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Abstract
Assigning patients to rooms and nurses to patients are critical tasks within hospi-
tals that directly affect patient and staff satisfaction, quality of care, and hospital 
efficiency. Both patient-to-room assignments and nurse-to-patient assignments are 
typically agreed upon at the ward level, and they interact in several ways, such as 
jointly determining the walking distances nurses cover between different patient 
rooms. This provides the motivation to consider both problems jointly in an inte-
grated fashion. This paper presents the first optimization models and algorithms for 
the integrated patient-to-room and nurse-to-patient assignment problem. We provide 
a mixed integer programming formulation of the integrated problem that considers 
the typical objectives from the single problems and additional objectives that can 
only be properly evaluated when integrating both problems. Moreover, motivated by 
the inherent complexity that results from integrating these two NP-hard and already 
computationally challenging problems, we devise an efficient heuristic for the inte-
grated patient-to-room and nurse-to-patient assignment problem. We conduct exten-
sive computational experiments on both artificial and real-world instances to evalu-
ate the runtime and quality of the solution obtained with the heuristic. The artificial 
instances are generated by a parameterized instance generator for the integrated 
problem that is made freely available.

Keywords  Integrated planning · Hospital · Patient-to-room assignment · Nurse-to-
patient assignment · Heuristic

1  Introduction

For many years, an ever-rising demand for healthcare and increasing healthcare 
expenditures challenge hospitals to increase the efficiency of their operations (Drup-
steen et al 2013). This results in a need for advanced managerial planning approaches 
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that help to utilize the available scarce resources as efficiently as possible. Conse-
quently, a wide range of methods and approaches have been developed in the Opera-
tions Research (OR) literature that aims at improving resource utilization through 
efficient planning  (Rais and Viana 2011; Hulshof et  al 2012; Jha et  al 2016). In 
particular, quantitative decision support has been proposed for important resources 
such as operating rooms (Van Riet and Demeulemeester 2015; Guerriero and Guido 
2011), intensive care units  (Bai et al 2018), inpatient beds (He et al 2019), physi-
cians (Erhard et al 2018), and nurses (Benazzouz et al 2015; Clark et al 2015).

While efficient planning of single resources can already lead to improved resource 
utilization and large efficiency gains, it ignores the inherent complex interactions 
between different resources (Hulshof et al 2012) and, as a consequence, might lead 
to suboptimal decisions on a system level. Therefore, a need for OR models and 
methods for integrated planning of several resources has been identified  (Hulshof 
et al 2012; Jun et al 1999; Vanberkel et al 2010). This need is particularly apparent 
in hospitals, where different resources are typically required and used for treating 
patients. A recent literature review on integrated planning of multiple resources in 
hospitals is provided in Rachuba et al (2023).

Rooms and beds are critical assets of hospitals since they account for a consider-
able part of a hospital’s infrastructure and large financial investments are necessary 
for equipping them with medical devices that facilitate patient care  (Vancroonen-
burg et  al 2016). Additionally, a shift in demographics, the growing number of 
patient admissions, and rising inpatient units costs lead to high overall bed occu-
pancy levels and require an increased focus on efficient bed management  (Schäfer 
et  al 2019; He et  al 2019). On the operational level, an important planning prob-
lem typically referred to as patient-to-room assignment (PRA) consists of assigning 
patients to suitable rooms such that a variety of constraints concerning, for instance, 
the patient’s medical needs (e.g., required medical equipment) and preferences (e.g., 
concerning age and gender of roommates) are satisfied, while available room capaci-
ties are respected and transfers of patients between rooms are avoided (Demeester 
et al 2010; Ceschia and Schaerf 2011, 2012; Schäfer et al 2019). Different variants 
of the PRA problem have been studied extensively in the literature both in the static 
setting, when all information about patients and their admission and discharge times 
is known in advance, and in dynamic settings, when new patients may arrive unex-
pectedly – see Sect. 2.1 for a detailed overview.

Medical staff also represent a particularly critical resource in hospitals since med-
ical staff are (1) involved in most patient-related activities in a hospital, and (2) are 
a particularly scarce resource due to a general shortage of nurses (Aiken et al 2002) 
and physicians  (Bodenheimer and Smith 2013; Erhard et  al 2018; Thielen 2018). 
This has led to increasing workloads for the staff over the last decades and makes 
effective planning of medical staff a central concern for hospitals (Benazzouz et al 
2015). In particular, aspects such as a fair distribution of workloads among staff 
members have a large impact on employee satisfaction and the efficient operation 
of a hospital. Concerning the nursing staff, distributing work fairly among nurses is 
considered essential for optimal quality of care (Mullinax and Lawley 2002). Here, 
the workload of each single nurse is mostly determined by the patients the nurse 
is assigned to and their care requirements. Consequently, determining a suitable 
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nurse-to-patient assignment (NPA) that balances the workloads of the nurses repre-
sents an important operational problem that has received considerable attention in 
the literature – see Sect. 2.2 for an extensive literature review.

With a few exceptions detailed in Sect. 2.3, the PRA problem and the NPA prob-
lem have mostly been considered separately in the literature – although there are 
important interactions between them. For instance, studies show that the walking 
distances that result from traveling between their assigned patients’ rooms and other 
locations such as the nearest nursing station have a substantial impact on a nurse’s 
workload during a shift (Acar and Butt 2016; Butt et al 2004). These walking dis-
tances, however, can only be determined and optimized when considering PRAs and 
NPAs jointly. Moreover, it has been observed that assigning the minimum possible 
number of nurses to patients in the same room can help to minimize negative effects 
such as the spread of infections between rooms by nurses or the disturbance of 
patients by other nurses entering their room (Halwani et al 2006; Cohen et al 2012; 
Eveillard et al 2009; Dancer 2009). This provides strong motivation for integrating 
the PRA problem and the NPA problem by considering them jointly in one optimi-
zation model.

While several publications motivate and discuss the integration of patient-to-
room assignment and nurse assignment or staffing decisions (see Sect.  2.3), this 
paper explicitly considers decisions on PRAs and NPAs in one integrated optimiza-
tion problem for the first time. Besides the objectives classically considered in the 
two separate problems, this integrated problem also allows the evaluation of addi-
tional objectives that rely on the interaction of PRAs and NPAs. Based on existing 
studies on nurse workloads (Acar and Butt 2016; Butt et al 2004), these objectives 
include the nurses’ walking distances between assigned patients’ rooms and addi-
tional relevant rooms such as the nearest nursing station. Moreover, also motivated 
by findings from the literature (Halwani et al 2006; Cohen et al 2012; Eveillard et al 
2009), assigning the minimum possible number of nurses to patients in the same 
room is considered as an objective in order to mitigate negative effects such as the 
spread of infections between rooms by nurses or the disturbance of patients by other 
nurses entering their room.

We provide a detailed model of the integrated PRA and NPA problem as a mixed 
integer program (MIP). Due to the computationally challenging nature of the inte-
grated problem, however, this MIP can only be used as a baseline comparison for 
small instances, while instances of a realistic size require other solution methods in 
order to achieve reasonable solution times. Therefore we also provide an efficient 
heuristic for the problem. The heuristic extends the heuristic for the PRA problem 
presented in Schäfer et al (2019) to the integrated problem and additionally employs 
a new heterogeneity check between patient admission and discharge times for the 
room assignment part. Both the MIP and the heuristic are evaluated in extensive 
experimental results on real-world instances obtained from a ward of our partner 
hospital Amsterdam University Medical Center (Amsterdam, The Netherlands) as 
well as artificial instances. The artificial instances are generated by a parameterized 
instance generator for the integrated problem that is made freely available. While the 
MIP only addresses the static version of the integrated problem in which all infor-
mation about patients is known in advance, the heuristic can be easily adapted to 
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dynamic settings where new patients arrive after some assignments have already 
been fixed.

The remainder of the paper is structured as follows. Section 2 summarizes the 
existing work on the PRA and the NPA problems and outlines our contribution in 
relation to the existing literature. Section 3 introduces the integrated PRA and NPA 
problem, while Sect. 4 presents our MIP formulation of the problem. Section 5 pre-
sents a sequential solution approach based on a natural decomposition of the MIP 
formulation as well as our heuristic for the problem. Section 6 then describes both 
the developed instance generator for generating artificial test instances and the real-
world instances obtained from a ward of our partner hospital. Our experimental 
results obtained on both instance types are presented in Sect. 7. The paper concludes 
in Sect. 8 with a summary and an outlook on future research.

2 � Related literature and contribution

In this section, we first summarize the state of the art concerning PRA and NPA 
separately before discussing existing work on the integration of the two problems 
and outlining our contribution.

2.1 � Patient‑to‑room assignment

The static version of the PRA problem has been formally introduced by Demeester 
et al (2010) under the name of patient admission scheduling problem.1 In this ver-
sion, all information about patients is known in advance, and the task is to assign 
patients to suitable rooms such that room capacity and gender policy are respected 
while minimizing both patient transfers and penalty costs for undesirable PRAs. One 
important characteristic in this definition is that not every patient can be assigned to 
every room and patients may also have preferences towards specific rooms based on, 
e.g., available equipment or the number of beds.

For the static PRA problem, mostly heuristic solution approaches are proposed 
in the literature, e.g., a tabu search algorithm (Demeester et al 2010), a local search 
algorithm (Ceschia and Schaerf 2011), a destroy and repair matheuristic (Guido et al 
2018), and algorithms based on the Hungarian algorithm (Borchani et al 2021), col-
umn generation (Range et al 2014), or MIP (Thuran and Bilgen 2017). Currently the 
best solutions for the benchmark instances provided by Demeester et al (2010) are 
found by the heuristic of Guido et al (2018) and by the exact, MIP-based solution 
approach proposed by Bastos et al (2019). However, the exact approach uses consid-
erably more computation time.

The complexity of the static PRA problem is studied by Vancroonenburg et  al 
(2014) using its correspondence to the red-blue-transportation problem. They show 
that the PRA problem is NP-hard in general and even if all rooms have a capacity 

1  We refer to the problem exclusively as the PRA problem in the following since this is the most com-
mon term used in the recent literature. Moreover, the original term patient admission scheduling problem 
is also used with a different meaning in the literature.
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of three. This result is strengthened by Ficker et al (2021), who prove that the PRA 
problem is also NP-hard if all rooms have capacity two.

Ceschia and Schaerf (2011, 2012) propose a dynamic version of the PRA prob-
lem that includes the handling of emergency patients and uncertainty in the patients’ 
length of stay (LOS). They propose a metaheuristic based on simulated annealing 
and an instance generator as well as a set of benchmark instances. Vancroonenburg 
et al (2016) studied a similar problem version using two online integer linear pro-
gramming (ILP) models. Lusby et  al (2016) propose a large neighborhood search 
heuristic for the dynamic PRA problem as proposed by Ceschia and Schaerf.

A different approach for incorporating emergency patients is taken by Schäfer 
et  al (2017, 2019, 2023), who use a rolling horizon approach, i.e., recomputation 
of the solution whenever a new event occurs, using a fast heuristic. In their problem 
definition, they consider objectives for three stakeholders (patients, nurses, and phy-
sicians) and they are also the first to consider interdependencies between patients in 
the same room.

For a more detailed overview of the different versions and solution approaches 
for the PRA problem, we refer to Zhu et al (2019), who study the compatibility of 
short-term and long-term objectives in the context of dynamic PRA.

2.2 � Nurse‑to‑patient assignment

The NPA problem is also considered by many different authors, where the most 
common objective is balancing the workloads of the nurses. For instance, Mullinax 
and Lawley (2002) use this objective in the daily assignment of newborn infants to 
nurses in an intensive care nursery that is divided into several zones (rooms). Here, 
each infant might yield a different workload depending on their acuity and each 
nurse can be assigned a certain maximum number of infants to take care of at the 
beginning of the shift, but all of these need to be from the same zone. Since they 
find the problem to be too hard to solve using an integer program, they present a 
two-step heuristic approach that exploits the subdivision into zones by first comput-
ing the number of nurses allocated to each zone before assigning patients to nurses 
in each zone independently.

The problem introduced by Mullinax and Lawley (2002) is also considered in 
Sir et al (2015); Ku et al (2014); Schaus and Régin (2014); Marzouk and Kamoun 
(2020) – each time with a slightly different objective function. Based on the for-
mulation proposed in Mullinax and Lawley (2002), Sir et al (2015) formulate four 
MIP models for NPA that model the workloads of nurses by either the patient acu-
ity indicators from a patient classification system (PCS), survey-based nurse-specific 
workload scores, or a combination of the two. Ku et al (2014) focus on minimizing 
the variance of the nurses’ workloads using mixed integer quadratic programming 
(MIQP) and constraint programming (CP), while Schaus and Régin (2014) minimize 
the variance using a two-step decomposition approach that first computes the num-
ber of nurses allocated to each zone (which is done optimally by solving a resource 
allocation problem) before assigning patients to nurses in each zone independently 
using CP. Finally, Marzouk and Kamoun (2020) formulate a binary integer program 



	 T. Brandt et al.

that assigns nurses to zones and individual patients with the objective of minimizing 
the total number of nurses used in a shift.

Other work on NPA includes Punnakitikashem et al (2008), who present a sto-
chastic integer programming model with the objective of minimizing excess work-
load for nurses and compare their approach to several other assignment policies 
(random assignment without considering workload, a simple heuristic, and solving 
the mean value problem using a deterministic integer program). Sundaramoorthi 
et al (2009) then use three of the assignment policies from Punnakitikashem et al 
(2008) as well as a clustered assignment policy to test their developed simulation 
model for evaluating NPAs.

While most of the literature on NPA mentioned above uses patient acuity as 
the main factor influencing nursing workloads, Acar and Butt (2016) perform a 
detailed study to identify the activities that comprise a nurse’s workload. They find 
that nurses spend a substantial part of their time traveling (walking) between loca-
tions, where travel between patient rooms and the nursing station is the most com-
mon type of travel. Here, according to Butt et  al (2004), the distance traveled by 
nurses is correlated to their assigned patient load and location, and key distances 
influencing the total travel distance of a nurse are the distances between assigned 
patients’ rooms and (1) the nearest nursing station, (2) the nearest supply room, and 
(3) other assigned patients’ rooms. However, nurses’ walking distances have not yet 
been considered explicitly as an objective in the NPA literature since their mini-
mization requires the simultaneous optimization of PRAs. This also holds for the 
objective of assigning the minimum possible number of nurses to patients in the 
same room, although it is known that assigning all patients in the same room to the 
same nurse or a small pool of nurses helps to avoid the transfer of hospital-acquired 
infections (Halwani et al 2006; Cohen et al 2012; Eveillard et al 2009), in particular 
Methicillin-resistant Staphylococcus aureus (MRSA) (Dancer 2009).

2.3 � Integration of PRA and NPA

While we are not aware of any papers that explicitly integrate PRA and NPA deci-
sions in one optimization model, some literature considering the interplay between 
the two problems or related problems exist. For instance, Thomas et al (2013) pre-
sent a mixed-integer goal programming model for the PRA problem that takes nurses 
into account via required nurse-to-patient ratio constraints in each unit of a hospital. 
Bilgin et al (2012) develop a general, high-level hyper-heuristic approach that can 
be used for both the PRA problem and the nurse rostering problem. Pesant (2016) 
addresses the integration of the nurse staffing problem (assigning an appropriate 
number of nurses to each unit within a ward given a nurse roster) and the NPA prob-
lem in a neonatal intensive care unit by solving CP models for the two problems 
consecutively, and Punnakitikashem et al (2013) extend the stochastic programming 
model from Punnakitikashem et  al (2008) by integrating nurse staffing decisions 
over multiple units into the NPA problem. Moreover, several recent papers consider 
patient appointment planning in outpatient chemotherapy clinics while simultane-
ously assigning nurses to patients or taking constraints on nurse availability into 
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account  (Liang and Turkcan 2016; Hesaraki et  al 2019, 2020; Bouras et  al 2021; 
Heshmat et  al 2018). Schmidt et  al (2013) integrate patient appointment planning 
into a patient-to-ward assignment problem, where they assume that rooms in the 
same ward are equal. They propose a binary integer program for this problem and 
compare exact and heuristic solution approaches. Ceschia and Schaerf (2016) con-
sider an integrated planning of PRA with operating room constraints where they 
allow the postponement of patient appointments, for which they also provide an 
instance generator and a set of benchmark instances.

2.4 � Our contribution

We introduce the first optimization models and algorithms for the integrated 
patient-to-room-and-nurse assignment (IPRNPA) problem. While several related 
problems have been considered in the literature as outlined in the previous section, 
our approach explicitly integrates decisions on patient-to-room assignments and 
nurse-to-patient assignments for the first time. This joint consideration of the two 
assignment problems permits optimization of additional objectives that rely on the 
interaction of the two assignment problems such as minimizing the nurses’ walk-
ing distance or assigning the minimum possible number of nurses to patients in the 
same room to mitigate negative effects including inter-room infection spread associ-
ated with nurses and patient disturbance.

We first formalize the integrated problem by providing a detailed MIP formula-
tion, which also serves as a baseline comparison for small problem instances. Due to 
the computational challenging nature of the problem, however, instances of a realis-
tic size cannot be solved by the MIP. Therefore, we also provide an efficient heuristic 
for the IPRNPA problem that extends the heuristic for the PRA problem presented 
in Schäfer et  al (2019) to the integrated problem and additionally employs a new 
heterogeneity check between patient admission and discharge times for the room 
assignment part. The runtimes and solution quality of the heuristic are demonstrated 
on both artificial and real-world instances. The artificial instances are generated by 
a parametrized instance generator for the integrated problem, which is made freely 
available together with a corresponding solution checker to foster future research on 
the integrated problem.

3 � Problem definition

In this section, we formally introduce the integrated patient-to-room and nurse-to-
patient assignment (IPRNPA) problem and the sets and parameters that are used to 
represent the input of the problem.

The IPRNPA problem integrates PRA and NPA on the ward level. Thus, the 
problem consists of assigning patients to rooms and nurses to patients on a hospi-
tal ward over a given planning period (typically one or several weeks). This sec-
tion describes the static version of the problem where, similar to the static version 
of the PRA problem (Demeester et al 2010), all information about the patients (in 
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particular, each patient’s admission and discharge times) are known at the beginning 
of the planning period. The dynamic version of the problem differs from the static 
version in that information about new patients only becomes known either when 
they are admitted or a fixed time span before admission, which is analogous to the 
existing literature on dynamic PRA (Ceschia and Schaerf 2011, 2012).

We are given a set P of patients, a set N  of nurses, and a set R of rooms. Moreo-
ver, there exists a (usually small) set A of additional rooms (such as the nursing sta-
tion) with R ∩A = � . These additional rooms cannot be used for assigning patients 
and will only be relevant when computing the nurses’ walking distances.

The considered planning period consists of a set S = {1,… , S} of shifts, which is 
partitioned into the subsets Searly of early shifts, Slate of late shifts, and Snight of night 
shifts. The shifts are numbered chronologically starting with an early shift and end-
ing with a night shift. Hence, the first early, late, and night shift are numbered 1, 2, 
and 3, respectively, and belong to the first day, whereas the second early, late, and 
night shift belong to the second day and so on.

A feasible PRA demands that each patient  p ∈ P is assigned to exactly one 
room r ∈ R during each shift between their admission shift ad_shift (p) ∈ S

early and 
their discharge shift di_shift (p) ∈ S

night , which denotes the first and the last shift, 
respectively, of the patient’s stay on the ward. In particular, this means that patients 
are always admitted and discharged in the morning between a night shift and the 
following early shift, as is the case in many real hospital wards. If patient  p has 
already been on the ward during the last shift of the previous planning period, the 
value ad_shift (p) is set to 0 ∉ S , and if patient p will still be on the ward after the 
last shift S of the current planning period, the value di_shift (p) is set to S + 1 ∉ S . 
Patient transfers between rooms are possible and are assumed to take place at most 
once a day for each patient between a night shift and an early shift. Transfers are, 
however, undesirable for both patients and nurses, and should, thus, be minimized. 
If patient p has already been on the ward during the last shift of the previous plan-
ning period, the room yprev(p) ∈ R that the patient has been assigned to during this 
shift is also given as an input. This allows the evaluation of transfers that happen 
between the last (night) shift of the previous planning period and the first (early) 
shift of the current planning period.

Requirements concerning the PRA include respecting the capacity of each room 
r ∈ R , which is given as a shift-independent number of available beds denoted 
by num_beds(r) (usually between  1 and  4) that defines the maximum number of 
patients that can be assigned to room r during any single shift. Moreover, depending 
on their specific condition, a patient might benefit from certain types of equipment 
in their room during certain shifts, so, during these shifts, they should be assigned 
to a room that features this type of equipment if possible. The set of possible equip-
ment types is denoted by E . The types of equipment that are present in room r are 
represented by the subset E(r) ⊆ E , and the shift-specific types of desired equipment 
of patient  p during shift  s are represented by the subset E(p, s) ⊆ E . Additionally, 
gender-mixed rooms should be avoided if possible. To this end, the set of patients 
is partitioned into the subsets F  of female patients and M of male patients (i.e., 
P = F∪̇M ) and the number of gender-mixed rooms should be minimized across 
all shifts. Finally, each patient  p ∈ P has an associated age group computed as 
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age_group (p) = ⌊ age(p)

10
⌋ with age(p) denoting the age of the patient in years. Age 

groups are relevant since large age differences between patients who are simulta-
neously assigned to the same room are known to result in inconvenience for the 
patients and should, thus, be avoided.

Concerning the NPA part of the problem, the nurse roster for the planning 
period is given as an input. Here, for each nurse  n ∈ N  , we are given the sub-
set S(n) ⊆ S of shifts that the nurse is assigned to. A feasible NPA should assign 
each patient p ∈ P to exactly one nurse n ∈ N  with s ∈ S(n) during each shift s ∈ S 
between the patient’s admission shift and discharge shift. Since nurses work at most 
one shift per day, any patient staying on the ward for at least two shifts must neces-
sarily be assigned to different nurses during different shifts. To improve continuity 
of care, however, the number of different nurses who treat a single patient should be 
minimized.

Further requirements on the NPA include respecting nurse skill level require-
ments of the patients. Each nurse n ∈ N  has a skill level skill_level (n) and each 
patient  p ∈ P requires a certain minimum skill level  skill_req (p, s) during each 
shift s ∈ S ⧵ Snight between their admission shift and their discharge shift. The set 
of possible skill levels is denoted by L = {0, 1, 2} , where 0 = trainee , 1 = regular , 
and 2 = experienced . While an experienced nurse (skill level 2 ) can take care of any 
patient, the assignment should ensure that regular nurses (skill level 1 ) and trainees 
(skill level 0 ) are only assigned patients whose required skill level during a specific 
shift does not exceed the nurse’s skill level.

Moreover, patients can induce different, shift-dependent workloads for nurses, 
and these workloads should be distributed fairly among the nurses - both during each 
single shift and overall. The workload resulting from taking care of patient  p ∈ P 
during shift s ∈ S is expressed by a nonnegative number w_load (p, s) and depends 
on the age group of the patient, on their specific condition, on the time since admis-
sion, and on whether the shift is a day shift or a night shift. A fair distribution of 
workload among the nurses is then achieved by defining a maximum desired work-
load max_load (n, s) for each nurse  n ∈ N  during each shift  s ∈ S(n) and ensur-
ing that this maximum workload is not exceeded if possible whilst ensuring that 
the assigned workloads relative to the respective maxima do not differ considerably 
between nurses during single shifts as well as overall.

Important considerations that are influenced by both the PRA and the NPA 
involve trying to assign all patients in a room to the same nurse during each shift 
(which minimizes the spread of infections across rooms by nurses and reduces 
patient disturbance due to other nurses entering their room) and minimizing the 
nurses’ walking distances between different rooms. For the evaluation of the 
walking distances, we are given a nonnegative number  dist (r, r�) for each two 
rooms r, r� ∈ R that specifies the walking distance between rooms r and r′ . Simi-
larly, for each additional room a ∈ A and each regular room r ∈ R , there is a non-
negative number dist (a, r) that specifies the walking distance between additional 
room a and room r. The nurses’ walking distances during a shift s ∈ S then depend 
on the patients they are assigned to during shift s and on how frequently nurses are 
expected to walk in a circular pattern directly from patient to patient during shift s 
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(e.g., during early shift rounds) and on how frequently they are expected to walk in 
a star-like pattern directly from additional rooms (such as the nursing station) to 
patients and back (e.g., when a patient calls for a nurse). These expected (absolute) 
frequencies are represented by two nonnegative parameters walk_pat ◦(s) (circular) 
and walk_pat ⋆(s) (star-like), respectively. Here, the inclusion of additional rooms, 
such as storage rooms, in the star-like pattern signifies scenarios where nurses may 
need to access these rooms from patient rooms and return, which models tasks like 
fetching supplies.

4 � Mixed integer programming formulation

In order to model the IPRNPA problem introduced in Sect.  3 mathematically, we 
now present a formulation of the problem as an MIP.

The following lists summarize the sets and parameters introduced in the previous 
section and the decision variables used in the MIP:

Sets:

P   	� Set of patients (index p)

F    	� Subset of female patients

M   	� Subset of male patients

N    	� Set of nurses (index n)

N
prev(p)	� Subset of nurses that patient p ∈ P has already been assigned to 

during at least one shift in a previous planning period

R   	� Set of rooms (index r)

A   	� Set of additional rooms (e.g., the nursing station) (index a)

S = {1,… , S}   	� Set of shifts (index s)

S
early   	� Subset of early shifts

S
late   	� Subset of late shifts

S
night   	� Subset of night shifts

S(n)	� Subset of shifts that nurse n ∈ N  is assigned to
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E   	� Set of possible equipment types in the rooms (index e)

E(r)   	� Subset of equipment types present in room r ∈ R

E(p, s)   	� Subset of desired equipment types of patient p ∈ P during early 
shift s ∈ S

early

L = {0, 1, 2}   	� Set of possible skill levels of nurses (index l), where 0 = trainee , 
1 = regular , 2 = experienced

Parameters:

ad_shift (p)   	� Shift s ∈ S
early during which patient p ∈ P is admitted (first shift 

in which a bed is required for patient p). The value is set to 0 if 
patient p has already been on the ward during the last shift of the 
previous planning period

di_shift (p)   	� Shift  s ∈ S
late during which patient  p ∈ P is discharged (last 

shift in which a bed is required for patient p). The value is set 
to S + 1 if patient p will still be on the ward after the last shift S 
of the planning period

yprev(p)   	� Room r ∈ R that patient  p ∈ P with ad_shift (p) = 0 has been 
assigned to during the last shift of the previous planning period

num_beds(r)   	� Nonnegative integer (most likely from {1, 2, 3, 4} ) specifying the 
number of beds in room r ∈ R

age_group (p)	� Age group of patient p ∈ P computed as age_group (p) = ⌊ age(p)

10
⌋ 

with age(p) denoting the age of the patient in years

skill_level (n)   	� Skill level of nurse n ∈ N  (possible values are 0, 1, 2)

skill_req (p, s)   	� Minimum skill level of a nurse required by patient p ∈ P during 
shift s ∈ S ⧵ Snight (possible values are 0, 1, 2)

w_load (p, s)   	� Nonnegative number specifying the workload resulting from 
taking care of patient p ∈ P during shift s ∈ S

max_load (n, s)   	� Nonnegative number specifying the maximum workload allowed 
for nurse n ∈ N  during shift s ∈ S(n)

dist (r, r�)   	� Nonnegative number specifying the walking distance between 
rooms r, r� ∈ R (where dist (r, r�) = dist (r�, r) for all r, r� ∈ R , 
i.e., distances are symmetric)
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dist (a, r)   	� Nonnegative number specifying the walking distance between 
additional room a ∈ A and room r ∈ R

walk_pat ◦(s)   	� Nonnegative weight for different walking patterns depending on 
the shift s ∈ S . A high value of walk_pat ◦(s) indicates that most 
nurses walk directly from patient to patient during shift s (circu-
lar pattern)

walk_pat ⋆(s)   	� Nonnegative weight for different walking patterns depending on 
the shift s ∈ S . A high value of walk_pat ⋆(s) indicates that most 
nurses walk directly from additional rooms such as the nursing 
station to patient rooms and back during shift s (star-like pattern)

Decision variables:

yp,r,s   	� Binary variable indicating whether patient  p ∈ P is assigned 
to room  r ∈ R during early shift  s ∈ S

early(only defined if 
ad_shift (p) ≤ s ≤ di_shift (p) , i.e., if patient  p is on the ward 
during early shift s)

f_in_roomr,s   	� Binary variable indicating whether at least one female patient is 
assigned to room r ∈ R during early shift s ∈ S

early

m_in_roomr,s   	� Binary variable indicating whether at least one male patient is 
assigned to room r ∈ R during early shift s ∈ S

early

viogender
r,s

   	� Binary variable indicating whether more than one gender is in 
room r ∈ R during shift s ∈ S

early

transp,s   	� Binary variable indicating whether patient  p ∈ P is transferred 
to a different room after night shift  s ∈ (Snight ∪ {0}) ⧵ {S} 
(and before early shift  s + 1 ) (only defined if 
ad_shift (p) ≤ s ≤ di_shift (p) − 1)

age_group max
r,s

	� nonnegative fractional variable representing the maximum age 
group among all patients p ∈ P assigned to room r ∈ R during 
early shift s ∈ S

early

age_group min
r,s

	� Nonnegative fractional variable representing the minimum age 
group among all patients p ∈ P assigned to room r ∈ R during 
early shift s ∈ S

early
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xp,n,s   	� Binary variable indicating whether patient  p ∈ P is assigned 
to nurse  n ∈ N  during shift  s ∈ S,(only defined if s ∈ S(n) 
and ad_shift (p) ≤ s ≤ di_shift (p) , i.e., if nurse n is assigned to 
shift s and patient p is on the ward during shift s)

vioskill
p,s

   	� Binary variable indicating whether patient  p ∈ P is assigned 
to a nurse with a lower skill level than required during 
shift s ∈ S ⧵ Snight (only defined if ad_shift (p) ≤ s ≤ di_shift (p) 
and skill_req (p, s) ≥ 2 , i.e., if patient  p is on the ward during 
shift s and requires at least an experienced nurse during shift s)

ever_assignedp,n	� Binary variable indicating whether patient  p ∈ P is assigned to 
nurse n ∈ N  during at least one shift s ∈ S

vioload
n,s

   	� Nonnegative fractional variable representing the excess work-
load assigned to nurse n ∈ N  during shift s ∈ S(only defined if 
s ∈ S(n) , i.e., if nurse n is assigned to shift s)

viofair
n,n′,s

   	� Nonnegative fractional variable representing the excess in rela-
tive workload (relative to the desired maximum) of nurse n ∈ N  
compared to nurse n� ∈ N  during shift s ∈ S

viofair
n,n′

   	� Nonnegative fractional variable representing the overall excess 
in relative workload (relative to the desired maximum) of 
nurse n ∈ N  compared to nurse n� ∈ N

in_roomn,r,s   	� Binary variable indicating whether nurse n ∈ N  is assigned at 
least one patient in room r ∈ R during shift s ∈ S(only defined 
if s ∈ S(n) , i.e., if nurse n is assigned to shift s)

dist n,s   	� nonnegative fractional variable representing the total walking 
distance for nurse  n ∈ N  during shift  s ∈ S (only defined if 
s ∈ S(n) , i.e., if nurse n is assigned to shift s)

both_roomsn,r,r′,s	� Binary variable indicating whether nurse  n ∈ N  is assigned 
patients in both room r ∈ R and room r� ∈ R during shift s ∈ S

(only defined if assign(n, s) = 1 , i.e., if nurse  n is assigned to 
shift s)

The objective function of the MIP to be minimized consists of a weighted sum of 
several objectives. These objectives include those classically considered in the PRA 
problem (objectives (1)–(4)) and the NPA problem (objectives (5)–(7)). Moreover, 
two additional objectives are considered that rely explicitly on the interaction of the 
two problems: objective (8) considers assigning the minimum number of nurses per 
room during each shift, while objective (9) minimizes the nurses’ walking distances. 
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The weights of the different objectives in the weighted sum are based on the existing 
literature and discussions with our partner hospital (see Sect. 7 for the values used in 
our computational experiments).

Patient transfers objective

(1)	 Minimization of the number of patient transfers across all patients and shifts 
(could be weighted differently for different patients and / or different shifts): 

Patient inconvenience objective

(2)	 Minimization of the age group difference across all rooms and shifts: 

Gender mixing objective

(3)	 Minimization of gender mixing across all rooms and shifts: 

Equipment violation objective

(4)	 Minimization of required equipment violation across all rooms and shifts: 

Continuity of care objective

(5)	 Minimization of the number of different nurses that treat each patient across all 
patients (could be weighted differently for different patients): 

Penalization of skill level requirements objective

(6)	 Minimization of violations of skill level requirements of patients: 

min
∑

p∈P,s∈(Snight∪{0})⧵{S}∶
ad_shift (p)≤s≤ di_shift (p)−1

transp,s

min
∑

r∈R,s∈Searly

( age_group max
r,s

− age_group min
r,s

)

min
∑

r∈R,s∈Searly

viogender
r,s

min
∑

p∈P,r∈R,s∈Searly∶
ad_shift (p)≤s≤ di_shift (p)

and E(p,s)⧵E(r)≠�

yp,r,s

min
∑

p∈P,n∈N⧵Nprev(p)

ever_assigned
p,n
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Penalization of undesired workload distributions objective

(7)	 Minimization of undesired workload distributions for nurses: 

Assigning the minimum number of nurses per room objective

(8)	 Minimization of the number of nurses assigned to rooms across all shifts: 

Walking distances objective

(9)	 Minimization of the walking distances across all nurses and shifts 

The constraints of the MIP can be formulated as follows:

(I) Assignment of patients to rooms

	(10)	 Each patient p ∈ P is assigned to exactly one room r ∈ R during each early 
shift s ∈ S

early between their admission and discharge: 

	(11)	 No room r ∈ R can be assigned more than num_beds(r) patients during any 
early shift s ∈ S

early : 

	(12)	 The variable f_in_roomr,s ( m_in_roomr,s ) is set to one if at least one female 
(male) patient is assigned to room r during early shift s ∈ S

early : 

min
∑

p∈P,s∈S⧵Snight∶
ad_shift (p)≤s≤ di_shift (p)

and skill_req (p,s)≥1

vioskill
p,s

min
∑

n∈N,s∈S(n)

vioload
n,s

+
∑

n,n�∈N

viofair
n,n�

+
∑

n,n�∈N,
s∈S(n)∩S(n�)

viofair
n,n�,s

min
∑

n∈N,r∈R,s∈S

in_roomn,r,s

min
∑

n∈N,s∈S(n)

dist n,s

∑

r∈R

yp,r,s = 1 ∀p ∈ P, s ∈ S
early ∶ ad_shift (p) ≤ s ≤ di_shift (p)

∑

p∈P∶ ad_shift (p)≤s≤ di_shift (p)

yp,r,s ≤ num_beds(r) ∀r ∈ R, s ∈ S
early

y
p,r,s ≤ f_in_room

r,s ∀p ∈ F, r ∈ R, s ∈ S
early ∶ ad_shift (p) ≤ s ≤ di_shift (p)

y
p,r,s ≤ m_in_room

r,s ∀p ∈ M, r ∈ R, s ∈ S
early ∶ ad_shift (p) ≤ s ≤ di_shift (p)
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	(13)	 No room r ∈ R should be assigned both female and male patients during any 
early shift s ∈ S

early : 

(II) Patient transfers

	(14)	 The patient transfer variables transp,s are set correctly for each patient p ∈ P 
and each night shift s ∈ S

night between their admission and discharge: 

	(15)	 The patient transfer variables transp,0 that indicate a transfer between the last 
shift of the previous planning period (shift 0) and the first (early) shift of the 
current planning period (shift 1) are set correctly for each patient p ∈ P with 
ad_shift (p) = 0 : 

(III) Patient inconvenience

	(16)	 The variable age_group max
r,s

 is restricted by the maximum age group of patients 
in room r ∈ R during early shift s ∈ S

early : 

	(17)	 The variable age_group min
r,s

 is restricted by the minimum age group of patients 
in room r ∈ R during early shift s ∈ S

early : 

 Note that the coefficient 12 on the right-hand side needs to be increased if 
patients with ages 130 or older (age group 13 or higher) are present.

	(18)	 The variable age_group min
r,s

 is set to zero if no patients are assigned to 
room r ∈ R during early shift s ∈ S

early : 

 Note that the coefficient 12 on the right-hand side needs to be increased if 
patients with ages 130 or older (age group 13 or higher) are present.

	(19)	 The value of the variable age_group max
r,s

 must not be smaller than the value of 
the variable age_group min

r,s
 for any room r ∈ R and any early shift s ∈ S

early : 

f_in_roomr,s +m_in_roomr,s ≤ 1 + viogender
r,s

∀r ∈ R, s ∈ S
early

yp,r,s+1 − yp,r,s−2 ≤ transp,s ∀p ∈ P, r ∈ R, s ∈ S
night ⧵ {S} ∶

ad_shift (p) ≤ s ≤ di_shift (p) − 1

yp,r,1 ≤ transp,0 ∀p ∈ P, r ∈ R ⧵ {yprev(p)} ∶ ad_shift (p) = 0

age_group max
r,s

≥ age_group (p) ⋅ yp,r,s ∀p ∈ P, r ∈ R, s ∈ S
early ∶

ad_shift (p) ≤ s ≤ di_shift (p)

age_group min
r,s

≤ age_group (p) + 12 ⋅ (1 − y
p,r,s) ∀p ∈ P, r ∈ R, s ∈ S

early ∶

ad_shift (p) ≤ s ≤ di_shift (p)

age_group min
r,s

≤ 12 ⋅
∑

p∈P∶ ad_shift (p)≤s≤ di_shift (p)

yp,r,s ∀r ∈ R, s ∈ S
early
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 Note that this constraint is not required for the correctness of the model and is 
only used to improve solution times.

(IV) Assignment of patients to nurses

	(20)	 Each patient p ∈ P is assigned to exactly one nurse n ∈ N  with s ∈ S(n) during 
each shift s ∈ S between their admission and discharge: 

	(21)	 For each patient p ∈ P and each shift s ∈ S ⧵ Snight with skill_req (p, s) ≥ 1 , 
the variable vioskill

p,s
 is set to one if the patient is not assigned to a nurse with the 

required skill level: 

	(22)	 The variable ever_assignedp,n is set to one if and only if n ∈ N
prev(p) or 

patient p ∈ P is assigned to nurse n ∈ N  during at least one shift: 

(V) Nurses’ workload

	(23)	 For each nurse n ∈ N  and each shift  s ∈ S(n) , any workload exceeding 
max_load (n, s) leads to a corresponding increase of the variable vioload

n,s
 : 

	(24)	 Fair workload distribution per shift: For any two nurses n, n� ∈ N  assigned 
to a shift s ∈ S , if the relative workload (relative to the desired maximum) of 
nurse n during shift s exceeds the relative workload of nurse n′ during shift s, 
the variable viofair

n,n′,s
 must be increased correspondingly: 

age_group min
r,s

≤ age_group max
r,s

∀r ∈ R, s ∈ S
early

∑

n∈N∶s∈S(n)

xp,n,s = 1 ∀p ∈ P, s ∈ S ∶ ad_shift (p) ≤ s ≤ di_shift (p)

∑
n∈N∶s∈S(n) and

skill_level (n)≥ skill_req (p,s)

x
p,n,s = 1 − vioskill

p,s
∀p ∈ P, s ∈ S ⧵ Snight ∶

ad_shift (p) ≤ s ≤ di_shift (p)

and skill_req (p, s) ≥ 1

xp,n,s ≤ ever_assignedp,n ∀p ∈ P, n ∈ N, s ∈ S ∶ s ∈ S(n)

and ad_shift (p) ≤ s ≤ di_shift (p)

ever_assignedp,n = 1 ∀p ∈ P, n ∈ N
prev(p)

ever_assigned
p,n ≤

∑

s∈S∶s∈S(n) and

ad_shift (p)≤s≤ di_shift (p)

x
p,n,s ∀p ∈ P, n ∈ N ⧵Nprev(p)

∑

p∈P∶ ad_shift (p)≤s≤ di_shift (p)

xp,n,s ⋅ w_load (p, s) ≤ max_load (n, s) + vioload
n,s

∀n ∈ N, s ∈ S(n)
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	(25)	 Fair distribution of workload overall: For any two nurses n, n� ∈ N  , if the rela-
tive workload (relative to the desired maximum) of nurse n exceeds the relative 
workload of nurse n′ , the variable viofair

n,n′
 must be increased correspondingly: 

(VI) Assignment of all patients in the same room to the same nurse

	(26)	 The variables  in_roomn,r,s are set correctly for each nurse n ∈ N  , each 
room r ∈ R , and each shift s ∈ S(n) : 

(VII) Nurses’ walking distance

	(27)	 The variables both_roomsn,r,r′,s are set correctly for each nurse n ∈ N  , each two 
rooms r, r� ∈ R , and each shift s ∈ S(n) : 

	(28)	 The walking distance variables dist n,s are set correctly for each nurse n ∈ N  
and each shift s ∈ S(n) : 

∑

p∈P∶ ad_shift (p)≤s≤ di_shift (p)

xp,n,s ⋅
w_load (p, s)

max_load (n, s)

≤
∑

p∈P∶ ad_shift (p)≤s≤ di_shift (p)

xp,n�,s ⋅
w_load (p, s)

max_load (n�, s)
+ viofair

n,n�,s

∀n, n� ∈ N, s ∈ S(n) ∩ S(n�)

∑

s∈S(n)

∑

p∈P∶ ad_shift (p)≤s≤ di_shift (p)

xp,n,s ⋅
w_load (p, s)

max_load (n, s)

≤
∑

s∈S(n�)

∑

p∈P∶ ad_shift (p)≤s≤ di_shift (p)

xp,n�,s ⋅
w_load (p, s)

max_load (n�, s)
+ viofair

n,n�

∀n, n� ∈ N

in_room
n,r,s ≥ x

p,n,s + y
p,r,s − 1 ∀p ∈ P, n ∈ N, r ∈ R, s ∈ S(n) ∩ S

early ∶

ad_shift (p) ≤ s ≤ di_shift (p)

in_room
n,r,s ≥ x

p,n,s + y
p,r,s−1 − 1 ∀p ∈ P, n ∈ N, r ∈ R, s ∈ S(n) ∩ S

late ∶

ad_shift (p) ≤ s ≤ di_shift (p)

in_room
n,r,s ≥ x

p,n,s + y
p,r,s−2 − 1 ∀p ∈ P, n ∈ N, r ∈ R, s ∈ S(n) ∩ S

night ∶

ad_shift (p) ≤ s ≤ di_shift (p)

both_rooms
n,r,r� ,s ≥ in_room

n,r,s + in_room
n,r� ,s − 1 ∀n ∈ N, r, r� ∈ R, s ∈ S(n)

distn,s = walk_pat
◦

(s) ⋅
1

2
⋅

∑

r∈R

∑

r�∈R⧵{r}

both_roomsn,r,r�,s ⋅ dist(r, r
�)

+walk_pat⋆(s) ⋅
∑

a∈A

∑

r∈R

in_roomn,r,s ⋅ dist(a, r) ∀n ∈ N, s ∈ S(n)
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5 � Solution methods

Addressing PRA and NPA challenges in hospitals reveals complexities that hinder 
timely optimal solutions. The PRA problem, even in isolation, is known to be NP-
hard and only unrealistically small instances can be solved to optimality in reason-
able time. Thus, it not surprising that the integrated problem is very difficult to solve 
on instances of a realistic size and solving the MIP provided in the previous section 
takes a prohibitive amount of time on such instances (see also Sect. 7). Therefore, we 
now present two different methods for generating good solutions in reasonable com-
putation times. The first method, which is mainly presented as a point of comparison 
to the completely integrated MIP from Sect.  4, is a sequential approach based on 
a natural decomposition of the integrated MIP into models for the two interacting 
subproblems. The second method is an efficient greedy heuristic for the integrated 
problem, which also allows easy adaptions to various dynamic problem versions.

5.1 � Sequential solution approach

As a point of comparison to the completely integrated MIP presented in the previous 
section and to potentially achieve faster computation times, we consider the sequen-
tial solution of the two submodels for the PRA and NPA parts. Here, we first solve 
the PRA part and then solve the NPA part given the PRA. Note that this approach 
of solving the two assignment problems sequentially will not yield optimal solutions 
for the integrated problem in general.

The PRA part of the model consists of the patient transfers objective  (1), the 
patient inconvenience objective (2), the gender mixing objective (3), and the equip-
ment violations objective  (4) as well as the constraints concerning the assign-
ment of patients to rooms  (I), the patients transfers  (II), and the inconvenience of 
patients (III) and the associated decision variables.

The NPA part of the model contains the continuity of care objective (5), the penali-
zation of skill level requirements objective  (6), undesired workload distributions 
objective (7), the objective for assigning the minimum number of nurses per room (8), 
and the walking distance objective  (9). As constraints, the NPA part contains those 
concerning the assignment of patients to nurses  (IV), the nurses’ workload  (V), the 
assignment of all patients in the same room to the same nurse (VI), and the nurses’ 
walking distance (VII). Concerning variables, the NPA model contains all variables 
appearing in these objectives and constraints, but the yp,r,s are not decision variables 
anymore since their values are carried over from the solution obtained for the PRA 
part of the model.

5.2 � Heuristic solution approach

Due to the computationally challenging nature of the PRA problem, heuristic solu-
tion methods are often used to tackle this problem in the recent literature  (Guido 
et  al 2018; Schäfer et  al 2019). Naturally, the computational challenges become 
even greater when considering PRAs and NPAs jointly in an integrated optimization 
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problem as we do in this paper. Therefore, we now introduce a heuristic solution 
approach for the IPRNPA problem, which extends the PRA heuristic suggested in 
Schäfer et al (2019). This heuristic has been selected as the basis for our extension 
since it successfully balances computational effort and solution quality in a practi-
cally applicable solution method. Moreover, even though the original heuristic 
neglects transfers and does not incorporate NPA considerations, the basic idea of the 
algorithm is still suitable for the IPRNPA problem, as we demonstrate in this section.

Our heuristic is initially tailored to the static version of the IPRNPA problem, but 
its scope extends beyond the static setting. In fact, the heuristic does not require to 
have all information about patients available in advance and can easily be extended 
to a variety of dynamic settings. As an illustrative example, instead of restricting 
patient transfers between rooms to happen between a night shift and the follow-
ing early shift as in the static IPRNPA problem, the heuristic could handle patient 
transfers whenever new information about patients is obtained. The same applies for 
NPAs, which could alternatively be allowed also during shifts whenever new infor-
mation becomes available. Thus, even complex dynamic problem settings based on 
dynamic PRA problems such as the one considered by Ceschia and Schaerf (2011, 
2012) can be handled without difficulties.

5.2.1 � Algorithm description

The heuristic assigns patients to rooms and nurses to patients in a greedy fashion. 
To this end, the heuristic considers the days of the planning period chronologically, 
where each day is represented by the corresponding early shift. For each day, the 
heuristic iteratively fixes both the PRA and the NPA for only this day jointly for a 
single patient in a way that yields the lowest current contribution to the objective 
function. After each such assignment, the current objective function contributions 
of the remaining possible assignments for the day are updated before the assign-
ments for the next patient are fixed. Once the room and nurse assignments have been 
fixed for all patients that are on the ward during the considered day, the heuristic 
moves on to the next day. During this iterative process, we have to take into account 
that decisions for the two kinds of assignments are made on different time scales. 
Concerning PRAs, a decision about the room the patient is assigned to is made only 
once per day before the start of the early shift, whereas, concerning NPAs, three dif-
ferent nurse must be assigned to a patient for each day (for the early, late, and night 
shift) since each nurse works at most one shift per day.

We now describe our heuristic, whose pseudocode is shown in Algorithm  1, 
more formally. Here, we first describe the algorithm without the heterogeneity check 
between patient admission and discharge times that is represented by the heteroge-
neity matrix HetMatrix in the pseudocode and is motivated and explained afterwards 
in Sect. 5.2.2.

Upon initialization of the heuristic, all relevant assignment variables  xp,n,s 
and yp,r,s are set to 0 to indicate that no assignments have been made so far. After-
wards, the days of the planning period are considered in chronological order rep-
resented by their early shifts. When considering a day of the planning period 
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represented by the corresponding early shift s ∈ S
early , the set of relevant patients 

for which room and nurse assignments are to be made for this day is denoted by 
P(s) ≔ {p ∈ P ∶ ad_shift (p) ≤ s ≤ di_shift (p)} . Note that  P(s) also includes 
patients that have been on the ward already on the previous day if they have not been 
discharged yet since the room and nurse assignments for such patients have so far 
only been fixed up to the previous day. At each point during the assignment process 
for the day, the set of rooms that are still available (i.e., not yet fully occupied) is 
denoted by R(s) ⊆ R . The set of nurses who are on duty on the corresponding day 
is partitioned according to their assigned shifts into Nearly(s) , Nlate(s) , and Nnight(s) . 
Consequently, the Cartesian product Ncomb(s) ≔ N

early(s) ×N
late(s) ×N

night(s) cor-
responds to all possible ordered triples of nurses that can potentially be assigned to 
a patient during the three shifts of the day that starts with the early shift s ∈ S

early . 
The potential contributions to the objective function for each triple (p, ncomb, r) con-
sisting of a patient  p ∈ P(s) , a triple ncomb ∈ N

comb(s) of nurses, and an available 
room r ∈ R(s) are stored in a contribution table denoted by ContribTable.

Whenever the heuristic starts considering some day of the planning period start-
ing with early shift s ∈ S

early , the contribution table is filled with the current contri-
butions that correspond to the potential assignments of patients  p ∈ P(s) to nurse 
combinations ncomb ∈ N

comb(s) and rooms r ∈ R(s) . These current contributions are 
computed based on the changes to the objective function value that would currently 
be induced by the corresponding assignments. Here, the objective function is the 
same weighted sum of the objectives (1)–(9) as in the MIP described in Sect. 4.

The heuristic then fixes the assignments of rooms and nurse combinations for the 
day represented by early shift s for all patients in P(s) in a greedy fashion. This is 
done by iteratively identifying the triple (p, ncomb, r) that has the lowest contribu-
tion value in ContribTable and setting the values of the corresponding assignment 
variables  xp,n,s and  yp,r,s to  1, which means that patient  p is assigned to the nurse 
combination ncomb and the room r. Subsequently, the allocated patient p is removed 
from P(s) and the room  r is removed from R(s) in case that the assignment has 
resulted in full occupancy of room r on the corresponding day. Moreover, the contri-
bution table ContribTable needs to be updated by removing all entries correspond-
ing to patient p and possibly room r. In addition, the update involves adjusting the 
objective contributions for the remaining possible assignments of the day to ensure 
that they accurately represent the new state of PRA and NPAs. For example, the 
previously-calculated contribution to the gender mixing objective for room  r is 
updated for all remaining patients in P(s) with a different gender than the patient p 
just assigned. After the updated contribution table has been computed, the heuris-
tic continues with the next iteration based on the updated contribution table until 
P(s) = � (i.e., all assignments for the current day have been fixed) and the procedure 
continues with the next day.

The heuristic terminates once the last day of the planning period has been con-
sidered, i.e., once all PRA and NPAs have been fixed for the whole planning period.
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5.2.2 � Heterogeneity check between patients

A point that is not considered in the heuristic as described so far is the coordination 
of arrivals and discharges of patients that are assigned to the same room. If occu-
pancy levels are high, this could lead to the unnecessary creation of gender-mixed 
rooms or avoidable patient transfers. For example, assigning several male patients 
with similar arrival and discharge shifts to different rooms instead of the same room 
might leave no other rooms available for female patients admitted shortly afterward 
unless some of the male patients are transferred. To avoid such unfavorable incidents 
explicitly, we next describe a new patient-to-patient heterogeneity measure, whose 
values are stored in a heterogeneity matrix. This heterogeneity matrix is used in the 
heuristic to assign patients who are discharged at similar times to the same room by 
explicitly incorporating discharge shifts during the computation of possible objec-
tive function contributions.

The proposed patient-to-patient heterogeneity measure is based on the differ-
ence between two patients’ discharge shifts. Formally, for two patients  p, p� ∈ P , 
we let di_shift_diff(p, p�) denote the absolute difference between the discharge shifts 
di_shift (p) and di_shift (p�) . The heterogeneity for the two patients is then calculated 
by the following formula2:

This means that the heterogeneity value het(p, p�) is the natural logarithm of the dif-
ference between di_shift (p) and di_shift (p�) . Here, the logarithm is used in order 
to limit the growth of the values in cases where the planning period is long, where 
large values would otherwise occur. Note that, since the logarithm is a strictly 
increasing function, a lower heterogeneity value for two patients signifies more simi-
lar discharge dates and, thus, a better fit between the two patients to be assigned to 
the same room.

The heterogeneity values of all patient pairs are calculated upon initialization of 
the heuristic and stored in a heterogeneity matrix denoted by HetMatrix . Here, since 
the heterogeneity values are symmetric (i.e., het(p, p�) = het(p�, p) for all p, p� ∈ P ), 
it suffices to compute the values above the main diagonal of the matrix to improve 
efficiency. The heterogeneity values of patient pairs are then used whenever the cur-
rent objective contributions are computed for an assignment that involves assigning 
a patient to a room to which other patients have already been assigned on the same 
day. In this case, the appropriately weighted maximum of the heterogeneity values 
between the new patient and the already assigned patients is added as an additional 
summand to the current objective contributions.

het(p, p�) ≔ ln di_shift_diff(p, p�)

2  In case that di_shift (p) = di_shift (p�) , where the argument of the logarithm equals zero, we set 
het(p, p�) to zero. In all other cases, the value is strictly positive.
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Algorithm 1   IPRNPA heuristic

6 � Instance generator and case study

We now present a detailed description of the parameterized instance generator that 
we developed to create realistic test instances of the IPRNPA problem. Afterwards, 
we present the structure and key data of the real-world instances obtained from our 
partner hospital. The concrete parameter values used for generating the artificial 
instances as well as the numbers of instances considered will be described in Sect. 7.

6.1 � Instance generator

In order to generate larger numbers of realistic test instances, we developed a param-
eterized IPRNPA problem instance generator. The source code of the instance gen-
erator is publicly available on GitHub at https://​doi.​org/​10.​5281/​zenodo.​12750​420. 
Additionally, a solution checker for these instances can be found at https://​doi.​org/​
10.​5281/​zenodo.​12750​359.

The instance generator offers the possibility to create a specifiable number of 
test instances based on user-defined parameters. These parameters include the num-
ber of instances to be created and the option to specify the length of the planning 
period in weeks. The remaining input parameters can be divided into two main 
categories: room-related parameters and nurse-related parameters. In the context 
of room-related parameters, aspects such as the number of patient rooms, their 
capacity (single, double, triple, or quadruple rooms), occupancy rate, presence of 
additional rooms, and possible types of room equipment play a central role. In the 

https://doi.org/10.5281/zenodo.12750420
https://doi.org/10.5281/zenodo.12750359
https://doi.org/10.5281/zenodo.12750359
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context of nurse-related parameters, significant options for fine-tuning are available. 
This includes setting the maximum desired workloads for nurses and specifying the 
skill levels to be considered. Concerning the total number of available nurses and 
the nurse roster, the generator operates in two modes: manual and automatic. In the 
manual mode, the user specifies the number of nurses explicitly, based on which 
the generator strives to create a feasible nurse roster using the binary integer pro-
gram (BIP) outlined in Appendix A. In the automatic mode, on the other hand, the 
generator increases the number of nurses until a feasible nurse roster can be gener-
ated using the BIP.

The output of the generator is a set of instances of the specified cardinality. In 
each instance, a defined number of rooms is described, which is divided into single, 
double, triple, and quadruple rooms according to the specified distribution of room 
sizes. The rooms are assigned randomly selected equipment from the specified types 
of possible equipment. Additional rooms such as nursing stations or storage rooms 
can be added, and a minimum of one such room is required to calculate walking dis-
tances based on the star-like walking pattern. The weighting factors that determine 
the importance of the circular versus the star-like walking pattern depend on the 
type of shift. The circular pattern is favored during early shifts, a more equal split 
during late shifts, and the star-like pattern during night shifts.

The number of nurses is derived from the number of patient rooms, the distribu-
tion of the number of beds per room, and the number of nurses of each skill level 
required per shift, all of which are specified when creating an instance. In instances 
where three skill levels are specified, we assume that 20% are experienced nurses 
(skill level 3), 60% are regular nurses (skill level 2) and that 20% are trainees (skill 
level 1). For instances with two skill levels, we assumed that 80% are skill level 2 
and 20% are skill level 1. Additionally, the maximum desired workload associated 
with each skill level is set to 10 for skill level 1, 12.5 for skill level 2, and 15 for skill 
level 3. This represents an average nurse-to-patient ratio of 1:4, 1:5, and 1:6, respec-
tively, during each shift.

The patients are generated based on the room configuration and the desired 
occupancy level. Each patient is assigned a ten-year age group uniformly sam-
pled from 20–30 to 90–100, and, an admission shift, based on the number of 
rooms and the rooms’ capacities. A patient’s discharge shift is set as the mini-
mum of the admission shift plus a sampled length of stay (LOS) in days, drawn 
from a discrete uniform distribution on {1,… , 5} , or the last shift of the plan-
ning period. Gender is currently assigned based on a 50-50 female-male split. 
The nurse skill level required for each shift of a patient’s LOS is assumed to 
decrease monotonously. The workload generated by a patient p during each shift 
is based on a gamma distribution with � = 3 , � = 0.5 + age_group (p)∕10 , with a 
minimum of 1, a maximum of 5, and an exponential smoothing parameter of 0.1 
that describes the monotonous decrease. The equipment required by the patient is 
sampled from the types of possible room equipment and assumes monotonously 
decreasing requirements over the shifts of a patient’s LOS.
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6.2 � Real‑world instances

To investigate the potential of our methods using real-world data, we also test 
them on real-world instances from a Short Stay Unit of our partner hospital. As 
with our instance generator, these instances are publicly available on GitHub at 
https://​doi.​org/​10.​5281/​zenodo.​12750​420.

The considered ward is not restricted to a single medical specialty, but only 
patients requiring care that can be delivered according to a strict protocol are 
admitted. Consequently, there are no acute admissions to this ward and admission 
and discharge dates of patients as well as their care requirements are known in 
advance. The ward is closed on weekends, so each patient’s ward LOS is at most 
five days.

During the week, the nursing staff operates in three shifts (early, late and night) to 
ensure continuous day and night care. Due to the protocol-based care, the nurses who 
work on the ward do not specialize in a single medical specialty, but require a broad 
skill set. There are two nurse skill levels: experienced and trainee. One experienced 
nurse can take care of four to six patients simultaneously during a shift depending 
on the patient’s care requirements and the nurse’s experience, while trainee nurses 
can take care of about two patients in parallel. There is no particular nurse-to-patient 
ratio during night shifts, but at least two nurses must always be present.

The ward consists of 17  patient rooms of varying sizes: four single rooms, 
10 double rooms, two triple rooms, and one quadruple room. Therefore, the ward 
has a total capacity of 34 beds. Additionally, there is one nursing station where 
the nurses are usually located when they are not attending to patients. We were 
provided with the floor plan to estimate the walking distances between the rooms, 
which we calculated according to the shortest walking path between the centers 
of each room pair.

In our numerical experiments, we use real admission data and nurse rosters of 
40 weeks (about nine months), from before the COVID-19 pandemic. Because the 
ward closes on the weekend, each week in the data can be considered as a sepa-
rate instance. We acknowledge that, despite the comprehensive dataset shared by the 
hospital, certain input data have been omitted due to privacy concerns in order to 
safeguard individual patient identities. For example, data on the skill levels required 
for taking care of individual patients and the resulting patient-specific workloads for 
nurses have not been provided. These missing data have been generated using the 
corresponding functions of our instance generator presented in Sect. 6.1 based on 
realistic parameter values that have been established in cooperation with Amster-
dam University Medical Center (see Sect. 6.2). The data provided led to infeasible 
instances for two weeks. In one case, a patient was assigned to a shift for which no 
nurse was on duty, while in the second instance, a shortage in bed capacity during a 
particular shift rendered it infeasible to accommodate the required patient load.

https://doi.org/10.5281/zenodo.12750420
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7 � Experimental results

This section presents our experimental results obtained by testing the MIP as 
well as the solution methods presented in Sect.  5 on both artificial instances 
generated by our instance generator from Sect. 6.1 and the real-world instances 
described in Sect.  6.2. Furthermore, in Sect.  7.3, we explore the impact of 
adopting an integrated planning approach in comparison to the sequential solu-
tion approach, while also conducting an analysis of conflicting objectives.

All computational experiments were performed on a Linux system running 
Ubuntu  23.04. The hardware includes an AMD EPYC  7542 processor with 
32 CPU cores and 64  threads, operating at a base clock speed of 2.9GHz. The 
system is equipped with 512  GB of memory. The experiments were imple-
mented using Python  3.11 and Gurobi  10.0.1. To solve the completely inte-
grated MIP presented in Sect. 4 and the two submodels in the sequential solution 
approach from Sect. 5.1, we dedicated 8 threads to each instance when solving 
with Gurobi.

As described in Sect.  4, the objective function to be minimized consists of 
a weighted sum of several separate objectives. The specific weights for these 
objectives were determined based on the existing literature and discussion with 
our partner hospital. The weights from the existing literature were taken from 
Demeester et al (2010) and are as follows: the patient transfers objective (1) was 
assigned a weight of 11, the gender mixing objective (3) a weight of 5, and the 
equipment violation objective  (4) a weight of  5. These weights are frequently 
employed in similar optimization studies (e.g., Ceschia and Schaerf 2011; Range 
et al 2014; Thuran and Bilgen 2017), contributing to consistency and compara-
bility across research in the field. Furthermore, in consultation with our part-
ner hospital the following weights were established: the patient inconvenience 
objective (2) and the continuity of care objective (5) were each given a weight 
of  1, the penalization of skill level requirements objective  (6) and undesired 
workload distributions objective (7) a weight of 5, the assignment of the mini-
mum number of nurses per room objective  (8) a weight of  2, and the walking 
distances objective  (9) a weight of  0.05. We extensively discussed the signifi-
cance of the various objectives with a contact person from the hospital. This 
individual is not only familiar with our model but also possesses expertise in 
MIP modeling, which informed our decision-making process. When applying 
our heuristic, we also considered the heterogeneity values of patient pairs as dis-
cussed in Sect. 5.2.2. Here, we assigned a weight of 1 to incorporate this factor.

The objective values in the following experiments are presented as relative 
percentages to allow for clearer comparison within and across different solution 
methods. Reporting absolute numbers can be ambiguous, as specific weightings 
influence them and lack interpretative clarity. Using relative percentages ensures 
a more coherent analysis and an easier understanding of the results. For trans-
parency, we have published the absolute numbers on GitHub at https://​doi.​org/​
10.​5281/​zenodo.​12750​420.

https://doi.org/10.5281/zenodo.12750420
https://doi.org/10.5281/zenodo.12750420


Integrated patient‑to‑room and nurse‑to‑patient assignment

7.1 � Artificial instances

We established a structured framework involving two distinct scenarios, each subdi-
vided into three specific variations and two different planning period lengths. This 
results in a total of 12 scenario-variation-planning period combinations. For each of 
these 12 combinations, we generated 10 artificial instances using our instance gen-
erator described in Sect. 6.1.

The two scenarios encompass configurations of 30 and 60 beds. Within each sce-
nario, Variation 1 comprises exclusively double rooms, Variation 2 exclusively triple 
rooms, and Variation 3 encompasses a diverse mix of room types, including single, 
double, triple, and quadruple rooms. For the 30 beds scenario, this allocation trans-
lates to 3  single rooms, 5  double rooms, 3  triple rooms, and 2  quadruple rooms. 
These numbers are doubled for the 60 beds scenario. Moreover, our investigation 
includes two different planning period lengths for each scenario-variation combina-
tion, spanning either 2 or 4 weeks.

Throughout our analysis, we used input parameters for our instance generator 
that encompass two distinct equipment types, three possible nurse skill levels, the 
inclusion of a nursing station as an additional room, and a constant occupancy rate 
of 85%.

In addressing the given scenarios, we applied three distinct solution methods 
to solve the artificial instances, which we will refer to as Methods 1–3 in the fol-
lowing: the MIP from Sect.  4 (Method  1), the sequential solution approach from 
Sect. 5.1 (Method 2) and the heuristic solution approach from Sect. 5.2 (Method 3). 
For Method 1, the runtime was limited to a maximum of 3 h (10800 s). In the case 
of Method 2, the same total runtime limit was evenly distributed between the two 
addressed submodels. Additionally, we configured all MIPs to be terminated when 
the MIP gap falls below  5%. The results, including objective values and runtime 
data, are presented in Table 1.

The reported results present the objective values as percentages, with the 
Method 1 objective value serving as the baseline for each instance. These percent-
ages represent the resulting objective proportions, averaged across the 10 instances 
for each scenario-variation-planning period combination. It is important to empha-
size that values below 100 indicate superior performance to Method  1 since the 
model aims to minimize the objective function. Notably, Method 2 consistently out-
performs Method  1 in all scenario-variation-planning period combinations, while 
Method 3 solution approach surpasses Method 1 in nearly all instances. When com-
paring Method 2 to Method 3, it becomes clear that Method 2 excels in the 30 beds 
scenario but lags behind Method 3 for the 60 beds scenario. The standard deviation 
of the objective values for Method 2 and Method 3 is generally low across most sce-
nario-variation-planning period combinations. However, a few instances with higher 
standard deviations can be attributed to a handful of strongly deviating instances.

When comparing the runtimes of the three methods, it is evident that Method 1 
consistently exceeded the runtime limit in all instances, while Method 2 did so in 
nearly all instances. In contrast, Method 3 displayed remarkable efficiency, requir-
ing, on average, only 27 to 79 seconds for the 30 beds scenario instances and 874 to 
1773s for the 60 beds scenarios. This disparity in runtimes is primarily due to the 
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Table 1   Artificial instances: Runtimes and objective values

Scenario Variation Planning
horizon

Runtime 
[seconds]

Objective value1

Avg Stdev Avg [%] Stdev [%]

Method 1: MIP
30 beds Var. 1 (double rooms) 2 weeks 10800 0 100 0

4 weeks 10800 0 100 0
Var. 2 (triple rooms) 2 weeks 10800 0 100 0

4 weeks 10800 0 100 0
Var. 3 (mixed rooms) 2 weeks 10800 0 100 0

4 weeks 10800 0 100 0
60 beds Var. 1 (double rooms) 2 weeks 10800 0 100 0

4 weeks 10800 0 100 0
Var. 2 (triple rooms) 2 weeks 10800 0 100 0

4 weeks 10800 0 100 0
Var. 3 (mixed rooms) 2 weeks 10800 0 100 0

4 weeks 10800 0 100 0
Method 2: Sequential solution approach
30 beds Var. 1 (double rooms) 2 weeks 10800 0 60 3

4 weeks 10800 0 50 10
Var. 2 (triple rooms) 2 weeks 6604 469 73 2

4 weeks 10800 0 42 9
Var. 3 (mixed rooms) 2 weeks 9855 927 65 3

4 weeks 10800 0 47 10
60 beds Var. 1 (double rooms) 2 weeks 10800 0 26 2

4 weeks 10800 0 28 3
Var. 2 (triple rooms) 2 weeks 10800 0 21 4

4 weeks 10800 0 25 3
Var. 3 (mixed rooms) 2 weeks 10800 0 24 2

4 weeks 10800 0 24 1
Method 3: Heuristic solution approach
30 beds Var. 1 (double rooms) 2 weeks 27 1 87 4

4 weeks 56 1 71 15
Var. 2 (triple rooms) 2 weeks 38 1 117 3

4 weeks 79 1 66 14
Var. 3 (mixed rooms) 2 weeks 31 1 100 5

4 weeks 64 2 71 15
60 beds Var. 1 (double rooms) 2 weeks 889 42 17 1

4 weeks 1520 64 16 0
Var. 2 (triple rooms) 2 weeks 1065 42 19 3

4 weeks 1773 52 19 2
Var. 3 (mixed rooms) 2 weeks 874 53 19 1

4 weeks 1515 116 17 0
1  Objective values are provided as proportions (expressed as percentages) of those obtained using 
Method 1. Values below 100 indicate superior performance to Method 1



Integrated patient‑to‑room and nurse‑to‑patient assignment

non-linear growth in nurse combinations for one-day NPAs, as the heuristic assigns 
three nurses simultaneously. In total, the 30 beds scenario had 21 nurses available 
to be on duty, while the 60  beds scenario had 31 nurses. Additionally, for each 
scenario-variation-planning period combination, the runtimes remained stable with 
low standard deviation, highlighting the consistency of Method 3’s performance. 
Doubling the planning horizon from 2 to 4 weeks in both scenarios and variations 
resulted in an approximate doubling of the runtime, indicating a linear relationship 
between runtime and planning horizon length.

By factoring in the achieved MIP gaps (Table 6 in Appendix B) alongside the 
objective values and runtimes, we gain insights into the difficulty levels of each 
scenario-variation-planning period combination. Variation  2, which exclusively 
considers triple rooms in the 30 beds scenario, emerges as the easiest to solve for 
Method  1, while Variations  1 and 3, focusing on double rooms and a mixed set 
of room types, respectively, seem equally challenging. Notably, Method 3 exhibits 
greater efficiency in Variations  1 and 3 compared to Variation 2 when consider-
ing MIP gaps and runtimes. In relation to efficiency, the conclusion for Method 
2 is less clear, with a higher MIP gap in the PRA subproblem resulting in a lower 
MIP gap of the NPA subproblem and vice versa. MIP gaps exceeding 100% for 
Method 1 indicate cases where the initial root relaxation of the MIP model could 
not be solved within the runtime limit, resulting in Gurobi finding suboptimal heu-
ristic solutions. In summary, Method  3 consistently outperforms Method  1 and 
Method 2 across all cases, excelling in runtime, objective value, or both, particu-
larly in complex scenarios where achieving optimality is notably demanding.

Since the considered objective function is a weighted sum of the separate 
objective functions (1)–(9), we also consider the values of these separate objec-
tive functions for a more comprehensive analysis. The detailed outcomes are 
presented in Table 2.

Upon examining each objective separately, several noteworthy observations 
emerge. Method  2 and Method  3 in both scenarios exhibit a notable advantage 
over Method  1 in strictly minimizing patient transfers (objective  (1)). The objec-
tives related to continuity of care (objective  (5)) and the number of nurses per 
room (objective (8)) exhibit similar behavior across Methods 1 to 3. Gender mixing 
(objective (3)) is strongly avoided in Method 2 and to a moderate extent in Method 3. 
Interestingly, it is worth noting that equipment violations (objective  (4)) are more 
pronounced in Methods 2 and 3 only in the 30 beds scenario, while this issue does 
not appear as prominently in the 60  beds scenario. In Methods 2 and 3, the skill 
violation objective (6) worsens with higher bed numbers due to the infrequent skill 
violations in Method 1, leading to substantial percentage variations. These findings 
underscore each method’s distinct strengths and weaknesses in addressing specific 
objectives.
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7.2 � Real‑world instances

To test all developed methods using real-world data, we sourced data from a Short 
Stay Unit of our partner hospital as described in Sect. 6.2. The dataset comprises 
40 individual instances, each spanning a planning period of one week.

To address the absence of certain input data needed for the IPRNPA problem, 
we generated the missing information using the corresponding functions imple-
mented in our instance generator introduced in Sect. 6.1 based on realistic param-
eter values established in cooperation with our partner hospital. Specifically, we uti-
lized the functions to generate data on nurse skill level requirements of patients and 
nurse workloads induced by patients. This approach allowed us to create complete 
instances for our analyses whilst maintaining patient privacy and confidentiality.

When comparing average (minimum, maximum) parameter values across the 
considered instances, we observe notable variations. There are approximately  17 
(min. 13, max. 23) nurses attending to around 62 (min. 45, max. 76) patients. Patient 
LOS are around 4.1 (min. 3.6, max. 4.8) shifts, resulting in an average occupancy 
rate of 61% (min. 46%, max. 72%), while each patient causes a workload of about 
2.7 (min. 2.2, max. 3.1) during a day shift, i.e., early and late shift.3 We selected 
the 20 instances with the highest occupancy rates from the available dataset for fur-
ther analysis, taking care to exclude holiday times and instances exhibiting unnatural 
utilization levels. This careful selection process ensures that the chosen instances 
accurately represent the most demanding and meaningful scenarios for in-depth 
examination.

Table 2   Artificial instances: Separate objective values differentiated by method

1  Objective values are provided as proportions (expressed as percentages) of those obtained using 
Method 1 (MIP)

Objective Method 1 Method 2 Method 3

Obj. value1 Obj. value1 Obj. value1

30 beds 
[%]

60 beds 
[%]

30 beds 
[%]

60 beds 
[%]

30 beds 
[%]

60 beds [%]

(1) Transfers 100 100 0 20 1 4
(2) Inconvenience 100 100 30 41 64 55
(3) Gender mixing 100 100 2 2 41 27
(4) Equipment viola-

tion
100 100 205 24 420 75

(5) Continuity of care 100 100 103 110 97 101
(6) Skill 100 100 218 456 378 847
(7) Workload 100 100 35 17 97 8
(8) Nurses per room 100 100 79 109 75 100
(9) Walking distances 100 100 59 35 52 26

3  The presented LOS and workload numbers are averages over all patients of an instance.
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In tackling the real-world instances, we again applied all three solution methods 
referred to as Methods 1–3 as in Sect. 7.1. The termination criteria based on runtime 
limits and MIP gap were also adopted from Sect.  7.1. The results, encompassing 
objective values and runtime data, are presented in Table 3.

The results in real-world instances parallel those in the artificial ones (Sect. 7.1) 
concerning running time limits, where Method  1 consistently reaches the time 
limit in all cases. In Method 2, the running time limit is only exceeded in the PRA 
subproblem of instance  20. In stark contrast, Method  3 demonstrates remarkable 
efficiency, with an average running time of just 10  seconds, vastly outperforming 
Method 2, which has an average running time of 2682 seconds.

Regarding objective values, Method 1 consistently outperforms Methods 2 and 
3 in almost all instances, with average objective values of 106% and 136%, respec-
tively. The real-world instances are less complex than the artificial 30 beds scenario, 
evidenced by an average MIP gap of 43% (Table 7 in Appendix B). Method 2 opti-
mally solves all PRA subproblems except for instance 20, where a 100% MIP gap 

Table 3   Real-world instances: Runtimes and objective values

1  Objective values are provided as proportions (expressed as percentages) of those obtained using 
Method 1 (MIP)
2  Average across all instances

Instance # Method 1: MIP Method 2: Sequ. sol. app. Method 3: Heur. sol. app.

Runtime 
[seconds]

Obj. value1 
[%]

Runtime 
[seconds]

Obj. value1 
[%]

Runtime 
[seconds]

Obj. value1 
[%]

1 10800 100 5401 98 11 118
2 10800 100 3638 101 9 118
3 10800 100 3005 107 10 147
4 10800 100 3079 100 11 134
5 10800 100 4298 103 9 122
6 10800 100 3775 105 10 130
7 10800 100 1139 99 11 129
8 10800 100 2914 104 11 131
9 10800 100 831 112 10 147
10 10800 100 1491 113 13 145
11 10800 100 2856 104 10 130
12 10800 100 2740 105 10 157
13 10800 100 548 110 8 147
14 10800 100 164 121 6 140
15 10800 100 3014 112 9 124
16 10800 100 4895 109 9 151
17 10800 100 2065 108 10 127
18 10800 100 416 102 10 120
19 10800 100 1573 108 10 140
20 10800 100 5806 104 12 165
Total2 10800 100 2682 106 10 136
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occurs because the lower bound equaled 0. In NPA subproblems, the MIP gap drops 
below 5% during runtime, prompting the optimization to halt accordingly.

In summary, the evaluation of three methods for healthcare management optimi-
zation reveals distinct trade-offs. Method 1, while suitable for small-scale settings 
such as those provided by our partner hospital, suffers from prohibitively high run-
ning time costs, often taking thousands of seconds to achieve results comparable 
to the heuristic, which only needs a few seconds. For medium-sized problems like 
the 30 beds scenario, Method 2 delivers superior results compared to Method 3 at 
the expense of significant running time. In contrast, Method 3 consistently stands 
out regarding running time efficiency across problem sizes and showcases excellent 
objective values, particularly in larger scenarios like the 60 beds scenario. Hence, 
Method 3 emerges as the preferred choice for optimizing healthcare management, 
striking a favourable balance between computational efficiency and solution quality, 
especially in more extensive and complex healthcare settings.

7.3 � Sensitivity analyses

In this section, we examine the consequences of adopting an integrated planning 
approach as opposed to the sequential solution approach (Sect. 7.3.1). Further, we 
conduct an analysis of conflicting objectives by successively amplifying the weights 
of each objective (Sect. 7.3.2).

7.3.1 � Magnitude of effect analysis

This section investigates the impact of adopting an integrated planning approach 
(Method  1: MIP) for the IPRNPA problem in contrast to a sequential solution 
approach (Method 2). In particular, we investigate whether the integration of the two 
assignment problems leads to improvements with respect to the objectives that rely 
on the interaction of PRA and NPA. These objectives include assigning the minimum 
possible number of nurses to patients in the same room (objective (8)) or minimizing 
the nurses walking distance (objective (9)). To systematically investigate these effects 
in various settings, we again use the three variations of double, triple, and mixed room 
introduced in Sect.  7.1. To achieve optimal solutions, we use small-scale problem 
instances, limiting the planning horizon to 2 days (6 shifts), with a fixed capacity of 
18 beds for all variations. Additionally, a maximum runtime of 120 h is imposed. Vari-
ation 1 comprises 9 double rooms, Variation 2 includes 6 triple rooms, and Variation 3 
encompasses 2 single rooms, 3 double rooms, 2 triple rooms, and 1 quadruple room. 
To ensure robustness and generalizability, 5 instances are generated for each variation 
using our developed instance generator. Table 4 shows the relative objective values of 
optimal solutions obtained using the sequential solution approach (Method 2) in rela-
tion to those of optimal solutions of the integrated MIP model (Method 1).

Given the short planning horizon of 2 days, it is natural that transfers and equip-
ment violations do not occur for any instances, irrespective of the variation, and there 
is no difference in the continuity of care objective between the two methods. As is to 
be expected, by first solving the PRA separately before solving the NPA, Method 2 
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obtains better results on average for some of the PRA objectives (objectives  (2) 
and  (3)), but notably worse results for some of the NPA objectives (most notably, 
objective  (6)). More interestingly, for the objectives that rely on the integration of 
the two subproblems, Method  2 results in Variation  1 (2, 3) showing, on average, 
11% (31%, 34%) more assigned nurses per room and a 32% (65%, 54%) increase in 
nurses’ walking distance. In extreme cases, walking distances double, while at mini-
mum, they are at least 25% longer. This shows that a lack of integration in solving the 
IPRNPA leads to severe penalization of nursing staff. During staff shortages, valuable 
working time is wasted as walking time instead of being utilized to care for patients. 
Furthermore, the higher number of nurses assigned to the same room increases dis-
turbances of patients and the risk of infections spreading between rooms by nurses. 
The overall performance evaluation reveals that, on average, Method  2 exhibits a 
4% (3%, 7%) decline in its total weighted objective for Variation 1 (2, 3) instances, 
respectively. Notably, this decline fluctuates within a range of 3% (2%, 5%) to 5% 
(3%, 9%). It is crucial to acknowledge that the efficacy of Method 1’s improvement 
is highly dependent on the assigned weights. Specifically, allocating more weight 
to objectives (6), (8), and (9) significantly magnifies the magnitude of the observed 
effects and, therefore, further increases the benefits of using an integrated planning 
approach.

7.3.2 � Conflicting objectives analysis

To examine the trade-off impacts among objectives (1)–(9), we generated nine addi-
tional scenarios. In each scenario, we independently increased the weight associated 
with one of the objectives by a factor of 10, while keeping all other weights constant. 
In order to investigate the effect of these scenarios, we used artificial instances with 
60 beds and a planning horizon of two weeks. Due to the computational constraints 
imposed by the size of the problem instances and planning horizon, we employed 
the heuristic solution approach (Method 3), which allows us to observe the trade-
off impacts within realistic settings while ensuring computational feasibility. Other 
solution methods, such as solving the MIP (Method  1), were deemed unsuitable 
due to their excessive runtimes. Specifically, the MIP approach would have limit 
the problem instances in terms of bed capacity and planning horizon, consequently 
negating the significance of objective (1) (see Sect. 7.3.1).

The sensitivity analysis, as detailed in Table 5, provides valuable insights into the 
impact of emphasizing various objectives in the optimization process. Notably, focus-
ing on the transfer objective (1) yields a scenario where all transfers are successfully 
avoided, albeit with a noticeable increase in gender mixing violations. On the other 
hand, prioritizing the patient inconvenience objective (2) proves effective in reducing 
inconvenience by an impressive 85%. However, this comes at a cost, quadrupling the 
number of transfers, doubling gender mixing violations, raising equipment violations 
by about 21%, and increasing nurses’ walking distances by 10%. The gender mix-
ing objective  (3) stands out as a success in avoiding gender mixing violations and 
simultaneously reducing transfers by 24%, showing no significant deviations in other 
objectives. Conversely, prioritizing the equipment violations objective  (4) results 
in a fivefold increase in transfers and a 39% increase in gender mixing violations. 
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Focusing on the continuity of care objective  (5) leads to a scenario with five and 
a half times more transfers, 12% additional gender mixing violations, and a 13% 
increase in skill violations. Stressing the skill level violations objective (6) results in 
eight times more transfers, a 21% increase in gender mixing constraints, and a 15% 
longer walking distance for nurses. Emphasizing the workload objective  (7) yields 
a modest 5% reduction in workloads and a 10% decrease in transfers, with minimal 
impacts on other objectives. Focusing on the nurses per room objective (8), however, 
leads to only a 5% reduction in the number of nurses per room, accompanied by a 
fivefold increase in transfers, a 14% rise in inconvenience, a 51% increase in gender 
mixing violations, and a 19% increase in workload. Finally, emphasizing walking dis-
tances objective (9) increases the number of transfers by a factor of eleven, gender 
mixing violations by 35%, continuity of care by 14%, and nurse workloads by 16%.

Summarizing the conflicting objectives analysis, when assessing deviations 
exceeding 10%, two objectives stand out as the most conflicting (see Table  5 col-
umns): the gender mixing objective  (3), influenced by 7 out of 8 other amplified 
objectives, and the transfers objective  (1), impacted by 6. Surprisingly, no devia-
tions exceeding 10% occur in the nurses per room objective in any scenario, indicat-
ing its stability. The transfer objective is notably sensitive to changes in most of the 
NPA objectives ((5), (6), (8), (9)) which highlights the significant impact of the NPA 
on the PRA. These findings underscore the intricate trade-offs involved in solving 
the IPRNPA and the need for an integrated and balanced approach to meet various 
objectives.

8 � Conclusion and outlook

Motivated by important interactions of PRA and NPA decisions in hospital wards, 
this paper explicitly considers both types of assignment decisions in one integrated 
optimization problem for the first time. We introduce the IPRNPA problem and pro-
vide a formal mathematical description as a mixed integer program. Since the PRA 
problem and the NPA problem are already NP-hard and very difficult to solve for 
realistic instance sizes, it is unsurprising that the integrated problem is computation-
ally challenging and cannot be solved to (near) optimality in reasonable time using 
the completely integrated MIP model. Therefore, we present an efficient heuristic 
for the integrated problem that can compute high-quality solutions quickly on both 
artificially generated and real-world instances obtained from our partner hospital. 
The managerial insights from this study are threefold. First, the heuristic solution 
approach highlighted its superiority in running time efficiency across various prob-
lem sizes, particularly excelling in larger and more complex scenarios. While the 
integrated MIP struggles with high running times, the heuristic solution approach 
strikes a favorable balance between computational efficiency and solution quality. 
Its superiority in objective values is notably pronounced in medium and large-scale 
scenarios, making it the preferred choice for real-world settings. Second, integrating 
PRA and NPA is crucial for reducing nurse walking distances and minimizing the 
number of nurses assigned to the same room. Without this integration, operational 
inefficiencies lead to longer walking times, more frequent patient disturbances, and 
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increased risk of infection spread. Third, the study’s analysis of conflicting objec-
tives reveals significant conflicts, particularly in equipment violations and transfers 
objectives, both influenced by other factors. This underscores the complexity of 
the considered integrated planning problem and the need for a balanced, integrated 
approach to meet various objectives while minimizing adverse effects on patient 
care and operational efficiency.

We also devise a parameterized instance generator for the problem. This genera-
tor is made freely available to other researchers to foster additional investigations on 
the IPRNPA problem, which we believe represents a challenging and practically rel-
evant problem to be further investigated in the future. For instance, while our heuris-
tic solution method allows easy adaptions to some dynamic versions of the problem, 
explicitly investigating different dynamic extensions with increasing degrees of data 
uncertainty (e.g., patient no-shows or unexpected changes of patients’ care require-
ments and/or LOS after admission) might represent a fruitful direction for future 
research. Moreover, while the nurse roster for the planning period is considered as 
an input of the problem in this paper, integrating rostering decisions into the prob-
lem formulation might represent an interesting extension.

Appendix A Nurse rostering formulation

We use a simple binary integer programming formulation to generate the nurse 
rosters that are part of our random instances. The formulation is based on the 
description presented in the first International Nurse Rostering Competi-
tion  (INRC) 2010  (Haspeslagh et  al 2014). As the focus of this work is not 
on nurse rostering, we use a simple but fast formulation instead of a perfectly 
detailed one. This formulation includes all constraints that are relevant concern-
ing the use of a nurse roster as an input of the IPRNPA. However, it is very easy 
to substitute the used nurse rostering formulation in our code.

Similar to the INRC, we determine the roster for the planning period consider-
ing one ward. We use a subset of constraints of the INRC in order to compute a 
simple, yet still realistic nurse roster. These constraints include that the number of 
required nurses per shift must be met, not more than a given maximum allowed 
number of shifts can be assigned to any single nurse during the planning period, 
and that minimum rest times for nurses between shifts are respected.

In addition to some of the notation and parameters introduced in Sect. 4, we 
use the following parameters and decision variables:

Parameters:

skill_nurses(s, l)	� number of nurses with at least skill level l ∈ L required during 
shift s ∈ S . The sum of this number over all skill levels defines 
the minimum number of nurses needed per shift in total.

max_shifts	� maximum allowed number of shifts per nurse within the time 
horizon.
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Decision variables:

assignn,s	�   binary variable indicating whether nurse  n ∈ N  is assigned to 
shift s ∈ S

The focus of our formulation is on the generation of a feasible roster to be used 
as an input for the IPRNPA. Therefore, we consider the minimization of the total 
number of assigned nurses as our objective to prevent unnecessary assignments 
that are not required to fulfill the considered constraints:

Assignment objective

	(29)	 Minimization of the number of assigned nurses: 

The following constraints must be met by a feasible nurse roster:

	(30)	 Each nurse can work at most one shift per day: 

	(31)	 For each skill level l ∈ L , at least skill_nurses(s, l) nurses with at least skill 
level l must be assigned during each shift s ∈ S : 

	(32)	 The minimum total number of nurses must be assigned during each shift s ∈ S : 

	(33)	 No nurse n ∈ N  can be assigned to more than max_shifts many shifts during 
the planning period: 

	(34)	 On the day after a night shift, a nurse can only have another night shift (or the 
day off): 

	(35)	 On the day after a late shift, a nurse cannot have a morning shift: 

min
∑

s∈S,n∈N

assignn,s

assignn,s + assignn,s+1 + assignn,s+2 ≤ 1 ∀n ∈ N, s ∈ S
early

∑

n∈N∶ skill_level (n)≥l

assignn,s ≥ skill_nurses(l, s) ∀l ∈ L, s ∈ S

∑

n∈N

assignn,s ≥
∑

l∈L

skill_nurses(l, s) ∀s ∈ S

∑

s∈S

assignn,s ≤ max_shifts ∀n ∈ N

assignn,s + assignn,s+1 + assignn,s+2 ≤ 1 ∀n ∈ N, s ∈ S
night

assignn,s + assignn,s+2 ≤ 1 ∀n ∈ N, s ∈ S
late
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Appendix B MIP gap evaluation on artificial and real‑world instances

Table 6   Artificial instances: Average MIP gap

1  The MIP gap is evaluated after either a running time limit of 10,800 seconds or 5,400 seconds for each 
subproblem or when the MIP gap reaches a value less than 5%. The MIP gap is shown summarized as an 
average value

Scenario Variation Planning 
horizon

Method 1 Method 2

MIP gap1 MIP gap1

IPRNPA [%] PRA [%] NPA 
[%]

30 beds Var. 1 (double rooms) 2 weeks 69.9 58.2 6.2
4 weeks 78.6 63.4 9.5

Var. 2 (triple rooms) 2 weeks 57.3 82.6 4.9
4 weeks 77.6 79.6 5.8

Var. 3 (mixed rooms) 2 weeks 64.9 54.9 5.1
4 weeks 77.7 68.9 7.9

60 beds Var. 1 (double rooms) 2 weeks 122.6 75.2 61.6
4 weeks 125.6 89.2 65.4

Var. 2 (triple rooms) 2 weeks 104.1 94.6 51.5
4 weeks 128.3 97.0 59.9

Var. 3 (mixed rooms) 2 weeks 122.6 74.3 56.8
4 weeks 126.3 90.5 59.7
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are available on GitHub at https://​doi.​org/​10.​5281/​zenodo.​12750​420 along with the solution checker 
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Table 7   Real-World instances: 
MIP gap

1 The MIP gap is evaluated after either a running time limit of 
10,800 seconds or 5,400 seconds for each subproblem or when the 
MIP gap reaches a value less than 5%.
2  Average across all instances

Instance # Method 1 Method 2

MIP gap1 MIP gap1

IPRNPA [%] PRA [%] NPA [%]

1 55 0 5
2 58 0 5
3 43 0 5
4 48 0 5
5 53 0 5
6 46 0 5
7 49 0 5
8 48 0 5
9 36 0 5
10 36 0 5
11 43 0 5
12 50 0 5
13 34 0 5
14 25 0 5
15 47 0 5
16 51 0 5
17 43 0 5
18 38 0 5
19 29 0 5
20 36 100 5
Total2 43 5 5
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