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A B S T R A C T

This contribution presents an improved low-order 3D finite element formulation with hourglass
stabilization using automatic differentiation (AD). Here, the former Q1STc formulation is
enhanced by an approximation-free computation of the inverse Jacobian. To this end, AD tools
automate the computation and allow a direct evaluation of the inverse Jacobian, bypassing the
need for a Taylor series expansion. Thus, the enhanced version, Q1STc+, is introduced. Nu-
merical examples are conducted to compare the performance of both element formulations for
finite strain applications, with particular focus on distorted meshes. Moreover, the performance
of the new element formulation for an elasto-plastic material is investigated. To validate the
obtained results, a volumetric locking-free element based on scaled boundary parametrization is
used. Both the implementation of the element routine Q1STc+ and the corresponding material
subroutine are made accessible to the public at https://doi.org/10.5281/zenodo.14259791.

. Introduction

The use and application of low-order 3D finite element formulations has proven to be robust and computationally efficient.
owever, the use of these methods may lead to shear locking in bending-dominated problems and to volumetric locking for nearly

ncompressible materials in mechanical systems, which causes the system to behave too stiffly. To overcome these deficits, concepts
uch as the enhanced assumed strain method (EAS) have been introduced, which use a two-field functional based on the Hu–Washizu
ariational principle. Such element formulations have proven to deliver plausible results for bending dominated problems and for
aterials that reach the incompressible limit.

.1. State of the art

educed integration with hourglass stabilization. The EAS method was first developed and further improved by Simo and Armero
1] and Simo et al. [2]. Several authors extended and further developed the original idea, e.g. [3–5], for various applications such
s (solid) shells, e.g. [6–11]. Further approaches and investigations in combination with the EAS concept have also been employed
n works of Korelc and Wriggers [12], Alves de Sousa et al. [13], Valente et al. [14], Bieber et al. [15], Pfefferkorn and Betsch [16]
nd Pfefferkorn et al. [17]. Besides this,Wriggers and Reese [18] showed that nonlinear enhanced strain elements subjected to a
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homogeneous compression state denote a rank deficiency in the tangent matrix. Similar observations were also made in [19,20]. A
possible solution would be to use a higher order of integration. However, this does not work for a homogeneous compression state,
ince the stresses, strains and the Jacobian remain constant. In this case, a low order integration would already suffice to ensure
ull integration. Works of Korelc and Wriggers [21] as well as Glaser and Armero [22] improved the formulation by interpolating

the enhanced strain in a way that the hourglass instability occurring for uniaxial compression is eliminated.
Reese et al. [23] developed a new stabilization technique in nonlinear elasticity and showed that it is sufficient to base the

computation of the stabilization matrix only on the material part of the tangent operator. In addition to that, the concept of the
quivalent parallelogram derived by Arunakirinathar and Reddy [24,25] was used in order to be able to determine the stabilization
actors. Based on [23], Reese and Wriggers [26] derived a formulation which can be applied for general deformation states and all

arbitrary element distortions. Here, hourglass instabilities can be detected on element level. The element formulation is based on
the idea of employing the split of the tangent matrix into a constant and hourglass part. Because of this, an eigenvalue analysis is
carried out and in case of instabilities, the stabilization matrix is updated. This approach combined the enhanced strain concept
with the stabilization technique derived in Belytschko et al. [27], where the so-called stabilization vector 𝜸 was introduced. This
formulation was further improved by Reese [28,29].

The use of a one-point quadrature in comparison to full quadrature lies in efficiency in a sense that the computation time is
reduced and, depending on the constitutive model, history variables need to be stored for only one integration point. However,
hourglass control is necessary in order to obtain plausible results. Reduced integration without hourglass stabilization can cause
ank deficiency in the stiffness matrix and results in an element response that is too soft. Pioneering works of e.g. Hughes [30]

and Belytschko et al. [27] contributed towards further development of reduced integration techniques and hourglass stabilization
methods based on mixed variational principles. Bonet and Bhargava [31] extended hourglass stabilization techniques by introducing
n artificial hourglass control. Schulz [32] carried out a Taylor series expansion of the stress with respect to the center of the element,
nsuring hourglass control due to the retention of the first and second term of the expansion. This idea was then employed by works

of e.g. Reese [28,29,33] as well as Juhre and Reese [34]. This allows for the hourglass parts to be computed directly instead of solving
he system by linearizing the variational principle as shown in [26]. Moreover, a simpler and more efficient element formulation is

obtained. Works of Schwarze and Reese [35,36], Frischkorn and Reese [37] and Barfusz et al. [38,39] extended this idea by also
taking a Taylor series expansion of the inverse Jacobian to take the geometry into account in a more realistic manner. Other possible
solutions to overcome the problem of locking and forms of hourglass stabilization were discussed in e.g. [40–44], respectively.

Recent developments. The virtual element method (VEM) has been established recently and was first introduced by Veiga et al.
[45]. Similar to the concept of reduced integration, virtual elements must be stabilized as well to avoid a rank deficiency in the
element formulation. Wriggers et al. [46] introduced the idea of approximating the displacement field by an interior triangular finite
element mesh to stabilize the formulation. Cangiani et al. [47] connected the VEM to classical hourglass stabilization techniques. The
advantage over using the classical finite element method lies in the flexibility when it comes to mesh generation and regeneration,
since non-convex elements and elements with an arbitrary number of nodes are possible. Examples of other works regarding this field
re [48–52]. The capability to handle polygonal and polyhedral elements is not merely a benefit of the VEM. Recent developments

in the scaled boundary finite element method [53], such as formulations proposed by Klinkel and Reichel [54], Sauren et al. [55]
or Sauren and Klinkel [56], are able to discretize polygonal finite elements at large strains and do not require additional stabilization.

Automatic differentiation. In computational mechanics, the development of a robust and efficient numerical implementation plays
an important role. Furthermore, since usually a large number of derivations are involved, hand calculations can be error-prone and
ime-consuming. A remedy for this is the introduction of automatic differentiation (AD) [57,58]. AD has become essential in fields
ike optimization, structural mechanics, and material modeling. Unlike numerical differentiation, which approximates derivatives
sing finite differences, AD provides exact derivatives by propagating derivatives through the computational graph of a program, see

e.g. [59]. This makes AD more suitable for problems where high accuracy is required, and manual differentiation is impractical. AD
can be implemented in two primary modes: forward mode and backward mode, see e.g. [60] or [59] for a more detailed explanation.
AD tools were made compatible for a number of programming languages such as FORTRAN [61] or Mathematica [62].

The present contribution focuses on the implementation of an enhanced element formulation based on a single Gaussian
oint with hourglass stabilization with help of AD. In this work, the AD tool AceGen [60,62] is used for implementation. Other

AD tools such as Tapenade [61] or JAX [63], also present possible alternatives. In AceGen, the approach of ‘‘Simultaneous
Stochastic Simplification of numerical code’’, see [64], is used, where both symbolic and algebraic capabilities of the programming
language Mathematica are combined. A numerically efficient code is obtained due to AceGen’s code optimization techniques and the
combination of both the forward and backward mode with a code-to-code transformation strategy, e.g. [59], where a source code
suitable for the programming languages FORTRAN, C/C++ and Mathematica is generated [60,65]. In comparison, JAX dynamically
compiles functions at runtime using just-in-time (JIT) compilation for each execution, while AceGen (and Tapenade) produces
precompiled, reusable code, making it especially suitable for large-scale simulations and environments requiring high performance.

1.2. Hypothesis

Without the use of AD, it is hardly possible to compute some specific needed quantities, especially when highly nonlinear partial
derivatives are involved, as would be the case for the inverse Jacobian. Previous publications of Barfusz et al. [38] or Schwarze
and Reese [35,36] proposed to approximate the highly nonlinear inverse Jacobian by means of a Taylor series expansion instead of
nly evaluating it at the element center as was done in Reese [33] or Legay and Combescure [66]. Moreover, Schwarze and Reese
2 
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[35] stated that a linear approximation of the inverse Jacobian would be sufficient for the transformation of the contravariant
asis to the cartesian one. With the use of AD, this approximation would not be necessary anymore. Consequently, the enhanced
ormulation is approximation-free regarding the inverse Jacobian. We hypothesize that this improvement will have an influence
n the results obtained from numerical examples. The main objective of this contribution is to compare results obtained from the
1STc formulation derived by Barfusz et al. [38,39] – where the geometry is approximated by means of a Taylor series expansion

– with the modified element formulation Q1STc+ without an approximation of the geometry. To do so, certain patch tests, such as
he membrane patch test and the patch test for solids, are considered.

1.3. Outline

The present contribution is structured as follows. Section 2 presents the elasto-plastic constitutive framework, see [67]. Here, the
volumetric-isochoric split of the Helmholtz free energy is employed in order to compare results with the locking-free mixed scaled
oundary finite element formulation provided by Sauren et al. [55],Sauren and Klinkel [56,68]. In Section 3, the classical two-field

variational functional used by Simo and Armero [1] is recapitulated. Section 4 derives the kinematics of the system and shows
the interpolation of the needed quantities. Section 5 deals with the concept of reduced integration and the connected Taylor series
expansion of the quantities in order to obtain a stable and locking-free element formulation. Section 6 explains the main differences
etween Q1STc and Q1STc+. The discretization of the weak form and the global assembly are shown in Section 7. It is crucial to
oint out that throughout the contribution, the use of AD plays an important role, particularly when it comes to obtaining nonlinear

derivations such as the inverse Jacobian. Numerical examples are conducted to compare and analyze the performances of Q1STc
and Q1STc+, while the results determined with the displacement-pressure element of [56] are used to validate the performance of
he modified element formulation Q1STc+. The contribution closes with a conclusion and outlook (Section 9).

2. Constitutive framework

The following section briefly describes the constitutive framework presented in [67] in the context of the co-rotated intermediate
configuration, cf. [69]. Here, an elasto-plastic material is considered, specifically constrained to volume-preserving plasticity. Non-
olume-preserving plasticity models, e.g. Drucker–Prager plasticity [70], are out of the scope of this contribution. The main idea

of the co-rotated intermediate configuration lies in pulling back all quantities that are normally affected by the rotational non-
uniqueness to this very configuration instead of doing a pull-back to the reference configuration, e.g. [71]. Due to this, all needed
quantities can be directly computed. Especially when using AD, this proves to be an advantage since these quantities, e.g. stresses,
driving forces, can be derived directly from the defined energy.

Kinematics. To account for nonlinear plastic material behavior, the deformation gradient is assumed to be multiplicatively split
into an elastic part 𝑭 𝑒 and a plastic part 𝑭 𝑝. In order to model kinematic hardening properly, an additional split of the plastic part
of the deformation gradient is carried out [72]

𝑭 = 𝑭 𝑒 𝑭 𝑝, 𝑭 𝑝 = 𝑭 𝑝𝑒 𝑭 𝑝𝑖, (1)

while 𝑭 𝑝𝑒 denotes the recoverable and 𝑭 𝑝𝑖 the irrecoverable parts of the plastic part of the deformation gradient.

Helmholtz free energy. The Helmholtz free energy is assumed to be a scalar-valued isotropic function and consists of an elastic 𝜓𝑒
and plastic part 𝜓𝑝

𝜓 = 𝜓𝑒 + 𝜓𝑝. (2)

The elastic energy 𝜓𝑒 is chosen to be of a compressible Neo-Hookean-type and is derived in terms of the volumetric-isochoric
plit [73] of the elastic right Cauchy–Green tensor 𝑪̄𝑒. The purpose behind this lies in the possibility of being able to compare the

obtained results with the element formulation provided by Sauren et al. [55],Sauren and Klinkel [56,68], which depends on this
particular split. Appendix A.1 describes the relevance of this split. Based on this, the Helmholtz free energy is chosen and expressed
in the co-rotated intermediate configuration, denoted with a bar on top ̄(⋅), as follows

𝜓𝑒 =
𝜇
2

(

tr
(

(det (𝑪̄𝑒))
− 1

3 𝑪̄𝑒
)

− 3
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜓dev
𝑒

+ 𝜅
2

(
√

det (𝑪̄𝑒) − 1
)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜓vol
𝑒

(3)

with 𝜇 and 𝜆 being the two Lamé constants and 𝜅 = 𝜆+ 2
3 𝜇 being the bulk modulus. The isochoric elastic right Cauchy–Green tensor

s defined as ̃̄𝑪𝑒 = (det (𝑪̄𝑒))−1∕3 𝑪̄𝑒, see [73]. The plastic energy is defined as

𝜓𝑝 =
𝑎
2

tr (𝑩̄𝑝𝑒) − 3 − ln (det (𝑩̄𝑝𝑒)) + 𝑒
(

𝜉𝑝 +
exp (−𝑓 𝜉𝑝) − 1

𝑓

)

(4)

with the isotropic hardening variable 𝜉𝑝 and 𝑩̄𝑝𝑒 = 𝑭 𝑝𝑒𝑭 𝑝
𝑇
𝑒 . The first term depicts kinematic hardening with the stiffness-like material

arameter 𝑎 while the second term is responsible for modeling nonlinear Voce isotropic hardening with the stiffness-like material
3 
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parameter 𝑒 and the dimensionless material parameter 𝑓 [74]. The quantities on which the Helmholtz free energy depends, are
defined in the co-rotated intermediate configuration and thus pulled back as follows

𝑪̄𝑒 ∶= 𝑼−1
𝑝 𝑪 𝑼−1

𝑝 , 𝑩̄𝑝𝑒 ∶= 𝑼 𝑝 𝑪𝑝
−1
𝑖 𝑼 𝑝 with: 𝑪𝑝𝑖 = 𝑭 𝑝

𝑇
𝑖 𝑭 𝑝𝑖 = 𝑼 𝑝𝑖 𝑼 𝑝𝑖.

Here, 𝑪 = 𝑭 𝑇𝑭 denotes the right Cauchy–Green tensor while 𝑪𝑝𝑖 stems from the additional split, cf. Eq. (1). The same holds
for the plastic part of the stretch tensor 𝑼 𝑝, where 𝑼 𝑝𝑖 results from the additional split of the plastic part of the deformation
gradient. For a more detailed explanation, the reader is kindly referred to [69]. Satisfying the second law of thermodynamics, all
needed quantities are derived based on the isothermal Clausius–Duhem inequality. Using the Coleman–Noll procedure [75] yields
the following expression for the second Piola–Kirchhoff stress tensor

𝑺 = 2𝑼−1
𝑝

𝛿 𝜓𝑒
𝛿𝑪̄𝑒

𝑼−1
𝑝 , (5)

where 𝛿(⋅)
𝛿(⋅)

denotes the derivative obtained using AD. The volumetric part of the second Piola–Kirchhoff stress tensor and the pressure
eeded for the mixed scaled boundary finite element formulation of Sauren and Klinkel [56] are obtained as follows

𝑺vol = 2𝑼−1
𝑝
𝜕 𝜓vol

𝑒

𝜕𝑪̄𝑒
𝑼−1
𝑝 , 𝑝 =

𝜕 𝜓vol
𝑒
𝜕 𝐽 (6)

with 𝐽 =
√

det 𝑪. A more detailed derivation can be found in Appendix A.1.

Yield function and evolution equations. The yield criterion 𝛷 depends on both kinematic and isotropic hardening. The potential
𝑔k in is suitable for describing the evolution of nonlinear Armstrong–Frederick kinematic hardening [76]. Both are defined as follows

𝛷 =
√

3
2

tr (dev
(

𝜞̄
)2) − (𝜎𝑦0 + 𝑞𝑝), 𝑔k in = 𝑏

2𝑎
tr (dev

(

𝜣̌
)2) (7)

with the hardening force 𝑞𝑝 = 𝛿 𝜓
𝛿 𝜉𝑝 and the material parameter 𝜎𝑦0 representing the initial yield stress. The material parameter 𝑏

epicts the kinematic hardening. Here, 𝜣̌ denotes the driving force in the co-rotated intermediate configuration

𝜣̌ = 2𝑼 𝑝𝑖𝜣 𝑼 𝑝𝑖, 𝜣 = 𝑪𝑝
−1
𝑖 𝑼 𝑝

𝛿 𝜓
𝛿𝑩̄𝑝𝑒

𝑼 𝑝 𝑪𝑝
−1
𝑖 . (8)

Based on this, the evolution equations are defined as

𝑫̄𝑝 = 𝛾̇𝑝
𝛿 𝛷
𝛿𝜞̄

, 𝑫̌𝑝𝑖 = 𝛾̇𝑝
𝛿 𝑔k in
𝛿𝜣̌

, (9)

where 𝛾̇𝑝 represents the plastic multiplier. The symmetric relative-stress-like quantity in the co-rotated intermediate configuration
𝜞̄ = 𝜮̄ − 𝝌̄ denotes the difference between the stress-like Mandel tensor 𝜮̄ and the stress-like Back tensor 𝝌̄ , which are derived from
he Clausius–Duhem inequality and yield

𝜮̄ = 2 𝑪̄𝑒
𝛿 𝜓
𝛿𝑪̄𝑒

, 𝝌̄ = 2 𝛿 𝜓
𝛿𝑩̄𝑝𝑒

𝑩̄𝑝𝑒. (10)

At last, the Karush-Kuhn–Tucker conditions are taken into consideration

𝛷 ≤ 0, 𝛾̇𝑝 ≥ 0, 𝛾̇𝑝𝛷 = 0. (11)

3. Two-field variational functional

The two-field functional with respect to the reference configuration results from the enhanced assumed strain (EAS) concept
by Simo and Armero [1], Simo et al. [2], who based this derivation on the Hu–Washizu variational principle

𝑔𝑐𝑢(𝒖,𝒘, 𝛿𝒖) ∶= ∫0

𝑺(𝑬) ∶ 𝛿𝑬𝑐 d𝑉 − ∫0

𝒇 0 ⋅ 𝛿𝒖 d𝑉 − ∫𝜕𝑡0

𝒕0 ⋅ 𝛿𝒖 d𝐴 = 0, (12a)

𝑔𝑤(𝒖,𝒘, 𝛿𝒖) ∶= ∫0

𝑺(𝑬) ∶ 𝛿𝑬enh d𝑉 = 0. (12b)

Here, Eq. (12a) comes from the balance of linear momentum while Eq. (12b) denotes the orthogonality condition. The compatible
isplacement field is denoted as 𝒖, while 𝒘 describes the incompatible displacement field. The second Piola–Kirchhoff stress tensor

𝑺(𝑬) depends on the total Green–Lagrange strain tensor 𝑬 = 𝑬𝑐 (𝒖) +𝑬enh(𝒘), which is assumed to be additively decomposable into
a compatible (displacement-based) part 𝑬𝑐 (𝒖) and an incompatible (enhanced) part 𝑬enh(𝒘). The same assumption also holds for its
variation 𝛿𝑬.
4 
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4. Kinematics

The domain 0 is approximated by ℎ0 and discretized into 𝑛el elements 0 ≈ ℎ0 =
⋃𝑛el
𝑒=1 0𝑒. For a standard eight-node hexahedral

inite element, the isoparametric concept is employed with the (initial) geometry 𝒙𝑒 and the displacement 𝒖𝑒 being discretized as
ollows

𝒙𝑒 ≈ 𝒙ℎ𝑒 = 𝑵(𝝃)𝑿𝑒, 𝒖𝑒 ≈ 𝒖ℎ𝑒 = 𝑵(𝝃)𝑼 𝑒. (13)

The element nodal positions and the element nodal displacements are stored in the 24 × 1 vectors 𝑿𝑒 and 𝑼 𝑒, respectively. Trilinear
hape functions 𝑁𝐼 = 1∕8 (1 + 𝜉𝐼 𝜉)(1 + 𝜂𝐼𝜂)(1 + 𝜁𝐼𝜁 ) are used for the reference element and stored in the shape function matrix
= (𝑁1 𝑰3,… , 𝑁8 𝑰3), depending on the natural coordinate vector 𝝃 = (𝜉 , 𝜂 , 𝜁 )𝑇 and the 3 × 3 identity tensor 𝑰3. Based on this, the

acobian matrices with respect to the reference and current domain can be calculated using AD as

𝑱 =
𝛿𝒙𝑒
𝛿𝝃

, 𝑱 cur =
𝛿(𝒙𝑒 + 𝒖𝑒)

𝛿𝝃
, (14)

respectively. This leads to the following definition of the deformation gradient 𝑭

𝑭 = 𝑱 cur 𝑱−1. (15)

Compatible strain field. The total compatible part of the Green–Lagrange strain tensor in the cartesian basis system is computed
as follows

𝑬𝑐 =
1
2
(𝑭 𝑇𝑭 − 𝑰3). (16)

The compatible B-Operator 𝑩𝑐 can be obtained by using AD as follows

𝑩𝑐 =
𝛿𝑬𝑐

𝛿𝑼 𝑒
. (17)

while 𝑬𝑐 denotes the Green–Lagrange strain in Nye’s notation. The same discretization holds for the variational and linearized
compatible strains 𝛿𝑬𝑐 = 𝑩𝑐 𝛿𝑼 𝑒 and 𝛥𝑬𝑐 = 𝑩𝑐 𝛥𝑼 𝑒.

Enhanced assumed strain field. Locking leads to an underestimation of the deformation and an overestimation of the stresses.
hile shear locking occurs in bending-dominated problems, volumetric locking is present in the case of nearly incompressible

material behavior. This is due to the low-order element formulation (linear interpolation of the displacement field). In case of
bending, this low-order formulation is not able to depict the element’s curvature sufficiently. Since the bending mode can only
be characterized in terms of a trapezoidal deformation, unphysical transverse shear strains 𝐸𝑐 𝜉 𝜂 , 𝐸𝑐 𝜂 𝜁 and 𝐸𝑐 𝜁 𝜉 occur [38]. To
tackle this problem, the EAS concept is used, where the compatible Green–Lagrange strain vector 𝑬𝑐 is enriched by an incompatible
(enhanced) part 𝑬̂enh. Hence, the enhanced B-Operator 𝑩̄enh is defined in a way that shear locking is alleviated. Consequently, the
discretized incompatible Green–Lagrange strain tensor given in Nye’s notation reads

𝑬̂enh =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
0
0

𝐸enh 𝜉 𝜂
𝐸enh 𝜉 𝜁
𝐸enh 𝜂 𝜁

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 𝑻 0

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
𝜂 𝜉 0 0 0 0
0 0 𝜁 𝜂 0 0
0 0 0 0 𝜉 𝜁

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑾 𝑒 = 𝑻 0 𝑩̄enh 𝑾 𝑒 = 𝑩enh 𝑾 𝑒. (18)

Here, 𝑾 𝑒 = (𝑊1, 𝑊2, 𝑊3, 𝑊4, 𝑊5, 𝑊6)𝑇 contains the six additional enhanced degrees-of-freedom, see [36], and 𝑻 0 is the transfor-
mation matrix evaluated at the center of the element. Analogously to Eq. (18), its variation is discretized as 𝛿𝑬̂enh = 𝑩enh 𝛿𝑾 𝑒. In
general, the transformation matrix 𝑻 ensures a connection between the cartesian and convective (natural) coordinates. A definition
of the transformation matrix is shown in Appendix A.2. The introduction of convective (natural) coordinates is a necessity to account
for certain different locking phenomena, e.g. curvature thickness locking as well as transverse shear locking. For example, within
the scope of the assumed natural strain (ANS) method, certain strain components are modified with respect to their convective
coordinates for element formulations such as the solid-shell of Schwarze and Reese [35,36] or the solid-beam of Frischkorn and

eese [37].

5. Concept of reduced integration

In order to be able to compute the residual vectors and the corresponding element stiffness matrix for the formulation presented
above, the Gaussian quadrature is used. In case of an eight-node hexahedral element with trilinear shape functions at least eight
integration points are needed in order to obtain an accurate result, which can be computationally costly. Thus, the idea of reduced
integration was introduced. However, just using reduced integration can lead to a rank-deficient stiffness matrix and usually causes
the element response to be too softly. To remedy this, hourglass stabilization techniques are used. In particular, a Taylor series
expansion up to the bilinear terms of all needed quantities is applied in order to be able to integrate the hourglass terms analytically
5 
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and on top of that achieve a computationally efficient element formulation.

Taylor series expansion of the constitutively dependent quantities. A Taylor series expansion of the constitutively dependent
quantities with respect to the center of the element enables the possibility of separating the weak form into physically reasonable
parts (⋅)0, and hourglass parts (⋅)ℎ𝑔 . The purpose of the hourglass parts lies in stabilizing and thus avoiding possible rank deficiency
in the element formulation. Furthermore, since these parts are represented by means of polynomials, analytical integration of the
hourglass parts becomes possible. A Taylor series expansion of the second Piola–Kirchhoff stress in Nye’s notation 𝑺̂ up to the
bilinear terms is carried out

𝑺̂(𝑬̂) ≈ 𝑺̂
|

|

|

|𝝃=𝟎
+ 𝑪ℎ𝑔

( 3
∑

𝑖=1

𝛿𝑬̂
𝛿 𝜉𝑖

|

|

|

|𝝃=𝟎
𝜉𝑖 +

1
2

3
∑

𝑖=1

3
∑

𝑗=1
𝑗≠𝑖

(

𝛿
𝛿 𝜉𝑗

(

𝛿𝑬̂
𝛿 𝜉𝑖

))

|

|

|

|𝝃=𝟎
𝜉𝑖 𝜉𝑗

)

= 𝑺̂0 + 𝑪ℎ𝑔

(

𝑬̂ 𝜉
𝑐 𝜉 + 𝑬̂ 𝜂

𝑐 𝜂 + 𝑬̂ 𝜁
𝑐 𝜁

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶𝑬̂hg1

𝑐

+ 𝑬̂ 𝜉 𝜂
𝑐 𝜉 𝜂 + 𝑬̂ 𝜉 𝜁

𝑐 𝜉 𝜁 + 𝑬̂ 𝜂 𝜁
𝑐 𝜂 𝜁

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶𝑬̂hg2

𝑐

+ 𝑬̂ 𝜉
enh𝜉 + 𝑬̂ 𝜂

enh𝜂 + 𝑬̂ 𝜁
enh𝜁

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝑬̂enh

)

= 𝑺̂0 + 𝑪ℎ𝑔(𝑬̂hg1
𝑐 + 𝑬̂hg2

𝑐 + 𝑬̂enh)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶𝑺̂hg

.

(19)

In this context, the superscript denotes the derivative with respect to the convective coordinates. Based on this, a polynomial form of
oth 𝑩𝑐 and 𝑩enh is obtained, see Appendix A.3 for a more detailed derivation. The so-called hourglass tangent 𝑪ℎ𝑔 is defined based
n a linear-elastic material behavior. It is defined in such a way that 𝑺̂hg has deviatoric character in order to overcome volumetric
ocking, see [36]

𝑪ℎ𝑔 =
𝜇ℎ𝑔ef f
3

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

4 −2 −2 0 0 0
−2 4 −2 0 0 0
−2 −2 4 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝜇ℎ𝑔ef f =
1
2

√

√

√

√

√

√

tr
(

dev
(

𝑺0)2
)

tr
(

dev
(

𝑬0
𝑐
)2)

. (20)

The quantity 𝜇ℎ𝑔ef f defines the so-called effective shear modulus. In correspondence to Barfusz et al. [38], 𝜇ℎ𝑔ef f is stored as a history
ariable and taken from the last converged step in order to circumvent the need for linearization. The use of 𝑪ℎ𝑔 instead of the
onlinear material tangent that is obtained based on the choice of the material model, which would usually result from the derivation

of 𝑺̂ with respect to 𝑬̂, avoids the necessity of linearization and enables analytical integration of the residual vectors and thus the
stiffness matrix [38]. With the use of AD, all presented derivatives can be directly computed, ensuring a relatively simple element
mplementation. Hence, they do not need to be derived by hand, which would usually be time-consuming and error-prone. Especially
uantities, e.g. the compatible B-Operator 𝑩𝑐 do not have to be directly derived since it can be computed by the relation of the
ompatible Green–Lagrange strain, see Eqs. (16) and (17).

6. Enhanced Q1STc by an approximation-free computation of the inverse Jacobian

For elements with arbitrary geometries, an analytical integration is not possible, since the inverse Jacobian yields highly nonlinear
results. Previous works of Reese [33] and Legay and Combescure [66] introduced the idea of evaluating the inverse Jacobian at
the center of the element and thus enabling analytical integration. However, the underlying assumption that the Jacobian would
then be constant is only true for very fine meshes. It is stated in Schwarze and Reese [35,36] that a linear approximation of the
nverse Jacobian yields more realistic results, especially if the element does not correspond to an exact parallelepiped shape. Hence,

a Taylor series expansion up to the linear terms is carried out for the inverse Jacobian 𝑱−1

𝑱−1 ≈ 𝑱−1 |
|

|

|𝝃=𝟎
+

3
∑

𝑖=1

𝛿𝑱−1

𝛿 𝜉𝑖
|

|

|

|𝝃=𝟎
𝜉𝑖. (21)

Taking the Taylor expansion of 𝑱 𝑱−1 and considering that 𝑱 𝑱−1 = 𝑰 , which must be satisfied for any arbitrary chosen natural
oordinate vector 𝝃, yields an expression for the partial derivation of the linear part in Eq. (21)

𝛿𝑱−1

𝛿 𝜉𝑖
|

|

|

|𝝃=𝟎
= −(𝑱 0)−1𝑱 𝜉𝑖 (𝑱 0)−1. (22)

With Eqs. (21) and (22), the inverse Jacobian reads

𝑱−1 ≈ 𝑱−1 |
|

|

|𝝃=𝟎
−

3
∑

𝑖=1
(𝑱 0)−1𝑱 𝜉𝑖 (𝑱 0)−1𝜉𝑖. (23)
6 
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This leads to the following polynomial representation for the inverse Jacobian with 𝑱−1 = 𝒋

𝒋 ≈ 𝒋0 + 𝒋𝜉 𝜉 + 𝒋𝜂 𝜂 + 𝒋𝜁 𝜁 . (24)

For a more detailed derivation, the reader is kindly referred to [36]. This approach allows for a polynomial approximation of the
ransformation matrix 𝑻

𝑻 ≈ 𝑻 0 + 𝑻 𝜉 𝜉 + 𝑻 𝜂 𝜂 + 𝑻 𝜁 𝜁 . (25)

With the use of AD, an approximation of the inverse Jacobian using a Taylor series expansion becomes redundant. Hence, the Q1STc
formulation is enhanced by an approximation-free computation of the inverse Jacobian, termed ’Q1STc+’. The following algorithms
demonstrate the use of AD for computing the inverse Jacobian. Algorithm 1 shows the steps for the computation of an approximated
nverse Jacobian by a Taylor series expansion, which can be done by hand, while Algorithm 2 demonstrates a direct calculation. A

direct computation of the inverse Jacobian leads to a more simplified code, as the process is reduced to a single step. It needs to
be taken into account that with a derivation purely by hand without AD, a direct computation of 𝒋 would cause difficulties for the
derivation of 𝑬̂𝑐 by a Taylor series approximation, cf. Eq. (19), since this quantity depends on the highly nonlinear inverse Jacobian
𝒋.

Algorithm 1 Excerpt for the computation of the inverse
Jacobian for Q1STc.
⊳ Compute Jacobian
𝑱 ←

𝜕 (𝑵(𝝃)𝑿𝑒)
𝜕𝝃

⊳ Taylor series expansion of the Jacobian
(Computable by hand)

𝑱 0 ← 𝑱 |

|

|𝝃=𝟎

𝑱 𝜉 ← 𝜕𝑱
𝜕 𝜉

|

|

|𝝃=𝟎

𝑱 𝜂 ← 𝜕𝑱
𝜕 𝜂

|

|

|𝝃=𝟎

𝑱 𝜁 ← 𝜕𝑱
𝜕 𝜁

|

|

|𝝃=𝟎
⊳ Approximation of the inverse Jacobian
𝒋0 ← (𝑱 0)−1

𝒋𝜉 ← −𝒋0𝑱 𝜉𝒋0

𝒋𝜂 ← −𝒋0𝑱 𝜂𝒋0

𝒋𝜁 ← −𝒋0𝑱 𝜁 𝒋0

⊳ Inverse Jacobian
𝒋 ← 𝒋0 + 𝒋𝜉 𝜉 + 𝒋𝜂 𝜂 + 𝒋𝜁 𝜁

Algorithm 2 Excerpt for the computation of inverse Jacobian
for Q1STc+.
⊳ Compute Jacobian

𝑱 ←
𝛿(𝑵(𝝃)𝑿𝑒)

𝛿𝝃

⊳ Inverse Jacobian
𝒋 ← (𝑱 )−1

7. Discretization of the weak form

The first part of the two-field variational relation in (12a) needs to be assembled on a global finite element level
(

𝑔𝑐𝑢 =
⋃𝑛el
𝑒=1 𝑔

𝑐
𝑢𝑒

)

.
The second variational equation (12b) has to be solved at the element level. Hence, Eq. (12b) yields with (18) and (19)

𝑔𝑤𝑒 = 𝛿𝑾 𝑇
𝑒 ∫𝑉𝑒

𝑩𝑇
enh𝑺̂

0 d𝑉 0
𝑒

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝟎

+ 𝛿𝑾 𝑇
𝑒 ∫𝑉𝑒

𝑩𝑇
enh𝑪

hg𝑬̂hg2
𝑐 d𝑉 0

𝑒

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝟎

+ 𝛿𝑾 𝑇
𝑒 ∫𝑉𝑒

𝑩𝑇
enh𝑪

hg𝑬̂hg1
𝑐 d𝑉 0

𝑒

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶𝑹𝑤𝑒

+ 𝛿𝑾 𝑇
𝑒 ∫𝑉𝑒

𝑩𝑇
enh𝑪

hg𝑩enh d𝑉 0
𝑒

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶𝑲𝑤𝑤𝑒

𝑾 𝑒
!
= 0.

(26)

Here, the volume element is approximated by d𝑉𝑒 ≈ d𝑉 0
𝑒 = det (𝑱 0) d𝜉 d𝜂 d𝜁 with 𝑱 0 denoting the Jacobian evaluated at the center.

ased on (26), the vector 𝑾 𝒆 can be expressed in terms of 𝑼 𝑒 as follows

𝑾 𝑒 = −(𝑲𝑤𝑤𝑒 )
−1𝑹𝑤𝑒 (𝑼 𝑒). (27)

The relation for 𝑾 𝒆 in (27) is then inserted into Eq. (12a) in Nye’s notation, reducing the two-field variational functional into a
primal formulation. Due to this, 𝑾 is eliminated at element level and does not have to be determined explicitly. Considering only
𝒆

7 
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the internal work of the first variational function in (12a) and using Eqs. (16), (17), (18) and (19) yields

𝑔𝑐𝑢𝑒 = 𝛿𝑼𝑇
𝑒 ∫𝑉𝑒

(𝑩0
𝑐 )
𝑇 𝑺̂0 d𝑉 0

𝑒

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶𝑹0

𝑢𝑒

+ 𝛿𝑼𝑇
𝑒 ∫𝑉𝑒

(𝑩hg1
𝑐 )𝑇𝑪hg𝑩̂enh d𝑉 0

𝑒

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶𝑲𝑢𝑤𝑒

−(𝑲𝑤𝑤𝑒 )
−1𝑹𝑤𝑒

+ 𝛿𝑼𝑇
𝑒

[

∫𝑉𝑒
(𝑩hg1

𝑐 )𝑇𝑪hg𝑬̂hg1
𝑐 d𝑉 0

𝑒 + ∫𝑉𝑒
(𝑩hg2

𝑐 )𝑇𝑪hg𝑬̂hg2
𝑐 d𝑉 0

𝑒

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶𝑹hg

𝑢𝑒

]

,
(28)

A more detailed derivation leading to these expressions can be found in Barfusz et al. [38]. The residuals 𝑹𝑤𝑒 , 𝑹
0
𝑢𝑒

and 𝑹hg
𝑢𝑒 and

the matrices 𝑲𝑤𝑤𝑒 and 𝑲𝑢𝑤𝑒 obtained from (26) and (28) can be solved using analytical integration, see for further explanation
Section 5 and Appendix A.3.

At the end, the internal weak form of (28) reads

𝑔𝑐𝑢𝑒 = 𝛿𝑼𝑇
𝑒 (𝑹

0
𝑢𝑒
+𝑹hg

𝑢𝑒 −𝑲𝑢𝑤𝑒 (𝑲𝑤𝑤𝑒 )
−1𝑹𝑤𝑒 ). (29)

Global assembly. The Q1STc element formulation of Barfusz et al. [38] and the modified Q1STc+ formulation have been imple-
ented into the FE software FEAP [77], while the element routines were implemented with help of the automatic differentiation

ool AceGen [60,62]. The total residual vector at element level reads

𝑮𝑢𝑒 (𝑼 𝑒) = 𝑹0
𝑢𝑒
(𝑼 𝑒) +𝑹hg

𝑢𝑒 (𝑼 𝑒) −𝑲𝑢𝑤𝑒 (𝑼 𝑒)(𝑲𝑤𝑤𝑒 )
−1𝑹𝑤𝑒 (𝑼 𝑒) − 𝑭 ext𝑒 (30)

with 𝑭 ext𝑒 denoting the external force vector at element level. Since the residual vector is in general nonlinear, an iterative solution
scheme is used. Here, the Newton–Raphson scheme is applied, where Eq. (30) is expanded into a Taylor series up to the linear terms

𝑮𝑢𝑒 (𝑼 𝑒) ≈ 𝑮̃𝑢𝑒 +
𝜕𝑮𝑢𝑒
𝜕𝑼 𝑒

|

|

|

|𝑼̃ 𝑒
⏟⏞⏞⏟⏞⏞⏟

𝑲̃𝑒

𝛥𝑼 𝑒

= 𝑮̃𝑢𝑒 + 𝑲̃𝑒 𝛥𝑼 𝑒,

(31)

where ̃(⋅) denotes the evaluation at the current state of 𝑼 𝑒. The stiffness matrix at element level is obtained with help of AD by the
following relation

𝑲𝑒 =
𝛿𝑹𝑒

𝛿𝑼 𝑒
. (32)

8. Numerical examples

The examples at hand serve to test and compare the performance of the Q1STc+ element formulation with the Q1STc formulation.
As previously mentioned, the main difference between the Q1STc and Q1STc+ formulation lies in the approximation of the inverse
Jacobian and as a result, the transformation matrix, cf. Eqs. (21) and (25). The main purpose of the following examples lies in
esting and investigating the influence of this modification, with a particular focus on distorted meshes. To validate the results,
 volumetric locking-free polygonal finite element formulation proposed by Sauren and Klinkel [56] is used. Noteworthy, in this

publication, the formulation is extended to finite elasto-plasticity and denoted as ‘‘U-P-SBFEM’’. The abbreviation ‘‘U-P’’ stands for
the mixed displacement-pressure approach while ‘‘SBFEM’’ emphasizes that a scaled boundary finite element formulation is used.
In addition, the conventional low-order finite element formulation with full integration using eight Gauss points, e.g. Zienkiewicz
et al. [78], and here termed ‘‘Q1’’, is utilized for comparison, as both Q1STc and Q1STc+ are based on this formulation.

8.1. Patch tests

The purpose of patch tests lies in testing the accuracy of a finite element formulation. Hence, Macneal and Harder [79] developed
certain patch tests which are applicable to any finite element formulation and focus on different kinds of structures, e.g. beams,
hells or brick elements. They state that if an element passes the patch test, the outcomes from any other structural example will
each the correct solution. In the following, the membrane patch test and the patch test for solids will be carried out. The focus here
ies in testing and comparing the performance of both Q1STc and Q1STc+. For a better comparison, and given that its results align
ith the analytical solution, satisfying both patch tests, the performance of the conventional low-order finite element formulation
ith full integration using eight Gauss points (Q1) is used as an additional reference to the computed analytical results.

Membrane patch test. The geometry of the patch of elements with a thickness of 𝑡 = 0.001 mm is shown in Fig. 1. It needs to
be taken into consideration that the following figure only shows the first eight nodes at 𝑧 = 0. The remaining eight nodes have
he same 𝑥 and 𝑦 coordinates but a different 𝑧 coordinate. The analytical results in [79] are given for the case of linear elasticity.
8 
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Fig. 1. Membrane patch test - Geometry of the five-element patch test with 𝑡 = 0.001 mm with element numbers I–V.

The given displacements (in mm) are prescribed at the outer nodes of the structure while 𝑢𝑧 = 0 for the bottom layer of the nodes,
resulting in a plane stress state. The prescribed displacements are defined according to the function

𝒖 =
(

𝑢𝑥
𝑢𝑦

)

=
(

0.001 (𝑥 + 0.5𝑦)
0.001 (0.5𝑥 + 𝑦)

)

. (33)

Based on using the St.Venant Kirchhoff material model, the analytical second Piola–Kirchhoff stress yields 𝑆𝑥𝑥 = 𝑆𝑦𝑦 =
334.20 N∕mm2 for each element in the patch, while the corresponding shear component is equal to 𝑆𝑥𝑦 = 400.50 N∕mm2.
he material parameters are chosen according to Macneal and Harder [79] as 𝜆 = 400000 N∕mm2 and 𝜇 = 400000 N∕mm2

(𝐸 = 106 N∕mm2, 𝜈 = 0.25). It is of importance to mention that neither the stress in 𝑧−direction nor the shear components related
to it should yield stresses since a plane stress state is considered.

Table 1 shows an overview of the analytical results and the performance of the two element formulations, Q1STc and Q1Stc+.
Fig. 2 depicts the distribution of the stresses for both Q1STc and Q1STc+ for each element in the patch while Q1 is used as a
reference solution. The patch test can be considered passed if the stresses in the entire structure are homogeneous. However, this is
not the case for Q1STc, where the geometry of the element is approximated by a Taylor series expansion, see Eqs. (23) and (25). It
an be seen that the results for the stress components in 𝑥− and 𝑦− direction deviate for each element, introducing an error in the
ange of 0.09 %− 3.3 %. Moreover, stresses in 𝑧−direction are present. Overall, the Q1STc element formulation does not satisfy the

membrane patch test. This is due to the fact that the inverse Jacobian and the transformation matrix are approximated by a Taylor
series expansion up to the linear terms. To test and compare the performance of Q1STc with Q1STc+ more thoroughly, the same test
is conducted while an elasto-plastic material is considered. To this end, the theory described in Section 2 is employed. Table 2 gives
an overview of the chosen material parameters. Since a volume-preserving plasticity model is considered, the volumetric locking-free
element formulation, extended to elasto-plasticity (U-P-SBFEM), is taken for comparison.

Fig. 3 depicts the force–displacement curves of all three element formulations. Here, the displacement of node 7 is plotted versus
the sum of the nodal reaction forces at 𝑥 = 0.24 mm. For a simpler illustration, the curves are normalized by 𝐹0 = 0.028914 N, where
𝐹0 denotes the largest force obtained by the Q1STc+ formulation in the elastic regime. It can be seen that the proposed Q1STc+
lement coincides with U-P-SBFEM. The results of Q1STc, however, yield nodal reaction forces that are severely overestimated,
specially when plasticity occurs. The reason for this lies in the approximation of the element geometry, since this is the only
ifference between the Q1STc and Q1STc+ elements.

Patch test for solids. The patch test for solids is depicted in Fig. 4. Here, a three dimensional 1 × 1 × 1 [mm3] solid is assumed,
here the following displacements (in mm) at the edge nodes of the patch are prescribed as follows

𝒖 =
⎛

⎜

⎜

⎝

𝑢𝑥
𝑢𝑦
𝑢𝑧

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

0.001 (2𝑥 + 𝑦 + 𝑧)∕2
0.001 (𝑥 + 2𝑦 + 𝑧)∕2
0.001 (𝑥 + 𝑦 + 2𝑧)∕2

⎞

⎟

⎟

⎠

. (34)

For a St.Venant-Kirchhoff material behavior, the analytical solution of the normal and shear stresses in all three directions yield
2001.5 N∕mm2 and 400.5 N∕mm2, respectively. Table 3 shows the results obtained from the two element formulations. Fig. 5 shows
the stress distribution for each element in the patch for both Q1STc and Q1STc+, where Q1 is used as a reference solution. The

aterial parameters are 𝜆 = 400000 N∕mm2 and 𝜇 = 400000 N∕mm2 (𝐸 = 106 N∕mm2, 𝜈 = 0.25). It can be seen that both element
formulations do not fulfill the patch test since the analytical solution is not obtained and furthermore, the stress is not homogeneous
within the structure. In general, the results of Q1STc and Q1Stc+ behave similarly, since the error for the Q1STc element lies
between 0.03 % − 15.8 %, while the error in the Q1STc+ element varies between 0.04 % and 14.5 %. One possible reason why the
membrane patch test is satisfied for Q1STc+, see Table 1, while the patch test for solids is not, could be attributed to the fact that
the membrane patch test is conducted on very thin structures 𝑡 = 0.001 mm, where a plane stress state is assumed. In this case, the
out-of-plane stresses are zero, and the behavior is dominated by in-plane stress and strain components. As a result, the influence
of any out-of-plane effects in the 𝑧-direction is negligible. This simplification reduces the complexity of the test and makes it less
9 
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Table 1
Membrane patch test - Stress comparison between the analytical solution and results obtained using Q1STc and Q1STc+,
see Fig. 1.
Stress [N/mm2] Element number Analytical solution Q1STc Q1STc+

𝑆𝑥𝑥

I 1334.20 1338.90 1334.20
II 1334.20 1332.90 1334.20
III 1334.20 1314.20 1334.20
IV 1334.20 1376.60 1334.20
V 1334.20 1313.30 1334.20

𝑆𝑦𝑦

I 1334.20 1335.50 1334.20
II 1334.20 1341.10 1334.20
III 1334.20 1326.30 1334.20
IV 1334.20 1344.60 1334.20
V 1334.20 1325.00 1334.20

𝑆𝑧𝑧

I 0.00 −2.1025 0.00
II 0.00 2.1957 0.00
III 0.00 −5.1731 0.00
IV 0.00 10.6170 0.00
V 0.00 −4.9051 0.00

𝑆𝑥𝑦

I 400.50 403.75 400.50
II 400.50 389.11 400.50
III 400.50 383.35 400.50
IV 400.50 401.50 400.50
V 400.50 426.17 400.50

𝑆𝑥𝑧

I 0.00 0.0389 0.00
II 0.00 −0.2729 0.00
III 0.00 0.0007 0.00
IV 0.00 0.0543 0.00
V 0.00 0.1197 0.00

𝑆𝑦𝑧

I 0.00 −0.35487 0.00
II 0.00 −0.05452 0.00
III 0.00 −0.32121 0.00
IV 0.00 0.09283 0.00
V 0.00 0.22888 0.00

Table 2
Membrane patch test - Material parameters for an elasto-plastic material, see Fig. 1.
Symbol Material parameter Value Unit

𝜆 First Lamé parameter 25 000.0 N∕mm2

𝜇 Second Lamé parameter 55 000.0 N∕mm2

𝑎 First kinematic hardening stiffness parameter 62.5 N∕mm2

𝑏 Second kinematic hardening stiffness parameter 2.5 –
𝑒 First isotropic hardening parameter 125.0 N∕mm2

𝑓 Second isotropic hardening parameter 6.0 –
𝜎𝑦0 Initial plastic threshold 300.0 N∕mm2

sensitive to certain approximations in the element formulation. Consequently, the membrane patch test is more readily satisfied.
A potential solution to address this could involve an extension of the Taylor series expansion to include the trilinear terms for the
approximation of the strain and constitutive quantities. This may provide a more accurate representation and could lead to correct
analytical results for the patch test for solids.

8.2. Cube under compression

While Q1 satisfies both the membrane patch test, see Fig. 2, and the patch test for solids, see Fig. 5, ensuring it can reproduce a
homogeneous stress state, this alone does not guarantee the absence of issues such as volumetric or shear locking. Passing the patch
est primarily ensures that the element is able to produce a homogeneous stress state, see [79]. However, locking usually occurs

for complex examples. To further test the performance of Q1STc+ and its benefits in comparison to the standard finite element
formulation using full integration (Q1), a typical example for volumetric locking is shown. For this, a cube with side lengths of
1 mm is subjected to compression, see Fig. 6. Since only one quarter of the system is discretized, the symmetry conditions have
to be considered on the planes 𝑥 = 0 and 𝑧 = 0. A surface load of 𝑝0 = 100 N∕mm2 is applied linearly in the dark gray area on
the top of the block. The nodes on the top of the structure are constrained in 𝑥- and 𝑧- direction. The chosen material model is a
ompressible Neo-Hooke model with the following Helmholtz free energy

𝜇 𝜆
𝜓 =
2
(t r (𝑪) − 3 − ln (det (𝑪))) +

4
(det (𝑪) − 1 − ln (det (𝑪))). (35)

10 
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Fig. 2. Membrane patch test - Stress distribution for Q1, Q1STc and Q1STc+, where Q1 denotes the low-order finite element formulation using full integration,
and serves as an additional reference solution to the analytical solution in Table 1.

Fig. 3. Membrane patch test - Force–displacement curves for an elasto-plastic material, see Table 2. Comparison between Q1STc, Q1STc+, the element U-P-
SBFEM [56] and the conventional low-order formulation using full integration (Q1). Here, the results of the proposed Q1STc+ element coincide with those of
U-P-SBFEM and Q1.

Here, the material parameters are chosen as 𝜇 = 80.194 N∕mm2 and 𝜆 = 40016.806 N∕mm2. To investigate how Q1 and Q1STc+
perform for an example typically known to challenge issues of volumetric locking, a convergence study for a regular mesh was
conducted, see Fig. 7. Here, the simulation was performed for a discretization of 512, 1000, 1728 and 5832 nel elements, where the
elements in each coordinate direction were evenly distributed. The results of the absolute displacement |𝑢𝑦| at the node indicated
by the red cross in Fig. 6 at the end of the simulation were plotted. An indication for locking in general is an underestimation of the
displacements which at the end results in a stiffer response of the structure and influences the convergence behavior. Q1 proves this
11 
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Fig. 4. Patch test for solids - Geometry of the seven-element patch test with element numbers I–VII.

by showing a typical locking behavior in Fig. 7, where no convergence is reached even for the finest discretization of 18x18x18 =
5832 nel elements. In contrast, for Q1STc+, convergence can be observed even for a mesh of 10x10x10 = 1000 nel elements. Fig. 8
shows the contours of the displacement 𝑢𝑦 of the cube at the end of the simulation. Here, the results are shown for a discretization
f 18x18x18 = 5832 nel elements. As concluded in Fig. 7, a clear underestimation of the displacements can be observed for Q1. For
his reason, the results of a volumetric locking-free element formulation are used as an additional comparison for the next structural

example, which will be further discussed in detail in the next Section.

8.3. Asymmetrically notched specimen

It is now investigated, whether the performance of Q1STc and Q1STc+ differs for a more common structural example, particularly
under the influence of plastic material behavior. For this, an asymmetrically notched specimen is clamped at the bottom part
(𝑢𝑥 = 𝑢𝑦 = 𝑢𝑧 = 0 mm) and subjected to a vertical displacement at the top part, see [80]. The geometry and the boundary value
problem are shown in Fig. 9, while the chosen material parameters are illustrated in Table 4. The total length of the specimen is
70 mm with a thickness of 3 mm.

The Q1STc element formulation did not pass the membrane patch test, see Section 8.1. In order to see whether a distortion of
lements influences the results for Q1STc, the elements of the specimen were slightly distorted without altering the overall geometry

of the structure. The elements were randomly distorted in 𝑥- and 𝑦-direction. Two degrees of distortion are considered: a random
istortion between d = −0.2 mm and d = 0.2 mm, and a random distortion between d = −0.5 mm and d = 0.5 mm.

Neither Q1STc nor Q1STc+ satisfied the patch test for solids, see Section 8.1. To investigate whether this limitation could
influence the performance on a structural level, including in the 𝑧-direction, the same procedure for introducing distortions was
applied in the 𝑧-direction, denoted as dz = ±0.2 mm and dz = ±0.5 mm. The purpose of this example serves to demonstrate the
performance of the two element formulations Q1STc and Q1STc+, in particular considering the case where the mesh is distorted.

As was done for the patch tests, see Section 8.1, the performance of the standard low-order finite element formulation (Q1)
using eight Gauss points is also investigated on this structural example, since the derivation of both element formulations Q1STc
and Q1STc+ are based on it. Before comparing the results of Q1STc and Q1STc+, convergence studies on various meshes, where
three elements were used to model the thickness direction, were done with Q1 and Q1STc+, see Fig. 10. For a simpler illustration,
ll curves in this section are normalized by 𝐹0 = 3972.8 N, where 𝐹0 denotes the largest force obtained by the Q1STc+ formulation

for d = dz = 0 mm in the elastic regime. Several convergence studies for different structural examples, including the asymmetrically
otched specimen, were also carried out by Barfusz et al. [38] for the Q1STc formulation. For both element formulations,

convergence can be observed by increasing the mesh density. The force–displacement curves for different mesh densities show much
closer agreement with the converged solution when using Q1STc+ compared to the standard Q1 formulation. A possible explanation
for this is the restriction of the material model to volume-preserving plasticity, see Section 2. Volume-preserving plasticity assumes
the material undergoes incompressible plastic deformation, which imposes a constraint that can amplify the likelihood of volumetric
locking. This issue is particularly pronounced in conventional low-order finite element formulations with full integration, as it
often leads to artificially stiff element behavior and influences the convergence. Additionally, the asymmetrically notched specimen
introduces further challenges due to the complex interplay of tensile and shear stresses near the notch tip, which could also influence
the convergence behavior. For the standard Q1 formulation, the mesh with 14214 elements will be used for comparison for the
12 
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Fig. 5. Patch test for solids - Stress distribution at 𝑧 = 0.5 mm for Q1, Q1STc and Q1STc+, where Q1 denotes the low-order finite element formulation using

full integration, and serves as an additional reference solution to the analytical solution in Table 3.
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Table 3
Patch test for solids - Stress comparison between the analytical solution and results obtained using Q1STc and Q1STc+,
see Fig. 4.
Stress [N∕mm2] Element number Analytical solution Q1STc Q1STc+

𝑆𝑥𝑥

I 2001.50 1715.20 1713.50
II 2001.50 2127.00 2149.60
III 2001.50 1969.50 1973.40
IV 2001.50 2167.50 2180.40
V 2001.50 1982.20 1961.20
VI 2001.50 1971.70 1963.10
VII 2001.50 1972.20 1969.90

𝑆𝑦𝑦

I 2001.50 1687.40 1710.00
II 2001.50 1967.80 1989.90
III 2001.50 2090.60 2098.10
IV 2001.50 2000.80 2002.50
V 2001.50 2135.60 2092.30
VI 2001.50 1983.20 1980.40
VII 2001.50 1955.90 1964.00

𝑆𝑧𝑧

I 2001.50 1689.60 1707.00
II 2001.50 1974.10 1988.70
III 2001.50 1963.20 1961.70
IV 2001.50 1993.80 2004.10
V 2001.50 1985.50 1982.60
VI 2001.50 2111.40 2084.30
VII 2001.50 2103.20 2114.30

𝑆𝑥𝑦

I 400.50 403.96 375.12
II 400.50 416.39 411.63
III 400.50 401.03 405.65
IV 400.50 396.76 419.72
V 400.50 389.54 401.84
VI 400.50 391.83 389.29
VII 400.50 407.83 393.07

𝑆𝑥𝑧

I 400.50 378.29 367.89
II 400.50 375.52 388.84
III 400.50 401.58 395.17
IV 400.50 400.07 399.39
V 400.50 388.65 389.43
VI 400.50 420.10 419.18
VII 400.50 426.18 427.03

𝑆𝑦𝑧

I 400.50 350.34 362.46
II 400.50 386.41 391.73
III 400.50 414.28 409.72
IV 400.50 384.76 390.46
V 400.50 386.64 396.61
VI 400.50 411.80 409.13
VII 400.50 438.12 421.17

Table 4
Asymmetrically notched specimen - Material parameters for an elasto-plastic material, see Fig. 9.
Symbol Material parameter Value Unit

𝜆 First Lamé parameter 25 000.0 N∕mm2

𝜇 Second Lamé parameter 55 000.0 N∕mm2

𝑎 First kinematic hardening stiffness parameter 62.5 N∕mm2

𝑏 Second kinematic hardening stiffness parameter 2.5 –
𝑒 First isotropic hardening parameter 125.0 N∕mm2

𝑓 Second isotropic hardening parameter 5.0 –
𝜎𝑦0 Initial plastic threshold 100.0 N∕mm2

following simulations since convergence is not achieved with 3012 elements.
Fig. 11 shows the performance of Q1STc and the Q1STc+ for a mesh distortion in x- and 𝑦-direction. For more common

enchmark examples which are designed to study the locking phenomena, e.g. ‘‘Cook’s membrane’’ or ‘‘Cube under compression’’,
he standard Q1 element formulation has the tendency to show locking behavior. This was proved in Section 8.2 where Q1 showed
n underestimation of the displacements, resulting in a much stiffer structural response, see Figs. 7 and 8. Since the underlying

example is combined with volume-preserving plasticity and thus presents volumetric-locking in the plastic regime, see Fig. 10(a),
the conventional Q1 cannot be used as a reliable reference to see whether the results of Q1STc and Q1STc+ are plausible. To this
end, as was done for the membrane patch test above, the volumetric locking-free mixed scaled boundary finite element formulation
14 
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Fig. 6. Cube under compression - Geometry and boundary value problem with a discretization of 18x18x18 = 5832 nel elements. The surface load 𝑝0 = 100 N∕mm2

is applied on one-quarter of the top block indicated by the dark gray area. The red cross marks the displacement 𝑢𝑦 which will be used as a measure to investigate
the results obtained for the convergence study and contour plots. Due to symmetry, only one quarter of the structure is modeled, where symmetry conditions
have to be considered for the planes 𝑥 = 0 and 𝑧 = 0.

Fig. 7. Cube under compression - Convergence study of the conventional low-order formulation using full integration Q1 and Q1STc+. Here, the absolute value
of 𝑢𝑦 of the node marked by the red cross in Fig. 6 is used as a measure and plotted over 512, 1000, 1728 and 5832 nel elements at the end of the simulation.
The elements are evenly distributed over the coordinate directions.

of Sauren et al. [55], Sauren and Klinkel [56,68], extended with our material formulation provided in Section 2, with 3012 elements
was used for comparison. For Q1STc, the distortion of the mesh has an influence on the results with d ± 0.5 mm, see Fig. 11(a),
which in general should not be the case. In comparison, this is not the case for Q1STc+, see Fig. 11(b). Both Q1STc and Q1STc+
show plausible results when distorting the elements only in the thickness direction, see Fig. 12. Fig. 13 shows the force–displacement
curves of Q1STc and Q1STc+, where the mesh was distorted in all three directions. Here, the curves of Q1 and U-P-SBFEM are used
15 
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Fig. 8. Cube under compression - Contours of the displacement 𝑢𝑦 for a discretization of 18x18x18 = 5832 nel elements at the end of the simulation. Here, the
perspective aligns with the coordinate system depicted in Fig. 6.

Fig. 9. Asymmetrically notched specimen - Geometry and boundary value problem, with 𝑧 = 3 mm.

for comparison. Although a shifting in only 𝑧-direction has no influence on the performance of Q1STc, it does contribute towards
different results when also taking the other two directions into consideration compared to the results presented in Fig. 11. Figs. 14
and 15 show the evolution of the accumulated plastic strain 𝜅 at three different loading stages, which are marked in Figs. 13(a) and
13(b), where the latter shows the results for a distorted mesh with d ± 0.2 mm and dz ± 0.5 mm. Overall it can be seen that there is
no significant difference between the results obtained without a distorted mesh and with a distorted one with Q1STc and Q1STc+,
as was the case when investigating the force–displacement curves, see Fig. 13.

9. Conclusion

An enhanced single Gaussian point locking-free finite element formulation, termed Q1STc+, was presented, where the geometry
of the system was calculated exactly using AD, instead of the need of an approximation by using a Taylor series expansion. This
modification was carried out on the basis of the hypothesis that more accurate results would be obtained for certain tests, which
proved to be true since this improvement leads to the fact that the membrane patch test for a St.Venant Kirchhoff material was
fulfilled. The same simulation was also conducted with the difference that an elasto-plastic material was used. The results of Q1STc
were not in accordance with Q1STc+ and U-P-SBFEM. To further investigate mesh distortion on a three dimensional case, the patch
test for solids was applied. Both Q1STc and Q1STc+ did not fulfill the patch test. The reason for this could lie in the non-sufficient
16 
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Fig. 10. Asymmetrically notched specimen - Convergence studies on the standard Q1 (a) and the Q1STc+ (b) formulation for an elasto-plastic material.

Fig. 11. Asymmetrically notched specimen - Force–displacement curves of Q1STc (a) and Q1STc+ (b) for an elasto-plastic material, with a distortion in x- and
𝑦-direction and a mesh consisting of 3012 elements, while dz = 0 mm. The finite element formulation (Q1) and the mixed finite element formulation based on
scaled boundary parametrization (U-P-SBFEM) with a mesh consisting of 14214 elements and 3012 elements are used for comparison, respectively.

approximation of the strain and constitutive quantities by a Taylor series expansion. A possible solution to overcome this problem
would be an expansion up to trilinear terms. While the conventional low-order finite element formulation using full integration with
eight Gauss points (Q1) satisfies both patch tests, see Section 8.1, ensuring it can reproduce a homogeneous stress state, this alone
oes not guarantee the absence of issues that can occur on a structural level. Typically, Q1 exhibits shear and volumetric locking.

To investigate this phenomenon, a cube–a common example for studying volumetric locking–was subjected to compression, and a
onvergence study was performed on Q1STc+ and Q1, see Section 8.2. The results revealed typical locking behavior for Q1, where

convergence was not achieved even for a very fine mesh. To further investigate the fact that the performance of Q1STc depends on
the magnitude of the mesh distortion, an asymmetrically notched specimen was subjected to tension and its results were compared
to the Q1STc+ element formulation. Differently distorted meshes were used to see the influence on the performance. The results
17 
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Fig. 12. Asymmetrically notched specimen - Force-displacement curves of Q1STc (a) and Q1STc+ (b) for an elasto-plastic material, with a distortion in 𝑧-direction
and a mesh consisting of 3012 elements, while d = 0 mm. The finite element formulation (Q1) and the mixed finite element formulation based on scaled boundary
arametrization (U-P-SBFEM) with a mesh consisting of 14214 elements and 3012 elements are used for comparison, respectively.

Fig. 13. Asymmetrically notched specimen - Force–displacement curves of Q1STc (a) and Q1STc+ (b) for an elasto-plastic material, with a distortion in x-, y-
nd 𝑧-direction and a mesh consisting of 3012 elements, while dz ±0.5 mm. The finite element formulation (Q1) and the mixed finite element formulation based
n scaled boundary parametrization (U-P-SBFEM) with a mesh consisting of 14214 elements and 3012 elements are used for comparison, respectively. Here,
z = 0 mm holds for Q1 and UP-SBFEM.

showed that the force–displacement curves of Q1STc were not aligned with the results obtained from Q1, Q1STc+ and U-P-SBFEM,
and exhibited variations depending on the severity of the mesh distortion. Overall, the enhanced Q1STc element formulation leads to
significant improvements regarding mesh distortion. Since the patch test for solids was not fulfilled, this requires further investigation
and improvement. In addition to that, the derivations in Section 2, in particular Eq. (6) and Appendix A.1 were only proven for the
case of volume-preserving plasticity, where 𝐽𝑝 = 1, 𝐽𝑒 = 𝐽 . Whether it also holds for non-volume-preserving plasticity models, such
as the Drucker–Prager model [70], will be subject of future works.
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Fig. 14. Asymmetrically notched specimen - Contours of the accumulated plastic strain 𝜅 at three different loading stages, see Fig. 13, with 3012 elements
without mesh distortion.
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Fig. 15. Asymmetrically notched specimen - Contours of the accumulated plastic strain 𝜅 at three different loading stages, see Fig. 13, with 3012 elements and
mesh distortion of d ± 0.2 mm and dz ± 0.5 mm.
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Appendix. Additions

A.1. Overview of the volumetric locking-free mixed displacement pressure formulation

Derivation of the true pressure. In Section 2, see Eq. (6), the true pressure is derived in detail as follows

𝑝 =
𝜕 𝜓vol

𝑒
𝜕 𝐽 =

𝜕 𝜓vol
𝑒

𝜕 𝐽𝑒
⋅
𝜕 𝐽𝑒
𝜕 𝐽𝑝

= 𝜅
(

√

det (𝑪̄𝑒) − 1
) 1

𝐽𝑝
⏟⏟⏟

=1

= 𝜅
(
√

det 𝑼−1
𝑝 𝑪 𝑼−1

𝑝
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=𝐽

−1
)

= 𝜅 (𝐽 − 1).

(A.1)

Derivation of the volumetric part of the second Piola–Kirchhoff stress tensor. The volumetric part of the second Piola–Kirchhoff
stress tensor can be obtained as follows

𝑺vol = 2𝑼−1
𝑝
𝜕 𝜓vol

𝑒

𝜕𝑪̄𝑒
𝑼−1
𝑝

= 𝜅
(

√

det (𝑪̄𝑒) − 1
)

√

det (𝑪̄𝑒)𝑼−1
𝑝 𝑪̄−1

𝑒 𝑼−1
𝑝

= 𝜅
(
√

det 𝑼−1
𝑝 𝑪 𝑼−1

𝑝
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=𝐽

−1
)
√

det 𝑼−1
𝑝 𝑪 𝑼−1

𝑝
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=𝐽

𝑼−1
𝑝 𝑼−1

𝑝
⏟⏞⏟⏞⏟

=𝑰

𝑪−1 𝑼−1
𝑝 𝑼−1

𝑝
⏟⏞⏟⏞⏟

=𝑰

= 𝜅 (𝐽 − 1)
⏟⏞⏟⏞⏟

=𝑝

𝐽 𝑪−1

= 𝑝 𝐽 𝑪−1.

(A.2)

It is important to note that these derivations hold for volume-preserving plasticity, meaning that
√

det 𝑪̄𝑒 = 𝐽𝑒 = 𝐽 =
√

det 𝑪 , since
𝐽𝑝 = 1 and 𝐽 = 𝐽𝑒 𝐽𝑝.

Volumetric locking-free mixed element formulation – Overview. Since these formulations exhibit a nearly incompressible
aterial behavior in the plastic regime, a volumetric locking-free solution is herein obtained using the formulations presented

n [55,56,68]. The formulation builds on the fact that the incompressibility constraint is enforced using a perturbed Lagrangian,
leading to a linearized saddle-point problem of the form

𝑎(𝛿𝒖, 𝛥𝒖) + 𝑏(𝛿𝒖, 𝛥𝑝) = 𝑟𝑢(𝛿𝒖), (A.3a)

𝑏(𝛿 𝑝, 𝛥𝒖) − 𝑐(𝛿 𝑝, 𝛥𝑝) = 𝑟𝑝(𝛿 𝑝) (A.3b)

with

𝑎(𝛿𝒖, 𝛥𝒖) = ∫𝛺
𝛿𝑬 ∶ C ∶ 𝛥𝑬 d𝑉 + ∫𝛺

𝑺 ∶ 𝛥𝛿𝑬 d𝑉 , (A.4a)

𝑏(𝛿𝒖, 𝛥𝑝) = ∫𝛺
𝛿𝑬 ∶ 𝑺′

vol 𝛥𝑝 d𝑉 , (A.4b)

𝑏(𝛿 𝑝, 𝛥𝒖) = ∫𝛺
𝛿 𝑝 𝑺′

vol ∶ 𝛥𝑬 d𝑉 , (A.4c)

𝑐(𝛿 𝑝, 𝛥𝑝) = ∫𝛺
𝛿 𝑝 1

𝜅
𝛥𝑝 d𝑉 . (A.4d)

It can be recognized that the volumetric part of the second Piola–Kirchhoff stress for this formulation is given as

𝑺vol = 𝑝𝑺′
vol = 2 𝑝 𝜕 𝐽

𝜕𝑪
= 𝑝 𝐽 𝑪−1 (A.5)

Note that this is in accordance with the derivation in (A.2), and the formulation can therefore be used with the proposed elasto-
plastic material law. Note that due to the linearization of the problem, the volumetric and deviatoric parts of the stress and material
angent must not be determined. Within the implementation, the full material tensor and stress can therefore be used directly.
21 
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A.2. Definition of the transformation matrix

The transformation matrix 𝑻 contains the entries of the inverse Jacobian 𝑱−1 = 𝒋 and is introduced in Section 4. It is defined as
ollows in Nye’s notation

𝑻 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑗211 𝑗221 𝑗231 𝑗11 𝑗21 𝑗21 𝑗31 𝑗11 𝑗31
𝑗212 𝑗222 𝑗232 𝑗12 𝑗22 𝑗22 𝑗32 𝑗12 𝑗32
𝑗213 𝑗223 𝑗233 𝑗13 𝑗23 𝑗23 𝑗33 𝑗13 𝑗33

2 𝑗11 𝑗12 2 𝑗21 𝑗22 2 𝑗31 𝑗32 𝑗12 𝑗21 + 𝑗11 𝑗22 𝑗22 𝑗31 + 𝑗21 𝑗32 𝑗12 𝑗31 + 𝑗11 𝑗32
2 𝑗11 𝑗13 2 𝑗21 𝑗23 2 𝑗31 𝑗33 𝑗13 𝑗21 + 𝑗11 𝑗23 𝑗23 𝑗31 + 𝑗21 𝑗33 𝑗13 𝑗31 + 𝑗11 𝑗33
2 𝑗12 𝑗13 2 𝑗22 𝑗23 2 𝑗32 𝑗33 𝑗13 𝑗22 + 𝑗12 𝑗23 𝑗23 𝑗32 + 𝑗22 𝑗33 𝑗13 𝑗32 + 𝑗12 𝑗33

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (A.6)

A.3. Calculation of the residual vectors and stiffness matrices

In accordance with Section 5, both 𝑩𝑐 and 𝑩enh obtain the following polynomial form
𝑩𝑐 = 𝑩0

𝑐 + 𝑩𝜉
𝑐 𝜉 + 𝑩𝜂

𝑐 𝜂 + 𝑩𝜁
𝑐 𝜁

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶𝑩hg1

𝑐

+𝑩𝜉 𝜂
𝑐 𝜉 𝜂 + 𝑩𝜉 𝜁

𝑐 𝜉 𝜁 + 𝑩𝜂 𝜁
𝑐 𝜂 𝜁

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶𝑩hg2

𝑐

,

𝑩̄enh = 𝑩̄𝜉
enh 𝜉 + 𝑩̄𝜂

enh 𝜂 + 𝑩̄𝜁
enh 𝜁 ,

(A.7)

while the superscript denotes the derivation with respect to the convective parameters. With this, the residual vectors and their
orresponding stiffness matrices at element derived in Section 7 can be solved using analytical integration as follows

𝑹𝑤𝑒 =
8
3
det (𝑱 0)

(

(𝑩𝜉
enh)

𝑇𝑪hg𝑬̂ 𝜉
𝑐 + (𝑩𝜂

enh)
𝑇𝑪hg𝑬̂ 𝜂

𝑐 + (𝑩𝜁
enh)

𝑇𝑪hg𝑬̂ 𝜁
𝑐

)

,

𝑹0
𝑢𝑒

= 8 det (𝑱 0)(𝑩0
𝑐 )
𝑇 𝑺̂0,

𝑹hg
𝑢𝑒 = 8

3
det (𝑱 0)

(

(𝑩𝜉
𝑐 )
𝑇𝑪hg𝑬̂ 𝜉

𝑐 + (𝑩𝜂
𝑐 )
𝑇𝑪hg𝑬̂ 𝜂

𝑐 + (𝑩𝜁
𝑐 )
𝑇𝑪hg𝑬̂ 𝜁

𝑐

)

,

+ 8
9
det (𝑱 0)

(

(𝑩𝜉 𝜂
𝑐 )𝑇𝑪hg𝑬̂ 𝜉 𝜂

𝑐 + (𝑩𝜉 𝜁
𝑐 )𝑇𝑪hg𝑬̂ 𝜉 𝜁

𝑐 + (𝑩𝜂 𝜁
𝑐 )𝑇𝑪hg𝑬̂ 𝜂 𝜁

𝑐

)

,

𝑲𝑤𝑤𝑒 =
8
3
det (𝑱 0)

(

(𝑩𝜉
enh)

𝑇𝑪hg𝑩𝜉
enh + (𝑩𝜂

enh)
𝑇𝑪hg𝑩𝜂

enh + (𝑩𝜁
enh)

𝑇𝑪hg𝑩𝜁
enh

)

,

𝑲𝑢𝑤𝑒 =
8
3
det (𝑱 0)

(

(𝑩𝜉
𝑐 )
𝑇𝑪hg𝑩𝜉

enh + (𝑩𝜂
𝑐 )
𝑇𝑪hg𝑩𝜂

enh + (𝑩𝜁
𝑐 )
𝑇𝑪hg𝑩𝜁

enh

)

,

(A.8)

while the relation

∫𝑉𝑒
(⋅) d𝑉 0

𝑒 = ∫

+1

−1 ∫

+1

−1 ∫

+1

−1
(⋅) det (𝑱 0) d𝜉 d𝜂 d𝜁 (A.9)

holds.

Data availability

The source code is published on Zenodo.
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