
Towards Trustworthy Neuromorphic Computing:
An Analysis of Hardware Security and Reliability Risks

Von der Fakultät für Elektrotechnik und Informationstechnik
der Rheinisch–Westfälischen Technischen Hochschule Aachen

zur Erlangung des akademischen Grades
eines Doktors der Ingenieurwissenschaften

genehmigte Dissertation

vorgelegt von
M.Sc.(CVUT) M.Sc.(RWTH) Felix Staudigl

aus Ingolstadt, Deutschland

Berichter: Universitätsprofessor Dr. rer. nat. Rainer Leupers

Universitätsprofessor Dr.-Ing. Miloš Krstić

Tag der mündlichen Prüfung: 20.02.2025

Diese Dissertation ist auf den Internetseiten
der Universitätsbibliothek online verfügbar.

Abstract

The von Neumann bottleneck poses a significant barrier, limiting the computing
performance and energy efficiency of conventional computing systems. Neuromor-
phic computing seeks to overcome this bottleneck by leveraging the intrinsic paral-
lelism and efficiency of the brain-inspired Computing-in-Memory (CIM) paradigm.
Nonetheless, the immature state of the foundational building block, memristive de-
vices, introduces substantial challenges in terms of their reliability and vulnerability
to hardware security threats, necessitating thorough analysis to ensure the develop-
ment of secure and reliable computing systems for future applications.

To provide an in-depth investigation of the reliability concerns, a fault injection
platform is introduced evaluating the robustness of digital CIM operations. This
platform marks a significant contribution to understanding and mitigating reliabil-
ity issues in memristor-based systems by providing a holistic simulation framework
operating on the crossbar and operational level.

Moreover, the work presents NeuroHammer, a novel hardware security attack
exploiting the unique properties of memristive crossbar arrays to compromise the
integrity of neuromorphic computing systems. This attack underscores the suscepti-
bility of Resistive Random-Access Memories (ReRAMs) to hardware security threats,
highlighting the critical need for effective countermeasures.

To perform a detailed reliability evaluation on actual devices, this dissertation
unveils the NeuroBreakoutBoard (NBB)—a highly versatile instrumentation platform
designed to examine the effects of memristive device nonidealities across various ab-
straction levels. The NBB’s ability in executing CIM operations on real memristive
crossbar arrays sets it apart from previously proposed platforms, emphasizing its
essential role in facilitating thorough analyses for the advancement of dependable
neuromorphic computing platforms.

In conclusion, this thesis delivers a comprehensive evaluation of memristive de-
vices, spanning from reliability issues to hardware security threats, thereby paving the
way for their broad adoption and integration into the next era of computing systems.

4

Acknowledgements

Completing this dissertation has been an extraordinary journey for both my academic
and personal growth which would have not been possible without the invaluable sup-
port and encouragement I have received along the way. Therefore, I would like to
express my deepest gratitude to several key individuals and groups whose contribu-
tions led to this dissertation.

First and foremost, I would like to express my sincerest thanks to Prof. Rainer
Leupers for his support, guidance, and mentorship throughout this process. Through
his unwavering trust, I was able to found the NeuroLab which strengthened not only
my personal research but also benefits the overall neuromorphic research group at
Institute for Communication Technologies and Embedded Systems (ICE).

Next, I am deeply grateful to have worked together with both scientific and non-
scientific colleagues at the ICE. Their camaraderie, support, and assistance have not
only enriched my research experience but also made my time at the institute truly en-
joyable and fulfilling. Furthermore, I would like to thank all students and co-authors
contributing to this thesis in form of countless hours discussing, implementing, and
challenging my ideas ultimately leading to the publications summarized in this thesis.

To my family—Sissi, Stefan, Amelie, and Stephanie—your continuous encourage-
ment and confidence in me have been foundational for pursuing this PhD and final-
izing my thesis. I cannot thank you enough for always being there, and I will always
be grateful for it.

I would like to express my heartfelt appreciation to Anna-Lena Becker. Anna-
Lena, the past five years would have not been possible without your ability to listen,
offer advice, and simply be there for me. Thank you for being my partner, my confi-
dante, and my source of joy and balance.

To all mentioned and those unmentioned who have contributed to my journey
in any kind of way, I am truly grateful. This dissertation does not only reflect my
personal effort but also the support and guidance I’ve received from each one of you.

Lastly, I would like to acknowledge the usage of Grammarly and ChatGPT for
their assistance in proofreading this thesis.

Felix Staudigl, April 2024

Contents

1 Introduction 1

1.1 Publications . 3

1.2 Synopsis and Outline . 4

2 Background 5

2.1 Emerging Non-Volatile Memories (eNVMs) 5

2.1.1 Memristive Devices . 5

2.1.2 Memristive Crossbar Structures 7

2.2 Computing-in-Memory (CIM) . 9

2.2.1 Analog Computing-in-Memory (CIM) 9

2.2.2 Logic-in-Memory (LIM) . 10

2.3 Reliability Aspects of ReRAMs . 12

2.3.1 Terminology . 12

2.3.2 Defects . 13

2.3.3 Fault Models . 14

2.3.4 Fault Injection . 16

2.4 Hardware Security . 16

2.4.1 Hardware Trojans . 17

2.4.2 Side-Channel Attacks . 18

2.4.3 Fault Injection Attacks . 18

2.5 Synopsis . 19

3 Related Work 21

3.1 Reliability of Neuromorphic Computing Systems 21

i

ii CONTENTS

3.1.1 Reliability Aspects of ReRAMs . 21

3.1.2 Reliability Aspects of Computing-in-Memory Applications . . . 22

3.1.3 Simulation Platforms . 25

3.2 Hardware Security in the Era of Neuromorphic Computing 26

3.2.1 Hardware Trojans . 26

3.2.2 Side-Channel Attacks . 27

3.2.3 Fault Injection Attacks . 28

3.3 Instrumention Platforms . 29

3.4 Lessons Learned . 31

3.5 Synopsis . 32

4 Fault Injection in Logic-in-Memory Architectures 33

4.1 Framework Overview . 34

4.2 Application Mapping . 35

4.3 Crossbar Simulator . 36

4.3.1 Memory Controller . 36

4.3.2 Crossbar Model . 37

4.3.3 Memristor Model . 38

4.4 Fault Generator . 40

4.4.1 Fault Distribution . 40

4.4.2 Fault Mapping . 41

4.4.3 Noise Vector Extraction . 42

4.5 Fault Injector . 42

4.5.1 Fault Injection in Conv2D Layers 43

4.5.2 Fault Injection in Dense Layers . 45

4.6 Resilience Metric for Logic-in-Memory Families 45

4.7 Evaluation . 46

4.7.1 Case Study: Resilience of Logic Families 47

4.7.2 Case Study: Resilience of Binary Neural Networks (BNNs) . . . 48

4.8 Limitations and Outlook . 53

4.9 Synopsis . 53

CONTENTS iii

5 Deliberately Flipping Bits in Memristive Crossbar Arrays 55

5.1 NeuroHammer . 56

5.2 Thermal Simulation . 57

5.2.1 Memristive Crossbar Model . 57

5.2.2 Thermal Crosstalk—Single Device 59

5.2.3 Thermal Crosstalk—Multiple Devices 60

5.3 Circuit Simulation . 61

5.3.1 Memory Controller . 62

5.3.2 Crosstalk Hub . 62

5.3.3 Memristive Crossbar . 63

5.4 Results . 64

5.4.1 Thermal Simulation . 65

5.4.2 1R Crossbar Arrays . 66

5.4.3 1T1R Crossbar Arrays . 69

5.5 Case Study: Leaking Rivest–Shamir–Adleman (RSA) Keys with Neuro-
Hammer . 72

5.5.1 Attack Scenario . 72

5.5.2 Simulation Methodology . 74

5.5.3 Evaluation . 74

5.5.4 Additional Attack Targets . 77

5.6 Limitations and Outlook . 78

5.7 Synopsis . 78

6 Instrumentation Platform for Non-Volatile Memory Technologies 79

6.1 Hardware . 79

6.1.1 Signal Generation . 80

6.1.2 Flexible Interconnection Matrix . 81

6.1.3 Signal Sensing . 82

6.1.4 Power Supply . 82

6.1.5 Non-Volatile Memory (NVM) Interface 83

6.1.6 Platform Orchestration . 83

6.2 Software . 84

iv CONTENTS

6.2.1 Firmware . 85

6.2.2 Application Interfaces . 87

6.3 Case Study: Reliability Assessment of a Commercial ReRAM Technology 89

6.3.1 Manufacturing Yield . 90

6.3.2 Programming Characteristics . 91

6.3.3 Endurance Characteristics . 93

6.3.4 Computing-in-Memory (CIM) . 94

6.4 Limitations and Outlook . 96

6.5 Synopsis . 97

7 Conclusion 99

Appendix 101

A Simulation Details 101

A.1 Model Parameter . 101

A.2 Alpha Matrices . 102

B Communication Details 107

Glossary 109

List of Figures 111

List of Tables 115

List of Algorithms 117

Bibliography 119

Chapter 1

Introduction

The von Neumann bottleneck has long been recognized as a significant impediment
to the performance of conventional computing systems. This bottleneck arises from
the strict separation between memory and processing units, necessitating frequent
data transfers and resulting in suboptimal system performance and energy efficiency.
To overcome this challenge, emerging computing paradigms, such as Computing-
in-Memory (CIM), have garnered considerable attention. By shifting computational
operations inside the memory, CIM endeavors to mitigate the limitations imposed by
the von Neumann bottleneck. The concept of relocating computational operations to
memory is derived from the mammalian brain, giving rise to the term "neuromorphic
computing."

Memristors, initially postulated as the fourth fundamental circuit element by Leon
Chua [44] in 1971, serve as the foundational building blocks for neuromorphic com-
puting systems. Leveraging the resistive switching characteristics of memristors, these
devices offer promising advantages, including high density, non-volatility, and low
static power consumption. Based on these unique characteristics, memristors allow
the implementation of two flavors of CIM: analog CIM and Logic-in-Memory (LIM).

Analog CIM leverages the parallelism inherent in memristive devices to perform
computational operations directly within the memory arrays. This approach offers
the potential for higher throughput and overall computing performance compared to
conventional system architectures but requires the use of Analog-to-Digital Convert-
ers (ADCs) and Digital-to-Analog Converters (DACs). On the other hand, LIM takes a
different approach by implementing binary logic gates directly within the memristive
crossbar arrays. This eliminates the need for ADCs and DACs, simplifying the system
architecture but offers lower computing performance.

However, the reliability of memristors remains a critical concern, exerting a sub-
stantial influence on the overall reliability of CIM architectures. For analog CIM, the
variability of memristive devices, caused by fabrication process variations and aging
effects, introduces uncertainties and affects accuracy. LIM may offer a more robust
solution compared to analog CIM, as it operates in the digital domain, which is less
affected by the inherent variability of memristive devices.

Alongside performance limitations, conventional computing systems also suffer
from inherent hardware security vulnerabilities. Hardware security focuses on iden-
tifying specific design characteristics that may be exploited to gain unauthorized con-
trol over the entire system [167]. Due to the rigid structure of Integrated Circuits (ICs),
these vulnerabilities pose considerable challenges in terms of remediation, persisting
throughout the entire operational lifespan of the IC. The emergence of hardware-

1

2 Chapter 1. Introduction

enabled attacks, including notable examples such as Rowhammer [105], Spectre [106],
and Meltdown [130], has underscored the potential for significant disruptions to crit-
ical computing infrastructure. Consequently, the investigation of hardware security
vulnerabilities and the development of corresponding countermeasures have become
a vital area of research [158]. These vulnerabilities pose a grave risk to the confiden-
tiality and integrity of sensitive data, posing an interesting question: Is neuromorphic
computing susceptible to hardware security attacks?

Addressing both reliability concerns and hardware security vulnerabilities is of
paramount importance in advancing neuromorphic systems based on memristive de-
vices. This thesis seeks to investigate the reliability and hardware security aspects of
neuromorphic systems, with a specific focus on memristor-based CIM architectures.
By comprehensively understanding and effectively mitigating these challenges, this
research aims to contribute to the development of secure and reliable computing sys-
tems for future applications. This thesis contributes to the state of the art as follows:

Fault Injection Platform: The implementation of the first fault injection frame-
work for LIM operations, capable of investigating reliability from the memristor level
to actual full-fledged workloads. The framework includes a memristor-level fault
injection simulator named X-Fault and an operational-level simulator called Faulty
Logic-in-Memory (FLIM). The former excels at emulating the impact of faults on in-
dividual logic gates with high precision, while the latter offers exceptional simulation
speed for executing realistic workloads using abstracted fault models. Together, these
simulators allow for a comparison of logic families in terms of fault resilience and
enable an investigation at the application level to understand which parameters most
significantly influence potential workloads. While both simulators use fault models
from the literature, verifying our simulation results with actual hardware is beyond
the scope of this work.

NeuroHammer: A novel hardware security attack termed NeuroHammer, which
threatens the integrity of the entire neuromorphic system. This attack specifically
targets the memristive crossbar arrays utilized in neuromorphic computing systems,
intentionally inducing bit-flip faults to undermine the foundational principle of mod-
ern computing systems—memory separation. By exploiting the distinct properties of
Resistive Random-Access Memory (ReRAM) to alter the switching kinetics through
thermal crosstalk, NeuroHammer unveils an attack surface, similar to the Rowham-
mer attack in Dynamic Random-Access Memory (DRAM). We provide a compre-
hensive case study showcasing the profound impact of NeuroHammer by leaking
an Rivest–Shamir–Adleman (RSA) key from a computing system using memristive
memory.

NeuroBreakoutBoard (NBB): The design and implementation of the NBB, a versa-
tile and adaptable instrumentation platform designed to investigate the characteristics
of memristive devices at the device, crossbar, and operational levels. Equipped with
custom-designed signal generation and sensing circuitry, the NBB enables precise
control over memristive cell programming and supports the execution of both analog
CIM and LIM operations. In this thesis, we use the NBB to characterize a taped-out
ReRAM crossbar array and execute analog CIM and LIM operations.

1.1. Publications 3

1.1 Publications

• Staudigl, F., Merchant, F. and Leupers, R., 2021. A Survey of Neuromorphic
Computing-in-Memory: Architectures, Simulators, and Security. IEEE Design & Test
(journal proceedings).

• Staudigl, F., Al Indari, H., Schön, D., Sisejkovic, D., Merchant, F., Joseph, J.M.,
Rana, V., Menzel, S. and Leupers, R., 2022. NeuroHammer: Inducing Bit-Flips in
Memristive Crossbar Memories. In Proceedings of the Design, Automation & Test
in Europe Conference & Exhibition (DATE) (conference proceedings).

• Staudigl, F., Sturm, K.J., Bartel, M., Fetz, T., Sisejkovic, D., Joseph, J.M., Pöhls,
L.B. and Leupers, R., 2022. X-Fault: Impact of Faults on Binary Neural Networks in
Memristor-Crossbar Arrays with Logic-in-Memory Computation. In Proceedings of
the IEEE International Conference on Artificial Intelligence Circuits and Systems
(AICAS) (conference proceedings).

• Staudigl, F., Fetz, T., Pelke, R., Sisejkovic, D., Joseph, J.M., Pöhls, L.B. and Le-
upers, R., 2023. Fault Injection in Native Logic-in-Memory Computation on Neuro-
morphic Hardware. In Proceedings of the Annual Design Automation Conference
(DAC) (conference proceedings).

• Staudigl, F., Fetz, T., Pelke, R., Sisejkovic, D., Joseph, J.M., Pöhls, L.B. and Le-
upers, R., 2023. A Holistic Fault Injection Platform for Neuromorphic Hardware. In
Proceedings of IEEE Latin American Test Symposium (LATS) (conference proceed-
ings).

• Staudigl, F., Hossein, M., Ziegler, T., Al Indari, H., Pelke, R., Siegel, S., Wouters,
D.J., Sisejkovic, D., Joseph, J.M., and Leupers, R., 2023. Work-in-Progress: A
Universal Instrumentation Platform for Non-Volatile Memories. In Proceedings of
the IEEE International Conference on Hardware/Software Codesign and System
Synthesis (CODES/ISSS) (conference proceedings).

• Staudigl, F., Al Indari, H., Schön, D., Chen, H.-Y., Sisejkovic, D., Joseph, J. M.,
Rana, V., Menzel, S., Hagelauer, A., Leupers, R., 2024. It’s Getting Hot in Here:
Hardware Security Implications of Thermal Crosstalk on ReRAMs. In IEEE Transac-
tions on Reliability (journal proceedings).

• Staudigl, F., Thoma, J. P., Niesler, C., Sturm, K.J., Pelke, R., Sisejkovic, D., Joseph,
J. M., Güneysu, T., Davi, L., Leupers, R., 2024. NVM-Flip: Non-Volatile-Memory
BitFlips on the System Level. In Proceedings of the ACM Workshop on Secure and
Trustworthy Cyber-Physical Systems (SaT-CPS) (conference proceedings).

4 Chapter 1. Introduction

1.2 Synopsis and Outline

This chapter highlights the emergence of neuromorphic computing as a response
to the von Neumann bottleneck, which constrains the computing performance and
energy efficiency of conventional computing systems. It introduces the memristor
as the fundamental building block of this novel computing paradigm. Additionally,
the chapter addresses the unresolved reliability and hardware security concerns and
provides an overview of the contributions made by this thesis.

The remainder of this thesis is organized as follows. Chapter 2 provides an
overview of memristive memory technology, the CIM paradigm, and reliability con-
cerns associated with memristive devices. The related literature is discussed in Chap-
ter 3. Chapter 4 introduces the fault injection framework, along with two comprehen-
sive case studies investigating the fault resilience of logic families and Binary Neural
Networks (BNNs). Following this, Chapter 5 presents NeuroHammer, accompanied
by a case study illustrating its potential risks through the leakage of an RSA key.
Chapter 6 explores the design and implementation of the NBB, followed by a char-
acterization of a commercially available ReRAM technology node. Lastly, Chapter 7
concludes the thesis and outlines future research directions.

Chapter 2

Background

The objective of this chapter is to provide the essential background information that
will facilitate a comprehensive understanding of the contributions made in this thesis.
Section 2.1 explores the working principles of Emerging Non-Volatiles Memories (eN-
VMs). The Computing-in-Memory (CIM) paradigm is explained in Section 2.2. More-
over, Section 2.3 discusses the reliability aspects associated with memristor-based
memories. The hardware security of both conventional and emerging computing
systems is detailed in Section 2.4. Finally, Section 2.5 marks the conclusion of this
chapter.

2.1 Emerging Non-Volatile Memories (eNVMs)

Memristive devices serve as fundamental building block of eNVMs. The following
section introduces the working principles of these devices and discusses typical mem-
ory structures.

2.1.1 Memristive Devices

The data storage in memristive devices hinges upon altering resistance by applying
specific voltage pulses across the device terminals. Varied resistive states are achiev-
able based on the polarity, amplitude, and pulse duration, increasing memory den-
sity and positioning this technology at the forefront of memory applications and in-
memory computing paradigms [179]. In the case of binary switching devices, resistive
states are identified as the High Resistive State (HRS) and Low Resistive State (LRS).
Memristive devices are categorized according to the underlying resistance switching
mechanism.

Diverse mechanisms are employed by various types of memristive devices. Phase
Change Memories (PCMs) transition from a non-conducting phase (amorphous) to a
conducting phase (crystalline) via Joule heating processes [67]. Spin-Transfer Torque
Random-Access Memories (STT-RAMs) utilize spin-polarized currents to switch the
magnetization of the free layer in magnetic tunnel junctions, limiting tunneling cur-
rent [152]. In Ferroelectric Tunnel Junctions (FTJs), the transport of electrons is mod-
ulated by the field-induced polarization switching of a ferroelectric layer [46].

However, this thesis centers on Resistive Random-Access Memories (ReRAMs),
which modulate resistance through the redistribution of ionic defects [199]. Specif-
ically, the Valence Change Material (VCM) is employed, typically utilizing oxygen
vacancies as mobile defects to modify local conductivity. This alteration modifies

5

6 Chapter 2. Background

Table 2.1: Summary of commercial and academic prototypes using ReRAMs for
memory and computing applications [61].

Institution Node Stack Capacity Cell Endurance Ref.

Crossbar Inc.
180 nm 1R [92]

45 nm 1T1R [54]

Sony
180 nm Cu CBRAM 4 MB 2T 1S1R 107 [151]

CuTe CBRAM 1T1R [213]

TSMC
40 nm HfOx 11 MB 1T1R 104 [41]

22 nm 13.5 MB [42]

Weebit Nano 28 nm HfO2 16 kB 1T1R 105 [73]

Tsinghua Uni. 130 nm HfOx 16 MB 1T1R 106 [39]

Intel 22 nm Cu CBRAM 4 MB 1T1R [89]

Panasonic 40 nm TaOx 1 Mbit 105 [215]

HP Labs HfO2 16 kB 1T1R [122]

IHP 130 nm HfO2 4 kbit 1T1R [201]

the electrostatic barriers at the metal/oxide interfaces by changing the width of the
depletion layer [211, 200, 66]. This redistribution of ionic defects within a specific fil-
amentary region allows for distinct resistive states. For instance, a high concentration
of oxygen vacancies at the metal interface’s disc region, known as the active electrode
interface, places the device in the LRS [141]. Conversely, a low concentration of oxy-
gen vacancies at this interface results in the device being in the HRS. The transition
between these states, known as the SET transition (HRS to LRS) or RESET transition
(LRS to HRS), is achieved by applying specific voltage polarities to the active elec-
trode. The movement of oxygen vacancies, driven by their positive charge, governs
these transitions. Joule heating can expedite ion migration, facilitating highly nonlin-
ear switching dynamics, stable read operations at low voltages, and faster switching at
slightly higher voltages [144, 194]. Theoretical models by Menzel et al. [144, 143] offer
insights into relevant model parameters associated with these dynamics. Filamentary
VCM cells are preferred for emerging computing paradigms due to their compatibility
with fabrication processes and Complementary Metal-Oxide Semiconductor (CMOS)
technology. Table 2.1 provides an overview of commercial and academic prototypes
utilizing ReRAMs. Promising oxide materials like HfO2 and Ta2O5, used by com-
panies such as Panasonic and TSMC for ReRAM macros, highlight their in-memory
computing capabilities [86, 28, 115, 196, 189, 215, 123, 41].

2.1. Emerging Non-Volatile Memories (eNVMs) 7

Typical crossbarb)

Pseudo crossbard)

Passive crossbara)

Vertical crossbarc)

Figure 2.1: Overview of memristive crossbar structures: (a) passive crossbar, (b)
typical crossbar, (c) vertical crossbar, and (d) pseudo crossbar.

2.1.2 Memristive Crossbar Structures

Crossbar structures stand out as the primary choice for achieving high-density mem-
ristive memories. At their core, these structures interconnect memristive cells through
vertical Bit Line (BL) and horizontal Word Line (WL), as depicted in Figure 2.1 (a). To
program a single memristive cell, a high voltage Vwrite is applied to the corresponding
WL, while the corresponding BL is set to Ground (GND). Ensuring the non-selected
cells remain protected against unintended programming is essential. All other lines
are set to Vwrite/2 to adhere to the "V/2 scheme" [127]. Ideally, a voltage drop of
Vwrite occurs across the selected device, while the non-selected devices along the WL
and BL experience an absolute value of |Vwrite/2|. However, the ideal scenario, dis-
regarding line resistances and capacitances, introduces parasitic sneak path currents.
These currents not only impact the read operation’s accuracy but also limit array size,
induce undesired switching events, and increase power dissipation [129].

Hence, more sophisticated crossbar structures emerged designed to mitigate sneak
path currents in passive crossbar arrays. Intel’s 3D Xpoint memory, for instance, inte-
grates threshold switches in series with the memristive devices, effectively reducing
sneak path currents. Although this design offers high memory density, it necessitates
increased switching voltages [88]. Another approach employs active crossbar arrays
incorporating transistors as selectors. However, as transistors are three-terminal de-

8 Chapter 2. Background

vices, introducing an additional line connecting the transistor gates reduces mem-
ory density. Figure 2.1 (b-d) illustrates three distinct 1-Transistor 1-Resistor (1T1R)
topologies—typical 1T1R array, vertical 1T1R array, and pseudo-crossbar array—each
characterized by different arrangements involving exclusively horizontal and vertical
lines [171]. In the following, the writing schemes for the active crossbar structures are
detailed corresponding to Figure 2.1:

Typical 1T1R array: To write a cell (n,m), all transistors of the n-th line are selected
by applying the respective gate voltage VGate, while all other select lines are set
to GND. Naturally, only the devices along the selected row can be programmed.
Due to the WLs and BLs are arranged in parallel, the device (n,m) can be pro-
grammed by applying voltages to the m-th WL and the m-th BL. All other WLs
and BLs are set to 0 V, resulting in a voltage drop solely across the desired device
(n,m) (see Figure 2.1 (b)).

Vertical 1T1R array: In the vertical 1T1R configuration, the transistor gates within a
column share the same select line. Consequently, to program a cell (n,m), the
m-th select line is set to VGate, the n-th WL to VWrite, the m-th BL is set to GND,
and the other WLs are set to same potential as the m-th BL.

Pseudo 1T1R array: In the pseudo-crossbar array, the select line and the word line
are parallel to each other. To program cell (n,m), the n-th select line is set to a
high potential, the n-th WL is set to VWrite, the m-th BL is set to GND, and the
remaining BLs need to be set to VWrite to prevent switching in other cells of the
same row.

While the described writing schemes summarized in Table 2.2 effectively mitigate
sneak path currents, active crossbar structures also suffer from shortcomings. For in-
stance, the utilization of both negative and positive write voltages could cause leakage
currents through the parasitic diodes to the transistor bulk.

Moreover, the voltage drop over WLs and BLs (IR drop) has the potential to impact
the read and program pulses significantly. Irrespective of the 1T1R configurations, one
terminal of each memristive cell is linked through a shared line with other devices in a
row or column. Consequently, when a selected transistor permits the flow of current,
it induces a potential shift at the shared line due to the IR drop. The extent of the IR
drop is influenced by various factors, such as the length of the current path between
the WL drivers and the BL drivers. This length, often termed the critical length,
fluctuates depending on the position of the selected cell within the pseudo and the
vertical 1T1R array. However, it remains constant regardless of the cell’s placement in
the typical 1T1R array, as shown in Figure 2.1 (b-d).

Similarly, the leakage currents from the transistor might result in an unintended
voltage drop over an unselected cell if a potential is applied between the WL and BL.
These leakage currents are anticipated to emerge in more advanced technology nodes,
posing a threat to the reliability of active crossbar structures.

2.2. Computing-in-Memory (CIM) 9

Table 2.2: Writing schemes for the SET/RESET operation on a typical, vertical,
pseudo, and passive crossbar array.

Type SET RESET

Typical VWL,m = VSET VWL,[0,M]\m = GND VWL,m = VRESET VWL,[0,M]\m = GND

VSL,n = VGATE VSL,[0,N]\n = GND VSL,n = VGATE VSL,[0,N]\n = GND

VBL,[0,M] = GND VBL,[0,M] = GND

Vertical VWL,n = VSET VWL,[0,N]\n = GND VWL,n = VRESET VWL,[0,N]\n = GND

VSL,m = VGATE VSL,[0,M]\m = GND VSL,m = VGATE VSL,[0,M]\m = GND

VBL,[0,M] = GND VBL,[0,M] = GND

Pseudo VWL,n = VSET VWL,[0,N]\n = GND VWL,n = VRESET VWL,[0,N]\n = GND

VSL,n = VGATE VSL,[0,N]\n = GND VSL,n = VGATE VSL,[0,N]\n = GND

VBL,m = GND VBL,[0,M]\m = VSET VBL,m = GND VBL,[0,M]\m = VRESET

Passive VWL,m = VSET VWL,[0,M]\m = VSET
2 VWL,m = VRESET VWL,[0,M]\m = VRESET

2

VBL,n = GND VBL,[0,N]\n = VSET
2 VBL,n = GND VBL,[0,N]\n = VRESET

2

2.2 Computing-in-Memory (CIM)

Besides the utilization of memristive crossbar arrays as memories, these structures
are capable of facilitating CIM operations. In general, CIM can be realized in two
different flavors: analog CIM and Logic-in-Memory (LIM).

2.2.1 Analog Computing-in-Memory (CIM)

Analog CIM harnesses the continuous resistance values of memristors to conduct
Multiply–Accumulate (MAC) operations in the analog domain. As depicted in Fig-
ure 2.2 (a), the operational principle of analog CIM involves the Digital-to-Analog
Converter (DAC) translating the binary input vector into respective voltages and
feeding them to the crossbar’s rows. According to Ohm’s and Kirchhoff’s law, the
resulting current of column c is defined as:

ic,res =
R∑

r=1

Gr,cVr (2.1)

Here, R signifies the number of rows, Gr,c indicates the conductance of the mem-
ristor in row r and column c, and Vr stands for the input voltage applied to row r.
Subsequently, the Analog-to-Digital Converter (ADC) translates the output current
into a digital value. Analog CIM facilitates the computation of MAC operations in a
massively parallel manner, providing high precision and low latency, which is ben-
eficial for applications such as machine learning and signal processing. However,

10 Chapter 2. Background

G1

G1

V1

V1

V2

V2 V3

V3

A

G
at

e
de

co
de

r/d
riv

er

Column decoder/driver

ADCa)

b)

D
A

C

G
at

e
de

co
de

r/d
riv

er

Ro
w

 d
ec

od
er

/d
riv

er

Vop

A

B

B

Y

Y

Ires

I1

I2

I3

Ires

G2

G2

G3G3

Figure 2.2: Overview of CIM flavors: (a) analog CIM and (b) LIM.

it involves complex peripheral circuitry, notably utilizing ADCs/DACs, which are
known for their considerable silicon footprint, increased energy consumption, and
latency limitations [185]. Moreover, the variability of the memristors directly impacts
ic,res, leading to a reduction in the accuracy of the executed application [132].

2.2.2 Logic-in-Memory (LIM)

On the contrary, LIM leverages memristive crossbar arrays in a binary manner to exe-
cute logic operations. Numerous logic families have been proposed to integrate logic
gates within memristive crossbar arrays [23, 218, 147, 5, 76, 204, 27, 118, 120]. Most of
these logic families require additional CMOS circuitry, such as a CMOS inverter [112],
to implement logic gates. However, stateful logic represents a group of logic fam-
ilies that aims to conduct logic gate operations entirely within memristive crossbar
arrays, eliminating the need for complex external circuitry [84]. Stateful logic gates
encode their inputs and outputs in the form of resistance. During computation, the
result is directly stored into the output memory cell without data being transferred
outside the memory array [162]. Subsequently, the Memristor-Based Material Impli-
cation (IMPLY) [111], Memristor-Aided Logic (MAGIC) [110], and Memristor Ratioed
Logic (MRL) logic families are elaborated upon, as they represent the most notable
logic families.

Memristor-Based Material Implication (IMPLY): The IMPLY logic family fea-
tures a single logic gate known as the Material Implication (IMP) gate, as shown in
Table 2.3 [27]. Together with the FALSE gate, which consistently yields zero, the IM-

2.2. Computing-in-Memory (CIM) 11

Table 2.3: Implementation details for MAGIC, IMPLY, and MRL [111, 110, 60].

Circuit Logic gate Input/output encoding

M
A

G
IC

A
Vop

B
Y ≥1B

Y
A

NOR
Resistance/Resistance

IM
PL

Y PVSET

VCOND Q

RG
A

=BB
Y

IMPLY
Resistance/Resistance

M
R

L

P
VDD

RLRS

VREF
Q

≥1B
Y

A

NOR
Resistance/Voltage

PLY gate constitutes a functionally complete set. In its standard configuration, the
IMPLY gate consists of two memristors, denoted as P and Q, linked to a resistor RG
with RON < RG < ROFF. The resulting output is written in the memristor Q based on
the initial resistances p and q of the two memristors. To calculate the output of the
logic gate, distinct voltages are applied to the input memristors. The voltage VSET is
directed to Q, while VCOND is connected to P, ensuring that |VCOND| < |VSET|. The
IMPLY logic family allows the execution of an arbitrary Boolean function using only
n + 3 memristors, employing either FALSE operations with a single memristor or IM-
PLY operations with two memristors in a sequential manner [118]. Additionally, the
memristive IMPLY gate can be incorporated into a memristive crossbar array where
P, Q, and the necessary resistor RG are connected via the same BL. Both voltages,
VSET and VCOND, are supplied through their respective WLs [111].

Memristor-Aided Logic (MAGIC): The IMPLY logic family’s broader utility faces
limitations due to the necessary external resistance RG and the inherent deletion of
input values during computation. To address these issues, the MAGIC logic family of-
fers a functionally complete NOR gate. Table 2.3 illustrates the fundamental structure
of the MAGIC NOR gate. The MAGIC NOR gate comprises two input memristors,
in1 and in2, along with a dedicated output memristor out that retains the result value
post-computation. Unlike the IMPLY gate, the MAGIC NOR gate preserves the input
values. Upon initializing in1, in2, and out, an operational voltage VOp is applied across
the logic gate. As a result, the output memristor changes its internal state based on

12 Chapter 2. Background

the resistances of the input memristors. The operational voltage must adhere to the
constraint:

2VT,OFF < VO < min
[

ROFF

2RON
VT,OFF, |VT,ON|

]
(2.2)

Here, VT,OFF/VT,ON denotes the voltage threshold of the memristor, and ROFF/RON
signifies the resistances for logical zero and logical one. By implementing IMPLY/-
MAGIC gates within a crossbar structure, these logic gates can operate in parallel
by applying the operation voltage VOp to the appropriate input rows. Figure 2.2 (b)
illustrates MAGIC NOR gates embedded in the crossbar structure, where each col-
umn is equipped with three memristive devices to form a NOR gate. In this example,
applying VOp to the first and second rows enables the execution of four parallel NOR
operations.

Memristive Ratioed Logic (MRL): Given that both MAGIC and IMPLY logic fam-
ilies encode Boolean states in the form of resistance, they are inherently prone to state-
drift and variability effects of memristive devices. MRL adopts a different methodol-
ogy by encoding the output in a voltage level between VREF and VDD. Consequently,
the result of the computation is not directly stored within the crossbar array, position-
ing this logic family as near-memory computing. In general, this logic family employs
a NOR gate configured with a voltage divider across two memristive devices, where
the input values are determined by the resistances of these devices. A logical 1 is
represented by RHRS, and a logical 0 is denoted by RLRS, with a computing voltage
of VREF. For instance, when the input is {0, 0}, both memristive devices are set to
LRS, leading to an output voltage of Vout ≈ VREF, signifying a logical 1. Conversely,
for any other input combination, Vout is reduced to below VDD−VREF

2 + VREF, which is
interpreted as a logical 0 [60, 56, 55].

2.3 Reliability Aspects of ReRAMs

Notwithstanding their potential to enable novel computing paradigms, memristors
face susceptibility to faults attributed to an immature manufacturing process and
limited endurance [133]. Consequently, this section serves to introduce crucial ter-
minology, describe relevant fault models, and explore fault injection methodologies
concerning ReRAMs.

2.3.1 Terminology

In general, a system may deviate from its intended operation due to various factors of
dependability, which describe the origins and consequences of system malfunctions as
follows [222]:

Definition 2.1. A fault is a physical defect, imperfection, or flaw within hardware or
software.

Definition 2.2. An error represents a departure from precision or correctness stem-
ming from a fault.

2.3. Reliability Aspects of ReRAMs 13

BL
Df5

Df4

Df3

Df1

Memristive
cell

Df2
WL

SLb)
Source

Gate

SL WL

BL

Via

BEOL
FEOL

Metal

Memristive
cell

a)
Drain

Figure 2.3: Overview of (a) process schematic of an integrated ReRAM cell, and (b)
fault model of a 1T1R memory cell, utilizing resistors to emulate defects. [192]

Definition 2.3. A failure entails the absence of the expected or anticipated execution
of a particular action.

To illustrate this terminology, consider a memory defect in a computer system due
to deterioration, which constitutes a fault. This localized fault can cause errors, such
as a bit-flip in a memory cell, leading to a malfunction in a calculation during a user
application’s read operation, resulting in a failure [183, 222].

Memristive devices are regarded as being in an immature state, affected by no-
ticeable defect densities, manufacturing variations, and susceptibility to temperature
and voltage fluctuations. Imperfections stemming from various sources, such as spot
defects, assembly discrepancies, and fabrication intricacies, significantly impact not
only production yield but also the reliability of memristive devices [16]. Such influ-
ence results in parametric and logic faults, which can be classified into two distinct
categories: soft faults and hard faults. Soft faults arise from Cycle-to-Cycle (C2C) or
Device-to-Device (D2D) variations, in-field read/write operations, and instances of
retention faults where the cell content changes over time. Hard faults may arise from
variations during the fabrication process, as well as spot defects, extreme parametric
deviations, and continuous stress leading to the device being open or shorted [192].

2.3.2 Defects

The manufacturing of ReRAMs can be divided into two primary phases: the Front
End Of Line (FEOL) and the Back End Of Line (BEOL) processes [62]. As depicted
in Figure 2.3 (a), the FEOL encompasses the creation of transistors, while the BEOL
involves the fabrication of metal layers and the ReRAM device. The ReRAM de-
vice is typically positioned between metal layers M4 and M5 [74]. During the FEOL
phase, transistors are created on the wafer following the standard CMOS process flow.
Although this process is well-established, various defects could disrupt the function-
ing of the transistors, such as patterning proximity effects, line-edge and line-width
roughness, polish variations, and fluctuations in the gate dielectric [109]. Moving on
to the BEOL phase, the fabrication starts with the creation of metal layers. Impurity

14 Chapter 2. Background

deposition commonly affects these metal layers, leading to defects at the electrical
level [87]. Such imperfections cause resistive open defects in the metal lines connect-
ing the source, drain, and gate of the transistor, as shown in the defect model in
Figure 2.3 (b). Finally, the ReRAM device is placed between the metal layers. This
process involves the deposition of various materials, each of which holds the poten-
tial to introduce defects that hinder the proper functioning of the memory cell. The
bottom electrode’s deposition can be influenced by chemical and physical conditions,
significantly impacting the forming process and, consequently, the quality of the LRS.
The resistive switching material is also susceptible to various issues, leading to de-
fects, such as thick or thin local spots. Additionally, the top electrode could induce
parameter variations and defects [192, 61].

2.3.3 Fault Models

Fault models are a way to abstract physical phenomena for understanding the impact
of defects on a system [183]. Several fault models have been introduced to describe
the issues related to flawed ReRAMs. Given the similarities between ReRAMs and
traditional memories, many traditional fault models are applicable to ReRAMs. These
fault models can be grouped into two main categories: traditional fault models and
unique fault models [63, 38, 61].

Traditional Fault Models: In the following, fault models are outlined typically
observed in both traditional memories (like Static Random-Access Memories (SRAMs)
and Dynamic Random-Access Memories (DRAMs)) and ReRAMs.

• Stuck-at-Fault (SAF): The cell consistently resides either in the LRS, designated
as Stuck-at-0, or in the HRS, termed as Stuck-at-1. A Stuck-at-0 condition, clas-
sified as a hard fault, materializes when these faults stem from factors like the
existence of substantial resistive open defects along the WL (Df2), a persistent
open switch (characterized by the access transistor being predominantly in the
OFF state), or the presence of a sufficiently large resistive defect, denoted as
Df4, which diverts the current in the resistive device (see Figure 2.3 (b)). These
SAFs can also manifest as soft faults if induced by an erroneous forming process.
Over-forming the cell results in a Stuck-at-0, signifying that the LRS value falls
below its nominal threshold, potentially leading to an incomplete RESET opera-
tion due to limitations in the write driver’s strength. In the event of a complete
failure during the forming operation, resistive switching remains inert, render-
ing the cell in a Stuck-at-1 [192, 81, 38].

• Read Destructive Fault/Deceptive Read Destructive Fault (RDF/DRDF): Dur-
ing a read operation, the data held within the cell changes as a consequence of
the read process and the cell returns the incorrect output. In comparison, the
DRDF returns a correct output, but also changes the data held within the cell.
Such anomalies predominantly constitute soft faults and manifest in cells with
diminished strength, indicated by LRS (HRS) values surpassing (falling below)
the designated norm [35, 50, 192].

2.3. Reliability Aspects of ReRAMs 15

• Incorrect Read Faults (IRF): The cell returns an incorrect output, although the
data stored within the cell remains correct and unaffected by the read process.
These irregularities predominantly constitute hard faults, attributed to resistive
defects within the memory cell, exemplified by Df3, Df4, and Df5 in Figure 2.3
(b) [192, 80].

• Slow Write Fault (SWF): Slow write faults are characterized by the inability to
successfully complete the write operation within the designated time. These
faults can be classified as hard faults if they arise from minor resistive defects at
Df2, Df3, and Df4 in Figure 2.3 (b). Alternatively, they may be categorized as soft
faults when they stem from factors such as a weak access transistor, inadequate
capping layer deposition, incorrect stack etching, or due to aging [148, 192].

• Coupling Fault (CF): Coupling faults occur when a write/read operation on one
memory cell inadvertently triggers a write operation in an adjacent cell. These
faults are categorized as either soft or hard, depending on their origin. Factors
such as electromagnetic interference, crosstalk, or manufacturing imperfections
can create unintended electrical pathways or influence between adjacent cells,
leading to these coupling faults. [32, 126].

Unique Fault Models: Resistive Random-Access Memories have distinct malfunc-
tion patterns that require unique fault models to describe their behavior.

• Undefined Write Fault (UWF): During a writing operation, the cell enters an
undefined state, positioned between the states LRS and HRS. This anomaly is
triggered by an insufficient bias voltage during the writing process, particularly
occurring in cells with weaker characteristics, possibly magnified by C2C vari-
ability. Consequently, if a read operation is conducted on this particular cell, an
arbitrary logic value will be obtained [81]. This fault’s manifestation is twofold:
it can be detected in a newly manufactured cell, attributed to pronounced pro-
cess variations such as inadequate forming, or in a cell that has aged, resulting
from the gradual shift in resistance over time [150, 192, 63].

• Deep State Fault (Deep): The cell’s resistance exceeds its designated limits,
manifesting as a scenario where the resistance in the LRS falls below RLRS, while
it exceeds the set limit in the HRS [97]. Such a vulnerability may be attributed
to factors like over-forming or variations in C2C characteristics [63].

• Unknown Read Fault (URF): When a read operation is conducted, the output
yields an arbitrary logic value, regardless of the conditions of the reading pro-
cess. This form of vulnerability emerges as a soft fault when the LRS and HRS
are situated in proximity to each other and consequently close to the reference
resistance [63, 192, 97].

16 Chapter 2. Background

2.3.4 Fault Injection

Fault injection techniques have long been acknowledged as indispensable tools for
validating system dependability by analyzing device behavior in the event of a fault
occurrence. This subsection outlines fault injection methodologies that have been de-
veloped to assess system robustness and behavior under diverse fault scenarios [222]:

• Hardware-based Fault Injection: This category involves directly disturbing the
hardware at a physical level. This technique encompass varying hardware pa-
rameters based on the environment, including heavy ion radiation, electromag-
netic interferences, and power supply disturbances [222, 119, 18, 57].

• Software-based Fault Injection: With the aim of replicating errors that would
arise in hardware due to faults, software-based fault injection operates at a soft-
ware level. The technique simulates the errors in software that would mimic
hardware behavior when affected by faults [222, 119, 18, 57].

• Simulation-based Fault Injection: This technique injects faults into high-level
simulation models. It enables early assessment of system dependability, espe-
cially when only a model of the system exists [222, 107].

• Emulation-based Fault Injection: Presenting an alternative to time-intensive
simulation-based fault injection, this approach employs Field-Programmable
Gate Arrays (FPGAs) for accelerating fault simulation and effective circuit emu-
lation. By utilizing FPGAs, designers can study circuit behavior within the real
application environment while considering real-time interactions [222, 137, 57].

• Hybrid Fault Injection: This technique combines software-implemented fault
injection with hardware monitoring [222].

2.4 Hardware Security

Modern computing hardware is a diverse spectrum of components sourced from var-
ious vendors with differing levels of trust. Operating within a mixed-trust environ-
ment, these components serve diverse security levels. This complex ecosystem, cou-
pled with the extensive connectivity in modern systems, renders critical hardware
resources vulnerable to security threats. To counteract these security threats, hard-
ware security measures are crucially needed [85, 170].

These threats span the entire semiconductor life cycle, from design to recycling,
emerging from unintentional design flaws [106, 131], malicious modifications [59, 212,
135], and system side effects [182, 43, 184]. Hardware security threats encompass
covert channels [30], side channels [138], hardware Trojans [210], and fault injection
attacks [68]. These vulnerabilities target a spectrum of critical components, includ-
ing cryptographic functions, secure architectures, intellectual property, and machine
learning models [85].

2.4. Hardware Security 17

To design secure system, hardware security properties encompass formal specifi-
cations defining invariant security-related properties. These properties guide security
verification tools, limit desirable security attributes and assisting in formulating se-
curity countermeasures [165]. Subsequent, the three fundamental hardware security
properties are outlined referred to as the CIA triad (confidentiality, integrity, and
availability).

1. Confidentiality mandates that secret information remains undisclosed when ob-
serving public outputs or memory locations. Leaks of sensitive data can occur
through system side channels, backdoors, covert channels, or hardware Tro-
jans [85].

2. Integrity ensures that trusted data remains unaltered by untrusted entities. At-
tacks targeting critical memory locations, such as cryptographic keys, program
counters, or privilege registers, compromise integrity and serve as stepping
stones for subsequent malicious activities [85].

3. Availability characterizes a system’s capacity to consistently execute its desig-
nated operations. This hardware security attribute holds paramount importance,
as the absence of availability undermines the assurance of the other two proper-
ties. Specifically, Denial-of-Service (DoS) attacks focus on this property, aiming
to disable or isolate vital components within the system[156].

The remainder of the chapter introduces three common types of hardware secu-
rity threats: hardware Trojans, side-channel attacks, and fault injection attacks. Each
subsection gives a short introduction of the attack by depicting the working principle
and briefly discusses the attack surface.

2.4.1 Hardware Trojans

In contrast to software Trojans, the hardware counterpart poses a significant chal-
lenge in their removal, making them a serious and persistent threat to computer
systems [91]. Hardware Trojans refer to unauthorized changes made to Integrated
Circuits (ICs) by adversaries, introducing undesired functionalities. These alterations
exploit the global nature of semiconductor design and manufacturing, causing con-
cerns across multiple sectors such as military, finance, and transportation [186]. The
production of ICs involves design, fabrication, and testing. To reduce costs and speed
up time-to-market, the fabrication is often outsourced to a foundry, while the design
takes advantage of third-party Intellectual Property (IP). As a result, the IC supply
chain is vulnerable to various hardware security attacks due to the involvement of
potentially malicious third parties [206].

Ensuring the authenticity of chips requires expensive end-to-end trust mecha-
nisms or post-manufacturing validation. Hardware Trojans can impact various ICs, in-
cluding Application-Specific Integrated Circuits (ASICs), microprocessors, and digital
signal processors [186]. Reports from reputable sources like the U.S. Administration,

18 Chapter 2. Background

the U.S. Senate, and IEEE Spectrum emphasize the severity of this issue [187, 168, 2].
Efforts to combat Trojan attacks have focused on three primary solutions: (1) Trojan
detection methods, (2) Design For Security (DFS) strategies, and (3) runtime moni-
toring approaches. Trojan detection methods primarily aim to identify Trojans at the
IP level using pre-silicon techniques or nondestructive methods during post-silicon
manufacturing tests. DFS methods aim to complicate the insertion of hard-to-detect
Trojans or assist in their identification during post-silicon validation. However, Trojan
detection and DFS methods often lack complete assurance. In contrast, runtime val-
idation methods involve continuous online monitoring of circuit operation, serving
as a final defense against Trojan attacks, aiming to mitigate the impact of activated
Trojans [24].

2.4.2 Side-Channel Attacks

Another significant class of hardware attacks involves side-channel attacks, exploit-
ing implementation-specific characteristics to extract secret parameters. These attacks
capitalize on unintended physical information leaks, aiming to deduce valuable in-
sights about the operational behavior of the target system [93]. Side-channel attacks
work by inferring internal computations through the analysis of external parame-
ters like processing time, power consumption, heat dissipation, and electromagnetic
emissions. These attacks pose a particular threat to cryptographic implementations,
seeking to expose confidential data such as encryption keys [173]. Meltdown [130]
is a well-known example of a hardware security breach that exploits a side-channel
attack. This attack enables an attacker to gain unauthorized access to the memory of
other processes.

Addressing side-channel attacks does not have a general solution to safeguard a
computing system. However, specific design alterations can mitigate distinct informa-
tion leakage and serve as countermeasures against particular side-channel attacks. For
instance, the randomization of operation-dependent values is a typical countermea-
sure to prevent electromagnetic and power side-channel attacks [173]. Additionally,
timing side-channel vulnerabilities can be mitigated by equalizing response times,
potentially achieved by delaying operations.

2.4.3 Fault Injection Attacks

Fault injection attacks are considered active physical assaults aiming to maliciously
extract cryptographic keys, elevate privileges, or compromise the implementation of
neural networks. Essentially, an adversary deliberately injects faults into a computer
system and observes the system’s response to extract sensitive information. Sev-
eral fault injection methods have been proven to be effective, including clock/voltage
glitching and optical/electromagnetic disturbances. Of particular note, the Rowham-
mer attack [105] has garnered significant attention due to its impact on DRAMs. This
attack allows an adversary to intentionally manipulate bits in nearby memory regions
by inducing disruptive errors in modern high-density memories.

2.5. Synopsis 19

Row n+1
(Aggressor)

Bank

Row buffer

Word line

B
it

lin
e

Row n
(Victim)

Row n-1
(Aggressor)

Figure 2.4: Overview of the Rowhammer attack procedure in DRAMs: Hammering
the two adjacent rows surrounding the victim row to intentionally trigger bit-flip
faults by deliberately diminishing the capacitor’s charge.

DRAM cells consist of a capacitor linked to a transistor, with the capacitor’s charge
encoding two distinct states (refer to Figure 2.4). While all the transistors’ gates within
a specific row are interconnected via a WL, the corresponding capacitors of a column
are linked through a BL. Unfortunately, the charge of these capacitors is typically
transient, limiting the retention time. Consequently, the memory controller must con-
tinuously refresh the charge of all memory cells to maintain the stored information’s
integrity. The Rowhammer attack exploits this phenomenon to purposefully diminish
the charge of the targeted cell. The disruptive error arises from repetitively targeting a
WL, increasing the discharge of neighboring cells, as depicted in Figure 2.4. Rowham-
mer has been used to gain kernel privileges, enabling Google Project Zero researchers
to effectively take control of entire computer systems [167].

2.5 Synopsis

This chapter lays the groundwork for understanding the thesis by discussing eNVMs,
CIM paradigms, memristor reliability, and hardware security. It starts by explaining
memristive devices, which are central to eNVMs, covering their operation, model-
ing, and applications in high-density memory structures like crossbar arrays. It then
transitions to CIM, detailing how memristive crossbar arrays enable analog and logic
operations within memory, presenting a more efficient alternative to traditional com-
puting architectures. The reliability of memristive devices, particularly ReRAMs, is
outlined next. The chapter discusses the various faults that can occur in ReRAMs
due to manufacturing imperfections or operational stresses, and it introduces fault
injection as a method to evaluate system robustness in the face of such faults. Finally,
the chapter addresses the critical issue of hardware security. It covers the spectrum of
threats across the hardware lifecycle, from design and manufacturing to deployment,

20 Chapter 2. Background

includes hardware Trojans, side-channel attacks, and fault injection attacks. The chap-
ter concludes by emphasizing the importance of confidentiality, integrity, and avail-
ability (the CIA triad) in designing secure systems and the ongoing challenges in
protecting against sophisticated hardware attacks.

Chapter 3

Related Work

Since Leon Chua’s introduction of the memristor in 1971, substantial research ef-
forts have been dedicated to establishing efficient and dependable computing systems
rooted in memristor technology [44]. Despite these advancements, memristive devices
continue to face persistent reliability challenges. Addressing these issues has become
a critical area of research, with efforts aimed at understanding the underlying causes
and developing strategies to enhance their stability and longevity. Beyond the need
for dependable systems, these reliability flaws also create potential vulnerabilities that
could be exploited in hardware security attacks, allowing adversaries to manipulate
or extract sensitive information.

This chapter provides a detailed overview of the reliability challenges in memristor-
based computing systems and their implications for hardware security. Section 3.1
focuses on the reliability issues specific to memristor-based memory systems. Sec-
tion 3.2 examines how these reliability weaknesses can be exploited in hardware
security attacks and discusses possible defense mechanisms. Section 3.3 covers the
development of instrumentation platforms, which are crucial for assessing and im-
proving reliability. Finally, Section 3.4 summarizes the key lessons learned from the
survey. This chapter is partially based on the publication presented in [179].

3.1 Reliability of Neuromorphic Computing Systems

Resistive RAMs utilize memristive crossbar arrays to achieve both high memory den-
sity and energy efficiency. These crossbar structures not only enable the storage of
binary and multi-value data but also support Multiply–Accumulate (MAC) opera-
tions. In the quest to explore the reliability characteristics of Resistive Random-Access
Memories (ReRAMs), it is imperative to encompass all operational modes. Conse-
quently, this section comprehensively outlines prior research regarding the reliability
aspects of ReRAMs, considering their role as conventional memory as well as their
involvement in in-memory computing paradigms. Furthermore, this section provides
an overview of fault injection platforms and encapsulates the proposed techniques
designed to enhance the dependability of neuromorphic systems.

3.1.1 Reliability Aspects of ReRAMs

The landscape of publications exploring the reliability aspects of ReRAM spans from
fault detection to the development of memory architectures optimized for reliability.
Since the memristor is the fundamental building block, a multitude of publications

21

22 Chapter 3. Related Work

have proposed fault models and testing approaches for both binary [38, 78, 161, 134,
94, 33] and multilevel cells [95, 96].

Alongside concerns at the memristor level, the commonly employed crossbar
structures introduce challenges such as IR drop issues and read/write disturbances.
Zhang et al. [217] introduced a circuit architecture co-optimization framework to ad-
dress the inherent shortcomings of crossbar structures. They implement a double-
sided write driver to diminish IR drops along the bit lines and tackle write distur-
bances through a disturbance detection scheme. Furthermore, they partition the
crossbar structure into multiple regions for storing cold and hot data in slow and
fast regions, respectively, enhancing both latency and reliability. The integration of
these enhancements yields a 26.1% performance improvement while reducing energy
consumption by 21.6%. This approach also enhances system reliability by countering
read/write disturbances and the IR drop problem.

While circuit-level optimizations effectively enhance reliability, they tend to in-
crease silicon area and energy consumption. Consequently, Mao et al. [140, 139] in-
vestigated the impact of read/write voltages and pulse lengths on ReRAM reliability
and endurance. Conventionally, SET and RESET operations use distinct voltages.
However, the authors advocate for the use of a single voltage for both operations,
reducing write latency and energy consumption. Furthermore, they argue that reten-
tion can be extended by adjusting word line, bit line, and select line voltages rather
than solely relying on altering the ON/OFF ratio of the memristor.

Conventional memories leverage Error Correcting Codes (ECCs) for error detec-
tion and rectification [79]. As a result, various error correction techniques have been
proposed to augment ReRAM reliability. Schechter et al. [166] introduced an Error
Correction Pointer (ECP) scheme to address hard errors in ReRAMs by substituting
faulty cells with new ones and recording the locations of the faulty cells. In contrast,
Xu et al. [209] proposed an error-resilient ReRAM architecture utilizing ECC and ECP
to mitigate retention failures and stuck-at-faults. Moreover, Zheng et al. [220] intro-
duced a detection and recovery scheme to alleviate pseudo-hard errors in ReRAMs
by utilizing a higher programming voltage. The authors define a pseudo-hard error
as a type of hard error that is still recoverable. Lastly, Zhang et al. [219] proposed a
microarchitectural design termed EnTiered-crossbar, partitioning each crossbar along
the bit lines into two halves. These near and far segments are isolated using an access
transistor, resolving the IR drop issue.

3.1.2 Reliability Aspects of Computing-in-Memory Applications

Memristive crossbar structures offer not just traditional memory functions but also
the ability to conduct analog MAC operations and execute logic gates. However,
the reliability challenges related to the underlying memristive cells can significantly
impact applications built upon them. Consequently, numerous research initiatives
have been conducted to evaluate the impact of these reliability concerns on various
applications.

3.1. Reliability of Neuromorphic Computing Systems 23

Among the most common operational modes of memristor-based accelerators is
the execution of analog MAC operations (see Section 2.2). Feinberg et al. [58] in-
troduce an error correction scheme based on arithmetic codes to enhance reliability.
Data is encoded by multiplying it with an integer, allowing error detection and cor-
rection through modulus operations and a correction table lookup. Additionally, the
authors improve their approach by using data-aware encoding, leveraging the state
dependence of errors and prioritizing critical computation segments for overall sys-
tem accuracy.

In addition to data encoding, matrix transformation has been proposed to ad-
dress stuck-at faults in ReRAM accelerators. Zhang et al. [216] utilize row flip-
ping, permutation, and value range adjustments to fortify weight matrices against
stuck-at faults. The row flipping transformation converts stuck-off (stuck-on) faults
into stuck-on (stuck-off) faults, while the permutation transformation maps smaller
(larger) weights to memristors stuck-off (stuck-on). The value range transformation
diminishes extreme element magnitudes in the matrix, thereby reducing errors intro-
duced by each stuck-at fault. Experimental results indicate that this framework can
recover 99% of accuracy loss caused by stuck-at faults, eliminating the need for neural
network retraining.

Furthermore, mapping algorithms have been annotated to mitigate stuck-at faults
by thoroughly exploring the mapping space. Xia et al. [202] introduce an inner fault-
tolerant mapping algorithm capable of addressing multiple faulty columns without
hardware overhead. The authors use two cells to encode a single value, enabling
the algorithm to adjust, in case of a faulty cell, the other cell to represent the correct
value. Even before the mapping, the neural network itself can be optimized to miti-
gate the non-ideal effects of memristive crossbars. Al-Shaarawt et al. [4] introduce the
PRUNIX framework for training and pruning convolutional neural networks tailored
for deployment on memristor crossbar-based accelerators. PRUNIX addresses vari-
ous non-ideal characteristics of memristor crossbars, including weight quantization,
state-drift, aging, and stuck-at faults. It incorporates a unique Group Sawtooth Reg-
ularization to enhance tolerance to non-idealities and promote sparsity. Additionally,
it employs the adaptive pruning algorithm to minimize accuracy loss by considering
the sensitivity of different CNN layers to pruning.

Finally, Emara et al. [52] discuss production testing of a XOR gate, using memris-
tors in conjunction with Complementary Metal-Oxide Semiconductor (CMOS) invert-
ers. The research specifically investigates the two-input XOR gate using a fault model
that includes stuck-at faults for memristors and a fault model for transistors. The anal-
ysis reveals that faults within the XOR gate generate analog output voltage values due
to the circuit’s architecture. Consequently, a specialized 2-bit Flash Analog-to-Digital
Converter (ADC) is employed to achieve comprehensive fault coverage. Notably, the
study highlights that four resistive short faults in the XOR gate can only be detected
by monitoring the input current, emphasizing the need for exhaustive testing to attain
100% fault coverage.

24
C

hapter
3.R

elated
W

ork

Table 3.1: Overview of simulation platforms used for evaluating the reliability of non-volatile memories [114, 31].

Simulation platform Prog. language Inference Training Open-source Supported devices Non-idealities

GENIEx [31] Python ✓ ✗ ✗ Non-volatile memories. Selector/device parasitics, source/sink/wire resis-
tances

CrossSim [207] Python ✓ ✓ ✓ Non-volatile memories. C2C/D2D variations, programming errors, conduc-
tance drift, read noise variability, and ADC precision
loss.

NeuroSim [37]/NeuroSim+ [36]/
NeuroSim+DNN [154]

C++, Python ✓ ✓ ✓ Non-volatile memories, legacy
NAND flash.

C2C/D2D variations, device non-linearities.

SySCIM [169] C++, SystemC n/a n/a ✗ Non-volatile memories. C2C/D2D variations, device, interconnect parasitics,
SAF.

IBM Analog Hardware Acceleration Kit [159] C++, Python ✓ ✓ ✓ Non-volatile memories. C2C/D2D variations, ADC/DAC discretization,
noise, and device fluctuations.

MNSIM [203]/MNSIM2.0 [221] Python ✓ ✓ ✗ Non-volatile memories. Non-ideal device factors, interconnect parasitics.

DL-RSIM [128] Python ✓ ✗ ✗ Non-volatile memories. Non-ideal circuit and device properties.

MemTorch [113] C++, Python ✓ ✗ ✗ Non-volatile memories, legacy
NAND flash.

C2C/D2D variations, device failure.

TxSim [164] Python ✓ ✓ ✗ Non-volatile memories, legacy
NAND flash.

Interconnect parasitic, sneak-paths, and process vari-
ations.

RxNN [90] C++ ✓ ✓ ✓ Non-volatile memories. Interconnects and sense parasitics, driver resistances,
sneak paths, synaptic conductance variation.

NIXSim [157] Python ✓ ✗ ✗ Non-volatile memories. IR drop, SAF, programming/local/global variability,
read noise.

PytorX [83] Python ✓ ✗ ✓ Non-volatile memories. IR drop, SAF, thermal noise, shot and random tele-
graph noise.

3.1. Reliability of Neuromorphic Computing Systems 25

3.1.3 Simulation Platforms

As the landscape of memristor-based memories advances, a multitude of simulation
platforms has surfaced to estimate critical system parameters including computing
performance, energy consumption, and area. These platforms additionally simulate
device variability, process variations, and faults to bolster the reliability of their fore-
casts. The comprehensive comparative analysis in Table 3.1 serves as the cornerstone
for the following discussion in this section.

The majority of publications explore the influence of device variation and variabil-
ity on the accuracy of Deep Neural Networks (DNNs). Notably, RxNN [90] introduces
a swift and precise simulation framework leveraging a Fast Crossbar Model (FCM)
that significantly accelerates the evaluation process. This platform adeptly identi-
fies errors stemming from interconnect and sense parasitics, sneak path currents, and
synaptic conductance variations during inference and training. The FCM abstracts
non-idealities by generating a non-ideal conductance matrix, employing three consec-
utive matrix transformations to replicate synaptic device characteristics, interconnec-
t/circuit parameters, and the chip variation profile.

Although most simulators adopt a similar approach [157, 113, 128, 164, 203, 221],
PytorX [83] distinguishes itself with its comprehensive methodology for conducting
end-to-end training, mapping, and evaluation, while considering a wide spectrum
of reliability factors. Implemented in Python and built upon the PyTorch library,
PytorX replicates MAC operations on memristive crossbars, encompassing consider-
ations of DACs/ADCs, weight mapping, and weight partitioning on multiple arrays.
To emulate the impact of the IR-drop in crossbar arrays, the authors included a dy-
namic crossbar solver based on the simplified modified nodal analysis. However, this
approach is computationally intensive for simulating extensive neural networks, lead-
ing the authors to propose a noise injection adaption method capable of statistically
approximating the effect of the IR-drop.

NeuroSim [37, 36, 154] comprises a group of instruction-accurate simulators build-
ing upon a circuit-level macro model that estimates various metrics of neuromor-
phic architectures, such as area, latency, dynamic energy, and leakage power. This
platform facilitates a direct comparison of conventional Static Random-Access Mem-
ory (SRAM) cores, digital Emerging Non-Volatile Memory (eNVM) cores, and analog
eNVM cores. In essence, NeuroSim furnishes the fundamental components to con-
struct a comprehensive hierarchical architecture, considering not only reliability fac-
tors of the underlying memristor but also those of the implemented transistors within
the crossbar array and the requisite peripherals.

Conversely, SySCIM [169] introduces a system-level simulator implemented in
C++ and leveraging the SystemC and SystemC-AMS library. This approach empowers
SySCIM to simulate an entire system encompassing a processor and the memristor-
based computing core, setting it apart from the aforementioned frameworks. The us-
age of the SystemC-AMS timed data flow model enables continuous-time simulation
of the crossbar, linking it to the event-driven simulation of the overall system. Fur-
thermore, Device-to-Device (D2D) and Cycle-to-Cycle (C2C) variations are applicable

26 Chapter 3. Related Work

through dedicated random or systematic variation functions for the fitting parame-
ters of the memristive device. The memristor model offers 11 fitting parameters to
customize the behavior within the computing core. Alongside this detailed model,
SySCIM also offers a behavioral simulation model, providing an abstract representa-
tion of the memristor. To simulate the impact of SAFs, a dedicated fault-map can be
incorporated to define the probability of each memristor being faulty.

3.2 Hardware Security in the Era of Neuromorphic
Computing

Machine learning applications are pivotal in addressing complex challenges, includ-
ing autonomous driving and image recognition. As a result, machine learning acceler-
ators become targets for malicious entities that seek to manipulate inference results or
steal intellectual property by acquiring trained model parameters. Thus, the domain
of neuromorphic computing increasingly emphasizes the importance of hardware se-
curity. This section presents an overview of existing literature on three prevalent
forms of attacks: Hardware Trojans, side-channel attacks, and fault injection attacks.

3.2.1 Hardware Trojans

Nagarajan et al. [149] introduce a concept known as the Emerging NVM-based Trojan
Trigger (ENTT), featuring two forms of Trojan triggers built on ReRAM technology: a
delay-based ENTT and a voltage-based ENTT. These triggers are activated by repeat-
edly accessing a particular memory location (Ntr times).

For the delay-based variant, resistance changes resulting from persistent access
to a certain address lead to increased path delays. The trigger mechanism is built
around an AND gate with two inputs: Branch T and Branch B. Branch T is responsible
for outputting an inverted signal with a prolonged ON phase, while Branch B delivers
a standard signal that extends its ON phase after each pulse. Upon the Ntr threshold
being met, Branch B’s signal is sufficiently delayed producing a glitch in the AND gate
together with the signal of Branch T.

On the other hand, the voltage-based trigger utilizes a comparator to determine
the gradual resistance change from targeted memory access. A trigger signal is emit-
ted when the comparator’s sensed resistance shift crosses a predefined voltage refer-
ence. The authors also note that due to the non-volatility and consequent resistance
retention in ReRAM cells, sporadic access to different cells can help circumvent de-
tection mechanisms designed to flag repeated access patterns.

Khan et al. [102] propose an NVM hardware Trojan which can be intentionally
activated or deactivated. The design consists of two primary components: a trigger
and a payload. The trigger exploits the high write currents typical of NVM cells by
writing to a chosen address with a specific pattern, causing a ground bounce. This
effect is used to incrementally charge a capacitor, activating the Trojan when a certain
voltage threshold is surpassed. Khan et al. describe three distinct payloads:

3.2. Hardware Security in the Era of Neuromorphic Computing 27

• Information Leakage: This payload copies data from a designated memory cell
to another cell controlled by the attacker. It operates by connecting the two cells
via the same bit and source lines, with a transistor injected to the victim cell’s
word line. Activation of the transistor by the Trojan allows for the copying of
data when the victim cell is accessed.

• Read Failure: To disturb the read process of an NVM cell, the process variation-
dependent Vclamp voltage can be modified. Since the read circuit of an NVM cell
must account for process variations, a Vclamp voltage generator is used to adjust
the read voltage according to variations detected after manufacturing. These
generators typically consist of a resistor ladder with equal resistors. Connected
to a multiplexer, the circuit can calibrate the read voltage post-manufacturing.
An injected circuit can intentionally alter the generator’s output, causing dis-
ruption in the read process.

• Read/Write Failure: By introducing an additional N-Type Metal–Oxide Semi-
conductor (NMOS) switch, this payload can short either the bit line or the source
line to ground, or connect them to a Vdisturb to introduce noise during read/write
operations.

Both studies cast light on the inadequacy of traditional detection methods, such
as failure analysis tools, automatic test pattern generation, and side-channel analysis,
against these NVM-specific Trojans. The negligible power consumption when inactive
and their capacity to merge with standard memory operations when active make these
Trojans particularly challenging to detect. To combat this threat, the authors propose
a set of countermeasures including address scrambling, the use of ECC, machine
learning analysis of memory images, and modulation of temperature and voltage to
help identify and neutralize potential Trojans.

3.2.2 Side-Channel Attacks

Spin-Transfer Torque Random-Access Memories (STT-RAMs) are increasingly recog-
nized as a viable alternative to SRAM-based caches, primarily due to their high den-
sity and low power consumption. Nevertheless, STT-RAMs are plagued by high and
asymmetric read/write currents, which potentially enable malicious attacks aimed at
information leakage. Khan et al. [99] delve into this issue by investigating a differ-
ential power analysis-based side-channel attack, specifically targeting the recovery of
the secret key during an AES-128 execution. The system under attack comprises a
microcontroller executing the Advanced Encryption Standard (AES) algorithm, inter-
faced with an STT-RAM-based Last Level Cache (LLC). The authors assume that due
to the limited number of general-purpose registers, intermediate data from the cryp-
tographic algorithm is likely stored in the LLC. Their attack methodology successfully
retrieves 8 bytes of the key using a minimum of 800 traces, a notably higher number
than required for SRAM, attributable to STT-RAM’s lower signal-to-noise ratio.

28 Chapter 3. Related Work

Likewise, Wang et al. [198] explore the exploitation of power side-channels to
extract the complete network architecture of DNN models. They meticulously analyze
power traces across various layer types, sequences, output channels/feature sizes of
convolutional and fully connected layers, and kernel sizes of convolutional layers.
The introduction of a mixed-signal power simulator, with configurable hardware-level
properties and a PyTorch interface for mapping pre-trained Neural Network (NN)
models, is a highlight of their approach. By recording power data from both digital
and analog peripherals, they create lookup tables for use during simulation. This
attack model assumes the adversary’s familiarity with the hardware implementation
of the accelerator and control over the input and output pins of the chip, albeit without
access to individual memory cells. Their investigation demonstrates the feasibility of
systematically extracting all layers and reconstructing the full NN model using the
proposed attack methodology.

Turning to attacks on digital Logic-in-Memory (LIM) architectures, SCARE [53] is
focused on reverse engineering LIM gates using power and timing side-channels. The
authors base their assumption on the execution of LIM operations over two cycles
— first executing the AND gates, followed by the OR gate. Prior to extracting in-
formation, it is necessary to acquire template current profiles either through foundry-
calibrated simulations or by fabricating test chips. SCARE presents two distinct attack
models: the first is most effective when the inputs to the Boolean function are direct,
while the second, more generic model requires extensive reverse engineering efforts
but do not necessitate access to the direct inputs. This research demonstrates the abil-
ity of SCARE to reveal critical details about the implemented Boolean functions and
highlights its potential in compromising real-world implementations.

3.2.3 Fault Injection Attacks

The Rowhammer attack on Dynamic Random-Access Memories (DRAMs) has re-
vealed a significant vulnerability by enabling the intentional injection of faults into
computing and memory systems. Khan et al. [100] further explore this issue, ex-
amining the susceptibility of STT-RAMs to row hammering attacks. Their research
focuses on how ground bounce, induced by high write currents, can compromise the
integrity of STT-RAMs. This effect reduces the thermal energy barrier of memory bit
cells, making them more prone to retention failures, magnetic field interferences, and
thermal noise. A key finding of their study is that persistent writing (hammering) to a
specific memory location can substantially weaken the thermal barrier of nearby un-
selected bits, resulting in bit flips. Moreover, the study indicates that ground bounce
can impact bit-line and source-line drivers, negatively affecting the performance of se-
lected cells by reducing the headroom voltage. Simulations in their research demon-
strate that row hammering attacks can modify bits in STT-RAM within approximately
30.84 s, with the risk increasing at higher temperatures.

The same authors also investigate fault injection attacks on ReRAM-based caches,
specifically for initiating Denial-of-Service (DoS) attacks [101]. They consider a 1-
Transistor 1-Resistor (1T1R) ReRAM-based LLC used by both the victim and the at-

3.3. Instrumention Platforms 29

tacker. An attacker can write specific data patterns to produce deterministic supply
noise in their memory space, facilitating DoS attacks or targeted polarity fault injec-
tion attacks on the shared memory space. The simulations show that attackers can
launch DoS attacks by injecting over 120 mV of supply noise at the victim’s write lo-
cation, and a polarity fault injection attack with noise levels above 50 mV but below
120 mV. To counter these attacks, the authors suggest design-level countermeasures
such as sequential read/write access, high-quality power/ground grids, and separate
power rails for each bank.

Li et al. [121] present two innovative hardware attacks, Variation-oriented Ad-
versarial Attack (VADER) and Enhanced Fault Injection Attack (EFI), exploiting the
variability of ReRAMs. They aim to target a neuromorphic DNN accelerator based
on memristive crossbar arrays. VADER employs a variation amplification algorithm
to manipulate variation-sensitive pixels in input images, bypassing conventional de-
fense mechanisms. This algorithm selects pixels in input samples that can magnify
the effects of ReRAM crossbar variations, while limiting the number of affected pix-
els to conceal the manipulations. Conversely, EFI leverages ReRAM variations for
covert and efficient low-cost fault injection attacks. It exploits variation-induced devi-
ations in weight parameters to deliberately cause misclassification in specific sample
categories by the NN model, minimizing the number of targeted weights to evade
detection. Both attacks have demonstrated high success rates, underscoring the vul-
nerability of RRAM-based computing systems to hardware-aware adversarial attacks.

3.3 Instrumention Platforms

Due to the immature state of memristive devices, various testing and instrumentation
platforms have been proposed to evaluate single devices and crossbar structures.

Berdan et al. [20] developed the memristor Characterization And Testing (mCAT)
platform, designed to redistribute sneak-path currents within the crossbar array, sig-
nificantly improving measurement accuracy. This platform provides all required po-
tentials to the passive memristive crossbar through a multiplexer array. The bias
generator applies the appropriate V/2 potentials to all unselected lines, while the
sense bank aims to minimize measurement errors. Notably, the platform employs
five different sense resistances, conducting 50 consecutive read operations with each
resistance to diminish noise. Tested on a 32× 32 discrete resistive crossbar array and
solid-state TiO2-x ReRAM arrays, the mCAT platform demonstrated measurement ac-
curacy with less than 1% error for standalone memristive devices and less than 10%
error for 90% of devices in a custom resistive crossbar. Its versatility, enhanced by
an NXP mBED microcontroller and a MATLAB Graphical User Interface (GUI), al-
lows for seamless integration with ReRAM crossbar arrays. The mCAT platform, dis-
tributed commercially by ArC Instruments Ltd. under the name ArC ONE measure-
ment system [17], features open-source software for the microcontroller and Python
software for the host PC, including predefined test routines and data visualizations.

30 Chapter 3. Related Work

The mCAT system, however, is constrained by its interface to facilitate only pas-
sive (selectorless) memristive crossbar arrays. Addressing this, Foster et al. [65, 64]
proposed an improved version centered around an Field-Programmable Gate Ar-
ray (FPGA) EFM-03 development board. This system includes a 64-channel Source-
Meter Unit (SMU) and two 32-pin banks for digital I/O, achieving a current noise
floor of 170 pA, pulse delivery of ±13.5 V, and a maximum current drive of 12 mA
per channel. The SMU channel, a key subsystem, incorporates a programmable gain
Transimpedance Amplifier (TIA), a high-speed independent pulse generator, and a
switch for current source access. The TIA functions as both a source and a meter,
with differential ADCs for voltage reading. Digital terminals include a selector bank
with 32 digital outputs and an arbitrary level logic bank supporting a wide voltage
range. This system, capable of controlling up to a 32× 32 selectorless crossbar or a
21× 21 array with transistor selectors, is available from ArC Instruments Ltd. as the
ArC TWO measurement system [17].

Kaya et al. [98] introduced another FPGA-based measurement system, focusing on
1T1R ReRAM structures. This system stands out for its straightforward and indepen-
dent design, avoiding complex carrier modules. It addresses key ReRAM parameters
like switching voltages, resistance states, data retention, and endurance. Based on a
XILINX Artix 7 series FPGA board (AC701), it features a 5-channel arbitrary wave-
form generator and voltage buffers. The system supports both current and voltage-
based resistance measurements, with a maximum output of 10 mA. The proposed
platform utilizes a 32-Bit Microblaze soft processor with FreeRTOS, enabling flexible
application development. The implemented software facilitates various memory op-
erations and is complemented by a MATLAB GUI for cell operations and resistance
variability analysis, useful for developing security applications like Random Number
Generations (RNGs) and Physical Unclonable Functions (PUFs).

Additionally, Tektronix, Inc. offers the 4200A-SCS parameter analyzer, a premier
system for materials, semiconductor devices, and process development. It boasts an
impressive measurement resolution of up to 100 fA and 0.2 µV, specializing in I-V,
C-V, and ultra-fast pulsed I-V measurements.

However, for crossbar measurements, the 4200A-SCS is not suitable. To address
this, aixACCT Systems GmbH developed the aixMATRIX, a comprehensive matrix
test system for simultaneous stimulation of test structures on 64 analog channels, each
with a 16-bit Digital-to-Analog Converter (DAC) and a sample rate of 100 MS/ms.
Capable of generating bipolar signals up to ±10 V and featuring ultrafast, bipolar
adjustable current limiting, this system excels in analyzing memristive memories with
response times below 50 ns. It can investigate both active and passive memory arrays
up to 32× 32 cells and is integrated into a 200 mm wafer prober, facilitating advanced
research in neuromorphic memory systems [3].

3.4. Lessons Learned 31

3.4 Lessons Learned

The postulation of the memristor launched an avalanche of research to investigate
these devices from the material stack to the system level performance and energy ef-
ficiency. The merit of works has focused on the analog Computing-in-Memory (CIM)
paradigm which promises to drastically outperform conventional von Neumann ar-
chitectures. However, specifically this operational mode significantly suffers from the
high variability of the memristive devices limiting the scope of real-world applica-
tions. Consequently, a thorough investigation of the impact of reliability issues on
LIM operations is missing. While neuromorphic systems are gaining momentum,
an increasing number of publications prove the existence of hardware security vul-
nerabilities stemming from the unique characteristics of the underlying memristive
device. This novel attack surface represents a significant threat to future neuromor-
phic computing systems and to the application executed on them. To investigate
concerns like the reliability and hardware security threats, instrumentation platforms
have been proposed offering different measurement accuracies, in/output channels,
and characterization routines. Nevertheless, the vast majority of publications bases
their investigation on simulated devices failing to reproduce the impact of variability
and reliability concerns of memristive devices. To the best of our knowledge, there is
currently no instrumentation platform capable of performing analog nor digital op-
erations on memristive crossbar arrays with the aim to determine the impact of these
concerns on their computational result.

Therefore, in this thesis, we aim to provide a comprehensive analysis of relia-
bility and hardware security concerns of neuromorphic systems. Our work aims to
add crucial findings to usher the way towards trustworthy neuromorphic computing.
Alongside other contributions, in the rest of this thesis, we introduce the following:

1. Fault Injection Platform: A fault injection platform for LIM operations allowing
a comprehensive examination of reliability, ranging from the individual mem-
ristor level up to complete, real-world workloads. This platform enables a com-
parative analysis of various logic families regarding their resilience to faults and
supports detailed investigations at the application level to identify the parame-
ters that most critically affect potential workloads.

2. NeuroHammer: This represents a novel hardware security attack, enabling ad-
versaries to deliberately manipulate bits in ReRAMs. NeuroHammer poses sig-
nificant challenges to the integrity of neuromorphic systems.

3. NeuroBreakoutBoard: An innovative instrumentation platform designed to fa-
cilitate CIM operations on actual memristive crossbar arrays. It provides valu-
able insights into how reliability issues can affect CIM operations.

32 Chapter 3. Related Work

3.5 Synopsis

This chapter presents a detailed survey of existing research in neuromorphic comput-
ing, focusing on the reliability and hardware security of memristor-based systems. It
explores the challenges in ensuring the reliability of ReRAMs, including strategies for
fault detection and error correction. The chapter also discusses various simulation
platforms that model system performance and reliability, accounting for device vari-
ability and faults. A significant portion is dedicated to hardware security, examining
vulnerabilities to hardware Trojans, side-channel, and fault injection attacks in neu-
romorphic systems. Additionally, it reviews different instrumentation platforms for
testing and evaluating memristive devices and crossbar structures.

Chapter 4

Fault Injection in Logic-in-Memory
Architectures

As discussed in Chapter 2, there are two fundamental ways to perform computation
with memristive crossbar arrays. Analog Computing-in-Memory (CIM) leverages the
continuous resistance values of memristive devices to perform Multiply–Accumulate
(MAC) operations in the analog domain. While offering exceptional performance
through extensive parallel computation, analog CIM copes with inherent limitations,
such as the need for Digital-to-Analog Converters (DACs)/Analog-to-Digital Con-
verters (ADCs) for value conversion between digital and analog domains. On the
contrary, Logic-in-Memory (LIM) is another flavor, executing logic functions within
memristive crossbar arrays by strictly utilizing the memristive devices in a binary
manner. This approach may reduce computing performance compared to analog CIM
but promises enhanced reliability without requiring conversion between the analog
and digital domains. However, as concluded in Chapter 3, the reliability of LIM archi-
tectures remains largely unexplored, with the majority of research focusing on analog
CIM. LIM’s reliance on logic families to implement LIM gates introduces an additional
layer of complexity and uncertainty by potentially utilizing a faulty memristor mul-
tiple times within a single logic gate. Consequently, modeling the reliability of such
operations requires a fundamentally different approach that accounts for the mem-
ristive devices, the logic family, and the executed application. Therefore, this chapter
introduces a comprehensive fault injection framework for LIM operations, capable of
investigating reliability from the memristor level to actual full-fledged workloads. The
framework includes a memristor-level fault injection simulator named X-Fault and an
operational-level simulator called Faulty Logic-in-Memory (FLIM). The former excels
at emulating the impact of faults on individual logic gates with high precision, while
the latter offers exceptional simulation speed for executing realistic workloads using
abstracted fault models. Together, these simulators allow for a comparison of logic
families in terms of fault resilience and enable an investigation at the application level
to understand which parameters most significantly influence potential workloads.

This chapter is organized as follows: Section 4.1 provides an overview of the
framework. The process of application mapping is discussed in Section 4.2, while
Sections 4.3 outlines the crossbar simulator and its fault models. Delving into the
internals of FLIM, Section 4.4 elaborates on the fault generation mechanism, and Sec-
tion 4.5 discusses the implementation of the fault injection method. Comprehensive
case studies presented in Section 4.7 underscore the significance of our fault injection
framework. Finally, in Section 4.8, we discuss the limitations and future directions of
this work. This chapter summarizes the contributions presented in [180, 175, 176].

33

34 Chapter 4. Fault Injection in Logic-in-Memory Architectures

Constraints

Fault type

Logic gate

Fault injector

Larq

TensorFlow

BNN model

X
-F

au
lt

FL
IM

Crossbar simulatorMapping

Fault generator Inference

MAGIC/
IMPLY

Native
execution C

on
tro

lle
r

XBar

XBar

XBar

XBar

XBar

XBar

XBar

XBar

XBar

Fault distribution

Fault mapping

Vector extraction

Dataset
Dog?

Figure 4.1: Overview of the fault injection framework featuring X-Fault and FLIM:
X-Fault provides a mapping tool and crossbar simulator for highly accurate simula-
tions that assess the resilience of logic families. In contrast, FLIM employs a more
abstracted approach with its fault generator and fault injector, offering a platform for
high-speed simulation.

4.1 Framework Overview

An overview of the fault injection framework is depicted in Figure 4.1. This frame-
work consists of two separate modules, X-Fault and FLIM, specifically designed for
the execution of Binary Neural Networks (BNNs), which predominantly utilize bi-
nary XNOR operations. X-Fault requires inputs such as hardware constraints, fault
type, and the type of logic gate. The hardware constraints specify the dimensions
of the crossbar array and the mapping algorithm, while the fault type identifies the
fault model and its parameters, namely, injection rate and fault pattern. The logic
gate parameter not only determines the gate itself but also the corresponding logic
family. In general, X-Fault comprises a mapping tool and a crossbar model. The
mapping tool can interpret Larq [69] models and relay the relevant XNOR operations
to the crossbar model while all other operations are executed within TensorFlow [1].
The crossbar simulator incorporates a comprehensive memory controller which or-
chestrates the instantiated crossbar arrays. Closely linked with the crossbar model
is the binary memristor model, which implements various fault models that can be
parameterized to accommodate a wide array of experiments.

The second component of the simulation framework, FLIM, employs an abstracted
fault injection methodology aimed at achieving high simulation speed. This simulator
requires a BNN model based on the Larq framework. The necessary fault distribution
can be sourced from X-Fault or input manually. To significantly boost simulation
speed, FLIM transfers the labor-intensive tasks to a preprocessing phase. The fault
generator embodies these preprocessing steps, comprising three distinct phases: fault
distribution, mapping, and vector extraction. The resultant noise vector serves as an
input for the fault injector, which is deeply integrated within the TensorFlow/Larq
environment.

4.2. Application Mapping 35

Algorithm 4.1: Weight stationary XNOR mapping on memristive crossbar
arrays

Data: crossbar instance (crossbar), kernel instance (kernel), input data instance
(input), FlatBuffer handler instance (flatbuffer_handler)

Result: Mapped XNOR operations on crossbar array

1 nr_kernel_values← kernel.nr_values_per_kernel × kernel.nr_kernels;
2 for i← 0 to kernel.kernel_iterations() do
3 kernel_to_write← kernel.get_kernel_index(i,nr_xnor_gates);
4 crossbar.write_kernel(kernel_to_write, flatbuffer_handler);
5 kernel_start← i × nr_xnor_gates;
6 kernel_end← (i + 1) × nr_xnor_gates;
7 if kernel_end > nr_kernel_values then
8 kernel_end← nr_kernel_values;
9 end

10 (i_values, i_indices)← get_input(kernel_start, kernel_end);
11 for y← 0 to input.get_size()[0] − kernel.get_size()[0] +1 do
12 for x ← 0 to input.get_size()[1] − kernel.get_size()[1] +1 do
13 crossbar_input← empty list;
14 for each pair (input, input_loc) in zip(i_values, i_indices) do
15 input_list← list containing int(input);
16 y_p← input_loc[1] + y;
17 x_p← input_loc[0] + x;
18 crossbar_input_element← list containing input_list, y_p, x_p;
19 append crossbar_input_element to crossbar_input;
20 end
21 crossbar.write_input_to_crossbar(crossbar_input, flatbuffer_handler);
22 crossbar.calculate_xnor(flatbuffer_handler);
23 end
24 end
25 end

4.2 Application Mapping

X-Fault’s mapping tool adeptly maps convolutional and dense layers of a BNN onto
a crossbar of a predefined size. The mapping tool extracts the dimensions, as well as
the respective values of the kernel and inputs, to generate a set of write, read, and
logic instructions. Central to the mapping algorithm is its focus on minimizing the
number of instructions. This is achieved by efficiently tracking partial fits of the kernel
within the remaining cells of a crossbar array. The mapper facilitates communication
with the crossbar simulator through a binary file interface, leveraging the FlatBuffers
library [71] which offers an efficient and cross-platform serialization methodology.
The binary file encapsulates the memory addresses of the kernels, their corresponding
values, and the requisite logic operations.

36 Chapter 4. Fault Injection in Logic-in-Memory Architectures

At its core, the algorithm adopts a weight stationary mapping, wherein the weights
(kernels) of the BNN are sequentially mapped onto the crossbar array and remain sta-
tionary throughout the computation process. While the simulator does not account
for weight drift effects, it is noteworthy that depending on the logic family used,
some input cells may be overwritten during the execution of logic gates, necessitating
a rewrite of weights. Algorithm 4.1 shows the implemented mapping methodology,
which is detailed in the following.

Initially, the algorithm calculates the total number of values in the kernel matrix
and processes these values in segments iteratively. In each iteration, a particular
kernel segment, determined by the number of XNOR gates in the crossbar, is selected
and stored in the binary file. These segments are computed based on the total number
of kernels multiplied by the number of values per kernel.

Next, the algorithm identifies the starting and ending points of the kernel within
the input matrix. This step is critical for accurately aligning the kernel with the input
data for effective XNOR operations. To achieve this, nested loops are utilized to
traverse the dimensions of the input matrix, tailored to the size of the kernel. Within
these loops, the algorithm linearly maps the input values to a one-dimensional list
object, corresponding to the kernel values. This structured input list is then written
to the binary file, aligned with the kernel parameters. Upon successful mapping
of inputs and kernels, the mapping tool issues a compute command, activating the
crossbar simulator to execute the XNOR operations as per the instructions in the
binary file. This algorithmic design not only maximizes the parallel computational
capacity of the crossbar array but also aligns with the constraints of the implemented
LIM families.

4.3 Crossbar Simulator

The crossbar simulator follows the hierarchy of Dynamic Random-Access Memory
(DRAM) consisting of channels, ranks, banks, rows, and columns. Internally, the sim-
ulator implements this hierarchy in three distinct entities: memory controller, cross-
bar, and memristor. In the following, the functionality of each entity is described in
detail.

4.3.1 Memory Controller

The memory controller parses the provided binary file from the mapping tool to ex-
tract the required kernels and input values. Furthermore, the controller is responsible
for orchestrating the underlying crossbars by issuing the instructions to the respective
banks. The overall dimensions of the memory can be customized via a configuration
file which determines the number of ranks, banks, and the dimensions of the cross-
bar arrays. The memory address translation and allocation employs two different
interleaving methods (page or rank interleave) to manage how physical addresses are
mapped to memory channels, ranks, banks, rows, and columns. This flexibility al-

4.3. Crossbar Simulator 37

Table 4.1: Overview of logic gate implementations based on IMPLY and MAGIC
logic families including the number of memristors (#mem) and cycles (#cycles) re-
quired for each operation.

Logic family Logic gate #mem #cycles Internal structure

IMPLY IMP 2 1 IMP(1,2)

NOT 2 2 FILL(2,HRS)→IMP(1,2)

NAND 3 3 FILL(3,HRS)→IMP(2,3)→IMP(1,3)

AND 3 4 NAND(1,2,3)→NOT(3,1)

OR 3 3 FILL(3,HRS)→IMP(1,3)→IMP(3,1)

NOR 3 5 OR(1,2,3)→NOT(2,1)

XOR 4 5 IMP(1,3)→IMP(4,2)→NOT(2,4)→IMP(3,4)

XNOR 4 6 XOR(1,2,3,4)→NOT(4,1)

MAGIC NIMP 3 1 NIMP(1,2,3)

NOR 3 1 NOR(1,2,3)

OR 3 1 OR(1,2,3)

XOR 3 3 FILL(3,HRS)→NIMP(1,2,3)→NIMP(2,1,3)

XNOR 4 6 FILL(4,LRS)→FILL(3,HRS)→NIMP(1,2,3)
→NIMP(2,1,3)→FILL(1,HRS)→NIMP(4,3,1)

AND 5 9
OR(1,2,3)→FILL(4,HRS)→NIMP(1,2,4)
→FILL(5,HRS)→NIMP(3,4,5)→FILL(4,HRS)
→NIMP(2,1,4)→FILL(1,HRS)→NIMP(5,4,1)

NAND 5 12 AND(1,2,3,4,5)→FILL(2,HRS)→FILL(3,LRS)
→NIMP(3,1,2)

lows for a more comprehensive exploration of memory management strategies in the
presence of faults. Additionally, the implementation takes into account the bit-level
manipulation of data, foster the unique requirements of LIM.

4.3.2 Crossbar Model

The crossbar model is designed to simulate a binary memristive crossbar array, with a
particular focus on the implications of in-field faults within the system. It abstracts the
interactions between memristive cells, aiming to balance the accuracy of simulation
with the need for high simulation speed. Each cell within the array is instantiated
through the memristor model.

Initialization of the crossbar is executed by parsing a configuration file that deter-
mines the crossbar’s dimensions, the proportion of memristors in the Low Resistive
State (LRS) versus the High Resistive State (HRS), the prevalence of faulty cells, and
the characteristics of faults, including the type and pattern. To assign initial states

38 Chapter 4. Fault Injection in Logic-in-Memory Architectures

and fault models to cells, the crossbar model employs a uniformly distributed ran-
dom number generator. The distribution of these random values is given by the
probability density function:

P(x|a, b) =
1

b− a
(4.1)

Here, x represents the random value uniformly distributed over the interval [a, b). In
addition to cell initialization, the crossbar constructs inter-cell relationships to account
for coupling faults. Read and write operations are conducted on a per-row basis.
While the model incorporates standard read and write methods, it also features a
specialized interface to support access based on the V/2 scheme, as discussed in
Section 2.1.2.

Table 4.1 presents a comprehensive overview of the logic gates implemented
within the simulation framework. Both the Memristor-Based Material Implication
(IMPLY) and Memristor-Aided Logic (MAGIC) logic families offer only a fundamen-
tal set of logic gates. To construct more complex Boolean functions, the simulator
combines these basic gates, which, as a result, significantly increases the number of
required cycles and memristors, as detailed in Table 4.1. To streamline the implemen-
tation process of these logic gates, we introduce a utility function as follows:

Definition 4.1. The FILL(row, value) function assigns a specified value (either HRS
or LRS) to a given row.

The implemented memory controller mandates that read and write operations are
executed row-wise. Therefore, logic gates are mapped vertically within the crossbar
array. As discussed in Section 2.2.2, the execution of a single logic operation triggers
computation across all available columns, resulting in substantial parallelization. The
internal structure shown in Table 4.1 refers to the rows using unique integer numbers
ranging from [1, n] with n ∈ N where n denotes the total number of rows of the
crossbar. For example, the NAND gate constructed using the IMPLY logic family
requires three memristors in three adjacent rows. Initially, the third row is set to HRS.
Subsequently, Material Implication (IMP) operations are executed between the second
and third rows, and then between the first and third rows, resulting in the output of
the NAND gate, which utilizes three computational cycles/steps.

4.3.3 Memristor Model

The lowest level of X-Fault’s memory hierarchy is represented by the memristor model
which encapsulates the essential characteristics and functionalities of a memristive de-
vice. The abstracted model tracks the utilization by accumulating the read, write, and
V/2 accesses. The simulator implements the MAGIC and IMPLY logic family be-
cause of their sole use of the memristive crossbar without any required peripherals,
except the required resistor for the IMPLY family which we omit in our investiga-
tions. Furthermore, the memristor model utilizes an action log to keep a history of
executed instructions for each cell. This history is required to facilitate dynamic faults
which occur every n-th operation to be sensitized [77]. The memristor model only

4.3. Crossbar Simulator 39

Algorithm 4.2: Coupling fault write/read disturb algorithm
Data: pattern length (pattern_len), coupling pattern (pattern), memristor

pointers (east, west, north, south)
Result: state of the memristor cell after evaluating the coupling fault condition

1 for i← 0 to pattern_len− 1 do
2 it_ptr← this;
3 for j← 0 to |pattern[i].x| - 1 do
4 if pattern[i].x ≥ 0 then
5 it_ptr->east ̸= NULL? (it_ptr← it_ptr->east) : exit;
6 it_ptr->west ̸= NULL? (it_ptr← it_ptr->west) : exit;
7 end
8 end
9 for j← 0 to |pattern[i].y| - 1 do

10 if pattern[i].y ≥ 0 then
11 it_ptr->north ̸= NULL? (it_ptr← it_ptr->north) : exit;
12 it_ptr->south ̸= NULL? (it_ptr← it_ptr->south) : exit;
13 end
14 end
15 if it_ptr->get_state() ̸= pattern[i].aggressor_state then
16 exit;
17 end
18 end
19 this->state← (this->state = LRS ? HRS : LRS);

implements the traditional fault models outlined in Section 2.3.3, as the unique fault
models require more precise simulations due to their analog characteristics. The fault
models are randomly assigned to a certain percentage of the instantiated memristors
and are enumerated as follows:

1. Stuck-at-Fault (SAF) is characterized by the memristor adopting a constant re-
sistive value, manifesting either as a HRS or an LRS.

2. Read-Destructive-Fault (RDF) inverts the current state of the memristive cell
while still returning a correct value.

3. Deceptive Read Destructive Fault (DRDF) modifies the current state of the cell
and yields an incorrect value, misleading the read operation.

4. Incorrect Read Fault (IRF) causes the cell to remain unchanged, but the value
retrieved is incorrect.

5. Slow Write Fault (SWF) occurs when a write operation to the cell fails, resulting
in the preservation of the cell’s previous state.

6. Coupling Fault (CF) occur when a write operation to a cell results in an unin-
tended write operation to an adjacent cell.

40 Chapter 4. Fault Injection in Logic-in-Memory Architectures

Table 4.2: Comparison of fault models in X-Fault and FLIM: the fault models han-
dled by X-Fault with their corresponding abstracted representations in FLIM illus-
trates the differences in fault handling between the two simulators and emphasizes
the trade-off between simulation accuracy and speed.

X-Fault FLIM

Stuck-at fault Stuck-at mask

Read destructive fault

Bit-flip mask

Deceptive read destructive fault
Incorrect read fault

Slow write fault
Coupling fault

Dynamic faults Repeated bit-flip mask

Algorithm 4.2 illustrates the function used to evaluate the state of a cell in the pres-
ence of potential coupling faults induced by surrounding aggressors. The algorithm
iteratively examines each cell based on a defined coupling pattern, utilizing direc-
tional pointers (east, west, north, south) to navigate the crossbar array. If the pattern
is absent or the target cell’s neighbors do not match the aggressor state, the algorithm
terminates prematurely, indicating that no coupling fault will occur. However, if the
aggressor pattern is detected, the state of the target memristor is toggled between the
LRS and HRS, simulating the read/write disturb fault.

4.4 Fault Generator

As discussed in Section 4.1, the FLIM simulator is designed to significantly enhance
the simulation speed by abstracting the fault injection methodology. Specifically, this
simulator separates the computationally intensive aspects of the fault injection, per-
forming them offline, while the core fault injection process is integrated with the infer-
ence phase. This preprocessing stage, referred to as the fault generator, encompasses
three primary steps: fault distribution, fault mapping, and noise vector extraction.

4.4.1 Fault Distribution

In contrast to X-Fault, FLIM introduces faults at the level of XNOR operations to
enhance simulation performance, as depicted in Table 4.2. This abstraction level pro-
hibits the ability to simulate single-cell accesses, thereby limiting the emulation of
complex fault models. FLIM, therefore, restricts the supported fault models to pri-
marily stuck-at and bit-flip faults.

4.4. Fault Generator 41

True

True

True

True

True

False
False

Stuck-at mask

+

Bit-flip mask

False
False

False
False False

False

False
False

True

a) b) c)

True

True

True

False
False

False

False

False
False

False
False

False
False
False

False

False

Figure 4.2: Overview of the implemented fault mapping: detailed correlation be-
tween the presumed faulty memristive devices and the resulting stuck-at and bit-flip
masks.

In FLIM, the emulation of a crossbar array is bypassed in favor of annotating
the inference process with fault masks. Figure 4.2 illustrates the correlation between
randomly assigned values in fault masks and the potential fault distribution within
a crossbar array. This is illustrated in Figure 4.2 (a), where in-field faults lead to
malfunctioning XNOR operations. The FLIM fault masks, as shown in Figure 4.2
(b-c), denote the locations of these malfunctions and are mapped onto the workload
during the fault mapping stage.

The bit-flip mask is a two-dimensional Boolean array initially filled with zeros.
The array’s fault distribution, dictated by the injection rate, is represented by assign-
ing a corresponding number of elements to one. FLIM also allows for the analysis of
faults impacting entire rows or columns, stemming from potential address decoder is-
sues. In these cases, the affected row or column in the bit-flip mask is entirely marked
as one. FLIM is capable of handling dynamic faults, which necessitate the duplica-
tion of the fault mask across multiple layers. This replication involves constructing
a sequence of bit-flip masks, each sequentially applied to different layers during the
inference stage. Similarly, the stuck-at mask is represented as a two-dimensional
Boolean array, initialized with zeros and stuck-at faults marked with ones.

This pre-processing method of generating masks significantly enhances perfor-
mance by shifting the computationally intensive tasks of mapping and distributing
faults away from the actual process of inference.

4.4.2 Fault Mapping

In the next phase, the masks previously generated are allocated to designated lay-
ers within the BNN model. For this purpose, the framework requires information
about the dimensions and the total number of crossbars assumed to be utilized in the
hardware accelerator. Initially, the mapping tool computes the number of concurrent
XNOR operations based on the number of crossbars. As shown in Table 4.1, the IM-

42 Chapter 4. Fault Injection in Logic-in-Memory Architectures

Inference

XNOR Apply

Fault injector

Bitflip mask Stuck-at mask

C
on

v

Fa
ul

t i
nj

ec
to

r

C
on

v

Fa
ul

t i
nj

ec
to

r

D
en

se

Fa
ul

t i
nj

ec
to

r

M
ax

Po
ol

in
g

B
at

ch
N

or
m

B
at

ch
N

or
m

Fl
at

te
n

B
at

ch
N

or
m

A
ct

iv
at

io
n

Output Faulty output

1
1
11

1 1
1
1

11 1 1 1
0 0

0 0
0
0

0 0
00

0 0

1
1

Kernel

-1
-1

-1

-1
-1

-1-1
-1

1
1
1

11
1
1
1

0
0

0

0
0

00
0

1
1
1

11
1
1
1 -1

-1

-1

-1
-1

-1-1
-1

1
1
1

11
1
1
1

0
0

0

0
0 00
0

1
1
1

0
0 0 0 0

0

0 0 0
00
0 0

0 0
0
00

0
000

01

1
1
1

Figure 4.3: Overview of FLIM’s fault injection methodology composed of the infer-
ence stage and the fault injector.

PLY and MAGIC XNOR operation requires a total of four memristors representing
the dominant Boolean function in BNNs.

Next, the tool extracts the number of required XNOR operations based on the
provided model. Due to the structure of the BNN layers, XNOR operations are domi-
nantly utilized in the 2-dimensional convolution layers and fully binarized dense lay-
ers. Therefore, these specific layers are targeted for mapping onto memristive crossbar
arrays to leverage acceleration, while other layers continue to be processed using con-
ventional Complementary Metal-Oxide Semiconductor (CMOS) technology. Hence,
the mapping tool extracts the dimensions of these layers and assigns the previously
generated fault masks.

4.4.3 Noise Vector Extraction

Finally, the generated fault masks are transformed in a 1-dimensional representation
and stored in a binary file together with meta information about the target layer, the
in-layer location, and the potential dynamic fault behavior. The binary file is indepen-
dent of the dataset and allows for a parallel simulation of different system parameters
to facilitate, for example, a reliability assessment of an architecture exploration.

4.5 Fault Injector

The Fault Injector stands as the core component of the FLIM platform, seamlessly inte-
grated within the Larq and TensorFlow frameworks to achieve optimal performance
through precise fault injection. Larq, essentially an extension of the Keras frame-

4.5. Fault Injector 43

work [40], is specifically designed to facilitate BNNs by introducing custom quan-
tized layers that enhance the capabilities of standard Keras layers. In this context,
we have augmented the base class of these layers by incorporating an instance of the
Fault Injector. This integration allows the activation of the fault injection mechanism
during the inference process, necessitating a modification of the original convolution
method. Figure 4.3 visually depicts FLIM’s fault injection approach. As elaborated
in Section 4.4, FLIM is capable of injecting faults in both convolutional and dense
layers. The process begins with the computation of the convolution between the fea-
ture map and the kernel, which initially remains fault-free, thereby yielding a correct
computation outcome. Following this, the bit-flip and stuck-at masks are applied to
the output through an additional XNOR operation, effectively integrating the prede-
termined faults based on the injection rate. The subsequent subsections provide a
comprehensive exploration of the layer specific implementation of the fault injection
mechanism.

4.5.1 Fault Injection in Conv2D Layers

The Larq library implements the Quant2D layer by taking advantage of the Tensor-
Flow tf.nn.conv2d() function which performs a convolution of the input feature map
and the given kernel. This function is invoked from the convolution_op() function
within the Conv2D layer which acts as the entry point for FLIM’s fault injector. The
Fault Injector provides a custom convolution method extending the tf.nn.conv2d()
function by injecting bit-flip and stuck-at faults.

Initially, the custom convolution function preprocesses the input feature map, tai-
loring its shape to align with the fault masks. This preprocessing is crucial because
when a kernel is applied to the input, it typically results in the reduction of the
spatial dimensions (width and height) of the output feature map. Such a reduction,
particularly in deep networks, can lead to a significant decrease in input size and the
potential loss of edge information. To mitigate this issue, padding techniques are em-
ployed to add extra pixels around the input image’s border. This step ensures that the
kernel can effectively process the border pixels, thereby preserving the input’s spatial
dimensions. Consequently, two padding methods are implemented, each of which is
detailed in the following:

VALID padding reduces the size of the output feature map to omit the necessity
to add additional values around the actual input which proves beneficial to reduce
the spatial dimensions of the feature maps. Consequently, the kernel only iterates
over a subset of pixels resulting in a reduced dimension of the output. The resultant
output width Ow and height Oh is defined as

Ow =
Iw − Kw

sw
+ 1 (4.2)

Oh =
Ih − Kh

sh
+ 1 (4.3)

44 Chapter 4. Fault Injection in Logic-in-Memory Architectures

...

...

...

...

...

... ...

... ...

.........

... ...

...

...

extract_patches() reshape()

reshape()

reduce_sum()

concatenate()

tile()
reshape()

tile()

ravel()

ravel()

xnor() xnor()

Bit-flip
mask

Stuck-at
mask

xnor()

Input(7,7,1) Kernel(3,3,1,3) Output(5,5,3)

Figure 4.4: Overview of the convolutional layer preprocessing including binary
XNOR operation with fault injection and tensor aggregation.

where Iw, Ih denotes the input data dimensions, Kw, Kh denotes the kernel dimensions,
and sw, sh the width/height of the stride, respectively [51].

SAME padding adds additional pixels around the edges of the input image so
that the output feature map matches the dimensions of the input data. The resultant
output width Ow and height Oh is defined as

Ow =
Iw + 2p− Kw

sw
+ 1 (4.4)

Oh =
Ih + 2p− Kh

sh
+ 1 (4.5)

where Iw, Ih denotes the input data dimensions, Kw, Kh denotes the kernel dimensions,
sw, sh the width/height of the stride, and p represents the number of zeros added
along both axis [51].

Figure 4.4 illustrates the preprocessing required for the input image and the as-
sociated kernel in a convolutional layer. Patches corresponding to the kernel’s size
are extracted from the padded input and prepared for the XNOR operation with the
kernel. Both the patches and the kernel are reshaped—flattened and duplicated—to
enable the binary convolution. Following the reshaping, bit-flip and stuck-at masks
are applied through additional XNOR operations, producing a feature map that in-
corporates the intended faults. This output is subsequently reshaped back to the
form it would take after a standard, non-binary convolution. To finalize the output,
TensorFlow’s reduce_sum function aggregates values across a designated dimension,
streamlining the tensor’s structure. Each aggregated value thus forms a part of the
concatenated output, with each contributing to the overall feature representation.

4.6. Resilience Metric for Logic-in-Memory Families 45

...

...

Bit-flip
mask

Stuck-at
mask

Input(7,5) Kernel(3,3,1,3) Output(7,3)

...
reshape()

ravel()

tile()
tile()

ravel()

reduce_sum()

concatenate()

xnor() xnor() xnor()

Figure 4.5: Overview of the dense layer preprocessing including binary XNOR op-
eration with fault injection and tensor aggregation.

4.5.2 Fault Injection in Dense Layers

In comparison to convolution layers, dense layers, also known as fully connected
layers, operate by performing a matrix multiplication between the input features and
the weights of the neurons, followed by the addition of a bias term. Mathematically,
the output o of a dense layer can be expressed as:

o = f (W · x + b) (4.6)

where o is the output vector, W is the weight matrix, x is the input vector, b is
the bias vector, and f denotes the activation function. Since dense layers operate on a
flattened input where the spatial structure is not preserved, padding is not required.
Therefore, the input preprocessing of dense layers is simplified as shown in Figure 4.5.
First, the input, initially in a 2-dimensional form, is expanded by the tile() function,
which replicates the tensor to match the kernel’s dimensions. This is followed by
ravel(), which flattens the expanded tensor into a 1-dimensional array. The kernel
undergoes a similar tile() and ravel() process. Subsequently, both the input and
kernel maps are subject to a XNOR operation resulting in the output feature map.
Subsequently, the bit-flip and stuck-at masks are applied introducing faults in the
layer. After the fault injection, the resultant feature map is reshaped, preparing it for
the subsequent layer or output.

4.6 Resilience Metric for Logic-in-Memory Families

In the context of LIM architectures, a diverse set of logic families has been proposed,
each with its unique characteristics and operational efficiencies. However, a critical
aspect that often remains ambiguous is their resilience to faults, which is a key charac-
teristic in terms of the real-world feasibility. This is particularly crucial as memristive
devices, the backbone of these architectures, are inherently prone to various in-field

46 Chapter 4. Fault Injection in Logic-in-Memory Architectures

faults. To address this gap, a standardized metric is essential for quantitatively assess-
ing the resilience of these logic families and their individual gates. Our simulation
framework, as detailed in Chapter 4, lays the groundwork for an in-depth analysis of
the reliability of LIM gates. However, it lacks a universal metric that can effectively
measure and compare the fault tolerance across different logic families. Such a met-
ric would not only facilitate a more comprehensive understanding of each family’s
robustness but also aid in identifying optimal logic families for specific applications.
Furthermore, it opens up the possibility of strategically mixing gates from different
logic families to optimize for power, area, or latency, which can significantly enhance
the overall performance and efficiency of neuromorphic systems. Consequently, we
propose two distinct metrics: one that evaluates the overall resilience of a logic family
and another that focuses on the resilience of individual gates within a family.

Definition 4.2. The Quality of Logic (QoL) is defined for a single fault model as

QoL =
G−1∑
i=0

Λ
Ω
· 100%, (4.7)

where G represents the number of gate types, Λ denotes the total number of faulty
outputs, and Ω signifies the total number of outputs. The QoL metric provides an
indication of how well the entire set of supported logic gates performs under the
influence of a specific fault type.

Definition 4.3. The Impact of Fault (IoF) is defined for a single gate type as

IoF =
F−1∑
i=0

Λ
Ω
· 100%, (4.8)

where F is the number of fault types, Λ denotes the total number of faulty outputs,
and Ω signifies the total number of outputs. This metric is particularly insightful as
it reveals the impact of all fault types on a single logic gate’s functionality.

By applying these metrics, we can systematically evaluate and compare the fault
resilience of different logic families and individual gates, providing a comprehensive
understanding of their robustness and reliability in real-world applications. This ap-
proach not only enhances our understanding of the vulnerability of these systems to
in-field faults but also guides the design and optimization of neuromorphic comput-
ing systems for enhanced performance and reliability.

4.7 Evaluation

In this section, we present a detailed evaluation of in-field faults on LIM architectures,
while also discussing the trade-off between simulation accuracy and speed through
a comparative analysis of X-Fault and FLIM. All experiments were carried out on a
dedicated workstation equipped with an AMD Ryzen 7 5800X processor and a DDR4

4.7. Evaluation 47

SAF RDF DRDF IRF IoF

AND 42% 42% 39% 42% 38%

IMP 38% 25% 50% 50% 34%

NAND 33% 25% 58% 42% 34%

NOR 42% 42% 33% 42% 37%

NOT 50% 50% 75% 50% 48%

OR 33% 25% 42% 42% 31%

XNOR 44% 38% 44% 50% 41%

QoL 40% 35% 49% 45%

(a)

SAF RDF DRDF IRF IoF

AND 35% 25% 35% 43% 31%

NIMP 33% 29% 67% 38% 34%

NAND 45% 28% 60% 60% 45%

NOR 44% 38% 33% 42% 36%

XOR 50% 75% 50% 38% 46%

OR 34% 27% 40% 40% 30%

XNOR 44% 38% 44% 50% 40%

QoL 41% 37% 47% 44%

(b)

Figure 4.6: Fault resilience of logic families: (a) assessment of the IMPLY and (b)
MAGIC.

2666 MHz 64 GB main memory. To accelerate the simulation process, FLIM leverages
the computational power of an NVIDIA GeForce RTX 3080 Ti with 12 GB of memory.
Both simulators, X-Fault and FLIM, are based on a modified version of Larq 0.12.0
which utilizes TensorFlow 2.8.0 for their operations.

In the following, we delve into two case studies aimed at assessing the resilience
of the LIM paradigm at varying levels of abstraction. Initially, the robustness of dif-
ferent logic families is exhibited through a series of comprehensive simulations using
X-Fault. This is followed by an investigation of the reliability of neuromorphic ap-
plications accelerated by LIM, taking into account a variety of parameters including
diverse fault models, types of layers, and BNN models.

4.7.1 Case Study: Resilience of Logic Families

To assess the resilience of various logic families, X-Fault’s crossbar model is utilized
to conduct an exhaustive analysis of both MAGIC and IMPLY logic families, along
with their respective logic gates. The output Z of a defective logic gate depends
on the input values (x, y) = {(x, y) | x, y ∈ {1, 0}}, the chosen fault model f ∈
{SA, RDF, DRDF, IRF}, the number of memristors M ∈ N, and the fault location
l = {mn | n ∈ N, n ≤ M}. To evaluate resilience, we simulated each logic gate under
various fault models, considering all possible combinations of input values, initial
states of memristive devices, and fault locations. We then compared the output to that
of a fault-free gate to determine the percentage of incorrect outputs. The proportion of
faulty outputs for all logic gates in both the MAGIC and IMPLY families is depicted
in Figure 4.6. It’s important to note that coupling faults were not included in this

48 Chapter 4. Fault Injection in Logic-in-Memory Architectures

X-Fault FLIM Vanilla Larq
100

101

102

103

104

105

106

107

R
un

ti
m

e
in

s

CPU CPU+GPU

Figure 4.7: Performance evaluation of the fault injection platform: running a pre-
trained binarized LeNet model on the MNIST dataset with FLIM and vanilla Larq,
and X-Fault.

series of experiments, as they necessitate multiple consecutive accesses. Additionally,
the corresponding QoL and IoF metrics are calculated and presented in Figure 4.6.

Noteworthy, the OR gate shows the highest resilience in both families, with an IoF of 31%
for IMPLY and 30% for MAGIC. The QoL metric suggests that RDF has the least influence
on logic gates, whereas DRDF significantly impacts them. Moreover, the NOT gate in the
IMPLY family and the XOR gate in the MAGIC family rank as the least resilient in terms
of fault tolerance. Overall, our experiments indicate comparable performance between the two
families, as reflected in the similar QoL and IoF values. Nevertheless, architectural design
decisions can be optimized by considering resilience towards specific fault models.
For example, a designer might prefer the IMPLY implementation of the NAND gate,
with an IoF of 34%, over the MAGIC version, which has an IoF of 45%.

4.7.2 Case Study: Resilience of Binary Neural Networks (BNNs)

Considering the previous findings in Section 4.7.1, it is crucial to gain an understand-
ing about the impact of faults on the application level to be able to assess the reliability
of the LIM paradigm. Given LIM’s binary nature, BNNs are an ideal application to
be accelerated with LIM operations, particularly due to their reliance on XNOR oper-
ations for inference computation. To simulate comprehensive BNN models, this case
study employs the FLIM simulator. As FLIM prioritizes simulation speed at the ex-
pense of simulation accuracy, our experiments are restricted to the injection of stuck-at
and bit-flip faults. To demonstrate the trade-off between X-Fault and FLIM, we bench-
mark both simulators, presenting a comparison of their respective performance levels.
Furthermore, this study explores the impact of faults on two distinct types of layers
(dense and convolutional) and their positions within the network. Finally, a range of
BNN models are simulated to assess the influence of different model designs on fault
impact.

4.7. Evaluation 49

0 5 10 15 20 25 30

20

40

60

80

100

Injection rate (%)

A
cc

ur
ac

y
(%

)

(a)

0 5 10 15 20 25 30

20

40

60

80

100

Injection rate (%)
A

cc
ur

ac
y

(%
)

(b)

0 1 2 3 4

20

40

60

80

100

of XNOR ops

A
cc

ur
ac

y
(%

)

(c)

0 1 2 3 4

20

40

60

80

100

of faulty columns

A
cc

ur
ac

y
(%

)

conv_1
conv_2
dense_0
dense_1
combined

(d)

0 2 4 6 8 10 12 14 16 18 20

20

40

60

80

100

of faulty rows

A
cc

ur
ac

y
(%

)

(e)

Figure 4.8: Simulation results: impact of (a) bit-flips, (b) stuck-at, (c) dynamic faults,
(d) faulty columns, and (e) faulty rows on different layers.

4.7.2.1 Performance Evaluation

To evaluate the simulation performance of our fault injection platform, we run the
inference of a pretrained binarized LeNet model on the entire MNIST test datatest
composed of 10,000 images. While LeNet [116] is a convolutional neural network
with three convolutional layers and two dense layers, MNIST [49] resembles a large
database of handwritten digits in 28 × 28 pixel image. FLIM and the vanilla Larq
implementation were each run fifty times on the full dataset, while the total runtime
for X-Fault was extrapolated based on the analysis of just five images due to the
extensive simulation runtime. During these inferences, the fault injection mechanism
mapped the respective operations on a 40 × 10 crossbar array but did not actively
inject faults, positioning the vanilla Larq implementation as a baseline for comparison
in terms of simulation time.

As depicted in Figure 4.7, FLIM significantly outperforms X-Fault. Notably, FLIM
processes the 10,000 images approximately 29,375 times faster than X-Fault. Furthermore,
leveraging the benefits of GPU acceleration through deep integration with Larq and
TensorFlow, FLIM achieves a staggering speed-up of about 66,754 times relative to X-

50 Chapter 4. Fault Injection in Logic-in-Memory Architectures

Table 4.3: Summary of BNN models and their associated parameters [69].

Model Top-1 Acc. Size Parameters MACs Binarized

RealToBinaryNet [142] 65.0% 5.13MB 12M 1.81B 92.39%

BinaryDenseNet45 [22] 65.0% 7.54MB 13.9M 6.67B 96.34%

BinaryDenseNet37 [22] 62.9% 5.25MB 8.7M 4.71B 96.76%

BinaryDenseNet28 [22] 60.9% 4.12MB 5.13M 3.79B 94.66%

BinaryResNetE18 [82] 58.3% 4.03MB 11.7M 1.81B 92.4%

BinaryAlexNet [108] 36.3% 7.49MB 61.8M 841M 91.34%

MeliusNet22Z[21] 62.9% 3.88MB 6.94M 4.76B 97.14%

Bi-Real Net [136] 57.5% 4.03MB 11.7M 1.81B 92.4%

XNORNet [160] 45.0% 22.81MB 62.4M 1.14B 90.05%

Fault. In summary, by abstracting the fault model to the XNOR operation level, FLIM
strikingly balances simulation accuracy with a remarkable boost in performance.

4.7.2.2 Layer Resilience

This experiment is designed to explore the effects of various faults on different layers
and their locations within a BNN model. Utilizing the same pretrained binarized
LeNet model as in the previous Section 4.7.2.1, which achieves an accuracy of 97.62%,
we employ the MNIST test dataset comprising 10, 000 images of 28× 28 pixels. Each
layer is allocated to a 40× 10 crossbar array for this purpose. Subsequently, we inject
bit-flip, stuck-at, and dynamic faults into different crossbars corresponding to their
respective layers, while adjusting the fault injection rate. To address the randomness
of fault placement on the crossbars, we conducted each test run a hundred times.

The simulation outcomes are depicted in Figure 4.8, where individual layer traces
are illustrated in blue, and the red trace represents the overall accuracy impact when
faults are uniformly injected across all layers. Figures 4.8 (a-b) demonstrate that stuck-
at faults significantly degrade accuracy more than bit-flip faults, irrespective of layer type.
Stuck-at faults consistently affect all layers, whereas bit-flip faults’ impact on accuracy de-
pends on the layer’s depth, with convolutional layers being more susceptible than dense layers.
Figure 4.8 (c) examines dynamic bit-flip faults, indicating the number of XNOR op-
erations required for fault activation. This analysis shows that the BNN model’s accuracy
typically stabilizes back to its original value after around four consecutive XNOR operations.

4.7. Evaluation 51

Moreover, the data suggest that the layer’s depth has a direct correlation with its
impact on accuracy, especially highlighting a nearly linear reduction in the perfor-
mance of the final dense layer, as illustrated in Figures 4.8 (d-e). Overall, faulty columns
tend to have a more significant impact than faulty rows, which seems plausible due to the
column-wise parallel execution of XNOR operations.

4.7.2.3 Model Resilience

Table 4.3 lists the BNN models used in this study to examine the influence of the
BNN model architecture on fault resilience. These models have been pretrained using
the ImageNet dataset [48], into which both (dynamic) bit-flips and stuck-at faults
were subsequently injected. To mitigate the effects of randomness from the random
number generator, each inference run was repeated a hundred times.

The previous experiment established that stuck-at faults significantly reduce the
accuracy more than bit-flip faults. Figure 4.9 (a-b) proves this finding across different BNN
models, demonstrating that the impact is consistent independent of the model. Furthermore,
the majority of models return to their initial accuracy levels after about three consecutive
XNOR operations when dynamic faults are introduced as illustrated in Figure 4.9 (c).

Overall, it becomes evident that time-dependent fault variations influence the reliability
of neuromorphic applications in diverse ways. Depending on the fault injection rate, tran-
sient faults impact the applications’ reliability to different degrees. Likewise, the findings
suggest that the durability of these emerging applications is predominantly jeopardized by per-
manent faults, like stuck-at faults. BiRealNet and XNOR-Net present unique cases due
to their non-strict binarization approach in convolutions. BiRealNet employs real-
valued activation functions through identity shortcuts [136], while XNOR-Net applies
a channel-wise gain to the weights, reflecting each channel’s magnitude. Despite these
differences, FLIM successfully simulates both models with minor modifications to the
bit-flip mask.

52 Chapter 4. Fault Injection in Logic-in-Memory Architectures

0 2 4 6 8 10 12 14 16 18 20

0

10

20

30

40

50

60

Injection rate (%)

A
cc

ur
ac

y
(%

)

BinaryDenseNet45 BinaryDenseNet37 BinaryDenseNet28 BinaryResNetE18
RealToBinaryNet BinaryAlexNet MeliusNet22 BiRealNet
XNORNet

(a)

0 0.25 0.5 0.75 1 1.25 1.75 2

0

10

20

30

40

50

60

Injection rate (%)

A
cc

ur
ac

y
(%

)

(b)

0 1 2 3 4 5

0

10

20

30

40

50

60

of XNOR ops

A
cc

ur
ac

y
(%

)

(c)

Figure 4.9: Simulation results of (a) bit-flips, (b) stuck-at, and (c) dynamic faults on
different models.

4.8. Limitations and Outlook 53

4.8 Limitations and Outlook

The fault injection framework introduced in this chapter has proven to be an instru-
mental tool for assessing the resilience of the LIM paradigm, spanning from the logic
level to the application-level. The utilization of both X-Fault and FLIM offers a com-
prehensive strategy, assisting designers in selecting suitable logic families and vali-
dating their choices through the execution of full-fledged applications.

Nevertheless, X-Fault’s performance bottleneck restricts its capacity to explore the
effects of faults across extensive sets of operations. As a result, simulating only a
single layer may be practical with X-Fault to keep simulation times within accept-
able limits. Likewise, FLIM delivers the necessary performance for fault injection in
realistic BNN models but falls short in terms of the supported fault models. Addi-
tionally, X-Fault’s design limits it to logic families that rely exclusively on memristive
crossbar arrays without additional peripheral circuitry. Given that most logic families
require some form of external peripherals, this limitation limits X-Fault’s compatibil-
ity with a wider array of logic families. In terms of FLIM, addressing the effects of
in-field faults during inference is essential for understanding the practical viability
of the LIM paradigm. Considering the challenges posed by the non-ideal behaviors
of memristive devices, on-device training emerges as a promising solution. There-
fore, expanding FLIM to include fault injection capabilities during the training phase
would significantly broaden the range of applications for this fault injection frame-
work, offering deeper insights and more robust solutions for the implementation of
the LIM paradigm.

4.9 Synopsis

This chapter introduced a fault injection framework for assessing the resilience of LIM
architectures. The framework consists of two simulation tools, X-Fault for memristor-
level emulation and FLIM for high-speed operational simulation, to explore fault re-
silience across logic families and neuromorphic applications. Figure 4.1 illustrates
the interaction between the two simulation platforms. X-Fault is used to assess the
fault distribution, while FLIM evaluates its impact at the application level. Through
comprehensive case studies, the framework evaluates the impact of faults on various
logic gates and BNN models, highlighting the trade-offs between simulation accuracy
and speed. A novel metric is proposed for quantifying the fault resilience of logic
families and gates, aiming to enhance the understanding of their robustness against
in-field faults. The chapter identifies limitations, such as X-Fault’s performance bottle-
neck and FLIM’s restricted fault model support, and suggests future enhancements,
including extending FLIM to support fault injection during training. This chapter sig-
nificantly advances the understanding of LIM’s viability and guides the optimization
of neuromorphic systems for improved reliability and efficiency.

54 Chapter 4. Fault Injection in Logic-in-Memory Architectures

Chapter 5

Deliberately Flipping Bits in
Memristive Crossbar Arrays

Hardware security represents a crucial aspect of modern computing systems, often
overshadowed by the emphasis on software vulnerabilities. Unlike their software
counterparts that can be mitigated through updates, hardware security flaws are em-
bedded within the physical circuitry, making them almost impossible to correct with-
out replacing the chip entirely. This intrinsic challenge poses a profound threat to
the integrity and reliability of computing systems, as seen by the Meltdown [130] and
Spectre [106] attacks.

In Chapter 4, we have highlighted the susceptibility of neuromorphic computing,
especially the Logic-in-Memory (LIM) paradigm, to faults that drastically undermine
the reliability of applications running on neuromorphic hardware. This chapter builds
upon these results by introducing a novel hardware security attack termed Neuro-
Hammer which threatens the integrity of the entire system. This attack specifically
targets the memristive crossbar arrays utilized in neuromorphic computing systems,
intentionally inducing bit-flip faults to undermine the foundational principle of mod-
ern computing systems—memory separation. By exploiting the distinct properties
of memristive devices to alter the switching kinetics through thermal crosstalk, Neu-
roHammer unveils an attack surface, similar to the Rowhammer attack in Dynamic
Random-Access Memories (DRAMs) (see Section 2.4.3). This chapter begins by out-
lining the fundamental attack scenario and the working principles underlying Neu-
roHammer in Section 5.1. To assess the feasibility and scope of the NeuroHammer
attack, Section 5.2 and Section 5.3 present a simulation methodology comprising both
a thermal and a circuit simulation. This dual-simulation approach enables a realistic
emulation of thermal crosstalk within memristive crossbar arrays, providing insights
into the conditions under which the NeuroHammer attack can be most effectively ex-
ecuted. Section 5.4 discusses a comprehensive set of experiments aim to evaluate the
impact of various parameters on the feasibility of the NeuroHammer attack. Through
these experiments, we aim to determine the critical factors that influence the vulner-
ability of neuromorphic computing systems to this novel hardware security threat.

To underline the real-world implications of NeuroHammer, Section 5.5 provides
a case study which showcases the leakage of an Rivest–Shamir–Adleman (RSA) key
from a computing system utilizing memristive memory. This case study underscores
the seriousness of this security threat and its capacity to compromise integrity of
sensitive information processed by neuromorphic computing systems. The chapter
concludes with a discussion on NeuroHammer’s limitations and future directions in
Section 5.6. This chapter summarizes the contributions presented in [178, 174].

55

56 Chapter 5. Deliberately Flipping Bits in Memristive Crossbar Arrays

Phase 1: Hammering

M1 M2

VWrite

VWrite/2

Time

Phase 2: Temperature increase

M1 M2

TM1

Temperature

TM2

Time

Phase 3: Switching kinetics

M1 M2

tSET,M2

Time

Phase 4: Bit-flip

M1 M2

M2

HRS
LRS

Time

Figure 5.1: Working principles of NeuroHammer consisting of four stages: hammer-
ing, temperature increase, switching kinetics, and, finally, the intended bit-flip.

5.1 NeuroHammer

The existence of the NeuroHammer attack in passive crossbar arrays stems from two
fundamental observations. Firstly, Von Witzleben et al. [195] investigate the impact of
elevated temperatures on the switching kinetics of Resistive Random-Access Memo-
ries (ReRAMs), with a particular emphasis on Valence Change Material (VCM) that
utilize a transition metal oxide. By employing a nanometer-scale heating structure,
the authors were able to achieve a rapid temperature increase within the cell and
performed kinetic measurements at different temperatures to observe the effect on
the switching times and pre-SET slope. The study revealed that higher temperatures
significantly decrease the SET times which also aligns with simulations results based
on an analytical model.

Secondly, as discussed in Section 2.1.2, passive crossbar arrays necessitate some
form of isolation mechanism to safeguard half-selected cells from unintended switch-
ing. The V/2 scheme, the most commonly adopted technique, applies a voltage drop
of Vwrite across the designated device, while the non-selected devices along the word
and bit lines experience an absolute voltage of |Vwrite/2|. Within the context of Neu-
roHammer, this scheme ensures that in passive crossbars, adjacent cells are exposed
to a |Vwrite/2| pulse with each write operation targeting the selected cell.

Merging these observations, Figure 5.1 showcases the intrinsic workings of the
NeuroHammer attack, represented through four discrete phases. The attack and tar-
geted cells are represented by red and blue cells, respectively. In the following is a
comprehensive and detailed account of each phase:

1. Hammering: Ideally, the red cell is initially in a Low Resistive State (LRS) to
maximize current flow. The attacker repetitively writes to this cell, inducing a
Vwrite pulse across its terminals. Owing to the V/2 scheme, the blue cell endures
repeated stress from the generated V/2 scheme.

2. Temperature increase: The continuous Vwrite pulses lead to a temporary rise in
the red cell’s temperature, which in turn increases the temperature of the adja-

5.2. Thermal Simulation 57

cent blue cell due to thermal crosstalk. Concurrently, the blue cell experiences
regular |Vwrite/2| voltage pulses, further increasing its temperature.

3. Switching kinetics: As demonstrated by Von Witzleben et al. [195], increased
temperatures alter the switching kinetics, reducing the SET time. Consequently,
the device is more susceptible to gradually change its resistance.

4. Bit-flip: Eventually, the blue cell alters its internal state after a gradual change
over time. The combination of thermal crosstalk and the V/2 scheme enables
the attacker to flip a bit without direct access to the targeted cell.

This attack procedure requires a |Vwrite/2| across the target cell’s terminals to
eventually provoke a bit-flip. However, the V/2 scheme introduces sneak-path cur-
rents, which constrain the crossbar size, lower the read accuracy, and increase power
dissipation (see Section 2.1.2). Hence, 1-Transistor 1-Resistor (1T1R) structures emerge
as a promising solution, leveraging transistors to insulate half-selected cells from the
read/write pulses.

In the following, we validate the existence of the NeuroHammer attack on both
passive and active crossbar arrays by utilizing our simulation methodology to assess
the impact of thermal crosstalk. Initially, a thermal simulation confirms that ther-
mal crosstalk sufficiently increases the temperature of adjacent cells. Additionally,
the simulator yields thermal coupling coefficients, termed alpha values, for emulat-
ing crosstalk at the circuit level. A subsequent circuit-level simulation employs these
alpha values to simulate thermal crosstalk, considering the electrical properties of the
memristive devices and the crossbar structure. This simulation methodology not only
provides key insights about the influence of thermal crosstalk in dense passive/ac-
tive crossbar structures but also manifests the impact of the NeuroHammer attack in
neuromorphic computing.

5.2 Thermal Simulation

In this section, we describe the implementation of a memristive crossbar model within
the COMSOL Multiphysics® [45] simulation platform, aimed at quantifying thermal
crosstalk between adjacent memristive cells. The simulation leverages the finite ele-
ment method to determine heat transfer coefficients, referred to as alpha values, which
are subsequently used as inputs for the circuit-level simulation (refer to Section 5.3).
Section 5.2.1 details the procedural steps undertaken to evaluate thermal crosstalk
originating from an individual device. Moreover, Section 5.2.3 elaborates on extend-
ing this methodology to analyze more advanced patterns involving multiple devices.

5.2.1 Memristive Crossbar Model

Figure 5.2 (a) depicts the crossbar model employed for thermal simulations. This
model consists of Bottom Electrode (BE) and Top Electrode (TE), which intersect per-
pendicularly on a Si/SiO2 substrate. Unlike the JART VCM v1b compact model [19]

58 Chapter 5. Deliberately Flipping Bits in Memristive Crossbar Arrays

Steady-state simulation

B
ot

te
m

 e
le

ct
ro

de

Top electrode

T13 T14 T15

T23 T24 T25

T33 T34 T35

T43 T44 T45

T53 T54 T55

T11 T12

T21 T22

T31 T32

T41 T42

T51 T52

Tmax

Tmin

Temperature matrix

Voltage sweep

Voltage pattern

Tmax

Tmin

...

P1

P2

Pn

Thermal resistance
Rth

Alpha values
α11 α12 α13 α14 α15

α21 α22 α23 α24 α25

α31 α32 α33 α34 α35

α41 α42 α43 α44 α45

α51 α52 α53 α54 α55 0

1

Crossbar model

Bottom electrode:
- 30nm
- V=0V
- T0=300K

T0=300K

Oxide(35nm)

SiO2(100nm)

Si(100nm)

Top electrode:
- 30nm
- V=VSET
- T0=300K

Filament:
- ⌀=30nm
- h=5nm

a) b) c)

Figure 5.2: Overview of the thermal simulation methodology: (a) depiction of the
crossbar model alongside its boundary conditions, (b) extraction of device tempera-
tures within the crossbar array, and (c) assessment of thermal resistance for a centered
cell and the corresponding alpha values for the adjacent devices.

used in circuit simulations (refer to Section 5.3), the memristive devices placed be-
tween the TE and BE in this model are represented solely by their filament. This
approach omits the division into a resistive switching disc area and a highly conduc-
tive plug region, which significantly enhances simulation performance.

The resistance of each memristive device is thus characterized by the filament’s
resistance, which can be adjusted as needed. The temperature of the ReRAM cells is
calculated by solving the static heat transfer equation

−∇ · (κ∇T) = j · E, (5.1)

and the current continuity equation

∇ · j = −∇ · (σ∇ϕ) = 0, (5.2)

where T represents the temperature of the memory cell, ϕ the electrical potential, κ

the thermal conductivity, σ the electrical conductivity, j the local current density, and
E the electric field.

In this setup, the memristive device does not simulate any switching characteris-
tics, meaning the heat generated by a device is determined purely by its dissipated
power. Consequently, the electrical conductivity of the filament is assumed to re-
main constant throughout the simulation. To establish a specific current I through
the cell, we manually adjust the filamentary resistor’s electrical conductivity Rfil in
accordance with Ohm’s law VSET = Rfil I. Figure 5.3 (a-b) illustrates the electrical and
thermal model of the memristive cell, respectively.

The thermal boundary conditions are defined by the top surface of the substrate
and the crossbar structure, both acting as thermal insulators. Additionally, the con-
tacts of the electrodes and the simulation model’s bottom surface are set to the ambi-
ent temperature T0, serving as an ideal heat sink. Electrical currents are directed into
or out of the memristive array exclusively via the top and bottom electrodes, with the
electrode potentials set to V, V/2, or 0 V.

5.2. Thermal Simulation 59

Electrical model

BE

TE

VSET Rfil

σ

a)

Pattern

Calculation

Superposition

+

Construct temperature matrix Result

d)

c)

Thermal model

BE

TE

TLRS Rth

k

b)

Figure 5.3: (a) Electrical circuit diagram representing the modeled memristive device
within the crossbar model and (b) its corresponding equivalent thermal diagram. (c)
The temperature matrix featuring a single selected cell can be directly calculated. (d)
For configurations with two selected cells, the resultant temperature matrix emerges
from the superposition of two shifted temperature matrices.

5.2.2 Thermal Crosstalk—Single Device

Initially, we assess the thermal crosstalk generated by a single memristive cell. To iso-
late the effect, we assume that only the targeted cell is in an LRS, while all other cells
remain in a High Resistive State (HRS), thus minimizing the influence of self-heating
from adjacent half-selected cells. Our investigation centers on the thermal crosstalk
that occurs during the write process of a cell in the LRS, which maximizes the cur-
rent through the targeted device and consequently, the resultant thermal crosstalk.
In the context of a passive memristive crossbar array, we employ the V/2 scheme to
selectively address the targeted cell.

Figure 5.2 (b) presents the temperature matrix derived from a steady-state simula-
tion of the specified crossbar model. Each element Tij within the temperature matrix
indicates the peak temperature of the filament at its respective position in the array.
To obtain the necessary alpha values and the associated thermal resistance Rth of the
targeted cell, we execute a voltage sweep of VSET, yielding various temperature ma-
trices. Based on Fourier’s law, the temperature rise across a thermal resistor directly
correlates with the heat generated from the dissipated power. Hence, we can calcu-
late the thermal resistance Rth through linear regression between the dissipated power
PLRS = VSET I and the temperature TLRS(PLRS) of the targeted cell in LRS as follows:

TLRS(PLRS) = T0 + Rth · PLRS. (5.3)

To derive the alpha values, we apply the same approach but note that the tem-
perature increase dTij in an adjacent cell, due to thermal crosstalk, constitutes only
a portion of the total temperature rise dTLRS = Rth · PLRS in the heated device. The
alpha values quantify this proportion and are defined as:

Tij(PLRS) = T0 + Rth · PLRS · αij, (5.4)

where αij denotes the alpha value for a particular memristive cell located between
the BE i and the TE j. The alpha value for the central cell, origin of the thermal

60 Chapter 5. Deliberately Flipping Bits in Memristive Crossbar Arrays

crosstalk, is set to 1 to ensure Equation (5.4) equals with Equation (5.3). Therefore,
alpha values for all neighboring cells will be less than 1. These values illustrate the
extent of the thermal crosstalk and are influenced by the crossbar array’s configu-
ration, including electrode spacing and material properties. After determining the
alpha values for a specific crossbar array, Equation (5.4) facilitates the computation of
the resultant temperature matrix for varying power dissipations of a given targeted
cell.

5.2.3 Thermal Crosstalk—Multiple Devices

In this section, we develop a methodology to quantify thermal crosstalk within mem-
ristive crossbar arrays when multiple memory cells are accessed simultaneously. This
approach is particularly beneficial for examining the effects of various attack patterns
on the efficiency of NeuroHammer attacks. To estimate the temperature rise due to
thermal crosstalk from multiple cells, we adopt the premise that heat contributions
from different sources can be superimposed. As established in Section 5.2.2, the tem-
perature increase of a specific memory cell is expressed as

dTij = Rth · Pij, (5.5)

relying solely on the thermal resistance Rth and power dissipation Pij. Assuming
a constant thermal resistance for all cells, an adjacent device at position kl undergoes
a temperature increase from the heat source at ij as described by:

dTij
kl = αk−i+r,l−j+s · dTij (5.6)

where r and s represent the distance from the selected cell to the top left corner
of the alpha matrix. For example, considering the dimensions of a 5× 5 crossbar as
shown in Figure 5.2 (a), the offsets would be r = 3 and s = 3. Equation (5.6) illustrates
that thermal crosstalk on an adjacent cell depends only on the relative distance and
direction to the heat source, not on the absolute position of the selected cell within
the array. Hence, for devices ij not positioned centrally, shifting the alpha matrix
enables easy computation of thermal crosstalk. Consequently, the size of the alpha
matrix does not need to correspond to the size of the crossbar array, considering that
all memory cells outside the alpha matrix can be marked negligible in terms of their
impact on thermal crosstalk. The cumulative temperature increase in a cell from the
thermal crosstalk of all adjacent cells within the alpha matrix is given as

dTkl =
∑

0<i<=m
0<j<=n

dTij
kl (5.7)

where m and n represent the number of rows and columns in the memristive
crossbar array, respectively. The dTkl considers the thermal crosstalk from all adjacent

5.3. Circuit Simulation 61

WLC

B
LC

Memory controller

WLC

WLC

B
LC B
LC...

...

......... ...

GLC

GLC
GLC

g1
g2

gn

Memristive
crossbar

Crosstalk hub

c1

0.080

0.141

0.079

0.110

0.109

0.080

0.141

0.079

0.030

0.050

0.068

0.049

0.029

0.040

0.039

0.046

0.045

0.040

0.039

0.030

0.050

0.068

0.049

0.029

Alpha values

Init.
Stimulus

c2 cm

Figure 5.4: Overview of the circuit simulation methodology, comprising the memory
controller, the crosstalk hub, and the crossbar array.

cells, including the cell’s own self-heating (k = i ∧ l = j). The overall temperature for
each device within the superimposed temperature matrix is defined as

Tkl = T0 + dTkl (5.8)

= T0 +
∑

0<i<m
0<j<n

αk−i+r,l−j+s · dTij (5.9)

= T0 +
∑

0<i<m
0<j<n

αk−i+r,l−j+s · Rth · Pij. (5.10)

Figure 5.3 (c-d) illustrates the methods for determining thermal crosstalk in a
crossbar array. Equation (5.4) calculates the temperature of adjacent cells for a single
centrally selected cell, while Equation (5.8) is utilized for computing resultant temper-
atures when two or more cells are selected. Here, the thermal crosstalk contribution
for each selected cell is calculated individually, followed by the superposition of these
distinct temperature matrices to result in the temperature profile of the crossbar array.

5.3 Circuit Simulation

In this section, we introduce a circuit-level simulation framework designed to inves-
tigate the effectiveness and feasibility of NeuroHammer. Cadence Virtuoso® [29],
serving as the base circuit simulator, incorporates our modules implemented in Ver-
ilogAMS to enable scalable simulations of crossbar structures considering thermal
crosstalk. The platform is designed to be customizable via the standard graphical
user interface of Virtuoso, enabling the exploration of diverse crossbar structures and
experimental configurations. Figure 5.4 presents an overview of the simulation frame-
work, which includes the memory controller, the crosstalk hub, and the memristive
crossbar array, with a detailed discussion in the following.

62 Chapter 5. Deliberately Flipping Bits in Memristive Crossbar Arrays

Temperature matrix

T13

T23

T33

T11 T12

T21

T31 T32

Extraction

Crossbar array Result

Crosstalk

Alpha matrix

α12

α11 α21 α31

α32

α33α23α13

Temperature calculation

Cell temperature

Tin Tself+ += T0Tcell

...

Tcell

Figure 5.5: Detailed breakdown of the crosstalk hub: (a) extraction of temperatures
from adjacent cells, (b) integration with alpha matrix, and (c) calculation of the final
cell temperature.

5.3.1 Memory Controller

The memory controller represents the centerpiece of the circuit simulator responsible
for orchestrating the essential signals for interfacing the crossbar model as shown in
Figure 5.4. Specifically, the memory controller comprises three sub-controllers, which
can be instantiated based on the crossbar array’s type and dimensions. The World
Line Controller (WLC) and the Bit Line Controller (BLC) manage the application of
appropriate read/write/compute voltages to the targeted memory cells, with i and j
denoting the number of rows and columns in the crossbar array, respectively. Sim-
ilarly, the Gate Line Controller (GLC) activates the access transistors to select the
memristive devices. Depending on the crossbar’s architecture, n may correspond to
the number of columns/rows as detailed in Section 2.1.2, or it may adjust to more
complex configurations such as 2T1R crossbar arrays [214]. To execute various at-
tack patterns on the crossbar, the sub-controllers must produce synchronized signals
with exact timing specifications. These attack patterns are specified in a stimulus file
that describes the pulse details (including length and amplitude), mapping (which
allocates the pulses to specific lines), and timing. This setup is adjustable within the
Cadence Virtuoso tool, allowing for parametric sweep analysis to investigate corner
cases. Furthermore, an initialization (init) file specifies the initial state of each ReRAM
cell.

5.3.2 Crosstalk Hub

The crosstalk hub acts as a centralized module for calculating thermal crosstalk within
the crossbar array. Thus, as illustrated in Figure 5.4, the crosstalk hub relies on the
alpha matrix to indicate the influence of surrounding cells on the temperature in-
crease of a given cell (see Section 5.2.1). Figure 5.5 depicts the overall procedure for
determining the absolute temperature of a cell, considering thermal crosstalk and self-
heating. The temperature increase due to thermal crosstalk of a given cell Tin can be
expressed as

5.3. Circuit Simulation 63

Tin(α, T) =
∑

0<i<m
0<j<n

αijTij, (5.11)

where α represents the alpha matrix, T denotes the temperatures of adjacent cells,
and m, n are the number of rows and columns, respectively. The crosstalk hub deter-
mines Tin for each cell in every simulation cycle to simulate the continuous impact of
thermal crosstalk.

5.3.3 Memristive Crossbar

The memristive crossbar module represents a versatile component for creating cross-
bar structures. For the memristive device model, we utilize the deterministic version
of the JART VCM v1b model, designed for filamentary switching in VCM cells. This
model has been calibrated to a nano-crossbar Pt/HfO2/TiOx/Ti device [47, 19, 145].

The model internally employs the concentration of oxygen defects Ndisc in the
HfO2 within a "disc" region at the Pt/HfO2 interface as the state variable. These
positively charged defects affect electron transport across the Pt/HfO2 interface and
the local conductivity. A high defect concentration signifies the device is in the LRS,
while a low concentration indicates a HRS.

In general, ion migration under an applied electric field alters the defect concen-
tration. Therefore, applying a negative voltage to the Pt electrode draws the positively
charged oxygen defects, increasing Ndisc and facilitating the SET transition. On the
other hand, applying a positive voltage repels these defects, reducing Ndisc and trig-
gering the RESET state. The local temperature T is influenced by the dissipated power
Pd according to

T = Rth,eff · Pd + T0, (5.12)

where T0 is the ambient temperature, and Rth,eff represents the effective thermal
resistance (in K/W), reflecting the heat dissipated to the surrounding cells and the
thermal characteristics of the materials used. Further details on the JART VCM model
are documented in [19], with the parameters for our experiments detailed in Ap-
pendix A.1.

The JART VCM model has been modified to enable the interaction with the
crosstalk hub during simulation. Two interface variables have been introduced to
relay the current device temperature to the crosstalk hub and to receive the temper-
ature increase from adjacent cells. As illustrated in Figure 5.5, the temperature of a
specific cell Tcell can be computed using Equation (5.8) and reformulated as

64 Chapter 5. Deliberately Flipping Bits in Memristive Crossbar Arrays

(W/m2)
x1011

0.8
0.6
0.4
0.2 V = 0V

C23

C32

C22 C33

BE
TE

Heat flux

Vapp

(a)

V/2

V/2

V

V/2

V/2
V/
2
V/
2
GN
D
V/
2
V/
2

(b) Pattern A

V/2
V/
2

V/
2

GN
D
GN
D
GN
D

V/2

V/2

V

V

(c) Pattern B

V

V/
2

V/
2

V/
2

V/2

V/2

V/2

V/2
GN
D

GN
D

(d) Pattern C

V/
2
V/
2

V/
2
V/
2

GN
D

V

V

V/2

V/2

V/2

(e) Pattern D

Figure 5.6: (a-d) Overview of the attack patterns employed in our experiments, with
blue indicating the targeted cells and red highlighting the attacked cells. (e) Simula-
tion results visualizing the heat flux along the electrodes, showing that heat from cell
C33 is distributed via cells C23 and C32 to the adjacent cell C22.

Tcell = T0 + dTkl (5.13)
= T0 + Tself + Tin (5.14)
= T0 + Vm · Im · Rth,eff︸ ︷︷ ︸

Tself

+Tin, (5.15)

(5.16)

where Tcell signifies the cell temperature, Tin the temperature rise due to thermal
crosstalk as determined by the crosstalk hub (see Section 5.3.2), Vm the voltage dif-
ference across the memristor m, Im the current through memristor m, T0 the ambient
temperature, and Rth,eff the effective thermal resistance (in K/W).

5.4 Results

In this section, we utilize the developed simulator to explore the feasibility and ef-
fectiveness of the proposed NeuroHammer attack. Prior to delving into the specifics
of the attack, we conduct a detailed analysis of the assumptions related to thermal
crosstalk in memristive crossbar structures. Specifically, we validate the method of

5.4. Results 65

10 20 30 40 50 60 70 80 90

10−3

10−2

Electrode spacing [nm]

Si
m

ul
at

ed
al

ph
a

va
lu

e

(a)

Top electrode

Calculation
572.9

814.2

713.1

768.1

619.3

669.4

891.8

768.6

645.7

954

885.7

624.5

826.7

948.2

730.3

506.1

659.3

613.7

627.5

556.9

1116

1042

982.9

1426

998.3

B
ot

to
m

 e
le

ct
ro

de

700
800
900
1000
1100
1200
1300
1400
T(K)

600

(b)

628.4

929.5

767.2

803.1

639.5

709.7

913

779.5

661.2

953.4

953.6

895.2

634.8

826.9

957.1

734.4

516.6

671.9

625.9

638.8

565.1

1177

1058 1445

1001

Top electrode

Simulation

600
700
800
900
1000
1100
1200
1300
1400
T(K)

B
ot

to
m

 e
le

ct
ro

de

(c)

Figure 5.7: (a) The alpha value of a ReRAM cell as a function of electrode spacing in
a crossbar array. A comparison between (b) temperatures obtained from simulation
and (c) temperatures calculated by employing the method of superimposing temper-
ature matrices.

superimposing temperature matrices. Based on these findings, we validate the ap-
plicability of our simulation approach for investigating the NeuroHammer attack on
1T1R structures.

Following the thorough justification of the simulation methodology, we present a
comprehensive series of experiments examining the effects of pulse length, electrode
spacing, ambient temperature, and various attack patterns on the NeuroHammer at-
tack. Additionally, we investigate different technology nodes and device variations in
1T1R structures.

5.4.1 Thermal Simulation

To understand the implications of thermal crosstalk in memristive crossbar arrays, the
heat flux is studied to provide insights about the parameters influencing the strength
and the propagation. Furthermore, the assumptions made in Section 5.2.3 have to be
verified. For this experiment, we utilize the implemented crossbar array in Section 5.2
along the boundary conditions shown in Figure 5.2.

Heat flux: Figure 5.6 (a) visualizes the heat flux of within a passive crossbar
array based on arrows. In this setup, the center cell (C33) is set to the LRS and
being selected by the respective BE and TE. The heat flux, indicated by the red arrows,
spreads primarily into symmetrically into the top and bottom electrodes. Considering that
the thermal conductivity of the oxide layer under the top electrode and the substrate
is significantly lower compared to that of the electrodes, the heat naturally remains
in the more thermally-conductive lines. Therefore, the adjacent cells C23 and C32
experience a temperature increase due to thermal crosstalk. Likewise, Figure 5.6 (a)
shows that the thermal coupling decreases the farther the cells are apart from the heat source.
As a consequence, the dimensions and the spacing of the crossbar array plays a crucial role
for the magnitude of the thermal crosstalk. Therefore, encasing this setup in a thermally

66 Chapter 5. Deliberately Flipping Bits in Memristive Crossbar Arrays

insulating material like SiO2 would not significantly alter the temperature profiles,
since heat dispersal primarily occurs through the electrodes.

Figure 5.7 (a) shows the alpha value of the cell (1,1) depending on the spacing
between the top/bottom electrodes from one row/column to the next one. The results
illustrate a general tendency that the farther the electrodes are apart, the thermal crosstalk
becomes less prevalent. However, since the selected lines also increase their temperature due
to Joule heating, the alpha values may increase depending on the geometric and material prop-
erties of the electrodes. Since the heat distributes primarily along the electrodes, the
thermal crosstalk may be reduced by intentionally increasing the gap between the
memristive devices and the electrodes. Such a thermal isolator may be represented
by a transistor as used in 1T1R structures. Therefore, these more complex crossbar struc-
tures can be simulated by reducing the alpha matrix to a line vector because the heat flux only
propagates along the electrodes directly connected to the memristive device while the transistor
effectively serves as isolator.

Superimposing temperature matrices: To validate the proposed method of su-
perimposing temperature matrices, we conducted simulations on a pattern involving
three selected cells in the LRS, with the remaining devices in the HRS. Figure 5.7
(b) displays the simulated temperature matrix for this pattern, while Figure 5.7 (c)
presents the resulting temperature matrix derived from the alpha values. This com-
parison reveals that the simulated values closely match the calculated temperatures, especially
for cells located in the central portion of the array. However, discrepancies between the
simulated and calculated temperatures become more noticeable for cells at the ar-
ray’s periphery. In the context of investigating NeuroHammer, this level of approximation
is sufficient, as the attack primarily aims to induce bit-flips in adjacent cells. In general,
the precision of our method could be enhanced by applying a larger alpha matrix to
a comparatively smaller actual array size. For instance, a 9× 9 alpha matrix could
be used to approximate temperatures within a 5× 5 crossbar array, ensuring com-
prehensive coverage of the 5× 5 array, even for memory cells at the array’s edges.
Nevertheless, it is important to note that comparing a crossbar array to an alpha ma-
trix of differing dimensions may introduce complexities due to variations in boundary
conditions.

Von Witzleben et al. [195] conducted a study exploring the impact of tempera-
ture on the switching kinetics of memristive devices. Their findings reveal highly
localized temperatures within the device, reaching approximately 1000 K, which are
crucial for facilitating rapid switching behavior in VCM cells within the nanosecond
timeframe. The absolute cell temperatures produced by our simulations align closely with the
measurements results on real memristive devices presented by Von Witzleben et al., thereby
affirming the validity and precision of our simulation approach.

5.4.2 1R Crossbar Arrays

In this section, we examine the NeuroHammer attack at the circuit level for passive
crossbar arrays (1R), with the objective of assessing the impact of pulse length, am-
bient temperature, electrode spacing, and different attack patterns on the number of

5.4. Results 67

20 40 60 80 100

103

104

Pulse length [ns]

#
pu

ls
es

to
tr

ig
ge

r
a

bi
t-

fli
p

(a)

10 nm 50 nm 90 nm

103

104

105

Electrode spacing
#

pu
ls

es
to

tr
ig

ge
r

a
bi

t-
fli

p

50 ns 75 ns 100 ns

(b)

273 K 298 K 323 K 348 K 373 K

102

103

104

105

Ambient temperature

#
pu

ls
es

to
tr

ig
ge

r
a

bi
t-

fli
p

10 ns 30 ns 50 ns

(c)

280 K 300 K 320 K 340 K 360 K

20 nm
40 nm

60 nm
80 nm

101

102

103

104

105

106

107

Ambient temperature Electrode spacing

#
pu

ls
es

to
tr

ig
ge

r
a

bi
t-

fli
p

1 ns 10 ns 100 ns

(d)

280 K 300 K 320 K 340 K 360 K

20 nm
40 nm

60 nm
80 nm

100

101

102

103

104

Ambient temperature

El
ec

tro
de

sp
ac

in
g

#
pu

ls
es

to
tr

ig
ge

r
a

bi
t-

fli
p

1 ns 10 ns 100 ns

(e)

280 K
300 K

320 K
20 nm40 nm60 nm80 nm

100

101

102

103

104

105

106

Ambient temperature Electrode spacing

#
pu

ls
es

to
tr

ig
ge

r
a

bi
t-

fli
p

1 ns 10 ns 100 ns

(f)

280 K 300 K 320 K 340 K 360 K

20 nm
40 nm

60 nm
80 nm

100

101

102

103

104

105

106

Ambient temperature
Electrode spacing

#
pu

ls
es

to
tr

ig
ge

r
a

bi
t-

fli
p

1 ns 10 ns 100 ns

(g)

Figure 5.8: Circuit-level simulation results for passive crossbar structures are pre-
sented as follows: (a) the effect of pulse length (pattern A), (b) the influence of elec-
trode spacing (pattern A), (c) the effect of ambient temperature (pattern A), and (d-g)
the impact of attack patterns (A-D), respectively.

68 Chapter 5. Deliberately Flipping Bits in Memristive Crossbar Arrays

pulses required to induce a bit-flip. The attack patterns used in our experiments are
depicted in Figure 5.6 (b-e), where red tiles mark the attacked cells and blue tiles
indicate the cells most susceptible to a bit-flip due to the NeuroHammer attack. The
likelihood of a bit-flip in blue cells is higher because they share a common electrode
with the attacked cell (as discussed in Section 5.4.1) and are in proximity to it. The
alpha matrices utilized in these experiments are detailed in Appendix A.2.

Pulse length: This experiment explores how the length of the write pulse affects
the NeuroHammer attack’s efficacy. We employ a 5 × 5 passive crossbar with an
electrode spacing of 50 nm and an ambient temperature of 300 K, using pattern A (as
shown in Figure 5.6 (b)) to target a single cell located in the center. The memory
controller’s sub-controllers apply the necessary voltages to the rows and columns,
with the attacked cell receiving VWrite and Ground (GND), while the V/2 scheme
is used for the rest to mitigate sneak-path currents. Figure 5.8 (a) plots pulse lengths
against the number of pulses needed for a bit-flip, showing that longer pulses reduce the
required number of pulses to flip a bit in adjacent cells.

Electrode spacing: As shown in Section 5.4.1, the heat flux decreases with in-
creasing distance to the attacked cell. To quantify this impact on the NeuroHammer
attack, we investigate the influence of the electrode spacing on the NeuroHammer
attack. Again, Pattern A is utilized with an ambient temperature of 300 K. Figure 5.8
(b) illustrates the number of pulses required to trigger a bit-flip in dependence of the
electrode spacing and the pulse length. In general, the results indicate that memristive
crossbars are more susceptible to NeuroHammer as the electrode spacing decreases. Conse-
quently, we argue that security attacks like NeuroHammer become a severe problem for dense
crossbar memories as the technology node advances.

Ambient temperature: As indicated by Equation (5.8), ambient temperature T0
significantly influences the temperature rise in a memristive device within crossbar
structures. This experiment examines the effect of ambient temperature on the num-
ber of pulses required to induce a bit-flip. We utilize attack pattern A on a passive
crossbar array with an electrode spacing of 50 nm. As demonstrated in Figure 5.8, the
impact of the ambient temperature is profound. At 273 K, 33, 030 pulses are needed to
cause a bit-flip, whereas at 373 K, merely 184 pulses suffice. This finding highlights that
higher ambient temperatures significantly lower the pulse count needed for a NeuroHammer-
induced bit-flip, posing a potential reliability risk for memristive crossbar arrays.

Attack patterns: Considering that a potential adversary may not have direct access
to the targeted system, it might be challenging to externally influence the parameters
previously discussed. However, utilizing specific attack patterns, which involve re-
peatedly writing a certain bit pattern within a memory region, offers a viable strategy
to enhance the NeuroHammer attack’s effectiveness. Initial experiments employed
the attack pattern depicted in Figure 5.6 (b), targeting a single cell at the center of the
crossbar array. Nonetheless, our results presented in Section 5.4.1 suggest that attack-
ing multiple cells simultaneously can increase the overall heat flux within the crossbar,
thereby altering the switching kinetics of the targeted cell in a way that benefits the
injection of bit-flips.

5.4. Results 69

Table 5.1: Simulation parameters for access transistors at 180 nm and 45 nm nodes,
and slow, medium, and fast memristors.

Transistor Parameter

180nm Name: nmos wgate: 2 µm S/D metal width: 60 µm
Version: v3.3 lgate: 180 nm Folding threshold: 10 µm
Fingers: 1 VGate: 1.8 V

45nm Name: nmos1v wgate: 120 nm S/D metal width: 60 µm
Version: v6.0 lgate: 45 nm Folding threshold: 10 µm
Fingers: 1 VGate: 1.8 V

Memristor Parameter

Slow Nmax: 0.39 × 1026 m−3 lvar: 0.44 nm VSET: 1.54 V
Nmin: 4 × 1023 m−3 rvar: 40.5 nm

Medium Nmax: 0.4 × 1026 m−3 lvar: 0.40 nm VSET: 1.54 V
Nmin: 8 × 1023 m−3 rvar: 45.0 nm

Fast Nmax: 0.41 × 1026 m−3 lvar: 0.36 nm VSET: 1.54 V
Nmin: 25 × 1023 m−3 rvar: 49.5 nm

Hence, this experiment explores the effects of varying attack patterns. Pattern B,
see Figure 5.6 (c), seeks to maximize heat flux by simultaneously attacking six cells
surrounding the target cell, with the intermediary three cells showing the highest
likelihood of undergoing a bit-flip due to their shared bottom electrode with the at-
tacked cells. Pattern C, as shown in Figure 5.6 (d), employs the word line as a thermal
conductor connecting the attacked and target cells. The effectiveness of this pattern
may depend on the memory controller’s addressing scheme, potentially limiting the
strategy’s efficiency. Figure 5.6 (e) presents a variation of Pattern C.

The outcome of the simulations, corresponding to Patterns A-D, are illustrated in
Figure 5.8 (d-g), conducted across different electrode spacings, ambient temperatures,
and pulse lengths. As anticipated, the data confirms that attacking more cells at once reduces
the number of pulses needed for a bit-flip. Moreover, the proximity of the attacked cells to the
target cell is critical, as heat transfer predominantly occurs through the electrodes.

5.4.3 1T1R Crossbar Arrays

As discussed in Section 2.1.2, passive crossbar arrays are prone to sneak-path currents,
which substantially impact their reliability. To address this, 1T1R structures have been
proposed, incorporating an access transistor to effectively isolate unselected memory
cells within the array.

70 Chapter 5. Deliberately Flipping Bits in Memristive Crossbar Arrays

Nevertheless, the NeuroHammer attack requires a trigger pulse to induce a bit-flip
in the target cell. In contrast to passive crossbar arrays that deploy the V/2 scheme
which is used as trigger pulse, such a scheme is unnecessary in 1T1R arrays. Table 2.2
provides an overview of the writing schemes utilized for the three possible 1T1R
configurations—each designed to mitigate sneak-path currents, thereby countering
the NeuroHammer threat. After simulating all three 1T1R structures—typical, vertical,
and pseudo—using an ideal access transistor, this assumption holds true, and no bit-flips
occur.

Consequently, the following experiments adopt the Cadence Generic Process De-
sign Kit (GPDK) to incorporate a realistic transistor model, which facilitates the sim-
ulation of leakage currents across diverse technology nodes. Furthermore, we in-
corporate the model parameters described by Bengel et al. [19], which are based on
measurements of memristors, each characterized by fast, medium, and slow switch-
ing behaviors. Table 5.1 shows the simulation parameters for the memristive devices
and transistors. All simulations were executed at a constant temperature of 293.15 K
and with a 10 nm inter-electrode gap.

Crossbars: This experiment seeks to evaluate the potential for NeuroHammer
attacks within 1T1R structures, utilizing a realistic transistor model for analysis. Illus-
trated in Figure 5.9 (a-c), are the vertical, typical, and pseudo crossbar configurations,
where cells under attack are marked in red and those susceptible to leakage currents
are highlighted in blue. These susceptible cells are identified by the occurrence of
a voltage drop across the memory cell which may lead to leakage currents through
the access transistor. For this evaluation, we apply the fast memristor parameters
together with the 45 nm access transistor. As depicted in Figure 5.9 (d), we examine
the resistance of the susceptible memristor throughout the simulation for each type
of crossbar. The results reveal that the leakage current passing through the access transistors
could incrementally alter the resistance, potentially culminating in a bit-flip. Findings in
Section 5.4.1 suggest that the thermal flux predominantly traverses via the electrodes
across the crossbar array. Consequently, the typical and vertical arrays demonstrate
comparable susceptibility for bit-flips. Nonetheless, the pseudo crossbar demonstrates an
immunity to NeuroHammer attacks due to its unique design wherein the attacked cell and
the susceptible cells do not share an electrode. Despite experiencing similar leakage cur-
rents, the lack of thermal crosstalk within the pseudo crossbar architecture prevents
substantial changes in resistance.

Memristor variability: Given that the leakage current passing through the ac-
cess transistor is minimal, the intrinsic switching behavior of the memristive device
becomes pivotal for the feasibility of the NeuroHammer attack. In this context, our
experiment examines the influence of three distinct parameter sets for the JART VCM
model, which are derived from empirical measurements of real devices. These pa-
rameters, as reported by Bengel et al. [19], correspond to fast, medium, and slow
switching behaviors and are detailed in Table 5.1. The simulation results, illustrated
in Figure 5.9 (e), demonstrate the resistance dynamics of a vulnerable cell within a typ-
ical 1T1R crossbar structure under repeated hammering on an adjacent cell, marked
in red. For this experiment, we employ attack pattern A alongside a 45 nm access

5.4. Results 71

GN
D

GN
D

GN
D

GN
D

GND

GND

GN
D

V Ga
te

VSET

(a)

GN
D

GN
D
GN
D

GN
D
GN
D

GND

GND

V SE
T

VGate

(b)

GND GN
D

GND

GND
GND

VSET

V SE
T

V SE
T

VGate

(c)

10−2 10−1 100 101 102 103 104

99.5

100

100.5

101

101.5

102

102.5

103

103.5

Simulation time [s]

R
es

is
ta

nc
e

[k
Ω

]

Vertical crossbar
Pseudo crossbar
Typical crossbar

(d)

0 1,000 2,000 3,000
0

5

10

15

20

25

Simulation time [s]

R
es

is
ta

nc
e

[k
Ω

]
Slow switching
Medium switching
Fast switching

(e)

101 102 103
101.4

101.6

101.8

102

102.2

102.4

102.6

102.8

103

103.2

Simulation time [s]

R
es

is
ta

nc
e

[k
Ω

]

GPDK 45 nm
GPDK 180 nm

(f)

Figure 5.9: Circuit-level simulations of (a) vertical, (b) typical, and (c) pseudo 1T1R
crossbar structures, with impact of the crossbar structures (d), memristor variability
(e), and (f) technology node.

transistor. It becomes evident that device variability significantly influences the suc-
cess rate of the NeuroHammer attack. The results indicate that while the memristor with
slow switching attributes exhibits only marginal resistance fluctuations, the device with fast
switching properties experiences a significant resistance shift, which eventually result in a
bit-flip.

Access transistor: The impact of the leakage current through the access transistor
is critical in our investigation, prompting an examination of various transistor models
across two distinct Generic Process Design Kit (GPDK) technology nodes. Anticipat-
ing future miniaturization of memristive crossbar arrays to enhance memory density
and cost efficiency, it is projected that both memristive devices and their accompany-
ing access transistors will experience technological scaling.

In this experiment, we utilize a typical crossbar array together with the fast mem-
ristor parameter set. The findings, as depicted in Figure 5.9 (f), confirm the hypothesis that
smaller technology nodes result in higher leakage currents, which in turn, enhance the poten-
tial for a successful NeuroHammer attack.

72 Chapter 5. Deliberately Flipping Bits in Memristive Crossbar Arrays

System overview X-Fault

Crossbar simulator

C
on

tro
lle

r

XBar

XBar

XBar

XBar

XBar

XBar

XBar

XBar

XBar

a) b)

Main
memory

L2
Cache

L1
I-Cache

CPU
L1

D-Cache

Figure 5.10: (a) Overview of the simulated computing system including processor
model, cache memories and main memory. (b) X-Fault’s crossbar simulator integrated
in the Gem5 architecture simulator.

5.5 Case Study: Leaking RSA Keys with NeuroHammer

In Section 5.4, we have comprehensively investigated the existence of the NeuroHam-
mer attack and the influence of physical parameters on its effectiveness. The ability
to deliberately flip bits in memories employed in modern computing systems pose
a fundamental threat as shown by Rowhammer for DRAMs (refer to Section 2.4.3).
However, DRAM is dominantly used as main memory because of its limited access
time in comparison to Static Random-Access Memory (SRAM). Therefore, the attack
surface of the Rowhammer attack is bound to data stored in the main memory.

On the other hand, ReRAM, while still being heavily under research, is a promis-
ing candidate to replace not only DRAMs [124] but also SRAMs [117] for cache mem-
ories. Considering the existence of NeuroHammer, intentional bit-flip attacks are no
longer restricted to main memories but may also affect cache memories. Therefore,
in this case study, we explore the potential impact of NeuroHammer attacks in cache
memories. In particular, we utilize the crossbar simulator presented in Section 4.3
and connect it to the architecture simulator Gem5 [25]. This simulation setup enables
us to simulate a complete computing system including a processor, caches, and main
memory.

In the following, we define a comprehensive attack scenario in Section 5.5.1. The
implemented simulation methodology is discussed in Section 5.5.2 together with a
thorough evaluation in Section 5.5.3.

5.5.1 Attack Scenario

In this case study, we assume a computing system with two users, victim and ad-
versary, whereas the victim executes an RSA signature generation and the adversary
aims to leak the secret key. Our attack scenario assumes that the attacker has the
ability to execute arbitrary code within a distinct user process environment. The at-
tacker’s influence is restricted to the virtual memory space of his own process, thus
prohibiting any direct modifications of data outside this context. Furthermore, the
adversary also possesses thorough knowledge of the processor’s architecture and its

5.5. Case Study: Leaking RSA Keys with NeuroHammer 73

1 #ifndef H_FAULTYMEMIF_HPP
2 #define H_FAULTYMEMIF_HPP
3 #include <cstdint >
4 #define GEM5_PACKET_MAXSIZE 64 /* in bytes */
5 typedef enum {PAGE_INTERLEAVE , RANK_INTERLEAVE} addr_trans_t;
6
7 class FaultyMemIF {
8 public:
9 virtual int size_gigabytes(void) = 0;

10 virtual uint64_t size_kilobytes(void) = 0;
11 virtual void write(uint64_t phys_addr ,
12 uint8_t *src ,
13 uint_fast16_t len) = 0;
14 virtual void read(uint64_t phys_addr ,
15 uint8_t *dst ,
16 uint_fast16_t len) = 0;
17 FaultyMemIF(addr_trans_t transltr) {
18 buf_len = GEM5_PACKET_MAXSIZE/sizeof(uint64_t);
19 translator = transltr;
20 }
21 virtual ~FaultyMemIF () {};
22 protected:
23 uint64_t buffer[GEM5_PACKET_MAXSIZE/sizeof(uint64_t)];
24 uint_fast16_t buf_len;
25 addr_trans_t translator;
26 };
27 #endif /* H_FAULTYMEMIF_HPP */

Figure 5.11: Abstract memory interface of X-Fault’s crossbar simulator. The interface
defines the required functions to enable the interaction between gem5 and the crossbar
simulator.

memory hierarchy. The victim uses an RSA implementation called Chinese Remain-
der Theorem (CRT) optimization to enhance signature generation.

Generally, RSA relies on the computational difficulty of factoring a large number
N, which is the product of two large prime numbers, p and q. While an RSA signature
is generated using

s = md mod N, (5.17)

a given message is verified by

se = m mod N, (5.18)

where m represents the plaintext message, {N, e} is the public key, {N, d} is the
private key, and s is the resulting signature [163, 70]. RSA-CRT optimizes RSA by
performing calculations separately for p and q, reducing the computational load by
working with smaller numbers. In RSA-CRT, the signature is calculated as

s1 = mdp mod p

s2 = mdq mod q

}
=⇒ s mod pq, (5.19)

74 Chapter 5. Deliberately Flipping Bits in Memristive Crossbar Arrays

where dp = d mod (p− 1) and dq = d mod (q− 1). However, RSA-CRT is vulner-
able to fault attacks. If an attacker induces a fault during these calculations, it can
result in an incorrect signature s̃, computed as

s1 = mdp mod p

s̃2 = mdq mod q

}
=⇒ s̃ mod pq (5.20)

By analyzing the difference between s̃ and the correct signature s, the attacker can
extract the private key. Specifically, the adversary exploits the fact that gcd(s̃e −m, N)
reveals p, thereby compromising the entire RSA key pair since N = pq [26].

The adversary exploits this vulnerability in RSA-CRT by injecting bit-flips using
NeuroHammer in the ReRAM-based L1 data cache. By disrupting the victim’s signa-
ture generation process, the adversary is able to retrieve the secret key, thereby gaining
full control over the signature process. Unlike traditional fault attacks, which require
physical access, this scenario involves a purely software-based attack, potentially al-
lowing for remote execution without any need for physical access to the computing
system.

To the best of our knowledge, this scenario represents a novel non-intrusive at-
tack that can actively inject faults in ReRAM caches. Furthermore, it emphasizes the
profound implications of NeuroHammer on ReRAM technology and highlights the
urgent need for continued research in hardware security, especially within the con-
text of Emerging Non-Volatiles Memories (eNVMs).

5.5.2 Simulation Methodology

The Gem5 computer system architecture simulator is employed to emulate the pro-
cessor, including caches and main memory. The processor model implements an
out-of-order x86 processor operating at 1GHz, equipped with L1 instruction and data
caches of 16 kB each, a unified 256 kB L2 cache, and 2 GB of main memory. We have
enhanced the Gem5 simulator by integrating a generic memory interface to link with
the crossbar model outlined in Section 4.3, as depicted in Figure 5.10. The X-Fault
crossbar simulator’s generic interface, illustrated in Figure 5.11, includes a write and
read function. These functions are set up as callback functions, triggered whenever
the processor attempts to access cache memory. Originally, X-Fault’s crossbar simula-
tor monitored read, write, and compute accesses for each cell. However, to enhance
our simulation’s efficiency, we have deactivated this tracking feature and simplified
the crossbar model to solely accommodate the essential fault model. The fault model
is parameterized by a specific pattern and a threshold value, which dictate the number
of write accesses required to trigger a bit-flip in an adjacent cell.

5.5.3 Evaluation

In this section, we detail the steps an adversary must undertake to successfully in-
duce a bit-flip at the precise location within the L1 data cache during the victim’s

5.5. Case Study: Leaking RSA Keys with NeuroHammer 75

CPU
Alice.c

Evil.c

Main memory
Tag Block

L2 CacheL1 D-Cache
Tag Block

Figure 5.12: Attack Scenario: leveraging NeuroHammer to induce bit-flips in the L1
data cache, ultimately compromising the victim’s secret key.

RSA signature generation process as shown in Figure 5.12. For an adversary to intro-
duce bit-flips into a specific memory cell, it is crucial to comprehensively profile the
cache memory during the RSA signature generation, aiming to achieve two objectives.
Initially, the attacker needs to identify the cache sets utilized during the signature pro-
cess and, subsequently, select an address of a neighboring cache line that will serve
as the target for the attack.

Target cache sets: Identifying a potential target cache set begins with the adver-
sary allocating a substantial amount of data and accessing it. This action ensures that
the data populates the L1 data cache, spanning multiple cache sets. Then, by exe-
cuting an RSA signature generation, the attacker profiles the cache to identify which
cache sets are being evicted. By repeating this process, it becomes apparent which
addresses are frequently evicted, indicating a high likelihood of containing data used
during the victim’s signature generation. Figure 5.13 (a) displays a heatmap of the L1
data cache activity during signature generation, where light blue represents minimal
write activity and dark blue/black signifies intense activity. To compromise the in-
tegrity of the signature generation process, the attacker aims to inject a single bit-flip
in a heavily utilized cache set, where adjacent sets are infrequently accessed. As an
example, cache set 15 as depicted in Figure 5.13 (a) would fulfil this requirement.

Adjacent address: The method to determine an adjacent address varies based on
the provided memory allocation technique. If the CPU architecture permits the use
of larger-than-standard pages, known as huge pages, the attacker can easily choose
a cache set by altering the lower bits of the address within the huge page. With
standard page sizes, the attacker may adjust the virtual address to acquire the address
of an adjacent cache set. Considering a cache entry of 64 B, the six Least Significant
Bits (LSBs) of the virtual address determine the offset. The following bits of the virtual
address specify the corresponding cache set. By inverting the seventh bit of the virtual
address, which represents the LSB of the set index, an address adjacent to the original
address in the cache is generated.

L1 cache attack: Once the adjacent memory cell’s address has been identified, the
attacker proceeds with the actual attack by repeatedly hammering the targeted cell.
The pseudocode for this method is outlined in Algorithm 5.1. This algorithm requires
the target address, which correlates with a cache set active during RSA signature
generation, the victim user to initiate the signature process, and an arbitrary message.

76 Chapter 5. Deliberately Flipping Bits in Memristive Crossbar Arrays

5 10 15 20 25 30 35 40 45 50 55 60

1

2

3

4

W
ay

Set

(a)

5 10 15 20 25 30 35 40 45 50 55 60

1

2

3

4

W
ay

Set

(b)

Figure 5.13: Write access patterns to the L1 data cache during RSA signature gener-
ation: (a) in the absence of an attacker, and (b) with an active attacker targeting the
26th cache set.

To enhance the attack’s efficacy, we leverage eviction sets to target the entire cache
set rather than a single entry. Eviction sets consist of a collection of virtual addresses
that all map to the same cache set [193]. Constructing eviction sets can be achieved
through either a top-down approach [172] or a bottom-up strategy [188], making the
attack agnostic to the cache’s replacement policy. Attacking a single address risks the
RSA-CRT data being located in a different cache way than the intended target. By
employing eviction sets, faults are induced across all adjacent memory cells linked
to the eviction set’s addresses, potentially causing unintended application crashes,
although this was not observed in our experiments. Additionally, the flipped bits are
unlikely to be propagated to the main memory since the entries are not marked as
dirty. Next, the attacker requests a signature from the victim while simultaneously
hammering the adjacent cache line. Figure 5.13 (b) illustrates the L1 data cache’s
simulated write activity during the attack, with cache set 26 distinctly as showing
intense activity marked in black, aiming to induce bit-flips in the adjacent 27th set.
Our simulations consistently managed to inject bit-flips within the RSA-CRT signature
generation using the NeuroHammer attack. As elaborated in Section 5.5.1, injecting
a fault during the computing of s1 and s2 results in a faulty signature s̃. Finally, the
adversary can retrieve the private key of the victim by calculating p = gcd(s̃e−m, N).

5.5. Case Study: Leaking RSA Keys with NeuroHammer 77

Algorithm 5.1: Injecting bit-flip during RSA-CRT signature generation with
NeuroHammer.

Data: Target address (t), victim user (victim), message (msg)
1 EvSet ev← getEvSet(t-64);
2 (e, N)← getPubKey(victim);
3 sendSignReq(victim, msg);
4 while !sig = recvSignResp(victim) do
5 for Addr a in ev do
6 a.data← 0b0000...1...0;
7 a.data← 0b0000...0...0;
8 end
9 end

10 if sig.valid then
11 return 0;
12 else
13 return gcd(sige −m, N);
14 end

5.5.4 Additional Attack Targets

This section provides a brief overview of potential targets susceptible to the Neuro-
Hammer attack, extending the scenario illustrated in Figure 5.12. It assumes that both
L1 and Last Level Cache (LLC) are composed of memristive crossbar arrays, rendering
them vulnerable to NeuroHammer.

Last Level Cache (LLC) attack: In our initial analysis, we considered a situa-
tion where both the victim and the attacker share a single processor core via hyper-
threading, allowing access to the same L1 cache. However, in systems prioritizing
security, this feature might be deactivated, restricting attackers from accessing the
shared L1 cache memory. Under these circumstances, an adversary might target the
LLC for the attack. For an inclusive LLC, the attack procedure is relatively straightfor-
ward: all write operations to the L1 cache are also immediately reflected in the LLC.
Thus, any bit-flips induced in the L1 cache will similarly affect the LLC. However,
it’s unlikely that the bit-flip impacts the identical data in both caches, a nuance the
attacker must account for. On the other hand, non-inclusive LLCs inherently block
access to other cores’ private caches, thereby hindering NeuroHammer’s ability to
induce bit-flips directly [34]. Consequently, the adversary needs to identify a cache
set that contains data critical for the victim’s signature generation process yet lies
outside the victim’s core private cache. While locating such a cache set poses a signif-
icant challenge, the attacker benefits from essentially limitless attempts, with a single
successful bit-flip revealing the secret key.

Tag/Flag bit attacks: The NeuroHammer attack allows an attacker to arbitrarily
flip bits in memristive memories. Thus, a potential adversary might aim at the tag
and flag bits within a cache entry, leading to data corruption and possibly data loss.
To manipulate the tag section of an adjacent cache set, an adversary must frequently

78 Chapter 5. Deliberately Flipping Bits in Memristive Crossbar Arrays

access an eviction set that exceeds the cache’s associativity. This action results in the
tag section being continuously updated with various tags, eventually triggering a bit-
flip fault in the targeted entry. Such an occurrence could cause incorrect cache hits for
certain addresses or even intentionally alter the tag of a dirty entry to disrupt write
operations. In addition to targeting the tag section, an attacker might also focus on the
flag section of a cache entry. For example, by altering the valid flag, the adversary can
falsely mark specific cache entries as valid, leading to data corruption and inconsistent
cache states.

5.6 Limitations and Outlook

Given the impact of the NeuroHammer attack identified in our study, it’s impor-
tant to discuss the limitations of our investigation. Although our dual-simulation
approach—combining detailed thermal simulation with higher-level circuit analy-
sis—demonstrates considerable accuracy, the actual verification of thermal crosstalk
and the existence of the NeuroHammer attack on real hardware remains unexplored.
Our simulation, inspired by crossbar arrays fabricated in various research labs [103,
104, 125, 205, 197], may not fully capture the complexities of thermal crosstalk in fully
integrated systems. Moreover, more sophisticated crossbar structures, such as the
2T1R configuration, may be potentially immune to the NeuroHammer attack which
our study does not address. Additionally, the attack scenario inspired by the attack
model of Rowhammer, may not cover the entire range of possible real-world threats,
possibly overlooking capabilities and constraints of an attacker.

To bridge these gaps, a more holistic simulation approach is required by consid-
ering a wider range of crossbar structures and calibrate our simulation with mea-
surements of physical structures. Future work should aim to identify new potential
attack vectors, extend the attack scenario to cover a broader spectrum of threats, and
crucially, investigate effective countermeasures and mitigation techniques.

5.7 Synopsis

This chapter presents NeuroHammer, a novel hardware security threat that compro-
mises memory integrity by causing bit-flips in memristive crossbar arrays. We have
adopted a dual-simulation approach to examine thermal crosstalk in nanoscale cross-
bar structures, which represents the fundamental mechanism behind NeuroHammer.
Our extensive analysis of system parameters confirms the attack’s feasibility, demon-
strating its effectiveness and limitations. Through a case study, we highlight the
practical consequences of NeuroHammer by detailing an attack scenario where cache
memories are targeted. The chapter concludes by outlining further research perspec-
tives to refine our simulation approach and validate it against actual crossbar array
hardware.

Chapter 6

Instrumentation Platform for
Non-Volatile Memory Technologies

The previous chapters have underscored the significant influence of memristive de-
vices’ nonidealities on the reliability and security of neuromorphic computing sys-
tems. Although the discussed simulation methodologies aim to replicate these inher-
ent properties accurately, simulation alone cannot offer a comprehensive analysis that
incorporates real memristive devices and circuits.

As highlighted in Section 3.4, various instrumentation platforms for emerging
non-volatile memory technologies have been developed, primarily focusing on charac-
terizing memristive devices. Yet, existing platforms fall short in performing Computing-
in-Memory (CIM) operations on memristive crossbar arrays, leading to a reliance on
simulation for most reliability and hardware security research.

Therefore, this chapter introduces the NeuroBreakoutBoard (NBB), a versatile
and adaptable instrumentation platform designed to investigate the characteristics
of memristive devices at the device, crossbar, and operational levels. Equipped with
custom-designed signal generation and sensing circuitry, the NBB enables precise
control over memristive cell programming and supports the execution of both ana-
log CIM and Logic-in-Memory (LIM) operations. Additionally, the platform features
three distinct application interfaces, facilitating seamless integration of its measure-
ment capabilities across different levels of analysis.

Section 6.1 and Section 6.2 explore the hardware and software components of
the NeuroBreakoutBoard, followed by a comprehensive case study to demonstrate
the platform’s unique functionalities in Section 6.3. The chapter concludes with a
discussion on the platform’s limitations and potential future enhancements. This
chapter summarizes the contributions detailed in [177].

6.1 Hardware

In this section, we detail the hardware components and the circuitry implemented
for the NeuroBreakoutBoard as shown in Figure 6.1 (a). The signal path of the Neu-
roBreakoutBoard is divided into three main parts: signal generation, routing, and
sensing. Additionally, the board provides two hardware interfaces. The first interface,
termed the NVM interface, facilitates easy integration of a wide variety of memristive
crossbar arrays. The second interface allows for the connection of a controller to the
board.

79

80 Chapter 6. Instrumentation Platform for Non-Volatile Memory Technologies

a) b)

Power
supply

DAC

ADC

TIA
array

Mux
array

NVM
interface

Controller
interface

Figure 6.1: Overview of the NeuroBreakoutBoard: (a) image of the manufactured
Printed Circuit Board (PCB) and (b) multi-layer layout.

6.1.1 Signal Generation

The signal generation module of the NeuroBreakoutBoard, as shown in Figure 6.2 (a),
comprises a Digital-to-Analog Converter (DAC), an analog switch, and an amplifier
circuit. The DAC is responsible for providing the voltages required for writing, read-
ing, and computing in the crossbar array. The component is managed via a Serial
Peripheral Interface (SPI) bus and features eight channels, each offering a 12-bit reso-
lution across multiple voltage ranges: 0 V to 5 V, 0 V to 10 V, ±5 V, ±10 V, and ±2.5 V,
all powered by an internal high-precision reference [12]. Out of these, five channels
are dedicated to providing the interconnection matrix (refer to Section 6.1.2) with
the required VSET, VRESET, VRead, VX, and VGate voltages, while the remaining three
channels are connected to a pin header for additional uses.

Given that the writing algorithms of memristive devices often rely on pulsed sig-
nals, a simple but efficient pulse generator, using an analog switch with a switching
time of tON = 60 ns at ±5 V, has been implemented [14]. This setup, comprising five
analog switches, is linked to the controller interface, enabling independent, rapid, and
precise pulse generation.

While read and write operations within a crossbar array typically require minimal
current, the current demand significantly increases during analog vector/matrix mul-
tiplication operations, especially as the dimensions of the crossbar array expand. To
accommodate currents up to several milliamperes, which exceed the DAC’s output ca-
pability, the NeuroBreakoutBoard incorporates load drivers placed between the pulse
generator and the interconnection matrix. These load drivers, built from operational
amplifiers, are capable of handling a maximum current of 50 mA at 15 V [7].

In summary, the signal generation module of the NeuroBreakoutBoard is designed
for versatility, allowing for the adjustment of pulse amplitudes and durations. This

6.1. Hardware 81

Signal
generation

I/O
Expander

Signal
sensing

#17

#1
8

#3
4

#35

#51

#5
2

#6
8

#1

W
es

t

North

South

Ea
stCrossbar

array

16

204

Vext,1
Vext,2

DAC
(LTC2668)

Analog Switch
(MAX4564) Amplifier

(AD826)

...

...

...

...

a) b)

Figure 6.2: Overview of (a) the signal generation module, comprising the DAC
and pulse generator, and (b) the interconnection matrix that links the signal gener-
ation/sensing modules to the NVM interface.

feature not only supports standard read/write operations but also facilitates CIM
tasks within memristive crossbar arrays by driving the necessary currents effectively.

6.1.2 Flexible Interconnection Matrix

The signal generation module connects to the NVM interface via a flexible inter-
connection matrix, enabling arbitrary mapping of input pulses to the crossbar array
through the use of 68 precision analog multiplexers [8]. Figure 6.2 (b) illustrates the
architecture of the interconnection matrix, including its links to the signal generation
and sensing modules. Each multiplexer can route one physical line of the crossbar to
eight distinct signals. The VSET, VRESET, and VRead signals facilitate programming and
reading a memristive cell. VX is versatile, serving either to apply V/2 to non-selected
cells in a passive array or to set any chosen potential for computing voltage in LIM
operations. Additionally, VGate is connected to the gates of access transistors in 1-
Transistor 1-Resistor (1T1R) arrays. However, these signals can be arbitrarily assigned
to any potential, with the only limitation being the DAC’s capabilities within the sig-
nal generation module. The Vext,1 and Vext,2 signals are connected to a pin header to
serve as probe lines, allowing external measurement devices to connect to the crossbar
array and enhance the NBB’s measurement capabilities. To operate the multiplexers,
each requiring three control bits for signal selection, results in a total of 204 control
wires. By utilizing an I/O expander, the typically limited number of digital output
signals of a microcontroller is accommodated. Multiplexers at the interconnection’s
south end are unique in that one line connects to the signal sensing module, allowing
for 16 sensing lines to be exclusively mapped to these specific multiplexers on the
crossbar interface’s south side.

82 Chapter 6. Instrumentation Platform for Non-Volatile Memory Technologies

DC-DC
Converter

(THL252423)

DC-DC
Converter

(TMR32421)

Linear
Regulator
(LT1963)

Linear
Regulator
(LT3015)

DC-DC
Converter
(JCH1024)

24V

+15V -15V +5V -5V

-2.5V+2.5V

Reference voltage
(MAX6126)

...

...

...

...

...

...

...

LTC6269
LTC6269

ADG612

ADC
(AD7606)

a) b)

Figure 6.3: Overview of (a) the signal sensing module, which includes a Tran-
simpedance Amplifier (TIA) connected to the Analog-to-Digital Converter (ADC), and
(b) the power supply module that offers three distinct power levels.

6.1.3 Signal Sensing

To measure the resistance of a memory cell or the result of a CIM operation, it’s
necessary to determine the current flowing along a bit line. Therefore, we imple-
mented the signal sensing module which offers a broad measurement range while
maintaining a high accuracy. The sensing module consists of a TIA [13] circuit con-
nected to an ADC[6], as depicted in Figure 6.3 (a). Since the ADC is limited to only
convert voltages, the implemented TIA circuit translates the cumulative current from
the crossbar array’s bit lines into a measurable voltage. Given the varying resistances
of memristive devices due to their switching processes, the TIA incorporates a dy-
namically adjustable feedback resistor. This feature allows for the measurement of a
wide spectrum of resistances with precise accuracy. The feedback resistor of the TIA
can be adjusted via an analog switch, with values ranging from 43 Ω to 100 kΩ [9].
Furthermore, an amplifier is employed to amplify the converted voltages to fit into
the measurable range of the ADC. The ADC has eight parallel channels, each with an
18-bit resolution, capable of simultaneous sampling. In total, the NBB facilitates the
measurement of 16 parallel channels while the results can be transmitted to the con-
troller through either an SPI bus or a parallel interface. To increase the accuracy of the
ADC, a dedicated voltage reference Integrated Circuit (IC) featuring a high precision
of up to 0.02% [15]. Additionally, an external voltage reference can be provided via a
BNC connector.

6.1.4 Power Supply

To accommodate a wide range of memristive devices, the NBB is capable of supplying
a wide set of voltages for both its internal modules and the crossbar array. Figure 6.3
(b) depicts the NBB’s power supply, which is designed to operate with a standard
24 V power adapter which ensures an independent usage of the measurement plat-
form from external laboratory equipment. Nevertheless, the NBB also includes an

6.1. Hardware 83

a) b) c)

Figure 6.4: Extension boards: (a) adapter board linking to the NVM interface of the
NBB, providing a dedicated socket and additional external digital I/Os, (b) breakout
board for direct access to all control lines connected to the control interface, and (c)
controller unit featuring a microcontroller that executes the implemented firmware.

additional socket for connecting external high-precision voltage sources. The PCB
supports three distinct voltage domains: −2.5 V to 2.5 V, −5 V to 5 V, and −15 V to
15 V, each supplied by dedicated DC-DC converters, enabling a versatile power sup-
ply for various memristive device requirements [191, 190, 11, 10, 208].

6.1.5 Non-Volatile Memory (NVM) Interface

The NVM interface primarily consists of four pin headers located at the center of
the NBB, as depicted in Figure 6.1 (a). This interface facilitates straightforward con-
nections to adapter boards, thus enabling the integration of additional circuitry and
their corresponding sockets. Figure 6.4 (a) presents an adapter board designed for a
memristive crossbar housed in a PGA100 package. Notably, the adapter board pro-
vides extra digital I/O pins, which are instrumental in managing the digital control
logic embedded in the chip under test. The adapter board’s I/O expanders are linked
to the NBB’s controller via external wires, ensuring the synchronization of all input
signals to the chip. The interconnection matrix significantly enhances flexibility in
signal routing. Utilizing the NVM interface in conjunction with specially designed
adapter boards allows the NBB to interface with any chip package and pin config-
uration available. However, the application of the NVM interface is constrained by
the configuration of the sensing module. Given the limited number of parallel sens-
ing channels—specifically, 16—these independent channels are restricted to routing
exclusively to the north pin header of the NVM interface. Nonetheless, the inter-
connection matrix provides two additional sensing wires, which can be utilized to
connect with external measurement equipment.

6.1.6 Platform Orchestration

While the NVM interface serves as a universal abstraction for connecting to crossbar
arrays, the controller interface acts as an abstract interface for managing the NBB
platform. An FPGA Mezzanine Card (FMC) connector bundles control lines from all

84 Chapter 6. Instrumentation Platform for Non-Volatile Memory Technologies

Technology

Mapping

Host PC

ProtoBuf/
UART

Application
interface

NeuroBreakoutBoard

Mux

DAC

ADC

TIA

Pulse generator

Controller Unit
STM32

Firmware

Figure 6.5: Overview of the system architecture: the NeuroBreakoutBoard consists
of hardware modules orchestrated by firmware running on the controller unit. This
controller unit communicates via a UART/ProtoBuf [72] protocol with the provided
application interfaces.

modules on the NBB, utilizing a standardized connector primarily employed in Field-
Programmable Gate Arrays (FPGAs) to provide a vast array of I/O pins. To facilitate
easy integration with various development platforms, an FMC breakout board has
been developed.

This breakout board, depicted in Figure 6.4 (b), allocates specific pins for each
SPI interface of the I/O expanders, as well as the DAC and ADC. It also includes
the ADC’s parallel interface, complete with all control pins, enabling full access to
the ADC’s diverse functionalities. Additionally, gain control pins are linked to analog
switches that adjust the feedback resistances of the TIAs, as well as the pulse control
pins responsible for initiating pulses during read, write, and compute operations.

Figure 6.4 (c) illustrates a control unit equipped with a STM32 microcontroller
from STMicroelectronics [181], directly connected to the controller interface via the
FMC connector at the PCB’s bottom side. The microcontroller interfaces with all
components through the SPI bus, while employing the ADC’s parallel interface for
enhanced performance during repetitive measurements. The unit is designed for
flexibility, featuring pin headers and jumpers for straightforward modification of
fixed configuration pins and includes status LEDs to signal the measurement pro-
cess or detect errors. Moreover, the control unit is equipped with a Joint Test Action
Group (JTAG)/Serial Wire Debug (SWD) connector for programming the microcon-
troller and a Universal Asynchronous Receiver/Transmitter (UART) bus interface for
communication with the host PC.

6.2 Software

This section discusses the specifics of the software implemented on the control unit
and the host PC, designed to conduct measurements and execute CIM operations
on physical crossbar arrays. The architecture of the overall system is depicted in
Figure 6.5, showcasing the NeuroBreakoutBoard with the integrated control unit con-
nected to a host PC via a UART bus. Communication between the control unit and
the host PC employs the Protocol Buffers framework [72], which serializes data in a

6.2. Software 85

STM32 HAL

Mux ADC DAC TIA

SET RESET Form ReadCompute

Pulse generator Protocol Buffers

Technology Support Package (TSP)

initHAL() initNBB()

receiveUART()

sendUART()

SET RESET Form ReadCompute

a) b)

Figure 6.6: NeuroBreakoutBoard firmware: (a) software modules implemented to
offer various abstraction levels for interfacing with the hardware modules, and (b)
flowchart depicting the main loop.

platform-independent manner. The application interface, executed on the host PC, is
developed in Python and boasts a robust Application Programming Interface (API)
that facilitates the execution of experiments. Additionally, it supports the incorpora-
tion of more sophisticated tools, enhancing its functionality for advanced experimen-
tal setups.

6.2.1 Firmware

The firmware architecture, as shown in Figure 6.6 (a), is organized in layers and devel-
oped in ANSI-C. The STM32 Hardware Abstraction Layer (HAL) offers extensive APIs
for interfacing with the microcontroller’s peripherals, simplifying the development of
user applications through efficient management of communication peripherals, data
transfers, interrupts, Direct Memory Access (DMA), and error handling. Moreover,
HAL incorporates runtime failure detection to improve firmware robustness and fa-
cilitate debugging. On top of HAL, software modules abstract the NeuroBreakout-
Board’s peripherals, providing interfaces for controlling the pulse generator, multi-
plexers, ADCs, DACs, TIAs, and for encoding/decoding protocol buffer messages,
which are elaborated in the following.

Pulse generator: The pulse generator is designed to produce the necessary pulses
for read, write, and compute operations. The pulses’ amplitude is adjusted by the
DAC, while the generator itself uses an analog switch activated by a digital input.
These inputs are directly linked through the control interface to the STM32’s General-
Purpose Input/Output (GPIO) pins. The HAL library facilitates interaction with the
GPIOs using the HAL_GPIO_WritePin() function, and the duration of the pulses is
controlled by a hardware timer in the STM32, which triggers an interrupt event.

Protocol buffers: Protocol Buffers (ProtoBuf) is an open-source project that aims
to provide a framework for serializing structured data that is both language and
platform-independent [72]. Within our measurement platform, ProtoBuf is employed
to serialize data for transmission over UART between the host PC’s instrumentation

86 Chapter 6. Instrumentation Platform for Non-Volatile Memory Technologies

application and the STM32. To utilize ProtoBuf, a proto file is required to outline the
structure and size of the messages sent across the bus. The proto files, detailed in Ap-
pendix B, define operation, request, and response messages, facilitating the exchange
of all necessary information to execute operations on the NBB and relay measurement
results back to the host PC.

Multiplexer: The interconnection matrix consists of 68 multiplexers, managed
by a total of 204 control signals connected to I/O expanders. These I/O expanders
are addressed over a SPI bus allowing a straightforward orchestration of the whole
interconnection matrix. The STM32 HAL library provides the HAL_SPI_Transmit()
function, enabling message transmission over the SPI bus interface. Beyond enabling
the interaction with I/O expanders, the multiplexer module also introduces a map-
ping function. This function allows for the configuration of any pin within the inter-
connection matrix to connect to an output pin of the DAC, significantly simplifying
algorithm implementation at a higher abstraction level.

Analog-Digital Converters (ADCs): ADCs serve as the core of the sensing mod-
ule, offering both parallel and serial interfaces for data transmission to the control
unit. With the SPI controllers of the STM32 microcontroller already occupied by the
I/O expanders and the DAC, the ADC’s parallel interface connects to GPIO pins for
data transmission. The module features an adcInit() function for ADC and GPIO
setup. The calculateResistance() function computes the resistance of a memristive
device as follows:

Rcell =
3VRead

VADCRFeedback
, (6.1)

where Rcell represents the memristive cell’s resistance, VRead the read voltage, VADC
the TIA’s output voltage, and RFeedback the TIA’s feedback resistance. Additionally,
the calculateCurrent() function determines the cumulative current along a specified
bit line, essential for analog CIM operation.

Digital-Analog Converters (DACs): The DAC, pivotal for generating the required
pulses for reading, writing, and computing, connects to the microcontroller via the
SPI bus. The DAC firmware module enables users to set the reference voltage range
and modify output voltages. Given the microcontroller’s limited SPI interfaces, the
DAC shares an SPI module with the I/O expanders, necessitating the setting of the
respective chip select pin connected to a GPIO pin on the microcontroller before mes-
sage transmission.

Before setting the actual output voltage, the DAC’s voltage reference must be
configured. The setSoftSpanRange() function sends the appropriate SPI message to
adjust the DAC’s reference voltage. The setupDACVoltageByChannel() function then
establishes the desired output voltage for a specific channel.

Transimpedance Amplifiers (TIAs): The transimpedance amplifier module regu-
lates the feedback resistance, determining the sensing module’s measurement resolu-
tion. The feedback resistances are connected to analog switches, managed by four dig-
ital control bits. On the NBB, these control bits for all sixteen TIAs are routed in par-
allel and mapped to the controller interface, setting the feedback resistance uniformly

6.2. Software 87

Characterization

User application NeuroBreakoutBoard

Reliability

Computing-in-Memory

Device interface

Crossbar interface

Operation interface

Figure 6.7: Application interfaces: the provided application interfaces facilitate inter-
action with the NeuroBreakoutBoard across three distinct abstraction levels, enabling
everything from device characterization to the execution of CIM operations.

across all TIA modules. The module includes the setTIAFeedbackResistance() func-
tion for adjusting the feedback resistance of the TIA modules.

Technology Support Package (TSP): Following Figure 6.6 (a), situated above the
core firmware modules, the TSP incorporates routines specific to various technologies.
Memristive devices, for example, necessitate distinct writing schemes to enhance their
reliability and extend their lifespan. Consequently, the TSP is tailored for each type of
memristor technology, refining the foundational access functions at this level. The TSP
offers an interface comprising five functions, enabling the mapping of both memory
and CIM operations on crossbar arrays. This flexibility not only broadens the mea-
surement platform’s range of applications but also allows for extensive customization
to accommodate various memristive device technologies.

The primary routine of the NBB firmware is outlined in Figure 6.6 (b). Upon
the platform’s startup, the firmware initializes the STM32 HAL library, followed by
the configuration of all implemented modules. Specifically, multiplexers are set to
their initial states, and both the ADC and DAC are reset. The main loop includes a
blocking receiveUART() function call, waiting on a ProtoBuf message from the host
PC. After decoding the message’s contents, the corresponding function is executed.
The response message, consisting of a status flag alongside the resistances or currents
measured by the sensing module, is then transmitted.

6.2.2 Application Interfaces

The application interface, designed to run on a host PC, is developed in the platform-
independent programming language, Python. This interface connects to the NBB
firmware as depicted in Figure 6.6 (a), offering a comprehensive middle layer for
conducting both device/crossbar measurements and executing analog/digital CIM
operations. The application interface, shown in Figure 6.7 provides three distinct ab-
straction layers through which external applications can interact with the NBB, facili-
tating a unique method to interact with neuromorphic crossbar arrays. This approach
enables early adoption and seamless integration into the software development life-
cycle. The specifics of these interfaces are elaborated in the following.

88 Chapter 6. Instrumentation Platform for Non-Volatile Memory Technologies

Device interface: The device interface serves as the most fundamental layer, de-
signed to facilitate direct interaction with memristive devices within a crossbar ar-
ray. The formCell() function executes the forming process essential for initializing
a memristive cell. Given the variety of memristive devices, this routine may be ad-
justed to align with the specifications of the memristive crossbar array connected to
the NeuroBreakoutBoard. Currently, we have incorporated the Incremental Form and
Verify (IFV) algorithm, which enhances the switching characteristics and post-forming
yield, as highlighted in [75]. The IFV algorithm progressively increases the forming
voltage by a given ∆Vform, conducting a read operation after each pulse. The process
continues until the cell resistance meets a predefined target current itarget.

Subsequent to forming, the readCell() function facilitates cell reading, whereas
SET/RESET operations are managed by the setCell() and resetCell() functions,
respectively. The write functions employs the Incremental Step Pulse with Verify
Algorithm (ISPVA), adopting a similar write/verify approach as the IFV algorithm.
Notably, the read function leverages an automatic feedback resistance algorithm to se-
lect the TIA’s feedback resistance based on the measurement outcome. This algorithm
iteratively adjusts the feedback resistor, in case the operational amplifier is saturated,
by choosing the next feedback resistance and recursively invoking itself.

Device addressing is managed through a configuration file that maps the physi-
cal chip pins to the corresponding pins of the NeuroBreakoutBoard’s interconnection
matrix, which must be manually created before employing the instrumentation appli-
cation.

In addition to the provided functions, the device interface offers an advanced log-
ging feature that records all executed commands for each device, providing a compre-
hensive history of the cells within the crossbar array. This data is stored in a platform-
independent CSV file, encapsulating all necessary parameters to replicate operations
and analyze Cycle-to-Cycle (C2C) variations, Device-to-Device (D2D) differences, and
the yield before and after forming.

Crossbar interface:Compared to the device interface, the crossbar interface en-
compasses read(), set(), reset(), and form() functions that operate on an entire
crossbar array. These are crucial for initializing the crossbar for various experiments,
including analog/digital CIM operations. Inputs to these functions are matrices cor-
responding to the crossbar’s dimensions, efficiently utilizing the underlying device
interface for executing write and read operations. Therefore, all executed actions are
automatically tracked in the provided database provided by the device interface.

Operation interface:The operation interface represents the highest level of ab-
straction, enabling the execution of CIM operations on a crossbar array. Given that
memristive crossbar arrays can process data in both digital and analog modes, this
interface is separated into two distinct modules.

For conducting analog vector/matrix multiplications within a crossbar structure,
the matrix B must be encoded as conductance values across the memristive devices,
with the input vector a applied as voltages across the word lines. This generates an
output vector c, represented by the cumulative current along the bit lines. Assuming
ai ∈ {0, 1} and Bi,j ∈ {0, 1}, inputs are converted from {0, 1} → {0 V, Vread} and

6.3. Case Study: Reliability Assessment of a Commercial ReRAM Technology 89

matrix values from {0, 1} → {Gmin, Gmax}. The resulting vector undergoes a reverse
conversion through the demap() function, which adjusts each value according to

cm =
1

Vread(Gmax − Gmin)
(IBL,m −VreadGmin

N−1∑
0

aB,n), (6.2)

where cm indicates the converted result for bit line m, IBL,m the total current for bit
line m, N the row count, and Vread the applied read voltage. Currently, this module
supports binary vector matrix multiplication only, with further quantization methods
requiring additional mapping algorithms.

Executing LIM operations necessitates selecting and implementing a suitable logic
family, each significantly differing in operation. The operation interface supports this
process by providing utility functions and maintaining a predefined data structure
for tracking input and output devices, along with compute voltages and the physical
representations of the Boolean values.

Additionally, this interface expands the device interface’s tracking capabilities to
encompass comprehensive logging of CIM operations. Given the potential engage-
ment of multiple or all cells in a single operation, a specialized operation log file
is created and linked to the device-specific history files. This log file records oper-
ation types, compute voltages, and result values, offering a detailed account of the
experimental procedures and results.

6.3 Case Study: Reliability Assessment of a
Commercial ReRAM Technology

This case study aims to showcase the versatility of the NeuroBreakoutBoard by ex-
amining the reliability of a commercially available Resistive Random-Access Mem-
ory (ReRAM) technology node.

We designed and taped out memristive memory composed of a 1T1R crossbar
structure. The memory cell comprises a Metal-Insulator-Metal (MIM) stack, function-
ing as the memristive device, alongside an access transistor serving as the selection
device. The MIM stack consists of top and bottom electrodes, each approximately
150 nm thick, made of TiN, a scavenging layer of about 7 nm Ti, and a dielectric
switching layer of 8 nm HfO2, resulting in a total MIM stack area of 600 nm× 600 nm.
The scavenging layer undergoes oxidation during the memristive device’s forming
process, introducing oxygen vacancies into the MIM stack and creating a conductive
filament within the dielectric layer. The conductive filament’s internal structure, ma-
nipulated by applying SET or RESET voltages, determines the cell’s resistance. The
MIM stack is positioned between the second and third metal layers in the Back End
Of Line (BEOL) phase of the fabrication process. The accompanying access transistor
is manufactured using 130 nm Complementary Metal-Oxide Semiconductor (CMOS)
technology, featuring gate dimensions of 130 nm× 150 nm [153, 146, 155]. While the
crossbar array is designed with dimensions of 12× 7, this study focuses on a 7× 7

90 Chapter 6. Instrumentation Platform for Non-Volatile Memory Technologies

Table 6.1: Overview of parameters for the ISPVA and the IFV algorithm.

State
VGate ITarget VStart VMax VRead VStep TPulse

[V] [µA] [V] [V] [V] [V] [µs]

Forming 1.50 30.00 2.00 5.00 0.20 0.01 1.00
HRS 3.30 1.00 0.50 3.00 0.20 0.10 10.00
LRS1 0.50 10.00 0.50 3.00 0.20 0.10 10.00
LRS2 0.70 20.00 0.50 3.00 0.20 0.10 10.00
LRS3 0.90 30.00 0.50 3.00 0.20 0.10 10.00

submatrix. The word, bit, and gate lines are directly connected to the chip’s pads and
wire-bonded to a Quad Flat Package (QFP). An adapter board, tailored for the chip’s
socket, links directly to the NVM interface of the NeuroBreakoutBoard.

In the following, we assess the memristive crossbar structures for their ability to
perform digital and analog CIM operations. Initially, we evaluate the yield before and
after forming, switching endurance, and binary and multi-level switching character-
istics of the fabricated memory cells. Upon investigating these properties, we explore
the feasibility of executing CIM operations. This involves conducting a vector/matrix
multiplication to observe the effects of faults on computational results. Finally, we
investigate the crossbar array’s susceptibility to faults through the execution of logic
operations, further elucidating the robustness and versatility of these memristive sys-
tems.

6.3.1 Manufacturing Yield

Typically, a memristive device is anticipated to be in the High Resistive State (HRS)
before the forming process. Milo et al. [146] define the manufacturing yield of mem-
ristive devices as the percentage of cells exhibiting a read current below 1 µA prior to
forming. We assessed the resistance before and after forming for each device within
the 7× 7 crossbar array of five chips, employing the IFV algorithm, with parameters
detailed in Table 6.1.

Figure 6.8 displays the number of dysfunctional memory cells (a) before and (b)
after the forming process. The individual yields of the chips were 85.71%, 83.67%,
87.76%, 81.63%, and 95.92%, leading to an average yield of 86.94%. While Milo et
al. [146] categorize a cell as formed and functional if it exhibits a read current greater
than 18 µA post-forming, we adopt a functional criterion based on a cell’s ability to
execute at least 50 consecutive switching operations between the HRS and the Low
Resistive State (LRS). For instance, Figure 6.8 compares the current measurements
post-write operation of a dysfunctional (c) and a functional (d) cell. All read opera-
tions were performed using a 200 mV read voltage, where a low current indicates the
HRS, and a high current indicates the LRS. The dysfunctional cell managed three con-

6.3. Case Study: Reliability Assessment of a Commercial ReRAM Technology 91

0 2 0 0 0 2 1
0 0 1 0 2 2 0
0 0 2 1 0 2 2
0 0 0 1 1 2 1
0 0 0 1 0 2 3
0 0 0 0 0 2 1
0 0 0 0 0 1 0

a

b
c

d
e

f
g

1 2 3 4 5 6 7

(a)

5 4 4 2 2 3 4
3 3 4 4 3 2 2
4 3 1 1 0 3 3
3 1 1 0 0 2 2
2 2 1 1 1 1 1
3 2 3 2 3 1 2
1 2 2 1 2 3 3

a

b
c

d
e

f
g

1 2 3 4 5 6 7

(b)

0 10 20 30 40 50

0

10

20

30

40

50

60

of write/read operation

C
ur

re
nt

[µ
A

]

(c)

0 10 20 30 40 50

0

10

20

30

of write/read operation

C
ur

re
nt

[µ
A

]

(d)

Figure 6.8: Analysis of the manufacturing yield: heatmap depicting the number of
dysfunctional memory cells (a) prior to and (b) following the forming process across
5 chips. Comparison of switching characteristics between a (c) dysfunctional and (d)
functional memory cell.

secutive switches before it failed, exhibiting a stuck-at LRS fault behavior. Conversely,
the functional cell demonstrated stable switching throughout the experiment.

Overall, our findings indicate that a significant number of cells, both before and after form-
ing, are prone to a stuck-at LRS fault. Specifically, we noticed cells with low resistance before
forming that did not alter their internal state despite repeated forming attempts. Although
correctly formed, some cells could only switch between the HRS and LRS a limited number of
times before irreversibly transitioning to the LRS state. In rare instances, this failure occurred
after a single reset operation.

6.3.2 Programming Characteristics

After identifying the number of functional cells, we investigate the programming
characteristics directly influencing the feasibility and accuracy of CIM operations. To
perform a SET or RESET operation, the device interface of the NeuroBreakoutBoard is
utilized implementing ISPVA (see Section 6.2.2). The respective parameters are given
in Table 6.1.

92 Chapter 6. Instrumentation Platform for Non-Volatile Memory Technologies

0 10 20 30 40 50

0

500

1,000

1,500

2,000

Current [µA]

#
m

ea
su

rm
en

ts

Set
Reset

(a)

0 10 20 30 40

0

0.5

1

1.5

2
·105

Current [µA]
#

m
ea

su
rm

en
ts

(b)

0.5 1 1.5 2 2.5 3

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Voltage [V]

Pr
op

or
ti

on
of

ce
lls

Set Reset Forming

(c)

Figure 6.9: Binary switching characteristics: (a-b) distribution of the HRS and the
LRS across two distinct cells. (c) Cumulative Distribution Function (CDF) analysis for
SET, RESET, and forming voltages.

Binary states: Initially, the binary switching characteristics is investigated, focus-
ing on the HRS and the LRS3 as the two distinct states. Figure 6.9 (a-b) presents
histograms of consecutive alternating SET/RESET operations followed by a read op-
eration for two different cells, highlighting C2C and D2D variability. While both cells
generally exhibit the HRS around 10 µA and the LRS at 30 µA, the cell depicted in Figure 6.9
(a) demonstrates significant overlap between these states due to two phenomena. Occasionally,
although the RESET operation as indicated by the ISPVA algorithm appears successful, the
subsequent read operation inadvertently flips the cell back to its previous state. Additionally,
a substantial number of cells display stuck-at faults, leading to insignificant or no changes in
resistance following the write algorithm. Overall, variability is more substantial in the HRS
compared to the LRS.

Figure 6.9 (c) depicts the CDF of the SET, RESET, and forming voltages for all
characterized cells, underscoring the D2D variability observed during programming
and forming. The SET process demonstrates the greatest stability, with over 90% of cells
successfully switching at 1.5 V. The CDF for forming voltages highlights the need for an in-
cremental forming algorithm, requiring a forming voltage between 2 V and 3 V to successfully
form 90% of the memory cells. The RESET operation, however, exhibits significant variability,
ranging from 0.5 V to nearly 3 V, with the lower bound particularly concerning given the
typical selection of reading voltages between 0.2 V and 0.5 V.

Multi-level states: The ability to program memristive devices into multiple lev-
els offers a significant advantage over traditional memory technologies by increasing
memory density and enhancing the accuracy of analog vector/matrix multiplication.

The memristive device under study can be programmed into four states (HRS,
LRS1, LRS2, and LRS3) by adjusting ITarget, as detailed in Table 6.1. However, the in-
herent variability in memristive devices poses a challenge to multi-level programming
by causing state overlaps, making them indistinguishable. To assess the feasibility of
achieving distinct states with the provided devices, we cycled the devices through

6.3. Case Study: Reliability Assessment of a Commercial ReRAM Technology 93

0 50 100 150 200 250 300

0

5

10

20

30

of read operation

C
ur

re
nt

[µ
A

]

(a)

0 5 10 15 20 25 30

0

10

20

30

40

50

60

70

80

90

Current [µA]

#
of

m
ea

su
re

m
en

ts

(b)

Figure 6.10: Multi-level switching characteristics: (a) repetitive cycling through all
applicable resistance states and (b) histogram depicting the variability of states.

each state 50 times to examine the impact of variability on the different states. Fig-
ure 6.10 (a) shows the switching characteristics over 300 programming cycles, with
red lines marking ITarget for each state. Generally, LRS1 exhibits considerable variability,
sometimes nearly merging with the HRS, attributed to the narrow gap between HRS, defined
at a maximum current of 5 µA, and LRS1, set at 10 µA. By contrast, LRS3 shows notably
less variation, establishing it as the most stable state, which is why it was selected for binary
operation. Figure 6.10 (b) features a histogram of the four states for all measured devices,
reinforcing the observation that LRS1 and LRS2 exhibit higher variability compared to LRS3
and HRS.

6.3.3 Endurance Characteristics

While the programming characteristics impact the precision of operations executed
on memristive crossbar arrays, the endurance determines the lifespan of a device, or
the number of operations it can perform before failure. Hence, in this section, we
delved into the switching endurance of the provided memristive devices, with a focus
on contrasting the behaviors of two specific memory cells.

Figure 6.11 (a) displays the programming voltage from the ISPVA for the first
device. Overall, the device sustained approximately 50,000 cycles, equally divided among
12,500 SET and RESET operations, with 25,000 intermediate read operations. A sudden
increase in the read current indicates the device’s failure, becoming permanently stuck in the
LRS.

To offer a detailed examination of the device behavior over time, Figure 6.11 (b)
and (c) depict the cell state after SET (LRS) and RESET (HRS) operations. While the
LRS exhibits reasonable stability, the HRS shows increased variability. Typically, for the
HRS to be effectively distinguishable from the LRS, it should be below 5 µA. However,
for this cell, the HRS frequently overlaps with the LRS, complicating its utility for data storage
and CIM operations.

94 Chapter 6. Instrumentation Platform for Non-Volatile Memory Technologies

0.1 1 2 3 4 5
·104

0.5

1

1.5

2

switching operations

Vo
lt

ag
e

[V
]

RESET
SET

(a)

0 1 2 3 4 5
·104

0

10

20

30

40

50

60

switching operations
C

ur
re

nt
[µ

A
]

(b)

0 1 2 3 4 5
·104

0

10

20

30

40

50

60

switching operations

C
ur

re
nt

[µ
A

]

(c)

0.5 1 1.5 2 2.5 3
·106

1.5

1

1.5

2

2.5

3

switching operations

Vo
lt

ag
e

[V
]

RESET
SET

(d)

0 0.5 1 1.5 2 2.5 3
·106

10

15

20

25

30

35

40

45

switching operations

C
ur

re
nt

[µ
A

]

(e)

0 0.5 1 1.5 2 2.5 3
·106

0

5

10

15

20

25

30

35

switching operations

C
ur

re
nt

[µ
A

]

(f)

Figure 6.11: Switching endurance of two memory cells: (a/d) programming voltage
for SET/RESET operations and programmed state after (b/e) SET and (c/f) RESET
operations.

In comparison, the second cell significantly exceeds the first in terms of cycle count, nearly
by two orders of magnitude, as illustrated in Figure 6.11 (d). Similar to the first, the LRS of
this second cell displays high stability, but fluctuations in the HRS compromise the device’s
suitability for both memory and CIM applications. Notably, the RESET voltage of the second
cell, as shown in Figure 6.11 (d), seems more consistent than that of the first cell, suggesting
that the instability lies within the HRS, which unintentionally performs a SET operation while
its current resistance is being measured.

6.3.4 Computing-in-Memory (CIM)

Leveraging its flexible interconnection matrix and signal generation/sensing modules,
the NeuroBreakoutBoard excels in executing CIM operations on memristive crossbar
arrays. As detailed in Section 2.2, CIM operations can be categorized into two types:
analog CIM and binary LIM operations. In this section, we evaluate the reliability
of both types of operations in the context of the nonidealities inherent in memristive
devices.

6.3. Case Study: Reliability Assessment of a Commercial ReRAM Technology 95

40 60 80 100 120 140 160 180 200

0

20

40

60

80

100

Current (µA)

%
of

m
ea

su
re

m
en

ts
PC=0 PC=1 PC=2
PC=3 PC=4 Decision boundaries

(a)

0 10 20 30 40 50 60 70 80 90 100

0
1
2
3
4
5
6
7
8

·10−2

1
0

Time [s]

Vo
lt

ag
e

[V
]

(b)

Figure 6.12: Resilience of CIM operations: (a) CDF of analog CIM operations and
(b) digital NOR operation executed on the NeuroBreakoutBoard.

Analog Computing-in-Memory (CIM): The analog CIM approach involves per-
forming Multiply–Accumulate (MAC) operations that require an input vector and a
corresponding matrix. For this experiment, the input vector consists of four elements,
and the matrix dimensions are set to 4× 7, constrained by the number of functional
cells. Throughout the experiment, we dynamically reprogram the matrix values, rep-
resented by the resistance of the memristive devices, with random values. Meanwhile,

the input vector is fixed at vin =
(

1 1 1 1
)T

to ensure comprehensive coverage of
all possible output values. Generally, a binary MAC operation involves performing
an XNOR operation between the input vector and each matrix column, followed by a
Popcount (PC) function that counts the number of 1s in the result vector, representing
the MAC operation’s outcome.

Figure 6.12 (a) displays the CDF of the accumulated bit line currents, correspond-
ing to the respective popcount values. Given that the input vector comprises four
elements, the resulting popcount ranges from 0 (indicating all elements are 0s) to 4
(all elements are 1s). The decision boundaries for these counts are marked with red
lines, while the colored traces represent the four distinct popcount outcomes derived
from a total of 500 MAC operations. Overall, the data suggests that the accuracy of the
measured accumulated current aligns more closely with the correct result as the popcount in-
creases. For example, 100% of the instances with a popcount of 4 were accurate, whereas for
popcounts of 2 and 3, over 90% of the results were correct. However, the scenarios with the
lowest popcount (indicating all elements are 0s) exhibited the highest incidence of errors. This
finding is consistent with our previous experiments that indicated a higher error susceptibility
of the HRS compared to the LRS.

Binary Logic-in-Memory (LIM): For executing binary logic operations on mem-
ristive crossbar arrays, various logic families have been introduced, outlining the
blueprints for constructing logic gates (refer to Section 2.2). Initially, our goal was

96 Chapter 6. Instrumentation Platform for Non-Volatile Memory Technologies

to implement Memristor-Aided Logic (MAGIC) and Memristor-Based Material Impli-
cation (IMPLY) gates on the provided crossbar array. However, the effectiveness of
both logic families is significantly influenced by specific device characteristics, partic-
ularly requiring a dedicated ratio of ROFF

RON
to the memristor’s voltage thresholds VT,OFF

and VT,ON, as detailed in Equation (2.2). Unfortunately, the memristive devices avail-
able to us do not meet these criteria, making these logic families impractical for our
purposes.

As a result, we opted to explore the reliability of LIM operations using a Memris-
tor Ratioed Logic (MRL) NOR gate [56, 60, 55] with its working principle detailed in
Section 2.2. Figure 6.12 (b) demonstrates the output voltage of the NOR gate in re-
sponse to various input combinations {(0, 0), (0, 1), (1, 0), (1, 1)}, given a computation
voltage of 0.2 V. The red line indicates the threshold used to differentiate between
logical 1 and 0. The findings validate the NOR gate’s functionality, indicating an output of
0 exclusively for the input pair (0, 0). Moreover, the gap between the different output voltages
is approximately 2 mV, signifying a robust decision margin, especially when considering the
significant variability associated with the HRS.

6.4 Limitations and Outlook

The NeuroBreakoutBoard serves as a flexible and versatile instrumentation platform
designed to investigate the impact of memristive devices’ inherent characteristics at
the device, crossbar, and operation levels. It consists of hardware modules, firmware
that operates on the microcontroller, and application interfaces executed on a host
PCs, While these components are intricately linked to ensure the platform’s easy use,
they also introduce certain limitations. The hardware modules support up to 68 ana-
log signals, with 16 of these being assignable to the signal sensing module. Conse-
quently, the size of the crossbar arrays that can be tested is restricted. This constraint
extends to the driver and sensing circuitry’s maximum ratings, which limit the total
current through a bit line and thus the number of rows that can be utilized in a single
MAC operation. The firmware and application interfaces are built on a modular archi-
tecture. However, the UART/Protobuf communication protocol significantly restricts
the overall performance of the NeuroBreakoutBoard. Endurance testing, requiring a
comprehensive series of read/write operations, is particularly affected by this bottle-
neck, leading to extended testing durations. At first glance, these limitations might
seem restrictive for experiments across all levels. Yet, the platform plays a pivotal role
by facilitating early integration of real devices into the development of neuromorphic
computing systems. Given the unique properties of memristive devices, incorpo-
rating real devices early is essential for developing reliable and secure computing
platforms for the future. In the future, adding an FPGA to the NeuroBreakoutBoard
would not only increase the platform’s flexibility but also notable enhance its perfor-
mance. Moreover, implementing LIM gates would greatly benefit from the capability
to switch I/Os to a high impedance state, effectively isolating them from the crossbar
array and thus reducing unintentional sneak path currents.

6.5. Synopsis 97

6.5 Synopsis

This chapter focuses on the development and capabilities of the NeuroBreakoutBoard,
a versatile platform designed for characterizing and performing CIM operations on
memristive crossbar arrays. The NBB’s design encompasses hardware modules for
signal generation, routing, sensing, and interfaces for the device, crossbar, and opera-
tion level. The provided case study showcases the NeuroBreakoutBoard’s application
in evaluating the reliability of a commercially available ReRAM technology, focusing
on the manufacturing yield, the programming characteristics, and the execution of
CIM operations. The chapter concludes by acknowledging the platform’s limitations
while emphasizing its crucial role in advancing neuromorphic computing through
early real-device integration and potential future improvements.

98 Chapter 6. Instrumentation Platform for Non-Volatile Memory Technologies

Chapter 7

Conclusion

Neuromorphic computing emerges as a promising solution to the von Neumann bot-
tleneck, which constrains the computing performance and energy efficiency of tra-
ditional computing systems. However, the realization of neuromorphic computing
hinges on the development of novel devices that can seamlessly integrate comput-
ing and data storage within the same location, embodying the computing-in-memory
(CIM) paradigm. Memristors, recognized as the fourth fundamental circuit element,
stand as the cornerstone for Computing-in-Memory (CIM) yet grapple with reliability
issues due to their immature development stage. To overcome the von Neumann bot-
tleneck, neuromorphic computing must demonstrate its efficacy and dependability,
ensuring the creation of trustworthy computing systems for future applications.

Therefore, this thesis sought to investigate the reliability concerns associated with
neuromorphic systems, specifically targeting memristor-based CIM architectures.

At the heart of this exploration lies the introduced fault injection platform de-
signed to evaluate the resilience of Logic-in-Memory (LIM) operations to various
in-field faults. This platform serves as an essential instrument for examining the
effects of imperfections in memristor-based systems and formulating methods to bol-
ster their reliability. The exhaustive evaluation facilitated by this platform illuminated
the vulnerabilities of LIM operations to faults, revealing that a certain threshold of
in-field faults could be withstood. Notably, the findings indicated that stuck-at faults
more severely impact the reliability of emergent applications than bit-flip faults. The
presented insights underscore the necessity of implementing fault-tolerant strategies
alongside measures to monitor and mitigate the degradation of the memristive de-
vices throughout their lifespan.

Beyond the reliability issues of memristive devices, their distinctive features un-
veil a new frontier for hardware security threats. This dissertation introduces Neuro-
Hammer, a significant hardware security attack leveraging these unique attributes to
undermine the integrity of computing systems. Specifically, this attack takes advan-
tage on the high memory density to induce deliberate bit-flips via thermal crosstalk in
neighboring memory cells. The provided case study underscores the imperative need
for countermeasures to shield against such hardware security threats, advocating for
a holistic approach to system design that prioritizes security and reliability from the
beginning.

Lastly, the NeuroBreakoutBoard (NBB) is presented as a pivotal platform for the
detailed examination of memristive devices from both a reliability and hardware se-
curity standpoint. Through enabling the investigation of device characteristics across
multiple dimensions, the NeuroBreakoutBoard (NBB) underscores the importance of

99

100 Chapter 7. Conclusion

understanding the underlying mechanisms of memristive behavior to guide the de-
sign of more reliable and secure neuromorphic systems.

Based on the presented results, several key requirements can be identified to en-
sure dependable and secure neuromorphic computing platforms. First, reliability
must be addressed across the entire stack, from the device level to the system archi-
tecture. While improvements in memristive devices are expected over time, certain
non-idealities will remain, requiring solutions at higher abstraction levels. Second, the
application itself has a significant impact on reliability. Our results demonstrate that
the specific application being executed can accelerate wear on memristive devices, in-
creasing the fault rate. Lastly, hardware security must be a priority during the design
phase. Attacks like NeuroHammer, which exploit internal malfunctions, need to be
mitigated early in the design process to prevent serious security vulnerabilities.

Conclusively, this dissertation not only addresses the critical challenges of neu-
romorphic computing but also paves the way for future research directions. By em-
phasizing the significance of reliability and hardware security in the evolution of
memristive-based systems, this work lays the groundwork for the essential progress
required to develop trustworthy neuromorphic computing solutions. In addition to
the improvement points outlined in the thesis, the following research directions show
promise:

• Advanced Error Mitigation Techniques: Error Correcting Codes (ECCs) are a
crucial part of modern memories for detecting and mitigating the impact of
faults. These well-established techniques cannot simply be applied to Resistive
Random-Access Memories (ReRAMs) due to their use of CIM. Therefore, novel
ECCs must be developed that account for both memory and CIM applications,
while also considering device wear.

• Reliability-aware Mapping Algorithms: Mapping algorithms are a crucial piece
of software that assign a given neural network to a specific system architec-
ture. While these algorithms already take into account factors like data flow
and the number of compute cores, memristor-based accelerators could benefit
from reliability-aware mapping. Such algorithms could optimize device usage
and data flow to significantly reduce wear over time.

• Security-Enhanced Architectures: As neuromorphic computing systems con-
tinue to evolve, addressing security becomes critical to defend against advanced
attacks like NeuroHammer and other exploits. Mitigation strategies must care-
fully balance the trade-offs between area, power, and performance overhead
against the security benefits. Ensuring this balance is essential to maintaining
the overall performance and efficiency of future neuromorphic systems while
providing robust security protections. Research should focus on developing
lightweight, efficient security mechanisms that can be integrated without com-
promising system resources or computational capabilities.

Appendix A

Simulation Details

This appendix provides detailed information on the JART simulation model discussed
in Chapter 5. Additionally, it includes documentation of the alpha matrices essential
for conducting circuit-level simulations to verify the NeuroHammer attack.

A.1 Model Parameter

Table A.1: JART VCM v1b model parameters.

Adet = πr2 = 6.36 × 10−15 m2 rdet = 45 nm

Ndisc, min, det = 0.008 × 1026 m−3 Ndisc, max, det = 20× 1026 m−3

lcell = 3 nm ldet = 0.4 nm

lplug = 2.6 nm a = 0.25 nm

Rseries = 1.37 kΩ (I = 0 µA) Rseries = 1.46 kΩ (I = 700 µA)

Rline = 719 Ω (I = 0 µA) Rline = 810 Ω (I = 700 µA)

RTiOx = 650 Ω ∆WA = 1.35 eV

ν0 = 2 × 1013 Hz µn = 4× 10−6 m2/(V s)

Rth0, SET = 15.72 × 106 K/W Rth0, RESET = 4.24× 106 K/W

eϕn0 = 0.18 eV eϕn = 0.1 eV

Rth,line = 90 471.47 K/W R0 = 719.24 Ω

αline = 3.92 × 10−3/K m∗ = 9.11× 10−31 kg

e = 1.6 × 10−19 C T0 = 293 K

A∗ = 6.01 × 105 A/(m2 K2) zVo = 2

kB = 1.38 × 10−23 J/K ε0 = 8.854× 10−12 A s/(V m)

εϕB = 5.5ε0 ε = 17ε0

h = 6.626 × 10−34 J s

101

102 Appendix A. Simulation Details

A.2 Alpha Matrices

Table A.2: 9× 9 alpha matrix determined for a 10 nm electrode spacing.

0.0233 0.0285 0.0333 0.0369 0.0383 0.0369 0.0333 0.0285 0.0233
0.0290 0.0365 0.0442 0.0505 0.0532 0.0505 0.0442 0.0366 0.0291
0.0357 0.0466 0.0597 0.0729 0.0801 0.0729 0.0598 0.0467 0.0358
0.0417 0.0573 0.0791 0.1084 0.1397 0.1085 0.0791 0.0574 0.0419
0.0444 0.0628 0.0930 0.1519 1.0000 0.1520 0.0932 0.0630 0.0446
0.0416 0.0572 0.0789 0.1082 0.1392 0.1082 0.0790 0.0573 0.0418
0.0355 0.0464 0.0594 0.0725 0.0794 0.0725 0.0594 0.0465 0.0356
0.0288 0.0362 0.0438 0.0499 0.0523 0.0499 0.0438 0.0363 0.0289
0.0231 0.0282 0.0328 0.0362 0.0373 0.0362 0.0329 0.0282 0.0231

Table A.3: 9× 9 alpha matrix determined for a 20 nm electrode spacing.

0.0158 0.0201 0.0241 0.0270 0.0283 0.0271 0.0241 0.0201 0.0158
0.0212 0.0278 0.0346 0.0402 0.0427 0.0403 0.0346 0.0279 0.0213
0.0278 0.0380 0.0505 0.0631 0.0700 0.0632 0.0506 0.0381 0.0279
0.0341 0.0494 0.0714 0.1016 0.1324 0.1017 0.0715 0.0496 0.0343
0.0370 0.0557 0.0879 0.1526 1.0000 0.1528 0.0881 0.0560 0.0373
0.0340 0.0493 0.0712 0.1013 0.1317 0.1014 0.0713 0.0494 0.0342
0.0276 0.0378 0.0501 0.0625 0.0690 0.0626 0.0502 0.0379 0.0278
0.0210 0.0275 0.0341 0.0395 0.0416 0.0395 0.0341 0.0275 0.0210
0.0156 0.0197 0.0235 0.0262 0.0270 0.0262 0.0236 0.0198 0.0156

A.2. Alpha Matrices 103

Table A.4: 9× 9 alpha matrix determined for a 30 nm electrode spacing.

0.0108 0.0143 0.0176 0.0201 0.0212 0.0202 0.0177 0.0144 0.0109
0.0156 0.0213 0.0273 0.0325 0.0347 0.0325 0.0274 0.0213 0.0156
0.0216 0.0310 0.0427 0.0549 0.0615 0.0549 0.0428 0.0311 0.0217
0.0276 0.0423 0.0641 0.0949 0.1257 0.0950 0.0642 0.0425 0.0278
0.0304 0.0488 0.0819 0.1510 1.0000 0.1512 0.0822 0.0491 0.0308
0.0275 0.0421 0.0638 0.0945 0.1249 0.0946 0.0640 0.0423 0.0277
0.0214 0.0307 0.0423 0.0542 0.0603 0.0543 0.0424 0.0308 0.0215
0.0154 0.0210 0.0268 0.0316 0.0333 0.0316 0.0268 0.0210 0.0154
0.0106 0.0140 0.0171 0.0192 0.0197 0.0192 0.0171 0.0140 0.0107

Table A.5: 9× 9 alpha matrix determined for a 40 nm electrode spacing.

0.0074 0.0102 0.0129 0.0149 0.0158 0.0150 0.0129 0.0102 0.0074
0.0113 0.0162 0.0215 0.0260 0.0281 0.0261 0.0215 0.0162 0.0114
0.0166 0.0250 0.0358 0.0474 0.0538 0.0475 0.0359 0.0251 0.0167
0.0220 0.0357 0.0568 0.0877 0.1185 0.0878 0.0570 0.0359 0.0222
0.0246 0.0421 0.0751 0.1473 1.0000 0.1476 0.0755 0.0425 0.0250
0.0219 0.0355 0.0566 0.0872 0.1175 0.0873 0.0567 0.0357 0.0221
0.0164 0.0247 0.0354 0.0466 0.0523 0.0466 0.0355 0.0248 0.0165
0.0111 0.0158 0.0209 0.0251 0.0265 0.0251 0.0209 0.0159 0.0112
0.0072 0.0098 0.0123 0.0139 0.0141 0.0139 0.0123 0.0098 0.0072

Table A.6: 9× 9 alpha matrix determined for a 50 nm electrode spacing.

0.0050 0.0071 0.0092 0.0109 0.0117 0.0109 0.0093 0.0071 0.0050
0.0081 0.0121 0.0166 0.0206 0.0224 0.0206 0.0166 0.0122 0.0082
0.0125 0.0198 0.0296 0.0403 0.0464 0.0404 0.0297 0.0199 0.0126
0.0172 0.0295 0.0496 0.0798 0.1103 0.0799 0.0498 0.0298 0.0174
0.0194 0.0356 0.0677 0.1412 1.0000 0.1415 0.0681 0.0361 0.0200
0.0171 0.0294 0.0493 0.0792 0.1090 0.0794 0.0495 0.0296 0.0173
0.0123 0.0195 0.0291 0.0394 0.0447 0.0395 0.0292 0.0196 0.0124
0.0079 0.0118 0.0160 0.0195 0.0206 0.0196 0.0160 0.0118 0.0080
0.0048 0.0068 0.0086 0.0098 0.0097 0.0098 0.0086 0.0068 0.0048

104 Appendix A. Simulation Details

Table A.7: 9× 9 alpha matrix determined for a 60 nm electrode spacing.

0.0033 0.0049 0.0066 0.0080 0.0086 0.0080 0.0066 0.0050 0.0033
0.0058 0.0090 0.0128 0.0162 0.0179 0.0163 0.0128 0.0091 0.0058
0.0093 0.0156 0.0243 0.0342 0.0399 0.0343 0.0244 0.0157 0.0095
0.0133 0.0243 0.0430 0.0723 0.1023 0.0725 0.0432 0.0245 0.0136
0.0152 0.0298 0.0606 0.1346 1.0000 0.1350 0.0611 0.0304 0.0158
0.0132 0.0241 0.0426 0.0717 0.1009 0.0718 0.0429 0.0244 0.0135
0.0092 0.0153 0.0238 0.0332 0.0380 0.0333 0.0239 0.0154 0.0093
0.0056 0.0087 0.0122 0.0151 0.0158 0.0151 0.0122 0.0087 0.0056
0.0032 0.0046 0.0060 0.0068 0.0064 0.0068 0.0060 0.0046 0.0032

Table A.8: 9× 9 alpha matrix determined for a 70 nm electrode spacing.

0.0022 0.0034 0.0047 0.0058 0.0064 0.0058 0.0047 0.0034 0.0022
0.0041 0.0067 0.0098 0.0128 0.0142 0.0128 0.0098 0.0067 0.0041
0.0069 0.0122 0.0199 0.0289 0.0342 0.0290 0.0200 0.0123 0.0071
0.0102 0.0199 0.0372 0.0655 0.0950 0.0656 0.0374 0.0202 0.0105
0.0118 0.0249 0.0541 0.1282 1.0000 0.1286 0.0547 0.0256 0.0125
0.0102 0.0197 0.0368 0.0647 0.0933 0.0649 0.0371 0.0200 0.0104
0.0068 0.0119 0.0194 0.0279 0.0321 0.0279 0.0195 0.0121 0.0069
0.0039 0.0064 0.0092 0.0116 0.0119 0.0116 0.0092 0.0064 0.0040
0.0021 0.0031 0.0041 0.0046 0.0040 0.0046 0.0041 0.0031 0.0021

Table A.9: 9× 9 alpha matrix determined for a 80 nm electrode spacing.

0.0015 0.0024 0.0034 0.0043 0.0048 0.0043 0.0035 0.0024 0.0015
0.0029 0.0050 0.0077 0.0102 0.0115 0.0103 0.0077 0.0051 0.0030
0.0052 0.0097 0.0166 0.0249 0.0300 0.0250 0.0167 0.0098 0.0053
0.0080 0.0165 0.0326 0.0602 0.0897 0.0604 0.0329 0.0168 0.0083
0.0092 0.0210 0.0490 0.1240 1.0000 0.1245 0.0497 0.0218 0.0100
0.0079 0.0163 0.0323 0.0594 0.0877 0.0596 0.0325 0.0166 0.0082
0.0051 0.0095 0.0160 0.0238 0.0275 0.0238 0.0161 0.0096 0.0052
0.0028 0.0047 0.0070 0.0089 0.0089 0.0090 0.0071 0.0048 0.0028
0.0014 0.0021 0.0028 0.0030 0.0021 0.0030 0.0028 0.0022 0.0014

A.2. Alpha Matrices 105

Table A.10: 9× 9 alpha matrix determined for a 90 nm electrode spacing.

0.00097 0.00164 0.00240 0.00308 0.00351 0.00309 0.00241 0.00165 0.00098
0.00202 0.00362 0.00574 0.00788 0.00899 0.00790 0.00577 0.00367 0.00205
0.00378 0.00740 0.01321 0.02059 0.02516 0.02065 0.01330 0.00752 0.00388
0.00592 0.01310 0.02745 0.05317 0.08136 0.05334 0.02774 0.01341 0.00621
0.00680 0.01697 0.04253 0.11498 1.0000 0.11558 0.04332 0.01783 0.00764
0.00586 0.01294 0.02709 0.05232 0.07916 0.05251 0.02738 0.01326 0.00614
0.00367 0.00715 0.01264 0.01937 0.02245 0.01943 0.01274 0.00727 0.00377
0.00189 0.00333 0.00510 0.00651 0.00614 0.00652 0.00513 0.00337 0.00193
0.00086 0.00138 0.00181 0.00172 0.00057 0.00172 0.00181 0.00139 0.00087

Table A.11: The 1× 32 alpha matrix is utilized for simulating 1-Transistor 1-Resistor
(1T1R) structures. For visualization purposes, the line vector is presented across mul-
tiple rows.

0.2463 0.2381 0.2234 0.2069 0.1909 0.1759 0.1623 0.1501
0.1394 0.1303 0.1234 0.1205 0.1301 0.1652 0.2638 0.5242
1.0000 0.4763 0.1871 0.0743 0.0301 0.0127 0.0059 0.0031
0.0020 0.0016 0.0013 0.0012 0.0012 0.0011 0.0010 0.0009

106 Appendix A. Simulation Details

Appendix B

Communication Details

This appendix provides detailed information on the defined Protocol Buffers mes-
sages used to establish the communication between the host and the STM32 micro-
controller.

1 enum _Operation{
2 NONE = 0;
3 read = 1;
4 form = 2;
5 set = 3;
6 reset = 4;
7 multiplication = 5;
8 readRow = 6;
9 NOR = 7;

10 NOT = 8;
11 }

Figure B.1: Protocol buffers file specifying the message structure to determine the
operational mode of the NeuroBreakoutBoard.

1 message Response{
2 _Operation operation = 1;
3 uint32 bitLine = 2; // Bitline index of the target cell
4 uint32 sourceLine = 3; // Sourceline index of the target cell
5 uint32 wordLine = 4; // Wordline index of the target cell
6 uint32 resistance = 5; // Measured resistance of the cell
7 int32 vSet = 6; // Final programming voltage (ISPVA)
8 repeated int32 currentList = 7; // List of all measured currents
9 }

Figure B.2: Protocol buffers file defining the response message sent from the STM32
microcontroller to the host Popcounts (PCs),

107

108 Appendix B. Communication Details

1 message Request{
2 _Operation operation = 1;
3 uint32 bitLine = 2; // Bitline index of the target cell
4 uint32 sourceLine = 3; // Sourceliune index of the target cell
5 uint32 wordLine = 4; // Wordline index of the target cell
6 float vSet = 5; // Start voltage of the ISPVA [V]
7 float vStop = 6; // Stop voltage of the ISPVA [V]
8 float vStep = 7; // Voltage difference in every step of ISPVA [V]
9 float tStep = 8; // Pulse duration of the ISPVA [us]

10 float vGate = 9; // Gate voltage for the set/form operation [V]
11 float vRead = 10; // Read voltage for the verify step in ISPVA [V]
12 float iTarget = 11; // Target current of the ISPVA [uA]
13 float vGateReset = 12; // Gate voltage for the reset operation [V]
14 uint32 vBL_0 = 13; // Binary input vector for multiplication
15 uint32 vBL_1 = 14;
16 uint32 vBL_2 = 15;
17 uint32 vBL_3 = 16;
18 uint32 vBL_4 = 17;
19 uint32 vBL_5 = 18;
20 uint32 vBL_6 = 19;
21 uint32 vHigh = 20; // Voltage representing logic 1
22 uint32 vLow = 21; // Voltage representing logic 0
23 float v0 = 22; // Computation voltage of the logic gate
24 uint32 logicBL0 = 23; // 1st bitline index of the logic gate
25 uint32 logicSL0 = 24; // 2nd bitline index of the logic gate
26 uint32 logicSL1 = 25; // Sourceline index of the logic gate
27 float vGateRead = 26; // Gate voltage for the verify step in ISPVA[V]
28 }

Figure B.3: Protocol buffers file specifying the request message sent from the host
PCs to the STM32 microcontroller.

Glossary

Acronyms
1T1R 1-Transistor 1-Resistor
ADC Analog-to-Digital Converter
ASIC Application-Specific Integrated Circuit
AES Advanced Encryption Standard
API Application Programming Interface
BNN Binary Neural Network
BL Bit Line
BEOL Back End Of Line
BE Bottom Electrode
BLC Bit Line Controller
CIM Computing-in-Memory
CMOS Complementary Metal-Oxide Semiconductor
C2C Cycle-to-Cycle
CRT Chinese Remainder Theorem
CDF Cumulative Distribution Function
DAC Digital-to-Analog Converter
DRAM Dynamic Random-Access Memory
D2D Device-to-Device
DFS Design For Security
DNN Deep Neural Network
DMA Direct Memory Access
DoS Denial-of-Service
eNVM Emerging Non-Volatile Memory
ECC Error Correcting Code
ENTT Emerging NVM-based Trojan Trigger
EFI Enhanced Fault Injection Attack
FLIM Faulty Logic-in-Memory
FEOL Front End Of Line
FPGA Field-Programmable Gate Array
FCM Fast Crossbar Model
FMC FPGA Mezzanine Card
FTJ Ferroelectric Tunnel Junction
GND Ground
GLC Gate Line Controller
GPDK Generic Process Design Kit
GPIO General-Purpose Input/Output
GUI Graphical User Interface
HRS High Resistive State
HAL Hardware Abstraction Layer

109

110 Glossary

IC Integrated Circuit
IMPLY Memristor-Based Material Implication
IP Intellectual Property
IMP Material Implication
IFV Incremental Form and Verify
ISPVA Incremental Step Pulse with Verify Algorithm
JTAG Joint Test Action Group
LIM Logic-in-Memory
LRS Low Resistive State
LLC Last Level Cache
LSB Least Significant Bit
MAC Multiply–Accumulate
MAGIC Memristor-Aided Logic
MRL Memristor Ratioed Logic
mCAT memristor Characterization And Testing
MIM Metal-Insulator-Metal
NBB NeuroBreakoutBoard
NMOS N-Type Metal–Oxide Semiconductor
NN Neural Network
PUF Physical Unclonable Function
PCB Printed Circuit Board
PC Popcount
PCM Phase Change Memory
QFP Quad Flat Package
ReRAM Resistive Random-Access Memory
RSA Rivest–Shamir–Adleman
RNG Random Number Generation
SRAM Static Random-Access Memory
STT-RAM Spin-Transfer Torque Random-Access Memory
SMU Source-Meter Unit
SPI Serial Peripheral Interface
SWD Serial Wire Debug
TIA Transimpedance Amplifier
TE Top Electrode
UART Universal Asynchronous Receiver/Transmitter
VCM Valence Change Material
VADER Variation-oriented Adversarial Attack
WL Word Line
WLC World Line Controller

List of Figures

2.1 Overview of memristive crossbar structures: (a) passive crossbar, (b)
typical crossbar, (c) vertical crossbar, and (d) pseudo crossbar. 7

2.2 Overview of CIM flavors: (a) analog CIM and (b) LIM. 10
2.3 Overview of (a) process schematic of an integrated ReRAM cell, and

(b) fault model of a 1T1R memory cell, utilizing resistors to emulate
defects. [192] . 13

2.4 Overview of the Rowhammer attack procedure in Dynamic Random-
Access Memories (DRAMs): Hammering the two adjacent rows sur-
rounding the victim row to intentionally trigger bit-flip faults by delib-
erately diminishing the capacitor’s charge. 19

4.1 Overview of the fault injection framework featuring X-Fault and FLIM:
X-Fault provides a mapping tool and crossbar simulator for highly ac-
curate simulations that assess the resilience of logic families. In con-
trast, Faulty Logic-in-Memory (FLIM) employs a more abstracted ap-
proach with its fault generator and fault injector, offering a platform
for high-speed simulation. 34

4.2 Overview of the implemented fault mapping: detailed correlation be-
tween the presumed faulty memristive devices and the resulting stuck-
at and bit-flip masks. 41

4.3 Overview of FLIM’s fault injection methodology composed of the in-
ference stage and the fault injector. 42

4.4 Overview of the convolutional layer preprocessing including binary
XNOR operation with fault injection and tensor aggregation. 44

4.5 Overview of the dense layer preprocessing including binary XNOR op-
eration with fault injection and tensor aggregation. 45

4.6 Fault resilience of logic families: (a) assessment of the Memristor-Based
Material Implication (IMPLY) and (b) Memristor-Aided Logic (MAGIC).

. 47
4.7 Performance evaluation of the fault injection platform: running a pre-

trained binarized LeNet model on the MNIST dataset with FLIM and
vanilla Larq, and X-Fault. 48

4.8 Simulation results: impact of (a) bit-flips, (b) stuck-at, (c) dynamic
faults, (d) faulty columns, and (e) faulty rows on different layers. 49

111

112 LIST OF FIGURES

4.9 Simulation results of (a) bit-flips, (b) stuck-at, and (c) dynamic faults on
different models. 52

5.1 Working principles of NeuroHammer consisting of four stages: ham-
mering, temperature increase, switching kinetics, and, finally, the in-
tended bit-flip. 56

5.2 Overview of the thermal simulation methodology: (a) depiction of the
crossbar model alongside its boundary conditions, (b) extraction of de-
vice temperatures within the crossbar array, and (c) assessment of ther-
mal resistance for a centered cell and the corresponding alpha values
for the adjacent devices. 58

5.3 (a) Electrical circuit diagram representing the modeled memristive de-
vice within the crossbar model and (b) its corresponding equivalent
thermal diagram. (c) The temperature matrix featuring a single selected
cell can be directly calculated. (d) For configurations with two selected
cells, the resultant temperature matrix emerges from the superposition
of two shifted temperature matrices. 59

5.4 Overview of the circuit simulation methodology, comprising the mem-
ory controller, the crosstalk hub, and the crossbar array. 61

5.5 Detailed breakdown of the crosstalk hub: (a) extraction of temperatures
from adjacent cells, (b) integration with alpha matrix, and (c) calcula-
tion of the final cell temperature. 62

5.6 (a-d) Overview of the attack patterns employed in our experiments,
with blue indicating the targeted cells and red highlighting the attacked
cells. (e) Simulation results visualizing the heat flux along the elec-
trodes, showing that heat from cell C33 is distributed via cells C23 and
C32 to the adjacent cell C22. 64

5.7 (a) The alpha value of a ReRAM cell as a function of electrode spacing in
a crossbar array. A comparison between (b) temperatures obtained from
simulation and (c) temperatures calculated by employing the method
of superimposing temperature matrices. 65

5.8 Circuit-level simulation results for passive crossbar structures are pre-
sented as follows: (a) the effect of pulse length (pattern A), (b) the
influence of electrode spacing (pattern A), (c) the effect of ambient tem-
perature (pattern A), and (d-g) the impact of attack patterns (A-D),
respectively. 67

5.9 Circuit-level simulations of (a) vertical, (b) typical, and (c) pseudo 1T1R
crossbar structures, with impact of the crossbar structures (d), memris-
tor variability (e), and (f) technology node. 71

5.10 (a) Overview of the simulated computing system including processor
model, cache memories and main memory. (b) X-Fault’s crossbar sim-
ulator integrated in the Gem5 architecture simulator. 72

LIST OF FIGURES 113

5.11 Abstract memory interface of X-Fault’s crossbar simulator. The inter-
face defines the required functions to enable the interaction between
gem5 and the crossbar simulator. 73

5.12 Attack Scenario: leveraging NeuroHammer to induce bit-flips in the L1
data cache, ultimately compromising the victim’s secret key. 75

5.13 Write access patterns to the L1 data cache during Rivest–Shamir–Adleman
(RSA) signature generation: (a) in the absence of an attacker, and (b)
with an active attacker targeting the 26th cache set. 76

6.1 Overview of the NeuroBreakoutBoard: (a) image of the manufactured
Printed Circuit Board (PCB) and (b) multi-layer layout. 80

6.2 Overview of (a) the signal generation module, comprising the Digital-
to-Analog Converter (DAC) and pulse generator, and (b) the intercon-
nection matrix that links the signal generation/sensing modules to the
NVM interface. 81

6.3 Overview of (a) the signal sensing module, which includes a Tran-
simpedance Amplifier (TIA) connected to the Analog-to-Digital Con-
verter (ADC), and (b) the power supply module that offers three dis-
tinct power levels. 82

6.4 Extension boards: (a) adapter board linking to the NVM interface of the
NBB, providing a dedicated socket and additional external digital I/Os,
(b) breakout board for direct access to all control lines connected to the
control interface, and (c) controller unit featuring a microcontroller that
executes the implemented firmware. 83

6.5 Overview of the system architecture: the NeuroBreakoutBoard con-
sists of hardware modules orchestrated by firmware running on the
controller unit. This controller unit communicates via a UART/Proto-
Buf [72] protocol with the provided application interfaces. 84

6.6 NeuroBreakoutBoard firmware: (a) software modules implemented to
offer various abstraction levels for interfacing with the hardware mod-
ules, and (b) flowchart depicting the main loop. 85

6.7 Application interfaces: the provided application interfaces facilitate in-
teraction with the NeuroBreakoutBoard across three distinct abstraction
levels, enabling everything from device characterization to the execu-
tion of CIM operations. 87

6.8 Analysis of the manufacturing yield: heatmap depicting the number
of dysfunctional memory cells (a) prior to and (b) following the form-
ing process across 5 chips. Comparison of switching characteristics
between a (c) dysfunctional and (d) functional memory cell. 91

6.9 Binary switching characteristics: (a-b) distribution of the High Resistive
State (HRS) and the Low Resistive State (LRS) across two distinct cells.
(c) Cumulative Distribution Function (CDF) analysis for SET, RESET,
and forming voltages. 92

114 LIST OF FIGURES

6.10 Multi-level switching characteristics: (a) repetitive cycling through all
applicable resistance states and (b) histogram depicting the variability
of states. 93

6.11 Switching endurance of two memory cells: (a/d) programming voltage
for SET/RESET operations and programmed state after (b/e) SET and
(c/f) RESET operations. 94

6.12 Resilience of CIM operations: (a) CDF of analog CIM operations and
(b) digital NOR operation executed on the NeuroBreakoutBoard. 95

B.1 Protocol buffers file specifying the message structure to determine the
operational mode of the NeuroBreakoutBoard. 107

B.2 Protocol buffers file defining the response message sent from the STM32
microcontroller to the host PCs, . 107

B.3 Protocol buffers file specifying the request message sent from the host
PCs to the STM32 microcontroller. 108

List of Tables

2.1 Summary of commercial and academic prototypes using ReRAMs for
memory and computing applications [61]. 6

2.2 Writing schemes for the SET/RESET operation on a typical, vertical,
pseudo, and passive crossbar array. 9

2.3 Implementation details for MAGIC, IMPLY, and MRL [111, 110, 60]. . . 11

3.1 Overview of simulation platforms used for evaluating the reliability of
non-volatile memories [114, 31]. 24

4.1 Overview of logic gate implementations based on IMPLY and MAGIC
logic families including the number of memristors (#mem) and cycles
(#cycles) required for each operation. 37

4.2 Comparison of fault models in X-Fault and FLIM: the fault models han-
dled by X-Fault with their corresponding abstracted representations in
FLIM illustrates the differences in fault handling between the two sim-
ulators and emphasizes the trade-off between simulation accuracy and
speed. 40

4.3 Summary of BNN models and their associated parameters [69]. 50

5.1 Simulation parameters for access transistors at 180 nm and 45 nm nodes,
and slow, medium, and fast memristors. 69

6.1 Overview of parameters for the Incremental Step Pulse with Verify Al-
gorithm (ISPVA) and the Incremental Form and Verify (IFV) algorithm. 90

A.1 JART VCM v1b model parameters. 101
A.2 9× 9 alpha matrix determined for a 10 nm electrode spacing. 102
A.3 9× 9 alpha matrix determined for a 20 nm electrode spacing. 102
A.4 9× 9 alpha matrix determined for a 30 nm electrode spacing. 103
A.5 9× 9 alpha matrix determined for a 40 nm electrode spacing. 103
A.6 9× 9 alpha matrix determined for a 50 nm electrode spacing. 103
A.7 9× 9 alpha matrix determined for a 60 nm electrode spacing. 104
A.8 9× 9 alpha matrix determined for a 70 nm electrode spacing. 104
A.9 9× 9 alpha matrix determined for a 80 nm electrode spacing. 104
A.10 9× 9 alpha matrix determined for a 90 nm electrode spacing. 105

115

116 LIST OF TABLES

A.11 The 1× 32 alpha matrix is utilized for simulating 1T1R structures. For
visualization purposes, the line vector is presented across multiple rows. 105

List of Algorithms

4.1 Weight stationary XNOR mapping on memristive crossbar arrays 35
4.2 Coupling fault write/read disturb algorithm 39

5.1 Injecting bit-flip during RSA-CRT signature generation with NeuroHam-
mer. 77

117

118 LIST OF ALGORITHMS

Bibliography

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and
X. Zheng, “TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems,” 2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[2] S. Adee, “The Hunt For The Kill Switch,” IEEE Spectrum, vol. 45, no. 5, pp.
34–39, 2008.

[3] aixACCT Systems GmbH, “aixMATRIX – Lightning-Quick Testing Of
Neuromorphic Memory Systems,” https://www.aixacct.com/testsysteme/
paralleltestsysteme/aixmatrix, Accessed: 2023-11-14.

[4] A. Al-Shaarawy, A. Amirsoleimani, and R. Genov, “PRUNIX: Non-Ideality
Aware Convolutional Neural Network Pruning for Memristive Accelerators,”
in IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2022.

[5] K. A. Ali, M. Rizk, A. Baghdadi, J.-P. Diguet, J. Jomaah, N. Onizawa, and
T. Hanyu, “Memristive Computational Memory Using Memristor Overwrite
Logic (MOL),” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 28, no. 11, pp. 2370–2382, 2020.

[6] Analog Devices Inc., “AD7606 - 8-Channel DAS with 16-Bit, Bipolar Input, Si-
multaneous Sampling ADC,” https://www.analog.com/media/en/technical-
documentation/data-sheets/ad7606_7606-6_7606-4.pdf, accessed: 2024-01-20.

[7] Analog Devices Inc., “AD826 - Low Cost, High Speed, Low Power
Dual Operational Amplifier,” https://www.analog.com/media/en/technical-
documentation/data-sheets/AD826.pdf, accessed: 2024-01-20.

[8] Analog Devices Inc., “ADG1408 - iCMOS Multiplexers,” https://www.analog.
com/media/en/technical-documentation/data-sheets/adg1408_1409.pdf, ac-
cessed: 2024-01-20.

119

https://www.tensorflow.org/
https://www.aixacct.com/testsysteme/paralleltestsysteme/aixmatrix
https://www.aixacct.com/testsysteme/paralleltestsysteme/aixmatrix
https://www.analog.com/media/en/technical-documentation/data-sheets/ad7606_7606-6_7606-4.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ad7606_7606-6_7606-4.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/AD826.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/AD826.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/adg1408_1409.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/adg1408_1409.pdf

120 BIBLIOGRAPHY

[9] Analog Devices Inc., “ADG613 - 1 pC Charge Injection, 100 pA Leakage, CMOS,
±5 V, +5 V, +3 V, Quad SPST Switches,” https://www.analog.com/media/en/
technical-documentation/data-sheets/ADG611_612_613.pdf, accessed: 2024-
01-20.

[10] Analog Devices Inc., “LT1963A - 1.5A, Low Noise, Fast Transient Response LDO
Regulators,” https://www.analog.com/media/en/technical-documentation/
data-sheets/1963aff.pdf, accessed: 2024-01-20.

[11] Analog Devices Inc., “LT3015 - 1.5A, Low Noise, Negative Linear Regulator
with Precision Current Limit,” https://www.analog.com/media/en/technical-
documentation/data-sheets/3015fb.pdf, accessed: 2024-01-20.

[12] Analog Devices Inc., “LTC2668 - 16-Channel 16-/12-Bit,” https://www.
analog.com/media/en/technical-documentation/data-sheets/ltc2668.pdf, ac-
cessed: 2024-01-20.

[13] Analog Devices Inc., “LTC6269 - Dual 500MHz Ultra-Low Bias Cur-
rent FET Input Op Amp,” https://www.analog.com/media/en/technical-
documentation/data-sheets/62689f.pdf, accessed: 2024-01-20.

[14] Analog Devices Inc., “MAX4564 - Low-Voltage, Dual-Supply, SPDT Analog
Switch,” https://www.analog.com/media/en/technical-documentation/data-
sheets/MAX4564.pdf, accessed: 2024-01-20.

[15] Analog Devices Inc., “MAX6126 - Ultra-High-Precision, Ultra-Low-Noise,Series
Voltage Reference,” https://www.analog.com/media/en/technical-
documentation/data-sheets/MAX6126.pdf, accessed: 2024-01-20.

[16] L. Anghel, A. Bernasconi, V. Ciriani, L. Frontini, G. Trucco, and I. Vatajelu,
“Stuck-At Fault Mitigation of Emerging Technologies Based Switching Lattices,”
Journal of Electronic Testing, vol. 36, no. 3, pp. 313–326, 2020.

[17] ARC Instruments Ltd., “Arc Instruments - High Performance Array Con-
trol Instruments,” https://www.whitehouse.gov/briefing-room/statements-
releases/2022/08/09/fact-sheet-chips-and-science-act-will-lower-costs-create-
jobs-strengthen-supply-chains-and-counter-china/, Accessed: 2023-11-13.

[18] J. Arlat, Y. Crouzet, J. Karlsson, P. Folkesson, E. Fuchs, and G. Leber, “Compar-
ison of Physical and Software-Implemented Fault Injection Techniques,” IEEE
Transactions on Computers, vol. 52, no. 9, pp. 1115–1133, 2003.

[19] C. Bengel, A. Siemon, F. Cuppers, S. Hoffmann-Eifert, A. Hardtdegen, M. von
Witzleben, L. Hellmich, R. Waser, and S. Menzel, “Variability-Aware Model-
ing of Filamentary Oxide-Based Bipolar Resistive Switching Cells Using SPICE
Level Compact Models,” Transactions on Circuits and Systems I: Regular Papers,
vol. 67, no. 12, pp. 4618–4630, 2020.

https://www.analog.com/media/en/technical-documentation/data-sheets/ADG611_612_613.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ADG611_612_613.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/1963aff.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/1963aff.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/3015fb.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/3015fb.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ltc2668.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ltc2668.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/62689f.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/62689f.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/MAX4564.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/MAX4564.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/MAX6126.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/MAX6126.pdf
https://www.whitehouse.gov/briefing-room/statements-releases/2022/08/09/fact-sheet-chips-and-science-act-will-lower-costs-create-jobs-strengthen-supply-chains-and-counter-china/
https://www.whitehouse.gov/briefing-room/statements-releases/2022/08/09/fact-sheet-chips-and-science-act-will-lower-costs-create-jobs-strengthen-supply-chains-and-counter-china/
https://www.whitehouse.gov/briefing-room/statements-releases/2022/08/09/fact-sheet-chips-and-science-act-will-lower-costs-create-jobs-strengthen-supply-chains-and-counter-china/

BIBLIOGRAPHY 121

[20] R. Berdan, A. Serb, A. Khiat, A. Regoutz, C. Papavassiliou, and T. Prodromakis,
“A u-Controller-Based System for Interfacing Selectorless RRAM Crossbar Ar-
rays,” IEEE Transactions on Electron Devices, vol. 62, no. 7, pp. 2190–2196, 2015.

[21] J. Bethge, C. Bartz, H. Yang, Y. Chen, and C. Meinel, “MeliusNet: An Improved
Network Architecture for Binary Neural Networks,” in Conference on Applica-
tions of Computer Vision, 2021, pp. 1439–1448.

[22] J. Bethge, H. Yang, M. Bornstein, and C. Meinel, “Back to Simplicity: How to
Train Accurate BNNs From Scratch?” arXiv preprint arXiv:1906.08637, 2019.

[23] D. Bhattacharjee, A. Dutt, and A. Chattopadhyay, “MAMI: Majority and Multi-
Input Logic on Memristive Crossbar Array,” in IEEE Asia Pacific Conference on
Circuits and Systems (APCCAS). IEEE, 2018.

[24] S. Bhunia, M. S. Hsiao, M. Banga, and S. Narasimhan, “Hardware Trojan At-
tacks: Threat Analysis and Countermeasures,” Proceedings of the IEEE, vol. 102,
no. 8, pp. 1229–1247, 2014.

[25] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hes-
tness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib,
N. Vaish, M. D. Hill, and D. A. Wood, “The Gem5 Simulator,” ACM SIGARCH
Computer Architecture News, vol. 39, no. 2, pp. 1–7, 2011.

[26] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the Importance of Eliminating
Errors in Cryptographic Computations,” Journal of Cryptology, vol. 14, no. 2, pp.
101–119, 2000.

[27] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and R. S. Williams,
“Memristive Switches Enable Stateful Logic Operations Via Material Implica-
tion,” Nature, vol. 464, no. 7290, pp. 873–876, 2010.

[28] G. W. Burr, R. M. Shelby, A. Sebastian, S. Kim, S. Kim, S. Sidler, K. Virwani,
M. Ishii, P. Narayanan, A. Fumarola, L. L. Sanches, I. Boybat, M. L. Gallo,
K. Moon, J. Woo, H. Hwang, and Y. Leblebici, “Neuromorphic Computing Us-
ing Non-volatile Memory,” Advances in Physics: X, vol. 2, no. 1, pp. 89–124, 2016.

[29] Cadence Design Systems Inc., “Virtuoso System Design Platform,”
https://www.cadence.com/en_US/home/tools/custom-ic-analog-rf-
design/virtuoso-studio.html, Accessed: 2024-01-14.

[30] L. Caviglione, “Trends and Challenges in Network Covert Channels Counter-
measures,” Applied Sciences, vol. 11, no. 4, p. 1641, 2021.

[31] I. Chakraborty, M. F. Ali, D. E. Kim, A. Ankit, and K. Roy, “GENIEx: A Gener-
alized Approach to Emulating Non-Ideality in Memristive XBars using Neural
Networks,” in ACM/IEEE Design Automation Conference (DAC). IEEE, 2020.

https://www.cadence.com/en_US/home/tools/custom-ic-analog-rf-design/virtuoso-studio.html
https://www.cadence.com/en_US/home/tools/custom-ic-analog-rf-design/virtuoso-studio.html

122 BIBLIOGRAPHY

[32] M.-F. Chang, W. Fuchs, and J. Patel, “Diagnosis and Repair of Memory with
Coupling Faults,” IEEE Transactions on Computers, vol. 38, no. 4, pp. 493–500,
1989.

[33] A. Chaudhuri and K. Chakrabarty, “Analysis of Process Variations, Defects, and
Design-Induced Coupling in Memristors,” in IEEE International Test Conference
(ITC). IEEE, 2018.

[34] M. Chaudhuri, “Zero Inclusion Victim: Isolating Core Caches from Inclusive
Last-level Cache Evictions,” in Annual International Symposium on Computer Ar-
chitecture (ISCA). IEEE, 2021.

[35] C.-Y. Chen, H.-C. Shih, C.-W. Wu, C.-H. Lin, P.-F. Chiu, S.-S. Sheu, and F. T.
Chen, “RRAM Defect Modeling and Failure Analysis Based on March Test and
a Novel Squeeze-Search Scheme,” IEEE Transactions on Computers, vol. 64, no. 1,
pp. 180–190, 2015.

[36] P.-Y. Chen, X. Peng, and S. Yu, “Neurosim+: An Integrated Device-To-Algorithm
Framework For Benchmarking Synaptic Devices And Array Architectures,” in
IEEE International Electron Devices Meeting (IEDM). IEEE, 2017.

[37] P.-Y. Chen, X. Peng, and S. Yu, “NeuroSim: A Circuit-Level Macro Model for
Benchmarking Neuro-Inspired Architectures in Online Learning,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, vol. 37, no. 12,
pp. 3067–3080, 2018.

[38] Y.-X. Chen and J.-F. Li, “Fault Modeling and Testing of 1T1R Memristor Memo-
ries,” in IEEE VLSI Test Symposium (VTS). IEEE, 2015.

[39] Z. Chen, H. Wu, B. Gao, D. Wu, N. Deng, H. Qian, Z. Lu, B. Haukness, M. Kel-
lam, and G. Bronner, “Performance Improvements by SL-Current Limiter and
Novel Programming Methods on 16MB RRAM Chip,” in International Memory
Workshop (IMW). IEEE, 2017.

[40] F. Chollet et al., “Keras,” https://keras.io, 2015.

[41] C. Chou, Z. Lin, P. Tseng, C. Li, C. Chang, W. Chen, Y. Chih, and T. J. Chang, “An
N40 256k×44 Embedded RRAM Macro with Sl-precharge SA and Low-Voltage
Current Limiter to Improve Read and Write Performance,” in IEEE International
Solid - State Circuits Conference - (ISSCC). IEEE International Solid - State Cir-
cuits Conference - (ISSCC), 2018, pp. 478–480.

[42] C.-C. Chou, Z.-J. Lin, C.-A. Lai, C.-I. Su, P.-L. Tseng, W.-C. Chen, W.-C. Tsai, W.-
T. Chu, T.-C. Ong, H. Chuang, Y.-D. Chih, and T.-Y. J. Chang, “A 22nm 96kx144
RRam Macro with a Self-Tracking Reference and a Low Ripple Charge Pump to
Achieve a Configurable Read Window and a Wide Operating Voltage Range,”
in Symposium on VLSI Circuits. IEEE, 2020.

https://keras.io

BIBLIOGRAPHY 123

[43] O. Choudary and M. G. Kuhn, “Template Attacks on Different Devices,” in
Constructive Side-Channel Analysis and Secure Design. Springer International
Publishing, 2014, pp. 179–198.

[44] L. Chua, “Memristor-The Missing Circuit Element,” IEEE Transactions on Circuit
Theory, vol. 18, no. 5, pp. 507–519, 1971.

[45] COMSOL AB, “COMSOL Multiphysics®,” https://www.comsol.com/comsol-
multiphysics, accessed: 2023-09-14.

[46] J. R. Contreras, J. Schubert, H. Kohlstedt, and R. Waser, “Memory Device Based
on a Ferroelectric Tunnel Junction,” in Device Research Conference, Santa Barbara,
CA, USA, 24/06/2002-26/06/2002, Inst fur Festkorperforschung, Forschungszen-
trum Julich GmbH, Germany. Piscataway, NJ, USA: IEEE, 2002, pp. 97–8.

[47] F. Cüppers, S. Menzel, C. Bengel, A. Hardtdegen, M. von Witzleben, U. Böttger,
R. Waser, and S. Hoffmann-Eifert, “Exploiting the Switching Dynamics of HfO2-
Based ReRAM Devices for Reliable Analog Memristive Behavior,” APL Materi-
als, vol. 7, no. 9, 2019.

[48] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A Large-
Scale Hierarchical Image Database,” in Conference on Computer Vision and Pattern
Recognition. IEEE, 2009.

[49] L. Deng, “The MNIST Database of Handwritten Digit Images for Machine
Learning Research,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 141–142,
2012.

[50] L. Dilillo, P. Girard, S. Pravossoudovitch, A. Virazel, S. Borri, and M. Hage-
Hassan, “Dynamic Read Destructive Fault in Embedded-SRAMs: Analysis and
March Test Solution,” in IEEE European Test Symposium (ETS). IEEE, 2004.

[51] V. Dumoulin and F. Visin, “A Guide to Convolution Arithmetic for Deep Learn-
ing,” arXiv preprint arXiv:1603.07285, 2016.

[52] A. S. Emara, A. H. Madian, H. H. Amer, S. H. Amer, and M. B. Abdelhalim,
“Testing Of Memristor Ratioed Logic (MRL) XOR Gate,” in International Confer-
ence on Microelectronics (ICM). IEEE, 2016.

[53] S. S. Ensan, K. Nagarajan, M. N. I. Khan, and S. Ghosh, “SCARE: Side Channel
Attack on In-Memory Computing for Reverse Engineering,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 29, no. 12, pp. 2040–2051, 2021.

[54] T. K. Esatu, A. Prakash, Z. Li, D. Lau, S. H. Jo, and T.-J. K. Liu, “Highly Reli-
able and Secure PUF Using Resistive Memory Integrated Into a 28 nm CMOS
Process,” Transactions on Electron Devices, vol. 70, no. 5, pp. 2291–2296, 2023.

https://www.comsol.com/comsol-multiphysics
https://www.comsol.com/comsol-multiphysics

124 BIBLIOGRAPHY

[55] M. Escudero, I. Vourkas, A. Rubio, and F. Moll, “Variability-Tolerant Memristor-
based Ratioed Logic in Crossbar Array,” in International Symposium on Nanoscale
Architectures, ser. NANOARCH ’18. ACM, 2018.

[56] M. Escudero, I. Vourkas, A. Rubio, and F. Moll, “Memristive Logic in Crossbar
Memory Arrays: Variability-Aware Design for Higher Reliability,” IEEE Trans-
actions on Nanotechnology, vol. 18, pp. 635–646, 2019.

[57] M. Eslami, B. Ghavami, M. Raji, and A. Mahani, “A Survey on Fault Injection
Methods of Digital Integrated Circuits,” Integration, vol. 71, pp. 154–163, 2020.

[58] B. Feinberg, S. Wang, and E. Ipek, “Making Memristive Neural Network Accel-
erators Reliable,” in IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2018.

[59] N. Fern, S. Kulkarni, and K.-T. T. Cheng, “Hardware Trojans Hidden In RTL
Don’t Cares - Automated Insertion And Prevention Methodologies,” in IEEE
International Test Conference (ITC). IEEE, 2015.

[60] C. Fernandez and I. Vourkas, “Reliability-Aware Ratioed Logic Operations for
Energy-Efficient Computational ReRAM,” in International Conference on Very
Large Scale Integration (VLSI-SoC). IEEE, 2022.

[61] M. Fieback, “Testing RRAM and Computation-in-Memory Devices,” Ph.D. dis-
sertation, 2022.

[62] M. Fieback, G. C. Medeiros, L. Wu, H. Aziza, R. Bishnoi, M. Taouil, and
S. Hamdioui, “Defects, Fault Modeling, and Test Development Framework for
RRAMs,” ACM Journal on Emerging Technologies in Computing Systems, vol. 18,
no. 3, pp. 1–26, 2022.

[63] M. Fieback, M. Taouil, and S. Hamdioui, “Testing Resistive Memories: Where
are We and What is Missing?” in IEEE International Test Conference (ITC). IEEE,
2018.

[64] P. Foster, J. Huang, A. Serb, T. Prodromakis, and C. Papavassiliou, “An FPGA
Based System for Interfacing with Crossbar Arrays,” in International Symposium
on Circuits and Systems (ISCAS). IEEE, 2020.

[65] P. Foster, J. Huang, A. Serb, S. Stathopoulos, C. Papavassiliou, and T. Prodro-
makis, “An FPGA-Based System For Generalised Electron Devices Testing,” Sci-
entific Reports, vol. 12, no. 1, 2022.

[66] C. Funck and S. Menzel, “Comprehensive Model of Electron Conduction in
Oxide-based Memristive Devices,” ACS Applied Electronic Materials, vol. 3, pp.
3674–3692, 2021.

[67] M. L. Gallo and A. Sebastian, “An Overview of Phase-change Memory Device
Physics,” Journal of Physics D: Applied Physics, vol. 53, no. 21, p. 213002, 2020.

BIBLIOGRAPHY 125

[68] A. Gangolli, Q. H. Mahmoud, and A. Azim, “A Systematic Review of Fault
Injection Attacks on IoT Systems,” Electronics, vol. 11, no. 13, p. 2023, 2022.

[69] L. Geiger and P. Team, “Larq: An Open-Source Library for Training Binarized
Neural Networks,” Journal of Open Source Software, vol. 5, no. 45, p. 1746, 2020.
[Online]. Available: https://doi.org/10.21105/joss.01746

[70] R. Gennaro, H. Krawczyk, and T. Rabin, RSA-Based Undeniable Signatures.
Springer Berlin Heidelberg, 1997, pp. 132–149.

[71] Google Inc., “FlatBuffers,” https://flatbuffers.dev, Accessed: 2024-01-24.

[72] Google Inc., “Protocol Buffers Documentation,” https://protobuf.dev/, Ac-
cessed: 2024-01-24.

[73] L. Grenouillet, N. Castellani, A. Persico, V. Meli, S. Martin, O. Billoint,
R. Segaud, S. Bernasconi, C. Pellissier, C. Jahan, C. Charpin-Nicolle, P. Dezest,
C. Carabasse, P. Besombes, S. Ricavy, N.-P. Tran, A. Magalhaes-Lucas, A. Ro-
man, C. Boixaderas, T. Magis, M. Bedjaoui, M. Tessaire, A. Seignard, F. Mazen,
S. Landis, E. Vianello, G. Molas, F. Gaillard, J. Arcamone, and E. Nowak, “16kbit
1T1R Oxram Arrays Embedded in 28nm Fdsoi Technology Demonstrating Low
Ber, High Endurance, and Compatibility with Core Logic Transistors,” in Inter-
national Memory Workshop (IMW). IEEE, 2021.

[74] A. Grossi, E. Nowak, C. Zambelli, C. Pellissier, S. Bernasconi, G. Cibrario, K. E.
Hajjam, R. Crochemore, J. Nodin, P. Olivo, and L. Perniola, “Fundamental Vari-
ability Limits Of Filament-Based RRAM,” in IEEE International Electron Devices
Meeting (IEDM). IEEE, 2016.

[75] A. Grossi, C. Zambelli, P. Olivo, E. Miranda, V. Stikanov, C. Walczyk, and
C. Wenger, “Electrical Characterization and Modeling of Pulse-Based Forming
Techniques in RRAM Arrays,” Solid-State Electronics, vol. 115, pp. 17–25, 2016.

[76] L. Guckert and E. E. Swartzlander, “MAD Gates - Memristor Logic Design Us-
ing Driver Circuitry,” IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. 64, no. 2, pp. 171–175, 2017.

[77] S. Hamdioui, Z. Al-Ars, A. J. van de Goor, and M. Rodgers, “Dynamic Faults
in Random-Access-Memories: Concept, Fault Models and Tests,” Journal of Elec-
tronic Testing, vol. 19, no. 2, pp. 195–205, 2003.

[78] S. Hamdioui, M. Taouil, and N. Z. Haron, “Testing Open Defects in Memristor-
Based Memories,” IEEE Transactions on Computers, vol. 64, no. 1, pp. 247–259,
2015.

[79] R. W. Hamming, “Error Detecting and Error Correcting Codes,” Bell System
Technical Journal, vol. 29, no. 2, pp. 147–160, 1950.

https://doi.org/10.21105/joss.01746
https://flatbuffers.dev
https://protobuf.dev/

126 BIBLIOGRAPHY

[80] N. Z. Haron and S. Hamdioui, “DfT Schemes for Resistive Open Defects in
RRAMs,” in Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2012.

[81] N. Z. Haron and S. Hamdioui, “On Defect Oriented Testing for Hybrid
CMOS/Memristor Memory,” in Asian Test Symposium. IEEE, 2011.

[82] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recog-
nition,” in Conference On Computer Vision and Pattern Recognition, 2016, pp. 770–
778.

[83] Z. He, J. Lin, R. Ewetz, J.-S. Yuan, and D. Fan, “Noise Injection Adaption: End-
to-End ReRAM Crossbar Non-ideal Effect Adaption for Neural Network Map-
ping,” in Design Automation Conference. ACM, 2019.

[84] B. Hoffer, N. Wainstein, C. M. Neumann, E. Pop, E. Yalon, and S. Kvatinsky,
“Stateful Logic Using Phase Change Memory,” IEEE Journal on Exploratory Solid-
State Computational Devices and Circuits, vol. 8, no. 2, pp. 77–83, 2022.

[85] W. Hu, C.-H. Chang, A. Sengupta, S. Bhunia, R. Kastner, and H. Li, “An
Overview of Hardware Security and Trust: Threats, Countermeasures, and De-
sign Tools,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 40, no. 6, pp. 1010–1038, 2021.

[86] D. Ielmini and H. P. Wong, “In-memory Computing with Resistive Switching
Devices,” Nature Electronics, vol. 1, no. 6, pp. 333–343, 2018.

[87] D. Ielmini and R. Waser, Resistive Switching: From Fundamentals of Nanoionic
Redox Processes to Memristive Device Applications. Wiley-VCH Verlag GmbH &
Co. KGaA, 2016.

[88] Intel Corporation, “Intel Optane Memory Series,” https://www.intel.com/
content/www/us/en/products/sku/97544/intel-optane-memory-series-
16gb-m-2-80mm-pcie-3-0-20nm-3d-xpoint/specifications.html, Accessed:
2023-05-22.

[89] P. Jain, U. Arslan, M. Sekhar, B. C. Lin, L. Wei, T. Sahu, J. Alzate-vinasco,
A. Vangapaty, M. Meterelliyoz, N. Strutt, A. B. Chen, P. Hentges, P. A. Quin-
tero, C. Connor, O. Golonzka, K. Fischer, and F. Hamzaoglu, “13.2 A 3.6Mb
10.1Mb/mm2 Embedded Non-Volatile ReRAM Macro in 22nm FinFET Technol-
ogy with Adaptive Forming/Set/Reset Schemes Yielding Down to 0.5V with
Sensing Time of 5ns at 0.7V,” in International Solid- State Circuits Conference
(ISSCC). IEEE, 2019.

[90] S. Jain, A. Sengupta, K. Roy, and A. Raghunathan, “RxNN: A Framework for
Evaluating Deep Neural Networks on Resistive Crossbars,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 40, no. 2, pp.
326–338, 2021.

https://www.intel.com/content/www/us/en/products/sku/97544/intel-optane-memory-series-16gb-m-2-80mm-pcie-3-0-20nm-3d-xpoint/specifications.html
https://www.intel.com/content/www/us/en/products/sku/97544/intel-optane-memory-series-16gb-m-2-80mm-pcie-3-0-20nm-3d-xpoint/specifications.html
https://www.intel.com/content/www/us/en/products/sku/97544/intel-optane-memory-series-16gb-m-2-80mm-pcie-3-0-20nm-3d-xpoint/specifications.html

BIBLIOGRAPHY 127

[91] Y. Jin, “Introduction to Hardware Security,” Electronics, vol. 4, no. 4, pp. 763–
784, 2015.

[92] S. H. Jo, T. Kumar, C. Zitlaw, and H. Nazarian, “Self-Limited Rram with On/off
Resistance Ratio Amplification,” in Symposium on VLSI Technology (VLSI Technol-
ogy). IEEE, 2015.

[93] G. Joy Persial, M. Prabhu, and R. Shanmugalakshmi, “Side Channel Attack-
Survey,” International Journal of Scientific Research and Reviews, vol. 1, no. 4, pp.
54–57, 2011.

[94] S. Kannan, N. Karimi, R. Karri, and O. Sinanoglu, “Detection, Diagnosis, And
Repair Of Faults In Memristor-Based Memories,” in IEEE VLSI Test Symposium
(VTS). IEEE, 2014.

[95] S. Kannan, N. Karimi, R. Karri, and O. Sinanoglu, “Modeling, Detection, and
Diagnosis of Faults in Multilevel Memristor Memories,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 34, no. 5, pp. 822–
834, 2015.

[96] S. Kannan, R. Karri, and O. Sinanoglu, “Sneak Path Testing And Fault Modeling
For Multilevel Memristor-Based Memories,” in IEEE International Conference on
Computer Design (ICCD). IEEE, 2013.

[97] S. Kannan, J. Rajendran, R. Karri, and O. Sinanoglu, “Sneak-path Testing of
Memristor-based Memories,” in International Conference on VLSI Design and In-
ternational Conference on Embedded Systems. IEEE, 2013.

[98] Z. E. Kaya, S. B. Tekin, and S. Kalem, “Design Of An FPGA-Based RRAM Pa-
rameter Measurement Platform,” in International Conference on Industrial Technol-
ogy (ICIT). IEEE, 2018.

[99] M. N. I. Khan, S. Bhasin, A. Yuan, A. Chattopadhyay, and S. Ghosh, “Side-
Channel Attack on STTRAM Based Cache for Cryptographic Application,” in
IEEE International Conference on Computer Design (ICCD). IEEE, 2017.

[100] M. N. I. Khan and S. Ghosh, “Analysis of Row Hammer Attack on STTRAM,”
in IEEE International Conference on Computer Design (ICCD). IEEE, 2018.

[101] M. N. I. Khan and S. Ghosh, “Fault Injection Attacks On Emerging Non-Volatile
Memory And Countermeasures,” in International Workshop on Hardware and Ar-
chitectural Support for Security and Privacy. ACM, 2018.

[102] M. N. I. Khan, K. Nagarajan, and S. Ghosh, “Hardware Trojans in Emerging
Non-Volatile Memories,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2019.

[103] H. Kim, M. R. Mahmoodi, H. Nili, and D. B. Strukov, “4k-Memristor Analog-
Grade Passive Crossbar Circuit,” Nature Communications, vol. 12, no. 1, 2021.

128 BIBLIOGRAPHY

[104] K.-H. Kim, S. Gaba, D. Wheeler, J. M. Cruz-Albrecht, T. Hussain, N. Srinivasa,
and W. Lu, “A Functional Hybrid Memristor Crossbar-Array/cmos System for
Data Storage and Neuromorphic Applications,” Nano Letters, vol. 12, no. 1, pp.
389–395, 2011.

[105] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and
O. Mutlu, “Flipping Bits in Memory Without Accessing Them,” ACM SIGARCH
Computer Architecture News, vol. 42, no. 3, pp. 361–372, 2014.

[106] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre Attacks:
Exploiting Speculative Execution,” in IEEE Symposium on Security and Privacy
(S&P). IEEE, 2019.

[107] M. Kooli and G. D. Natale, “A Survey on Simulation-Based Fault Injection Tools
for Complex Systems,” in IEEE International Conference on Design & Technology of
Integrated Systems in Nanoscale Era (DTIS). IEEE, 2014.

[108] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification With
Deep Convolutional Neural Networks,” Communications of the ACM, vol. 60,
no. 6, pp. 84–90, 2017.

[109] K. J. Kuhn, M. D. Giles, D. Becher, P. Kolar, A. Kornfeld, R. Kotlyar, S. T. Ma,
A. Maheshwari, and S. Mudanai, “Process Technology Variation,” IEEE Transac-
tions on Electron Devices, vol. 58, no. 8, pp. 2197–2208, 2011.

[110] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman,
A. Kolodny, and U. C. Weiser, “MAGIC - Memristor-Aided Logic,” IEEE Trans-
actions on Circuits and Systems II: Express Briefs, vol. 61, no. 11, pp. 895–899, 2014.

[111] S. Kvatinsky, A. Kolodny, U. C. Weiser, and E. G. Friedman, “Memristor-based
IMPLY Logic Design Procedure,” in IEEE International Conference on Computer
Design (ICCD). IEEE, 2011.

[112] S. Kvatinsky, N. Wald, G. Satat, A. Kolodny, U. C. Weiser, and E. G. Friedman,
“MRL - Memristor Ratioed Logic,” in International Workshop on Cellular Nanoscale
Networks and their Applications. IEEE, 2012.

[113] C. Lammie and M. R. Azghadi, “MemTorch: A Simulation Framework for Deep
Memristive Cross-Bar Architectures,” in IEEE International Symposium on Circuits
and Systems (ISCAS). IEEE, 2020.

[114] C. Lammie, W. Xiang, and M. R. Azghadi, “Modeling And Simulating In-
Memory Memristive Deep Learning Systems: An Overview Of Current Efforts,”
Array, vol. 13, p. 100116, 2022.

BIBLIOGRAPHY 129

[115] B. Q. Le, A. Levy, T. F. Wu, R. M. Radway, E. R. Hsieh, X. Zheng, M. Nelson,
P. Raina, H.-S. P. Wong, S. Wong, and S. Mitra, “Radar: A Fast and Energy-
efficient Programming Technique for Multiple Bits-per-cell Rram Arrays,” IEEE
Transactions on Electron Devices, vol. 68, no. 9, pp. 4397 – 4403, 2021.

[116] Y. Le Cun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,
and L. D. Jackel, “Handwritten Digit Recognition with a Back-Propagation Net-
work,” in International Conference on Neural Information Processing Systems, ser.
NIPS’89. Cambridge, MA, USA: MIT Press, 1989, p. 396–404.

[117] M.-J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y.-B. Kim, C.-J.
Kim, D. H. Seo, S. Seo, U.-I. Chung, I.-K. Yoo, and K. Kim, “A Fast, High-
Endurance and Scalable Non-Volatile Memory Device Made from Asymmetric
Ta2O5X/TaO2X Bilayer Structures,” Nature Materials, vol. 10, no. 8, pp. 625–630,
2011.

[118] E. Lehtonen and M. Laiho, “Stateful Implication Logic With Memristors,” in
IEEE/ACM International Symposium on Nanoscale Architectures. IEEE, 2009.

[119] R. K. Lenka, S. Padhi, and K. M. Nayak, “Fault Injection Techniques - A Brief
Review,” in International Conference on Advances in Computing, Communication
Control and Networking (ICACCCN). IEEE, 2018.

[120] Y. Levy, J. Bruck, Y. Cassuto, E. G. Friedman, A. Kolodny, E. Yaakobi, and
S. Kvatinsky, “Logic Operations In Memory Using A Memristive Akers Array,”
Microelectronics Journal, vol. 45, no. 11, pp. 1429–1437, 2014.

[121] B. Li, H. Lv, Y. Wang, and Y. Chen, “Security Threat to the Robustness of RRAM-
based Neuromorphic Computing System,” in International Symposium on Smart
Electronic Systems (iSES). IEEE, 2022.

[122] C. Li, Y. Li, H. Jiang, W. Song, P. Lin, Z. Wang, J. J. Yang, Q. Xia, M. Hu,
E. Montgomery, J. Zhang, N. Davila, C. E. Graves, Z. Li, J. P. Strachan, R. S.
Williams, N. Ge, M. Barnell, and Q. Wu, “Large Memristor Crossbars for Analog
Computing,” in International Symposium on Circuits and Systems (ISCAS). IEEE,
2018.

[123] H. Li, W. Chen, A. Levy, C. Wang, H. Wang, P. Chen, W. Wan, W. Khwa,
H. Chuang, Y. Chih, M. Chang, H. P. Wong, and P. Raina, “Sapiens: A 64-Kb
RRAM Non-Volatile Associative Memory For One-Shot Learning And Inference
At The Edge,” IEEE Transactions on Electron Devices, pp. 1–7, 2021.

[124] H. H. Li, Y. Chen, C. Liu, J. P. Strachan, and N. Davila, “Looking Ahead for
Resistive Memory Technology: A Broad Perspective on Rera Technology for
Future Storage and Computing,” IEEE Consumer Electronics Magazine, vol. 6,
no. 1, pp. 94–103, 2017.

130 BIBLIOGRAPHY

[125] H. Li, S. Wang, X. Zhang, W. Wang, R. Yang, Z. Sun, W. Feng, P. Lin, Z. Wang,
L. Sun, and Y. Yao, “Memristive Crossbar Arrays for Storage and Computing
Applications,” Advanced Intelligent Systems, vol. 18, pp. 309–323, 2021.

[126] J.-F. Li, K.-L. Cheng, C.-T. Huang, and C.-W. Wu, “March-Based RAM Diagnosis
Algorithms for Stuck-At and Coupling Faults,” in Proceedings International Test
Conference. IEEE, 2001.

[127] C. Liaw, “Integrated Semiconductor Memory with an Arrangement of Non-
volatile Memory Cells, and Method,” United States Patent 7277312, 2007.

[128] M.-Y. Lin, H.-Y. Cheng, W.-T. Lin, T.-H. Yang, I.-C. Tseng, C.-L. Yang, H.-W. Hu,
H.-S. Chang, H.-P. Li, and M.-F. Chang, “DL-RSIM: A Simulation Framework to
Enable Reliable ReRAM-based Accelerators for Deep Learning,” in ACM Inter-
national Conference on Computer-Aided Design, 2018.

[129] E. Linn, R. Rosezin, C. Kügeler, and R. Waser, “Complementary Resistive
Switches for Passive Nanocrossbar Memories,” Nature Materials, vol. 9, no. 5,
pp. 403–406, 2010.

[130] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn,
S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown:
Reading Kernel Memory from User Space,” in USENIX Security Symposium
(USENIX Security 18). Baltimore, MD: USENIX Association, 2018, pp. 973–990.
[Online]. Available: https://www.usenix.org/conference/usenixsecurity18/
presentation/lipp

[131] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, J. Horn, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom, M. Hamburg, and R. Strackx, “Meltdown: Read-
ing Kernel Memory from User Space,” Communications of the ACM, vol. 63, no. 6,
pp. 46–56, 2020.

[132] C. Liu, M. Hu, J. P. Strachan, and H. H. Li, “Rescuing Memristor-based Neu-
romorphic Design with High Defects,” in Proceedings of the Design Automation
Conference. ACM, 2017.

[133] M. Liu and K. Chakrabarty, “Online Fault Detection in ReRAM-Based Comput-
ing Systems for Inferencing,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 30, no. 4, pp. 392–405, 2022.

[134] P. Liu, Z. You, J. Wu, B. Liu, Y. Han, and K. Chakrabarty, “Fault Modeling and
Efficient Testing of Memristor-Based Memory,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 68, no. 11, pp. 4444–4455, 2021.

[135] Y. Liu, Y. Jin, A. Nosratinia, and Y. Makris, “Silicon Demonstration of Hardware
Trojan Design and Detection in Wireless Cryptographic ICs,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 4, pp. 1506–1519, 2017.

https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp

BIBLIOGRAPHY 131

[136] Z. Liu, W. Luo, B. Wu, X. Yang, W. Liu, and K.-T. Cheng, “Bi-Real Net: Binariz-
ing Deep Network Towards Real-Network Performance,” International Journal of
Computer Vision, vol. 128, no. 1, pp. 202–219, 2020.

[137] C. Lopez-Ongil, L. Entrena, M. Garcia-Valderas, M. Portela, M. Aguirre,
J. Tombs, V. Baena, and F. Munoz, “A Unified Environment for Fault Injection
at Any Design Level Based on Emulation,” IEEE Transactions on Nuclear Science,
vol. 54, no. 4, pp. 946–950, 2007.

[138] Y. Lyu and P. Mishra, “A Survey of Side-Channel Attacks on Caches and Coun-
termeasures,” Journal of Hardware and Systems Security, vol. 2, no. 1, pp. 33–50,
2017.

[139] M. Mao, Y. Cao, S. Yu, and C. Chakrabarti, “Optimizing Latency, Energy, And
Reliability Of 1T1R ReRAM Through Appropriate Voltage Settings,” in IEEE
International Conference on Computer Design (ICCD). IEEE, 2015.

[140] M. Mao, Y. Cao, S. Yu, and C. Chakrabarti, “Optimizing Latency, Energy, And
Reliability of 1T1R ReRAM Through Cross-Layer Techniques,” IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, vol. 6, no. 3, pp. 352–363,
2016.

[141] A. Marchewka, B. Roesgen, K. Skaja, H. Du, C. L. Jia, J. Mayer, V. Rana, R. Waser,
and S. Menzel, “Nanoionic Resistive Switching Memories: On the Physical Na-
ture of the Dynamic Reset Process,” ACS Applied Electronic Materials, vol. 2, no. 1,
pp. 1 500 233/1–13, 2016.

[142] B. Martinez, J. Yang, A. Bulat, and G. Tzimiropoulos, “Training Binary Neural
Networks with Real-To-Binary Convolutions,” arXiv preprint arXiv:2003.11535,
2020.

[143] S. Menzel, M. von Witzleben, V. Havel, and U. Boettger, “The Ultimate Switch-
ing Speed Limit of Redox-based Restive Switching Devices,” Faraday Discus-
sions, vol. 213, pp. 197–213, 2019.

[144] S. Menzel, M. Waters, A. Marchewka, U. Böttger, R. Dittmann, and R. Waser,
“Origin of the Ultra-nonlinear Switching Kinetics in Oxide-based Resistive
Switches,” Advanced Functional Materials, vol. 21, no. 23, pp. 4487–4492, 2011.

[145] S. Menzel, “Juelich Aachen Resistive Switching Tools (JART),” http://www.
emrl.de/Jart.html, Accessed: 2024-01-14.

[146] V. Milo, C. Zambelli, P. Olivo, E. Pérez, M. K. Mahadevaiah, O. G. Ossorio,
C. Wenger, and D. Ielmini, “Multilevel HfO2-Based Rram Devices for Low-
Power Neuromorphic Networks,” APL Materials, vol. 7, no. 8, 2019.

[147] S. Motaman and S. Ghosh, “Dynamic Computing in Memory (DCIM) in Re-
sistive Crossbar Arrays,” in IEEE International Conference on Computer Design
(ICCD). IEEE, 2018.

http://www.emrl.de/Jart.html
http://www.emrl.de/Jart.html

132 BIBLIOGRAPHY

[148] S. N. Mozaffari, S. Tragoudas, and T. Haniotakis, “Fast March Tests for Defects
in Resistive Memory,” in IEEE/ACM International Symposium on Nanoscale Archi-
tectures (NANOARCH). IEEE, 2015.

[149] K. Nagarajan, M. N. I. Khan, and S. Ghosh, “ENTT: A Family of Emerging
NVM-based Trojan Triggers,” in IEEE International Symposium on Hardware Ori-
ented Security and Trust (HOST). IEEE, 2019.

[150] C. Nguyen, C. Cagli, G. Molas, B. Sklenard, C. Nail, K. E. Hajjam, J.-F. Nodin,
C. Charpin, S. Bernasconi, and G. Reimbold, “Study of Forming Impact on
4Kbit RRAM Array Performances and Reliability,” in IEEE International Memory
Workshop (IMW). IEEE, 2017.

[151] W. Otsuka, K. Miyata, M. Kitagawa, K. Tsutsui, T. Tsushima, H. Yoshihara,
T. Namise, Y. Terao, and K. Ogata, “A 4mb Conductive-Bridge Resistive Mem-
ory with 2.3gb/s Read-Throughput and 216mb/s Program-Throughput,” in In-
ternational Solid-State Circuits Conference. IEEE, 2011.

[152] S. Parkin, X. Jiang, C. Kaiser, A. Panchula, K. Roche, and M. Samant, “Mag-
netically Engineered Spintronic Sensors and Memory,” Proceedings of the IEEE,
vol. 91, no. 5, pp. 661–680, 2003.

[153] S. Pechmann, T. Mai, M. Völkel, M. K. Mahadevaiah, E. Perez, E. Perez-
Bosch Quesada, M. Reichenbach, C. Wenger, and A. Hagelauer, “A Versatile,
Voltage-Pulse Based Read and Programming Circuit for Multi-Level RRAM
Cells,” Electronics, vol. 10, no. 5, p. 530, 2021.

[154] X. Peng, S. Huang, Y. Luo, X. Sun, and S. Yu, “DNN+NeuroSim: An End-to-End
Benchmarking Framework for Compute-in-Memory Accelerators with Versa-
tile Device Technologies,” in IEEE International Electron Devices Meeting (IEDM).
IEEE, 2019.

[155] E. Perez, A. Grossi, C. Zambelli, P. Olivo, R. Roelofs, and C. Wenger, “Reduc-
tion of the Cell-to-Cell Variability in Hf1-xAlxOyBased RRAM Arrays by Using
Program Algorithms,” IEEE Electron Device Letters, vol. 38, no. 2, pp. 175–178,
2017.

[156] S. Qadir and S. M. K. Quadri, “Information Availability: An Insight into the
Most Important Attribute of Information Security,” Journal of Information Secu-
rity, vol. 07, no. 03, pp. 185–194, 2016.

[157] C. Quan, M. E. Fouda, S. Lee, and J. Lee, “Multi-Fidelity Nonideality Simu-
lation and Evaluation Framework for Resistive Neuromorphic Computing,” in
Asilomar Conference on Signals, Systems, and Computers. IEEE, 2022.

[158] S. Rai, S. Garg, C. Pilato, V. Herdt, E. Moussavi, D. Sisejkovic, R. Karri, R. Drech-
sler, F. Merchant, and A. Kumar, “Vertical IP Protection of the Next-Generation

BIBLIOGRAPHY 133

Devices: Quo Vadis?” in Design, Automation & Test in Europe Conference & Exhi-
bition (DATE). IEEE, Feb. 2021.

[159] M. J. Rasch, D. Moreda, T. Gokmen, M. L. Gallo, F. Carta, C. Goldberg, K. E.
Maghraoui, A. Sebastian, and V. Narayanan, “A Flexible and Fast PyTorch
Toolkit for Simulating Training and Inference on Analog Crossbar Arrays,” in
IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS).
IEEE, 2021.

[160] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net: Imagenet
Classification Using Binary Convolutional Neural Networks,” in European Con-
ference On Computer Vision. Springer, 2016, pp. 525–542.

[161] V. Ravi and S. R. S. Prabaharan, “Memristor Based Memories: Defects, Testing,
And Testability Techniques,” Far East Journal of Electronics and Communications,
vol. 17, no. 1, pp. 105–125, 2017.

[162] J. Reuben, R. Ben-Hur, N. Wald, N. Talati, A. H. Ali, P.-E. Gaillardon, and
S. Kvatinsky, “Memristive Logic: A Framework For Evaluation And Compari-
son,” in International Symposium on Power and Timing Modeling, Optimization and
Simulation (PATMOS). IEEE, 2017.

[163] R. L. Rivest, A. Shamir, and L. M. Adleman, “Cryptographic Communications
System and Method,” 1983, uS Patent 4,405,829.

[164] S. Roy, S. Sridharan, S. Jain, and A. Raghunathan, “TxSim: Modeling Training
of Deep Neural Networks on Resistive Crossbar Systems,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 29, no. 4, pp. 730–738, 2021.

[165] S. Samonas and D. Coss, “The CIA Strikes Back: Redefining Confidentiality,
Integrity and Availability in Security.” Journal of Information System Security,
vol. 10, no. 3, 2014.

[166] S. Schechter, G. H. Loh, K. Strauss, and D. Burger, “Use ECP, Not ECC, For Hard
Failures In Resistive Memories,” in ACM International Symposium On Computer
Architecture, 2010.

[167] M. Seaborn and T. Dullien, “Exploiting the DRAM Rowhammer Bug to
Gain Kernel Privileges,” 2015. [Online]. Available: http://googleprojectzero.
blogspot.com.tr/2015/03/exploiting-dram-rowhammer-bug-to-gain.html

[168] C. R. (Senate), “The National Security Aspects Of The Global Migration Of The
U.S. Semiconductor Industry,” https://irp.fas.org/congress/2003_cr/s060503.
html, 2003, Accessed: 2023-08-24.

[169] S. H. H. Shadmehri, A. BanaGozar, M. Kamal, S. Stuijk, A. Afzali-Kusha, M. Pe-
dram, and H. Corporaal, “SySCIM: SystemC-AMS Simulation of Memristive
Computation In-Memory,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2022.

http://googleprojectzero.blogspot.com.tr/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com.tr/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://irp.fas.org/congress/2003_cr/s060503.html
https://irp.fas.org/congress/2003_cr/s060503.html

134 BIBLIOGRAPHY

[170] D. Sisejkovic and R. Leupers, Logic Locking: A Practical Approach to Secure Hard-
ware. Springer International Publishing, 2023.

[171] S. Son, C. La Torre, A. Kindsmüller, V. Rana, and S. Menzel, “A Study of
the Electroforming Process in 1T1R Memory Arrays,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2022.

[172] W. Song and P. Liu, “Dynamically Finding Minimal Eviction Sets Can Be
Quicker Than You Think for Side-Channel Attacks against the LLC,” pp. 427–
442, 2019.

[173] R. Spreitzer, V. Moonsamy, T. Korak, and S. Mangard, “Systematic Classification
of Side-Channel Attacks: A Case Study for Mobile Devices,” IEEE Communica-
tions Surveys & Tutorials, vol. 20, no. 1, pp. 465–488, 2018.

[174] F. Staudigl, H. Al Indari, D. Schön, H.-Y. Chen, D. Sisejkovic, J. M. Joseph,
V. Rana, S. Menzel, A. Hagelauer, and R. Leupers, “It’s Getting Hot in Here:
Hardware Security Implications of Thermal Crosstalk on ReRAMs,” IEEE Trans-
actions on Reliability, pp. 1–15, 2024.

[175] F. Staudigl, T. Fetz, R. Pelke, D. Sisejkovic, J. M. Joseph, L. Bolzani Pöhls, and
R. Leupers, “Fault Injection in Native Logic-in-Memory Computation on Neu-
romorphic Hardware,” in Design Automation Conference (DAC). IEEE, 2023.

[176] F. Staudigl, T. Fetz, R. Pelke, D. Sisejkovic, J. M. Joseph, L. B. Pöhls, and R. Le-
upers, “Invited Paper: A Holistic Fault Injection Platform for Neuromorphic
Hardware,” in Latin American Test Symposium (LATS). IEEE, 2023.

[177] F. Staudigl, M. Hossein, T. Ziegler, H. Al Indari, R. Pelke, S. Siegel, D. J. Wouters,
D. Sisejkovic, J. M. Joseph, and R. Leupers, “Work-in-Progress: A Universal In-
strumentation Platform for Non-Volatile Memories,” in International Conference
on Hardware/Software Codesign and System Synthesis, ser. CODES/ISSS ’23 Com-
panion. ACM, Sep. 2023.

[178] F. Staudigl, H. A. Indari, D. Schon, D. Sisejkovic, F. Merchant, J. M. Joseph,
V. Rana, S. Menzel, and R. Leupers, “NeuroHammer: Inducing Bit-Flips in
Memristive Crossbar Memories,” in Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE). IEEE, 2022.

[179] F. Staudigl, F. Merchant, and R. Leupers, “A Survey of Neuromorphic
Computing-in-Memory: Architectures, Simulators, and Security,” IEEE Design
& Test, vol. 39, no. 2, pp. 90–99, 2022.

[180] F. Staudigl, K. J. X. Sturm, M. Bartel, T. Fetz, D. Sisejkovic, J. M. Joseph, L. B.
Pohls, and R. Leupers, “X-Fault: Impact of Faults on Binary Neural Networks
in Memristor-Crossbar Arrays with Logic-in-Memory Computation,” in Inter-
national Conference on Artificial Intelligence Circuits and Systems (AICAS). IEEE,
2022.

BIBLIOGRAPHY 135

[181] N. STMicroelectronics, “STM32H745ZI - High-performance and DSP with DP-
FPU, Dual core Arm Cortex-M7+ Cortex-M4 MCU with 2MBytes of Flash mem-
ory, 1MB RAM, 480 MHz CPU, Art Accelerator, L1 cache, external memory
interface, large set of peripherals, SMPS,” https://www.st.com/resource/en/
datasheet/stm32h745zi.pdf, accessed: 2024-01-20.

[182] J. Szefer, “Survey of Microarchitectural Side and Covert Channels, Attacks, and
Defenses,” Journal of Hardware and Systems Security, vol. 3, no. 3, pp. 219–234,
2018.

[183] M. Tahoor, “Reliable Computing I, Lecture 3: Faults, Errors, Failures,” https:
//cdnc.itec.kit.edu/downloads/lecture3-reliable-computing-1-2016-2017.pdf,
2016, Accessed: 2023-08-14.

[184] A. Tang, S. Sethumadhavan, and S. Stolfo, “CLKSCREW: Exposing the Per-
ils of Security-Oblivious Energy Management,” in USENIX Security Symposium
(USENIX Security 17). Vancouver, BC: USENIX Association, 2017, pp. 1057–
1074.

[185] X. Tang, J. Liu, Y. Shen, S. Li, L. Shen, A. Sanyal, K. Ragab, and N. Sun, “Low-
Power SAR ADC Design: Overview and Survey of State-of-the-Art Techniques,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 69, no. 6, pp. 2249–
2262, 2022.

[186] M. Tehranipoor and F. Koushanfar, “A Survey of Hardware Trojan Taxonomy
and Detection,” IEEE Design & Test of Computers, vol. 27, no. 1, pp. 10–25, 2010.

[187] U. G. The White House, “CHIPS and Science Act Will Lower Costs, Cre-
ate Jobs, Strengthen Supply Chains, and Counter China,” https://www.
whitehouse.gov/briefing-room/statements-releases/2022/08/09/fact-sheet-
chips-and-science-act-will-lower-costs-create-jobs-strengthen-supply-chains-
and-counter-china/, 2022, Accessed: 2023-08-23.

[188] J. P. Thoma and T. Güneysu, “Write Me and I’ll Tell You Secrets - Write-After-
Write Effects On Intel CPUs,” in International Symposium on Research in Attacks,
Intrusions and Defenses, RAID. ACM, 2022.

[189] A. C. Torrezan, J. P. Strachan, G. Medeiros-Ribeiro, and R. S. Williams, “Sub-
nanosecond Switching of a Tantalum Oxide Memristor,” Nanotechnology, vol. 22,
p. 485203, 2011.

[190] Traco Power North America Inc., “THL 25-2423,” https://www.tracopower.
com/sites/default/files/products/datasheets/thl25_datasheet.pdf, accessed:
2024-01-20.

[191] Traco Power North America Inc., “TMR 3-2421,” https://www.tracopower.
com/sites/default/files/products/datasheets/tmr3_datasheet.pdff, accessed:
2024-01-20.

https://www.st.com/resource/en/datasheet/stm32h745zi.pdf
https://www.st.com/resource/en/datasheet/stm32h745zi.pdf
https://cdnc.itec.kit.edu/downloads/lecture3-reliable-computing-1-2016-2017.pdf
https://cdnc.itec.kit.edu/downloads/lecture3-reliable-computing-1-2016-2017.pdf
https://www.whitehouse.gov/briefing-room/statements-releases/2022/08/09/fact-sheet-chips-and-science-act-will-lower-costs-create-jobs-strengthen-supply-chains-and-counter-china/
https://www.whitehouse.gov/briefing-room/statements-releases/2022/08/09/fact-sheet-chips-and-science-act-will-lower-costs-create-jobs-strengthen-supply-chains-and-counter-china/
https://www.whitehouse.gov/briefing-room/statements-releases/2022/08/09/fact-sheet-chips-and-science-act-will-lower-costs-create-jobs-strengthen-supply-chains-and-counter-china/
https://www.whitehouse.gov/briefing-room/statements-releases/2022/08/09/fact-sheet-chips-and-science-act-will-lower-costs-create-jobs-strengthen-supply-chains-and-counter-china/
https://www.tracopower.com/sites/default/files/products/datasheets/thl25_datasheet.pdf
https://www.tracopower.com/sites/default/files/products/datasheets/thl25_datasheet.pdf
https://www.tracopower.com/sites/default/files/products/datasheets/tmr3_datasheet.pdff
https://www.tracopower.com/sites/default/files/products/datasheets/tmr3_datasheet.pdff

136 BIBLIOGRAPHY

[192] E. I. Vatajelu, P. Prinetto, M. Taouil, and S. Hamdioui, “Challenges and So-
lutions in Emerging Memory Testing,” IEEE Transactions on Emerging Topics in
Computing, vol. 7, no. 3, pp. 493–506, 2019.

[193] P. Vila, B. Kopf, and J. F. Morales, “Theory and Practice of Finding Eviction
Sets,” in IEEE Symposium on Security and Privacy (SP). IEEE, 2019.

[194] M. von Witzleben, K. Fleck, C. Funck, B. Baumkötter, M. Zuric, A. Idt, T. Breuer,
R. Waser, U. Böttger, and S. Menzel, “Investigation of the Impact of High Tem-
peratures on the Switching Kinetics of Redox-based Resistive Switching Cells
Using a Highspeed Nanoheater,” Advanced Electronic Materials, vol. 3, no. 12, p.
1700294, 2017.

[195] M. von Witzleben, K. Fleck, C. Funck, B. Baumkötter, M. Zuric, A. Idt, T. Breuer,
R. Waser, U. Böttger, and S. Menzel, “Investigation of the Impact of High Tem-
peratures on the Switching Kinetics of Redox-based Resistive Switching Cells
Using a Highspeed Nanoheater,” Adv. Electron. Mat., vol. 3, no. 12, p. 1700294,
2017.

[196] M. von Witzleben, T. Hennen, A. Kindsmüller, S. Menzel, R. Waser, and
U. Böttger, “Study of the Set Switching Event of VCM-based Memories on a
Picosecond Timescale,” Journal of Applied Physics, vol. 127, no. 20, p. 204501,
2020.

[197] W. Wan, R. Kubendran, C. Schaefer, S. B. Eryilmaz, W. Zhang, D. Wu, S. Deiss,
P. Raina, H. Qian, B. Gao, S. Joshi, H. Wu, H.-S. P. Wong, and G. Cauwenberghs,
“A Compute-In-Memory Chip Based on Resistive Random-Access Memory,”
Nature, vol. 608, no. 7923, pp. 504–512, 2022.

[198] Z. Wang, F. hsuan Meng, Y. Park, J. K. Eshraghian, and W. D. Lu, “Side-Channel
Attack Analysis on In-Memory Computing Architectures,” IEEE Transactions on
Emerging Topics in Computing, pp. 1–13, 2023.

[199] R. Waser and M. Aono, “Nanoionics-based Resistive Switching Memories,” Na-
ture Materials, vol. 6, no. 11, pp. 833–840, 2007.

[200] R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-based Resistive Switch-
ing Memories - Nanoionic Mechanisms, Prospects, and Challenges,” Advanced
Materials, vol. 21, no. 25-26, pp. 2632–2663, 2009.

[201] J. Wen, A. Baroni, E. Perez, M. Uhlmann, M. Fritscher, K. KrishneGowda, M. Ul-
bricht, C. Wenger, and M. Krstic, “Towards Reliable and Energy-Efficient RRAM
Based Discrete Fourier Transform Accelerator,” in Design, Automation &; Test in
Europe Conference &; Exhibition (DATE). IEEE, 2024, pp. 1–6.

[202] L. Xia, W. Huangfu, T. Tang, X. Yin, K. Chakrabarty, Y. Xie, Y. Wang, and
H. Yang, “Stuck-at Fault Tolerance in RRAM Computing Systems,” IEEE Journal

BIBLIOGRAPHY 137

on Emerging and Selected Topics in Circuits and Systems, vol. 8, no. 1, pp. 102–115,
2018.

[203] L. Xia, B. Li, T. Tang, P. Gu, P.-Y. Chen, S. Yu, Y. Cao, Y. Wang, Y. Xie, and
H. Yang, “MNSIM: Simulation Platform for Memristor-based Neuromorphic
Computing System,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, pp. 1–1, 2017.

[204] Q. Xia, W. Robinett, M. W. Cumbie, N. Banerjee, T. J. Cardinali, J. J. Yang,
W. Wu, X. Li, W. M. Tong, D. B. Strukov, G. S. Snider, G. Medeiros-Ribeiro,
and R. S. Williams, “Memristor-CMOS Hybrid Integrated Circuits for Reconfig-
urable Logic,” Nano Letters, vol. 9, no. 10, pp. 3640–3645, 2009.

[205] Q. Xia and J. J. Yang, “Memristive Crossbar Arrays for Brain-Inspired Comput-
ing,” Nature materials, vol. 18, no. 4, pp. 309–323, 2019.

[206] K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, and M. Tehranipoor, “Hardware
Trojans: Lessons Learned after One Decade of Research,” Transactions on Design
Automation of Electronic Systems, vol. 22, no. 1, pp. 1–23, 2016.

[207] T. P. Xiao, C. H. Bennett, B. Feinberg, M. J. Marinella, and S. Agarwal,
“CrossSim: Accuracy Simulation Of Analog In-Memory Computing.” [Online].
Available: https://github.com/sandialabs/cross-sim

[208] XP Power Ltd., “JCH1024,” https://www.xppower.com/portals/0/pdfs/SF_
JCH10.pdf, accessed: 2024-01-20.

[209] C. Xu, D. Niu, Y. Zheng, S. Yu, and Y. Xie, “Impact of Cell Failure on Reliable
Cross-Point Resistive Memory Design,” ACM Transactions on Design Automation
of Electronic Systems, vol. 20, no. 4, pp. 1–21, 2015.

[210] M. Xue, C. Gu, W. Liu, S. Yu, and M. O'Neill, “Ten Years of Hardware Trojans:
A Survey From The Attacker’s Perspective,” Computers & Digital Techniques IET,
vol. 14, no. 6, pp. 231–246, 2020.

[211] J. J. Yang, M. D. Pickett, X. Li, D. A. A. Ohlberg, D. R. Stewart, and R. S.
Williams, “Memristive Switching Mechanism for Metal/oxide/metal Nanode-
vices,” Nature Nanotechnology, vol. 3, no. 7, pp. 429–433, 2008.

[212] K. Yang, M. Hicks, Q. Dong, T. Austin, and D. Sylvester, “A2: Analog Malicious
Hardware,” in IEEE Symposium on Security and Privacy (SP). IEEE, 2016.

[213] S. Yasuda, K. Ohba, T. Mizuguchi, H. Sei, M. Shimuta, K. Aratani, T. Shiimoto,
T. Yamamoto, T. Sone, S. Nonoguchi, J. Okuno, A. Kouchiyama, W. Otsuka, and
K. Tsutsui, “A Cross Point Cu-ReRAM with a Novel Ots Selector for Storage
Class Memory Applications,” in Symposium on VLSI Technology. IEEE, 2017.

https://github.com/sandialabs/cross-sim
https://www.xppower.com/portals/0/pdfs/SF_JCH10.pdf
https://www.xppower.com/portals/0/pdfs/SF_JCH10.pdf

138 BIBLIOGRAPHY

[214] W. Ye, L. Wang, Z. Zhou, J. An, W. Li, H. Gao, Z. Li, J. Yue, H. Hu, X. Xu,
J. Yang, J. Liu, D. Shang, F. Zhang, J. Tian, C. Dou, Q. Liu, and M. Liu, “A 28-
nm RRAM Computing-in-Memory Macro Using Weighted Hybrid 2T1R Cell
Array and Reference Subtracting Sense Amplifier for AI Edge Inference,” IEEE
Journal of Solid-State Circuits, vol. 58, no. 10, pp. 2839–2850, 2023.

[215] S. Yoneda, S. Ito, Y. Hayakawa, Z. Wei, S. Muraoka, R. Yasuhara, K. Kawashima,
A. Himeno, and T. Mikawa, “Newly Developed Process Integration Technolo-
gies for Highly Reliable 40 Nm ReRAM,” Japanese Journal of Applied Physics,
vol. 58, pp. SBBB06/1–8, 2019.

[216] B. Zhang, N. Uysal, D. Fan, and R. Ewetz, “Handling Stuck-At-Faults In Mem-
ristor Crossbar Arrays Using Matrix Transformations,” in ACM Asia and South
Pacific Design Automation Conference, 2019.

[217] Y. Zhang, D. Feng, W. Tong, Y. Hua, J. Liu, Z. Tan, C. Wang, B. Wu, Z. Li, and
G. Xu, “CACF: A Novel Circuit Architecture Co-Optimization Framework for
Improving Performance, Reliability and Energy of ReRAM-based Main Memory
System,” ACM Transactions on Architecture and Code Optimization, vol. 15, no. 2,
pp. 1–26, 2018.

[218] Y. Zhang, Y. Shen, X. Wang, and Y. Guo, “A Novel Design for a Memristor-Based
OR Gate,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 62,
no. 8, pp. 781–785, 2015.

[219] Y. Zhang, Z. Yu, L. Gu, C. Wang, and D. Feng, “EnTiered-ReRAM: An Enhanced
Low Latency and Energy Efficient TLC Crossbar ReRAM Architecture,” IEEE
Access, vol. 9, pp. 167 173–167 189, 2021.

[220] Y. Zheng, C. Xu, and Y. Xie, “Modeling Framework For Cross-Point Resistive
Memory Design Emphasizing Reliability And Variability Issues,” in IEEE Asia
and South Pacific Design Automation Conference, 2015.

[221] Z. Zhu, H. Sun, K. Qiu, L. Xia, G. Krishnan, G. Dai, D. Niu, X. Chen, X. S. Hu,
Y. Cao, Y. Xie, Y. Wang, and H. Yang, “MNSIM 2.0: A Behavior-Level Modeling
Tool for Memristor-based Neuromorphic Computing Systems,” in Great Lakes
Symposium on VLSI. ACM, 2020.

[222] H. Ziade, R. A. Ayoubi, and R. Velazco, “A Survey On Fault Injection Tech-
niques,” The International Arab Journal of Information Technology, vol. 1, no. 2, pp.
171–186, 2004.

Curriculum Vitae

Name Felix Staudigl
Geburtsdatum 13.01.1994

Geburtsort Ingolstadt

2000−2004 Grundschule
2004−2010 Realschule
2010−2012 Fachoberschule

2012−2016 Duales Studium (Siemens AG & Technische
Hochschule Nürnberg)

Juli 2015 IHK-Abschluss zum Elektroniker für
Automatisierungstechnik

August 2016 Abschluss B.Eng Elektro- und Informationstechnik

2016−2021 T.I.M.E.-Programm (RWTH Aachen & CTU Prag)
Juni 2019 Abschluss M.Sc (CTU)

August 2021 Abschluss M.Sc (RWTH)

Seit Januar 2020 Wissenschaftlicher Angestellter am Lehrstuhl für
Software für Systeme auf Silizium (SSS) an der RWTH
Aachen

	Title
	Abstract
	Acknowledgements
	Contents
	Introduction
	Publications
	Synopsis and Outline

	Background
	Emerging Non-Volatile Memories (eNVMs)
	Memristive Devices
	Memristive Crossbar Structures

	Computing-in-Memory (CIM)
	Analog Computing-in-Memory (CIM)
	Logic-in-Memory (LIM)

	Reliability Aspects of ReRAMs
	Terminology
	Defects
	Fault Models
	Fault Injection

	Hardware Security
	Hardware Trojans
	Side-Channel Attacks
	Fault Injection Attacks

	Synopsis

	Related Work
	Reliability of Neuromorphic Computing Systems
	Reliability Aspects of ReRAMs
	Reliability Aspects of Computing-in-Memory Applications
	Simulation Platforms

	Hardware Security in the Era of Neuromorphic Computing
	Hardware Trojans
	Side-Channel Attacks
	Fault Injection Attacks

	Instrumention Platforms
	Lessons Learned
	Synopsis

	Fault Injection in Logic-in-Memory Architectures
	Framework Overview
	Application Mapping
	Crossbar Simulator
	Memory Controller
	Crossbar Model
	Memristor Model

	Fault Generator
	Fault Distribution
	Fault Mapping
	Noise Vector Extraction

	Fault Injector
	Fault Injection in Conv2D Layers
	Fault Injection in Dense Layers

	Resilience Metric for Logic-in-Memory Families
	Evaluation
	Case Study: Resilience of Logic Families
	Case Study: Resilience of Binary Neural Networks (BNNs)

	Limitations and Outlook
	Synopsis

	Deliberately Flipping Bits in Memristive Crossbar Arrays
	NeuroHammer
	Thermal Simulation
	Memristive Crossbar Model
	Thermal Crosstalk—Single Device
	Thermal Crosstalk—Multiple Devices

	Circuit Simulation
	Memory Controller
	Crosstalk Hub
	Memristive Crossbar

	Results
	Thermal Simulation
	1R Crossbar Arrays
	1T1R Crossbar Arrays

	Case Study: Leaking RSA Keys with NeuroHammer
	Attack Scenario
	Simulation Methodology
	Evaluation
	Additional Attack Targets

	Limitations and Outlook
	Synopsis

	Instrumentation Platform for Non-Volatile Memory Technologies
	Hardware
	Signal Generation
	Flexible Interconnection Matrix
	Signal Sensing
	Power Supply
	Non-Volatile Memory (NVM) Interface
	Platform Orchestration

	Software
	Firmware
	Application Interfaces

	Case Study: Reliability Assessment of a Commercial ReRAM Technology
	Manufacturing Yield
	Programming Characteristics
	Endurance Characteristics
	Computing-in-Memory (CIM)

	Limitations and Outlook
	Synopsis

	Conclusion
	Appendix
	Simulation Details
	Model Parameter
	Alpha Matrices

	Communication Details
	Glossary
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography
	Curriculum Vitae

