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Abstract: Methods enabling direct C—H alkylation of
heterocycles are of fundamental importance in the late-
stage modification of natural products, bioactive mole-
cules, and medicinally relevant compounds. However,
there is a scarcity of a general strategy for the direct
C-H alkylation of a variety of heterocycles using
commercially available alkyl surrogates. We report an
operationally simple palladium-catalyzed direct C-H
alkylation of heterocycles using alkyl halides under the
visible light irradiation with good scalability and func-
tional group tolerance. Our studies suggest that the
photoinduced alkylation proceeds through a cascade of
events comprising, site-selective alkyl radical addition,
base-assisted deprotonation, and oxidation. A combina-
tion of experiments and computations was employed for
the generalization of this strategy, which was success-
fully translated towards the modification of natural

products and pharmaceuticals. )

Direct C—H alkylation reactions of heterocycles are of high
relevance for the introduction of three-dimensional aliphatic
frameworks onto the heterocycle skeletons. Such direct
alkylation reactions overcome limitations of prefunctionali-
zation of starting materials and would ideally allow the
direct employment of readily available heterocycles and
alkyl halides to furnish sp*rich building blocks. The latter
are highly demanded in modern drug discovery to improve
on the properties of drug molecules.”! For example, sp’-
rich building blocks are essential to increase molecular
complexity, to improve target binding and/or selectivity, or
to improve ADME properties (adsorption, distribution,
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metabolism, excretion) of small molecule drugs (1a, b,
Scheme 1a).”) A generalized method that allows the intro-
duction of alkyl groups onto existing heterocyclic frame-
works from simple, commercially available precursors thus
represents an imperative approach to address modern
demands in the search of state-of-the-art drug molecules.
Until today, different approaches in accessing radical
intermediates and their application in the functionalization
of heterocycles have been described, e.g. proceeding via
the introduction of alkyl radicals via Minisci-type reactions
(Scheme 1b), via halogen atom transfer reactions, or via
hydrogen atom transfer.”” Alternatively, C—H alkylation
with activated and synthetically modified alkyl precursors,
such as alkyl N-(acyloxy)phthalimides, 1,4-dihydropyridines,
alkyl peroxides, and redox-active oxime esters are known as
well.B However, the direct introduction of carbon-centered
radicals from simple precursors such as alkyl halides is
significantly more demanding. In this context, we considered
to access such radical intermediates via visible light-induced
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Scheme 1. (A) Sp’-rich compounds in drug discovery and radical
alkylation chemistry. (B) Alkalyation via Minisci chemistry. (C) C—H
alkylation of aromatic heterocycles via light-induced palladium catal-
ysis.
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palladium catalysis (Scheme 1c).'"™"! Visible light-induced
palladium catalysis has recently attracted the interest of
synthetic chemists and commonly proceeds through the
intermittent formation of a Pd(I) alkyl radical species, which
can engage, e.g. in Heck-type couplings, 1,2-difunctionaliza-
tion reactions, or annulation reactions."'! Based on our
interest in the functionalization of heterocycles,'>"! we were
considering that such strategy could be employed to transfer
an alkyl radical onto an existing heterocyclic framework.
Following rearomatization, such process should lead to
formal C-C coupling reactions between a heteroaromatic
C(sp?) and an aliphatic C(sp®) atom.

To address this challenge, we considered the light-
mediated, palladium-catalyzed C-H alkylation reaction of
azauracil 5 (Table 1).5° In the presence of Pd(PPh;), and

Table 1: Reaction optimization. Xantphos = (9,9-Dimethyl-9H-
xanthene-4,5-diyl)bis (diphenylphosphane), NR=No reaction.

(0] o
Pd(PPhy)s (5 mol%)
Ph/\)N\Jm . /O Xantphos (6 mol%) Ph/\j‘\ i
Cs,CO;3 (1 equiv.
o ’[N | 2CO;3 (1 equiv.) o N

N
MeCN, 467 nm, Ar, 24 h k
5, 1 equiv. 6a, 1.5 equiv. 8a
entry changes from above yield / %
1 none 99
2 cyclohexyl bromide 99
3 cyclohexyl chloride NR
4 Pd source: PdCl,(PTolg),, Pd(dba),, Pd(OAc), 58/46 /11
5 solvent: CH,Cl,, THF 38/87
6 1.0 equiv Cyclohexyl iodide 87
7 no light / no base / no Pd source NR/NR/NR
8 no ligand 68

primary alkyl halides secondary alkyl halides
(0] (0] (0] )
n
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)\ N 2\ N N
[¢] N~ [¢] N~ [¢] N~
k Ph Ph Ph

8b, R =Me, 89%, X =
8¢, R = Ph, 62%, X = Br

8d, 41%, X =Br 8e,n=1,78%, X=Br
8f,n=2,99%, X=1
8a,n=3,99%, X =1

8g,n=4,99%, X=Br
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XantPhos as ligand, we could observe a high yielding C—-H
alkylation reaction of azauracil 5 using a slight excess of
cyclohexyl iodide 6a or cyclohexyl bromide as alkylating
reagent (Table 1, entries 1, 2). Cyclohexyl chloride gave no
reaction (entry 3). Further optimization steps involved the
influence of palladium source, solvent(Table 1, entries 4, 5)
and reaction stoichiometry (entry 6 and Table S1)—under
optimized conditions the alkylated azauracil 8a could be
isolated in near quantitative yield. Control reactions in the
absence of light, base, or Pd source showed that no reaction
occurred and all starting materials remained untouched
(entry 7). Xantphos as a ligand proved important and a
significant reduction of the reaction yield was observed
without ligand (entry 8). The sensitivity screen showed that
deviations from the optimized reaction conditions still gave
satisfactory yields of the reaction product. The most critical
parameters were found to be the addition of water, longer
wavelength, or the reaction in air (see Scheme S1).

With the optimized conditions in hand, we next em-
barked on the evaluation of the substrate scope (Scheme 2).
Tertiary, secondary and primary alkyl halides were tolerated
under the present reaction to give alkylated azauracils 8b-81
in good to high yield. Even the sterically demanding
neopentyl bromide was found compatible to give 8d in
moderate yield. A slightly reduced product yield was
observed, when studying an example of a perfluorinated
alkyl halides (8 m). A range of different alkyl halides bearing
functional groups such as protected amines, or esters (80—
8r) were evaluated, which all gave the desired alkylation
products in high yield. Limitations were found with the
electron-rich, stabilized primary alkyl halides, which led to a
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evaluation of protecting groups on azauracil

o N,Boc o
EtO,C
lops allavse
NC (@) (o)

_N
N'N N (0]

: 8s, 89%, X =Br

CO,Et

8t, 88%, X =Br

8u, 95%, X = Br 8v,82%, X=I 8w, 99%, X=1  8x,99%, X=I

T AT e B0 @

N
N N

o

Scheme 2. Investigations on the basic substrate scope. Reaction conditions: Azauracil (0.2 mmol, 1 eq.), alkyl halide (0.3 mmol, 1.5 eq., halide as
indicated), Pd(PPhs), (5 mol%), XantPhos (6 mol%), MeCN (2 mL) were irradiated under Ar atmosphere with 2x 40 W (Kessil PR160 L) at room

temperature.
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slight reduction in product yield (8¢, 8n). Last, different N-
protecting groups on azauracil were evaluated, which only
had a minor effect on the reaction product yield (8s—x).

In a next step, we embarked on the computational
analysis of the reaction mechanism for an understanding of
key reaction steps in this C—H alkylation reaction (Sche-
me 3A). Following the current working hypothesis on visible
light-mediated palladium catalysis,!'” initial photoexcitation
of the palladium complex leads to the complex in the triplet
state, which reacts with 5a to initially form a palladium(I)
alkyl radical intermediate. The latter can be considered as a
palladium(I) species and free alkyl radical 7a, which reacts
via TS1 to the radical intermediate INT1 (for details please
see ESI Scheme S4 and S5). The subsequent rearomatization
of INT1 can occur via two different mechanisms: a) via
single electron transfer to the intermediate Pd(I) complex
(Pathway A), or b) via single electron transfer to another
molecule of cyclohexyl iodide 6a (Pathway B). The latter
would result in a radical chain mechanism. Experimental
validation was carried out by on/off experiments and
quantum yield calculations. The quantum yield for the
reaction of azauracil Sa with cyclohexyl iodide 6a was
calculated to be 7.34. Together with the on/off experiments,
this suggests that pathway B is favored. We further
determined the kinetic isotope effect by performing two
parallel reactions of deuterated and non-deuterated dimeth-
yl azauracil. This experiment showed no difference in the
reaction yield between the deuterated and non-deuterated
heterocycle (KIE=1.00), confirming that C—H bond cleav-
age is not involved in the rate determining step (for details

A Calculated reaction
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please see ESI). When using the radical probe 6-iodo-hex-1-
ene (6b), we could observe exclusive formation of product
8y, which results from intramolecular radical cyclization
followed by radical addition to the azauracil heterocycle
(Scheme 3C). In the presence of TEMPO as radical trapping
reagent, the reaction yield significantly dropped, consistent
with a mechanism involving radical intermediates
(Scheme 3D).

We next embarked on a combined experimental and
computational screening of a more generalized set of
heterocycles with the aim of building a basis for a predictive
computational substrate screening."*! Such computational
substrate screening methods are of high relevance to reduce
synthetic efforts and to build a structure reactivity relation-
ship. Taken together, such data can be used in a next step to
facilitate screening of generalized limitations of substrate
scope.

For this purpose, we embarked on the analysis of a
selected set of 5- and 6-membered ring N-heterocycles and
one example of an O-heterocyle. For each data point, we
conducted the C—H alkylation reaction of the heterocycle
with cyclohexyl iodide to obtain a solid experimental basis
(Scheme 4A). In parallel, the computational analysis of the
radical addition step of a cyclohexyl radical to each of the
C—H bonds of the heterocycle was conducted. We chose this
step because it was previously identified as the step with the
higher activation free energy compared to the rearomatiza-
tion step (Scheme 4B). We then compared experimental
yield with the activation free energy of the energetically
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Scheme 3. Combined computational and experimental studies on the reaction mechanism. (A) Computational studies on the mechamism. (B) On-

off experiment. (C) Control experiments.
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A Exploration of heterocycles B Computational analysis of radical addition step
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Ph

Scheme 4. Development of a predictive model for translation towards a generalized heterocycle C—H alkylation reaction. (A) Exploration of
heterocycles. (B) Computational analysis of key transition states. (C) Correlation of key transition state with experimental yield. (D) Translation
towards a generalized heterocycle alkylation. (E) Examples with primary and tertiary alkyl halides.
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Scheme 5. Applications with natural products, drug molecules and nucleoside synthesis. Reaction conditions: Heterocycle (0.2 mmol, 1 eq.), alkyl
halide (0.3 mmol, 1.5 eq., halide as indicated), Pd(PPh;), (5 mol%), XantPhos (6 mol%), MeCN (2 mL) were irradiated under Ar atmosphere with

2x 40 W (Kessil PR160 L) at room temperature. (A) Natural products and drug derivatives. (B) Translation towards generalized appliations.

most feasible C—H alkylation reaction (Scheme 4C, for
details, see Table S4).

To our delight, this computational model shows that the
computational data on site-selectivity matches with the
experimentally observed site-selectivity (for details please
see Table S4 in ESI). For example, in the case of
chromenone 9g the radical addition was predicted to the a-
position of the carbonyl group with an activation free energy
of +13.0 kcalmol~'. All other potential sites were calculated
to be unfavored by at least 3.1 kcalmol'. This was then
confirmed by experiment with a good yield of 67 % and
exclusive site-selectivity. Across the whole initial dataset, an
activation free energy of approximately + 14 kcalmol ™' was
found to be crucial for a good reaction yield. For the
reaction heterocyclic substrates and a cyclohexyl radical
with activation free energies of more than + 14 kcalmol ™ no
product of C—H functionalization could be observed exper-
imentally.

Angew. Chem. Int. Ed. 2025, 64, €202417107 (5 of 7)

This analysis provides a basis for further analysis and
broadening of substrate scope. In this context we did the
computational examination of a more generalized set of
heterocycles, of which examples of further suitable hetero-
cycles are shown in Scheme 4D. Computations predict that
heterocycles 9k-o should react favorably in this C-H
alkylation reaction and activation free energies for the
preferred site of radical addition were found to be in the
range of + 8.6 to +13.6 kcalmol'. Contrarily, indole hetero-
cycle 9p should not react in this reaction owing to the large
activation free energy. The subsequent experimental valida-
tion showed that yield and site-selectivity of the C-H
functionalization are in accordance with the computational
pre-screening. For example, the 2H-indazole heterocycle,
pyridine, quinoxalinone, or coumarin heterocycles were
identified as suitable substrates for further evaluation of
applications of this heterocycle C—H alkylation reaction.
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Further computational analysis involved the computa-
tional evaluation of primary and tertiary alkyl halides in the
radical addition reaction with heterocycles 9k, 91, 9n and
90. In all cases, this analysis suggests facile addition of the
alkyl radical to the heterocycle with activation barriers
ranging from +8.2 to +14.0 kcalmol ™" (Scheme 4E). When
performing the respective C—H functionalization with n-
butyl iodide or f-butyl bromide, respectively, the corre-
sponding alkylation products were obtained in moderate to
good yield. It is noteworthy that in the case of tertiary alkyl
halides, the yields of alkylation products dropped signifi-
cantly, compared to the alkylation reaction with secondary
alkyl halides.

In the next step, we embarked on synthetic applications
of this C—H alkylation reaction (Scheme 5). For this
purpose, we initially studied examples, where natural
products or drugs such as cholesterol or isoxepac were
introduced in the side chain of the azauracil heterocycle. In
these cases, high yields of the respective C—H alkylation
product with N-Boc 4-bromo piperidine were obtained.
Further examples then include alkyl halides, where drug
molecules were introduced into the side chain (11-19). Most
notably, an analogue of sildenafil could be obtained in high
yield, which underlines the good functional group compati-
bility of this heterocycle C—H alkylation reaction. Similarly,
dansyl-protected 4-bromo piperidine reacted in high yield,
which showcases the compatibility with other dye molecules.

In further studies, the application of heterocycles was
further examined. Notably, unprotected azauracil could be
demonstrated to successfully undergo C—H alkylation to
give 20-22. Similarly, indole, quinoxaline, or coumarin
derivatives were demonstrated in alkylation reactions, e.g.
with N-Boc 4-bromo piperidine or with conjugates of drug
molecules (23-27). Most notably, this method allows the
conjugation of coumarin drugs with other drug molecules,
such as Gemfibrozil. Last, applications in the synthesis of
nucleoside analogues were examined and here, a range of
different alkyl halides proved compatible with the present
reaction conditions (28-31).

In summary, we herein report on the direct C—H
alkylation of heterocycles. We describe that a palladium
catalyst can be employed in the presence of visible light to
access alkyl radical intermediates under mild reaction
conditions. Such radical intermediates were shown to under-
go high-yielding C—H alkylation reactions of heterocycles.
Following an initial screening and control experiments using
azauracils, we describe a combined computational and
experimental approach to build a model to correlate
reaction efficiency with a key transition state of the reaction.
We show that the energy barrier of this transition state can
be used to assess the viability of more generalized hetero-
cycle C—H alkylation reaction with high predictability on the
site of C—H functionalization and reaction outcome. This
approach was used to identify a set of further heterocycles
that undergo efficient C—H alkylation reactions including
applications, e.g. in the functionalization of drug molecules,
natural products, or the synthesis of nucleoside analogues.
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