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Abstract
Journal bearings are used more and more in wind turbine (WT) gearboxes. Compared to rolling element bearings they
are advantageous in terms of power density and reliability. Despite their reliability and theoretically unlimited fatigue life,
journal bearings can be damaged by particularly critical operating conditions that do not represent normal WT operation.
As journal bearing damage can occur very suddenly in the worst case, continuous monitoring of the bearing’s condition is
advisable. Particle contamination in the lubricant and an outage of the oil supply can be particularly harmful to the bearing.
Condition monitoring systems (CMS) have the potential to detect such critical operating conditions in journal bearings
before damage occurs. A detection of these conditions is crucial for preventing bearing damage and thus gearbox failure
which results in turbine downtime and yield loss. If failures of journal bearings in WT gearboxes can be avoided through
the use of CMS this, in the long term, has the potential to reduce maintenance and repair costs in the field application.
In this work the novel surface acoustic wave (SAW) measurement method is presented for the detection of particle
contamination and lubrication outage. The SAW method is advantageous compared to conventional monitoring methods
such as vibration measurements, as it is based on measuring the propagation behavior of actively introduced SAW into
the bearing. This makes the method particularly robust against disturbing noise. For the evaluation of the signals and the
detection of the aforementioned operational anomalies a machine learning approach is used. The latter is implemented
such that an online monitoring can be performed with only a short latency between data input and evaluation.
The presented method was validated on a component test rig for journal bearings. For the experiments the SAW measure-
ment was implemented into the test bearings. In the test campaign, the anomalies were actively induced and the bearing
behavior observed over time. This work provides insight into the signals measured during the occurrence of operational
anomalies and proves that a lubrication outage and particle contamination can be detected using SAW.
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Erkennung von Partikelkontamination und Schmierungsausfall in Getriebegleitlagern von
Windenergieanlagen mithilfe der Messung von akustischen Oberflächenwellen undmaschinellem
Lernen

Zusammenfassung
Gleitlager finden zunehmend in Getrieben vonWindenergieanlagen (WEA) Anwendung. Im Vergleich zu Wälzlagern bieten
sie Vorteile hinsichtlich Leistungsdichte und Zuverlässigkeit. Trotz ihrer hohen Zuverlässigkeit können Gleitlager durch
kritische Betriebsbedingungen, die vom normalen Betrieb abweichen, beschädigt werden. Da Schäden an Gleitlagern oft
plötzlich auftreten, ist eine kontinuierliche Überwachung des Lagers ratsam. Partikelkontamination im Schmiermittel und
ein Ausfall der Ölversorgung sind besonders schädlich für das Lager. Zustandsüberwachungssysteme (CMS) können solche
kritischen Betriebsbedingungen frühzeitig erkennen und helfen, Lagerschäden und damit Getriebeschäden zu verhindern.
Durch den Einsatz von CMS lassen sich langfristig Wartungs- und Reparaturkosten senken.
In dieser Arbeit wird eine Messmethode mit akustischen Oberflächenwellen (Surface Acoustic Waves, SAW) zur Er-
kennung von Partikelkontamination und Ölversorgungs-Ausfällen vorgestellt. Die SAW-Methode bietet im Vergleich zu
herkömmlichen Überwachungsmethoden wie Vibrationsmessungen Vorteile, da sie auf dem Ausbreitungsverhalten aktiv
eingeführter SAW im Lager basiert. Dadurch ist die Methode robust gegenüber Störeinflüssen. Zur Auswertung der Signale
und zur Erkennung von Betriebsanomalien wird ein maschinelles Lernverfahren eingesetzt, das eine Online-Überwachung
mit minimaler Verzögerung zwischen Dateneingabe und Auswertung ermöglicht.
Die Methode wurde an einem Komponentenprüfstand für Gleitlager mit integrierter SAW-Messung validiert. In den
Experimenten wurden die Anomalien aktiv induziert und das Lagerverhalten über einen bestimmten Zeitraum beobachtet.
Diese Arbeit zeigt auf, dass ein Ausfall der Ölversorgung sowie Partikelkontamination mithilfe der SAW-Technologie
erkannt werden können.

1 Introduction

Wind energy production is a cornerstone in the transition
from fossil energy to renewable energy. With a share of
around 30% of the overall electricity consumption in the
year 2023 wind energy has already become the most impor-
tant energy source in Germany [1, 2]. To further increase
the energy output of the wind sector and to maintain its
competitiveness the WT manufacturers are designing WTs
with increasing rotor diameters and thus higher rated power
output. Increasing rotor size leads to an increase in weight
of the rotor and also the nacelle since it has to bear increas-
ing loads. This causes an increased demand for lightweight
design of the drivetrain, since the tower cannot bear ever
growing weights. The gearbox is one of the heaviest com-
ponents of a WT drive train. The diameter of the first plan-
etary stage’s ring gear massively contributes to the gearbox
weight and size. The use of more compact journal bear-
ings as planetary bearings instead of conventional rolling
bearings is a recent driver of lightweight design of WT
gearboxes. In addition, journal bearings have the potential
to operate with an almost infinite lifetime when designed
and operated correctly [3]. Though generally reliable under
nominal operating conditions journal bearings are poten-
tially prone to sudden failure (e.g. fretting) in the case of
operational anomalies. Among those anomalies a shortfall
of the bearing’s lubrication with a resulting dry-running of
the bearing and a contamination of the oil with particles
acting as abrasives are especially critical [4]. Therefore,

operational anomalies such as particle contamination and
a lubrication outage due to pump malfunction are part of
recent studies [5–8]. A condition monitoring system for
journal bearings in WT gearboxes should be sensitive to
these mechanisms to make root causes for bearing failure
detectable. A fast detection of critical operating conditions
is crucial. Only then the control system of the WT can
initiate suitable countermeasures (e.g. derating of the WT).

2 State of the art

This section summarizes different CMS approaches, the im-
portance of operational anomalies and the industrial use of
SAW:

An established acoustic condition monitoring approach
is the measurement of acoustic emissions (AE). AE can be
categorized as high frequency structure borne sound and is
emitted by tribological contact in the event of wear. König
et. al. proved in 2021 that AE measurements can be used
to detect anomalies and to distinguish between oil starva-
tion and particle contamination in journal bearings using
machine learning [9]. Similar results are presented by Pod-
dar and Tandon [7, 8]. In [7] the detectability of particles
passing through the load zone of a journal bearing using
AE measurements was demonstrated for different particle
sizes and concentrations. AE sound can be found in a wide
frequency range and is characterized by a comparably low
acoustic energy. Therefore, strong acoustic noise e.g. in
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a gearbox can jeopardize the use of AE, which is poten-
tially prone to acoustic disturbance [9].

Another possibility is the detection of an increase in
temperature. In general, acoustic-based methods are faster
than temperature-based methods. Nevertheless, tempera-
ture-based methods are often preferred due to the cheaper
sensors and the low energy consumption. Baszenski et al.
have developed an energy-autonomous temperature-based
condition monitoring method for journal bearings as pre-
sented in [10].

A relatively new condition monitoring approach is the
measurement of SAW [11]. SAWs are already in industrial
use for condition monitoring of rolling bearings. Lindner
et al. have shown that SAW correlate with the amount of
lubricant in rolling bearings due to interaction of the SAWs
with the lubrication gap [12, 13]. These interactions are due
to an outcoupling of the SAWs into the lubrication gap [14].
The SAW method is based on the measurement of actively
induced ultrasonic waves with a specific frequency on the
bearing’s sliding surface. This makes the SAW approach
particularly robust against acoustic disturbance. Since the
SAW measurement probes operate at a very high sampling
rate (10MHz [15]) it can also be considered robust against
low frequency noise and vibration from the peripheral ma-
chinery of a wind turbine.

The ability to interact with the lubrication gap makes it
possible for the SAW method to detect critical operating
conditions before the occurrence of a failure. In case of
the journal bearing, this leads to a propagation of acoustic
waves in the fluid film between the surfaces of the shaft
and the journal. Therefore, the propagation of the SAW is
dependent of the height of the lubrication gap and possible
mixed friction. This is especially important when it comes
to condition monitoring of journal bearings in WTs because
changes in the lubrication gap can be detected instantly.

The operational anomalies considered in this work can
spontaneously cause strong abrasive wear which eventually
leads to high temperature and strong adhesive wear. There-
fore, these operational anomalies have been studied widely
[5–8, 16, 17]. Although approaches on CMS for journal
bearings and the detection of operational anomalies have
been made, there is no established online CMS for jour-
nal bearings in WTs [18]. A general condition monitoring
approach for journal bearings using SAW is described in
[15]. In [15] Decker et al. show that the correlation between
the SAW signals and the height of the lubrication gap, that
Lindner et al. have shown in [13] for rolling bearings is also
applicable to journal bearings [15]. The following work ex-
tends the approach made and focuses on the crucial ability
of detecting the operational anomalies lubrication outage
and particle-contaminated oil. Further, this work assesses
the applicability of anomaly detection methods based on
machine learning.

3 Method

In this section the method of the anomaly detection is pre-
sented. As mentioned above, SAW measurement systems
are able to determine the amount of lubricant in journal
bearings [13]. Decker et al. have shown that it is possible
to predict the frictional state of a journal bearing using the
combination of SAW and machine learning [15]. This pa-
per extends the idea of using SAW and machine learning
to contribute to the development of a condition monitoring
system for journal bearings by presenting an approach to
anomaly detection.

3.1 Measurement setup

The method applied in this work uses dispersive SAW (i.e.
lamb waves) [19]. A schematic visualization of the SAW
measurement setup is presented in Fig. 1.

The measurement system comprises two piezoelectric
probes placed into radial boreholes next to the bearing’s
load zone (cf. Fig. 2) The first probe, acting as the sender,
emits a transient excitation signal u(t) consisting of a sinu-
soidal wavelet with a constant shape and frequency fE (see
Eq. 1).

u .t/ = sin.2 � � � fE/ � 1

2

�
1 − cos

�
2�n

M − 1

��
(1)

The excitation wavelet (cf. Fig. 1a) is emitted into the
bearing material once every measurement cycle with a cy-
cle duration of 1.0ms. At every cycle the receiver probe
measures a response signal x(t) containing the proportion
of the excited waves that has propagated through the load
zone of the bearing. An example for two measured signals
received at two consecutive excitation cycles is depicted in
Fig. 1b. Through the excitation different modes of SAW are
created. Due to the fact that the SAWs are dispersive, the
modes have different propagations speeds and arrive at the
receiver separately in close succession. This leads to a mea-
sured response signal x(t) that is presented in Fig. 1. The
receiver signal is dependent on the frictional state of the
journal bearing in terms of wave amplitude and speed. This
can be quantified by measuring the propagation time τ and
the amplitude u of one specific phase of the receiver sig-
nal x(t) at every excitation cycle (the sampling frequency
of the signal features τ and u is 1 kHz accordingly). The
phase tracked by the system is set through the so-called
gate position tG (cf. Fig. 3).

It has been demonstrated in previous studies, that the
aforementioned signal features are sensitive to the opera-
tional behavior of a hydrodynamic journal bearing [15, 20].
It was demonstrated, that the modulation width of the prop-
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a b

Fig. 1 Exemplary plots of a SAW excitation signal (a) and measured signal at two excitation cycles (b)
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Fig. 2 Schematic visualization of the SAWmeasurement setup on a ra-
dial journal bearing based on [15]

Fig. 3 Example of a measured SAW signal with the gate position
marked at 42μs

agation time signal τ in a specified time range also referred
to as propagation time modulation

�� = max .� .t// − min .� .t// ; t 2 Œt0; t1� ; (2)

is especially sensitive to mixed friction events. For the con-
text of this work it is assumed, that this finding is transfer-
able to the aforementioned anomalies (particle contamina-
tion and lubrication outage). The so-called center of energy
γ indicates the time that elapses until half of the initial ex-
citation energy from the sender has reached the receiver
probe.

� =
1

M

nX
i=1

n � xi (3)

with M being the total energy of the signal in one excitation
cycle. It has already been shown that the center of energy
correlates with the friction intensity in a journal bearing.
More explanations about the applied method can be found
in [15].

3.2 Experimental setup

The experimental setup, including the journal bearing test
rig and the lubrication circuit built for this work to induce
the operational anomalies is shown in Fig. 4.

For the experiments the sliding speed v and the specific
pressure p as well as the bearing temperature T can be con-
trolled individually. The specific pressure p is applied via
a hydraulic cylinder and the sliding speed v is set by the
motor. The friction moment MFr can be determined using
a friction gauge. The journal bearings tested have a diam-
eter of D= 120mm and a width of B= 30mm. The param-
eters of the test rig and the journal bearings are shown in
Table 1. The test specimens are made of bronze and have
no additional coating.

During the experiments the lubrication outage can be
simulated by intentionally turning off the oil supply pump.
The oil flow rate Q is measured by the volume flow sen-
sor (cf. Fig. 4). Hereby, the lubrication outage can be de-
tected. The particle contamination is induced by switching
the three-way valve so that the whole oil flow is conducted
through the bypass. The bypass has a built-in secondary
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Volume flow sensor Particle counter
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Fig. 4 Schematic depiction of the oil circuit (a) and the journal bearing test rig (b). (DAQ Data aquistion)

Table 1 Parameters of the test rig and the journal bearing

Test rig parameters Symbol/Unit Value

Radial force FRŒkN� 0–216

Equals specific pressure pŒMPa� 0–60

Speed nŒ1=min� 0–580

Equals sliding speed v Œm= sec� 0–3.6

Bearing temperature T ŒıC� 20–100

Lubricant Œ−� ISO VG 320 (PAO)

Nominal bearing clearance SŒ�m� 80

Journal bearing parameters

Diameter D Œmm� 120

Width BŒmm� 30

Journal bearing material – CuSn12Ni2-C

Shaft material – 42CrMo4

Young’s modulus of journal bearing material Ej ŒMPa� 100

Young’s modulus of shaft material Es ŒMPa� 210

tank which is filled with particle contaminated oil. The sec-
ondary tank is filled with a defined amount of oil with
a defined contamination according to ISO 4406 before the
test procedure starts. During testing the oil from the tank
will be flushed into the circuit as soon as the three-way
valve gets switched. This method allows to induce the par-
ticle contamination at a dedicated time. Before the particles
reach the journal bearing they pass a particle counter close
to the bearing enclosure. This way the time of the particle
contamination can be determined with sufficient precision.
A laser-optical sensor was used for particle counting, which
measures the concentration of particles in the lubricant in
accordance with ISO 4406. According to the measurements
in this work a reproducible amount of contamination can
be flushed into the test bearing using the setup from Fig. 4.

3.3 Anomaly detection algorithm

In this work an anomaly detection method is used based
on the method presented in [21]. The anomaly detection
is based on a 2D-convolutional autoencoder as shown in
Fig. 6. Convolutional autoencoders outperform classic neu-
ral networks in detecting anomalies in classical machine
learning applications [21]. König et al. have shown that
an anomaly detection based on an autoencoder and AE-
measurements is possible for journal bearings [9]. The ar-
chitecture of the autoencoder used in this work consists of
an input and an output layer as well as three convolutional
layers in between (cf. Fig. 5). The input data of the autoen-
coder consists of time sequences with n data points of the
signal features center of energy γ, amplitude A and prop-
agation time τ. Unlike a conventional neural network with
fully connected layers of individual neurons, convolutional
networks use filters which convolve over the input data
in a specific stride. These filters can be used to compress
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Fig. 5 Schematic presentation
of the architecture of an 2D-
convolutional autoencoder

measurement

data

continuous

SAW-

Controller
2D-convolutional

Autoencoder
yes

no

anomaly

no anomaly

ring memory

sequential

Fig. 6 Functionality of the anomaly detection algorithm

the information while emphasizing valuable patterns in the
data. An autoencoder is divided into an encoder, a decoder
and a bottleneck. The layers of the encoder contain a de-
creasing number of neurons with each layer. This leads to
a compression of the input data that goes along with a loss
of information.

The smallest layer of the autoencoder is called the bottle-
neck. Inside of the bottleneck the input data is compressed
to its most salient features. After the compression the de-
coder recreates the input data based on the training informa-
tion. The decoder usually has a mirrored architecture of the
encoder. Due to the loss of information during the compres-
sion the recreation is always faulty to a certain quantifiable
extend. The reconstruction loss ε can be calculated by Eq. 4.

" =
dX

i=1

.xi − ri /
2 (4)

xi represents the i-th component of the sequence x of the
measurement data and ri is analog i-th component of the
reconstructed data.

Before the algorithm can be used for anomaly detection
the autoencoder has to be trained. In the training phase
the journal bearing is running in a hydrodynamic operating
state. During this phase the SAW-controller transmits the
data of the three signal features center of energy γ, am-
plitude A and propagation time τ continuously. The data
gets saved in a ring memory. From this memory the data
is transmitted to the autoencoder (cf. Fig. 6). During the
training phase the autoencoder gets adjusted to minimize
the reconstruction loss ε. After the training is completed
the autoencoder can be used in the algorithm for anomaly
detection [21]. The transmission of the measurement data is
the same as during the training phase. For every sequence
x of the measurement data the reconstruction loss ε is cal-
culated using Eq. 4. Afterwards the reconstruction loss ε is
compared to a threshold Θ. In this work the threshold Θ
is the reconstruction loss εtraining of the last training itera-
tion. In case of an anomaly the measurement data deviates
from the training data and the reconstruction loss ε exceeds
the threshold ‚ = "training [21]. In such a case the whole se-
quence is automatically labelled as an anomaly. For analysis
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purposes the anomaly density ρA is suitable. The anomaly
density ρAis calculated by:

�A =
nAnomaly

nX

2 Œ0%; 100%� (5)

ρA is defined as the percentage ratio within one second se-
quences that are recognized as an anomaly nAnomaly and the
number of all sequences examined during this period nX.
Analysis of the anomaly density allows for a qualitative
evaluation of the anomaly labels over time.

4 Results

The experiments are separated in two groups: particle con-
tamination and lubrication outage tests. Both test groups are
performed following similar procedures. At first the bearing
is operated in a hydrodynamic state for 600sec. to create
a reference measurement for the nominal operating condi-
tion. At t = 600 sec : the anomaly in the operation is created
by flushing contaminated lubricant into the bearing (parti-
cle contamination experiment) or turning of the oil supply
(lubrication outage experiment) according to Fig. 4a. The
experiments are executed with a preconditioned specimen
(run in bearing). The results are presented in the following.

4.1 Particle contamination experiments

In this section results of two particle contamination exper-
iments are presented. The first experiment is carried out at
a hydrodynamic operation point. The test parameters are
shown in Table 2. The concentration of the iron particles
in this experiment was determined through the analysis of
oil samples taken from WT gearboxes in the field. After
t = 600 sec the particles are injected into the oil stream
and are flushed into the load zone of the bearing. An elasto-
hydrodynamic simulation of the operating point tested here
resulted in a minimum lubrication gap height of 1�m. The
particle contamination class used for this test includes par-
ticles that are larger than the minimum lubrication gap. It
is assumed that three-body abrasion occurs in this condi-

Table 2 Test parameters of
the first particle contamination
experiment

Parameter Symbol/Unit Value

Specific pressure pŒMPa� 10

Sliding speed vŒm= sec� 0.1

Test duration ttotalŒsec� 1800

Time of anomaly tanomalyŒsec� 600

Particle material Œ−� Iron

Contamination class during anomaly (ISO 4406) [–] 20/19/13

Particle concentration cŒg=100g� 0.1

tion, which is to be regarded as a critical condition for the
journal bearing.

The measurement data of the particle contamination ex-
periment is shown in Fig. 7. The graph of the friction mo-
ment MFr shows a negligible friction moment during the
first 600s of the experiment. At about t = 650 s the plot of
the friction moment MFr shows a steep increase from about
2Nm to over 22Nm. This is an indicator for mixed friction
that is induced by the injected particles. The oil flow Q is
constant over the whole testing time and the bearing tem-
perature T shows only a marginal increase at the peak of
the friction moment MFr.

The propagation time τ and the propagation time modu-
lation Δτ show an increase as soon as the particles reach the
load zone of the bearing. The relative increase in the prop-
agation time is 0.1% and the signal behavior changes with
the particle induction as the propagation time modulation
Δτ shows. The change in acoustic propagation of SAW is
also visible in the center of energy γ and amplitude A. The
presence of particles in the lubrication gap and the mixed
friction could lead to an increase in coupled out energy so
that a reduction in the center of energy γ and the amplitude
A gets visible. The fourth plot in Fig. 7 shows the anomaly
density ρA and the third number of the ISO 4406 contamina-
tion class which represents the particles larger than 14μm.
It is evident that the anomaly density ρA is the highest at the
peak of the friction moment MFr. The increase and the de-
crease of the anomaly density ρA are similar to the friction
moment MFr. This allows the conclusion that the autoen-
coder is able to detect the anomalies in good agreement
with the friction occurring in the bearing. The 14μm-signal
of the particle counter (ISO 4406: 14μm in Fig. 7) installed
in the oil supply of the test rig (cf. Fig. 4) is in good agree-
ment with the signal pattern of the friction moment MFr

and the anomaly density ρA, which further validates the re-
sults. Figure 8 shows a microscopic image taken from the
sliding surface within the load zone of the specimen used
for the first particle contamination experiment. The bearing
load zone shows scoring caused by abrasive wear (three-
body-abrasion). Embedded particles can be seen in one of
the grooves material analysis using the electron microscope
revealed that the embedded particle marked in Fig. 8 is an
iron particle. In summary, the experiment with a particle
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Fig. 7 Measurement data of the first particle contamination experiment. Including the test rig data, SAW-data and the detected anomalies

concentration of 0:1 g=100 g lled to satisfactory results in
terms of detectability of the anomaly. However, the parti-
cle injection in the experiment caused significant abrasion
on the bearing’s sliding surface. Therefore, the detection
of a significantly lower particle concentration than in the
first experiment appears desirable. In a second experiment
a lower particle concentration c (0:01 g=100 g) is investi-
gated (see also Fig. 9).

The concentration c used in this second experiments
leads to a ISO 4406 contamination class measured of
20/19/7 (for comparison: the ISO 4406 class of the other
experiment is 20/19/13). The other experimental parame-
ters were kept equal to the aforementioned experiment (see
Table 2). At t = 600 s the particles were induced into the
oil stream. 40 s later the particles reach the lubrication gap
of the bearing as the contamination level in Fig. 9 indi-
cates and the friction moment increases slightly from about
2Nm to around 4.3Nm. Furthermore, a small increase in
propagation time modulation Δτ is detected at this time. In
comparison to the measurements in Fig. 7 the increase in
contamination, friction moment MFr and propagation time

modulation Δτ is much smaller. Nevertheless, the anomaly
density ρA also peaks two times although smaller as in the
previous contamination experiment. The first peak is caused
by a pressure surge due to switching to the bypass. The
second peak is in good alignment with the 14μm-signal of
the particle counter and correlates with the friction moment
MFr as well. This leads to the assumption that the anomaly
detection method is working for low contamination levels
as well and that the percentage of labeled anomalies A
correlates with the criticality of the anomaly.

4.2 Lubrication outage experiment

Additionally, to the particle contamination experiment,
a lubrication outage experiment is shown in this section.
The operating parameters of this experiment are listed in
Table 3.

The results of the lubrication outage experiment are pre-
sented in Fig. 10. Analogous to the particle contamination
experiment, the bearing is running in a hydrodynamic op-
erating point as the experiments starts. At tAnomaly = 600 sec
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Embedded 

iron particle

Fig. 8 High resolution image of the bearing sliding surface in the load
zone captured by an electron microscope

the oil pump is turned off and the oil flow Q decreases
to 0l=min instantly. After 200s at t = 800 sec the friction
moment MFr increases slowly. This shows that the oil is
flushed from the load zone and the bearing starts to operate

Fig. 9 Measurement data of the second particle contamination experiment. Including the test rig data, SAW-data and the detected anomalies

in mixed friction. At this time the temperature T starts to
increase slowly.

The maximum increase from t = 800 sec to t = 1200 s

is �T = 2ıC which can be seen as neglectable. At t =
1200 sec the oil pump is turned on and the oil flow rises
to Q = 8:5l=min again. Immediately after the oil pump
is turned on again, the friction moment MFr decreases to
the starting value of 3Nm. This shows that the bearing is
running in hydrodynamic operation again. In Fig. 10 the
SAW-features propagation time τ and the propagation time
modulation Δτ are shown analog to the particle contamina-
tion experiments. During the anomaly the propagation time
τ increases by about 0:02—s, which is a small change in
comparison to the particle contamination experiment. In-
creased amplitude modulation can be seen in the propaga-
tion time signal between tAnomaly = 600 secand t = 1200 sec.
The propagation time modulation Δτ increases from < 5ns
to 50ns at tAnomaly = 600 sec. The output signal from the au-
toencoder is shown in Fig. 9, filtered in the same way as in
Fig. 7. The autoencoder detects many anomalies right after
tAnomaly = 600 sec. This is analogous to the high propagation
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Table 3 Test parameters of the lubrication outage tests

Parameter Symbol/Unit Value

Specific pressure pŒMPa� 20

Sliding speed vŒm=s� 0.4

Test duration ttotal 30

Time of anomaly tanomaly 10

time modulation Δτ. At t = 800 sec the number of detected
anomalies A starts to increase parallel to the increase of
the friction moment MFr. This observation corresponds to
the results of the particle contamination experiment where
a correlation between the detected anomalies A and the fric-
tion moment MFr can be observed. The great advantage of
the SAW method over conventional condition monitoring
metrics for journal bearings is evident here: an increase in
the frictional moment MFr is immediately visible through
the acoustic modulation of the SAW. It can be expected
that a qualitative estimation of the frictional moment is also
possible under real conditions in the field, since the friction

Fig. 10 Measurement data of the lubrication outage experiment. Including the test rig data, SAW-data and the detected anomalies

moment correlates with the propagation time modulation of
the SAW.

For a second lubrication outage experiment the oper-
ating point is nearly the same as in Table 3, except the
specific pressure p is at 10MPa. The results are presented
in Fig. 11. As with all the experiments shown above, the
autoencoder was trained with the initial, hydrodynamic op-
erating point for each test. The measurement data shows the
highest increase in friction moment MFr, bearing tempera-
ture T, propagation time τ and propagation time modulation
Δτ. The increase in propagation time modulation Δτ is so
large that it is shown in logarithmic scale. In contrast to the
previous experiment, the oil supply is turned on again at
t = 950 sec because a longer lubrication outage would most
likely have ended in a bearing failure.

These results show how damaging the operational ano-
malies are: the lubrication outage leads to wear that changed
the acoustic behavior of the bearing surface. This can be ob-
served looking at the center of energy γ and the amplitude
A which have different values before and after the anomaly
(amplitude A: 4.2V before and 3.8V afterwards). If the
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Fig. 11 Measurement data of the critical lubrication outage experiment. Including the test rig data, SAW-data and the detected anomalies

bearing is pre-damaged (in this case due to the experiment
presented in Fig. 10) the emergency running properties are
worsening so that in this case a second anomaly with only
half the specific pressure p is enough to cause lasting dam-
age on the bearing.

5 Conclusion

This paper presents a method to detect particle contam-
ination and a shortfall of lubrication in journal bearings
using SAW-measurements. The results show that the SAW
method has the potential to detect the anomalies with a short
latency. In all experiments a strong increase in the propa-
gation time modulation Δτ is detected after the beginning
of the anomaly. A high propagation time modulation Δτ
is caused by the discontinuous and statistically distributed
asperity contacts, as this causes noise in the propagation
time τ signal. In this work the SAW measurements are an-
alyzed using an anomaly detection algorithm based on an
autoencoder. The number of detected anomalies over time

is expressed through the so-called anomaly density ρA. The
results for ρA are consistent with the particle contamination
and lubrication outage during the experiments, but also re-
spond to other changes in operating conditions. It can be
concluded that the though the SAW method is characterized
by its strong robustness against acoustic disturbances, the
evaluation of this measurement poses a particular challenge
in terms of the robustness of the diagnostic algorithm used.

The notable advantage of the presented method lies in
the correlation of the SAW propagation time modulation
Δτ of with the friction moment. In the experimental en-
vironment (test rigs) the resulting frictional moment can
be measured easily and precisely. In the field application,
where the CMS is to be used, this measurement is typically
not available. The high sensitivity and the short latency
make the method suitable for the condition monitoring task
of journal bearings. Furthermore, the ability to manually
set the excitation frequency makes the SAW-system resis-
tant against interferences. The disadvantage of the system is
a high construction and assembly effort. The probes must
be placed in the bearing which demands a method to in-
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clude the sensors and the controllers into a rotating part of
the gearbox.

6 Outlook

The results presented show that the combination of the SAW
system with a machine learning algorithm is suitable for de-
tecting anomalies in journal bearings. However, the method
of this work needs to be improved in order to work as a con-
dition monitoring system. In the experiments presented, the
training of the autoencoder took place just before the start of
the experiment. This means that the autoencoder is trained
for only one hydrodynamic operation point and any change
(e.g. a different fluid film height) could be detected as an
anomaly. One focus of the next steps is therefore to de-
velop an autoencoder that is trained in different operating
states. Another focus is the classification of the anomaly.
Research has shown that machine learning algorithms are
able to distinguish between lubrication failure, particle con-
tamination and mixed friction [16, 17]. These works were
performed using AE signals. AE is susceptible to interfer-
ences and comes with very large data. SAW is less prone
to disturbances and the measurement data is smaller.

Secondly, the present study is limited to component level
experiments. Future work will aim to demonstrate the ap-
plicability of the SAW method to a WT gearbox system
where the SAW method will be used to monitor the oper-
ating condition of planetary journal bearings.
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