of the quantum circuit are given by θ, then the total loss function can be expressed by

L
(
θ,λf,λb

)
= Lf

(
θ,λf

)
+Lb (θ,λb) , (3)
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where λf = (λ1
f , · · · ,λ

Nf

f ) and λb = (λ1
b, · · · ,λ

Nb
b ) are trainable, non-negative self-adaptation weights for the

residual, and boundary points, respectively. These loss terms are given by

Lf

(
θ,λf

)
=

1

Nf

Nf∑
i=1

m
(
λi
f

)(
f
(
xif;θ

))2
, (4)

Lb (θ,λb) =
1

Nb

Nb∑
i=1

m
(
λi
b

)(
upred

(
xib;θ

)
− ub

(
xib
))2

, (5)

where the self-adaptation mask functionm(λ) defined on [0,∞) is a non-negative, differentiable, strictly
increasing function of λ. An interesting point to note about SAPINNs is that the loss L(θ,λf,λb) is
minimized with respect to the variational parameters θ, as usual, but is maximized with respect to the
self-adaptation weights λf,λb. All parameters are updated by a gradient descent approach with

θk+1 = θk − ηk∇θL
(
θk,λk

f ,λ
k
b

)
, (6)

λk+1
f = λk

f + ρkf∇λfL
(
θk,λk

f ,λ
k
b

)
, (7)

λk+1
b = λk

b + ρkb∇λbL
(
θk,λk

f ,λ
k
b

)
, (8)

where ηk > 0 is the learning rate for the variational parameters at step k,ρkp = 0.01 is a separate learning rate
chosen for the self-adaptation weights for p= f,b. Furthermore, the gradients are described as

∇λfL
(
θk,λk

f ,λ
k
b

)
=

1

Nf


m ′
(
λk,1
f

)(
f
(
x1f ;θ

))2
· · ·

m ′
(
λ
k,Nf

f

)(
f
(
x
Nf

f ;θ
))2
 , (9)

∇λbL
(
wk,λk

f ,λ
k
b

)
=

1

Nb


m ′
(
λk,1
b

)(
upred

(
x1b;θ

)
− ub

(
x1b
))2

· · ·

m ′
(
λk,Nb

b

)(
upred

(
xNb
b ;θ

)
− ub

(
xNb
b

))2
 . (10)

2.3. Mask functions for self-adaptive weights
The self-adaptive weights method works on employing mask functions for each loss term in the
multi-objective loss function. These mask functions act as adaptive weights that penalize each loss term that
is not converging during optimization. A mask function consists of variational parameters λ which are
optimized along with variational quantum circuit parameters.

For the problem solved in section 3.3, two masked functionsm have been tested: a polynomial mask
(referred to as Polynomial) and a logistic mask (referred to as Logistic). Since the polynomial mask is
subjected to numerical overflow, these masks are modified with threshold values for λ, over which the curve
flattens (see figure 6(a)). The hyperparameters of polynomial maskm(λi) = cλq

i for the residual and
boundary conditions are heuristically chosen. All λ are initialized to 1 and the threshold values λmax are
chosen accordingly. For the polynomial mask functions, the values for residual are chosen as cr = 0.1, qr = 2,
and λmax,r = 10. For the boundary conditions these parameters are provided with cb = 1000, qb = 2, and
λmax,b = 1000. In the case of the logistic mask functions, the saturation value for the residual is chosen as 0.1,
and for boundary conditions, it is provided with 1000.

2.4. Solving PDE
Solving a PDE requires encoding multiple independent variables into the quantum feature map. Therefore, a
novel quantum circuit is needed, as shown in figure 2. That is, the desired function u(x,y) requires quantum
feature mapping of two independent variables x and y. Therefore, we define two unitary operators Ûϕx(x)
and Ûϕy(y) for each nonlinear feature map ϕx(x) and ϕy(y). The combined unitary operator is written as,

Ûϕx,y(x,y) = Ûϕx(x)⊗ Ûϕy(y). The state of the quantum circuit for these two variables is given by

|fϕx,y,θ (x,y)⟩= ÛθÛϕx,y (x,y) |0⟩ . (11)

Therefore, the expectation value of the circuit with the Hamiltonian Ĉ is given as,

f(x,y) = ⟨ fϕx,y,θ (x,y) |Ĉ|fϕx,y,θ (x,y)⟩. (12)

4
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Figure 2. Visualization of a quantum circuit for encoding two independent variables using separate feature maps

Ûϕx
(x) =

⊗Nx
j=1RY,j(ϕx(x)) and Ûϕy

(y) =
⊗Ny

m=1RY,m(ϕy(y)). The qubit numbering for each feature map starts from 1 as they
must be encoded as independent Chebyshev polynomials into the circuit. Also, the variational part of the quantum circuit (in red
box) and measurement of the circuit (in green box) are represented following the feature map blocks.

The feature maps in this study, ϕx(x) and ϕy(y) are both Chebyshev feature maps, ϕxj(x) = 2j arccos(x)
and ϕym(y) = 2marccos(y), respectively. The unitary operator encoding the feature map for variable x is

described as Ûϕx(x) =
⊗Nx

j=1RY,j(2j arccosx) (i.e. as the top box in figure 2). Similarly, for variable y is

described as Ûϕy(x) =
⊗Ny

m=1RY,m(2marccosx) (i.e. as the bottom box in figure 2). Here Nx and Ny are the
number of qubits for each independent variable. The combined observable is the summation of Pauli-Z
operators of all qubits such as Ĉ =

∑
jZj +

∑
mZm.

For the problem solved in section 3.5, we considered a 2D Poisson’s equation equation (27). The Laplace
term in Poisson’s equation equation (27) considering the quantum Chebyshev feature maps (see
equation (1)) is given by,

∆u(x,y) =
∑
j,k

∂2upred

∂ϕxj

(
xif

)
∂ϕxk

(
xif

)
 4jk

1−
(
xif

)2


+
∑
j

∂upred

∂ϕxj

(
xif

)
 −2jxif(

1−
(
xif

)2) 3
2



+
∑
m,n

∂2upred

∂ϕym

(
yif

)
∂ϕyn

(
yif

)
 4mn

1−
(
yif

)2


+
∑
m

∂upred

∂ϕym

(
yif

)
 −2myif(

1−
(
yif

)2) 3
2

 ,

(13)

where, j,k= 1,2,3, . . . andm,n= 1,2,3, . . . are qubit indices for each feature map. Index i = 1,2, . . .,Nf

corresponds to collocation points.
The calculation of the first and second-order derivatives of quantum circuits concerning all qubits are

described by equations (14) and (15),

[∂u
∂x
∂u
∂y

]
=

 ∂upred
∂ϕxj(xif)
∂upred

∂ϕym(yif)

 , (14)

[
∂2u
∂x2

∂2u
∂x∂y

∂2u
∂y∂x

∂2u
∂y2

]
=

 ∂2upred
∂ϕxj(xif)∂ϕxk(xif)

∂2upred
∂ϕxj(xif)∂ϕyn(yif)

∂2upred
∂ϕym(yif)∂ϕxk(xif)

∂2upred
∂ϕym(yif)∂ϕyn(yif)

 . (15)

3. Results

For this work, we investigate and benchmark our proposed methodology on selected problems, based on
earlier literature [21, 24]. We start with a highly nontrivial dynamics problem such as the Riccati equation

5
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Figure 3. Solution of Riccati equation equation (16) and optimizer convergence. (a) Visualization of comparison between true
solution obtained numerically by the Runge–Kutta method and a classical machine learning approach using PINNs with Adam
and L-BFGS optimizer, (b) results for the quantum approach using the summation Ĉ =

∑N
j Zj (referred as Add) and tensor

product Ĉ =
⊗N

j=1 Zj (referred as Prod) of Pauli-Z operators for different learning rates (lr) and (c) their corresponding losses
over the number of optimization iterations.

which is quadratic in an unknown function. Then we consider a coupled first-order DE, formulated as a
system of DEs. In addition, a second-order linear DE and the nonlinear Duffing equation are investigated.
Finally, a problem on the two-dimensional Poisson’s equation presented by Kharazmi et al [24] is analyzed.
All simulations are performed using Pennylane software [25].

3.1. Complex dynamics of Riccati equation
As a first example, a nonlinear DE of the general form known as the Riccati equation is considered, which has
a rapidly oscillating non-periodic solution. This DE is given for a function u(x) depending on the variable x
as an initial value problem with

du

dx
− 4u+ 6u2 − sin(50x)− ucos(25x)+

1

2
= 0,

u(x= 0) = u0 (16)

where the initial condition is given by u0 = 0.75. The domain x ∈ [0,0.9] is discretized into 100 equidistant
points.

This DE is first solved by two classical methods: first, numerically by the explicit Runge–Kutta method of
third order [26], which is considered the true solution for further comparisons, and second, using PINNs,
which is considered as the classical ML solution. In the case of PINNs, a two-layer feed-forward neural
network with 32 hidden neurons was considered, which has a tanh activation function in each layer. To solve
this problem using PINNs, the loss from initial conditions and DEs is simply added as a multi-objective loss
function appendix A. The results are visualized in figure 3(a). We first carried out the optimization with the
Adam optimizer and found that it was unable to converge to the desired solution. However, when we carried
out the optimization with the L-BFGS algorithm, the desired solution was reached.

For the quantum solution, a quantum circuit with 8 qubits and a depth of 8 blocks in the variational
circuit with a circular entanglement layout (refer to appendix B.2) has been considered. The DE has terms
proportional to u and u2, which enables incorporating the initial condition into floating boundary handling
(refer to appendix B.5). This enables faster convergence since a single combined loss function is used instead
of a slower multi-objective optimization [21].

A set of Nf = 100 collocation points with xif ∈ {1, · · · ,Nf} are generated by equidistant grid points. The
initial condition is given at x1f . Consider the circuit output as upred, and we define the modified output um
such that

um
(
xif

)
=
(
u0 − upred

(
x1f

))
+ upred

(
xif

)
, (17)

and the residual is given by

f
(
xif

)
=

dupred
dxif

− 4um
(
xif

)
+ 6
(
um
(
xif

))2
− sin

(
50xif

)
− um cos

(
25xif

)
+ 1/2 (18)
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which we try to minimize. The results in figure 3(b) indicate that the quantum circuit can match the
numerical Runge–Kutta solution as well as the solution determined classically using PINNs with L-BFGS
optimizer. For all three approaches, the desired solution was obtained. The optimizer used in the quantum
ML case was Adam, which was able to successfully converge to the desired solution unlike in the classical ML
case where the very high precision update direction given by L-BFGS had to be used instead.

To further improve the performance of the quantum ansatz, we investigate the potential advantage of
using a more expressive measurement basis to capture correlations in the circuit outcomes. In the case of
using the local observable such as addition of Pauli-Z operators, the expectation values of each Pauli-Z
operator are measured and summed up to obtain the overall result. If the quantum state is entangled, the
summation of each Pauli-Z expectation value will not be able to capture the correlations between qubits. On
the contrary, by employing the global observable such as choosing the Hamiltonian as the tensor product of
Pauli-Z operators, we can capture the quantum correlations in the outcomes through entanglement in the
quantum state. This modification can lead to better convergence of the cost function and improved accuracy
of the solution.

In figure 3(c), we compare the convergence rate towards the true solution for the same initial variational
parameters of the quantum circuit, the effect of two different observables, and variation in the learning rate.
We see that maintaining the same learning rate as before, the standard sum basis of Pauli-Z operators
Ĉ =

∑
jZj is outperformed by measuring instead in a product Pauli-Z basis Ĉ =

⊗N
j=1Zj, with errors about

half an order of magnitude better. The basis further allows for the use of a much larger learning rate than
before, and increasing from a rate of 0.01 to 0.1, we observe dramatically faster convergence.

Thus, the Riccati equation is a promising first example, where the quantum approach can effectively
encode the solutions, especially in systems where fast multi-partite encoding can be obtained before the
measurement.

3.2. System of DEs
We now turn our methodology to another problem, first proposed in Kyriienko et al [21], where a first-order
system of DEs is investigated. In this case, a vector u(x) =

[
u1(x),u2(x)

]
describes two modes, whose

progression in time is x given by

F1 (dxu,u,x) =
du1
dx

− a1u2 − a2u1 = 0 , (19)

F2 [dxu,u,x] =
du2
dx

+ a2u2 + a1u1 = 0 , (20)

u(0) =
[
u1 (0) ,u2 (0)

]
=
[
u1,0,u2,0

]
, (21)

where a1 and a2 are coupling parameters and u1,0 as well as u2,0 are initial conditions. The classical solution
for this problem is obtained through ODE solvers by [27, 28]. To achieve a quantum solution, a quantum
circuit comprising three qubits and a depth of seven blocks in the variational circuit is considered (see
appendix B.2). An Adam optimizer is once again chosen, with a learning rate of 0.1. The observables are
compared for the cases of addition and product as explained in the previous example. The domain is
considered to be x ∈ [0,0.9], discretized into 100 equidistant grid points. The parameters for this problem are
a1 = 5, a2 = 3 and initial conditions are u1,0 = 0.5 and u2,0 = 0. The results obtained from global observable
are shown in figure 4(a). It is clear that the proposed quantum algorithm accurately captures the known
solution. In figure 4(b), we again compare the modified observables such as the tensor product with the
summation of Pauli-Z operators. Once again we see a large impact in the accuracy and convergence towards
the known solution.

3.3. Second-order linear DE
As a further generalization, we now consider a second-order DE given for the function u(x) with

d2u

dx2
+ 4π2 sin(2π x) = 0, (22)

where u(0) = 0 and u(0.99) = sin2π 0.99. The analytical solution is given with u(x) = sin(2π x). Note that
the Dirichlet boundary conditions at the right end are evaluated at x= 0.99 instead of x= 1.0 due to the
condition explained in section 2.1. A set of Nf = 30 collocation points with xif ∈ {1, . . . ,Nf} are generated by
equidistant grid points. Using the Chebyshev feature map

ϕj

(
xif

)
= 2j arccos

(
xif

)
, (23)

7
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Figure 4. Solving of a system of coupled differential equations (refer equations (19)–(21)). Visualization of (a) comparison
between classical and quantum solution for u1(x) and u2(x) as well as (b) the loss for the summation and tensor product of
Pauli-Z operators cases over the number of optimization iterations.

the residual f(xif) for a single data point is given for the circuit output upred by

f
(
xif

)
=

d2upred

d
(
xif

)2 + 4π2 sin
(
2π xif

)
, (24)

where the second derivative
d2upred
d(xif)

2 can be determined using the chain rule equation (2).

The DE in this problem does not contain the terms u(x) in it. Therefore, the Dirichlet boundary
conditions cannot be applied using floating boundary handling (refer appendix B.5). Hence, the loss
function is formulated as a multi-objective loss function appendix A. This loss function requires balancing
the loss terms αf,αb. Therefore, two cases are compared: in the first case, we show the effect of unbalanced
loss terms, where the weights of the total loss function are given with αf = αb = 1 (Case 1), and in the second
case, the weights are constant factors and they are heuristically chosen as αf = 10−1 and αb = 103 (Case 2).
For these cases, a circuit with three qubits and a depth of seven blocks in the variational circuit appendix B.2
has been considered where the observables are chosen with the standard Ĉ =

∑
jZj.

The obtained solution for cases 1 and 2 together with the first and second derivative of the solution is
visualized in figures 5(c), (e) and (f). The accuracy of the solutions is compared through the R2 score using
the term 1−R2 (see figure 5(d)). The results comparison between cases 1 and 2 suggest that balancing
weights are important while handling multi-objective loss function. However, the accuracy of the quantum
ML circuit has trouble in stabilizing below 1%.

To further improve the accuracy of the given problem, we study the effect of more entangling layers in the
variational circuit. Consider the variational circuit represented in figure 5(a) as the reference circuit (RC)
corresponding to variational part of figure 1. A modified variational circuit with more entangling layers is
represented in figure 5(b), which we refer to as an added entanglement circuit (AEC). With this modified
circuit, we carry out another simulation use case (Case 3) with balanced weights of αf = 10−1 and αb = 103.

8
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Figure 5. Solution of second-order DE (refer equation (22)) using constant weights for balancing multi-objective loss function.
Visualization of (a) reference variational quantum circuit (refer figure 1) (referred to as RC). It is arranged as RZ, RX, RZ
rotational layers followed by CNOT gates in cyclical order (b) modified variational circuit with added entangling layers in
between rotational layers (referred to as AEC) (c). Solutions u(x) obtained from three cases and their comparison with the true
solution. Case 1 corresponds to employing of RC variational circuit, and balancing weights for multi-objective loss function
αf = αb = 1. Case 2 corresponds to the RC variational circuit, and weights αf = 10−1 and αb = 103. Case 3 corresponds to the
AEC variational circuit, and weights αf = 10−1 and αb = 103 (d). Comparison of accuracy in terms of 1−R2 measurement over

iterations among three cases, and checking of (e) first derivative du
dx

and (f) second derivative d2u
dx2

of solution after training.

For all cases and as in the previous DEs, an Adam optimizer was employed, where now the learning rate was
specified at 0.01 for a total of 1000 iterations.

In the comparison between cases 2 and 3, the results suggest that adding entangling layers has enhanced
the reachability of the circuit. It can improve the convergence and accuracy with the same number of
variational parameters and their initial values. Therefore, entangling layers have played a key role in
improving the accuracy while solving the second-order DE. While this worked for this example, [29]
indicates that added entanglement hinders the optimization leading to a barren plateau. Hence, care must be
taken while using larger circuits and emerging methods must be further explored to mitigate this issue
[30–32].

To further explore the generalized case of variable balancing weights of the multi-objective loss function,
an alternative approach based on SAPINNs [23] is incorporated (refer section 2.2). Based on the
specifications provided in section 2.3, we define the mask functions for this problem as shown in figures 6(a)
and (b).

We consider the modified variational circuit with added entangling layers (see figure 5(b)) and the same
initial variational parameters from cases 1, 2, and 3 for a fair comparison. From the displacement, first, and
second derivative graphs, both the polynomial and logistic masks can approximate the solution to a
satisfactory level (see figures 6(c), (e) and (f)). The accuracy comparison in figure 6(d) shows that the simple
constant weights (Case 3) were able to perform better. However, the results prove that the approach of
self-adaptive weights is suitable for variational quantum circuits and can be used for various problems.
Furthermore, as the complexity of the problem increases with a complex optimization landscape and more
loss terms in the multi-objective loss function, the approach of self-adaptive weights will provide us with
better hyperparameters to tweak as compared to repetitive trials with non-adaptive constant weights.
Therefore, this approach might have more potential to save time in exploring hyperparameters and have a
better convergence as compared to non-adaptive constant weights.

3.4. Second-order nonlinear DE
For the next problem, we consider a Duffing equation which is a nonlinear second-order DE given by,

d2u

dt2
+ δ

du

dt
+αu+βu3 = γ cos(ωt). (25)

9



Mach. Learn.: Sci. Technol. 6 (2025) 015002 A Setty et al

Figure 6. Solution of second-order DE (refer equation (22)) using self-adaptive weights approach. Visualization of (a) polynomial
maskm(λ) for residual (r) and for boundary (b), (b) logistic maskm(λ) for residual (r) and for boundary (b), (c) solution u(x)
comparison between logistic and polynomial cases, (d) accuracy comparison in terms of 1−R2 measurement over iterations for
logistic and polynomial cases. In addition, the accuracy curve from case 3 is also added here for reference. Testing of (e) first

derivative du
dx

and (f) second derivative d2u
dx2

of predicted solution u(x).

In this work, we have considered an example of this problem from [33], where the parameters are given by,

α= 1,β = 1, δ = 0.1,γ = 0.1,ω = 0.4. The initial conditions are given by u(0) = 0 and du(0)
dt = 0. The time

evolution to solve the problem is chosen from t= 0 to t= 20. As a reference solution (also referred to as true
solution), we employed an explicit Runge–Kutta method of fifth order [34]. For the quantum solution, the
dependent variable is suggested to be not close to 1.0 due to singularity (refer section 2.1). Therefore, the
dependent variable in the Duffing equation is scaled and solved within the interval t= [0, l], where we choose
the limit, l= 0.9. Consider the total time of the evolution as T= 20 and the scaled time variable as τ = t

T l.
Then the modified DE is given by,(

l

T

)2 d2u

dτ 2
+

l

T
δ
du

dτ
+αu+βu3 = γ cos

(
ωTτ

l

)
. (26)

The solution grid is chosen to be the discretization of 50 equidistant time intervals. Similar to the previous
problem, the cost function is formulated as C= αfMSEf +αbMSEb (see appendix A), where the weights
αf = 1 and αb = 1. In this case, there was no need for balancing these two terms while their magnitude was
found to be of similar order. The hyperparameters chosen for this problem are five qubits and the depth of
eight blocks in the variational part of the quantum circuit (refer to appendix B.2). The observables are
chosen to be Ĉ =

∑
jZj. To test the applicability of the proposed added entangling layers, we have considered

two cases similar to the previous problem. The first case is where we chose the RC figure 5(a) and the second
one is the added entangling circuit figure 5(b). For both cases, the initial variational parameters are the same
for fair comparison. An Adam optimizer with a learning rate of 0.01 is employed with 300 iterations. After
solving the problem at coarse 50 discretized points, the trained circuit is tested to predict the solution at 500
equidistant time steps for visualization of a smooth solution. This is one of the advantages of the spectral
methods over finite difference methods, namely of having smooth interpolation. The results presented in the
figures 7(a) and (b) show that the displacement and velocity are well-matched with the Runge–Kutta
solution. We have also depicted the phase space plot in figure 7(c), which is velocity vs displacement, to
visualize the resulting Duffing oscillation. Furthermore, the accuracy plot using the measurement 1−R2

(cf figure 7(d)) clearly shows that the added entangling circuit has better performance as compared to the RC.

3.5. Second-order PDE
As a final use-case, in the domain of PDEs, we consider a two-dimensional Poisson’s equation [24] given by

∆u(x,y) = g(x,y) with x,y ∈ [0,0.9]× [0,0.9] , (27)
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Figure 7. Solution of Duffing equation (refer equation (25)). Visualization of (a) displacement (u) vs time (t), (b) velocity ( du
dt
) vs

time (t), (c) velocity vs displacement over the time evolution, also known as the phase-space plot of Duffing oscillation. The color
bar on the right depicts the time (t). The accuracy comparison (d) in terms of 1−R2 measurement over iterations for reference
(RC) and added entanglement circuit (AEC).

Figure 8. Solution of 2D Poisson’s equation (refer equation (27)). Visualization of (a) true and (b) predicted solution u(x,y) of
Poisson’s equation with color bar mapping the function values u(x,y) to contour plot. Interpolation test for 20 and 100
equidistant points at (c) x= 0.25 and (d) y= 0.75, where the problem is originally solved at 30 equidistant points (e) the accuracy
comparison in terms of 1−R2 measurement over iterations for reference (RC) and added entanglement circuit (AEC).

where the homogenous Dirichlet boundary conditions and the right-hand side g(x,y) are chosen in such a
way that the exact solution is given by

utrue (x,y) = (0.1sin(2π x)+ tanh(10x)) sin(2π y) . (28)

The quantum formulation of this problem is described in detail in section 2.4. The cost function for this
problem consists of residual loss and boundary conditions. For calculating the residual loss, the domain for
this problem is discretized into 30× 30 equidistant points totaling 900 collocation points Nf(xf,yf). The
solution on the boundary is represented by Nb labeled data points {xib,yib,uib} and the Dirichlet boundary
conditions are given by ub(x,0),ub(x,0.9),ub(0,y), and ub(0.9,y). Note that, we are examining a slightly
altered problem domain than the usual boundary points x= 1,y= 1 due to computational costs and
numerical instabilities in the differential operator leading to a modified boundary (see section 2.1). Finally,
the cost function is formulated as C= αfMSEf +αbMSEb (see appendix A), where the weights αf = 10−1 and
αb = 103. Adam optimizer with a learning rate of 0.1 is employed with 300 iterations.

The circuit architecture for this problem is chosen to be 3 qubits for variable x and 3 qubits for variable y
with a depth of 7 blocks in the variational circuit (see appendix B.2). Two cases are considered for this
problem for variational circuits, first RC and second AEC to study the applicability of added entangling
layers. The predicted solution figure 8(b) from the AEC variational circuit is represented and compared with
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the true solution figure 8(a). This approach has distinctly better convergence and accuracy when compared
to the standard RC variational circuit, as illustrated in figure 8(e).

To further test the generalization performance of the trained circuit on the unseen data points, we have
carried out an interpolation test within the solved domain. The domain is initially discretized to 30
equidistant points in between boundaries. Therefore, the interpolation test is conducted on a coarse grid
(large steps) of 20 equidistant points and a fine grid (small steps) of 100 equidistant points. This test is
performed on specific critical lines, such as x= 0.25 (see figure 8(c)) and y= 0.75 (see figure 8(d)). Based on
these results, it can be observed that the trained circuit can interpolate and accurately predict the solution in
unseen data points.

4. Discussion

Physics-informed quantumML has an enormous potential for solving a diverse spectrum of problems
related to DEs. A variety of approaches have been presented to solve DEs starting with the HHL algorithm,
nonlinear variational solvers, quantum kernel methods, as well as using feature map encoding. In this work,
the latter method is successfully combined with a self-adaptive variational quantum neural network to tackle
challenging DEs. For initial value problems handled with floating boundary conditions, the proposed change
in the measurement observables of the quantum circuit from the summation to the tensor product of Pauli-Z
operators results in a remarkable accuracy improvement. The advantage of adding more entangling layers in
the variational circuit is witnessed as an improvement in the accuracy while solving second-order DEs.

Initially, a highly nontrivial Riccati equation is solved, and a system of DEs is investigated comparing the
results to existing solutions. In addition, a second-order linear DE is analyzed. The importance of balancing
the multi-objective loss function is presented using constant balancing weights. To further explore the
generalized case, an alternative approach based on self-adaptive weights is presented incorporating the
optimization of balancing weights. Furthermore, a complex example of the nonlinear Duffing equation is
analyzed. Lastly, a second-order 2D PDE is investigated. Therefore, a new quantum circuit is designed that
can incorporate multiple independent variables.

Overall, the modified quantum circuits with added entangling layers lead to more accurate results in
fewer epochs while solving second-order ordinary and PDEs. The enhancement in performance can be
attributed to the fact that quantum circuits containing a larger number of entangling layers will result in a
higher degree of expressibility. Consequently, the quantum states within the Hilbert space will be more
thoroughly explored, leading to more precise outcomes. This work showcases the promise of quantumML in
addressing a variety of DEs, offering an innovative and efficient solution approach compared to classical
methods. The adaptability of the proposed framework to different problem domains and its potential for
further extensions, such as 3D PDEs and diverse applications e.g. in engineering or materials science,
underscore the significance of advancing the field of quantum computing for solving real-world problems.
Nevertheless, many questions remain regarding the capabilities of the presented work when applied to
different problems such as nonlinear mechanics e.g. modeling finite-strain plasticity, solving the
Navier–Stokes equation, or even coupled problems for fluid-structure interaction. A further question that
still needs to be addressed is whether a potential quantum advantage can be achieved. Thus, the presented
work is an initial starting point for further applications of QML presenting promising results to approach
these problems.
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Appendix A.Weighted multi-objective loss function

The DEs solved using variational quantum algorithms incorporating Chebyshev feature maps require
minimizing the cost function which consists of the residual term for the DE itself and the boundary
conditions.

Firstly, if the residual term for the DE is given by f(xif), the mean squared error MSEf can be determined
using Nf collocation points by

MSEf =
1

Nf

Nf∑
i=1

(
f
(
xif

))2
. (A.1)

Secondly, the boundary loss term MSEb, which is only evaluated for all boundary points Nb is given by,

MSEb =
1

Nb

Nb∑
i=1

(
upred

(
xib
)
− ub

(
xib
))2

. (A.2)

While solving the DE, it is required to minimize the total loss function by combining both residual and
boundary loss terms. However, due to differences in the order of magnitude of these terms, it is beneficial to
balance the loss terms in magnitude while optimizing. Therefore, a weighted approach for the total loss C
can be formulated using

C= αfMSEf +αbMSEb , (A.3)

where αf and αb are weights counteracting the imbalance of order between the residual and boundary loss
terms.

Appendix B. Solving DEs using quantum chebyshev feature maps

For the quantum circuit shown in the figure 1, this section details the methodology employed in this work.
As Kyriienko et al [21] stated, the objective is to approximate the solutions of the DEs as quantum circuits
parameterized by a variable x ∈ R (or a collection of ν variables, x ∈ Rν). For brevity, a simplified single
variable notation x is used for the generalized case of ν variables. The data is encoded into the quantum
circuit using a quantum feature map Ûϕ(x), where nonlinear function of variables ϕ(x) are predefined. These
quantum feature maps encode the data as amplitudes of the quantum state Ûϕ(x)|0⟩ from some initial state
like |0⟩.

Compared to other encoding techniques such as amplitude encoding which require access to the
amplitudes, a quantum feature map encoding has several advantages. It can represent latent space encoding
(multi-dimensional representation of compressed data) and it is controlled by gate parameters, mapping real
parameter x to the corresponding variable value. Upon encoding, a vector of variational parameters θ are
added by a variational quantum circuit Ûθ. These parameters are updated by a quantum–classical
optimization loop, similar to classical ML.

The resulting state |fϕ,θ(x)⟩= ÛθÛϕ(x)|0⟩ with optimized parameters contains the x-dependent
amplitudes driven to represent the desired function. However, the resulting state is a quantum state and the
desired function f (x) is a classical function. Therefore, the real-valued function f (x) can be brought out by
calculating the expectation value of a predefined Hermitian cost operator Ĉ, such that

f(x) = ⟨ fϕ,θ (x) |Ĉ|fϕ,θ (x)⟩. (B.1)

Since solving DEs requires computing gradients df(x)
dx , the quantum way of achieving this is by differentiating

the quantum feature map circuit with

dÛϕ (x)

dx
=
∑
j

Ûdϕ,j (x) , (B.2)

where the index j runs through the individual quantum operations used in the feature map encoding. Here,
derivatives are represented by the product derivative rule. When a quantum feature map is written by strings
of Pauli matrices or any involutory matrix, the parameter shift rule can be used. Then the function derivatives
are written as a sum of expectations with

df(x)

dx
=

1

2

∑
j

(
⟨ f+dϕ,j,θ (x) |Ĉ|f

+
dϕ,j,θ (x)⟩− ⟨ f−dϕ,j,θ (x) |Ĉ|f

−
dϕ,j,θ (x)⟩

)
, (B.3)

13



Mach. Learn.: Sci. Technol. 6 (2025) 015002 A Setty et al

where |f±ϕ,j,θ(x)⟩ is defined through the parameter shifting. The second-order derivative d2f(x)
dx2 can be

determined using four shifted terms for each generator. For simulators, automatic differentiation (AD)
comes as handy in this situation. AD represents the function derivatives by an exact analytical formula using
a set of simple computational rules, as opposed to numerical differentiation.

The solution of DEs is represented by constructing and defining the conditions for the quantum circuit,
such that

F
[
{dmfn/dxm}m,n ,{fn (x)}n ,x

]
= 0, (B.4)

where the functional F is provided by the problem for function derivatives of different orderm and
function/variable polynomials of varying degree n. For brevity, consider f as both a function and a vector of
functions. Then this functional can be given as a task for optimization problem with loss function
Lθ[dxf, f,x]. In other words, this is a minimization problem F[x]|x→xi at points in the set X= {xi}Mi=1, as well
as taking boundary conditions into account. After the optimization, the updated angles

θopt = argmin
θ

(Lθ [dxf, f,x]) (B.5)

are used to represent the solution

f(x) |θ→θopt ≈ f(x)desired . (B.6)

In the following subsections, we discuss in detail the Chebyshev feature maps, variational quantum
circuits, and so on.

B.1. Chebyshev feature maps
A nonlinear quantum feature map, namely, Chebyshev feature map changes the basis set of function
representation by leveraging Chebyshev polynomials. They are defined as a single qubit rotation RY,j(ϕ [x]),
but with nonlinear function ϕ(x) = 2narccosx,n= 0,1,2, · · · , such that the encoding circuit is written as,

Ûϕ (x) =
N⊗
j=1

RY,j (2n [j]arccosx) . (B.7)

Here, the coefficient n[j] depends on the qubit position j. Using Euler’s formula, the equation (B.7) can be
rewritten as,

RY,j (ϕ [x]) = exp

(
−i

2n [j]arccos(x)

2
Yj

)
,

= cos(n [j]arccos(x))Ij − i sin(n [j]arccos(x))Yj. (B.8)

To rewrite the above equation (B.8), consider the definition of Chebyshev polynomials [35]. They are
determined by two sequences relating to cosine and sine functions, noted as Tn(x) and Un(x).

Chebyshev polynomials of the first kind Tn are defined by,

Tn (cosθ) = cos(nθ). (B.9)

Similarly, Chebyshev polynomials of the second kind Un are defined by,

Un (cosθ) sinθ = sin((n+ 1)θ). (B.10)

Using the above relations, the equation (B.8) is further decomposed into unitary operation with matrix
elements defined by degree-n Chebyshev polynomials of the first and second kind, such that,

RY,j (ϕ [x]) = Tn (x) Ij +
√
1− x2Un−1 (x)XjZj. (B.11)

In this work, a specific function n[j] = j is chosen as it will expand the basis functions to the order of nth

degree polynomial [21]. Thus, the updated feature map is given by

Ûϕ (x) =
N⊗
j=1

RY,j (2j arccosx) , (B.12)
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Figure B.9.Quantum Chebyshev feature map with single qubit rotations act at each qubit individually and are parameterized by a
nonlinear function ϕ(x) of variable x. The variational circuit and measurement of the circuit are given by red and green blocks,
respectively.

Figure B.10. Derivative of the quantum feature map. Differentiation with respect to x is followed by the chain rule, with the
expectation value of the derivative written as a sum of separate expectations with shifted phases, repeated for each x-dependent
rotation.

where the encoded variable expands with the number of qubits, making a tower-like structure of polynomials
with increasing n= j. When the polynomials multiply with each other and morph between two kinds and
their degrees, the basis set will become massive. This solves the problem of large expressibility without
increasing the system size and number of rotations.

Consider the feature map circuit as in figure B.9. The derivative of the quantum circuit is calculated using
the parameter shift rule (refer equations (B.2) and (B.3)) as shown in figure B.10.

B.2. Variational quantum circuit
Solving DEs as a quantum circuit means converging both derivatives and functions to the desired form. This
requires manipulating the latent space basis function through the variational circuit Ûθ, which is referred to
as a variational quantum ansatz. In this work, a well-known architecture, namely, hardware efficient ansatz
is implemented.

Hardware efficient ansatz consists of layers of parameterized rotations, followed by layers of CNOT
operations shown in figure B.11. A sequence of three layers of rotations RZ −RX −RZ are concatenated and
parameterized by independent angles θ such that arbitrary single-qubit operations can be reproduced.
CNOT gates act as an entangling layer. The rotations and CNOT gates together are referred to as blocks and
this block is repeated for a depth of d times. The number of layers d is directly proportional to the circuit’s
expressive power (ability to represent arbitrary N-qubit unitary gates). However, as the parameters increase,
the optimization will suffer with a problem known as barren plateau. The choice of ansatz is still an open
question for improving trainability and requires further studies in this direction.

B.3. Observables
To get the output from quantum circuits, a Hermitian observable Ĉ is used to measure the expectation. The
scalar function f (x) is then computed by expectation of Ĉ, written as, ⟨ fϕ,θ(x)|Ĉ|fϕ,θ(x)⟩. Out of many
available observables, the simplest is the magnetization of a single qubit j, ⟨Zj⟩, which represents the function
in range [−1,1]. This choice requires rescaling for other intervals. Other options are total magnetization in
the system Ĉ =

∑
jZj.
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Figure B.11.Hardware efficient ansatz as a variational quantum circuit along with the representation of a single block/layer.

In addition to computing expectations, a weighted sum of observables is also possible, such as,

Ĉ =
∑
ℓ

αℓĈℓ, (B.13)

where αℓ ∈ R are trainable coefficients, and Ĉℓ are usual observables as described above. These tunable
coefficients αℓ are adjusted by optimizers such as gradient descent, Adam, etc. This is the beauty of hybrid
quantum–classical algorithms.

B.4. Loss function handling
The loss function to solve DEs using quantum circuits is similar to classical PINNs. The classical optimizer
updates the variational parameters such that the predicted function matches the desired function. This is
achieved by reducing the distance between differential expression and zero evaluated at a set of collocation
points. It is also required to satisfy the initial and boundary conditions. In other words, this resembles an
optimization problem for a loss function of derivatives and functions evaluated at collocation points.

A generalized loss function parameterized by variational parameters θ is defined as,

Lθ [dxf, f,x] = L(diff)
θ [dxf, f,x] +L(boundary)

θ [f,x] , (B.14)

where L(diff)
θ corresponds to differentials, and L(boundary)

θ corresponds to boundary conditions. The
differential loss is defined as,

L(diff)
θ [dxf, f,x] =

1

M

M∑
i=1

L(F [dxf(xi) , f(xi) ,xi] ,0) , (B.15)

where L(a,b) is a function to describe the distance between the two arguments a and b. The loss is evaluated
atM points and normalized by the sizeM. Functional F determines the DE described in the form
F[dxf, f,x] = 0. Here, the functional means it includes all DEs when the problem is a system, such that all
equations are taken into account. For example, a Neumann boundary condition can also be included in the
system. The boundary conditions especially, Dirichlet boundary conditions loss are defined by,

L(boundary)
θ [f,x] = ηL( f(x0) ,u0) , (B.16)

which calculates the distance between the function value at the boundary x0 and the given boundary value
u0. Similarly, the point x0 here also can be the initial point instead of the boundary value. The factor η is
referred to as the boundary pinning coefficient which regulates the weight of the boundary term in the
optimization procedure. To emphasize the boundary precision, larger η > 1 can be used to prioritize.

The function L is for distance definition and can be defined in many ways. Popular one is amean squared
error (MSE) given as,

L(a,b) = (a− b)2 . (B.17)
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Additionally, the other distance choice ismean absolute error (MAE), defined as, L(a,b) = |a− b|. The
choice of loss function affects the optimizer’s performance on convergence. MSE works better by punishing
the loss function harder with larger distances and lighter with smaller distances. MAE converges slowly, but
once the training is close to the optimal solution, it can achieve higher accuracy than MSE.

B.5. Floating boundary handling
A simple way of handling Dirichlet boundary or initial conditions would be adding the boundary loss terms
(equation (B.16)) into the total loss function (equation (B.14)) and trying to optimize both functions
simultaneously. In multiple loss functions, trying to optimize one loss function will affect the performance of
the other. However, if the DE has the term f (x) in it, there is a possibility to solve the problem in a more
efficient way known as floating boundary handling.

Floating boundary handling corresponds to recursively shifting the predicted solution based on the
boundary or initial point. With this method, the boundary loss term can be removed from the total loss,
rather it is encoded in the expectation of observable. As the function is parameterized to match a specific
boundary, boundary information is contained within the function and its derivatives. In this way, the need
for separate boundary loss terms can be eradicated. The updated function is described as,

f(x) = fb + ⟨ fϕ,θ (x) |Ĉ|fϕ,θ (x)⟩, (B.18)

where fb ∈ R is the parameter that is adjusted after each iteration step as,

fb = u0 −⟨ fϕ,θ (x0) |Ĉ|fϕ,θ (x0)⟩. (B.19)

The solver will effectively find a function ⟨ fϕ,θ(x)|Ĉ|fϕ,θ(x)⟩ that solves the DE shifted to any position,
then being shifted to the desired initial condition as shown in equation (B.19). The advantage of this method
is that the derivative loss term does not need to compete with the boundary loss. This also allows the
optimizer to find the optimal angles and reduces the dependence on initial θinit. This method can be
generalized to multivariable problems which have an initial condition as a function of a subset of the
independent variables.
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