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Abstract

In engineering fields where mass is a design-driving parameter, holistic mass reduction via
multi-functionality is seen as a key enabler for further improvement of systems’ performance.
This research addresses the upcoming need for multi-functional structures capable of concur-
rently managing thermal control, energy storage, and load-bearing requirements.

An investigation on the thermal and mechanical properties of lattice structures incorporating
Phase Change Materials (PCMs) is described throughout this thesis.

The work commences with an analytical description of the geometry of lattice structures. Then,
it delves into the exploration of the effective thermophysical properties of the homogenised
composite material, followed by meticulous validation through experimental methodologies.
The impact of natural convection on the expansion of the melting front within the medium is
considered as well.

To elucidate how the presence of the PCM influences the structural integrity of the lattice,
numerical and experimental analyses are performed for the PCM-infused lattice structures, fo-
cusing on the stability of the struts when the PCM is frozen.

Furthermore, the thesis introduces a multi-variate optimisation framework designed to offer
novel pathways for topology optimisation of lattice structures. This framework enables the ex-
ploration of optimal configurations by considering multiple variables simultaneously, providing
a comprehensive approach to tailor the performance of such composites.

The findings of this research contribute to a deeper understanding of the thermal and mechanical
behaviour of cellular solids embedded with PCMs, providing valuable insights for applications
in thermal energy storage, thermal management systems, and other related fields.

In summary, this research contributes significantly to the advancement of multi-functional struc-
tures, offering a holistic perspective to address the complex demands of aerospace and other
applications where mass is a constraint.

Keywords: Lattice Structures; Phase Change Materials; Topology Optimisation; Homogen-
isation Approach; Natural Convection;






Kurzfassung

In Bereichen der Ingenieurwissenschaften, in denen die Masse ein konstruktionsbestimmender
Parameter ist, wird eine ganzheitliche Massenreduzierung durch Multifunktionalitét als Schliis-
selfaktor fiir die weitere Verbesserung der Leistung von Systemen angesehen. Diese Forschung
befasst sich mit dem aufkommenden Bedarf an multifunktionalen Strukturen, die in der Lage
sind, gleichzeitig thermische Kontrolle, Energiespeicherung und Lasttragende Anforderungen
zu erfiillen.

Eine Untersuchung der thermischen und mechanischen Eigenschaften von Gitterstrukturen, die
Phasenwechselmaterialien (PCMs) enthalten, wird in dieser Arbeit beschrieben.

Die Arbeit beginnt mit einer analytischen Beschreibung der Geometrie von Gitterstrukturen.
Anschlieend werden die effektiven thermophysikalischen Eigenschaften des homogenisierten
Verbundwerkstoffs erforscht, gefolgt von einer sorgfiltigen Validierung durch experimentelle
Methoden. Dariiber hinaus werden die Auswirkungen der natiirlichen Konvektion auf die Aus-
dehnung der Schmelzfront innerhalb des Mediums untersucht.

Es werden numerische und experimentelle Analysen fiir die mit PCM infundierten Gitterstruk-
turen durchgefiihrt, wobei der Schwerpunkt auf der Stabilitéit der Streben liegt, wenn das PCM
gefroren ist. Die Studie soll klidren, wie die Anwesenheit des Phasenwechselmaterials die struk-
turelle Integritét des Gitters beeinflusst.

Dariiber hinaus wird in dieser Arbeit ein multivariater Optimierungsansatz vorgestellt, der neue
Wege fiir die Topologieoptimierung von Gitterstrukturen bietet. Dieser Rahmen ermoglicht die
Erforschung optimaler Konfigurationen durch die gleichzeitige Beriicksichtigung mehrerer Va-
riablen und bietet so einen umfassenden Ansatz zur Anpassung der Leistung solcher Verbund-
werkstoffe.

Die Ergebnisse dieser Forschung tragen zu einem tieferen Verstindnis des thermischen und me-
chanischen Verhaltens von zelluldren Festkorpern bei, die mit PCM eingebettet sind, und liefern
wertvolle Erkenntnisse fiir Anwendungen in der thermischen Energiespeicherung, in Wérme-
managementsystemen und in anderen verwandten Bereichen.

Zusammenfassend trigt diese Forschung wesentlich zur Weiterentwicklung von multifunktio-
nalen Strukturen bei und bietet eine holistische Perspektive, um die komplexen Anforderungen
der Luft- und Raumfahrt und anderer Anwendungen zu erfiillen, bei denen die Masse eine Ein-
schriankung darstellt.
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Nomenclature

Abbreviations
bc body centered
fc face centered
bcc body centered cubic
fec face centered cubic
Jface face centered cubic with double diagonal
bccz body centered cubic with vertical strut
Jfrccz face centered cubic with double diagonal and vertical strut
Jfrbcc frcc combined with bce
frbcez Jfrbcc with vertical strut
GWI Global Warming Impact
ELVs Expendable Launch Vehicles
RLVs Reusable Launch Vehicles
MEFS Multifunctional Structure
LVs Launch Vehicles
EVs Electric Vehicles
CSP Concentrated Solar Power
BTMS Battery thermal Management Systems
PCMs Phase Change Materials
FEM Finite Element Method
FVM Finite Volume Method
SLM Selective Laser Melting
ETC Effective thermal Conductivity
LHTES Latent Heat thermal Energy Storage
SHTES  Sensible Heat thermal Energy Storage

PPI

Pores Per Inch



LTE
LTNE
IHTC
SIMP
GOCM
OCM
TPMS
PWM
CAD
RMSE
IR
PTFE
STP
SIMPLE
ANA
NUM
LPBF
BEAM
VOL
PLC
AD

Local thermal Equilibrium

Local thermal Non-Equilibrium
Interstitial Heat Transfer Coefficient
Solid isotropic material with penalization
Generalised Optimality Criteria Method
Optimality Criteria Method

Triply Periodic Minimal Surface

Pulse Width Modulation
Computer-Aided Design

Root Mean Squared Error

Infrared

Polytetrafluoroethylene

Specific thermal Performance
Semi-Implicit Method for Pressure Linked Equations
analytical results

numerical results

Laser Powder Bed Fusion

beam elements

volumetric elements

Portevin-Le Chatelier

Automatic Differentiation

Non-dimensional variables in thermal characterisation:

Fo Fourier number

Ste  Stefan number

Ra Rayleigh number

Nu Nusselt number

Re  Reynolds number

Pr  Prandtl number

Gr Grashof number



List of variables

Due to vast and multidisciplinary topic, variables with same symbol were used in different
contexts. Here y are appropriately separated.
Unit cell geometry and effective properties:

X volume fraction (or relative density) of cellular solid
€ porosity of cellular solid

Ao cell cross-section

Ay node cross-section

A cross-section area of strut

o ratio of node area to cross-section area of strut

t edge length of node

L strut length

e ratio between edge length of node and strut length
o, fitting parameter for complex intersection

Viot volume of unit cell

Vi volume of struts

t1 and t, side lengths of cubes

Ws additional fitting parameter

p* relative density of cellular solid

Ps density of bulk material of which cellular solid is made
Pr density of filler material

Peff effective density of composite

E* effective Young’s modulus of cellular solid

E Young’s modulus of bulk material

o* effective yield stress of cellular solid

Oy, yield stress of bulk material

Cpery effective specific heat capacity of composite

Cp, specific heat capacity of filler

C, specific heat capacity of cellular solid bulk material
Aerf effective thermal conductivity

A parallel model: upper bound

AL series model: lower bound



conductivity of raw filling material
conductivity of raw solid material

heat flux over solid phase

heat flux over filler

temperature difference

distances of material through layer

surface of conducting material at position s
cell height

surface of filling material

thermo-fluidic variables:

[IIEQSQQQ Aa < o =

Po

Hefr

S
SIS
Pt

P)eff

N
*

velocity vector

density

pressure

deviatoric stress tensor

gravitational acceleration

thermal diffusivity of medium

specific heat capacity at constant pressure

heat source term

reference temperature

density at reference temperature 7

coefficient of thermal expansion of fluid

Darcy velocity vector

permeability tensor

dynamic viscosity of fluid

tortuosity

effective viscosity of porous medium in Darcy-Brinkman equation
temperature

source term

heat capacity of fluid (f) or solid (s)

effective heat capacity of homogenised medium

thermal conductivity



T(x=0,1)

Hyery
Hy pcm
Dy

interstitial heat transfer coefficient
temperature of fluid or solid
change in enthalpy

position of interface between two phases, melting front position
normal vector to interface

time

density of PCM

heat of fusion of PCM

liquid fraction within domain
melting temperature of PCM
solidus temperature

liquidus temperature

wall temperature

effective latent heat of fusion
latent heat of PCM

hydraulic diameter

Structural variables:

S T T s~

Q
v

compressive stress

critical buckling stress

load

critical buckling load of a slender beam
effective length of slender beam
cross-section area of a slender beam
Young’s modulus of material

second moment of area of cross-section
buckling shape

eigenvalue

spring stiffness

spring deflection

spring reaction force

shear stiffness of spring bed



kVesic

foundation modulus based on Vesic’s model

KH errmann Herrmann foundation modulus

Gy shear modulus of foundation

Ko() and K;() modified Bessel functions of second kind for orders 0 and 1
El bending stiffness of beam

D beam’s diameter

b foundation width

AU strain energy of bending of beam

AU, bending strain energy resulting from elastic foundation
m buckling mode

am wave function

My critical mode

Optimisation variables:

u
K
f
D,

S O °
. O

8i

i

vector of unknowns
stiffness matrix

forcing array

element material tensor
compliance

actual material tensor
penalised material tensor
penalisation parameter
domain

filter radius

Lagrangian

volume fraction of domain
total volume of domain
Lagrange multiplier

scale factor

power parameter for scale factor
constraint

slack variable



T  temperature matrix

ke  stiffness matrix of a single element

K, convection matrix

K. conductivity matrix

R  rotation matrix

C  material tensor

Tyy  shear stress

O, principal stress in x-direction

o, principal stress in y-direction

6, rotation angle of principal axis
rotation angle

J  goal function

w;  weights of multifunctional optimisation

p  penalisation coefficient

Operators:

V. divergence operator
V  gradient operator

V2 Laplacian operator






1 Introduction

Background and Motivation of Research

Human-induced climate change is compelling society to undergo a paradigm shift. In the realm
of emerging energy production and storage technologies, there is a crucial demand for innov-
ative approaches to conceptualizing systems and subsystems. The significance of lightweight
design is escalating, particularly in the context of mobile systems. Reductions in mass and
volume not only enhance the performance of a mobile system but also positively influence
its economic and ecological footprint. Specifically, direct emission reductions can be realized
through mass savings, and the emissions stemming from the production process can be curtailed
through lightweight design. The Life Cycle Assessment of mobile systems is significantly im-
pacted by their mass. For instance, recent research has shown that Reusable Launch Vehicles
(RLVs) consistently exhibit a higher Global Warming Impact (GWI) compared to Expendable
Launch Vehicles (ELVs), irrespective of the number of reuses [1]. This discrepancy is attribut-
able to the additional mass required for re-entry and landing during launch. Likewise, Electric
Vehicles (EVs), grappling with the low energy density of Li-ion batteries, are attaining unsus-
tainable mass levels, potentially jeopardizing the transition to a decarbonized electricity grid
[2].

In light of these considerations, it is imperative to explore solutions that target mass reduction
across the entire system. Within this context, the multifunctionality of load-bearing structures
emerges as a critical enabler. A Multifunctional Structure (MFS) is achieved by integrating
functional components into a structure, typically resembling a sandwich panel [3]. The integra-
tion of functional components into the load-bearing structure diminishes the need for secondary
structures and joints, facilitating holistic mass reductions at the system level. Although the mass
of structural components may increase, overall system mass reductions can be achieved.

As demonstrated by Son et al. [4], thermal control functionalities can be efficiently incorpor-
ated into structural components. In the context of climate change mitigation efforts, there is a
growing interest in thermal control and management systems, as well as thermal energy storage
[5, 6]. On one hand, thermal management systems are indispensable for the safe operation of
widespread electro-chemical energy storage systems. Similarly, thermal control is becoming a
concern for increasingly power-dense electronics, essential for autonomous driving, advanced
avionics, and on-board electronics operating in harsh environments, such as spacecraft and
Launch Vehicles (LVs).

On the other hand, thermal energy storage is anticipated to constitute a significant portion of en-
ergy storage technologies aimed at achieving climate change mitigation goals [7, 8]. Therefore,
leveraging thermal energy storage and thermal control is pivotal for attaining the necessary tech-
nological progress. The confluence of these two aspects— the imperative for lightweight, mul-
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tifunctional structural components and the escalating requirements for thermal control—forms
the motivation for this research.

In particular, the recent years saw a sharp increase in research and industrial efforts to make
use of latent heat to achieve efficient thermal energy storage or thermal management. So-called
Phase Change Materials (PCMs), i.e. materials which exhibit a high latent heat of fusion, are
intensively investigated for applications where heat sinks or thermal buffers are needed, but
mass and volume constraints impose strict energy density requirements, i.e. in automotive and
aerospace applications [9]. At the same time PCMs are proposed for energy storage in Concen-
trated Solar Power (CSP) plants [10] or for the built environment [11]. PCMs are commonly
employed in applications where lightweight is a design driver, e.g. in the thermal control of
spacecrafts. The rise of Electric Vehicles (EVs) and the requirements of an efficient Thermal
Management for Li-ion battery packs brought to an exponential increase in investigations aim-
ing to the exploitation of such materials for Battery Thermal Management Systems (BTMS)
[12]. As also indicated by Shi et al. [12], a key to enable the efficient use of PCMs for BTMS
and other thermal control systems in non-stationary applications lies in the structural integra-
tion. A comprehensively efficient thermal control system can be achieved by embedding the
PCM within the load bearing structure of the controlled system. In this perspective, several
synergies can be found to holistically improve both the thermal performance of the system and
achieve mass reductions via multifunctionality.

In particular, the widespread use of PCMs for room-temperature thermal management is hindered
by their poor thermal conductivity. Excluding metallic eutectic alloys, which are used for high
temperature applications, most PCMs exhibit a low thermal conductivity, typically ranging
between 10~! and IOOH‘:V—K [13]. Several mitigation techniques are proposed in the literature
to both address the encapsulation issues and the improvement of the thermal conductivity. In
particular, embedding the PCM within cellular solids with open-cell morphology and a high
thermal conductivity, is a method that increasingly gained popularity thanks to the advance-
ment of manufacturing techniques. This way, composite materials are obtained, which exhibit
an effective thermal conductivity that is orders of magnitude higher than the one of a PCM. Such
composites are of interest for lightweight applications. In particular, novel porous structures ob-
tained via additive manufacturing offer a high flexibility in controlling the effective properties
of the composite. Additive manufacturing enables designing locally tailored lattice structures
with different technical goals, i.e. mass reduction, stiffness improvement, or high surface area
for heat exchange. Lattice structures were recently introduced as cores for lightweight sand-
wich structural panels, where mass and resource savings are a design driver. Being open-celled
and having the possibility to efficiently tailor the geometry, such structural elements have been
recently investigated for the multi-functional purpose of enhancing the thermal conductivity of
a PCM while obtaining enclosures that can act as lightweight primary structures of different
kinds of vehicles. If one considers that secondary structures, i.e. thermal control modules, can
be removed, a holistic mass reduction potential can be achieved when considering such a com-
posite primary structure, leading to energy and cost savings. While for static applications, mass
savings are not as relevant for the performance of the system, resource savings are becoming
increasingly important. Thus, a similar approach could become interesting for applications in



the energy sector, e.g. for high temperature salt-based latent-heat storage systems, which face
challenges connected to the PCM encapsulation and the thermal and mechanical stresses acting
on the containers. However, the thermal and mechanical behaviour of such composites is still
poorly understood. Only few authors investigated the topic within the literature, and often, with
attention to the thermal performance only. Thus, this work, sets the goal of introducing multi-
functional structures based on architected lattice structures embedding Phase Change Materials.
A multidisciplinary analysis and characterisation of the thermal and mechanical behaviour of
composites made of metallic lattice core sandwich structures embedded with PCMs is proposed
to cover such literature gap.

Research objectives

This work aims to characterise the thermal behaviour of PCMs embedded within metallic peri-
odic lattices. Similarly, the effect of the presence of a PCM within the core of a sandwich panel
on the effective mechanical properties is investigated. The obtained correlations are discussed
and semi-analytical formulae are obtained. Within the frame of these activities, three research
hypotheses are formulated, which are then validated or disproved throughout the following
chapters of this work. These are:

1. The effective thermal conductivity tensor can be derived in the form of an analytical
function of generic unit cell geometric parameters and material properties.

2. The topology influences only the effective thermal conductivity, while effective density
and effective specific heat are obtainable via volume mixture rule (i.e. they only depend
on the cell porosity). These combined are sufficient to describe the transient thermal
behaviour of the composite.

3. The presence of a solid PCM acts as an elastic bed for the lattice struts. The critical
buckling load of both the lattice struts, and the structure as a whole is increased.

4. Optimal geometries for thermal and structural functionality can have opposing design
drivers. With help of a multivariate topology optimisation, and Pareto optimality evalu-
ations, the appropriate geometry for any boundary condition can be found.

Structure of the Thesis

Chapter 2 delivers insights on the relevant works in the fields of cellular solids for the con-
sidered applications, i.e. thermal and structural purposes. An overview is given on both latent
heat thermal energy storage and mechanical and thermal properties of different kinds of cellular
solids.

The fundamental equations for the thermal and mechanical behaviour of the composites are in-
troduced. In particular, the methods to calculate the effective properties of similar cellular solids
are described. The fundamentals as well as the state of the art on fluid flow in porous media are
described in order to introduce the methods to characterise natural convective motions in the
composite, and its effect on the thermal behaviour.
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Fundamental theories regarding the stability of lattice struts embedded within elastic media are
introduced.

Finally, the fundamentals of topology optimisation are introduced to allow a detailed approach
to the multi-variate optimisation of the lattice structure.

It is worth mentioning here that, due to the very broad and multidisciplinary nature of this work,
detailed discussions of the state of the art are included in the following chapters, where the rel-
evant topics are introduced.

Chapter 3 describes the methods to analytically describe the geometrical properties of the lat-
tice structures. In particular a univoque relation between the porosity of the unit cell and all
other geometrical parameters is derived. While synthetic, this Chapter is necessary to introduce
the analytical description of the thermal behaviour of the composites, as well as allow the multi-
variate topology optimisation.

Chapter 4 introduces the characterisation of the thermal behaviour of the composites. In partic-
ular, semi-analytical methods to describe the effective thermophysical properties of the compos-
ite are derived. Numerical and experimental validations are proposed. A variety of geometrical
parameters are included in order to be able to deliver a description of the thermal behaviour
which is applicable for a periodic lattice structure with generic geometrical arrangement of the
struts in the unit cell. Additionally, evaluations of the effect of natural convection on the melting
process are introduced.

Chapter 5 sheds light on the effect of PCMs presence within an enclosed lattice structure. A
treatment of the PCM as an elastic medium is introduced. In particular, the effect of the PCM
on the stability of lattice structures is numerically investigated. A brief experimental validation
is presented as well.

With the information obtained by the characterisations described in chapters 4 and 5, Chapter
6 delivers an approach to perform a multivariate optimisation of such components. The main
target functions considered are mechanical stiffness and wall temperature, while the mass is
fixed as a constraint.

Chapter 7 summarises the findings and indicates additional activities to be performed in future
works to increase the maturity of this technology.



2 State of the Art

Due to the multidisciplinary goals, this work draws from two fundamental fields of engineering,
namely structural mechanics and heat transfer. To appropriately treat the analytical, numerical
and experimental methods implemented in this thesis, the relevant theoretical background for
both engineering fields is introduced in separate successive sections. Additionally, a brief in-
troduction about the fundamentals of topology optimisation is given. For sake of brevity, only
the relevant theoretical frameworks necessary to develop this work, are introduced. The reader
can refer to the book of Incropera et al. [14] for a fundamental description of the basic prin-
ciples of heat transfer. Similarly, for structural mechanics and lightweight design fundamentals,
the reader can refer to the work of Megson [15] or Wiedemann [16]. Both the Finite Element
Method (FEM) and the Finite Volume Method (FVM) are employed throughout this work to
numerically solve the equations which describe the analysed phenomena. The reader can refer
to the book from Prathap [17] to have a description of the FEM with a focus on structural mech-
anics, including the formulation of elements useful throughout this work, i.e. Timoshenko beam
elements. For the FVM with focus on heat transfer, the reader is referred to Reddy et al. [18].
The main reference for topology optimisation fundamentals is instead the book of Bensge and
Sigmund [19]. This work also refers to the text of Kochenderfer and Wheeler [20] for optim-
isation algorithms.

The lattice structures treated in this work are additively manufactured. The manufacturing pro-
cess 1s based on the Selective Laser Melting (SLM) technology. This is however not the scope
of this work. The reader can refer to the work of DebRoy et al. [21] for a comprehensive review
of the SLM process. The work of Mines et al. [22] instead gives a review of the state of the art
of the manufacturing of metallic lattice structures. The reader might want to refer also to recent
work which obtained such structures also via investment casting, with a variety of alloys [23].

The focus of this work is the description of the thermal and mechanical behaviour of lattice
structures with embedded Phase Change Materials. The lattice structures can be treated as
porous media. As such, the characterisation is first approached via obtaining effective thermo-
physical, and mechanical properties of the composite with help of volume averaging methods.
Chapter 6 of Shyy’s book [24] efficiently illustrates the rigorous approach to obtain volume
averaged equations, and thus properties, from the microscopic ones.

First a literature review of cellular solids, of which lattice structures are a sub-branch, is made.
Fundamental methods and correlations to obtain effective properties are described. Then, the
fundamental theory and state of the art necessary to describe transport phenomena in porous
media is described. This is a preamble for the aimed description of the thermal behaviour of a
PCM within such porous media. Finally, a review of the literature on latent heat thermal energy
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storage and the use of Phase Change Materials is done. In particular, the literature regarding the
use of high thermal conductivity cellular solids to improve the thermal conductivity of PCMs
is analysed. Finally, the fundamental background to describe the effect of PCMs on the mech-
anical behaviour of the lattice structure is illustrated to describe the basic theory applied to
investigate the phenomenon.

2.1 Cellular solids

The definition of cellular solid used in this work is consequent with Gibson and Ashby [25].
Cellular solids are employed in a variety of engineering applications, the main ones being
thermal insulation, lightweight structures, heat exchangers, energy absorption, vibration damp-
ing, sound insulation, filtering, catalysis [25, 26, 27, 28, 29]. Cellular solids can be found in
nature in the form of wood, cork or sponge, whereas foams are the most common man-made
cellular materials. They are usually made by foaming polymers. However, it is also possible to
foam ceramics, glasses and metals.

2.1.1 Topology

The most general description of a cellular solid is that of a conglomerate of enclosed spaces
(cells) with solid edges or faces, which are packed together to fill up a space domain. Solids
composed of two-dimensional arrays of regular or irregular polygons are typically named hon-
eycombs. One refers instead to foams when considering a three-dimensional packaging of cells
constituted by polyhedra. Not all polyhedra are suited to fill space in their undistorted form.
Only the triangular, hexagonal and rhombic prisms, as well as the rhombic dodecahedron and
the tetrakaidecahedron (also known as Kelvin cell) are. Foams exhibit an usually stochastic ar-
rangement of non-identical unit-cells, with different sizes, shapes, number of edges and faces.
However, idealisations of a foam geometry can be based on the above mentioned polyhedra.
Foams can be either open-celled, if the polyhedra connect via open faces, or close-celled other-
wise (see Figure 2.1).

With recent advancements in manufacturing technologies, i.e. metal additive manufacturing,
so-called lattice structures with different kinds of unit cells were introduced [30]. Their pecu-
liarity is having a three-dimensional periodicity (differently from the two-dimensional one of
honeycombs), and are generally open-celled [22]. Lattice structures can be seen as a particular
kind of foam with a non-stochastic arrangement and can be divided in strut-based and surface-
based lattices. The first have morphologies inspired to the Bravais cells and are denominated as
such. The surface-based lattices are represented by periodic arrangement of unit cells defined
as different Triply Periodic Minimal Surfaces [31]. Figure 2.2 schematically shows this subdi-
vision of cellular solids, while Figure 2.3 shows the most relevant strut lattices analysed in the
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Fig. 2.1: Closed and open Kelvin Cell.

literature, and which are the focus of this work.

Cellular solids

Stochastic

Periodic
08 2D 5D
7 2D 3D]

| Honeycombs | [Corrugation| |Surfac:e lattices| [Strut lattices|

8= O

Fig. 2.2: Schematic description of the various cellular solid categories.

Three fundamental rules characterise the geometry of cellular solids, namely the Euler’s law,
the Aboav-Weaire law and Lewis’s rule. These help define critical topological parameters,
such as the relative density (or porosity), that drive the effective physical properties of cellular
solids. The Euler’s law helps quantify the amount of faces, edges and vertices a space-filling
cellular solid can have. Indeed, one can idealise any cellular structure via a number of vertices
V connected to each other via edges E. Edges surround faces F which enclose cells C. The
number of edges which meet at a vertex is defined as edge-connectivity, while the number of
faces meeting at an edge is the face-connectivity. The Euler’s law states that

—C+F-E+V=1 2.1)
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(@) face (b) facez (c) bee

(d) beez (e) fabcc (f) fabce

Fig. 2.3: The investigated cuboid unit cells.

or, in a two dimensional case (honeycomb),
F-E+V=1 (2.2)

The consequence of this law is that even irregular cellular solids have, on average, a fixed
amount of sides per face. In three dimensions, i.e. for foams and lattices, the number of sides

per face 1, is given by
Z.Zy 2
= 1——= 2.3
7507 23)
where Z, is the edge-connectivity and Zy is the face connectivity. The Euler’s law hints that if a

cell has a higher than average number of edges, the neighbours shall have a lower than average
one.

N|
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2.1.2 Properties

The mechanical, thermal and electrical properties of cellular solids are not only dependent on
the properties of the bulk material, but rather they strongly depend on their relative density.
Many properties such as the thermal and electrical conductivity or the Young’s modulus roughly
adhere to power laws in dependence of the volume fraction ) (or relative density) of the cellular
solid [25]. This dependence can be generically described by the following equation.

K*
Kvol id

=Cy" (2.4)

where K* is a generic property of the cellular solid, K, is the property of the bulk material
under the same conditions, C and n are empirically determined coefficients. The theoretical
explanation for this is provided by the so-called percolation theory [32]. The theory deals with
the forming of network-like clusters in grids or arrays of squares called square lattices. If there
is some probability P* that a square is occupied by a dot, depending on the probability, clusters
of neighbouring squares with dots will form. Above a certain probability a continuous cluster

Fig. 2.4: From left to right: empty square lattice, square lattice with randomly distributed dots,
square lattice with continuous cluster of dots. [32]

that connects all boundaries of the array is formed. That probability is called the percolation
threshold P. It can be shown that above the percolation threshold many geometrical and stat-
istical properties of the network adhere to power laws of the kind expressed in the following
equation [32].

K~ (P"—P)" (2.5)

In the case of cellular solids P can be set to zero, since all regions of the solid have to be con-
nected, otherwise it would not be one body. The probability is analogous to the volume fraction,
since the fraction of occupied squares in a large lattice is equal to the probability. Hence, one
obtains Equation 2.4. The most relevant properties for this work are static-mechanical (i.e. ef-
fective stiffness and strength) and thermofluidic (i.e. effective thermal conductivity, diffusivity
and permeability). These are discussed in detail.



10 2 State of the Art

2.1.3 Mechanical properties

The most widely accepted description of the mechanical behaviour of cellular solids, including
lattice structures, is the Gibson-Ashby model [25]. According to such model, the behaviour of
a unit-cell when mechanically loaded can be either stretching-dominated or bending-dominated
[25, 33, 34, 35]. A generalised deformation behaviour of cellular solids is shown in Figure 2.5.
Three different stages exist: linear-elastic, plastic deformation and densification [33, 35]. In the
elastic part of the deformation, the structure deforms following a linear relationship with the
bulk Young Modulus of the material. However, as possible to see in Figure2.5, the effective
Young Modulus of a stretching dominated cell is typically higher than the one of a bending
dominated one. Once the elastic limit (yield stress) is reached, plastic deformation takes place.
Here the differences between stretching and bending-dominated cellular solids become more
evident. Indeed, a bending dominated behaviour is characterised by a so-called plateau stress,
1.e. deformation continues with an almost constant stress. The stress required for further plastic
deformation in a stretching dominated unit cell is variable [35]. The last stage, named densi-
fication, occurs when components of the unit cell deform so much that they contact each other.
Further deformation is constrained by newly tightly packed cell components and the associated
stress increases exponentially. Foams exhibit an isotropic bending dominated behaviour[36].

I) linear-elastic IT) plastic IIT) densification
deformation deformation
A r - 1[_ - - - _]l_ - 7
1D IT) | 1D/
| stretching dominate(?l |

bending dominated ‘l |
| |
_JL — — I _IL |

Strain

Stress

>

Fig. 2.5: Schematic description of the two different deformation behaviours for a stretching domin-
ated and a bending dominated unit cell.

The isotropicity was already described in Sec.2.1.1. The bending dominated behaviour is the
result of the struts usually meeting at an obtuse angle (see e.g. Figure2.1). Lattice structures,
instead, are usually anisotropic although some topology, e.g. the cubic bcc is isotropic. A gen-
eralised determination of their mechanical behaviour is not immediate. In an effort to establish a
generalised criterion to distinguish a stretch-dominated cellular solid from a bending-dominated
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one based on its geometry, Deshpande et al. first [36] and Ashby et al. [33] later, made use of
the Maxwell’s stability criterion [37] described in Equation 2.6 and Equation 2.7.

M=b-2j+3=0 (2.6)

M=b-3j+6=0 (2.7)

where M is the number of degrees of freedom, j is the number of joints, b the number of struts. If
M < 0 the structure is a mechanism. If the joints are locked, as it is the case for cellular solids,
where the unit-cell struts are connected to adjacent struts of other unit-cells, the struts bend
under loading (bending dominated). If M = 0, the struts are loaded as trusses, i.e. under tension
or compression only (stretching dominated). Slender structures like the struts of an open celled
cellular solid are much more structurally efficient when stretched than under bending. Thus, as
shown schematically in Figure2.5, a stretching dominated cellular solid has a higher structural
efficiency than a bending dominated one with the same relative density. Looking at Figure 2.6
one can notice that an additional condition, corresponding to the case of M > 0 exists. If the
horizontal strut is shortened, the other struts will be put into compression, balancing the tension
it carries. The struts carry stress even though the structure carries no external loads (self-stress).
Equation 2.6 and Equation 2.7 represent a necessary but not-sufficient condition for rigidity,
as they do not account for states of self-stress or mechanisms. A generalised version of the
Maxwell criterion can be found in Equation 2.8.

M=b-3j+6=s—m (2.8)

where s is the number of states of self-stress (overconstraining) and m the number of mech-
anisms. The insufficiency of the Maxwell criterion as a condition for the definition of the
behaviour of a cellular solid is evident as M=0 can be obtained by any combination of s and m
that subtracted from each other yields 0. Gibson and Ashby [25, 33] established a model for the
description of mechanical properties based on bending or stretching dominated behaviour. The
model is based on different power laws, with empirical coefficients and exponents. These laws
are summed up in Table 2.1. Here the exponents are fixed according to [25]. However, they
may also be derived from experimental data.

Lattice structures Important studies like the one from Leary et al.[38] evidenced that, as
expected according to the Maxwell criterion, the response to uniaxial compression of bcc and
frcc-based lattice structures fits the one of a bending dominated unit cell. The addition of
a vertical strut (parallel to the direction of the compressive load), yields beez and frccz unit
cells which according to the Maxwell criterion shall be stretching dominated. The study from
Leary et al. also indicated a mechanical response compatible with it, however they noticed
an oscillative behaviour of the stress as a function of strain in the plastic deformation (II) in
Figure2.5) part of the stress-strain curve. In a relevant and extensive review, Maconachie et
al. [35] related the experimental data available in the literature with the Gibson-Ashby model.
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a) M<O0 b) M=0
EF E F F
— > «— — > «—
c) M>0
F F
—> %

Fig. 2.6: Schematic description of the possible cases related to the Maxwell criterion for: a) a cel-
lular solid which has a bending dominated behaviour, b) one with stretching dominated
behaviour and ¢) an overconstrained one which gives origin to self-stress and does not dir-
ectly identify in one of the two previous categories. Here F is the external force, and M is
the number of degrees of freedom.

Property Bending dominated Stretching dominated
By E* %\ 2 E* *
Relative modulus (E) —=C <p_) —=C (p—)
ES pS ES pS
3
Relative strength (o) 9 _ C (p_) 2 o - C (p_)
Oy, Ps Oy, Ps

Table 2.1: Power laws for bending and stretching dominated behaviours according to [25]. C is an
empirically obtained coefficient, p* is the relative density of the cellular solid, p; is the
density of the bulk material of which the cellular solid is made, E* is the effective Young’s
modulus of the cellular solid, E; is the Young’s modulus of the bulk material, * is the
effective yield stress of the cellular solid and o, is the yield stress of the bulk material.
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They found that most lattice structures exhibit a bending dominated behaviour and that their
coefficients C vary in a range between 0.1 and 4 for the relative modulus and between 0.1 and 1
for the relative strength. However, the authors themselves indicate that the applicability of such
a generalised model is limited and several factors hinder its quantitative reliability. Indeed, as
indicated also by Zadpoor [39], the orientation of the cell of an anisotropic lattice structure with
respect to the load strongly affect the mechanical response. Zadpoor additionally evidenced
that the lack of reliable models for the estimation of the relative density can also be misleading.
Biihring et al. [40] developed and validated a semi-analytical model for the description of the
axial stiffness of lattice structures based on bcc and fyccz unit cells. Interestingly enough and in
counter-tendency with respect to what reported by Leary et al. [38], the relationship between the
relative modulus and the relative density was reported to be linear for both bee and f)ccz, thus
coherent with a stretching dominated structure. Biihring et al. [40] additionally showed how
the effective mechanical properties of the considered lattice structures strongly depend on other
geometrical parameters and boundary conditions, indicating that an unequivocal description of
the mechanical behaviour of such structures via power laws is not feasible.

2.1.4 Thermophysical properties

Cellular solids and in particular foams found application as insulation and fire retardant materi-
als. Recent literature intensively investigated the exploitation of the typically low thermal con-
ductivity, with respect to the bulk material, of sandwich cores based on cellular solids, in partic-
ular corrugated and lattice cores, for high temperature applications, i.e. so-called Thermal Pro-
tection Systems. In other applications, exploiting the high surface area, material flows through
foams using the cellular solid as heat exchangers [41]. For the combination of cellular solids
with a filler, e.g. a PCM embedded in a metallic foam or a metallic lattice structure, effective
thermophysical properties are used and the component can be treated as a composite material.
Properties such as the effective density or the effective specific heat capacity can be determined
via mixing laws [42] and depend only on the porosity € via the following equations.

eE=1—y 2.9)

where y is the volume fraction of the cellular solid, often also described as the relative density
with respect to the bulk material of which it is made (%). The effective density of the composite
is then A

Peft = EPF + XPs (2.10)

where pegr is the effective density of the composite, p is the density of the filler material, py the
density of the bulk material of the cellular solid. Similarly, the effective specific heat capacity
is given by

p P
Coer = g_fcpf +X_S

C
Pett Pett b

(2.11)

N
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where Cp,; is the effective specific heat capacity of the composite, Cp, is the specific heat
capacity of the filler and C), is the specific heat capacity of the cellular solid bulk material.
The mixing law cannot as simply be applied to the effective thermal conductivity (ETC). To
determine the ETC, the morphology of the cellular solid is of fundamental importance [42]. In
the most general case, the ETC is represented by a tensor with nine different terms.

)Lxx )ny sz

eff = | A Ay Ay (2.12)
Aox Aoy Az

Different methods to determine the ETC of a cellular solid were presented in the literature.
Models such as the upper and lower bounds established by Maxwell [37] were transferred to
the calculation of effective properties of porous media by Hashin and Shtrikman [43]. Analyt-
ical approaches such as those of Dul’Nev et al. [44] are still used in research decades later,
for example in Paek’s et al. [45] experimental investigations. At the turn of the century, many
works appeared on calculating the ETC of porous media. Till the end of the first decade of
the 215 century, mainly metallic and ceramic foams were investigated. Fu et al. [46] used the
thermal circuit method to approximate the ETC of porous ceramics by means of standard cubic
cells. In the thermal circuit method, different layers of a specific resistance are stacked, result-
ing in a serial system [14]. The investigations performed by Lu and Chen show that, if the filler
is a fluid, the conductivity of the fluid phase can often be neglected. For small closed cells, such
as honeycombs, convection has a negligible influence. Kaviany [42] and Ranut et al. [47] give
a summary of methods for calculating the ETC of porous media. Especially Maxwell’s upper
and lower bound theory is used. These methods are also called asymptotic solutions. However,
the results of this method are very inaccurate [47]. With the help of empirical fits, the accuracy
of the models was greatly improved [48, 49, 47]. In addition to the density and the material
properties of both materials, fit factors are necessary to balance the asymptotic solutions, which
sometimes differ strongly for different foams. The deviation in the geometry of different foams
is strongly dependent on the manufacturing process and parameters, and is often so high that
a generalisation of the parameters is often not successful. Ashby et al. [33] us the percolation
theory of Stauffer et al. [32] to estimate the ETC by means of fitted power laws as a function of
the relative density of the foam.

A different approach is used by Calmidi et al. [48], who approximates the appearance of the
porous cell structures by means of hexagons and determines the ETC in two-dimensional space
using the the circuit method. Subsequently, the first three-dimensional models for the descrip-
tion of metallic foams were developed by Boomsma et al. [50]. Kelvin cells described in 2.1.1
are used as a reference geometry for the estimation of the ETC.

The different approaches to derive the ETC of metallic foams can be divided into three differ-
ent methods [47]. Figure 2.7 gives an overview of the approaches. The asymptotic approach
uses the porosity to set up a thermal network model. It calculates the upper or lower bounds
of the conductivity of the cells. The parallel model A (Equation 2.13) of the ETC calculates
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Fig. 2.7: Methods to derive the ETC of a cellular solid, in particular of a foam.
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the upper bound, i.e. the maximum achievable conductivity through the arithmetic mean of the
conductivity of the two materials (i.e. filler A, and cellular solid A,). The lower bound A, is
achieved in the series model (Equation 2.14)[47]. This method to approximate the ETC was
used by Maxwell [37] and is referred to as upper and lower bound method.

AH = SAf—l-%ks (2.13)
-1
_ (&%
A= <)Lf+ls) (2.14)

Due to the aforementioned low accuracy of the asymptotic approach, empirical descriptions
were developed. In Calmidi et al. [48], the parallel model (Equation 2.13) is fitted to experi-
mental results via a power law. Bhattachaeya et al. [49] used both the parallel and serial models
(Equations 2.13 and 2.14) and determined a proportion of how much the two models contribute
to the ETC. One third of the upper bound and two thirds of the lower bound yielded a good
approximation of the ETC for the cases considered. Mendes [51] examined different methods
for calculating the upper bound and lower bound, such as the Hashin-Shtrikman bounds or the
effective medium theory, and combined them. He obtained good results with some combina-
tions of the different bound-methods. The described empirical models show high accuracy in
estimating the ETC of foams with fillers. However, the models have a small flexibility. For
small changes in the morphology of the foam, or even for when considering honeycombs or lat-
tices, new empirical coefficients have to be determined to make the models fit the experimental
results.

The cell-based approach, aims at addressing the issues of the previously discussed models.
Here, the unit cell of a foam is approximated by an ordered structure, usually the tetracaideca-
hedron, the dodecahedron or other unit cells. Using this method, the basic geometry of the
foam is appropriately taken into account. However, due to the difficulty to model the nodes at
which struts of the unit cell meet, empirical factors still must to be used to adapt the models to
the experimental or numerical results. Furthermore the random distribution and size of the unit
cells introduces further variability that can only be taken into account via empirical coefficients.
The circuit method is often used to calculate the conductivity of different layers in series. The
conductivity can be determined with a porosity-weighted approach [48, 50].

Calmidi et al. [48] determine the ETC of foams by assuming the cells to be two-dimensional
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hexagons. The intersections of the struts are considered as square nodes. The square nodes
do not intend to represent the real shape of the intersections, but the intersection area. The
cell is divided into different layers. Figure 2.8 shows the different layers of one eighth of the
hexagonal cell. The thermal conductivity of one layer is calculated weighting the fraction of the
metallic phase (black area) and the filler (white area) as in Equation 2.13 and the total thermal
resistance of all layers can be calculated according to the Equation 2.14 for serial systems. Us-
ing an empirical correlation factor, the model agrees well with the experimental data. However,
the model has unrealistically large nodes (22 times larger than the strut diameter). A correction
is made in Bhattacharya et al. [49] by assuming circular nodes instead of square nodes. The
size of the nodes is reduced, but it is still unrealistically large in this model. This indicates
that the two-dimensional modelling does not realistically represent the real case. Boomsma et

T Heat flux

Lv3 direction « <t

N

Layer 3

Layer 2

Layer 1
3 AV

Fig. 2.8: One eighth of the two-dimensional hexagonal cells used by Calmidi et al. [48]. The struc-
ture is separated into three layers, and b is the node size, ¢ - strut thickness, L - strut length.
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Y
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al. [50] established a three-dimensional approach in which the porous cells are approximated
as tetracaidecahedral cells. For derivation, 1/16 of the cell is used. This fraction is chosen to
contain all the geometrical properties of the cell. The intersections are represented by cubes.
The cell is then divided into layers and, similar to Calmidi et al. [48], the conductivity of the
layers is calculated on a porosity-weighted basis according to Equation 2.14. Dai et al. [52]
reveal three significant errors of the model of Boomsma et al. [50], which addresses misrepres-
entations of results and faulty equations. It also draws attention to the fact that the orientation of
the struts is of importance and thus the porosity-based approach is an inadequate representation
of reality. This is especially true when the conductivity of the filler is significantly smaller than
that of the foam. Moreover, Dai et al. [52] question the tetracaidecahedral cell as an appropriate
approximation of the foam. Even the corrected equations in Dai et al. [52] lead to physically
unrealistic models. The size of the nodes decreases as the porosity of the foam decreases, which
is reversed in reality and results in the strut diameters becoming larger than the nodes. Yang
et al. [53] exposes the error of setting the parameter describing the ratio of nodal edge length
to nodal spacing constant. They proposed a fitted parameter and thus solved the problem of
mismatched node sizes. Yang et al. in [54] presented an alternative approach that determines
the ETC via integrating over the cell from Fourier’s Law. Tetracaidecahedral cells are assumed.
By transforming Fourier’s law and integrating, Equation 2.15 is obtained for the solid phase. Qg
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is the heat flux over the solid phase due to the temperature gradient AT. Ay is the conductivity
of the raw solid material, H(s) represents the distances of the material through the layer and
Apr(s) the surface of the conducting material at the position s.

ASAT
Q= i 2.15)

v

For the heat flow of the filler Qf, Equation 2.16 is assumed according to Fourier’s Law. Ay is
the conductivity of the raw filling material, H. represents the cell height and Ay the surface of

the filling material.

AT
QOf = lfAfE (2.16)

After inserting the two Equations 2.15 and 2.16 into Equation 2.17, and after transforming the
equation, Equation 2.18 is obtained.

AT
Or+0s= effAOF (2.17)
Hc
Aefi (%) Ar
o <fH(S) | ds) TE (2.15)
0 AL(s)

where Agft is the ETC, AT the temperature gradient over the cell, A the cell surface orthogonal
to the interested direction and € the porosity. Topological parameters are used to solve the
integral. The ratio of the node area A, to the cross section area of the strut Ay is defined as
o = A;/Ar and the edge length of the node 7 is compared to the strut length L with e =1 /L.
For the detailed solution of the integral, the reader is referred to the appendix of Yang et al.
[54]. The result is shown in Equation 2.19.

)Leff . 1—¢ lf
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s (I—e+3%) (S(I—e)—i—%ae)—Fls 19

The topological parameters are found optimal with the help of a fit to experimental data and
yield a = 1.5 and e = 0.3. If the conductivity of the fluid is neglected (A;/A; << 1), the
Equation 2.19 can be simplified to the first right term.

Yang et al. [54] further investigate to what extent the decoupling of lattice and filler influences
the result. For A,/ Ay > 8000, the fluid phase is completely negligible as it is not noticeable in
the ETC. For A,/ A = 538 the thermal conductivity increases by 10% due to the fluid phase.
However, this value only applies to the foams investigated by Yang et al. [54] and differs for
other cell architectures and porosities.

A wide literature regarding models to determine the ETC of foams, and in particular metal
foams, exists. While the estimation of the ETC is relevant to this work and cell-based ap-
proaches similar to the ones of foams are used in this work, a full description of the models
present in the literature is out of scope. The reader can found an extensive review on the mod-
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els for the estimation of the ETC of foams in [47]. The following paragraph focuses on the
available models for the description of the ETC of lattices and discusses their limits.

Lattice structures The cell-based approach is particularly useful to describe the ETC of peri-
odic lattice structures, which are the focus of this dissertation. Indeed, the periodicity allows to
reduce the amount of empirical factors needed, making the models presented in the literature
more reliable and flexible. This far, only few authors proposed models to describe the ETC of
lattice structures [55, 56]. The semi-analytical model presented by Hubert et al. [55] represents
the most reliable and accurate one present in the literature at the time of writing. Their work
consisted in the adaptation of the method previously derived by Yang et al. in [54] for foams.
The following assumptions apply for modelling the ETC:

* Uniform lattices

* No convection and radiation
* Constant physical properties
* Thermal equilibrium

If radiation and convection are neglected, the pore size has no influence on the ETC [51, 54].
Thus, the ETC of the lattice structures can be considered scale invariant under these assump-
tions, i.e. unit cells with different cell size but same porosity yield the same thermal conductiv-
ity.

Hubert et al. [55] investigated the cubic unit cells f>cc, frccz, bee and beez. To allow a simpli-
fied treatment of the nodes at which different struts meet, the unit cells geometry was approx-
imated by assuming that the region in which the struts of the unit cell meet, a cube is formed, as
schematically shown in Figure 2.9. Neighbouring cells also lead to nodes, which are accounted
as a cube of half the size of the central node. Fit factors are introduced to model the com-
plex intersection between struts and nodes. Such factors were determined from experimental
data. Topological parameters defining the relations of the different sizes in the unit cell, i.e.

Fig. 2.9: Schematic description of the unit cell geometrical model proposed by Hubert et al. [55],
whereas Ay is the cell cross-section, A; - strut cross-section, and A, - node cross-section.
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o =A;/A; and e =t /L, were inspired by Yang et al. in [54]. Due to the different intersections
and thus the different node sizes of each different unit cell, different topological parameters (0
and oy, or e and e;) were used. For the cell frcc, the integral from Equation 2.18 results in

Equation 2.20.
Hc

Ao A e te (6’1 ez )]
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where ®, is an additional fitting parameter needed to consider the complex intersection. This
parameter was fitted using numerical simulations.

The porosity was derived as follows. The volume of the unit cell V;,; is shown in Equation 2.21
as a function of strut length L. A strut angle of ¢ = 45° was assumed.

Vier = 2V21° (2.21)

The volume of the struts in a focc cell is given in Equation 2.22. #; and #, are the side lengths
of the cubes that approximate the strut intersections. In the cell bcc, only one intersection type
appears, thus #; = t,. In the cells fcc, beez and foccz, two different intersection types appear
due to the different number of intersecting struts.

Hh+n

Vi =28 (L — We > + 1141 +20A;0 (2.22)

g is as well an additional fitting parameter. The porosity is thus given by € = %, resulting
in Equation 2.23.

A e1+e e +20pe
SZI—E\/§<2(1—(03 5 )+ : ) (2.23)

Substituted into Equation 2.18, Equation 2.24 calculates the ETC in relation to the conductivity
of the solid. The first term on the right hand side of the equation corresponds to the thermal
conductivity of the lattice, the second part corresponds to that of the PCM.

Aett Ay el + e e e
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The equations derived by Hubert et al. [55] agree exactly with the numerical results. In ad-
dition, they investigate the thermal constriction resistance that arises at the interface of the
heat-spreader to the struts. An envelope is needed to close the volume filled by the PCM to
keep the PCM inside the matrix when it is melted. Additionally, the envelope can be used to
conduct the heat into the PCM and is thus called heat spreader. This resistance is mainly caused
by the curvature of the heat flux lines. Above a certain number of cells, however, this extra
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resistance is negligible. The model is thus able to take the following topology parameters into
account for a cell characterisation:

* Cell topology (bcc, beez, frce, frcez)
* Porosity
* Number of cells

This model can only be used for the cell characterisation and topology optimisation to a limited
extent. On the one hand, the number of investigated cell types is relatively small with respect to
the ones available both via additive manufacturing or hybrid manufacturing methods. There is a
large number of cell topologies and new cell shapes, such as the hexagonal ones. Furthermore,
the model only applies to cubic cells, i.e. the aspect ratio between the cell sizes is 1. However,
the same cell topologies can be manufactured in a prismatic fashion where cell sizes differ. The
only limit in terms of manufacturability is the minimum angle at which a strut can be manu-
factured with respect to the horizontal, without needing additional support structures. Varying
the aspect ratios leads to different strut angles and thus to significant changes in the ETC. This
is especially interesting for multifunctional use cases. An additional parameter enables more
flexibility in tailoring the material properties.

An additional limit of the presented literature lies in the description of the geometry, i.e. the
porosity €, which is heavily reliant on empirical factors. Because of the complicated geometry
of as-manufactured nodes in lattice structures, a reliable model for the evaluation of the poros-
ity, and thus of all the physical properties of the lattice, is hardly separated from empirical
factors. However, an attempt to extend the reliability and improve the independence of analyt-
ical models from empirical factors shall be made to reduce the effort of future design activities.
Reducing the error performed by estimating the effective properties of lattices via analytical
formulae allows to reduce the need for expensive and time consuming fitting of empirical data.
In this perspective, Chapter 3 of this work describes a novel approach to estimate the porosity
of lattice structures with more generic topology as well as an improved calculation of the ther-
mophysical properties.

2.2 Phase Change Materials

This far, the described state of the art and theoretical background did not considere the pres-
ence of a Phase Change Material. In the following a generalised description of PCMs, their
challenges and the mathematical formulations used to describe their thermofluidic behaviour
are introduced.

Latent heat thermal energy storage (LHTES) is a promising technology for the efficient storage
of thermal energy, which has the potential to reduce energy waste and increase the utilization
of renewable energy sources[8]. LHTES systems store thermal energy by absorbing or releas-
ing latent heat during phase change processes, such as melting or solidification, rather than



2.2 Phase Change Materials 21

through changes in temperature alone, as shown in Figure 2.10. Working close to the melt-
ing point, LHTES shows much higher gravimetric energy density than sensible thermal energy
storage. This makes such systems attractive also for mobile applications, i.e. automotive [57]
or aerospace [58], where mass is a concern. The state of the art on LHTES has been rapidly

Typical behaviour of a LHTES

Typical behaviour of a SHTES

/

Enthalpy

Melting point Temperature
of the PCM

Fig. 2.10: Schematic description of the difference between latent heat thermal energy storage
(LHTES) and sensible heat thermal energy storage (SHTES). The areas under the re-
spective curves represent the stored energy.

advancing in recent years due to increasing demand for renewable energy storage solutions.
The development of advanced materials and technologies has led to improvements in LHTES
system efficiency, reliability, and cost-effectiveness. One of the major challenges in LHTES
research is to find suitable phase change materials (PCMs) that have a high latent heat of fu-
sion, good thermal stability, and appropriate thermal conductivity [59]. In addition, there is a
need to optimise the design and operation of LHTES systems to ensure efficient energy transfer
and minimize system losses. Recent research efforts have focused on the development of novel
PCMs and LHTES systems, such as encapsulated PCMs, composite materials, and hybrid sys-
tems [13]. In addition, new approaches for characterizing and modeling LHTES systems have
been developed to provide a better understanding of the underlying physical and chemical pro-
cesses.
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2.2.1 Encapsulation methods

Encapsulation is a method of incorporating phase change materials (PCMs) into a matrix to
form a composite material, which can be used for thermal energy storage. The encapsulation
process can help to improve the stability, thermal conductivity, and durability of the PCM, as
well as reduce the problem of PCM leakage and phase separation [60].

There are several methods for encapsulating PCMs, including:

* Physical encapsulation: In this method, the PCM is coated with a thin layer of a matrix
material, such as polymer, silica, or carbon. The PCM can be encapsulated by spray
drying, coacervation, or electrostatic spinning. The matrix material acts as a barrier to
prevent the PCM from leaking or solidifying during the melting or solidification process.

* Microencapsulation: In this method, the PCM is encapsulated in microspheres or micro-
particles made of a matrix material. The matrix material can be a polymer, such as poly-
ethylene glycol, polystyrene, or polyurethane. The microcapsules are typically between 1
and 100 microns in diameter and can be dispersed in a matrix material to form a compos-
ite material. Microencapsulation can provide a high surface area to volume ratio, which
can improve the heat transfer properties of the composite material.

* Nanoencapsulation: In this method, the PCM is encapsulated in nanoparticles made of
a matrix material, such as silica or carbon. The nanoparticles are typically between 10
and 100 nanometers in diameter and can be dispersed in a matrix material to form a
composite material. Nanoencapsulation can provide a large surface area and high thermal
conductivity, which can enhance the heat transfer properties of the composite material.

* Macroencapsulation: In this method, the PCM is encapsulated in large containers or tubes
made of a matrix material, such as metal or plastic. Macroencapsulation is typically used
for high-temperature applications, such as solar thermal energy storage.

The selection of the encapsulation method depends on several factors, including the properties
of the PCM, the required thermal performance, and the intended application. Encapsulation
methods can be combined to create hybrid encapsulation systems that provide the advantages
of multiple encapsulation methods.

Macroencapsulation methods offer several advantages, including easy installation, flexibility in
design, and compatibility with a wide range of PCMs. However, they may also have limita-
tions, such as low thermal conductivity, which can affect their thermal performance. To address
such issues extensive research has been performed in enhancing the thermal performance of
macronecapsulated PCMs via use of metallic or carbon fins [61]. Optimal designs of fins can
effectively tackle issues related to the the low thermal conductivity of the PCMs. However,
they generally constitute a discontinuous domain. This reduces their applicability in the aimed
multifunctional approach of this work. Alternatively, metallic or carbon foams have been ex-
tensively researched [62]. As previously described, these are a sub-branch of cellular solids.
The research on the use of metallic foams for PCM thermal performance enhancement is thus
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the fundamental research on which this work builds up.

Depending on the bulk material of the foam, a wide variety of experimental and numerical
quantitative results have been obtained [63, 64, 65, 66, 67, 68]. The thermal performance in-
crease is often measured in terms of the wall temperature of the considered samples. The foam
geometry is a fundamental parameter, which affects such performance. The parameters which
most affect the foam geometry are its porosity and the pore sizes. Due to the stochastic nature
of metal foams, the pore sizes are not constant. However, the average pore size, expressed in
terms of Pores Per Inch (PPI) is commonly employed. Performing experiments on a variety
of foams with different porosities and PPIs, Diani and Campanale [69] achieved a power-law
based correlation for the wall temperature as a function of the product of the Stefan and the
Fourier numbers. The geometry information is contained within this product, as the effective
thermal diffusivity and specific heat constitute these numbers. Similarly, Righetti et al.[70] at-
tempted the same for bcc lattice structures with different cell sizes.

The authors assumed a purely conductive regime within the domain, i.e. no convection and
radiation were considered when describing the thermal behaviour of the composite. As several
authors noted, especially when analysing foams with high porosity and low number of PPIs,
natural convection can play a significant role in the heat transfer process [71, 72, 66, 73, 74].
Thus, depending on the inclination with respect to the volume forces (e.g. gravity) the heat
transfer process can be enhanced or reduced. When the heat source acts in direction parallel to
local gravity vector (i.e. top heating), the effects of convection are negligible. When the heat
source is either perpendicular or opposite to the local gravity vector (i.e. side heating or bottom
heating), the effects of convection are significant. Additionally, as evidenced by Filippeschi et
al.[75], the value of the volume force itself is of importance. As this work focuses on mobile
systems, which in general are in an accelerated condition, this is also of importance.

Based on the scaling theory proposed for a pure PCM by Jany and Bejan [76], the Rayleigh
number can be used to describe the onset of convection. The Rayleigh number is defined in
Appendix (Equation A.5). Azad, Groulx et al. in two recent papers [77, 78] revised the scaling
theory and extended it to other non-dimensional numbers of interest (defined in Appendix A).
Particularly interesting is the existence of critical Rayleigh and Stefan-Fourier numbers for the
onset of convection.

These results are of fundamental importance as they consitute a guideline for the design of PCM
based systems. However, the results are valid for a pure PCM. Nield and Bejan [79] extended
the scaling theory to porous media. However their treatment assumes an isotropic porous me-
dium, which is, in general, not the case for the lattices considered in this work. This work will
concentrate on obtaining critical values of the relevant non-dimensional numbers for the onset
of convection for the lattices considered in this work.

Considering the above, it is essential to be able to describe the heat transfer phenomena within a
porous medium, such as a foam or a lattice structure, in the presence of a phase change material.
The following section describes the mathematical formulation of the heat transfer phenomena
in porous media.
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2.3 Heat transfer in porous media

The fundamental equations for heat transfer can be generalised by making use of the energy
conservation equation, in combination with the momentum and mass conservation. These equa-
tions are valid for an incompressible, newtonian fluid, which is in general a valid assumption for
PCMs treated in this work, in their liquid state. For solids, i.e., in this work the lattice structure
or the PCM 1n its solid state, the equations reduce to the energy equation only, with negligible
convective terms. The equations are reported in their strong form.

V(u) =0 (225)

where u is the velocity vector.

p (3—? + uVu) =—-Vp+Vt+pg (2.26)

where p is the density of the medium, p is the pressure, 7 is the deviatoric stress tensor and g is
the gravitational acceleration vector.
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where T is the temperature, C), is the specific heat capacity of the medium, q is the heat flux
vector, is the thermal conductivity, o is the thermal diffusivity of the medium, V2 is the Lapla-
cian operator, p is the density, C, is the specific heat capacity at constant pressure, V is the
divergence operator and X is the heat source term.

These coupled equations can be solved via a wide variety of numerical schemes. The most com-
mon are the Finite Element Method (FEM) and the Finite Volume Method (FVM). The former
is based on the discretisation of the domain into a mesh of elements, while the latter is based
on the discretisation of the domain into a mesh of control volumes. The FEM is more flexible
and can be used for complex geometries, while the FVM is more robust and can be used for
complex boundary conditions. In this work, both FVM based and FEM based solvers are used.
To treat the phenomena relevant in this work, some approximations can be made, which are
added to the conservation equations. In particular, when dealing with natural convection, the
Boussinesq approximation is often used. This approximation assumes that the density of the
fluid is constant, except in the buoyancy term. This approximation is valid for small temperature
differences. The Boussinesq approximation is reported in the following.

V(-AVT)+E=aV’T+E (2.27)

p(T) :po(l—ﬁ(T—To)) (228)

where py is the density at the reference temperature 7 and f3 is the coefficient of thermal ex-
pansion of the fluid.



2.3 Heat transfer in porous media 25

2.3.1 Porous medium models

Darcy’s law is the fundamental equation to describe the fluid flow in porous media [80]. It
is based on the assumption of a creeping flow, i.e. a flow with a very low Reynolds number
(Re«1). The equation is reported in the following.

K
eup = _E (Vp—pg) (2.29)

where € is the porosity of the medium, up is the so-called Darcy velocity vector, K is the
permeability tensor, u is the dynamic viscosity of the fluid. The Darcy velocity represents an
average pore velocity. The permeability tensor is a second order tensor, which describes the
fluid-flow resistance of the porous medium. It is a purely geometrical property, i.e. it does not
depend on the fluid properties.

The validity of Darcy’s law is limited to creeping flows. For higher flow rates, several extension
of Equation 2.29 were presented. They all take into account the inertial effects of the fluid. The
most common extension is the Forchheimer’s law, while recently Brinkman’s and Richards’s
models are being investigated, especially with the purpose of an accurate numerical prediction
of the fluid flow in porous media. The three models are reported in the following.
Forchheimer’s law assumes the Darcy’s law can be extended via the addition of a quadratic
term. The coefficient of the quadratic term can be expressed in several ways. As reported by
Ehlers [81], recent literature, like Markert [82], suggests that such coefficient is a tortuosity
parameter with dimensions m. With some modification, Ehlers [81] reports the Forchheimer’s

law as X
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where B is the tortuosity.
The Darcy-Brinkman equation corrects Darcy’s law by adding a term proportional to the lapla-
cian of the velocity. Neglecting the volume forces, the equation is reported in the following.

Vp= _S%HD — Ut Vup (2.31)
where s is the so-called effective viscosity of the fluid, while the other symbols have the
same meaning as in Equation 2.29. U can be obtained from a volume averaging of the mi-
croscopic transport equations [24]. Regarding the actual definition of the effective viscosity
several authors still assume it to be equal to the pure fluid viscosity, also when considering a
phase change problem with moving interface [83, 84, 73, 85]. However, already several decades
ago, it was evidenced that, in general, L. > p [86, 87, 88]. As expressed in the recent review
from Habibishandiz et al. [89]. The most common models are the Einstein’s model and the
Brinkman’s one. The former is based on the assumption that the fluid is composed of spherical
particles, while the latter is based on the assumption that the fluid is composed of cylindrical
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particles. The two models are reported in the following.
Einstein’s model:

Uefr = 1 (14 2.5¢) (2.32)

Brinkman’s model:

Mett = Nﬁ (2.33)
Habibishandiz et al. [89] report other models, proposed for a variety of porous media, also
considering the presence of nanoparticles. To the author’s knowledge, no generally valid for-
mulation was proposed this far. This is especially critical if one considers the moving boundary
of a PCM. This criticality is discussed in detail in Chapter 4.

According to Habibishandiz et al. [89] another open aspect regarding the modelling of the fluid
flow in porous media is the use of Local Thermal Equilibrium (LTE) or Local Thermal Non-
Equilibrium (LTNE) to treat the energy equation of the two phases within the porous domain.
The LTE assumes that the two phases are at the same temperature, while the LTNE assumes
that the two phases are at different temperatures. Thus, to be able to use two coupled energy-
equations, when LTNE is assumed, an Interstitial Heat Transfer Coefficient (IHTC) must be
included to couple the two equations. This coefficient cannot be trivially found. Pati et al. [90]
performed a critical review regarding the applicability of one or the other assumption. While no
quantitative values were reported, they report that for porous media with small pores LTE can
be assumed.

The generalised governing equations for flow and heat transfer in porous media are

V(u)=0 (2.34)

ot

where pe is the effective density of the fluid, p.¢r is the effective viscosity of the fluid, K is
the permeability tensor, t is the dynamic viscosity of the fluid, u is the velocity vector, p is the
pressure, p is the density of the fluid, g is the gravitational acceleration, f3 is the coefficient of
thermal expansion of the fluid, T is the temperature of the fluid, 7j is the reference temperature
of the fluid and S is the source term.

If LTNE is assumed, the energy equations are

0
Petf (_u + uVu) = —Vp— UestVu— %u +pgB(T-Ty)+S (2.35)

0Ty
(pC,,)f(ga_tf FuVTy) = eAsV2Ty + b (T, — Tf) + 5 (2.36)

JdT;
(PCp)s((1=8)—* +uVT) = (1 - e)AVATy 4 hif (T — Ty) + E, (2.37)

t
where ( pCp)* is the heat capacity of the fluid (f) or the solid (s), A is the thermal conductivity,
hir is the interstitial heat transfer coefficient, T is the temperature of the fluid or the solid, =,
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is the heat source term.
In the case that LTE is valid, the energy equation reduces to[79]

oT
(PCp)eti— -+ (PCp) fuVT = Aett V2T + ot (2.38)

where (pCp).fr is the effective heat capacity of the homogenised medium, Aef is the effective
thermal conductivity, and Z. is the effective heat source term.

Addition of phase change phenomena

To the Equations 2.34 to 2.38 the following equations must be added to describe the phase
change phenomena within the porous medium.

The mathematical modelling of phase change materials is a complex task, which requires the
description of the heat transfer phenomena in the solid and liquid phases, as well as the moving
interface between the two phases. The fundamental work in this regard was performed by Stefan
[91], who derived the analytical solution for the moving interface between two phases. His work
fundamentally consisted of adding the following relationship to the heat diffusion equation.

)L(;—Z = pAh% (2.39)
where Ah is the latent heat of fusion, & is the position of the interface between the two phases,
n is the normal vector to the interface, and ¢ is the time.

The Stefan problem is a mathematical model for the heat transfer in a phase change material. It
is based on the assumption that the phase change happens instantaneously, i.e. the temperature
of the material is equal to the melting temperature at the interface between the two phases. The
Stefan problem can be solved analytically for a semi-infinite domain, i.e. a domain with infinite
length in one direction and finite length in the other two directions.

For a generic domain, considering a porous medium, the energy equation under LTE assumption
is reformulated by substituting the source term in Equation 2.38.

oT
(PCp)effE + (pCp)pcmuVT = Aefi VT —

I (pCp)ete
ot

(2.40)
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where the subscript ; was substituted by pcys, 1.€. ppcas is the density of the PCM; H is the heat
of fusion of the PCM, @ is the liquid fraction within the domain, 7;, is the melting temperature
of the PCM. The last term is caused by the change of material properties within the mushy zone,
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and is zero outside of such region.
The liquid fraction function is defined as

0 if T < T,
T-T,
O(T) = T_g ifT,<T<T, (2.41)
S
1 ifT>T,

where 7, is the melting temperature of the PCM. T is the solidus temperature and 7; is the li-
quidus temperature. The value of T; — 7} is strongly related to the stability of numerical schemes
used to simulate the behaviour of a PCM.

The source term S in Equation 2.35 is substituted by

(1-o)°

S=A~——2
b+ @3

(2.42)
which is known as the Carman-Kozeny term [79]. The parameters A and b are empirical para-
meters. In general b is chosen to be a small number 1072 so that division by zero is avoided.
The parameter A is chosen to be a large number, so that the source term is negligible in the solid
phase. The value of A strongly affects the shape of the mushy zone.

The equations described this far constitute the basis for the so-called enthalpy-porosity method.
Other methods can be applied to numerically solve the problem. These are extensively de-
scribed by the review of Zeneli et al. as well other authors [92, 93, 94].

Further details on the implementation of numerical schemes for the solution of the problem are
given in Chapter 4.

Simplified conductive model

This far, the methods to describe the behaviour of a PCM embedded within a porous medium
were illustrated. At this point, it is useful to introduce Stefan’s analytical solution to describe, in
a simplified fashion, the effect of a metallic cellular solid on the melting and thermal behaviour
of the composite.

Considering a homogeneous medium based on the composite of a metallic foam and a PCM, a
one-dimensional semi-infinite wall, as shown in Figure 2.11, is considered. The assumption is
made that the wall temperature 7 (x = 0,7) is constant and above the melting point. The tem-
perature at any distance from the melting front in the solid domain is assumed to be equal to the
initial temperature. Different thermophysical properties are assumed for the two phases (liquid
and solid). The effect of convection is neglected. The phase transition happens instantaneously
once the melting temperature is reached. The position & of the point, where the melting tem-
perature is reached, is a function of time, since the melting front is moving through the wall
as time goes on. It is assumed that the temperature distributions both in the solid (6s) and the
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Fig. 2.11: Schematic of the semi-infinite wall with boundary conditions and depiction of the melting
front position at a generic time t=t", whereas T (x = 0,¢) is the wall temperature, T; -
reference temperature, and 7}, - the melting point.

liquid phase (6r) have the form of the general solution of the heat equation for a semi-infinite

wall without a phase change.
X

2/ oqt
X
2/ ot
A,B,C and D are constant coefficients. ag and o are the thermal diffusivities of the solid phase
and liquid phase, respectively. The excess temperature 0 is the difference between the absolute
temperature 7' and a reference temperature 7;, which in this case is chosen to be the initial

temperature:

0p = A+ Berf

(2.43)

65 = C+ Derf (2.44)

06=T-T, (2.45)

Since the phase transition happens instantaneously, the heat of fusion H can be treated as a sink
term in an energy balance around the melting front. Thus, there are five initial and boundary
conditions in total, with A/ being the change in enthalpy.

GL(O,Z) = 0y (2.46)
Os(+o0,1) = B5(x,0) =0 (2.47)
GL(é,t) = 95 (2.48)
0s(&,1) = 0 (2.49)

26 26,  dE
)LSE : —ALE : = psAhE (2.50)
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Imposing the initial and boundary conditions on the general excess temperature profiles yields
the following equations.
QL(O,Z‘) =6=A=06) (2.51)

O5(4o0,1) = 5(x,0) =0=C+D =0 (2.52)

0.(E.1) = 6; = A+ Berf = 6; (2.53)

§
2/ oyt
e
Since the temperature at the melting front is independent of time ¢, it follows that ¢ needs to be
canceled out in Equations 2.53 and 2.54. This is only possible if & is proportional to the square
root of 7.

Os(E.1) = 6; = C+Derf (2.54)

E=pvi (2.55)
Inserting Equations 2.53,2.54 and 2.55 into Equation 2.50 yields
5 2
AsD—  quBt _ peanP (2.56)

Jroast O magt 2./t

Therefore, in total there are five unknown variables (A,B,C,D, ) and five equations. Through
some transformations one can obtain the following equation, which is only dependent on f3.
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(2.57)

Equation 2.57 is transcendent, so it cannot be solved analytically. However, it is easily solved
numerically by using the bisection method. Thus, the melting front position & can be calculated
for every point in time and the coefficients A, B, C and D can be determined. Due to the
homogenisation (volume averaging), the effective thermal conductivities and diffusivities for
the solid and the liquid phase need to be determined. The Singh-Ranut-model [47] is used to
obtain an estimate for the effective thermal conductivities.

The effective heat capacities and densities are determined by calculating the weighted average
of the properties of the PCM and the matrix as in 2.10 and 2.11. Additionally, the latent heat
is corrected to account for the metallic matrix as well, with the effective latent heat of fusion
Hy o derived from latent heat of PCM H pcy.

Hpeir =€ Preu gy r.PCM (2.58)
Pett
The thermophysical properties described in Table B.3 are considered.

A parametric study is conducted by varying the volume fraction } and solving for the analyt-
ical solution of the Stefan problem with effective properties. The volume fraction ) is varied
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between 0 and 0.2, where O represents a pure PCM material. Figure 2.12 shows the advance-
ment of the melting front position, with reference to the semi-infinite wall shown in Figure
2.11, plotted against a total time of 300s. As expected, a clear acceleration of the melting front
expansion can be noticed with increasing volume fraction. On the other hand, one can notice di-
minishing returns when increasing the volume fraction above a certain amount. With increasing
volume fraction, the curves tend to get closer, indicating a limited effect of the effective thermal
conductivity with respect to the other thermophysical properties. This is more evident in Figure
2.13 where the relative increment of the melting front position between one volume fraction
step and the other is plotted against the volume fraction itself. It is thus clear that due to the
introduction of a metallic matrix, the melting front expansion is strongly accelerated. However,
the effect tends to decrease above a critical value due to the effect that the metallic matrix has
on other thermophysical properties. Figure 2.14 shows such an effect. An increase in volume
fraction of the cellular solid leads to a reduction of the effective latent heat, thus reducing the
energy that can be stored latently. This is also evident in Figure 2.15.

20 |

Melting front position [mm]

0 100 200 300
Time [s]

Fig. 2.12: Analytical solution of the Stefan Problem for different volume fractions y. the effective
thermal conductivity is calculated with use of the Ranut model [47]

The purpose of this introductory study is to indicate that the application of metallic cellular
solids to increase the overall thermal conductivity of a PCM does not come without drawbacks.
Since the effective latent heat is reduced by the porous medium, an optimal balance needs to
be achieved. No trivial optimum exists. Moreover, in lightweight applications, such as those
considered in this research, the mass requirements play a crucial role, and the increasing volume
fraction of metallic cellular solids must be carefully evaluated against the overall system per-
formance.

While the results indicate a general plausible trend, the quantitative validity of these findings
is limited. First of all, the conductivity model was developed for metal foams. Furthermore,
the model proposed by Ranut et al.[47] is only applicable for volume fractions up to 15%. In
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Fig. 2.13: The relative increment of the melting front position
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Fig. 2.14: Variation of the effective thermophysical properties with increasing volume fraction. The
effective thermal conductivity saturates to a maximum value due to the assumptions of the

Ranut model [47].

contrast, this study aims to establish reliable analytical relationships for describing the effective
thermophysical properties of composites comprising metallic lattices and PCMs. To achieve
this, a thorough treatment of the lattice structure’s geometry is indispensable, and this aspect is
elaborated in Chapter 3.
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Fig. 2.15: Variation of the latently stored energy with increasing volume fraction. The peak indicates
that an optimum value exists.

2.3.2 Summary

This section presented the state of the art relevant for the thermal characterisation of the lattice
structure / PCM composite. It is useful to summarise the main open points of this section, which
will be investigated in Chapter 4.

* The effective thermal conductivity Ae of the lattice structures is an intricate function of
its geometry and the bulk material Ay Aett = f (Apuixs €, 7, 1, unit cell topology). Thus,
a new model is needed. The existing models for the ETC of metal foams are not appro-
priate to describe such function. The geometrical parameters are discussed in Chapter 3.
Building up on it, a model to describe the ETC of lattice structures is proposed in Section
4.1.

* Even in a purely conductive regime, it is clear that the enhancement of the ETC is not
the only relevant aspect, as the addition of material to the highly conductive cellular solid
reduces the effective latent heat. Thus, a trade-off between the two aspects must be found.
This is discussed in Section 4.1.3.

* The recent literature on metal foam / PCM composites evidenced how the onset of natural
convection within the PCM melt affects the thermal behaviour of the composite. It is to
be assumed that the same is valid with lattice structures. Additionally, lattice structures
are, in general, orthotropic, which complicates the description of the fluid flow within the
porous medium. Thus experimental and numerical investigations are reported in Chapter
4 to delve into this aspect.
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* This literature review also evidenced that no generally accepted value of the effective
viscosity of the fluid within the porous medium exists. This is especially critical when
considering the moving boundary of a PCM. This criticality is discussed in detail in Sec-
tion 4.3.

2.4 Stability of beams on elastic foundations

The goal of this work is to investigate possible novel cores of sandwich structures, which, if soft
and/or slender, can buckle [95]. Here, the fundamental difference with respect to conventional
structures is the presence of the PCM. While most room temperature PCM are rather soft mater-
ials, e.g. paraffin wax, and thus poorly contribute to the effective stiffness of the structure, they
can still affect the buckling behaviour of the structure. In particular in their solid phase, they can
represent an elastic foundation on which the lattice struts rest. In the liquid phase, such effect
vanishes. However, more complex aspect shall be considered. In general, a positive volume
change is associated with melting, which induces inner pressure, which can have a stabilising
effect. This work focuses on the effect on stability of the lattice structures given by a PCM in
its solid phase.

The following section aims to provide the necessary theoretical background to analyse the crit-
ical buckling loads of individual beams. To take into account the addition of an elastic medium
to the lattice structure, the modelling of elastic foundations is discussed. Afterwards, the analyt-
ical solution for the critical buckling loads of individual struts on elastic foundations is derived.
In the last section, an introduction into stiffness matrices of beams on elastic foundations is
given, as the stiffness matrices are necessary to derive analytical solutions for interconnected
struts.

The most common type of buckling is Euler buckling, which is a global instability of a slender
structure under compression. The critical buckling load P, of a slender beam with effective
length L.¢ and cross-section area A is given by

T2EI

P = 12

(2.59)

where E is the Young’s modulus of the material and / is the second moment of area of the
cross-section. The value of the effective length L.¢ depends on the boundary conditions of the
beam. For a beam with both ends pinned, L.sf = L. For a beam with one end pinned and one
end free, Lof = 2L. For a beam with both ends fixed, L.ss = 0.5L.
The buckling shape is associated with the lowest eigenvalue of the eigenvalue problem

9%w

2 +Aw =0 (2.60)
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where w is the buckling shape and A is the eigenvalue. The boundary conditions are

d
2= =0atx=0
o (2.61)
aw
% =0atx= Leff
The solution of the eigenvalue problem is
22
=11 (2.62)
Leff
where 7 is the mode number. The buckling shape is
W = sin (”m) (2.63)
Let

The critical buckling load is obtained by inserting the solution of the eigenvalue problem into
the Euler buckling equation
m’El  m’El > rmPEILY; n’Eln’mn* #*El
= = = = = n
12

o T2 T T2 72 T 72 2 T 12 2
Leff L Leff L L L Leff

(2.64)

The critical buckling load is thus proportional to the Young’s modulus and the second moment
of area of the cross-section. It is inversely proportional to the square of the length of the beam.
The critical buckling load is proportional to the mode number squared. This means that the
higher the mode number, the higher the critical buckling load. This last information is of fun-
damental importance, as the effect of an elastic foundation is to increase the buckling mode
number, thus increasing the critical buckling load.

The modelling of the elastic foundation’s effective properties is thus relevant to model the buck-
ling phenomenon. The following section aims to provide the necessary theoretical background
to model the elastic foundation.

2.4.1 Elastic foundation

Several authors dealt with the description of the structural behaviour of beams resting on elastic
foundations. In particular, fundamental theories were developed by Winkler [96], Pasternak
[97], Vesic [98], and Herrmann [99]. They focused on obtaining several levels of abstractions
capable to accurately describe the behaviour of the elastic medium on which the beam rest.
Winkler’s model, which is also the simplest, describes the elastic medium via means of a series
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of springs connected in parallel to the beam. The spring stiffness &, obtained from the founda-
tion modulus, is related to the deflection y via

q =ky (2.65)

where ¢ is the reaction force.

The spacing of the springs and the foundation modulus determine the stiffness of each spring.
As highlighted in the review conducted by Younesian et al. [100], a limitation of the Winkler
model lies in the assumption that the springs are independent, whereas in reality, the deflection
at a specific point is influenced not only by the pressure at that point but also by the pressure in
adjacent points. More advanced theories like the one Pasternak assume the additional existence
of a shear layer (Figure H.2c). This layer is related to the second derivative of the deflection via

the shear stiffness Gp
d? y
q=ky— Gpp (2.66)
X

Herrmann proposed a definition of the foundation modulus for circular beams embedded in a
three-dimensional foundation.
k . 167G f(l — Vf)
HemE T 23— 4vy) Ko () + wKi ()

(2.67)

where G represents the shear modulus of the foundation, and the factor y is defined as y =
mnD/(2L). The functions Ky() and K; () denote the modified Bessel functions of the second
kind for orders 0 and 1, respectively. Vesic proposed a simplified solution for k.

0.65Ef 12/ E¢b*
kvesie = 75\ &7 (2.68)

f

where ET represents the bending stiffness of the beam, and b denotes the width of the contact
between the beam and the foundation. It is noteworthy that the beam’s diameter D can be em-
ployed as the foundation width b.

In the following, the Herrmann’s and Vesic’s formulae are used to obtain the critical buckling
load of the embedded beam. The details regarding the derivation of the here presented formulae
are given in Appendix H.

2.4.2 Critical buckling load of a beam on an elastic foundation

Timoshenko and Gere [101] presented a solution for the critical buckling load of a beam on
an elastic foundation using the Winkler model. The computation of the critical buckling load
involves applying the energy method. It is assumed, once again, that the deflection curve can
be represented by the trigonometric series outlined in Equation G.17. In this context, the strain
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energy of bending arises from two sources: the beam itself and the elastic foundation. For
the strain energy of bending of the beam, denoted as AUj, an alternative equation to G.19 is
employed.

EI [Ld%y
= — dx (2.69)

AU = —
=% )y dx?

The inclusion of Equation G.17 allows for the representation of the integral as a summation
with the mode m and wave function a,,.

AUy ==— Y mta, (2.70)

To determine the bending strain energy resulting from the elastic foundation, denoted as AU,
the analysis focuses on the strain energy associated with an infinitesimal beam element. Con-
sidering a 2D beam element with a length of dx, the lateral reaction can be expressed as
qgdx = kydx. Consequently, the strain energy of this infinitesimal element is calculated as
follows.

yqdx _k ¥
dU, = d 2.71
U> 5 = pydx (2.71)
k L
AU, = - / y2dx (2.72)
2Jo

After substituting the trigonometric series for y, Equation 2.72 can be rewritten as

AU, = TL i 2.73)

Utilizing the expression AW as provided in G.22 with the load P, and incorporating 2.70 and
2.73 into the equation AU + AU, = AW, the following relationship is derived

4 nm=—=oo m=—=oo 2 P m—=oo
El kL'S® , meP ) 9
YK E mta 4 mEZI Uy = 7 m§:1 m-a,, (2.74)

Solving for P,

—oo —oco D
p— TE Lnci i + ”4"7 Lo=1 (2.75)
L? Zm Tm?a

Following a methodology akin to the one outlined in Section G.0.2, the expression attains min-
imal values when all coefficients a,, are zero, with the exception of one. This condition results
in the critical load P,,
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2 4
nEL [ , kL
P, — e 2.76

T2 (m +m27r4EI> (2.76)

The trigonometric series represented by G.17 simplifies to a basic sine curve.

V= apsin ’"T”x 2.77)

In contrast to the hinged beam without an elastic bed, the number of half-sine waves, denoted
as m, is not restricted to being equal to 1. To ascertain the value of m that minimizes the critical
load P, it is necessary to compute the local minimum of P, by equating the derivative with
respect to m to zero.

(2.78)

dP., mEl 2k N\ 0
dm 12 7" wintEl) ~

Thus, solving for m,,,

4 kL4 L 4 k
r = _— = — — 27
Mer =\ 22E1 ~ 7V EI (2.79)

. . 2 . .o, . . . .
Demonstrably, the second derivative % is positive for m,, indicating the presence of a local

minimum. Given the requirement for m to be an integer, the appropriate value for m,, is the
nearest integer to the value determined using Equation 2.79, as elucidated by Hetényi [102].

Equation 2.79 reveals that m, is contingent upon the ratio of the materials’ elasticity k/E. An
increase in the stiffness of the elastic medium results in a higher number of half-sine waves in
the buckled shape. This trend is similarly observed when the slenderness A = L/ D of the strut

. . . . . . 4
increases, particularly in the case of a circular section with I = ”6%.

L L

The solution for a Pasternak foundation can be derived analogously, as shown by El Naschie
[103]. For this, the effects of shear deformation are included in the energy terms AU, AU, and
AW . The derivation will not be shown here as it is quite extensive. The solution is [103]

2 4 2
nEL( , kLY GpL
P, = 2.81

o2 (m e " n2E1) (281)



2.5 Fundamentals of topology optimisation 39

As evident, the solution for a Winkler foundation is derived by setting Gp to zero. Since the
term involving Gp is independent of m, the derivative remains consistent with Equation 2.78,
resulting in the same value for m.,. This implies that the inclusion of the shear layer has no
impact on the number of half-sine waves.

2.5 Fundamentals of topology optimisation

Topology optimization represents a method for optimizing domains, wherein an optimal struc-
ture is automatically generated based on a given set of boundary conditions. The process in-
volves the judicious distribution of material within a specified domain, focusing on areas where
it is essential. In the realm of structural mechanics, this approach yields structures resembling
trusses, while thermal considerations lead to the formation of branch tree-like structures.

To initiate topology optimization, it is imperative to define the boundary conditions. The volume
V plays a crucial role in determining the permissible distribution of material. Additionally, the
specification of solid or void regions is possible, imposing either full or empty sections within
the domain. This feature is particularly relevant, for instance, in establishing locations for
screws. Beyond these parameters, the specific shape and connectivity of the resulting structure
remain unknown, as highlighted by Bendsge [19].

2.5.1 SIMP method

To optimise the given domain, the minimisation of a relevant function is performed, and the pre-
valent approach involves iteratively minimizing the compliance, denoted as c. In the context of
a structural problem, this minimisation process seeks to maximise stiffness. Utilizing the FEM,
the discrete representation of this optimization problem is expressed in Equation 2.82 [19]. In
this equation, f represents the forcing array or the right-hand side derived from the discretized
system of equations, u is the vector of unknowns, K is the stiffness matrix obtained from the
system of equations, and D, is the element material tensor, which could be a conductivity or
strain matrix.

The compliance c serves as a fundamental measure of the objective, establishing a connection
between the displacements or temperature at a boundary condition and the force or flux applied
to that boundary. Through the minimisation of compliance, the displacement or temperature on
the specified boundary is effectively reduced.

min c=f"u

2.82
such that:K(D,)u = f (2:52)
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A challenge with the presented formulation lies in its non-differentiability attributed to the bin-
ary characteristics of materials. This limitation can be alleviated by incorporating an interpol-
ation function that facilitates a smoother transition. Among the widely adopted interpolation
functions, the ’Solid isotropic material with penalization (SIMP)’ stands out as particularly
popular [19], as depicted in Equation 2.83. Here, Dy represents the actual material tensor, and
D, signifies the penalised material tensor.

D.(x) = p(x)*Dg, z>1 (2.83)

Equation 2.83 introduces the element relative density p(x) € [0,1], serving as an interpola-
tion parameter that transitions between the presence of material (p = 1) and void (p = 0). The
equation incorporates the penalisation parameter z, employed to penalise intermediate densities.
This penalisation ensures that densities between solid and void states are discouraged, compel-
ling them to adopt either a solid or void configuration [19]. Typically, a value of z > 3 is chosen
to sufficiently penalize intermediate densities. Consequently, Equation 2.82 can be subtly refor-
mulated, as presented in Equation 2.84. The second constraint pertains to the volume, ensuring
that the final volume remains at or below the pre-defined maximum volume specified by the
user over the domain €.
min c(p(x)) =fu
(De(x))u=£ (2.84)

/Qp(x) dQ <V

A

s.t

Checkerboard issue

While this formulation allows for the generation of a structure, it comes with several complica-
tions, with a prominent challenge known as the ’checkerboard’ problem [19]. These problems
arise due to inadequacies in numerical modeling, leading to an overestimation of stiffness [19].
The consequence of the checkerboard pattern is the generation of an optimised structure that
lacks physical plausibility.

To address this issue, filtering techniques can be employed. Numerous filters have been pro-
posed, with those explored by Sigmund being noteworthy [104]. Among the various options,
density and sensitivity filters are particularly favoured for their simplicity of implementation
and efficiency [104]. These filters operate akin to low-pass filters, effectively smoothing sens-
itivities within local regions. Equation 2.85b outlines the structure of a sensitivity filter [105],
while Equation 2.85c¢ illustrates the structure of a density filter [106]. Both utilise a filter matrix,
such as the one described in Equation 2.85a, where the filter radius is denoted as r. Importantly,
the use of these suggested filter matrices has the additional advantage of rendering the results
independent of the mesh employed.

H;j = max(r — ||x; — x;||,0) (2.852)
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é\c/i 1 Al dci
- Hijp; o<t (2.85b)
dpe  piY) i Hij Z’l 730,
N Hivips
5y = L1 Hivil (2.85¢)
Y Hijv;

Figure 2.16 illustrates an optimized structure without the application of any filtering. The image
reveals the presence of checkerboarding, along with struts featuring elements that connect at
only one node. This topology is not feasibly realisable.

Fig. 2.16: Checkerboard pattern and non-physical regions resulting from no filter

An additional issue with topology optimisation is that local- and not global- minima can be
found for the same given set of boundary conditions [19]. Some methods have been used
to overcome this problem, but one simple approach is to gradually increase the penalization
parameter from 1 to the desired value. Another method is to start with a large filter radius, and
gradually decrease it [19].

Update Criterion

To complete the process of topology optimization, the incremental updating of element relat-
ive densities is necessary until a converged structure is achieved. Various methods have been
employed for updating design variables, including the method of moving asymptotes [107] and
the so-called ’optimality criteria method’ [19]. In this work, both the optimality criteria method
and the generalized optimality criteria method, as proposed by Kim et al. [108], are considered.
For a topology optimization problem, a Lagrangian .# can be formulated as expressed in Equa-
tion 2.86 [19]. It is important to highlight that f denotes the volume fraction of the domain, and
Vo represents the total volume of the domain, equivalent to the user-defined final volume. The
Lagrange multiplier A is used to enforce the volume constraint. The volume V is calculated as
the integral of the element relative densities p over the domain 2.
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ZL(p(x),A) = c(p(x)) +A(V(p(x)) = W)

2.86
where: V(p(x)) :/ p(x)dQ (2.80)
Q
A critical point is found when the following conditions, in Equation 2.87, are met.
02 _oc(p) |, V(p(x) _
ap(x) ap(x) ap(x) (2.87)

2 V(p(x) - 1% =0

To ascertain the Lagrange multiplier, denoted as A, the rearrangement of the first constraint is
presented in Equation 2.88 for each element. The variable B, is termed the scale factor, and the
optimal solution is achieved when it equals one. The determination of the optimal Lagrange
multiplier can be accomplished through methods such as bisection or similar techniques.

2e(p(x))
_ Ip(xe)
V(o ()

A 3G

B, — (2.88)

Consequently, each element can undergo an update of its relative density based on Equation
2.89. This methodology constrains the extent of the update for each element by regulating the
move parameter, denoted as m. The power parameter 1, typically set to 0.5, plays a crucial role
in governing the speed and stability of the solution convergence [19].

max ((1—m)pe. Pmin)  if prB < max ((1—m)pe. Pmin)
Pk+1 = § min ((1 + m)pk, pmax) if pkB]? > max ((1 + m)pk, pmax) (2.89)
pkB,? otherwise

The Generalised Optimality Criteria Method (GOCM) proposed by Kim et al.[108] is an ex-
tension of the standard OCM. It allows multiple inequality constraints with improved computa-
tional efficiency. For the GOCM, a general formulation of the Lagrangian is used (see Equation
2.90), which includes a constraint g; and a slack variable s;. This variable is non-zero when the
constraint is inactive.

Z(p(x):4,8) = c(p(x)) + Y Ai(gi(p(x)) +57) (2.90)
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The critical point is attained by setting the gradient of the Lagrangian to zero, as described
by Equation 2.91 [108]. Because of the third condition, only the active constraints need to be
considered [108].

Vomye(p(x +Z/1V )8 =0

gi(p(x)) +s7 =0, i€[LN]
V,’Si:O

(2.91)

An innovative concept introduced by Kim et al. suggests that the Lagrange multipliers need not
be satisfied at every iteration, requiring minimal computational resources for their determina-
tion in each cycle until convergence is achieved [108]. Patnaik et al. [109] proposed several
alternatives for this purpose, two of which are presented in Equation 2.92. The third option,
suggested by Kim et al. [108], focuses on controlling the rate at which the Lagrange multiplier
is determined. Subsequently, the relative densities can be updated in accordance with Equation

2.89.
A =251+ a*pogi) Linear form

A =2k ) po Exponential form (2.92)
A =251+ po(gh +Agh)) Kimetal., (2023)

Structural optimisation In a structural the minimisation of the compliance, shown in Equa-
tion 2.93 has the effect of maximizing stiffness for a given domain volume fraction.

min c(p) =u’
st K(D.(x ))u—f (2.93)

/Qp(x) dQ <V

The gradient of the compliance is shown in Equation 2.94. Its derivation can be found in the
text from Bendsge [19]. The reader should that this only considers the theory of small displace-
ments, i.e. only linear problems are considered.

dc TaKeu
ope dpe

(2.94)

Thermal optimisation Thermal topology optimisation has become a well-researched topic
with many methods now existing [19], [110]. By minimising the thermal compliance, shown in
Equation 2.95, the temperature at the heat flux boundary is minimised, with T being the tem-
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perature matrix, and k., being the stiffness matrix of a single element.
min c(p) =T'f
/ p(x)dQ <V
Q

The gradient of the compliance, as given by Joo et al. [111] is reported in Equation 2.96. They
found the derivative of the convection matrix Kj, to be negligible, and the derivative of the
forcing array is known to be zero. As a result, only the conductivity matrix K. has an impact
on the total gradient.

aC L T afe T aKe,h aKe,c o TaKe,C
o —2T P -T ( P 4 3. )T_ -T 3o T (2.96)

In this work, domains are considered to be purely conductive. Convective effects are neglected.
This is an acceptable assumption in several cases, i.e. for spacecraft systems or for media with
a high domain volume fraction.

2.5.2 Optimisation of Lattice Structures

Optimisation of lattice structures requires the consideration of orthotropic material properties.
Within the optimization loop, the orientation of the cells is taken into account to enhance stiff-
ness. This is accomplished by aligning the unit cells along the principal stress axes, as indicated
by Groen and Sigmund [112]. A rotation matrix R, as exemplified in Equation 2.97b, can be
employed to rotate the material tensor C to the angle 8, as demonstrated in Equation 2.97a.

C(x,0) =RT(0)C(x)R() (2.97a)
cos® —sin0

R(O) = ] (2.97b)
sin@ cos0

The optimisation loop is similar to a typical topology optimisation, but during each iteration,
the principal stresses o, and oy need to be determined as well as the rotation angle of the prin-
cipal axis 6,,. The material tensor can then be rotated and recomputed until the change in angle
is below a tolerance. The principle axis can be computed using Equation 2.98, where 7,y is the
shear stress.

27y
O — Oy

tan(26),) = (2.98)
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After the optimal relative density distribution is generated, a post-processing step, consisting of
a de-homogenisation, is needed. Many methods have been proposed for this [112, 113, 114].
The de-homogenisation returns a physical lattice structure, with variable geometrical paramet-
ers throughout the domain, from the finite element mesh. The de-homogenisation is performed
by mapping the relative density of each element to the thickness of the struts.

2.5.3 Multifunctional topology optimisation of lattice structures

Topology optimisation has been successfully applied to a variety of lattice structures. The multi-
faceted features offered by cellular solids, and, in particular, additively manufactured lattice
structures, attracted the attention of researchers from different engineering fields. Many authors
employed topology optimisation in order to achieve optimal unit cell topologies for a given goal
function. For instance, Kazemi et al. [115] proposed based on a density-based technique, which
makes use of geometry projection, in order to achieve several lattice multi-material unit cells.
They demonstrated the capability to obtain two- and three-material lattices with maximal bulk
modulus, maximal shear modulus and minimal Poisson’s ratio subject to a mass constraint.
Cheng et al.[116] introduced a method to optimise the topology of lattice structures based on
homogenisation approaches, with a minimum structural compliance goal function. They first
empirically described the effective stiffness of a simple cubic unit-cell in relationship to its relat-
ive density with help of power laws. Then, they used homogenised properties to perform a SIMP
based topology optimisation. They then reconstructed the lattice structure by de-homogenising
it. A mapping of the element of the relative density of each element to the thickness of the struts
was chosen in order to perform this procedure.

Several methods have evolved for optimising lattice unit cells with a multifunctional purpose.
Torquato et al. [117, 118] presented a method to achieve three-dimensional composite micro-
structures with multifunctional characteristics: the simultaneous transport of heat and electricity
in three-dimensional, two-phase composites. The objective functions that they considered con-
sisted of different combinations of the dimensionless effective thermal and electrical conduct-
ivities. When the sum of the effective thermal and electrical conductivities is maximized, their
finding showed that the optimal three-dimensional microstructures are triply periodic bicon-
tinuous composites with interfaces that are the Schwartz primitive P and diamond D minimal
surfaces. In a similar publication, Torquato and Donev [119] demonstrated that triply periodic
minimal surfaces resemble optimal geometries also when considering the maximisation of the
bulk modulus.

De Kruijf et al. [120] described a method to achieve optimal structures with maximum stiffness
and maximum thermal conductivity. The two phases for the material design problem were ill
ordered. The microstructures were required to be isotropic with respect to conductivity but only
square-symmetric with respect to elasticity.

Challis et al. [121] expanded the work of De Kruijf et al. to a third dimension, while imposing
isotropicity. This was justified by the will to achieve a unit cell which can be applied in fields
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where the loading direction can be unknown.

A wide combination of weights were used to calibrate the multifunctional optimisation. The
results resembled a variety of microstructures which are common lattice structures, i.e. bcc
truss lattices or Schwartz P Triply Periodic Minimal Surface (TPMS).

Aside from the research intended to achieving optimal unit cells, as described above, several
authors approached the optimisation of a domain filled with pre-defined unit cells [122, 123,
124]. Venugopal et al. [125] presented a multi-material topology optimisation with stiffness
and thermal conductivity goal functions. They employed pre-defined simple cubic unit cells.
Recent research focuses on optimizing a domain given an already homogenized unit cell, so a
similar approach to Venugopal et al. [125] can be found in many recent works, e.g. Pejman and
Najafi [126] and Takezawa, et al. [127]. They also developed a method for structural optimisa-
tion using stress and conduction constraints. Their results indicate an interesting pathway for
the purpose of this work.

Pareto optimality The multifunctional purpose of this work imposes the consideration of
pareto optimality. To generate a Pareto front, the weight method has been used, similar to
what Challis et al. [121] described. Here, the value of the goal function J in Equation 2.99 is
minimised.

J=—(wic1 +wacz) (2.99)

where w; are weights that sum to one of the relative importance of each separate function c;.

The Pareto front is obtained by first computing the single field problems, i.e. finding the op-
timal topology for the structural and the thermal problem, separately, in order to determine the
bounds. The compliance of the single functions can then be normalised, and a Pareto front can
be generated by incrementing the weights from O to 1. The gradient of the objective function
ends up being a sum of the gradients of the single functional components with a weight on each.

Summary

The here presented chapter provided an overview of the fundamentals theories and recent liter-
ature works necessary for the development of this work. The first section introduced the reader
to the theory of cellular solids, with a focus on their effective mechanical and thermophysical
properties. Section 2.2 briefly introduced Phase Change Materials and their properties. In par-
ticular, methods of macro-encapsulation such as embedding in metal foams are delved into.
With the informations obtained from such section, a review of the fundamental governing equa-
tions for heat and mass transfer in porous media is given in Section 2.3. Further on, Section 2.4
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presents the fundamentals necessary to mathematically describe the stability of the lattice struc-
tures’ slender struts when embedded within a PCM. Finally, Section 2.5 introduces the reader
to the theory of topology optimisation, with a focus on the SIMP method and the optimisation
of lattice structures. Present literature on multi-functional topology optimisation is also intro-
duced.

In the following chapters, the presented theory and literature are used to first characterise the
thermal and mechanical stability behaviours of the lattice structure / PCM composites. Then a
multi-functional topology optimisation tool is developed and presented.






3 Lattice structures geometry

When attempting to deduce effective thermophysical and mechanical properties for the com-
posites proposed in this work, the principal challenge resides in the precise formulation of the
unit cell’s geometry. The model described in Chapter 2, which is based on Hubert et al.’s re-
search [55], opted for a simplified treatment of the unit cell geometry, specifically restricting it
to cubic unit cells with an aspect ratio of 1. As highlighted in the earlier discussion in Chapter 2,
their equations provided a reasonably accurate approximation of Effective Thermal Conductiv-
ity (ETC) but constrained the permissible variations in cell topology and porosity within defined
limits.

In order to facilitate the characterisation of diverse cell topologies and promote meaningful
comparisons between cells, it becomes imperative to augment the number of variables in the

analytical model, all while upholding the model’s precision. Figure 3.1 schematically describes
the geometric variables considered. The relevant variables include:

e strut radius r,
* cell topology,

e cell height H,

* aspect ratio of cell height H to cell width W, expressed by the angle y = arctan % (see

Figure 3.1).
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Fig. 3.1: Schematic description of basic cell geometries. In a generic cuboid cell, space-diagonals
have an angle 8 with the face diagonal of the base-square. Face diagonals on the lateral
faces make give origin to an angle y with the base-square edge.
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For face-centered struts, the strut angle to the horizontal is the angle y. For body-centered struts
in cuboid cells, this is the angle 8. The relationship between the aspect-ratio angle y and f is

given by
B = arctan ( tar\l/(iy)) (3.1

The following cell topologies are investigated: f>cc, faccz, bee, beez, fabee, f2bccz. The unit-
cells are shown in Figure 2.3.

3.1 Derivation of the Porosity

In delineating the geometry of these lattice structures, precision in calculating their volume,
and thus their porosity and volume fraction, is of paramount importance. While determining
the volume of the struts is straightforwardly linked to that of a cylinder, the computation of the
volume at their intersections is intricate. Historically, empirical models have been employed for
this purpose [55, 48], wherein the nodes where struts intersect are treated as cubes, and the side
length is empirically estimated.

A more comprehensive model necessitates a nuanced treatment of the lattice strut intersections.
In this context, Steinmetz’s solids are incorporated in this study to model these intersections. A
Steinmetz solid delineates the volume resulting from the intersection of two or more cylinders,
as depicted in Figure 3.2.

(c) Steinmetz’s solid for four cyl-

(a) Steinmetz’s solid for two cyl- (b) Steinmetz’s solid for three cyl-  inders, i.e. the bisection axes
inders. Four facets are gener-  inders. Twelve facets are gen-  of a tetrahedron. Twenty-four
ated. erated. facets are generated.

Fig. 3.2: Steinmetz’s solids for cylinders crossing at regular angles. The circles which give origin to
the crossing cylinders are evidenced via blue lines.



3.1 Derivation of the Porosity 51

As mentioned by Angell and Moore [128], with increasing number of cylinders, the Steinmetz’s
solid converges rapidly towards a sphere. For six cylinders, only a 2.6 % difference is present
between the volume of a sphere and the volume of the Steinmetz’s solid. This allows simplify-
ing assumptions in the further development of this work.

Within lattice structures, various types of intersections are discernible. Referring to Figure 2.3,
at the lateral edges, unit cells featuring body-centered struts manifest a four-fold intersection,
denoting the crossing of four struts. In contrast, face-centered struts reduce this count to two.
Nodes situated on the upper and lower faces of the unit cell present a diverse array of intersect-
ing struts. In the case of simple bcc and focc cells, only four struts intersect at these nodes.
However, with the introduction of a z-strut, this count increases to five. Cells such as f,bcc and
f2bccz display eight and nine intersecting struts, respectively.

For two struts crossing at an arbitrary angle @, analytical solutions exist [129]. The generic
volume of the Steinmetz’s solid for cylinders with two different radii is given by

- 2(r3 = x2)05 3 .
V(ri,r,o) = /_r1 2(rs —x2)%. —slin(a)) dx = —sin(a)) /0 (13 —x*)%2.2(r7 —x*)% dx
(3.2)

where r; and r, are the two different radii, @ is the angle between the axes of the two struts.

2( r% _ xz)o.s
sin(o)

at a distance x from them. It describes a parallelogram whose height is the left term of the

multiplication, while the base is the right one. If the radii are equal, as assumed in this work,

the volume is given by Equation 3.3.

The term 2(r% —x%)03. represents the cross-section parallel to the cylinder axes,

V(r,o)= Lw)/or(r2 —x?)dx = Lr3 (3.3)

 sin( 3sin(®)
This also represents the volume of the Steinmetz solid representative of a f>cc node.
In the general case, each Steinmetz’s solid is made of a variable number of cylindrical sectors as
shown in Figure 3.3 where the points exhibit generic coordinates: O(0,0,0), A(R,0,0), B(R,0,0),
C(R,0,2).
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C

Fig. 3.3: Schematic view of a generic cylindrical sector generated by the crossing of two or more
struts.

The height & of the elementary segment XY is related to the one of the segment BC by

h Rsin6
- = 4
Z Rsin® 34
The area of the surface ABC and the volume of OABC are then
o
A= / hRd6® = RZ(cosec(®) —cot®) (3.5)
0

V =AR/3 (3.6)

Thus, considering for example, the Steinmetz solid for three cylinders shown in Figure 3.2b,
each of the 12 rhombic facets can be divided in 4 cylindrical sectors with vertices A=(R,0,0),
B=(R,7/4,0), C=(R,m/4,R/2). To calculate the area A, ® = n/4 and Z = R/+/2. The volume
is then 48 times the volume of the considered cylindrical sector.

R? R 3
V:48-(?)(\/§—1)ﬁ:8R (2—v2) (3.7)

Lattice structures exhibit specific kinds of crossings. With reference to Figure 3.1 and Equation
3.1, bee nodes which exhibit the intersection of four struts have Steinmetz solids with 24 facets
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which can be divided in 4 cylindrical sectors, each. Thus, the volume of a bcc intersection at a
generic angle is given by

3
Vhee = 96§ sin(w — B) (cosec(wr— ) —cot(m—B)) (3.8)

To calculate the amount of facets that the Steinmetz solid possess the following formula can be
used.
N =2n(n—1) (3.9)

where N is the number of facets generated by the crossing of n struts. Then, the volume can be
calculated as above, knowing the amount of facets that must be multiplied by the volume of the
elementary cylindrical sector.

When z struts are present, the solution is not trivial anymore as the struts cross at different
angles. The same is valid for nodes where bcc and f>cc struts cross.

To simplify the calculation process, it is useful to remind that the volume of the Steinmetz
solid rapidly converges to the one of a sphere when the number of struts increases. Thus, in
the following, crossings involving z struts or the ones of f>bcc cells are considered as spheres
and corrected via empirical factors. Furthermore, the use of empirical factors is advantage-
ous when considering manufacturing tolerances. At the nodes, material accumulation can take
place during the manufacturing process, so that roundings are present there where the cylinder
intersection lines should lie. The resulting solid thus deviates from a pure Steinmetz solid. The
use of empirical factors for each kind of node can thus correct these deviations.

The volume of several lattices at different angles and with various geometric parameters is
calculated via CAD and the empirical factors are fitted to these. The porosity € can be thus
calculated with the following generalised formula.

tany np, n
e=1- w3 |:7'L'r2H (Sinc’}/ + SHJ;L:)/ + nz> -C- VSteinmetZ:| (3.10)

where 7y is the aspect ratio angle, W is the size of the cuboid base, H is its height, r is the radius.
1y 18 the number of body-centered struts in a unit cell, n . is the number of face-centered struts,
n, is the number of vertical (z) struts, C is the empirical factor and Vs;einmer; 18 the analytical
volume of all the nodes. This last variable is different for each lattice. The formulae for the
considered lattices and the respective empirical factor C are listed in Table 3.1.
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Table 3.1: Formulae for the calculation of the volume of the Steinmetz volumes for each lattice unit

cell
Unit cell Formula for Vs;einmer: Empirical factor C
6, 2 9%
Xp__ s 7 ) —2y) - 2 72
Sace 3" Sn(z—27) + 3" sin(7 — 2y)(cosec(m —27y) — cot(w — 27)) 0.728
96
bce —r¥sin(m —2B)(cosec(m —2B) —cot(m —2B))) 0.908
face E1*3#+@r3sin(7t—2 )(cosec(m —2y) — cot(w —27)) 1.015
20 3 sin(m—2y) ' 3 v 7 v '
96
becez —rsin(mw —2B)(cosec(n —2) —cot(r —2B)) + Viphere/ (sin(n/2— B)) 1.044
9 16 2
fzbcc ?}3 Sin(ﬂ—Zﬁ)(coseC(ﬂ—Zﬁ) —COt(ﬂ—Zﬁ)) ?rg'm +Vsphere 1778
6 16 2
fabcez %r3 sin(w —2f) (cosec(m —2B) —cot(r—2pB)) + ?r3m + Viphere 0.753

To verify the present results, numerical data obtained from a CAD of the unit cell are compared
to the semi-analytical results. One should notice that the numerical data used for the verification
vary from the ones used for the calculation of the empirical factor C, i.e. different geometries
were used to verify the accuracy of the formulae, with respect to the ones used to achieve them.
Figure 3.4 shows the verification for a f>cc unit cell. An additional curve is plotted, named
"analytical". This represents the porosity function if one neglects the Steinmetz’s solid. For
high porosities, the intersection of the struts is minimal and thus contributes minimally to the
overall volume fraction. However, its value becomes rapidly relevant, as shown in Figure 3.4
where the results for other cells are shown.
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(a) Verification of the porosity analytical function plot-
ted against increasing strut radius.

(b) Verification of the porosity analytical function plot-
ted against increasing aspect ratio angles 7.

Fig. 3.4: Verification of the results for the porosity semi-analytical function.

Equation 3.10 delivers fundamental information for the upcoming work. Indeed, the thermo-
physical and mechanical properties of the lattice depend, in different ways, on the porosity, the
cell size, the strut radius,the aspect ratio, and the unit-cell topology. Having obtained a unified
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formulation that connects all geometric variables to the porosity, it can be used to control the
material properties of each single unit-cell.

This represents a decisive step to be able to setup the optimisation algorithm presented in
Chapter 6.






4 Thermal characterisation

Problem statement This chapter tries to elucidate the thermal characterisation of compos-
ites incorporating Phase Change Materials (PCMs), such as paraffin waxes, in conjunction with
metallic lattice structures exhibiting diverse topologies. Initially, the assumption posited is that
the dominant heat transfer regime is purely conductive. Despite the evident limitation in re-
liability associated with this assumption, it serves as a constructive means to incrementally
introduce complexity into the investigation of the thermal behaviour.

Specifically, the primary focus in the initial section of this chapter is the acquisition of reliable
descriptions of the composite’s effective thermophysical properties. A semi-analytical model
is formulated to delineate the effective thermal conductivity of lattice structures featuring gen-
eric topologies. The model undergoes numerical verification through the implementation of
finite element models, as well as experimental validation. Additionally, a particular emphasis is
placed on the model’s scale variance, elucidating the variation in thermal behaviour concerning
varying sizes of unit cells while maintaining consistent porosity.

Then, an experimental investigation is described. This is used to validate the semi-analytical
formulae developed. The experiments also investigate the effect of natural convection within
the melt of such composites on the thermal behaviour.

In the subsequent sections of this chapter, a numerical model is introduced to explicate the
influence of natural convection on the thermal behavior of the composite. This model is sub-
stantiated by experimental outcomes. The experimental investigation reveals that the impact
of natural convection on the thermal efficacy of the composite is negligible solely for lattice
structures characterized by low porosity, where conduction consistently prevails.

4.1 Derivation of the effective thermal conductivity

The formulae derived for the porosity in Chapter 3 are used in the procedure to calculate the
Effective Thermal Conductivity (ETC). Lattice structures strongly differ from other cellular
solids like metal foams. Indeed, for metal foams, due to their random geometry, the ETC
depends only on the porosity. For lattice structures, it depends on the porosity of the unit cell,
on the cell size, the aspect ratio, the strut radius, and the cell topology. In general, the ETC of
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a lattice structure is orthotropic. Thus, the effective thermal conductivity is described by the
tensor

dett=| 0 2wy O 4.1)
0 0 A

where the coordinates X,Y,Z are described in Figure 4.1, i.e. the Z-direction is the direction of
z-struts, if present, and the X,Y plane is a simmetry plane.
To ascertain the ETC of the lattice structure, a methodological choice aligns with an orientation-
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Fig. 4.1: Schematic description of a unit cell equivalent to the one of Figure 3.1, but where the unit
cell is centered about the z-strut if present, i.e. the unit cell is displaced by half a cell with
respect to Figure 3.1.

based layerwise approach, as illustrated in Figure 2.7. This approach is particularly apt due to
the pronounced regularity in the geometry of the unit cell. All unit-cells exhibit symmetry
across all three spatial directions. Exploiting this inherent symmetry facilitates a streamlined
calculation process. The procedural steps for deriving the ETC are outlined schematically in
Figure 4.2 and are described in the following.

The unit-cell topology and geometry, encompassing parameters such as strut radius, aspect
ratio, and cell size, uniquely identify the quantity of struts and their associated characteristics
(step "1." in Figure 4.2). Modeling the intersections of these struts as cuboid nodes ("2." in
Figure 4.2) becomes imperative to efficiently calculate the thermal resistance at such nodes.
The dimensions of these cuboid nodes vary based on the direction considered for the calculation
of the effective thermal conductivity. Equations 4.2 and 4.3 are employed for calculating the
ETC in the Z-direction and in the X, Y-direction, respectively. Notably, the cuboid specifications
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1. Symmetric geometry
of a unit cell

2. Simplification of the volume of the Steinmetz’s solid
to calculate the thermal resistance of the node
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Fig. 4.2: Workflow to obtain the effective thermal conductivity. ¢ represents the thickness of the
cuboid defining the Steinmetz volume, while R is the thermal resistance.
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differ for each strut type, even when multiple struts converge at the same intersection. Thus, the
thickness ¢ of the cuboid defining the Steinmetz volume is given by

. 1/3
tz ( Y, VSteinmetz) = (VSteinmetZ (’}/) Sln2 (’}/) Cos ( }/) ) (4-2)

. 1/3
tx,y ( Y, VSteinmetz) = (VSteinmetz (Y) Sln(Y) COSZ (7) ) (43)

where Vseeinmetz represents the volume of the considered Steinmetz’s solid.

A thermal network serves as the computational framework for determining the ETC of each
strut and the associated partial node, as depicted in point 3 of Figure 4.2. The thermal network
calculation is structured into three layers. The initial layer encompasses the node situated at
the top or bottom cell interface. The second layer involves the strut connecting the two nodes.
The third layer accommodates the second node at the intersection point of the struts, positioned
midway through the cell. In the evaluation of conductivity, the thermal resistance of each layer
is initially established, with exclusive consideration given to the lattice structure. The filler ma-
terial, i.e., the Phase Change Material (PCM), is incorporated as a parallel resistance.

Point 3 in Figure 4.2 illustrates three thermal resistances connected in series to the one cor-
responding to the symmetrical strut. These series are then interconnected in parallel with the
existing strut series. This configuration is schematically represented in point 4 of Figure 4.2,
specifically for a f,cc unit cell (as denoted in point 1).

Z-Direction The thermal resistance R of the first node, considering the thermal resistance of
a cuboid and the thermal conductivity A, is expressed by Equation 4.4.

_t nty/(2cos(y)) 1 nsin?(y)
Ri(n.y) = AA ~ 6112/sin2(y)As  O12tycos(¥)As -

In the provided equation, n denotes the number of struts participating in the intersection, with
the exclusion of the z-strut. The parameter o serves as an empirical factor introduced to ac-
commodate the intricate intersections at the nodes, presuming that resistance diminishes due
to material accumulation. A represents the conductivity of the strut material. The analogous
procedure is applicable to the third layer, where Equation 4.5 computes the resistance for the
third layer situated at half cell height.

1 nsin?(y)

o3 21, cos(y)As (%)

R3(n.y) =
In the case of the second layer, corresponding to the strut, a distinct methodology is employed.
Here, the longitudinal thermal resistance of a cylinder is utilised. However, the effective length
of the strut deviates from the theoretical length, which can be obtained from conventional geo-
metric formulae if the Steinmetz’s solids are neglected. To derive the modified strut length, the
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distance from the center of the node to the vertex of the node is subtracted from the original
strut length. Equation 4.6 is formulated to express this new strut length, denoted as Ly,.

Lstr('}/, n, l’l3) _ .H . tnl (’}/» VSteinmetz] ) + tng (% VSteinmet23 ) ( ; + : 22 ) 05
2sin(y) 2 cos*(y)  sin*(y)
(4.6)
To the determination of Ly, follows Equation 4.7 for the resistance of the strut.
L r ) B
Ry(v.ny,n3) = M (4.7)

Tr2 Ay

In totality, the resistance traversing the entire cell for a single strut is derived as a series system
comprising the individual layer resistances, as specified in Equation 4.8. Considering that each
strut possesses a symmetrical counterpart in each of the two considered directions (Z and X,Y),
the equivalent resistance of each strut is consistently arranged in series with an identical resist-
ance. Consequently, R, R,, and R3 are each multiplied by two to ascertain the resistance of a
strut spanning the entirety of the cell, as illustrated in point 4 of Figure 4.2.

Ry (v.n1,n3) =2 (R (v.n1) +Ra(7.n1,n3) + R3(v.n3)) 4.8)

For the z-strut, a simpler model is employed, as it spans the entire height of the cell. The impact
of material accumulation in the nodes is considered through the empirical factors o associated
with the other diagonal struts. The collective resistance of the lattice can be computed based on
the number of struts, in conjunction with Ry,. Equation 4.9 delineates the overall resistance of
the struts. |

5bc 5fc 51

+ + =

Rstr,bc(%nhn?)) Rstr,fc(%nlan3) Rz

with 0y, representing the number of body-centered struts (i.e. four for a bec unit-cell), 8y, the
number of face-centered ones, and &, the number of z-struts, which for cuboid cells is always
one.

4.9)

Rtot -

X, Y - Direction An identical methodology is applied for determining the ETC in the x,y-
direction. The cell undergoes a 90° rotation around one of the horizontal axes, and the layers
are segregated along the scrutinized direction (x- or y-direction). Figure 4.3 illustrates the cells
stacked in different orientations, with the example of a rotation around the y-axis. The volume
of the prism at the intersections of the struts (nodes) undergoes alterations compared to the mod-
eling in the z-direction. In the x,y-direction, the edge length of the prism becomes 7/ sin(7y).
The cross-section of the prism corresponds to (¢/ cos(7))?. Consequently, Equation 4.3 is ob-
tained to represent the edge length parameter 7. Given that the parameter ¢ is defined differently
with respect to the z-direction, the resistances of the nodes also deviate from Equations 4.4 and
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(a) z-direction (b) x,y-direction

Fig. 4.3: Two f>ccz cells stacked in different directions.

4.5. Consequently, Equation 4.10 is derived for the node of the first layer, and Equation 4.11 is
formulated for the node of the third layer in this context.

1 ncos*(y)

Ri(n,y) = o 2 1 sn(v A (1) (4.10)
1 ncos’(y)

R3(n,y) = 032 trsin (1) 4.11)

Owing to the rotation, not all struts effectively contribute to the conductivity. For instance, the
z strut in Figure 4.3b no longer connects the bottom and top interfaces of the cell. Nonetheless,
these struts still enhance the conductivity of the cells by thickening the intersections of the
nodes. The additional material augments the cross-section of the node, thereby reducing the
path length and lowering the resistance. This influence is incorporated into the model through
the empirical parameter ¢ in Equation 4.12.

o; = otan(Yy) (4.12)

The conductivity of layer two is computed using the same equations as those applied in the
z-direction (Equations 4.6 and 4.7), but incorporating the new strut length from Equation 4.3.
Consequently, the lattice’s conductivity can be determined through Equations 4.13-4.14. For
a frbccz cell, it follows that there are two face-centered (fc) struts (5fc = 2), as the remaining
struts do not contribute directly to the conductivity. There are four body-centered (bc) struts
(6pe = 4) and zero z-struts (6, = 0) per unit cell.

Ry (v,n1,n3) =2 (R (y,n1) + Ra(Y,n1,n3) + R3(7v,n3)) (4.13)
6bc 6fc !

Riot = +
ot Rstr,bc (Y7 nl ’ n3) Rstr,fc(% nl ’ n3)

(4.14)
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Effective Thermal Conductivity The outlined methodology is applicable to a diverse range
of cuboid unit cells. An illustrative example is provided below, elucidating the determination
of the Effective Thermal Conductivity (ETC) for an f>bccz unit cell—a composite comprising
all possible struts. This specific unit cell features four face-centered (fc) struts (8. = 4), four
body-centered (bc) struts (8. = 4), and one z-strut (6, = 1) per unit-cell. The resistance of the
body-centered strut, Ry, ., involves an eight-fold strut-intersection in the first layer and a four-
fold one in the third layer. Consequently, Ry, p(7,n1 = 8,n3 = 4) is employed. Conversely, the
face-centered struts exhibit an eight-fold intersection in the first layer and a two-fold intersection
in the third layer, leading to the use of Ry s.(7,8,2). The empirical coefficients are determined
through numerical optimisation, employing a gradient descent algorithm to achieve accurate
values. Tables 4.1 and 4.2 present the coefficients and values for ¢ to be utilized.

Table 4.1: Coefficients to calculate the ETC in z-direction. The Root Mean Squared Error (RMSE)
is calculated varying all geometric parameters.

celltype Opc Ope O, nijge M3fpc Nipe N3pe Olfe O3fc Olpe O3pc RMSE [%]
frcc 4 0 0 4 - - 2.024 1.793 - - 2.09
heez 40 1 S - 1448 1168 - i 1.65
bcc 0 4 0 - - 4 4 - - 1.903 1.903 1.59
bcez 0 4 1 - - 4 4 - - 1.537 1.537 1.85
frbcc 4 4 0 8 8 4 2.145 1311 2.145 1.311 1.01
fabeez 4 4 1 8 4 1.654 1.185 1.654 1.133 1.00

Table 4.2: Coefficients to calculate the ETC in x,y-direction. The * indicates, that the factor is
multiplied by tany as in Equation 4.12.

celltype Orc Ope Mijfe N3 fe Mipe Mpe Olfe  O3fc  Olpe O3pc RMSE [%]

face 2 0 4 2 - - 2.618 3.316 - - 1.14
facez 2 0 4 2 - - 1.732  2.836 - - 1.54
bce 0 4 - - 4 4 - - 42771 4277 1.52
beez 0 4 - - 4 4 - - 10.95% 4.073 1.61
fabce 4 4 8 4 10.86*% 2.420 10.86* 3.840 1.87
fabcez 4 4 8 8 4 9.576% 3468 9.576* 4.564 2.38

In the z-direction, the empirical factors o decrease with the addition of a z-strut, as clear com-
paring f>cc and f>ccz unit-cells in the tables above. A decrease in o corresponds to an increase
in the resistance of the strut. Thus, this result is logical, as the z-strut occupies a portion of
the node in the first layer, resulting in less conducting surface for the diagonal struts. Once
the resistance Ry, of the lattice is determined, the ETC can be calculated using Equations 4.15
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and 4.16. The necessary inputs include the cell type, radius r, cell height H, and angle y. The
conductivity of the filler, A, is also considered, weighted by the porosity €.

tan?
A‘effz('y, r,h) = I R([’y,) +8A,f 4.15)

)Leffx,y (Ya ra h) —

+ el (4.16)
H Ry f

The detailed expressions for the ETC of each unit-cell are given in Appendix C.

4.1.1 Verification

To validate the formulated equations, a comprehensive approach is employed, encompassing
numerical simulations, comparison with existing literature—especially the work by Hubert et
al. [55]— and experimental investigations detailed in Section 4.2. The experimental data serve
a dual purpose, providing immediate validation and potential input for further explorations.
Numerical models are constructed utilizing the commercial software COMSOL Multiphysics®.
The assumption is made, that the predominant heat transfer mode is heat conduction. Both a
stationary and a transient model are developed. The stationary model is employed for determin-
ing the ETC, while the transient model is utilized to examine the time-dependent behavior of the
composite PCM and its dependency on cell size, as presented in Section 4.1.2. In the stationary
model, material properties are assumed to be constant over the investigated range. To reduce
the computational effort, a quarter of the cell cross-section is employed, given the symmetry
of the cells through the center point, as already presented by Hubert et al. [55]. Multiple cells
are stacked atop one another, with a minimum of seven cells yielding stable results, wherein
further stacking does not significantly alter the ETC. Figure 4.4 illustrates the model and the
boundary conditions. The temperature difference is measured at the central cell to determine
the conductivity using Equation 4.17.

GH
T—T

Aeft = (4.17)
with ¢ representing the heat flux flowing through the domain, H is the cell size, T; is the tem-
perature at the top interface of the cell and 7> is the temperature at the bottom interface. A
mesh-convergence analysis is conducted for each cell. The maximum element size of 1.82 mm
and minimum element sizes of 0.078 mm for the cell dimensions H =10 mm and y = 45° have
been determined to yield an error less than 0.1%. The number of elements required is contingent
on the cell’s complexity. Consequently, the f>bccz unit cell necessitates the highest number of
elements to achieve mesh convergence due to the highest number of struts and the presence of
the most complex nodes. In each case, the smallest radius examined (i.e., the highest porosity)
is used for the cells, as this scenario requires the smallest elements and thus the highest quantity
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Fig. 4.4: Simulation model for the calculation of the ETC and boundary conditions applied, with a
constant value of the heat flux g. The black lines represent the struts of the unit-cell

of them. Figure 4.5 illustrates the convergence plot for the f>bccz unit-cell.
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Fig. 4.5: Convergence study of the stationary model for the f>bccz cell, which requires the most
elements.

Numerical results obtained through steady-state thermal simulations are utilised for verification.
The empirical parameters for the ETC model are calibrated through numerical outcomes from
a parametric study. The model is then verified using geometric parameters distinct from those
used in calibration.

The comparison involves the proposed model, numerical outcomes, and literature data, as illus-
trated in Figure 4.6. However, this comparison is restricted to specific cases due to limitations
in the available literature [55], specifically addressing f>cc, f>ccz, bee, and becez cell topologies,
all characterized by an angle of y = 45°.

For a more extensive assessment, the equations are verified within a parameter range defined
as 20° < ¥y < 65° and 0.01 < r/h < 0.13. The equations demonstrate validity for porosities
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surpassing € > 0.65, suitable for lightweight structural designs aiming at high porosity values.
The comparison between the derived equations and numerical results in the x,y-direction is

X numerical data x numerical data
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Fig. 4.6: Comparison of the different models for calculation the ETC in z-direction of the unit-cell
Jfaccz. The radius is varied in a range from » = 0.1mm to r = 1.3mm. The height of all
cells is H = 10mm, while the angle is specified in the captions.

illustrated in Figure 4.7. Generally, there is good agreement between the analytical results and
numerical outcomes. However, the equations encounter challenges in predicting conductivity
for high angles (> 60°). This limitation arises from struts that are not directly involved in heat
conduction in the x- and the y-direction, such as the z struts. At high angles, these struts sig-
nificantly shorten the conduction path and result in high material accumulations. However, this
effect is not considered in the equations. Consequently, the semi-analytical equations can only
be reliably applied for angles ¥ < 60°. Within this parameter range, the equations demonstrate
accuracy with errors below 5% for porosities exceeding € > 0.65. However, for given unit-cells,
this range can be higher, as shown in Figure 4.7b.
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Fig. 4.7: Comparison of the different models for calculation of the ETC in x,y-direction, for the unit-
cell beez. The radius is varied for in a range from r = 0.1mm to » = 1.3mm. The height of
all cells is H = 10mm, while the angle is specified in the captions.
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4.1.2 Results and Discussion

The provided semi-analytical ETC model, in conjunction with mixture laws for density and
specific heat capacity, facilitates the homogenization of thermophysical properties within the
composite PCM. This homogenisation enables a detailed exploration of the influence of diverse
geometric parameters on the thermal characteristics of the composite. The focus of this section
is to meticulously examine the impact of each parameter in isolation from the others.

Strut radius In Figure 4.8, both the effective thermal conductivity in z and in X,y- directions
for all considered unit cells at varying porosity are shown. The effective thermal conductivity
(Aefr) is normalised against the one of the bulk material of which the lattice structure is made
(As). For the case shown in Figure 4.8 the unit cell size is fixed at 5 mm and the angle v is kept
at 45°, thus maintaining a cubic unit cell.
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Fig. 4.8: Effective thermal conductivity of all considered cells for varying porosity obtained by vary-
ing only the strut radius.

The data depicted in Figure 4.8 unambiguously illustrates that unit cells incorporating struts
aligned in the z-direction (z struts) manifest the highest effective thermal conductivity along
that particular axis. Notably, among the various unit cell types, those characterized by a face-
centered structure exhibit the most pronounced thermal conductivity in the z-direction. In con-
trast, unit cells with a body-centered structure demonstrate the lowest thermal conductivity in
this regard. This distinction can be ascribed to variations in the angles () of the struts within
these unit cells. Specifically, struts in body-centered cells possess a smaller angle compared
to their counterparts in face-centered cells with an equivalent aspect ratio. Consequently, unit
cells predominantly composed of body-centered struts present a higher thermal resistance due
to the elongated heat conduction path, aligned along space-diagonals instead of face-diagonals
as observed in face-centered counterparts. Conversely, when evaluating the x and y-directions,
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the disparity in effective thermal conductivity among unit cells diminishes. This occurrence
stems from the limited impact of z-struts on directions perpendicular to them. In this scenario,
unit cells characterized by a face-centered structure with z-struts exhibit the lowest effective
thermal conductivity, while those with a body-centered structure display the highest thermal
conductivity.

It is worth mentioning, that as explained above, the validity of the proposed equations is lim-

ited to unit cells with porosity € > 0.65. The displayed curves reach lower values only for an
illustrative purpose.

Aspect ratio (angle y) Figure 4.9 shows the effect of varying only the angle ¥ on the ETC.
As previously shown in Figure 4.8, the variation of the geometric parameter is intrinsically
associated with a variation of the porosity as well, which thus affects the ETC. In general,
an increase of the aspect ratio is associated with an increase of the ETC. It is interesting to
notice that, as shown in Figure 4.9b for the bcc and the bcez samples, the variation of y for
body-centered unit-cells is particularly efficient on a lightweight design perspective. Indeed, a
variation of the aspect ratio leads to an asymptotic increase of the ETC, but a minimal reduction
of the porosity (i.e. minimal mass increment).

The combined effect of a variation of the strut radius and of the aspect ratio is shown in Figure
4.10, where the y-axis exhibits the same scale in order to emphasize the effect. While the trend
remains unvaried, it is quantitatively more relevant for unit cells with a higher strut radius.
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Fig. 4.9: Effect of the angle y on the ETC. The strut radius and the cell size are fixed at r = 0.5 mm
and H = 5 mm, respectively.
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Fig. 4.10: Combined effect of a variation of the strut radius r, and of the aspect ratio y for H = 5
mm.

Scale variance: effect of cell size and number of cells No direct influence of cell size on the
ETC could be evidence. When the cell size is increased while maintaining a constant porosity,
achieved by proportionally increasing the strut radius, there is no observable impact on effect-
ive thermal conductivity, as depicted in Figure 4.11. In this investigation, the cell size is varied
within the range of 5 to 30 mm, while the radius ranged from 0.5 to 3 mm. This observation
aligns with previously reported findings in the literature concerning the effect of cell size on
thermal properties in metal foams [54, 51]. While the described results do accurately predict
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Fig. 4.11: Cell size effect on the effective thermal conductivity A, ff obtained by scaling the strut
radius according to the cell size variation.

the effective thermophysical properties, this alone does not offer a comprehensive understand-
ing of the transient response of a composite involving a Phase Change Material and a cellular
solid. Specifically, lattice structures produced through additive manufacturing or investment
casting techniques provide the flexibility to vary cell sizes over a broad spectrum. In practical
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applications, adjustments to both cell size and cell count may be made based on diverse bound-
ary conditions, particularly when dealing with confined system volumes. Hence, it becomes
crucial to explore the influence of scale variation on the transient thermal behavior of such sys-
tems. To address this, a numerical investigation is undertaken, comparing both a discrete model
and a homogenised model under identical boundary conditions, as illustrated schematically in
Figure 4.12. The homogenised model is built upon the presented formulae for the effective
thermophysical properties, and a range of geometric parameters is systematically varied across
all considered cells.

Discrete model Homogenised model

(RN RARRRA D ARARREARRRRN

B

50 mm
wu g

T=80°C AT T=80°C

50 mm 50 mm

Fig. 4.12: Schematic view of the compared numerical models to investigate the scale variance.

In reference to Figure 4.12, a pertinent boundary condition in the numerical framework is estab-
lished by ¢, where its magnitude is set at 1000 W /m?, serving as one facet of the computational
domain. Conversely, the opposing boundary condition is defined by a fixed temperature of
80°C. The materials under scrutiny encompass n-Octadecane Paraffin wax and aluminum alloy
6061, with their respective properties delineated in Appendix B. Each examined geometry con-
stitutes a cubic volume measuring 50 mm along each axis, characterized by diverse geometric
attributes for the lattice structures embedded within this domain.

To ensure the achievement of a steady-state condition across all porosities, the simulation dur-
ation is established at # = 1800s. The selection of cell sizes is meticulously executed to enable
the accommodation of an integer count of cells within the 50 mm domain, as detailed in Table
4.3. The adjustment of the radius is orchestrated to maintain a constant porosity throughout
the array of cell sizes. The porosity spectrum considered spans from e= 0.95 to £=0.7, with
incremental steps of 0.05. Simulations are systematically conducted for both the z-direction
and the x,y-direction for each cell type, thereby generating a matrix of 36 simulations for each
orientation of each cell type. The temperature variation AT between point A and point B of
Figure 4.12 is measured. The value for a time = 1800s is considered so that full melting is
reached for all samples. A normalised AT, indicated as I', is considered. This represents the
ratio between the temperature variation for the discrete vs homogenised models is calculated.

r— ATdiscrete (l - t*)

— (4.18)
A Thomogenised (t =t* )
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Number of cells Cell size [mm] Radius [mm] Aspect ratio angle ¥ [°] €

20 2.5 0.129 45 0.95
10 5 0.259 45 0.95
5 10 0.517 45 0.95
4 12.5 0.647 45 0.95
2 25 1.294 45 0.95
1 50 2.587 45 0.95

Table 4.3: Example of the geometric variables for the study of the scale variance considered for the
case of a fccz cell with porosity 0.95.

The results for the unit cells fccz, face, bee, beez are reported in Figure 4.13,4.14.  Observa-
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Fig. 4.13: Scale variance for face-centered cells

tions indicate that modifications to the cell size, leading to a reduction in the number of cells
within the domain, introduce deviations from the predictions of the homogenised model. The
homogenised model closely approximates the discrete model, particularly when employing a
substantial number of cells, corresponding to smaller cell sizes in this context. However, it is
noteworthy that this deviation is interconnected with other cell parameters. Specifically, for all
unit cells, higher porosities (resulting in lower effective thermal conductivities) lead to a re-
duced or negligible deviation. This implies that, for such cases, the thermal behaviour closely
mirrors that of a pure PCM, with the metallic matrix exerting minimal influence.

As porosity diminishes, the deviation increases, with its precise magnitude heavily influenced
by the unit cell topology. Moreover, supplementary analyses are conducted to distinguish the
impact of cell size from that of the number of cells. Figure 4.15 illustrates the outcomes of an
additional parametric investigation, wherein the domain size adjusts proportionally with both
the cell size and the number of cells. To ensure the manifestation of deviation in scenarios
involving large cell sizes and a small number of cells, a porosity value of € = 0.85 is selected
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Fig. 4.14: Scale variance for body-centered cells

for unit cell becez (refer to Figure 4.14a). It is evident that a substantial number of cells within
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Fig. 4.15: Isolated effect of varying the number of cells.

a given domain consistently yield accurate predictions in accordance with the homogenised
model, irrespective of the cell size. However, a distinct trend emerges as the quantity of cells
decreases. While significant discrepancies between discrete modeling and the homogenised ap-
proach are noticeable even at smaller cell sizes (as depicted in Figure 4.15), the magnitude of
deviation tends to grow with increasing cell size. As a result, it can be concluded that this model
offers dependable estimations as long as a sufficient number of cells with consistent geometric
characteristics populate the domain. This supports the conclusion that an homogenisation is
only valid when the number of cells is sufficiently high, so that the material can be defined as a

cellular solid, in relation to the percolation theory (Chapter 2).

Thus, although the effective thermal conductivity, and in general the thermophysical properties,
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are scale invariant, the transient thermal behaviour of the composite is not. Homogenisation
techniques shall be assumed valid only when dealing with a considerable amount of unit cells
within a domain, so that the structure can be considered a porous medium and, in particular, a
cellular solid. A minimum amount of 10 cells is found to deliver satisfactory results.

4.1.3 Updated conductive model

The simplified conductive model in Section 2.3.1 showed clear limitations, which motivated
the work presented thus far. In particular, while the mixing rules of equations 2.10, 2.11, and
2.58 still apply, the effective thermal conductivity model was valid only for high porosities
above 90%. The effective thermal conductivity model presented in this work exhibits a wider
validity range, and can be thus used to evaluate all the effective thermophysical properties, as
well as the simplified transient behaviour. Figures 4.16, 4.17 show the effective thermophysical
properties as a function of the lattice volume fraction y considering the instance of a f,cc unit
cell with cubic shape (i.e. aspect ratio 1). The effective thermal conductivity obtained from
the presented model is plotted against the volume fraction and compared in each plot with the
other thermophysical properties, obtained via weighted mixture laws. A comparison of the
figures 4.16a),b), and 4.17a) shows that, while the density increases with the volume fraction,
which would tend to reduce the effective thermal diffusivity, the combined effect of the thermal
conductivity and the specific heat is dominant. Indeed, the thermal diffusivity monotonously
increases with increasing volume fraction, indicating that the effective thermal conductivity
and the reciprocal of the specific heat have a steeper increase with respect to the increase of the
density. It’s important to note that, as depicted in Figure 4.17b, the effective latent heat exhibits
an opposite trend to the effective thermal conductivity. Therefore, when considering a thermal
control system, there is no trivial optimum in increasing thermal conductivity. As the effective
latent heat decreases with an increase in volume fraction, the amount of thermal energy that can
be absorbed through the phase change consequently decreases. This may eventually lead to a
temperature increase despite increasing the thermal conductivity of the composite, which is the
primary goal of this study and much of the current literature. Thus, it is essential to take this
fundamental aspect into account when analyzing or optimizing a similar composite.

The simplified analytical solution to the Stefan Problem is proposed again in Figure 4.18, con-
sidering the effective thermophysical properties shown in Figures 4.16, and 4.17. While it is
clear that the melting front is continuously accelerated by increasing the volume fraction (re-
ducing the porosity), the increment of the melting front position at a given time between an
increment in volume fraction and the next is not constant. This is explicitly described in Figure
4.19. Indeed such increment, described as As, is highest close to volume fraction 0.05. After
such threshold, diminishing returns can be noticed, i.e. the increase of the volume fraction of
the lattice structure does not increase the melting front velocity as effectively. Furthermore, as
shown in Figure 4.20 the thermal energy that is stored latently within the time # = 300s peaks
at a volume fraction close to 0.45.
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The results discussed thus far indicate that no trivial optimum exists when considering the ETC
as well as the stored energy as goal functions. Indeed, while the ETC monotonously increases,
its effect on the melting front is highest for relatively low volume fractions (high porosities).
Furthermore, due to the opposite trend of the effective latent heat with respect to the ETC, but
the different orders of magnitude, an optimum energy storage is possible far from such peak.
The topic of optimisation is discussed in Chapter 6.
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Fig. 4.18: Melting front position evloution against time, for different porosities. The reference unit
cell is focc with cell size 10 mm and aspect ratio 1. Compared to Figure 2.12.
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4.2 Experimental investigation and validation

The previously presented model for the effective thermophysical properties lacks experimental
validation. Only the effective thermal conductivity model was validated this far (see Section
4.1.1, Figures 4.6,4.7), based on results presented in the literature [55]. Here, an experimental
investigation is proposed to validate the conductive model considering transient conditions. Fur-
thermore, experimental and numerical investigations previously performed on metallic foams
[75, 74, 83] already showed that, depending on the inclination of the heat source with respect to
the local gravity vector, natural convective movements can affect the thermal behaviour of the
composites. The same has to be assumed for lattice structures, thus, the experimental campaign
aims also at analysing the behaviour of the composite under different orientations. Finally, a
comparison of the thermal performance of different unit cells, with particular focus on light-
weight design is proposed.

Experimental setup All specimens utilized in the experiment were additively manufactured
by EOS GmbH, utilizing an AlSi10Mg aluminum alloy. They possess a cubic morphology with
a 50 mm edge length and feature a periodic internal structure consisting of a single unit cell
topology. These samples exhibit unit cells with uniform cell widths of 5 mm, 1 mm strut dia-
meters, and a cubic shape. Owing to variations in the number and geometric arrangement of
struts within each cell, the volume fraction differs among the tested specimens, and this inform-
ation is detailed in Table 4.4.

A schematic view of the experimental setup is given in Figure 4.22. It comprises the composite
specimens shown in Figure 4.21, a heating system, a containment box, measurement instru-
ments, and a data acquisition system. The heating is performed via cartridge heater, modulated
via Pulse Width Modulation (PWM) to deliver a constant power of 40W. The acquisition of data
is performed via PT100 temperature sensors, and via a Germanium window, through Infrared
frames. These are useful to detect the shape of the melting front at different orientations.

Cell topology  Vol. fraction x [vol %] Porosity € [vol %]

bcc 17.8 82.2
freez 16.6 83.4
bcez 20 80
fabce 29.3 70.7

Table 4.4: Unit cell geometry of the tested samples. The cell size is 5 mm for all samples, the strut
diameter is 1 mm and the aspect ratio angle 7y is 45°.

The chosen PCM material is n-Octadecane paraffin wax (99% purity, produced by abcr GmbH,
Germany), characterised by a melting point of 29°C. The thermophysical properties of the PCM
are detailed in Table B.2.
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Fig. 4.21: Tested specimen with correspondent unit cell for each sample.
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Fig. 4.22: Schematic drawings of the experimental setup.
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Further details on the experimental setup can be found in the Appendix D, as well as in the
dedicated publication [130].

Test campaign methodology

All the experiments were conducted while maintaining a consistent heat flux, delivering a con-
stant power of 40 W. The trials were repeated with varying orientations relative to gravity to
investigate the influence of convective heat transfer within the specimens. Three distinct orient-
ations of the heat flux vector in relation to gravity were examined, as depicted in Figure 4.23.
The sample’s orientation is determined by the relative alignment of the heat flux vector and the
gravitational acceleration’s one.

In order to assure repeatability, each individual cell undergoes testing in each of the three ori-
entations three times. As illustrated in Figure 4.23, the designations "top" and "bottom" refer
to cases where the heat flux aligns parallel or anti-parallel to gravity, respectively. In the "side"
orientation, the heat flux vector is perpendicular to the gravitational acceleration vector.

It’s crucial to note that the variation in inclination is applied by simultaneously rotating both the
heat source and the test sample. This implies that samples featuring z-struts (f,ccz and bccez)
are consistently heated in a direction parallel to these struts, regardless of the orientation.

To standardize the initial conditions, each test sample is filled with paraffin wax and cooled
down to 18°C inside a climate chamber (Espec® ARS-1100). This ensures a uniform starting
temperature for all samples and runs. The tests involve heating the sample and monitoring it
throughout the melting process. Infrared images and temperature data are collected continu-
ously at a sampling rate of 5 Hz throughout the entire melting period. The tests are concluded
either when the paraffin wax is completely melted or when either sensor 2 or 7 reach a temper-
ature of 60°C. This protocol is implemented to prevent overheating of the Styrodur® insulation,
as it begins to decompose above 80°C.

BOTTOM

TOP

Fig. 4.23: Orientations considered in the experimental campaign and relative position of the PT100
sensors for heat power Oin.
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4.2.1 Results

The thermal performance analysis of each sample is performed by comparing temperature evol-
utions during the melting process. The detailed temperature curves for each sensor of the whole
experimental matrix are shown in Appendix E, Figures E, E, E. As each experiment for each
sample was repeated three times, the curves show the average for each sensor. A shaded area
of the same colour of the respective curve is used to represent the standard deviation. At the
initial moment (¢ = 0), when heat is introduced via the heating plate, temperature gradients
emerge among various points on the solid material’s surface. These gradients correspond to the
proximity of these points to the heat source. As the temperature of each point approaches the
melting point, the curves slopes tend to flatten horizontally, exhibiting minimal change. Sub-
sequently, the temperature resumes its upward trajectory, albeit with a distinct slope, indicating
the transition from a solid to a liquid state took place.

Once the temperatures reach the melting point, the material exhibits diverse behaviors depend-
ing on its orientation. The standard deviation for experiments conducted at top orientation is
low with respect to side and bottom orientations. This is evident comparing Figure E with
Figures E and E where several sensors exhibit much wider standard deviations. This is due to
the insurgence of natural convection when the heating is either orthogonal or parallel (opposite
direction) to the local gravity vector. Specifically, when heating from the side orientation (Fig-
ure E), the temperature trends observed in the central sensors on one side (sensors 1, 3, 5) and
the other (sensors 6, 8, 10) exhibit distinct slopes compared to those shown in the plots for the
top and bottom orientations (Figures E, and E). This discrepancy indicates a spatially uneven
expansion of the melting front, likely attributed to the emergence of a convection regime.

To provide quantitative context, the average maximum temperature reached during the test with
the top heating configuration is 60.8°C after 900 seconds. Conversely, for tests conducted
with the side orientation, the average maximum temperature at the same experiment duration is
54.6°C, while it is 54.3°C for tests conducted with the bottom orientation.

The infrared (IR) frames for each sample at different time points can be found in Appendix E.

The thermal behavior of individual samples is effectively described by the temperature at the
heating surface. Enhanced thermal performance of a sample as a thermal control device is asso-
ciated with a reduced degree of wall overheating concerning the melting temperature recorded
at the heating surface. An additional noteworthy temperature pattern pertains to the sensors
positioned at a "mid" location (i.e. sensors 1, 3, 5, 6, 8, 10 in Figure D.2). The instant at which
these sensors attain the melting point is correlated with the time required for the samples to
undergo melting. To evaluate the effect of orientation on the thermal behaviour of the samples,
the results are reported again in Figures 4.24 to 4.27. For ease of representation, the following
figures show only sensors 2, 3, and for side orientation, sensors 7 and 8.  In Figures 4.24 to
4.27 the thermal behaviour for each sample under different orientations is compared. It is clear
that the orientation has a major effect on the thermal behaviour of the sample. In particular,
the occurrence of natural convection in the side and bottom orientations generally causes an
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Fig. 4.24: Comparison of the sensors 2, 3, 7, and 8, for the f>ccz sample.
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Fig. 4.25: Comparison of the sensors 2,3, 7, and 8, for the bcc sample.
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Fig. 4.26: Comparison of the sensors 2 and 3 for the bccz sample.



82 4 Thermal characterisation

f—— f2bcc sensor 2 top
D— f2bcce sensor 3 top
t+—— f2bcc sensor 2 side
>— f2bcc sensor 3 side
/— f2bcc sensor 2 bottom
D— f2bcc sensor 3 bottom

50

SLdldl

40

Temperature [°C]

20

. .
0 200 400 600 800
Time [s]

Fig. 4.27: Comparison of the sensors 2 and 3 for the f,bcc sample.

acceleration of the melting front. This can be visualized noticing that the temperature curves
of the sensor 2 for side and bottom orientations are consistently lower than the top orientation
case. Similarly, for side and bottom orientation, the sensor 3 exhibits a steeper curve and a faster
deviation from the melting point. This is qualitatively valid for all samples, except the f>bcc, as
one can appreciate from Figure 4.27. Due to the high porosity, the permeability of the lattice is
probably very low and the effective thermal conductivity too high. Thus, the thermal behaviour
for this sample can be considered to be dominated by conduction only. The side orientation is
cause for inhomogeneous melting front expansion, which can be appreciated comparing sensors
2 and 7, as well as 3 and 8.

The sample structured according to the fccz cell topology exhibits the second smallest tem-
perature increase on the heating wall, with bccz and bece cell types following closely behind.
Notably, the extent of wall overheating in the f>bcc case is 65% lower compared to the least
favorable scenario (bce). This discrepancy highlights a 31.2% difference in the maximum re-
corded temperatures between the f>ccz and bee samples, despite a minimal 1.2% variation in
their porosities. This observation underscores the predominant role played by the cell topology
in influencing heat transfer within the sample.

A significant reduction of 28% in dimensionless temperature is observed for the bcc sample
when comparing its top and bottom orientations. A similar trend is noted for various lattice
topologies, albeit with slightly smaller reductions: 21% for the bccz sample, 8% for the fccz
sample, and 3% for the f,bcc sample. These findings underscore the non-negligible influence of
natural convection when assessing the heat transfer characteristics of PCMs embedded within
lattice structures.

To facilitate a meaningful comparison between the results obtained from these lattice cells and
data pertaining to foams, it is advantageous to establish a connection between the geometry of
the tested lattice structures and that of a metal foam. The key parameter affecting convection
onset in foams is the Pores Per Inch (PPI). Regrettably, as previously mentioned, the geometric
parameters of lattice structures do not inherently encapsulate the concept of PPI for an unam-
biguous geometric characterisation. Hence, the geometric properties of these lattice cells are
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analysed using the commercial software nTopology®. The software maps and calculates the
diameters of pores contained within the tested samples. The pore diameter is defined as the dia-
meter of the largest sphere that can fit inside a pore without overlapping with the solid structure.
However, it’s important to note that these pores can overlap with one another. This calculation
is based on the graph representation of the lattice structures, constructed from the centerlines
of individual struts. Consequently, the calculated pore diameters are independent of the strut
diameters and rely solely on the cell size and the unit cell topology. In Figure 4.28, the lattice
structure is depicted in gray, while the spherical pores are marked in pink. The equivalent pore
diameter is derived through a weighted average of the resultant mapped pores, providing what
is referred to as an equivalent-PPI for each cell, as detailed in Table 4.5. Remarkably, the data

Fig. 4.28: Geometric representation of the pores and the spheres whose diameters are used to calcu-
late the equivalent PPI. Exemplary representation for the bcc (a) and fccz (b) samples.

Table 4.5: Equivalent pores per inch for each tested sample, in order of decreasing porosity.

Unit cell topology  PPI,,

freez 5
bcc 8

bcez 8

frbcc 20

obtained for the f>ccz, bee, and becez cells can be correlated with metal foams characterized
by low PPI values. Several researchers have explored the impact of PPI on the thermal per-
formance of metal foam/PCM composites, as found in references [75, 85, 83, 131, 71]. Their
findings indicate that lower PPI values, when maintaining the same foam porosity, lead to lower
wall temperatures and shorter melting durations. A similar qualitative trend is observed for the
tested lattice structures. Nonetheless, it should be emphasized that lattice cells and foams are
not entirely equivalent. It is possible to have lattice cells topologies with the same equivalent
PPI, but the thermal behaviour can differ. For example, the orthotropic structure of the cell
sample based on the bccz cell, which exhibits the same equivalent PPI as the bcc cell, demon-
strates a smaller reduction in wall temperature. A comparable situation is observed for the f>ccz
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sample, even though it features the lowest equivalent PPI. This behavior can be attributed to a
combination of factors: the conductive and convective contributions to the thermal behavior
of the composite are intertwined, and the permeability of the structure does not exhibit a dir-
ect correlation with the number of pores. Furthermore, notably, most cells exhibit orthotropic
topologies, which may also introduce direction-dependent permeabilities. Additionally, the im-
pact of thermal conductivity along the orthogonal plane (X,y-direction) cannot be disregarded.
This factor also affects the dynamic shape of the melting front and, subsequently, the thermal
performance. Particularly in the case of the bottom orientation, where convective effects are
expected to be less pronounced than in the side orientation, transversal thermal conductivity
can play a pivotal role in heat transfer. All together, when predicting the behavior of lattice cell
structures, it is imperative not to overlook the role of convection and the interwinded effect it
can have on the melting front expansion.

4.2.2 Validation of the model for the effective thermophysical properties

The selection of cell topologies for the examined samples is guided by the aim of achieving a
favorable balance between thermal efficiency, mechanical strength, and low overall mass. In
order to assess the thermal performance and the lightweight potential of different samples, an
assessment criterion is proposed in the following. With the goal of facilitating a comparison of
the experimental outcomes across various samples and heating orientations, a non-dimensional
criterion for evaluating thermal performance is established. This criterion draws inspiration
from the method proposed by Diani and Campanale [69] for assessing metal foams, which has
also been adapted by Righetti et al. [70] for lattice structures. The criterion which will be pro-
posed in the following requires a valid description of the effective thermophysical properties.
The model presented above (Section 4.1.3) is validated against the experimental data of the top
orientation.

Considering that the tested samples satisfy the condition of a sufficient amount of unit cells
in the domain, as described in 4.1.2, the conductive model can be easily validated. To such
purpose, the model presented in sections 4.1 and 4.1.3 is used to calculate the effective thermo-
physical properties of the tested samples. A homogenised material model is then implemented
in a Finite Element model based on the apparent heat capacity method, available as a module
in COMSOL Multiphysics®. The same boundary and initial conditions which are fixed for the
experimental campaign are recreated in the numerical model. The comparison between the ho-
mogenised model and the experiments is shown in Figures 4.29 to 4.32. In order to simplify
the readability, the thermal behaviour of the numerical model is reported in only three points,
namely the ones which correspond to the position of the sensors 2, 3, and 9 in Figure D.2, i.e.
representing the heating plate, the central sensor and the sensor furthest from the heating plate,
respectively. It is worth noticing that only the results for the top-heating orientation are com-
pared to the present model. This is due to the fact that only under such orientation the effect
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of natural convection in the melt is negligible, and a purely conductive regime can be assumed.
As previously discussed, additional operations are needed to homogenise the behaviour of such
composites when natural convection acts on the component. The validation for such a case is

discussed in the following section.
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Fig. 4.29: Validation of the model for the thermophysical properties obtained comparing the experi-
mental results for the top-orientation and a finite element homogenised numerical model

for the f>ccz unit cell.
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Fig. 4.30: Validation of the model for the thermophysical properties obtained comparing the experi-
mental results for the top-orientation and a finite element homogenised numerical model

for the bcc unit cell.

The model is in general very accurate in describing the thermal behaviour under a conductive
regime. The maximum deviation is 8.58% and takes place at the beginning of the experiment,
while the temperature curve develop with a mugh higher level of agreement.
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Fig. 4.31: Validation of the model for the thermophysical properties obtained comparing the experi-

mental results for the top-orientation and a finite element homogenised numerical model
for the bcez unit cell.
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Fig. 4.32: Validation of the model for the thermophysical properties obtained comparing the experi-

mental results for the top-orientation and a finite element homogenised numerical model
for the f2bcc unit cell.
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4.2.3 Discussion

Having demonstrated that the model for the calculation of the effective thermophysical prop-
erties is valid, the assessment of the performance can be performed, for which the effective
properties are needed. Initially, the wall overheating temperature, denoted as the temperature
recorded by the sensor number 2, is normalized as follows.

_ T2 - Tmelt

e
Tmelt - T;

(4.19)

where @ is the non-dimensional wall overheating temperature, 7; is the experiment initial tem-
perature, which in this campaign was fixed at 18°C, T}, 1s the paraffin wax melting temperature
and lastly, 73 is the temperature of the sensor 2, corresponding to the heated wall temperature
on the A-A side of the sample (as shown in Figure D.2). Subsequently, the Fourier number Fo
and Stefan number Ste’ are employed to quantify the transient heat conduction and the extent
of latent heat absorption throughout the experiment. These parameters are determined based
on the effective diffusivity of the composite material, which is obtained by employing the con-
ductive model for effective thermophysical properties proposed above. The Fourier number is
defined as .
Fo ettt

PefiC pefrL?
where t* is the characteristic time and L is the edge length of the sample. #* is considered as
t* =t = 635s. This specific value represents the time it takes for the central sensors in the bcc
sample, heated from the "top" orientation, to reach the melting point of the PCM. Notably, this
duration is the longest time required for these sensors to attain the specified temperature. In
contrast, for the same sensors in the other samples at various orientations and the bcc sample in
different orientations, this threshold temperature is reached in a shorter amount of time during
the experimental process. The revised Stefan number is formulated by taking into account the
subcooling effect resulting from the initial temperature being lower than the melting point, as
recommended by Groulx and Lacroix [132].

(4.20)

Cpest (T — Tenr)

Ste' =
hest + Cpest (Tnere — T7)

4.21)

The non-dimensional temperature © is plotted against the ratio of the Stefan and Fourier num-
bers in Figure 4.33. This number is a ratio of time scales, specifically the Fourier number, which
relates to the time it takes for heat to conduct through a material, and the Stefan number, which
represents the latent heat absorbed or released during the phase change. This dimensionless
number helps in assessing the relative importance of heat conduction and phase change heat
storage. Indeed, a low value of the Ste’/ Fo number can be attained if a low wall temperature
is attained, as well as high thermal diffusitivity is characterising the sample. A low value of
both @ and Sre’ / Fo indicate a good thermal control performance, i.e. a low wall temperature is
obtained through to a high quantity of latent heat storage as well as a high thermal diffusivity.
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Fig. 4.33: Non-dimensional temperature ® plotted against the Ste’/ Fo’ ratio.

One can thus see that, due to the low porosity, the sample f,bcc performs the best. On the
other hand, because the low thermal conductivity, the bcc at top heating orientation exhibits the
highest values of both ® and Ste’ / Fo. The effect of natural convection on the thermal behaviour
of these samples is evident. The same sample exhibits a lower ® and, due to the presence of
the wall temperature term also in the Stefan number, a lower Ste’ / Fo. The effect is particularly
strong for the bcc and the becz samples, while, although still quantitatively relevant, reduced for
the f>ccz sample. The discussion on the effect of natural convection on the thermal behaviour
is presented in Section 4.2.1 and is treated further in detail in Section 4.3. Keeping the goal of
this work in mind, it is relevant to assess the thermal performance of the different samples also
regarding their lightweight potential. Indeed, being the lattice structure made of material which
is denser than the PCM, a low porosity affects negatively the mass of the composite sample.
Thus, while the wall temperature attained for the f>bcc sample is the lowest, this does not dir-
ectly represent the best thermal performance when considering the system mass. To address
this, the data shown in Figure 4.33 can be extended to a third dimension considering the volume
fraction of the lattice x, as shown in Figure 4.34. Figure 4.34 clearly shows that, although the
Jf2bcce sample exhibits the best thermal performance, this is due to the high volume fraction.

To properly address the thermal performance considering the lightweight potential, a novel in-
dex is introduced here, which makes the evaluation of the thermal performance more immediate.
First, the median of both the volume fraction and of the Ste’ / Fo numbers are calculated. Then,
both the volume fraction and the Sre’ / Fo are normalised dividing by their respective median
value. This allows to compare both quantities without incurring in issues related to different
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Fig. 4.34: 3D scatter plot showing the data already presented in Figure 4.33 with the addition of the
volume fraction dependence.

orders of magnitude. Finally, the (mass) Specific Thermal Performance (STP) is calculated as
described in Equation 4.22.

Xi 2 Ste/ F 0; 2

STP, = \/(M—m) + (—M [Ste/Fo]) (4.22)
The terms in Equation 4.22 are, from left to right,: ST P; the Specific Thermal Performance of
the i-th sample, J; the volume fraction of the i-th sample, M [x] is the median of the volume
fraction dataset, Ste’ / Foj is the i-th Ste’ / Fo number and IM [Sze’ / Fo] is the median of the re-
spective dataset. There is no need to consider the wall temperature any further, as its effect is
already considered in the Stefan number. The results can be then easily visualised in Figure
4.35, which shows a scatter plot of the calculated STP for each sample at each tested orienta-
tion. The optimal STP is achieved when the data points get close to the origin.

It is evident from the data presented in Figure 4.35 that the optimal STP is achieved when
the samples display a combination of characteristics: a minimal increase in wall temperature, a
high effective latent heat, and a high thermal diffusivity, thus resulting in a low Ste’ / Fo ratio.
Additionally, it is essential for the sample to possess a low volume fraction or, in other words,
a high porosity. Due to these factors, it can be observed that the f>bcc sample, while having
the lowest Ste/Fo ratio, only offers a marginal advantage over the fccz sample or the bccz one
when tested in the bottom/side orientation. Considering the volume fraction in the calculation
of the thermal performance allows to identify unit cells that represent a combined optimum
of lightweight and thermal behaviour. Thus, the best STP for this study is obtained by fccz
samples.
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The results presented thus far all indicate that, when the component experiences a potential
acceleration field (i.e., for static applications on Earth, the normal gravity acceleration) natural
convection in the melt has a strong influence on its thermal behaviour.

However, while the sample f>ccz exhibits the lowest number of PPI in z-direction and the
highest porosity, the quantitative effect of natural convection on the thermal behaviour is not as
high as for bcc or beez unit cells. This can be related to the fact that the f>ccz exhibits the spe-
cifically highest thermal conductivity. One can thus suppose that the conductive regime remains
more dominant for these unit cells, and the transition to a purely convective regime is delayed.
For this reason, further efforts to mathematically describe the thermal behaviour under the oc-
currence of such phenomenon are presented in the upcoming Section 4.3.

4.3 Analysis of natural convection

This far, the assumption was made that the thermal behaviour of the composite is dominated
only by conduction both in the solid and the liquid phases. The assumption is justified for com-
posites based on cellular solids with small enough pores, i.e. metal foams with high number of
PPI. However, in the previous section (4.2.1) of this work, it was shown that this assumption is
mostly not valid for lattice structures of interest. The scale variance affecting the transient be-
haviour of the composite in a conductive regime (Section 4.1.2) is not the only scale-dependent
effect. As well known in the literature ([83, 62, 65]), and discussed in Chapter 2, the effect
of natural convection in the melt is not negligible if the heat flux orientation is either in the
opposite direction or orthogonal to the direction of the local acceleration resulting from volume
forces (i.e. in the case of static systems the local gravity acceleration). Natural convection is
responsible for both a variation of the melting front shape and an acceleration of the melting
front with respect to the case of a purely conductive regime. Furthermore, as shown in Section
4.2.1, the effect of natural convection on the wall temperature reduction is particularly strong,
quantitatively more than what was presented this far in most literature about stochastic metal
foams.

However, the orthotropic nature of the unit cells complicates the mathematical treatment of such
composites.

To be able to analyse this phenomenon in detail, a novel framework for numerical investigation
of thermal behaviour and fluid flow of the composite is needed. Investigations into additively
manufactured lattice structures for use as porous media at high thermal conductivity in com-
bination with PCMs are relatively recent, resulting in a limited available dataset of numerical
and experimental analyses. To delve deeper in the analysis of this phenomenon, a solver cap-
able of simulating the melting behavior of PCM-lattice composites is introduced. It is based
on the CoMeTFoam solver developed by Schiiller et al. [133], written in OpenFOAM®. The
present solver adds an orthotropic Darcy-Brinkman term to the momentum equation, in order
to model the fluid flow within the domain treated as a porous medium. The solver is based on
the enthalpy-porosity method. The results achieved with this solver undergo a thorough valida-
tion process. First, a comparison with the results proposed by lasiello et al. [83] is conducted,
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before delving into the investigation of the lattice structures. Then, the results obtained for
lattice structure samples are compared with the experimental data of Section 4.2.1. Finally, rel-
evant analysis of the obtained numerical data allows to find useful correlations for future design
purposes. This is based on the scaling theory proposed by Jany and Bejan [76].

Mathematical model

In Chapter 2, the modified conservation equations are introduced to account for the presence
of metallic foams, and these very equations are employed here to model composites involving
lattice structures. The main difference lies in the necessity to describe the effective thermal
conductivity and the permeability with use of tensors, rather than scalars. To provide a com-
prehensive overview, these conservation equations are presented once more. The Boussinesq
approximation allows to neglegt density changes, leading to:

Vu=20 (4.23)

prcyu du 1 - _ Heff G2 B _ Veem (1-?)
e (8t + 8V(u@u)) = -Vp + pPCMV u— gB(T—T,) X C—(¢3+q)u
(4.24)
oT P
(PCp)et (E + “VT> =V(Aett VT) — hesr {W +uV<I>}
(4.25)

+ 1| 2B (oG )|

where vpcyy 1s the kinematic viscosity of the fluid. The terms and variables present in the equa-
tions are introduced in Chapter 2. The main difference lies in the notations of the therms K
and A ¢ which are now represented by tensors rather than scalar quantities, in order to consider
the orthotropic nature of these composites. The formulation of the equations was predicated on
the assumption of thermal equilibrium. Within the scope of this assumption, solving a singular
energy equation proves sufficient, leading to notable computational time and resource savings.
Furthermore, it’s important to acknowledge the current lack of available data pertaining to heat
transfer coefficients from lattice structures to the surrounding fluid within this specific applica-
tion, as far as the author’s knowledge extends.

For sake of brevity, further details on the material model and the algorithm implementation can
be found in Appendix F.

To properly describe the motion of the fluid in the porous medium, the calculation of the per-
meability tensor K and of the effective Brinkman-viscosity Uesg i1s of paramount importance.
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The first is discussed in detail in Section 4.3.1. The second is discussed in Section 4.3.2.

4.3.1 Permeability

Similar to the effective thermal conductivity, the permeability of lattice structures is, in general,
orthotropic, i.e. it can be described by the tensor K:

K.y 0 0
K=|0 K, 0 (4.26)
0 0 K;

The permeability of the lattice structures is determined via numerical modelling. Simulations
for assessing permeability are carried out employing the open-source software OpenFOAM®v9.
The simulations are based on a model representing an incompressible fluid with constant density
and viscosity, while assuming fully developed flow conditions. The computational task employs
the simpleFoam solver, which is utilized to solve the Navier-Stokes equations, using the Semi-
Implicit Method for Pressure Linked Equations (SIMPLE) scheme:

Vu = 0 4.27)

Vuou) — VR = Vp + S, (4.28)

where, p stands for the kinematic pressure, u for the velocity, R for the stress tensor, and §,, for
the momentum source.

Due to the complex geometry, a wide amount of cells within the mesh is needed to appropriately
describe the fluid flow across such structures. To reduce the computational effort, the periodicity
of lattice structures is exploited. Thus, a single column of stacked unit cells can be employed,
imposing symmetry boundary conditions on the outer faces of the domain. For all unit cells
except bce, the simulations are conducted both with inlet flow incoming from the z-direction
and from 1 or 2 one. To simplify operations, the domain always has the same inlet and outlet, but
the unit cells are turned by 90°. Figure 4.36 shows schematically the domain and the boundary
conditions. A velocity boundary condition is imposed on the inlet, at the left side of the domain,
and a static pressure boundary condition, conveniently put equal to O, is imposed on the outlet.
Symmetry is imposed on the left, right, top and bottom side walls, while a no-slip condition is
imposed for all other walls, i.e. the walls of the lattice structure. Around these walls, boundary
layer mesh elements are built, as shown in Figure 4.37.

In a Darcy-flow, the permeability can be easily calculated via Equation 4.29:

UAL
K; = 4t ,Withi = x,y,7 (4.29)
Ap
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Fig. 4.36: Domain for the CFD model used to calculate the permeability of the lattice structures.

where g; is the mass flux, i is the dynamic viscosity, Ap is the pressure loss over the length
AL. The index i represents the orientation. Consider that the x and y directions are equivalent.
The permeability is a property of the geometry only, thus it is independent from the kind of
fluid flowing within the domain. Taking advantage of that, the permeability can be efficiently
calculated, by considering a highly viscous fluid and a low inlet velocity. This is necessary
because the permeability can be determined via application of Darcy’s law only as long as the
flow lies in a Darcy regime. Such regime can be assumed valid as long as the flow is slow
enough for viscous forces to be dominant, i.e. it is valid for Reynolds number Re << 1. To
maintain the Re well below one, a fictitious fluid is considered, with the properties listed in
Table 4.6.

Table 4.6: Properties of the fluid considered to calculate the permeability

Property Value
Density p 1000 kgm—3
Dynamic viscosity 1 Pas

Kinematic viscosity v 11073 m?s~!
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Fig. 4.37: Section of the mesh from the bcc unit-cell.

A mesh-convergence study is performed, in order to minimize the computational effort while
achieving numerically accurate results. The convergence threshold for both pressure and velo-
city variables was chosen to be 1078,

For the first convergence study the number of elements in the mesh is varied. Initially, 0.4 mm
is chosen as the maximum element size. This value is then reduced to analyse the impact on the
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permeability. A boundary layer with 16 layers and a first layer thickness of 107® m is chosen.
The influence of the number of unit-cells is also investigated, as shown in Figure 4.38. Here,
the number of unit-cells is varied from 3 to 20. Since the number of unit-cells has a huge impact
on the simulation time, the tolerance to the most accurate result is increased to 1.5 %. Since an
increase in the number of unit cells considered to calculate the permeability causes a linear in-
crease of the computational time, the amount of unit cells considered is fixed at 5 for all further
permeability investigations.
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Fig. 4.38: Convergence plot of the calculated permeability for increasing amount of unit cells in the
direction of the inlet flow.

A check for physical plausibility is performed as well. As previously explained, as the velocity
of the fluid within the porous medium increases, the relationship between the pressure drop
across the medium and the Darcy velocity starts to deviate from a linear one. Forchheimer
or Brinkman terms must be introduced ([81]) to mathematically describe such relationship.
The deviation from a linear relationship when approaching Re = 1, as shown in Figure 4.39,
indicates that the results are physically plausible and can be considered correct until further
experimental validation.

Figure 4.41 shows the results of the permeability, in each direction, of the sample tested within
the experimental campaign of Section 4.2. One can notice that the permeability in the z-
direction is higher than the one in x,y-direction for all samples, except the bcc one, which
is isotropic. In particular, the f>ccz sample exhibits a permeability in z-direction that is more
than twice higher than the x,y-direction. This is due to the fact that face-centered struts are
placed on the outer faces of the unit-cell’s geometry. Thus, channel-like pores are built within
the inner volume of the unit cell. On the contrary, body-centered unit cells show a higher flow
resistance in any direction. The samples in Figure 4.41 are ordered from, left to right, in order
of decreasing porosity, i.e. fccz is the most porous and f>bcc is the least. A clear correlation
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Fig. 4.39: Variation of the pressure loss across the f>ccz sample, in x,y-direction, plotted against the
inlet velocity of the fluid.

(a) Velocity profile, with inlet velocity equal to 5 mm/s

(b) Static pressure profile, with inlet velocity equal to 5 mm/s

Fig. 4.40: Velocity and static pressure profiles for a f,ccz sample with flow in x,y-direction and inlet
velocity 5 mm/s.
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between permeability and porosity can be identified. More porous unit-cells exhibit, as obvi-
ous, higher permeability. However, for these samples, this effect is coupled with the different
topology, which affects a quantitative comparability. Ekade and Krishnan [134] proposed a
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Fig. 4.41: Permeability of each unit cell considered in the experimental campaign of Section 4.2

correlation for octet-truss lattices by normalising the permeability with the square of the strut
diameter. One should consider that the geometries that they analysed all showed different cell
sizes, thus it is not possible to separately analyse whether a variation of the permeability is given
by a variation of the porosity or a variation of the unit cell size. Figure 4.42 proposes the results
shown in Figure 4.41, normalised with the same methodology proposed by the two authors, and
compared with the very same results proposed by them. One can notice how the results in gen-
eral lie within the same quantitative range as what suggested by Ekade and Krishnan [134] for
octet trusses. However, while the scale variation is somehow accounted for by normalising the
value of the permeability with the square of the strut diameter, the unit cell size is not directly
considered. One can notice that most of the results presented in this work lie slightly under the
ones for octet truss lattices. If one would consider only the porosity and the strut diameter as a
geometrical factor, this would result counterintuitive, as octet truss lattices exhibit more struts
within the unit cell than the lattices considered in this work. Because of this, a higher tortuos-
ity, and thus a lower permeability would be expected. The reason for this discrepancy can be
found considering that the unit cell sizes considered by Ekade and Krishnan are all bigger than
the ones considered in this work, thus positively affecting the pores size and consequently the
permeability.

To further investigate this aspect, an additional numerical investigation is performed. The goal
is to decouple the variation of the porosity from the variation of the unit cell and of the cell size.
Thus, using the relationships proposed in Section 3, a new set of probes is considered, whose
properties are reported in Table 4.7.

The porosity is fixed for all samples so that it can be excluded as a parameter. The same cell
sizes are considered for both topologies. Thus, the only parameter that remains relevant is the
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Fig. 4.42: Normalised permeability against porosity of the samples, as proposed by Ekade and
Krishnan [134].

Table 4.7: Geometry of the samples considered for the investigation of the permeability, decoupled
from the porosity.

Cell topology Cell size h [mm] Strut diameter d [mm] Porosity €

bcc 5 0.747 0.9
bcc 10 1.494 0.9
bcc 25 3.735 0.9
frcez 5 0.727 0.9
frcez 10 1.454 0.9

facez 5 3.635 0.9
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strut diameter, or its ratio with the cell size.
With the same methodology described above, the permeability is calculated via a numerical
investigation. The results are reported in Table 4.8 and in Figure 4.43.

Table 4.8: Permeability values for the samples considered with a fixed porosity of € = 0.9.

Sample Permeability in x,y-direction K, [m?] Permeability in z-direction K3 [m?]
bee, h=5mm 2.861077 2.861077
bee, h=10mm 1.14107¢ 1.14107¢
bee, h=25mm 7.1310°° 7.13107°
frccz, h=5mm 2.731077 6.2210~7
frccz, h=10mm 1.081076 2.49107°
frccz, h=25mm 6.78107° 1.55107>
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Fig. 4.43: Permeability plotted against the unit cell size of the samples, which exhibit the same
porosity € = 0.9.

It can be noticed that the permeability has a quadratic relationship with the unit cell size, i.e.
scale variance is present. Similarly to what proposed by Ekade and Krishnan [134], a normal-
isation can be proposed. However, it is more meaningful to normalise the value by considering
the hydraulic diameter of the unit cell, rather than the of the strut diameter as suggested by the
authors. This way, the results indicate a measure of the flow resistance with respect to the cross
section of the channel created by treating each single unit cell as a separated entity. Thus, it
represents a description of the hydraulic conductivity in relationship to the maximum possible
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mass flow. Equation 4.30 describes the calculation of the ratio proposed, where K; is the generic
permeability of a unit cell, in direction i, D%I is the hydraulic diameter, V,,; is the volume of the
unit cell,i.e. for a cubic cell the third power of the cell size, Aout; ;.. 1S the surface area of the
lattice structure, which is calculated via CAD measurement.

K K

- (4.30)
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Fig. 4.44: Normalized permeability plotted against the unit cell size.

Figure 4.44 shows the results obtained from Equation 4.30. It is interesting to notice that the
ratio K/ D%{ is constant for varying cell size. This indicates that the permeability is a scale
variant property of the cell geometry, but it is directly proportional to the cell size. Thus, if
the permeability for a given unit cell is known, scaled values can be obtained through Equation
4.31.

Ki1 (8 = 8*,h1,'}’: j/*,rl)h% SiIl'}/k = Ki2(8 = 8*,h2,’)/: '}/k,rz)h%sin}fk (4.31)

where the geometric variables were introduced in Section 3, and the * symbol is used to indicate
that the topology is fixed for both unit cells, thus only the cell size and the strut radius may vary.
In Equation 4.30 the lattice surface area is used, while in Equation 4.31 the cell frontal area.
One could argue that they are not the same. However, these are unequivocally related to each
other through the geometric description of the unit cell given in Section 3. Thus, the ratio of
surface areas for scaling unit cells is the same as the ratio of the frontal areas, identified as
h3/h3.

To the author’s knowledge, the described scale variance relationship was not yet presented in
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the literature.
The permeability calculated in this section can be used further as a geometric property of the
homogenised lattice-PCM composite.

4.3.2 Solver verification and validation
Convergence

To eliminate the need to manually determine the appropriate time step based on the spatial step,
OpenFOAM has the capability to automatically adapt the time step to match specific conditions.
Within this process, the Courant number is calculated at each time step, and subsequently, the
time step magnitude is modified accordingly.

Additionally, employing a high-resolution mesh is crucial to accurately depict the numerical
problem. Previous studies, like the one conducted by Iasiello et al.[83] found that a 100x100
element mesh provided sufficiently accurate results. However, to ensure the precision of the
present study, a convergence analysis is undertaken to ascertain if the mesh resolution used ad-
equately represents the problem. Given the rectangular domain, a structured grid comprising
square elements is employed. Meshes of varying resolutions—200x200, 300x300, 400x400,
and 500x500 elements— are evaluated in this convergence study. The simulations are carried
out on a computing cluster, facilitating the execution of simulations involving high-resolution
meshes within a reasonable timeframe (less than 24 hours). Figure 4.45 is obtained by perform-
ing simulations on the bcc sample considered in the experimental campaign (Section 4.2). The
simulations are carried out for a convective case with an arbitrary heat flux of 11.000 W/ m?
from the bottom side. A mesh-convergence is achieved for 200x200 elements.
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Fig. 4.45: Convergence study for different numbers of mesh elements for the bcc unit-cell.
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Validation

In the following, a complete validation is presented. The solver is first validated against present
literature, in particular against the experimental and numerical results presented by lasiello et
al. [83]. The authors made use of a metal foam as a porous medium in which the PCM was
embedded. The solver introduced here is capable to handle foams as well, which represent the
special case of lattices with isotropic permeability and thermal conductivity. Furthermore, the
solver is also validated against the experimental results presented in Section 4.2.

Comparison with the literature In contrast to the solver developed here, the simulations
presented in [83] were carried out under the premise of local thermal non-equilibrium (LTNE).
For LTNE, the approach involves solving two distinct energy equations, one for the phase
change material (PCM) and the other for the matrix. This method is theoretically expected
to provide a more precise representation of real-world conditions. Their investigation involved
the examination of various foams with different porosities and pore densities. Specifically, a
foam possessing a porosity of 0.88 and 40 pores per inch (PPI) was chosen for validation pur-
poses.

Within their study, a heat flux of 1.152 W/cm? was initiated from one side. The impact of
convection was evaluated by applying the heat flux separately from the bottom and the side.
Material parameters used in their simulations are detailed in Table 4.11. The effective thermal
conductivity and permeability values were determined using the formulations outlined in the
work from lasiello et al. [83] and mixing laws. The calculated values are available in Table
4.11. To validate the solver, the advancement of the melting front, i.e. the liquid fraction, is
compared. This comparison is conducted for two different heating directions: one from the
bottom and another from the side. Beginning with the evaluation of the bottom orientation, the
progression of the melting front is compared at two specific time points: t* =t —t,,240s and
t* =t —t, = 480s after the onset of melting. Figure 4.46 displays the outcomes, with the results
from lasiello et al. [83] presented first (a), followed by the findings from this investigation (b).

Table 4.9: Material properties of the used materials in the simulations of [83].

Properties PCM, liquid PCM, solid Foam
Density p [kg/m?] 850 850 2700
Heat capacity ¢, [J/kgK] 2490 2490 900

Thermal conductivity A [W/mK] 0,15 0,20 220

Dynamic viscosity ut [Pa s] 3,851073

Thermal expansion coefficient 8 [1/K] 7,7810~%

Melting temperature 7, [K] 330,15

Latent heat & [kJ/kgK] 185
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Table 4.11: Calculated effective properties of the used materials in the simulations of [83]

Properties Value
Effective density pefr [kg/m?] 1072
Effective specific heat capacity Cpefr [J/kgK] 2009.,44

8,47 (liquid)

Effective thermal conductivity Aeg [W/mK] 8.52 (solid)

Effective permeability K [m?] 3,99 108

Upon comparing the melting front’s evolution and its structure at both time points in Figure
4.46, a significant resemblance is observed. Evaluating the areas of the molten region, the res-
ults from this study show a deviation of 6.24% after 240 seconds and 3.64% after 480 seconds.
Although, small, these discrepancies can be caused by the different thermal equilibrium as-
sumptions and by the different Mushy zones assumed, namely a AT of 1 K for the reference
work [83], whereas this study uses a AT of only 0.5 K. Consequently, the mushy zone is smaller
in this investigation, resulting in a larger area where the liquid fraction equals one.

A similar conclusion emerges when analyzing the side heating case. The progression and form
of the melting front exhibit remarkable similarity. After 240 seconds, the maximum deviation
in melted surfaces is 10.74%, reducing to 3.82% after 480 seconds.
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Fig. 4.46: Melting front evolution for a bottom-heated case: (a) the results of Iasiello et al. [83]
(reproduced with consent from Elsevier®); (b) the results obtained from the presented

solver.
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Fig. 4.47: Melting front evolution for a side-heated case: (a) the results of lasiello et al. [83] (repro-
duced with consent from Elsevier®); (b) the results obtained from the presented solver.
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Validation against the experimental campaign The goal of the solver introduced in this
work is to present a tool capable to simulate the behaviour of a PCM composite with, in gen-
eral, orthotropic topology. To demonstrate this, a comparison of the simulation results with the
experimental results presented above is discussed.

The boundary conditions imposed during the experiments are reproduced in the simulation en-
vironment. The effective thermophysical properties are described in Section 4.2.1. Moreover,
the introduction of heat flux into the setup, facilitated by a heating plate and an intermediate
layer between the heat source and lattice structure, causes a delay in the initial heating of these
sections, leading to distortions in the temperature curves. Figures 4.48 and 4.49 show the tem-
perature curves and the melting front position of both the experiment and the simulation, for
the top orientation of the f;ccz sample. The melting front for the experiment is acquired via IR
imaging as described in Section 4.2. The same data for other samples are reported in Appendix
E. In general a good agreement between the solver solution and the experimental results can be
found for all samples heated at top orientation. This once again validates the formulae proposed
for the effective thermophysical properties (Section 4.1.3). The melting front is straight and it
shows that no convective effect is present for top heating orientations.
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Fig. 4.48: Comparison of the simulation results with the experimental campaign: f>ccz sample, top
orientation. The simulation data have dashed lines. The position of the simulation probes
is reported and corresponds to the position of the sensors in the experimental campaign.
The central sensors are averaged among each other.
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Fig. 4.49: Temperature distribution of experiments (a) and simulations (b) for a f,ccz unit-cell, top
heating orientation.

Effective Brinkman viscosity Before discussing the validation of the results for other ori-
entations it is necessary to discuss the estimation of the effective Brinkman viscosity L, as it
affects the accuracy of the results. As mentioned in Section 2.3, the value of u.g for a given
geometry is a matter of debate in the literature. Often, either the Einstein’s or Brinkman’s model
(Equations 2.32 and 2.33) are used. These strongly differ from each other, as shown in Table
4.13.

Due to the lack of established data regarding porous media like a lattice structure, the value of

Table 4.13: Comparison of the effective viscosity models for the considered n-Octadecane PCM,
with dynamic viscosity g = 3.21073Pas.

Sample Porosity € Einstein [Pas] Brinkman [Pas]

bee 0.821 1.22102 0.29
beez 0.8 1.20102 0.22
freez 0.834 1.231072 0.35

Uesr 18 estimated via a parametric study, and by comparing the results of the simulations with the
experimental data. The value of g is varied within the range of the values reported in Table
4.13. Using the values from the Brinkman’s model inhibits the occurrence of natural convection
within the domain. This can be appreciated from the temperature curves obtained, which align
with the one obtained from the top heating orientation. The implementation of the Einstein’s
model, instead, delivers accurate results, which can be validated for the side heating orientation,
as one can exemplarily appreciate in Figure 4.50 for the bcc sample. The same results for the
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bcez and frccz samples are reported in Appendix E.
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Fig. 4.50: Comparison of the simulation results with the experimental campaign: bcc sample, side
orientation. The simulation data have dashed lines. The position of the simulation probes
is reported and corresponds to the position of the sensors in the experimental campaign.
In the experimental campaign the central sensors are averaged among each other.

For the bottom heating orientation, a good agreement is more challenging to obtain, as depicted
in Figure 4.51. A similar trend can be appreciated for the bcc and bcez samples, which are
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Fig. 4.51: Comparison of the simulation results with the experimental campaign: f>ccz sample, bot-
tom orientation. The simulation data have dashed lines. The position of the simulation
probes is reported and corresponds to the position of the sensors in the experimental cam-
paign. In the experimental campaign the central sensors are averaged among each other.

reported in Appendix E.
As one can notice, soon after the onset of convection the temperature curve relative to the C
sensors starts to deviate from the A and B sensors. This cannot be verified by the experimental
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data, as sensors are available only at A or B location. Furthermore, the sensors A and B at each
location deviate from the experimental data, exhibitng a wavy pattern. It is thus necessary to
delve deeper in the analysis of such results.

To do so, it is necessary to consider the fluid flow within the porous medium and the melting
front expansion after the onset of convection. The results are compared qualitatively with the
IR frames of the experiments in Figure 4.52 for the f>ccz sample.

One can notice that, after the conduction dominant regime, the fluid starts to move within the
porous medium. This is evident in the simulation data, as the melting front starts to deviate
from a straight line. Such a pattern, however, cannot be appreciated in experimental data.

The origin of the deviation of the simulation data can be understood by visualizing the fluid
velocity and temperature plots of the simulation, shown in Figure 4.53b. In the simulation, the
melting front starts to expand following the shape of Rayleigh-Benard convective cells. In the
considered case, four vortices are first built. As the simulation time advances, with the increas-
ing amount of molten material, the fluid gets faster and the cells coalesce in two vortices, with a
chaotic fluid motion, causing the temperature drop shown in Figure 4.51. Once the coalescence
period is over, a stable front expansion with two vortices proceeds, as shown in Figure 4.53b
for r=800s.

The described effect cannot be evidenced in the experiments. This macroscopic discrepancy
can be ascribed to several reasons, the main one being the homogenisation technique chosen.
The solver here presented is based on the assumption that the porous medium can be considered
as a homogeneous material, with effective properties. The Darcy-Brinkman term with use of
Einstein’s effective viscosity is not able to appropriately take into account the fluid flow con-
ditions within the porous medium. This might be attributed to the orthotropic geometry of the
lattice structure, which is not considered in the calculation of the scalar effective viscosity. In-
deed, in directions opposite to the heat flux, the lattice structure of the fyccz sample is less
permeable than in the direction of the heat flux. While this is considered for the linear Darcy-
term via the permeability tensor, it is not considered for the Brinkman term.

However, the method demonstrated to deliver accurate estimations of the fluid flow behaviour
for the side heating orientation, as shown in Figure 4.50. This discrepancy requires further in-
vestigations.

While the convective movement of the fluid does take place and convective cells are built, their
size and stability depends on the unit cell size and topology. Indeed the melting fronts for all
bottom heating orientations tend to be rather horizontal, as shown for the bccz unit cell in Figure
F.6 and for all samples in AppendixE. One can conclude that the magnitude of the convective
movement is affected by the homogenisation technique employed and by the permeability of
the sample. This is particularly evident when considering highly orthotropic samples like the
J>ccz one. For other samples, such as the bccz one, the results of the simulation are in good
agreement with the experimental data, as shown in Figure F.6. In such case, the liquid fraction
& =1 is reached at the same time for both the experiment and the simulation, indicating a good
predictability given by the present solver.
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Fig. 4.52: Temperature distribution and melting front expansion: (a) experiments and (b) simulations
for the f>ccz sample, bottom heating orientation.
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(a) Temperature distribution, melting front expansion, and streamlined velocity profile
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Fig. 4.53: Temperature and velocity fields for the f>ccz sample, bottom heating orientation, eviden-
cing the occurrence of Rayleigh-Benard convection cells.

The results presented thus far indicate that the solver here presented in general shows a good
agreement with experimental data, as it was validated both with experimental and numerical
data from the literature [83], as well as with the experimental data presented above. Criticality
appears when considering the f>ccz sample, which exhibits a particularly high permeability,
and a high porosity. This way, relatively high fluid flow velocities can take place, inducing a
deviation from a purely Darcy flow regime. It worth mentioning that, altough with different
magnitude, the same effect can be evidenced in the literature, e.g. in lasiello et al. [83]. To the
author’s knowledge, this phenomenon has not yet been thoroughly investigated in the literat-
ure, with many authors erroneously stating that the effective viscosity for the Darcy-Brinkman
model is the same of the PCM. This aspect shall be delved into in future works.

4.3.3 Scale analysis of the natural convection

Although already discussed, it is worthwhile reminding that the effect of natural convection
on the thermal behaviour evidences a discrepancy between the sample with the highest per-
meability (f>ccz), and the one which was influenced the most by convection (bcc). This is also
appreciable from Figure 4.35 in Section 4.2.1 compared to the values of permeability obtained
in Section 4.3.1.
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To better identify the effect of natural convection, and allow a scale analysis on the effect and
onset of natural convection, the data relative to the samples tested, both experimentally and nu-
merically, are reported in Figure 4.54 and correlated to non-dimensional numbers of relevance.
The sample fbcc is neglected, as the effect of convection is found to be negligible. Figure 4.54
reports the wall temperature and liquid fraction evolution for each relevant sample and each
orientation. The wall temperature is reported as an area averaged value, with the reference area
being the the heat wall surface, i.e. L. Figure 4.54a shows that the insurgence of natural con-
vection in the melt for the side and bottom heating orientations is cause for a deviation of the
average wall temperature from the one related to the top heating orientation. It can be noticed
that the time point at which convection becomes relevant is different for different samples and
different orientations. In general, the samples heated at side heating orientation are affected
sooner by natural convection. The bottom heating orientation undergoes a purely conductive
regime for a longer time, but its effect on the average temperature is more evident.

As also shown in the experiments (see Section 4.2.1), the overall effect of natural convection on
the average temperature is identical for both the side and bottom heating orientations. Indeed,
at the last time step in Figure4.54a, the temperature values of both heating orientations for a
given sample almost coincide.

The liquid fraction is affected by the phenomenon as well, as one can appreciate in Figure 4.54b,
where a ca. 20% difference between the fastest and the slowest full melting can be evidenced.
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Fig. 4.54: Temperature and liquid fraction evolution for the selected samples and heating orienta-
tions.

It is useful to describe the reported data in terms of relevant non-dimensional numbers, namely
the Stefan, the Fourier, and the Rayleigh number. They indicate that strongest effect of natural
convection on the wall temperature are achieved for the bcc sample, which exhibits the low-
est effective thermal conductivity. This seems counterintuitive as it also is the sample which
exhibits the lowest permeability. The opposite is true for the frccz sample, which exhibits the
highest effective thermal conductivity and highest permeability (in z-direction), but a compar-
ably lower influence of natural convection on the thermal behaviour. Thus, one can assert that
the onset of convection and its effect on the thermal behaviour is strongly related to the effective
thermal diffusivity of the medium. Indeed, a low thermal diffusivity of the domain is a cause for
enhanced overheating of its wall. This causes a higher temperature gradient between the wall
itself and the melting front, allowing to surpass sooner critical values for convection onset.

This can be better visualized when comparing the Rayleigh and the Fourier numbers of the
samples, as shown in Figure 4.55. The Fourier number is calculated as in Equation 4.20. The
Rayleigh number is reported coherently to the expression proposed by Nield [135] for a porous
medium, and adapted for a PCM, similarly to what proposed by Azad et al. [78] for a pure
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PCM material. This means defining the length scale in the equation as the area-averaged liquid
fraction times the length of the probe in the heat flux direction.

_ gpeffBA Tm (I)Ki(pavg (Z)L
V Oletf

(4.32)

Ra(t)

where Ra is the Rayleigh number, g is the local gravity acceleration, f3 is the thermal expansion
coefficient of the molten PCM, AT,,(¢) is the temperature difference between the average wall
temperature and the temperature at the boundary of the liquid domain, i.e. the melting point,
K; is the permeability K, , if the side orientation is considered and K; if the bottom or top ori-
entations are considered. P, (1) is the area-averaged liquid fraction, L is the edge length of
the samples, V is the kinematic viscosity of the PCM, and o, is the effective thermal diffusivity.
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Fig. 4.55: Rayleigh number plotted against the Fourier number.

The data reported indicate different critical values for the onset of convection, which are listed
in Table 4.14. The results indicate that the critical Fourier number is directly correlated with
the sample’s diffusivity, i.e. the lower the diffusivity, the lower the critical Fourier number. The
opposite is true for the critical Rayleigh number. One can notice that, while the permeability is
inversely correlated to the critical Rayleigh number, this relationship is not linear, indicating that
the coupled effect of thermal diffusion is affecting the results. To highlight this appropriately,
it is useful to evaluate the diagram shown in Figure 4.56, as it provides an evident indication of
the effect of the thermal diffusivity on the onset of convection.
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Table 4.14: Critical values of Rayleigh, Fourier, and Stefan numbers, and, for comparison, the per-
meability in the respective orientations.

Sample Racris  Foerir  Stel.. Molten Volume [mm®]  K;[107"m?]
bcc side 8.78 0.54 0.15 34.37 1.82
bccez side 859 094 0.16 44.12 1.36
Jrccz side 9.74 0.68 0.10 30.87 1.76
bcc bottom  13.38 0.75 0.04 51.12 1.82
bcez bottom  25.54  1.52  0.25 81.62 1.81
frcczbottom 2146 092  0.15 45.12 4.74
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Fig. 4.56: Liquid fraction against Rayleigh number.

Looking at Figure 4.56, one can appreciate that a strong deviation takes place after the onset
of convection. The higher the permeability in the heat flux direction, the stronger this effect.
However, the onset of convection takes place more gradually, as a transition regime is present,
in which the fluid flow acquires velocity, but the melting front expansion is not yet strongly
affected by the convective movements. For this reason, the critical onset-numbers are calculated
searching for a deviation of 10% from the purely conductive regime, which occurs at top heating
orientation.

To further analyse the data, the liquid fraction is reported in Figure 4.57 against the Fourier
number, the corrected Stefan number (see Equation 4.21) and their product, which represents a
commonly used non-dimensional time. Figure 4.57c shows that the curves of different samples
for the top heating orientation overlap. This indicates that, in a purely conductive regime, the
liquid fraction can be expressed as an analytical function of the Stefan-Fourier number. Via
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curve fitting with means of an exponential function, the liquid fraction @ for the top orientation
can be related to the Stefan-Fourier number by Equation 4.33.

D(0);0p = —1.121e713477) 4 1253 (4.33)

where @ is used to indicate the Stefan-Fourier number.

4.4 Conclusion

In this chapter, an extensive characterisation of the thermal behaviour of composites based on
lattice structures embedded with PCMs was presented. Analytical correlations, as well as nu-
merical and experimental investigations were conducted to achieve a comprehensive description
of thermal phenomena governing such composites. The analytical correlations obtained were
used to pursue an homogenisation approach, which shall simplify the future analysis and design
of such composites. The main findings of this chapter are listed below:

* A semi-analytical description of the geometry of lattice structures with cuboid unit cells
was developed. The analytical calculation of Steinmetz’s solids volume was partially
used to describe the intersection of the lattice struts. Empirical coefficients were deemed
necessary to accurately describe the geometry of the lattices. This is due to a difficult
generalisation of the integrals for the calculation of the Steinmetz’s solids for struts which
cross at different angles. Additionally at struts crossings, a variable material accumulation
can take place during the additive manufacturing process, which depends on the machine
parameters. Thus, to be able to flexibly adapt the presented geometric description, em-
pirical parameters which can be changed at need are considered useful and necessary.
The introduced formula univocally correlate the lattice porosity with the other geometric
parameters.

* A semi-analytical description of the effective thermal conductivity of the composites was
presented. A thermal resistance network was modelled, in which the struts and the nodes
at which they cross are treated as connected resistances. Empirical parameters were
obtained performing several parametric sweeps based on numerical investigations, per-
formed with the commercial software COMSOL Multiphysicsg, based on a finite ele-
ment implementation of the apparent heat capacity method. Additionally to the effective
thermal conductivity, also the other effective thermophysical properties were obtained.

* A numerical analysis of the transient behaviour of the composites under a purely con-
ductive regime indicated that the homogenisation approach is scale invariant as long as
minimum number of equal unit cells can be found in the domain. This value is correlated
to the porosity of the unit cell and descreases with increasing unit cell porosity. Thus,
the thermal behaviour can be assumed scale invariant, if the domain contains a sufficient
number of periodic unit cells, or highly porous one, i.e. € > 0.95.
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* A simplified conductive model based on the effective thermophysical properties indicated
diminishing returns in increasing the volume fraction of the lattice unit cells in order to
improve the thermal diffusivity of the composite. In particular if the design goal is the
one of realising a latent heat-thermal energy storage device, the increase of the volume
fraction reduces the amount of heat stored latently. Thus an optimal trade-off between
a high diffusivity and high latent heat exists. The quantitative value of the correlated
volume fraction depends on the lattice topology.

* An experimental campaign was conducted for a variety of purposes. A validation of the
semi-analytical model for the effective thermophysical properties was achieved this way.
Thus, the homogenisation approach can be deemed valid if the conditions on the scale
variance are respected and natural convection can be neglected. The experimental cam-
paign was conducted under several orientations with respect to the local gravity vector,
and shed light on the effect of natural convection on the thermal behaviour of the samples.
A significant effect of natural convection was found even for lattice samples with relat-
ively low porosity. To quantify the effect, the permeability of the samples was investig-
ated. However, the sample exhibiting the highest porosity and the highest permeability
(faccz) showed a reduced effect of convection on its wall temperature and on the liquid
fraction, with respect to the bcc and becez samples. This is attributed to a coupled effect of
conduction and convection. The high thermal diffusivity of the sample caused a delayed
onset of convection with respect to other samples.

* The effect of natural convection was delved into deeper with means of a purposedly de-
veloped numerical solver. The solver is based on OpenFOAMg. Due to the orthotropic
nature of the effective thermal conductivity and of the permeability, a new solver was
needed to address the numerical solution of the conservation equations. The solver makes
use of the enthalpy-porosity method. The results are coherent with the results present in
the literature [83], which is based on composites made of metal foams and PCMs. Thus,
the code can considered to be verified. The results are compared with the experimental
campaign performed in this work. Discrepancies affecting the temperature curves and the
melting front shape can be noticed especially for bottom heating orientation. These are
caused by the treating of the composite as a homogeneous material, which only gives a
global, rather than local, description of the flow resistance given by the lattice structure,
by means of the Darcy term in the momentum equation. The effective viscosity calculated
as a scalar via the Einstein’s model delivered good results for the side-heating orientation,
but lacked to allow an accurate description of the thermal behaviour for a bottom heating
orientation. However, the quantitative values of the liquid fraction and the full melting
time are in good agreement with the experimental data.

* Finally, with the goal of quantifying both the effect of natural convection on the thermal
behaviour, and in order to find onset criteria for the occurrence of natural convection in the
melt, a scale analysis was proposed. The data which are analysed are the ones obtained
from the numerical simulations, made via use of the developed solver, which replicate
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the experimental campaign. This because rather than having only a few data points in the
domain, area averaged values could be obtained for both temperatures and liquid fraction.
The results of the scale analysis indicate that the onset of convection is strongly affected
by the effective thermal diffusivity, with a low diffusivity aiding the occurrence of natural
convective movements in the melt. This is evident when comparing the obtained critical
values for the Rayleigh and the Fourier numbers.

Furthermore, when analysing the liquid fraction evolution in relation to the Stefan-Fourier
number, one can notice that for top-heating orientations, the behaviour of all samples can
be described by the same function. Via curve fitting, an analytical correlation is obtained,
as indicated in Equation 4.33.
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Problem statement The Phase Change Material embedded within the metallic lattice struc-
ture can exhibit a wide range of mechanical properties. Thus, in addition to the discussed
thermal behaviour, it is relevant to investigate the mechanical behaviour of these novel compos-
ites.

In general, PCMs considered for room temperature application, e.g. paraffin waxes, exhibit
relatively low stiffness and strength [136, 137] with respect to materials employed for structural
purposes, i.e. metallic alloys of fiber reinforced plastics. Thus, their contribution to the effective
stiffness of the composite can be considered to be negligible. Other PCMs, i.e. salts and salt
eutectic mixtures exhibit higher stiffness, however their application can be considered only for
high-temperature applications. The treatment of such materials would impose additional con-
siderations connected to the thermomechanical behaviour of the composite, which is not scope
of this work.

The most relevant aspect to be considered for the PCM-lattice structure composites is the ef-
fect that the PCM can have on the stability of the lattice struts. Indeed, in order to achieve
lightweight components, the volume fraction of the lattice shall be minimised, while remaining
withing strength constraints. This can lead to rather slender struts, which can be affected by
stability issues. Thus, the buckling behaviour of the composite is treated within this chapter.
The PCM is treated as an elastic medium, in which the beams are embedded. A similar ap-
proach was already proposed in the case of lattice structures embedded with plastic foams by
Wu et al. [138].

First, the problem is simplified by embedding a single horizontal beam with hinged supports
in an elastic foundation. Then, an extension to lattice cells is presented. The treatment of full
lattice components is secondary as it does not add novel findings with respect to the single strut
and cell studies. The interested reader is referenced to such investigation in Appendix??. Fi-
nally, an experimental investigation is presented.

5.1 Numerical investigation of the stability behaviour of PCM-lattice
composites

In the following sections a comprehensive study is presented, regarding the buckling behavior
of lattice structures. Both analytical and numerical methods, comparing scenarios with and
without an elastic bed, are used. The anticipated buckling phenomena are localized within the
individual struts of the lattice.
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The systems under investigation, namely the strut, cell, and lattice, are denoted as isolated when
devoid of an elastic medium and embedded when surrounded by one. To streamline discussions,
analytical results are denoted as "ANA" while numerical results are designated as "NUM".
The elastic medium’s properties are modeled after a specific PCM, namely an n-Octadecane
Paraffin wax, in its solid state. For the lattice structure itself, the aluminium AlSi10Mg alloy
is employed, given its prominence as the typical lightweight material for lattice structures pro-
duced via Laser Powder Bed Fusion (LPBF) printing. This alloy is of relevance also as it is
employed for the thermal studies presented above. The properties of AlSi10Mg are obtained
from averaged values reported in [139]. For paraffin, which constitutes the elastic medium, the
elastic modulus, as well as tensile and compressive yield stresses, are determined from sources
[136] and [137]. It is worth noting, based on Andrianov [140], that solid paraffin can be treated
as de-facto incompressible, with a Poisson ratio of 0.499. The material data are reported in
Appendix B.

5.1.1 Analytical solution for an individual strut

The structural element representing a single lattice strut is idealized as a beam with hinged ends,
reflecting the basic end condition typical of lattice struts. In the case of an isolated strut, the
basic equation for Euler critical buckling (Equation G.15) is employed with the end constraint
factor fixed at n = 1. Considering that the lattice struts in this study uniformly feature circular
cross-sections, the second moment of area is defined as I = w/4(D/2)* Consequently, the
non-dimensional parameter L/ D, representing the slenderness of the strut, is varied. The de-
fault presentation in this work is in terms of this parameter, and with the strut length fixed at
L = 10mm, 1.e. only the strut diameter is varied in order to vary the slenderness.

The determination of the value of m yielding the smallest critical load is performed using Equa-
tion 2.79. The foundation modulus k is approximated using the Vesic (Equation H.5) and Her-
rmann (Equation H.4) formulae. The Vesic expression is multiplied by 2 to account for an
all-sided foundation, rather than a monodirected one, as recommended by Attewell [141].
Figure 5.1 depicts the results for both isolated and embedded struts, with logarithmic scales ap-
plied to the axes for enhanced visualization. As illustrated, the critical buckling load of the strut
P, decreases with increasing slenderness, consistent with expectations. Notably, the embed-
ded struts exhibit higher P, values. The improvement is quantified by P, empedded/ Per.isolated
which increases with higher slenderness ratios. Consequently, the impact of the elastic medium
on the critical buckling load becomes more pronounced for struts with elevated slenderness.
Regarding the foundation modulus, the Herrmann approximation appears to yield higher P,
values. This aligns with expectations due to the added rigidity introduced by accounting for
shear effects.

While the application of the beam theory typically assumes a slenderness of L/D > 10, slen-
derness values are initiated at L/D = 5 in this analysis to showcase results for low slenderness
struts. It is crucial to note that the precision of solutions in the lower range of slenderness (i.e.
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Fig. 5.1: Analytical solution for critical buckling load of isolated and embedded struts.

L/D < 10 ) may be limited, considering the neglect of shear deformation effects. The variation
in slenderness extends up to L/D = 30.

To obtain the critical buckling stress (0,,), the critical buckling load is divided by the strut’s
cross section. Figure 5.2 presents the plot of o, revealing a distinct pattern in the curves of the
embedded struts. Notably, the y-axis employs a linear scale to emphasize this pattern. This re-
peating pattern, observed in works such as [102], arises from a discontinuity during an increase
in the value of m. Each parabola-like section corresponds to a specific value of half-sine waves
m in the deflection curve, starting with m = 1 for the first parabola, m = 2 for the second, and
so on. Additionally, the critical buckling stresses of the embedded struts consistently remain
above the value 2v/kEI/A. This value corresponds to the solution of an infinitely long beam
on an elastic foundation with P., = 2vV/kEI ([102]). For the Herrmann solution of the infinite
beam, kferrmann 18 averaged across all slenderness ratios, as it is not constant.

As depicted in Figure 5.2, 0., consistently remains above the yield strength for the embedded
struts, whereas as expected, above a certain slenderness, it falls below such threshold for the
isolated strut. Consequently, for this specific model, it can be inferred that the embedded struts
are prone to failure through yield and rupture only, rather than buckling.

5.1.2 Numerical models for an individual strut

The numerical models are obtained using the Lanczos eigensolver available in the ANSYS®
APDL solver. Two modeling approaches are employed for the strut: one with beam elements
(referred to as "BEAM") and another with volumetric elements (referred to as "VOL"). The
BEAM model is designed to streamline computational efficiency by utilizing fewer nodes,
whereas the VOL model, despite longer computational time, incorporates shear effects of the
foundation. To enhance accuracy, higher-order elements with quadratic displacement behavior
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Fig. 5.2: Analytical solution for critical buckling stress of isolated and embedded struts. Lower
bounds for embedded struts given by 2v/kEI/A.

are employed: BEAM189 (3 nodes) for the beam elements and SOLID186 (20 nodes) for volu-
metric elements.

Beam elements The simulation of hinged supports is achieved by defining rigid regions at
the ends of the strut. At each end, a massless node, referred to as the "master node", is created,
and the corresponding end nodes of the strut, denoted as "slave nodes", are rigidly connected
to it. Boundary conditions are then imposed on the master nodes, restricting only translational
displacements to ensure free rotation. An axial load P is applied at one of the two master nodes,
with that particular master node permitted to move freely in the axial direction. Additionally,
rotation around the x-axis is restricted at one of the master nodes, as illustrated in Figure 5.3.
This configuration of boundary conditions is consistently applied to all strut and lattice unit cell
models in this study.

S <~

Fig. 5.3: Model of the isolated strut: cyan triangles indicate translational restrictions, orange
triangles signify rotational restrictions, and pink triangles denote constraint equations
between nodes due to rigid regions.
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In the case of the beam-type strut, the elastic medium can be simulated through a Winkler
foundation model, by connecting each node of the beam with a perpendicular spring element.
The utilized spring elements belong to the COMBIN14 type, characterised as a longitudinal
tension-compression element with three translational degrees of freedom at each node. The
spring constant ¢ is derived from Equation H.1 and is equal to o = ka, where a represents half
the element length, given the presence of a middle node in each beam element. For the founda-
tion modulus, only 2 - kyegic 1S employed, as KHerrmann relies on m, which is not known ab-initio.
The model effectively provides numerical solutions for the individual strut, as the plane of buck-
ling is deemed irrelevant. However, for more intricate structures like cells or lattices, the plane
of buckling for individual struts might be influenced by end conditions and the surrounding
environment. It is imperative not to prescribe the plane of buckling by restraining nodes in a
specific direction, i.e. there should be no preferred plane of buckling. This challenge can be
addressed by introducing multiple rows of springs symmetrically aligned with the strut axis.
The simplest configuration involves three rows of springs at 120° from each other, as shown in
Figure 5.4.

Increasing to three the number of springs which act on each node mandates that the spring stiff-
ness be updated. For the same infinitesimal spring deflection ds, the forces produced on a node
by the single row spring model must be equal to the forces produced by the triple row spring
model. This derivation is visualized in Figure 5.5.

(b) Buckled shape of the beam on the spring found-
(a) Model: notice the three rows of springs. ation.

Fig. 5.4: Example of the model and results of a beam embedded via three rows of springs. A slen-
derness ratio L/ D = 30 is used for this example.

Equating the total forces acting in the y-direction for both models (Y Fjo1c = X Firipie) yields

Fl,single = Fl,triple + 2F2,triple Sil’l(300) (5.1)
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Fig. 5.5: Schematic representation of the forces F acting on a generic node for different spring mod-
els.

Inserting F = ocds and sin(30°) = 1/2 results in the following relation for the spring constants.

asingledsl = alriple(dsl +d52) (5.2)

Utilizing the relation ds, = ds; sin(30°) = ds; /2, which can be deduced from Figure 5.5¢, it
follows that the & of each spring in the three-rows model is related to the o of each spring in
the one-row model, by

2
Csriple = §asingle’ (5.3)

i.e., the spring constants in the triple row spring model must be multiplied by a factor 2/3.
Once the model is set up, a mesh-convergence analysis is conducted. A threshold of 0.1% is
defined. As illustrated in Table 5.1, an element size of L/ 10 is sufficient for the isolated strut.
However, for the embedded strut, particularly at high strut slenderness ratios, the differences in
mesh size do not seem to fall below the threshold until an element size of L/25 is reached (refer
to Table 5.2). One possible explanation is that embedded struts with high slenderness ratios
entail a significantly higher number of half sine waves, requiring more elements to accurately
represent the deflection curve. Thus, an element size of L/30 is applied for all future analyses
with beam elements in this work.
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Table 5.1: Mesh convergence analysis for isolated strut (beam elements).

L/D=5 L/D=10 L/D =30
Element length P.. [N] Difference P, [N] Difference P, [N] Difference

L/5 5400.2 - 356.10 - 4469 -
L/10 53982 (—0.037%) 35596 (—0.039%) 4.467 (—0.039%)
L/15 5398.1 (—0.002%) 35595 (—0.002%) 4.467 (—0.002%)

Table 5.2: Mesh convergence analysis for embedded strut (beam elements).

L/D=5 L/D=10 L/D =30
Element length P, [N]  Difference P, [N] Difference P, [N] Difference

L/5 8070.3 - 2023.6 - 224.65 -
L/10 8069.1 (—0.015%) 20152 (—0419%) 213.14 (—5.127%)
L/15 8069.2 (+0.002%) 20149 (—0.014%) 21143 (—0.799%)
L/20 8069.3 (+0.001%) 2015.0 (+0.001%) 211.15 (—0.135%)
L/25 8069.4 (+0.001%) 2015.0 (+0.001%) 211.08 (—0.032%)

The numerical solution using beam elements, and a comparison to the analytical solution are
depicted in Figure 5.6. Both the single row spring model and the triple row spring model solu-
tions are plotted, and it can be observed that they coincide perfectly. Therefore, the expression
found in Equation 5.3 can be considered to be exact.

When visualizing the buckled beam, it becomes apparent that the number of half-sine waves in
the deformed curve increases at the same slenderness ratios where there are local maxima in
the curve, as expected. For instance, the deformed curve has one half-sine wave in the interval
5<L/D <17.5,two in the interval 8 < L/D < 13.5, and so on. Deformation curves represent-
ing each of these intervals are added to Figure 5.6 to illustrate this pattern. At low slenderness
ratios, a small deviation between analytical and numerical solutions becomes apparent. This
discrepancy arises from the fact that the numerical solution employs Timoshenko-type beam
elements, while the analytical solution is based on Euler-Bernoulli beam theory.

Model based on volumetric elements

Numerical analyses employing beam elements yield results that closely align with the analytical
solution. This is a rather obvious result, since the analytical equations were derived using beam
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Fig. 5.6: Numerical and analytical solutions for critical buckling stress of individual strut (beam
elements).

theory. However, it’s important to remind that in such model the elastic medium is modeled as
a one-parameter foundation model without accounting for shear effects.

The use of volumetric elements is expected to deliver more realistic results, incorporating dir-
ectly the relevant material properties of the medium, and, through the continuum formulation,
including shear effects. This comes with higher computational effort.

The strut’s cross section can be meshed and extruded, resulting in a uniform mesh with hexa-
hedral elements. The elastic medium is modeled by creating a concentric volume around the
strut (see Figure 5.7), where the inner elements share the same nodes as the outer elements of
the strut. The depth of the elastic medium is defined by the parameter 4 = Dgoundation / Dstruts
representing the ratio between the diameter of the foundation and the one of the strut. The in-
fluence of this parameter on the results is discussed in the following.

The same boundary conditions as those employed in the beam model are applied, including the
use of rigid regions to couple all nodes at the strut ends. Additionally, nodes at the outer faces
of the elastic medium are fixed in the radial direction.

A mesh convergence analysis is conducted. A foundation depth of yu = 10 is utilized, and the
results are presented in Table 5.3. The mesh size is defined in terms of fractions of the strut
radius R. A mesh size of R/3 is employed, as the computational effort for finer meshes become
prohibitively high for cases involving an elastic medium. For reference, Figure 5.8 illustrates
the resulting mesh of the strut section for the analysed mesh sizes from Table 5.3. It is essential
to note that higher-order elements are used, thus incorporating a middle node on each element
edge. An additional convergence analysis is conducted to identify a ratio pt where the changes
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a)

Fig. 5.7: Meshed volumetric model of isolated a) and embedded b) strut for L/D = 10, u = 5.
Notice that the violet ellipse is used merely to differenciate the mesh of the elastic medium
from the one of the embedded strut, which is actually shown in (a).

in buckling load become negligible with the increase in foundation depth. To this purpose, Fig-
ure 5.9 illustrates the critical buckling stress of the embedded strut for various diameter ratios
u. It is evident that the critical buckling stress decreases with an increasing diameter ratio U.
This is expected, as (t determines the distance from the strut to the outer faces of the elastic me-
dium, which are radially fixed. For low distances, the rigidity provided to the strut by fixing the
outer faces is higher, thereby increasing the critical buckling load. The magnitude of this effect
diminishes with an increasing distance of the outer faces to the strut, as the elastic medium has
more volume to deform freely. Although not obvious at low slenderness ratios, the curves from
Figure 5.9 seem to converge with increasing . A value y = 30 is chosen as a limit due to the
increased computational effort.

R/1 R/2 R/3 R/4

Fig. 5.8: Mesh of the strut section for different radial element sizes.
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Table 5.3: Mesh convergence analysis for embedded strut (volumetric elements).

L/D=5 L/D=1 L/D =30
Element length P, [N]  Difference P, [N] Difference P, [N] Difference

R/1 10146 - 27298 - 359.10 -

R/2 10077 (—0.674%) 26869 (—1.572%) 35131 (—2.171%)

R/3 10044 (—0.335%) 26783 (—0.322%) 349.84 (—0.419%)

R/4 10055 (40.118%) 2679.9 (+0.061%) 350.55 (40.205%)
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Fig. 5.9: Critical buckling stress of embedded strut for different diameter ratios p (volumetric ele-
ments).

Figure 5.10 presents the numerical results for beam and volumetric models, along with the
analytical results. For the isolated strut, the volumetric and beam models essentially yield the
same buckling loads. However, significant differences between the models are observed in the
embedded case. This discrepancy arises because the spring model, used for the beam elements-
case, effectively corresponds to a one-parameter foundation model (with parameter 2kvesic),
while the volumetric model corresponds to a two-parameter foundation model (with parameters
Eyr, vy), which includes shear effects.

Analysing Figure 5.10, it is evident that the values produced by the volumetric model are closer
to the solutions of the beam model and the analytical solution for kyegic at low slenderness and
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Fig. 5.10: Numerical and analytical solutions for critical buckling stress of individual strut (beam
and volumetric elements).

closer to the solution for kygerrmann at high slenderness. Overall, the curve for the volumetric
elements deviates from the solution for beam elements with rising slenderness. This deviation
can be attributed to the added shear effect in the volumetric model. Assuming that the difference
between the analytical solution and the volumetric model is solely due to the shear effect from
the foundation, the stiffness of the shear layer, Gp, can be approximated. This allows for the
computation of the analytical solution for the critical buckling load for a Pasternak foundation
(Equation 2.81). Given that Gp has the unit of a load and the foundation modulus & has the unit
of a load per square unit length, it seems reasonable to assume that the stiffness of the shear
layer Gp should depend on the foundation modulus k& multiplied by two dimensions of length.
A simple expression that yields good results is

L
Gp = 2kVesicDE, (5.4)
using the diameter D and length L of the beam. Assuming such a dependence, the analytical
solution comes relatively close to the volumetric model, as shown in Figure 5.11.

5.1.3 Analysis of a lattice structure unit cell

This section aims to analyse the buckling behavior of four different unit cells, namely the bcc,
bccez, frcce, and frccz ones, in both isolated and embedded cases.

To streamline the computationally intensive calculations, an aspect ratio angle y = 45° is as-
sumed. It is essential to note that, due to this assumption, the angles between the diagonal struts
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Fig. 5.11: Solutions for critical buckling stress of individual strut. The analytical solution uses a
Pasternak foundation model with k = 2kvyegic and Gp = 2kvesicD.

and the xy-plane are as follows: ¢y f,cc = arctan(1/1) = 45° and @y pec = arctan(l / \/5) R

35.26°. Similarly, the length of the diagonal struts is Ly ,cc = (v2/2)h and Ly pec = (v/3/2)h,
where /4 is the size of the cell. For cells with a vertical strut, there are two different strut lengths
(the vertical L, = h and diagonal L; strut lengths).

The question arises as to how to define the slenderness in this case. As the critical buckling load
is lower for higher strut lengths, it stands to reason that the critical strut (the strut which buckles
first) will generally be the longest. Thus, the slenderness will be defined as L.,/ D, where L, is
the length of the critical strut, assumed to be the longest strut. Therefore, for cells without the
vertical strut (bcc, f>cc, etc), the slenderness is trivially defined. For cell types with a vertical
(z) strut, it is defined in relation to the length of the vertical strut. In this second case, this leads
to different slenderness ratios for diagonal and vertical struts, as the strut radius is assumed to
be the same.

Numerical solution for unit cells

All four types of unit cells have six vertices: the lower, upper, and the four lateral vertices. Set-
ting the boundary conditions at each vertex is not a trivial operation. If the cell were part of a
lattice structure, the six vertices might experience displacement or rotation due to the influence
of adjacent cells. However, when considering a single cell, the influence of surrounding cells is
not considered. This leads to different buckling behavior compared to the one observed when
an entire lattice component is simulated, resulting in different critical buckling loads. Never-
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theless, the findings presented in the following provide good approximations and contribute to
understanding the buckling phenomenon of these composites.

When analyzing lattice components, it can be observed that local buckling occurs in the form of
rotations of the vertices and bending of the struts (see, for an example, Figure 5.12). Displace-
ments of the vertices appear to be very small, with the exception of vertices at the free ends of
the component. It must be noted that, for the two cell types without a vertical strut (f>cc and
bce), local buckling will only occur if transverse strain of the lattice is inhibited. This means
that the nodes at the lower and upper faces of the lattice must be fixed. Otherwise, under a ver-
tical load, the f>cc and bcec cells will compress vertically and expand laterally without buckling.
Lattices exhibiting unit cells with a vertical strut (f>ccz and beez) will buckle locally without
the need for transverse fixing.

Due to this, it seems logical to use hinged supports at the vertices when simulating a single
unit cell, thus inhibiting translations but allowing rotations. For the cell types with a vertical
strut, a support on the lateral vertices is not needed for the vertical strut to buckle, although both
versions (with hinged supports at the lateral vertices and without) are studied in this case.

(a) Buckled shape, beam elements (b) Volume elements

Fig. 5.12: Local buckling in a simulated bcc lattice component with 2 x 2 x 4 cells, for an isolated
case. The load acts in vertical direction, and is applied on the strut nodes. A strut slender-
ness of L/D = 20 is used in this example.

Numerical model The unit cell struts are represented using beam elements with an element
size of L,/30. To simulate hinged supports, rigid regions are established at each vertex of the
unit cells by connecting a massless master node to the corresponding node of the vertex. The
master nodes are then fixed laterally in x-y directions, and the lower vertex is additionally fixed
vertically in the z-direction, including rotation. The compressive load is applied to the upper
master node, as schematically shown in Figure 5.13.The modelling of the springs for a lattice
unit cell is no trivial task, and requires the implementation of a dedicated procedure. For sake
of brevity, such procedure is reported in Appendix I. The resulting configuration with spring
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elements attached is depicted in Figure 5.14.

lp P

fzcc f2CCZ

Fig. 5.13: Boundary conditions on the cells. Here, fycc and f>ccz cells are shown. The same bound-
ary conditions are applied for body-centered unit cells. The supports represent a fixation
in x- and y-direction.

Fig. 5.14: Beam models for a f,cc unit cell (a), and a fyccz unit cell (a). The beam elements are
visually represented with volumetric shapes to enhance clarity. It is important to note
that, for improved visualization, relatively short springs have been employed in this rep-
resentation.

Figure 5.15 exemplarily shows the results of the presented model for both embedded and isol-
ated unit cells. The buckling shapes are reported for unit cells in which the struts’ slenderness
ratio is L/D = 20. In general, it can be observed that in the embedded case, the critical struts
exhibit an increasing number of half-sine waves, and certain sections of the cells appear to re-
main unbent. This is associated to an increased critical buckling load. In order to allow a proper
comparability between the different models, the results for all the slenderness spectrum are re-
ported in Figures 5.17-5.21, where the results of the analytical solution and of the volumetric
model are also reported.
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Fig. 5.15: Buckling shapes for the considered example. It is important to note that the fycc case

might be visually confusing, as the diagonal struts in the plane perpendicular to the image
appear as a single vertical strut.

An analytical solution is sought in order to describe the phenomenon. The approach proposed
by Biihring [142] to use the equivalent member method is considered and adapted for the case
of embedded lattice struts. In the embedded case, the critical buckling load is determined using
Equation H.11. As itis not feasible to solve this equation directly for P,,, the following approach

is employed:

* The determinant’s value from Equation H.11 is computed for a range of loads, initiating

with the smallest viable solution P,;,;, = V4kEI, as it has been established that the beam
will not buckle at smaller values. Increments of AP = 1N are applied, with a maximum

load of P,,,x = 4P, seeming sufficient.

* A curve is fitted to the data points employing a piecewise polynomial.
* The zeroes of the fitted curve are calculated using an iterative method. The critical load
corresponds to the first zero greater than P,;,. Higher-valued zeroes indicate higher

modes of buckling for the beam.

The procedure to obtain the stiffness matrices and then calculate the critical load is described in

detail in Appendix I.1.

The modelling approach followed to model the system with use of volumetric elements is sim-
ilar to that employed for beam elements, incorporating identical boundary conditions and rigid
regions. As previously done for single struts, the volumetric model is compared to the beam

numerical solution and the analytical one.
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Figures 5.18 to 5.20 present both numerical and analytical results for various unit cells. The
discrepancies between the results are quantified using the relative deviation I', defined as

Pcr - Pcr,ref
Pcr,ref

Y = (5.5

I is the relative deviation between the numerical and analytical solutions, P, is the critical
buckling load obtained from the numerical solution, and P, ,.r is the critical buckling load
obtained from the analytical solution.

Deviations between the results are expressed as percentages, with the lower value serving as the
reference for consistency. The following additional points should be noted:

* A cell size of h = 10mm 1s employed for all solutions.

* For both analytical and numerical solutions with beam and spring elements, 2kvesic 1S
used for the foundation modulus.

* For cells without a vertical strut, i.e. f>cc, bce, analytical solutions are conducted with the
Pasternak model using k = 2kvesic and Gp = 2kvegicD to account for shear deformations
in the foundation at high slenderness ratios.

* Analytical solutions for embedded f>ccz and becz cells assume a Winkler model, dis-
regarding shear effects in the foundation due to the unavailability of a solution for the
Pasternak model with rotational springs at the ends.

* For cells with a vertical strut (f>ccz, bcez), numerical analyses are performed without
(refer to Figure 5.19) and with pinned supports at the lateral vertices (refer to Figure
5.20). Analytical solutions are conducted without pinned supports for both cases, since a
solution with pinned supports at the lateral vertices is not available.

Considering these points, the results can now be interpreted, starting with a comparison between
the two numerical approaches (i.e. beam/spring elements and volumetric elements). Figure 5.18
displays the critical buckling loads for the fcc and bcc cell types.

For the isolated case, the beam and volumetric solutions coincide at high L/D. At low slender-
ness ratios, the critical buckling load is higher with volumetric elements. This discrepancy can
be explained by the stiffness increase caused by the vertices. When using volumetric elements
the growth of the strut diameter and its effect of the volume of the struts’ intersections is con-
sidere (see Figure 5.16). This delivers a non-negligible contribution to the overall stiffness. This
effect is more pronounced in cells with a vertical strut (Figures 5.19 and 5.20), as the presence
of the vertical strut increases the volume of the Steinmetz solid which represents the node. For
instance, this leads to a deviation between the solutions of beam and volumetric elements of
163% in the case of the f>ccz cell with hinged lateral supports for L/D = 5.

The same kind of deviation can be observed in the embedded cases, again, being considerably
more pronounced for the fccz and becz cells.

For the fcc and bcc cells, the beam element solution exhibits slightly higher critical buckling
loads than the volumetric solution at high slenderness ratios, but in general a good agreement.
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a) b)

Fig. 5.16: Vertex of deformed bcc cell (a) and beez cell (b) for L/ D = 7. Due to material accumu-
altion at the nodes, the rigidity of the structure is increased. The effect is increased with
lower strut slenderness ratios and with the presence of a vertical strut.

This seems to contradict results from the single-strut model, where volumetric elements showed
higher stability due to the inclusion of shear stresses in the foundation. A potential explanation
lies in the differing boundary conditions and foundation depth between the two models. The
spring model assumes completely fixed ends for the springs, resulting in independent founda-
tions for individual struts. In contrast, the volumetric model allows stress transmission between
struts, especially near the vertices where the foundation volume is thin. This could induce
stresses counteracting the embedding effect, reducing stability.

Interestingly enough, the f>ccz cell does not exhibit this effect, suggesting that the presence
of a vertical strut maintains the additional stiffness from material accumulation at the vertices,
offsetting the stability loss from the volumetric foundation model at high slenderness ratios.
The results for the bccz cell in the embedded case without hinged lateral supports show an un-
usual curve for the volumetric solution, deviating to lower critical buckling loads than the beam
element solution around L/D = 9. Examination of the buckling modes (Figure 5.17) reveals
an additional mode involving the rotation of the outer cell, distinct from the expected vertical
strut buckling mode. This extra mode reduces the critical buckling load. It does not appear for
the frccz cell, possibly due to shorter diagonal struts being less prone to induce this mode. The
disappearance of this mode with hinged supports at the lateral vertices inhibits the rotation of
the outer cell in this case.

The comparative analysis of analytical and numerical results for the f>cc and bec cells in isol-
ated conditions reveals a consistent discrepancy at medium to high slenderness ratios. This
disparity, expected due to the analytical focus on the critical strut and neglect of additional stiff-
ness from interconnected struts at the vertices, stands at 16% for the f>cc and 19% for the bcc
cell at L/D = 30.

In the embedded case, particularly at medium to high slenderness ratios, the analytical curve
converges more closely with the beam model for the f>cc cell and with the volumetric model
for the bcc cell. However, at low slenderness ratios, the analytical solution consistently under-
estimates the numerical results, a phenomenon likely influenced by a combination of previously
discussed factors and the analytical oversight of vertex stiffening.

Analyzing the f>ccz and becez cells in isolated conditions, the analytical solution closely matches
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numerical results obtained with beam elements. However, a slight deviation is noted for the
bccez cell at low slenderness ratios. This suggests that the equivalent member method offers
satisfactory accuracy in approximating results obtained with beam elements in isolated scen-
arios. Deviations from the volumetric element solution are attributed to the impact of volume
overlap at the vertices. When hinged supports are introduced at lateral vertices, numerical solu-
tion curves shift to higher values. As no analytical solution is available for this specific case,
conventional analytical solutions are presented for comparison.

a) b)

Fig. 5.17: First (a) and second (b) buckling modes for the bccz cell. No hinged supports at the lateral
vertices are considered, and L/ D = 20.

In the embedded configuration, the analytical solutions consistently exhibit an underestimation
compared to the numerical curves, except for the bccz cell without hinged supports at the lateral
vertices. The latter case features an additional buckling mode, explaining the deviation. Never-
theless, the analytical underestimation is relatively minor at low slenderness ratios. To elucidate
the widening discrepancy with increasing slenderness ratios, several hypotheses are postulated
and explored.

One initial hypothesis posits that the disparity arises from the analytical model utilizing a Wink-
ler foundation without a shear layer. However, this can be dismissed, as the numerical model
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Fig. 5.18: Critical buckling loads for the f>cc (a) and bece (b) cell types.
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a) frcc, cell without pinned supports at lateral vertices
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Fig. 5.19: Critical buckling loads for the f>ccz (a) and beez (b) cell types without pinned supports at
the lateral vertices in the numerical models.
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Fig. 5.20:
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with beam elements similarly neglects shear effects in the foundation. A second hypothesis
suggests that the stiffness matrices of the diagonal beams lack an additional unknown stiffness
from the foundation, leading to an underestimation of the rotational spring stiffness used in
the analytical solution. To test this, an extreme case is considered, wherein the stiffness of the
rotational springs is infinite by setting the fixity factor to 1. Alternatively, the solution for an
embedded beam with fixed ends, as provided by Hetényi [102], is directly employed (Equation
5.6). The critical buckling load derived from this equation is depicted in Figure 5.21 in red.
Notably, at high slenderness ratios, the solution still significantly underestimates the numer-
ical calculations. Therefore, the deviation cannot be attributed to the stiffness matrices of the
diagonal beams.

2El
Py = 4755 4+ VARET (5.6)

To delve deeper into this matter, a new Finite Element (FE) model is formulated with beam/s-
pring elements, where only the vertical strut is embedded with spring elements. The result for
this model is presented in Figure 5.21 in green. Strikingly, the solution aligns with the original
analytical curve. Consequently, the analytical results correspond to a scenario where only the
vertical strut is embedded within the cell. The outcomes for the f>ccz cell, excluding pinned
supports at the lateral vertices, are illustrated in the plot.

frcc, cell without pinned supports at lateral vertices
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Fig. 5.21: The graph encompasses, alongside the previously described results, a beam model in
which solely the vertical strut is embedded (depicted in green) and the analytical solu-
tion for a single strut with fixed supports (depicted in red).

A third hypothesis posits that the critical buckling load is augmented because a portion of the
compressive load is absorbed by the embedding of the diagonal struts, consequently diminish-
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ing the load on the vertical strut. To investigate this, an analysis is conducted to determine the
stresses in the cell just before buckling. Table 5.4 presents the average beam stresses in the ver-
tical strut and the diagonal struts for an isolated cell, a cell with only the vertical strut embedded,
and a fully embedded cell. In the first two cases, the stresses in the diagonal struts are relatively
low compared to those in the vertical strut. In the third case, the ratio between the stresses is
significantly lower, suggesting that a substantial portion of the load is channeled through the
diagonal struts, thereby increasing the critical buckling load. In comparison to the cell with
only an embedded vertical strut, the stress in the vertical strut remains nearly unchanged, while
the critical buckling load is almost doubled. The assumption that the entire load is borne by the
vertical strut appears valid for the first two cases, given the low stresses in the diagonal struts.
However, this assumption does not hold for the fully embedded cell, resulting in a notable dis-
crepancy between the analytically and numerically determined buckling loads.

Table 5.4: Average stresses in the beam, at buckling load, for the vertical and diagonal struts of a
facez cell (modelling based on beam elements, L/ D = 30).

Element length Per [N ] Gavemge,vertical [MPa] Gaverage,diagonal [MPa] Ratio
Isolated 14 156 22 709
Embedded (only vert. strut) 240 2620 7.3 3589
Embedded (fully) 470 2600 330 7.88

5.1.4 Discontinuous contact model

The analyses conducted thus far assume an idealized condition concerning the transfer of stresses
between the lattice structure and the elastic medium. This assumes continuous contact between
the two materials, with the elastic medium consistently reacting in opposition to the deflection
of the beams, irrespective of their deflection direction. However, in real-world scenarios, de-
tachment may occur when the yield stresses of the elastic medium are surpassed.

For instance, in the case of soil serving as the elastic medium, Papachristou [143] observes that
soil can only react under pressure from the beam. Similarly, for paraffin, a similar behavior is
anticipated, given its very low tensile yield strength (around 1 —2 MPa). Consequently, it is
likely that a crack forms between the Paraffin and the aluminum when the tensile yield strength
is exceeded, resulting in a discontinuous contact between the lattice and the PCM. As noted by
Cook [144], considering separation renders the problem non-linear, as both the contact pressure
and the contact region are unknown at the initiation of the analysis. Therefore, this section em-
ploys a non-linear analysis to investigate the problem by progressively increasing the applied
load on the structure until buckling occurs.

Due to the computational demands associated with non-linear analyses, the single strut model is
utilized. The volumetric model is employed to simulate the discontinuous contact. The level of
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adhesion between the two materials and the precise stresses at which detachment occurs remain
unknown. A lower bound for the critical buckling load is established using a model without any
adhesion between the materials, signifying exclusive contact between the strut and the founda-
tion under pressure. For comparison, a non-linear analysis is also conducted on a model with
full adhesion, analogous to the model employed in previous analyses.

To induce buckling, a perturbation in the form of a lateral displacement of 10~>L is introduced
at the node where the load is applied. A small gap of 1% of the strut diameter is defined between
the strut and the elastic medium, and a contact pair model is implemented to simulate the con-
tact between the two bodies. Apart from this, the same model is utilized as in Section 5.1.2. A
diameter ratio of 4 = 10 is maintained for all analyses. The non-linear problem is addressed us-
ing the arc-length method, recommended for instability problems, as detailed by Vasios [145].
The buckling load is identified as the maximum load at which the maximum deflection of the
strut is below a critical arbitrary value (here 0.1 mm is used), acknowledging the approximation
introduced by discrete load increments.

Figure 5.22 illustrates a buckled strut with a slenderness of L/D = 20 using the discontinuous
contact model. Notably, the deflection curve of the strut exhibits more than one half-sine wave,
characteristic of the embedded case at high slenderness ratios. The figure illustrates that the
elastic medium deforms solely under pressure through the bending of the strut.

Fig. 5.22: Buckled strut (L/D = 20) in an elastic foundation with no adhesion between the two
materials.

For the case described, several slenderness values are considered. Figure 5.23 exhibits the crit-
ical buckling stress resulting from the non-linear analysis for both the full-adhesion and the
no-adhesion models. The solutions of linear eigenvalue analyses are shown for comparative
purpose, for both the isolated and embedded struts. The number of half-sine waves of the
deflection curve of the strut is annotated below the data points of the non-linear analyses. Inter-
estingly, the number of half-sine waves coincides for both models with the exception of the data
points at L/ D = 20, where there is a difference of one half-sine waves between the models.
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Fig. 5.23: Critical buckling stress of individual struts. The results derived through eigenvalue buck-
ling analysis are compared to results derived by non-linear analysis. A diameter ratio of
U = 10 is used for all analyses.

The model with full-adhesion shows a similar, but conservative, trend compared to the curve of
the embedded strut using eigenvalue analysis. The model where adhesion is hindered indicates
an opposite trend, with the critical buckling stress for L/D = 30 being approximately half the
value of the full-adhesion model. A realistic scenario shall be found between the two extremes.
The observed halving of the critical buckling stress is anticipated. In essence, for every half-
sine wave in the deflection curve of the strut, the foundation exerts forces solely on one side of
the strut—the side in contact. This asymmetry in force application contributes to the reduction
in the critical buckling stress, aligning with expectations. Nevertheless, one should notice that
even the model with hindered adhesion indicates an much higher critical buckling stress than
the isolated model. Even in the worst case scenario, of a complete lack of adhesion, the critical
buckling stress never falls under the yield strength of the strut material.

This indicates that, if a lattice is embedded in a PCM, buckling shall never be a failure mode of
concern.

To delve deeper on these last statements, the Von Mises stresses within the elastic medium just
before buckling of the strut are reported in Figure 5.24. In the absence of adhesion in the model,
stress concentrations occur exclusively on the side of the strut that is in contact. Conversely, in
the full-adhesion model, stress levels are significantly elevated, primarily due to the transfer of
shear stresses between the strut and the elastic foundation. The analysis demonstrates that these
stresses surpass the tensile yield strength of paraffin, suggesting a likelihood of detachment.
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Fig. 5.24: Von Mises stresses [MPa] in the elastic foundation before buckling obtained through the
non-linear analysis for the full-adhesion (a) and no adhesion (b) models (L/D = 20).

5.2 Experimental verification of the stability behaviour

The previous section introduced a numerical and analytical investigation on the effect of the
PCM on the stability of lattice struts and cells. With successive approximations, increasingly
complex models were discussed. The main, and general, takeaway is that buckling shall not be
of concern for struts or lattices embedded in a PCM.

An experimental verification of the presented model is necessary. However questions about
the feasibility of such verification are raised. The numerical results indicate that, in all cases,
rupture failure occurs before buckling. This would be the case even at very high slenderness.
Therefore, the quantitative experimental validation of the present model is not guaranteed.

One could attempt an experimental test using struts with extremely high slenderness. However,
manufacturing and experimental setup limitations impede doing that with metallic alloys, while
not assuring that rupture failure will take place before the buckling one. To achieve buckling
failure before rupture, employing more ductile materials than the metallic alloy analysed thus
far can be considered. Indeed, in this work a general purpose resin for additively manufactured
plastic components is used. The resin is a proprietary compound developed by Formlabs®.
A characterisation performed by Biihring et al.[40] indicates an elastic material behaviour of
components based on this resin. The properties of the resin are compared to the ones of the thus
far considered aluminium alloy are reported in Table 5.5.

Table 5.5: Comparison of mechanical properties of the aluminium alloy and the general purpose
resin from Formlabs®.

E [MPCZ] Gmax I:MPa] E/Gmax [-]
AlSil0Mg 7.5-104  396.5 189.155
General Purpose Resin 1.6 10° 38 42.1

One can see that the ratio between the Young modulus E and the ultimate tensile strength 6,4«
is 4.5 times lower than the one of aluminium, indicating that this elastic material can represent a
good candidate for triggering buckling before rupture. In the following the experimental setup
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and the test campaign are described. The results indicate a qualitative agreement with the model
presented above, although quantitative comparisons could not be obtained.

In this chapter, a look into the design and fabrication process of the different components of
the experimental set-up is given. The goal of the experiment is to analyse the influence of
embedding a strut with phase change material on its buckling behaviour, or failure behaviour,
when submitted to a compressive load. Different slenderness ratios are studied. Paraffin wax
is selected as the phase change material for the elastic embedding, despite being classified as a
viscoelastic material. Viscoelastic materials possess both viscous (time-dependent deformation)
and elastic properties. In the case of paraffin wax, although it is mainly considered viscoelastic,
it also shows elastic characteristics when subjected to minor deformations. The results are to
be compared and validated later with those of the analytical and numerical models developed,
with the same purpose. It is therefore essential to create a set-up which resembles these models
as closely as possible. For this reason, a meticulous approach has been followed to design the
custom-made parts tailored to fulfill the requirements as accurately as possible.

In the following pages, a step-by-step methodology employed for the design and fabrication of
the pieces of the experimental set-up is laid out.

5.2.1 Experimental setup

The testing machine used to carry out the experiments is an Instron® 5567 tensile/compression
testing machine. A custom test-setup is needed for this experiments. This is shown in Figure
5.25. Struts with variable length are considered, while the strut diameter is fixed to 3 mm. The
Paraffin elastic bed has surrounds the strut and its enclosed within a 5 mm thick cylinder. The
inner diameter of the cylinder is 90 mm, thus showing an embedding ratio u = 30.

The setup is fixed to the testing machine via a 6 mm thick base-plate, which has both the pur-
pose of containing the paraffin when its liquid, and providing a stiff encastre as a boundary
condition for the strut.

The investigated strut lengths and slenderness are displayed in Table 5.6.

Table 5.6: Strut lengths corresponding to each slenderness ratio.
Slenderness (L/D) Length L [mm]

50 150
60 180
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Fig. 5.25: Experimental setup.

The shell carries out two main functions. On the one hand, it serves as a container of the par-
affin wax, shaping the foundation. On the other hand, it is needed to simulate the boundary
conditions of the spring-model explained in the theory, as it inhibits the springs from moving
outwards. The shell’s diameter therefore depends on the parameter u, which defines the ratio
of the diameter of the foundation to the diameter of the strut. As concluded above, a higher u
allows for a lower critical buckling load, so the aim is to have a wide enough cylinder. How-
ever, melting time of the Paraffin affects the speed at which each test can be repeated. For every
test, the paraffin has to be melted first, and then solidified. These processes are carried out in a
climate chamber (Espece ARS-1100). Due to the low thermal conductivity of pure paraffin and
due to the high volume of the component, approximately 4 hours are needed to melt and other
4 hours are needed to freeze the Paraffin within the setup. Thus, each test repetition requires
approximately 10 hours to be executed. Due to availability reasons, such limitation imposes
choosing a ratio of u = 30.

The load introduction is based on a circular steel plate with 80 mm diameter. Additionally to it,
a small steel cube is bonded to the center. This serves to directly apply the load into the beam
cross section, and avoiding that the load introduction device touches the paraffin elastic bed,
thus affecting the boundary conditions of the experiment. The machine is set-up to interrupt the
experiment once the force applied drops by more than 20% of its maximum.
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Fig. 5.26: Load introduction device.

5.2.2 Results and Discussion

In order to establish a comparability, first the test is conducted with an isolated strut of length
L = 160 mm and no PCM surrounding it. The load-displacement curve is shown in Figure
5.27. The analytical value of the critical load, calculated via Euler Buckling formula, is 4.4
N. One can see that the applied load approaches this value, before failure due to buckling and
consequent rupture. The noise which can be appreciated in the plot is due to the, sensitivity
of the machine in this low scale of maximum applied load, with respect to the range of forces
applicable by the machine.

Force [N]

=== Analylical Euler Buckling

Tsolated strut

0 1 2 3 4 5
Displacement [mm]

Fig. 5.27: Load-displacement curve for isolated strut, L = 160 mm.

The results for embedded struts are described in the following.
Figure 5.28 shows the results for all tested samples. One can notice that, in general, all tested
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samples exhibit failure for loads much higher than the buckling load value for an isolated strut.
This represents a qualitative validation that the buckling load is increased by embedding the
strut within paraffin wax.

However, the erratic behaviour of the Force-Displacement curves and the wide deviation of the
results is of concern.
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Fig. 5.28: Load-displacement curve for all samples,i.e. L=180mm and L=150mm.

As depicted in Figure 5.28, various irregularities manifest. These can be attributed to several
factors, which are succinctly discussed below.

Firstly, the irregularities stem from the pre-testing cutting and filing of the struts, necessitated
by the separation of the strut from the support structures. This process creates an edge, resulting
in an uneven surface. Achieving a perfectly parallel surface to the applicator during cutting is
unattainable, even with subsequent filing. This leads to a minor slipping motion, identified as
the stick-slip phenomenon [146].

During the initial contact between the applicator and the strut, the surface asperities interlock,
generating high contact pressure and static friction—a phase known as sticking. As pressure
accumulates, the edge deforms until it "flattens," triggering rapid sliding, marking the stick-slip
transition. Once the contact between the strut and the applicator becomes flat and complete,
it reverts to a sticking phase. In this phase, a slip transition is not reached, as the load is now
entirely perpendicular to the cross-section. This phenomenon recurs in subsequent tests and
typically occurs around 75 N, though the specific threshold varies for each probe due to inher-
ent differences in the cutting and filing processes.

Sample 1 in Figure 5.28 displays premature buckling leading to subsequent failure compared
to other samples. This phenomenon is attributed to the local buckling of a reduced section of
the beam. Analysis revealed the presence of a sizable air bubble in the upper layers of the
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foundation, as illustrated in Fig. 5.29. The propensity of paraffin to trap air and form cavities
during its solidification process resulted in a section where paraffin did not encapsulate the strut,
consequently diminishing its contribution to stiffness. This reduction in stiffness allowed the
strut to buckle under specific pressure conditions. The point of buckling is easily discernible as
the initiation of instability, followed by apparent entry into the plastic region. The distinctive
jerky wave formation observed can be attributed to the Portevin-Le Chatelier (PLC) effect,
an unstable plastic flow characterised by serrated yielding in the temporal domain and strain
localization in the spatial domain [147]. The PLC effect arises from the interaction between
solute atoms and mobile dislocations during plastic deformation [148]. While more commonly
associated with alloys, this instability, albeit rare, can also manifest in polymeric materials, as
demonstrated in a study by Bedi et al. [149], where it hindered polymer chain movement and
increased maximum tensile strength [150].

Fig. 5.29: Air bubble formed in solid paraffin foundation.

The development of air cavities within paraffin assumes a critical role in the interaction between
the strut and the foundation. As elucidated earlier, this constitutes a pivotal parameter signific-
antly impacting stability. Therefore, it is imperative to execute the solidification process with
utmost control and uniformity to prevent the formation of air bubbles. To achieve this objective,
all tests involve a degassing phase, accomplished by subjecting the liquid paraffin to a 40-minute
vacuuming process. This step aims to eliminate as much trapped air as possible before the so-
lidification phase.

The influence of this degassing process becomes evident when comparing Sample 3 (subjected
to vacuuming) and Sample 2 (non-vacuumed), as illustrated in Fig. 5.30. The improvement of
the stability is obvious, while also retarding the breaking point by almost 25% in this case, as
illustrated in Table 5.7.
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Fig. 5.30: Load-displacement curve for Samples 2 and 3, L=180mm.

Table 5.7: Test results for rupture for Samples 2 and 3.
Sample  Fyp [N]  Opyp [MPa]
2 197 27.87
3 262 37.06

As the struts, constructed through additive manufacturing with resin, exhibited deformation over
time, adopting a curved configuration, the validity of the experiments is jeopardized. In order
to restore their original shape, certain struts underwent a heating process. While this method
proved effective in rectifying the curvature, it was anticipated that there would be consequen-
tial alterations in the mechanical properties of the struts. Additionally, all struts are kept at an
elevated temperature for a duration of 4 hours, due to the freezing process of the paraffin. This
implied a potential unintentional curing process of the resin. To substantiate this hypothesis, a
comparative analysis between heated and non-heated probes is conducted in this study.

In the case of post-cured general-purpose resin, a theoretical increase in ultimate tensile strength
from 38 to 65 MPa is anticipated after 60 minutes of curing at 60°C. Although an enhancement
in strength is also expected for the chosen duration of 4 hours at 45°C, as elucidated further on,
characterizing the behavior of a strut cured under these conditions proves to be challenging.
The cured probe exhibits a noticeable augmentation in the stiffness of the strut, as evidenced by
the slope of the curve within the linear region. Additionally, there is a discernible increase in
the rupture load (Figure 5.31). Notably, the rupture load surpasses the value corresponding to
the theoretical ultimate tensile strength of the resin, which is 38 MPa. This observation lends
support to the notion that the heating process employed to straighten the strut induces a curing
process, thereby altering the mechanical properties of the resin.
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Fig. 5.31: Load-displacement curve for Sample 3 and 5, L=180mm. The two curves compare a non-
cured strut (sample 3) with a cured one (sample 4).

Table 5.8: Test results for rupture Samples 3 and 5.
Sample  Fyyp [N]  Opyp [MPa]
3 262 37.065
5 290 41.027

As previously mentioned, the curing process results in material hardening and increased stiff-
ness but also leads to heightened brittleness. This reduced ductility is evident in the rupture
patterns of each strut. More brittle struts, particularly the cured ones, exhibit more rupture
points compared to their non-cured counterparts, as depicted in Figure 5.32.

The tests show that not all cured struts display neither the same stability nor the same rupture
load, which isn’t the case for the real scenario. One should notice that the presence of a wide
variety of rupture points can be correlated to the jittery curves shown in the previous Figures.
Indeed, being the strut embedded within solid wax, even after rupture, the component retains
a certain load-bearing capability as the broken pieces are stacked upon each other. The testing
machine only interrupts the test when a threshold of 20% force reduction is sensed. However,
due to the stacking most ruptures indicate just a reduction of the force which is below this
threshold. This causes the wavy behaviour of the load-displacement curve.
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(a) Sample 2 after rupture (not cured). (b) Sample 5 after rupture (cured).

Fig. 5.32: Comparison of rupture pattern between cured and non-cured probes.

Regardless of all taken measures, the struts fail by rupture before buckling, which allows a
shift in the focus of this analysis. Even though it is difficult to specifically study the buckling
behaviour of the set-up, the available data and resources do render the chance of carrying out a
general characterisation of the failure behaviour of the struts embedded in paraffin.

Some of the fluctuations evidenced above remain unexplained.

An irregularity which repeats itself throughout most of the force-displacement curves is the
fluctuation marked in some examples in Figure 5.33. The form of the fluctuation is very similar
for all tests.
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Fig. 5.33: Fluctuation caused by cracking of paraffin wax.
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While providing a comprehensive definition of the solidification pattern of paraffin is challen-
ging, it is evident that it undergoes radial freezing. The process initiates by freezing radially
inward from the cylinder wall and outward from the strut. Both the strut and the cylinder pos-
sess higher thermal conductivity than paraffin, serving as nucleation points for the solidification
front. This, coupled with the substantial contraction experienced by paraffin during solidific-
ation, results in the upper layer solidifying around the strut, as illustrated in Figure 5.34 (1).
This leads to a less robust embedding around a short outer section of the strut. As previously
mentioned, paraffin behaves as an elastic material up to small deflections; therefore, under spe-
cific loads and shear stresses from the deforming strut, it is prone to cracking. Consequently,
it ceases to contribute to the stiffness of that particular section. It was observed that the layer
cracking coincided with fluctuations in the machine’s drawing mentioned earlier. The consist-
ent correlation between these events suggests a causal relationship, offering an explanation for
yet another irregularity observed in the curves.

Strut

Paraffin Cracks
- N\ i
1 1 I I 1 1
1) Initial state 2) Paraffin starts cracking 3) Partial contact loss

Fig. 5.34: Cracking process in the upper layer of paraffin wax.

5.3 Conclusion

The focus of the research detailed in this chapter centers on the phenomenon of local buckling
within the discrete lattice struts. Both analytical and numerical examinations, employing the fi-
nite element method, reveal a discernible enhancement in the critical buckling load when PCM
is introduced as an elastic medium. In the absence of PCM, slender struts are susceptible to local
buckling. The incorporation of the elastic medium significantly elevates the critical buckling
stresses, surpassing values well beyond the yield strength of the strut material. Consequently,
this practically eradicates local buckling as a conceivable failure mode.
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The numerical investigations in this study employ various models, specifically utilizing volu-
metric elements and beam/spring elements. In the former, the foundation is directly modeled
through the material properties of paraffin, while in the latter, the rigidity of the springs is
determined using the Vesic formula, approximating the modulus of the foundation from the
material properties of the elastic medium. The beam/spring model, lacking simulation of shear
stress transfer between lattice and foundation, tends to yield lower critical buckling loads com-
pared to the volumetric model, providing a conservative estimation.

Analytical solutions for the critical buckling load are also presented, including a formula for
the Pasternak parameter for a strut on an elastic foundation, offering a close approximation to
the critical buckling load obtained through numerical analyses with volumetric elements. Ana-
lytical solutions for the critical buckling loads of unit cells are provided, though the employed
equivalent member method underestimates results for embedded cells, with the identified reason
elucidated in this work.

Stresses in the foundation surpass the yield strength of the foundation material during buckling,
potentially causing cracks between the lattice and the elastic medium. Discontinuous contact
is investigated through nonlinear analysis using a discontinuous contact model on an individual
strut. The analysis reveals a reduction in critical buckling stress (approximately halved at high
slenderness ratios) in the absence of adhesion between materials. This situation serves as a
lower bound, as some degree of adhesion is expected. However, even with no adhesion, the
model yields critical buckling stresses in the strut exceeding the yield strength of aluminum.
Conclusively, local buckling is not a dimensioning concern for these composites in all con-
sidered scenarios.

Experimental validation proves challenging due to an expected lack of buckling at the strut
level. Attempts to induce buckling, using softer resin struts within a paraffin-wax bed, en-
counter challenges such as air bubbles affecting results and unintentional curing during paraffin
freezing. Despite variations in results, consistently exceeding the critical buckling load for an
isolated strut without failure suggests qualitative validation of the presented model. Quantitative
evaluations are hindered by premature failure, occurring before reaching the predicted critical
load, and a high dispersion of results due to the aforementioned factors, necessitating caution
in interpreting actual failure load values.

5.3.1 Prospects

This study was conducted under the assumption of a solid paraffin, recognizing that the state of
the PCM will evolve during its operational lifespan. Particularly intriguing is the exploration of
the impact of a molten PCM on the buckling behavior of the lattice structure. It is hypothesized
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that if the molten PCM imparts pressure on the upper and lower plates of the lattice-core sand-
wich structure, and the pressure differential to the external environment is positive, an axial load
should ensue, countering the compressive load. Consequently, even in such a scenario, buckling
is anticipated to be a negligible concern.

Global buckling has not been addressed in this work, as the practical application of slender
lattice-PCM structures remains unclear. However, future investigations may delve into the realm
of global buckling. Another promising avenue for research is the dynamic behavior of lattice
structures filled with PCM. Subsequent studies can build upon prior research on vibrational
analyses of lattice structures filled with foams, such as the one presented by Yang et al. [151].
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6 Multivariate Topology Optimisation

Having introduced the thermal and mechanical characterisation of the treated composites, the
subsequent focus pertains to the potential design considerations. Specifically, the optimal design
under mass constraints becomes imperative. Thermal control requisites may result in configur-
ations diverging from those dictated solely by structural considerations.

The introduction of mass constraints in a multi-functional structural component is coupled with
diverse objective functions. Thus the design necessitates engagement with optimisation pro-
cedures. Given the potential conflict between functional and design requirements, optimal
compromises must be identified during the design of such components that fulfill integrated
functionalities. In essence, a lattice structure tailored for load-bearing purposes may not in-
herently serve as an effective medium for enhancing thermal conductivity in a PCM, and vice
versa. The assessment of geometric configurations that meet both structural and thermal criteria
while minimizing mass entails employing multivariate optimisation. This linkage is inherently
tied to a topology optimisation algorithm, which constitutes the focal point of this chapter.

In summary, designing lattice-PCM composites for either thermal or structural functionality in
parallel is futile. The imperative is to integrate constraints, compelling the utilization of to-
pology optimisation algorithms as a standard design strategy for achieving a holistic, coupled
design approach.

Thus, here a multivariate topology optimisation is presented, which is capable of generating a
component that is optimal for both structural and thermal purposes. The tool is developed in the
Julia language and makes use of Automatic Differentiation (AD) to accelerate the evaluation
of gradients necessary to perform the optimisation procedures. While this represents a funda-
mental novelty of this work with respect to the literature, the same results could be achieved
with normal iterative procedures. Therefore, the basic notions on dual numbers and AD are
reported in Appendix K.

In general, the structural design tends to minimize a compliance function of the domain con-
sidered, in order to achieve a maximum stiffness and strength with the minimum mass possible.
Thermal control requires a high thermal diffusivity of the component, but also, for the case of
a PCM embedded in porous metallic media, an energy-storage potential, which limits the range
of feasible porosity which the lattice structures can be designed with.

It is rather clear that the optimal topology for a purely structural design deviates from the one
of a purely thermal one. Figure 6.1 shows the different results of the same domain, optimised
for structural and thermal problems separately. Structural topology optimisation of a continuum
domain tends to generate truss-like structures (Figure 6.1a). Thermal optimisation, on the other
hand tends to generate tree branch-like structures (Figure 6.1b). The question is thus raised, on
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how the combined optimal design of such a component shall be approach.
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(a) Example of the result of an optimal topology with (b) Example of the results of an optimal topology with
stiffness as a goal function. thermal conductivity as a goal function.

Fig. 6.1: Examples of different optima for continuum mechanic and thermal problems, in which the
material within the domain can range between 0 (no material) and 1, where 1 represents
the considered solid material.

To address this, a multivariate topology optimisation is described in this chapter. The goal is to
present the framework of a tool capable to merge the different optima in a single component,
accepting a deviation from so-called Utopia Points, which represent the optima for each single
variable considered. With use of a Pareto front, the optimal design is then found.

The following sections describe first the approach utilized for the topology optimisation of the
single functions, in order to then describe the methods employed to achieve a global optimum.

6.1 Single functional optimisations

The homogenised lattice properties are needed in order to ascribe the effective properties to the
single finite elements of the domain. To this goal, the porosity is calculated with the formulae
presented in Chapter 3. The effective thermophysical properties are the ones presented through-
out this work as well. The effective stiffness is calculated with means of the formulae proposed
by Biihring et al. [40].

The assumption is made, that the unit cells have a fixed cell size, as well as a fixed aspect ratio
angle of 45°, i.e. cubic unit cells. The definition of a porosity equal to O or 1 makes no physical
sense, as in such case an homogeneous material would be defined. However, the relative dens-
ity function for the topology optimisation must range between 0 and 1. Thus, the relationship
between the relative density p* of the topology optimisation program, and the porosity € is
given by Equation 6.1.
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&= P* (gmin - Smax) + Enin (61)

In general €,,;, and &, can be chosen as small, and as big as desired, respectively. However,
it is reasonable to chose these values within feasible manufacturing and design constraints. In
this work, a minimum of 2.5% and a maximum of 25% are considered.

The topology optimisation results in a distribution of relative densities, which univocally cor-
relates to a distribution of porosity. The geometry is defined inverting the relationships between
porosity and cell size, strut radius, unit cell morphology and aspect ratio angle (Section 3). Be-
ing the cell size and the aspect ratio fixed, with help of a root finding algorithm based on the
Newton’s method, the radius is found. The Newton’s method is a gradient-based method. To
reduce the computational time, the gradients required are calculated via automatic differenti-
ation, with help of the Julia library ForwardDiff [152].

A classical SIMP method is implemented to perform the topology optimisation. A schematic
flow chart of the fundamental steps is shown in Figure 6.2.

Update
lattice properties

Input:
Mesh and
Boundary Conditions

Finite Element Sensitivity Update
Calculation analysis [

Post-processing

Convergence?

Fig. 6.2: Flow chart of a single functional optimisation.

The Finite Element problem is assembled using the dedicated toolbox Ferrite.jl. The elements
are linear and Gauss quadrature rules are implemented. The sensitivity is computed as in Equa-
tion 2.94 for the structural problem, or as in Equation 2.96 for the thermal one. The update of
the relative density follows the procedure described by Kim et al. [108], which is described in
section 2.5.1.

The minimisation of the compliance for both the structural and the standard thermal problem
represents a well-known problem. The implementation for the purpose of this work does not
deviate from common works in the literature, except that the element properties are orthotropic,
due to the generally orthotropic nature of both the stiffness matrix and effective thermal con-
ductivity of the lattice structures.

The phase-change problem, instead requires additional effort. Some authors already proposed
topology optimisation schemes for PCMs [153, 154, 155, 156]. The phase-change problem
intrinsically represents a transient non-linear one. One challenge arises from the complexity of
computing the derivative of the compliance. As described in Equation 2.95, the compliance is
defined in a manner that does not readily lend itself to straightforward differentiation. In the
context of transient phase change problems, utilising the conventional approach for deriving
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element sensitivities becomes impractical.

To overcome this hurdle, a fresh derivation is pproposed by initiating with the compliance gradi-
ent, as illustrated in Equation 6.2, with T - temperature tensor and the forcing vector f. The
intricacies of this derivation, crucial for addressing the transient phase change problem, are de-
scribed in detail in Appendix L.

dc  JTT ot
AN, V) (6.2)
dp*  dp* dp*
The primary challenge with the given equation lies in the term aa;;, which poses difficulties in

computation. While automatic differentiation, particularly with the ForwardDiff library, could
be a potential solution, its efficiency is compromised. This is primarily attributed to the fact that,
during the forward pass, each dual variable is traced through the entire program, despite most of
them exerting no influence on the final result. This inefficiency becomes pronounced because
the forcing vector f is predominantly composed of zeros. An alternative approach involving
reverse mode automatic differentiation is considered, but it demands substantial memory re-
sources, especially when multiple Newton iterations are necessary to resolve non-linearity. To
circumvent these challenges, a manual derivation of the gradient was undertaken. The g—pT*
term was computed manually, as automatic differentiation methods proved to be impractical.
It’s noteworthy that the latent heat vector and latent heat matrix also evade automatic differ-
entiation due to their dependency on the gradient of the temperature vector with respect to the
relative density. Utilizing automatic differentiation for their computation would entail perform-
ing the entire simulation with this method, which contradicts the intended avoidance of such an
approach.

For these reasons, the results presented in this work are limited to the multi-functional optim-
isation of the structural and thermal conductivity problems.

While an accurate treatment requires the consideration of the phase-change problem, the results
of the thermal conductivity optimisation are still valid for the phase-change one within a certain
range of lattice volume fractions.

Indeed, as shown in Section 4.1.3, the energy stored via latent heat monotonically increases
with the thermal conductivity, till a peak is reached at a volume fraction of approximately 0.5.
In this work, such values are not approached, thus it is reasonable to assume that the results of
the thermal conductivity optimisation are still valid for the phase-change one.

6.1.1 Results of single functional optimisations

The structural, the thermal, and the phase-change optimisation problems are solved first as a
single functional optimisation. The same domain is chosen, which is then used for a multi-
functional optimisation.
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Fig. 6.3: Schematic description and measurs of the domain considered for topology optimisation.
In green the boundary conditions for the structural problem, which resembles a cantilever
beam. In red, the thermal boundary conditions, which resemble a heat source of, e.g., a
power dissipation of electronics unit, with otherwise adiabatic boundaries.

For the discretatisation of the domain, the opensource program Gmsh is used. 2D elements,
based on the algorithm "Frontal-Delaunay for Quads" are used. The post-processing is done
with help of Paraview.

For each problem, both the mesh convergence and the filter radius refinement studies are
presented. These are intertwined problems, which cannot be treated in a disjunct fashion. As de-
lineated in section 2.5.1, employing a filter is imperative in topology optimisation to mitigate the
checkerboard issue. However, a notable drawback of incorporating a filter is the transformation
of the optimisation problem, leading to a deviation from the original one [19]. Consequently,
the obtained topology is contingent upon both the chosen filter radius and the mesh fineness. A
finer mesh permits the use of a smaller filter radius, consequently generating higher-resolution
structures.

The results are reported for both a generic topology optimisation, and a lattice structure to-
pology optimisation, and a comparison is made. The volume fraction is constrained for all
problems at 0.2.

6.1.2 Structural solution

Figure 6.4 shows the results of the mesh convergence and filter radius analysis for a purely
structural problem, i.e. where the material properties are based on a pure, isotropic aluminium
alloy, and the relative density p* represents the amount of material present in the domain. Table
6.1 reports the calculated values of compliance for the considered combinations of mesh size
and filter radius. As one can appreciate from Figures 6.4a - 6.4e, the checkerboard pattern af-
fects the solutions with a coarse mesh, as well as the ones with a finer mesh, but a filter radius
which is smaller than element size. However, as shown in Figure 6.4g, the filter radius shall be
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as small as possible. Indeed Figures 6.4h and 6.4f produce results where the material within the
domain is particularly non-binary, which is a non-physical solution. As shown in Table 6.1, a
sweet spot is identified when the filter radius is slightly higher than the element size, and the
mesh convergence is reached.

Table 6.1: Compliance values for different combinations of mesh size and filter radius. The percen-
tual deviation from the lowest compliance is reported in parenthesis.

Mesh size Smm Mesh size 2.5mm Mesh size 1.25mm

Filter radius Smm  1.754-107° (23.9%) 1.918-107° (35.5%) 1.964-1073(38.7%)

Filter radius 2.5mm  1.749-107° (23.5%) 1.618-107>(14.3%) 1.531-107°(8.1%)
Filter radius 1.5mm  1.749-107° (23.5%) 1.618-107° (14.3%)  1.416-107° (-)

Density.
00e+00 0.2 0.3 0.4 0.5 0.6 0.7 0.8  1.0e+00 006400 0.2
[ I I [

Density
03 04 05 06 0.7 0.8 1.00+00
I [

Density
0.0e+00 0.2 0.3 0.4 0.5 06 0.7 0.8 1.0e+00
! D — /

(g) 1.25mm mesh size, 1.5mm filter radius  (h) 1.25mm mesh size, 2.5mm filter radius

(1) 1.25mm mesh size, Smm filter radius

Fig. 6.4: Combined results of the mesh convergence and filter radius refinement analysis for the
purely structural problem. Generic, isotropic material properties are assumed. The full
material is represented by an aluminium alloy with Young’s modulus equal to 70GPa.
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Lattice structures

The use of lattice structures imposes the use of an orthotropic material tensor. The values are
obtained from Biihring et al. [40].The resulting structure diverges from the typical outcome of
topology optimisation, which typically yields a structure resembling a truss. Instead, the ob-
tained result exhibits apparently disconnected regions. It is crucial to acknowledge that these
seemingly empty regions actually consist of cells with 2% volume fraction. In practice, each
of these regions is interconnected by cells with relatively high stiffness. Increasingly higher
stiffness is needed only in the regions where the bending stress is highest, i.e. top and bottom
areas, and close to the fixed boundary.

Only a slight difference can be appreciated between the results for the bcc unit-cell (Figure
6.5a) and the fy2ccz one (Figure 6.5b). This is because the stiffness for cubic unit cells (aspect
ratio angle y = 1) is similar in the 1,2-directions, while it differs only in the 3-direction, which
is not particularly relevant for the considered case.

Ey ViyEy 0
I=vyVir 1=V Vyy
E E
D= | o> y 6.3
I=ViyVyr  1=ViyVyy 0 ( )

Density
0.0e+00 02 03 04 05 06 07 08 1.0e+00
! D — ‘

(a) Result for a domain filled with bcc unit-cells, with volume fraction ) varying from
2% to 20%.

Density
0.0e+00 02 03 04 05 06 07 08 1.0e+00
! D — ‘

(b) Result for a domain filled with f>ccz unit-cells, with volume fraction y varying
from 2% to 20%.

Fig. 6.5: Results of the stiffness maximisation for lattice structures with volume fraction } varying
from 2% to 20%.
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6.1.3 Thermal conductivity solution

The thermal solution differs not only in shape, but only in the behaviour of the compliance.
The mesh convergence is reached relatively fast. However, the filter radius analysis shows
that a finer radius would be needed. For sake of brevity, Figure 6.6 shows only the result for
the combination of 1.25 mm element size and 1.5 mm filter radius. One can appreciate that,
even with such a fine mesh, whitin the domain a big number of elements exhibits a relative
density p* which is intermediate between 0 and 1. This indicates that a further reduction of
the filter radius would be appropriate. However, in order to avoid incurring in the checkerboard
problem, a further mesh size reduction is needed, which comes with increased computational
cost and reduced benefits. Figure 6.6b shows the results for a 1mm mesh size and filter radius
of 1.1mm, which requires a 15% longer computational time. The results almost overlap, while
intermediate densities are still present.

Density
0.0e+00 02 03 04 05 06 07 08 1.0e+00
|

(a) Topology for the thermal optimisation with 1.25 mm mesh size and 1.5mm filter
radius.

Density
0.0e+00 02 03 04 05 06 07 08 1.0e+00
| | | |

(b) Topology for the thermal optimisation with Imm mesh size and 1.1mm filter radius

Fig. 6.6: Results for finer mesh and filter radii, but an already achieved convergence on the compli-
ance. The intermediate densities indicate that a further refinement would be needed.

As already mentioned, the intermediate densities have no physical meaning in this conventional
topology optimisation. In a lattice structure topology optimisation, they do. Indeed, recall-
ing Equation 6.1, an intermediate value of p* indicates a specific value of the lattice volume
fraction. This can be exploited to ones advantage, as long as mesh converge is achieved.
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Lattice structures Figure 6.7 shows the optima for both the bcc celltype and the f>ccz one.
The volume fraction ) varies between 2% to 20%, i.e. a relative density p* = 0 correspondes
to ¥ = 0.02, while p* = 1 corresponds to y = 0.2. The results differ strongly. This is due to
the orthotropic nature of the f>ccz unit-cell. The effective thermal conductivity in 1,2-direction
is much smaller than the one in 3-direction. This imposes that, in order achieve an optimal heat
dissipation from the central heat source, more material is placed in the lateral direction, rather
than what shown for the bcc case, which resembles more the results shown in Figure 6.6.

Density
0.0e+00 0.2 03 04 05 06 07 08 1.0e+00
‘ D —— ‘

(a) Result for a domain filled with bcc unit-cells.

Density
0.0e+00 02 03 04 05 06 07 08 1.0e+00
| | | |

(b) Result for a domain filled with f>ccz unit-cells.

Fig. 6.7: Results of the thermal conductivity maximisation for lattice structures with volume fraction
x varying from 2% to 20%.

6.2 Multi-functional optimisation

Having established the effectiveness of single-functional optimisation methods, the next step
involves integrating them into a multi-functional optimisation framework. This entails combin-
ing the two distinct functions into a unified objective function, enabling the determination of an
optimal solution. In this work, the weight method has been employed for this purpose.
Another viable approach is the constraint method, wherein one function acts as a constraint on
the other. However, a limitation of this method is that the resulting optimal structure may satisfy
one constraint but not the other. The trade-off between the two constraints might impose undue
strictness on the unconstrained function. While it is possible to iterate towards the true min-
imum with this method, the weight method was selected for its elegant and practical qualities.
The weight method imposes a constraint that the sum of the weights must equal one [20].
This technique transforms multiple objective functions into a unified equation. Equation 6.4
illustrates the single objective function applied to normalised thermal (c;) and structural (cy)
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compliance, w being the weight.

J(w,p*) = wey (p*) + (1 —w)cg(p”) (6.4)

To ensure reasonable results, both functions are normalised, aligning their compliance values
to a comparable scale. This normalisation also ensures that the gradients of each individual
objective function are of a similar order. For sensitivity analysis, Equation 6.4 is differentiated
with respect to the relative density, p*, as demonstrated in Equation 6.5.

aJ  d¢f ack
2 Vap +(1- )ap* (6.5)

This approach allows for the generation of a Pareto front by varying the weight between 0 and
1, where the extremes correspond to the single-function objective.

Figure 6.8 presents three optimal configurations achieved with varying lattice configurations:
without lattices (Figure 6.8a), with a domain filled with bcc unit-cells (Figure 6.8c), and with
a domain filled with fccz unit-cells (Figure 6.8b), all corresponding to a weight value of
w = 0.66.

The result depicted in Figure 6.8a suggests the achievement of an optimum by blending the two
solutions. The structure is characterised by full material at the top and bottom of the domain,
serving structural purposes, with recognizable truss-like strands. Additionally, originating from
these trusses, tree branch-like strands emerge within the domain, aiming to maximise thermal
conductivity. Notably, the thickest trusses, emanating from the bottom-central area of the do-
main, serve a dual purpose of structural support and thermal optimisation.

As observed in preceding sections, the growth of elements within the domain is influenced
by lattice structures properties. Nevertheless, a comparable trend is discernible between Fig-
ures 6.8c- 6.8b, and 6.8a. Denser unit-cells accumulate near structural boundaries and the heat
source. Two strands can be identified, diverging in a direction approximately similar to the
primary strands in Figure 6.8a, primarily serving a thermal purpose. It is also interesting to no-
tice that the growth within the domain for the f>ccz case (Figure 6.8b) is reduced with respect
to the bcce one (Figure 6.8c. This is due to the higher thermal conducitivy in 3-direction of the
first. The opposite can be said about the lateral direction, which involves the 1,2 components of
the effective thermal conductivity tensor.
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(a) Result for a domain based on standard material properties.

Density
0.0e+00 02 03 04 05 06 07 08 1.0e+00
‘ D — ‘

(b) Result for a domain filled with f>ccz unit-cells.
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(c) Result for a domain filled with bcc unit-cells.

Fig. 6.8: Comparison of the multi-functional optimum for a weight w = 0.66.

6.2.1 Pareto optimality

The result shown in Figure 6.8 represents the optimal structures for a generically chosen value
of the weight w.

An appropriate search for a global optimum is obtained by finding a value of w which is the
closest to an unfeasibily optimal point. Such point is named utopia point, and its coordinates
are the compliances of the purely thermal and the purely structural optima, coupled.

While the generation of a Pareto front for a given set of weights is feasible, it constitutes a
computationally intensive process, devoid of a guarantee of identifying a true optimum. Thus,
employing an iterative approach becomes imperative to approximate the minimum effectively.
It is essential to emphasise that the compliance for each problem remains indeterminate until a
topology optimisation is executed. Additionally, the construction of the Pareto front shape ne-
cessitates a priori knowledge, prompting the proposed iterative optimisation strategy illustrated
in this work.
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Fig. 6.9: Pareto front of the normalised compliances, for the weight w ranging from O to 1 with a
spacing of 0.05. A weight w = 1 correspond to a purely thermal optimisation, and a weight
w = 0 is a purely structural optimisation.

Under the assumption of convexity in the Pareto front, a singular point of minimal error is
anticipated. The convergence rate is intricately tied to the precision of the initial estimate. For-
mulating an accurate initial guess hinges on an understanding of the bounds of the Pareto front.
However, a generalised empirical determination of these bounds proves improbable due to the
specific variability nature of forces, heat fluxes, and domain shapes and sizes. Instead, the
bounds are derived through the optimisation of single-functional problems. This optimisation
yields the compliance range for each problem and facilitates the normalisation of the single-
functional compliances, which is used to plot the Pareto front in Figure 6.9.

A first guess has to be made, regarding the optimal point in the feasible range. As only the uto-
pia point is known, the first guess is estimated by projecting the utopia point onto the segment
joining the extremes, i.e. w = 0, w = 1. Then, the true optimum is iterated to. This is done via
quadratic fit search, as described by Kochenderfer and Wheeler [20]. This method iteratively
fits a parabula to three bracketing points. Then it solves for the minimum, and repeats till a
given tolerance is reached. The method is gradient-free and is appropriate for convex problems.
The assumption of a convex Pareto front is fundamental for the success of this method. A con-
cave function would mean that several local minima can be found. However, for the specific
case considered, it is found that the two functions tend to contribute to each other, thus the
Pareto Front is always convex.
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6.3 Results and Discussion

The results displayed so far are functional to describe the methodology implemented and the
differences with respect to a standard-topology optimisation.

In the following, the results of this novel method are introduced. In particular, the results for
both the bcc and the f>ccz lattice structure unit-cells are considered. First the optimal weight
is sought through the procedure described above, then the topology is optimised for the found
value of w.

It is useful to remind that the topology optimisation is a mass-constrained procedure. The mass
of the resulting domain is fixed via a volume fraction value, which is not the volume fraction
of the lattice structure. The two are related via the relative density function, as described in
Equation 6.1. Here, a minimum porosity of the lattice structure of &, = 98% = €(p* = 0) is
considered, while the maximum lies at a value of &,,, = 80% = &(p* = 1). Thus, the domain
volume fraction which is fixed as a constraint indicates the average porosity of the lattice struc-
ture, i.e. a domain volume fraction of 0.1 corresponds to an average € throughout the domain
equal to 98%. Similarly, a volume fraction of 0.3 corresponds to an average € of 94%.

In the following, the results for different values of volume fraction, ranging from 0.1 to 0.5 are
presented to exemplarily show how the variation of the volume fraction affects the growth of
the material within the domain.
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(a) bee unit cells, weight w,,; = 0.63.
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(b) Pareto optimal structure for a domain filled with f>ccz unit cells, weight w,,, =
0.65.

Fig. 6.10: Pareto optimal structures for bcc and f>ccz unit-cells, volume fraction 0.1.
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(b) Pareto optimal structure for a domain filled with f>ccz unit cells, weight w,,; =
0.5.

Fig. 6.11: Pareto optimal structures for bcc and f>ccz unit-cells, volume fraction 0.2.
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(b) Pareto optimal structure for a domain filled with f>ccz unit cells, weight w,,, =
0.76.

Fig. 6.12: Pareto optimal structures for bcc and f>ccz unit-cells, volume fraction 0.3.
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(b) Pareto optimal structure for a domain filled with f>ccz unit cells, weight w,,; =
0.5.

Fig. 6.13: Pareto optimal structures for bce and f>ccz unit-cells, volume fraction 0.4.
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(a) Pareto optimal structure for a domain filled with bcc unit cells, weight w,,; = 0.82.
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(b) Pareto optimal structure for a domain filled with f>ccz unit cells, weight w,,, =
0.85.

Fig. 6.14: Pareto optimal structures for bcc and f>ccz unit-cells, volume fraction 0.5.

6.3.1 De-homogenisation and future works

One of the main challenges posed to the field of topology optimisation is being capable to ob-
tain a real, manufacturable structure from the obtained relative density distribution. The results
presented thus far are available only in such form, which, as already mentioned, is correlated
with a local variation of the lattice porosity €.
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The porosity describes a homogenised lattice structure, which, only given three of the other four
geometrical parameters, (i.e. cell size, strut radius, aspect ratio angle, and unit-cell topology),
can univocally identify a lattice structure. One can understand how a generalised mapping of
the results to a realistic structure proves challenging. In this work, the assumption was made,
that the aspect ratio was 1 (cubic unit-cells) and the cell size was fixed to 5 mm, while the
unit-cell topology is fixed a priori. Thus, a variation of the porosity is only related to a variation
of the strut radius. This way, a univocal mapping of the relative density to the geometry of the
lattice structure can be obtained. However, an additional challenge makes the task not straight-
forward. Indeed, in order to obtain accurate results, a mesh refinement is necessary. As shown
in the results illustrated in Figure 6.6, for the domain and boundary conditions considered in
this problem, a mesh size of 1.25 mm is chosen. This means that the element size is a fraction
of the unit-cell one. Thus, challenges emerge, especially regarding the elements lying in a re-
gion where a transition from p* =1 to p* = 0 takes place. Therefore, the de-homogenisation,
i.e. the univocal mapping of the elements relative density to the unit-cell porosity represents a
non-trivial issue. Here, a simplified approach is used. First, the finding of the optimal weigth
w, 1s performed with a refined mesh and an appropriate filter radius. Then, once the results are
obtained, a second topology optimisation with the appropriate weight is performed, by using a
mesh size as big as the cell size of the lattice structure. This allows a one-to-one mapping of
the relative density to the lattice structure geometry. This procedure is possible as the mesh size
in general has little influence on the resulting geometry, only the filter radius does (compare for
example Figure 6.4a and Figure 6.4g).

The results of this mapping deliver a distribution of unit cells with variable strut radius, as
shown Figure 6.15, where a bcc unit-cell is used.
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(a) Isometric view

03 04

(b) Side view

Fig. 6.15: Domain after de-homogenisation. The darker areas represent areas where the strut radius
is higher, i.e. the relative density increases.
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(e) Volume Fraction 0.5, w = 0.87

Fig. 6.16: Domain after de-homogenisation for the geometries found in Figure 6.10a, 6.11a,
6.12a,6.13a, 6.14a.
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(a) Result of the optimisation for a volume fraction of 0.3, with a mesh size of 2.5mm.
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(b) Result of the optimisation for a volume fraction of 0.3, with a mesh size of Smm.
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(c) Result of the optimisation for a volume fraction of 0.5, with a mesh size of 2.5mm.
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(d) Result of the optimisation for a volume fraction of 0.5, with a mesh size of Smm.

Fig. 6.17: Results with a different mesh size, 5 mm and 2.5 mm, with filter radii 6 mm and 3 mm
respectively.

It is important to remark that the results obtained thus far assume a value of the penalization
coefficient p equal to 3. This is needed in order to achieve a binary value of the relative densities
throughout the domain, in order to avoid not-physical results. The value is suggested often in the
literature, as explained above. However, it worth noting that with the modification introduced in
this work, an intermediate relative density does have a physically meaningful result. Thus, the
value of p can be reduced, in order to obtain a smoother transition between the two extremes.
This is shown in Figure 6.18a, where the results for a bcc unit-cell are shown for a volume
fraction of 0.5, and a penalisation coefficient p = 1. The mesh size is 5 mm, in order to aid
a fast convergence of the results, and the filter radius is 6 mm. One can appreciate how the
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distribution of relative densities varies strongly with respect to the case of p = 3.

This represents a peculiar advantage with respect to conventional topology optimisation, as the
results are more flexibly tailorable, and less restrictions apply to the setup of the optimisation
problem.

Density
0.0e+00 02 03 04 05 06 07 08 1.0e+00
| |

(a) Pareto optimal structure for a domain filled with f>ccz unit cells, volume fraction 0.5,
penalization coefficient p = 1. Notice the smoother transition between the two extremes,
especially in the upper part of the domain.

0 01 02 03 04 05 06

(b) Dehomogenised structure.

Fig. 6.18: Results for a penalization coefficient p = 1.

Future works In this thesis, several assumptions were employed to streamline the develop-
ment of the introduced framework. Specifically, the assumption was made that the effective
thermophysical properties introduced above and the effective stiffness presented by Biihring
[40] could adequately define the properties of each unit-cell of the lattice structure-PCM com-
posite within the domain. This assumption holds true as long as scale-variance does not impact
the properties of the cells, requiring a sufficient number of unit-cells within the domain. While
this condition is generally met, it remains uncertain how this assumption holds when there are
enough unit-cells in the domain, but their geometry is locally tailored. A discrete numerical
study and experimental investigations would be beneficial to verify this.

The current framework serves as a suitable foundation for various multifunctional topology
optimisation tools. Additional goal functions can be introduced and linked to those presented
in this study. Furthermore, diverse geometries, such as surface-based lattices like the Triply
Periodic Minimal Surfaces, can be incorporated. Expanding to the third dimension would en-
hance the tool’s applicability. Realistic boundary conditions, concentrated in specific three-
dimensional points (e.g., a power electronics unit as a punctual heat source), suggest that the
optimal topology may resemble a branch-like structure extending in three directions, akin to a
tree found in the nature. Similar considerations apply to the structural problem, significantly



6.3 Results and Discussion 177

influencing the final optimal result.

It is noteworthy that the study exclusively considered heat transfer via conduction. To broaden
the solutions to convective heat transfer, the inclusion of the Navier-Stokes equation and appro-
priate approximations, such as the Boussinesq approximation, becomes necessary.






7 Conclusions and OQutlook

This work introduced novel multifunctional components, based on metallic lattice structures
embedded with Phase Change Materials. While these could be applied within the fields of
thermal management and thermal energy storage, particularly interesting application fields lie
with lightweight multifunctional structures. These are evermore object of research and develop-
ment actions in various engineering fields. Even in cost-driven industries, like the automotive
one, multifunctional load-bearing elements are becoming relevant, as vehicles masses reach
legal limits, due to electrification. The increasing need for holistic solutions allows to consider
complex components, such the ones analysed in this work. These novel composites present
advantages due to sinergies. Indeed, the lattice structure, offers both a core with a high specific
stiffness, and a thermal conductivity enhancement method for the PCM. With the advantages,
also come challenges regarding their characterisation. Furthermore, the concept itself of a mul-
tifunctional structure directly raises the matter of optimisation. Indeed, the different functional-
ities impose different requirements, which can be in countertendence.

All these aspects were treated in detail throughout this work. The main results are listed in the
following.

1. A homogenisation technique was presented, which aimed at describing the thermophys-
ical properties of the composite via effective values. These can be used to substitute the
complex discrete structure via representative volumes.

2. The transient thermal behaviour is however affected by the amount of cells within the
domain. This indicates that scale-variance is present. Thus, the homogenisation approach
proposed in this work is only valid when a minimum amount of cells is present within
the domain. This is a reasonable result, as the structure can only be treated as a porous
medium only based on the percolation theory.

3. The homogenisation was validated by an experimental campaign, which however evid-
enced that the proposed approach is only valid when natural convection in the PCM melt
can be neglected.
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7 Conclusions and Outlook

4. Following the experimental results, an attempt to further characterize the thermal beha-

viour of the PCM-lattice composite was made, by extending a dedicated solver based on
the enthalpy porosity method. The fluid flow within the melt was accounted for by means
of a Darcy term, which again represents an homogenisation approach. The results indic-
ate that, while a qualitative agreement exists with experimental data, this approach cannot
take into account the effect of the discrete morphology of the lattices on the fluid flow. In-
deed, Rayleigh-Benard vortices are built during the simulation of the homogenised PCM,
which instead during the experiment could not be evidenced. However, critical values for
the estimation of the onset of convection within such composites were found through the
models developed. It was found that these are indepent of the unit-cell topology, which
indicates a general validity of the results.

Furthermore, it is found that, for a purely conductive regime, no matter the unit-cell topo-
logy, the liquid fraction evolution with respect to a non-dimensional time represented by
the Stefan-Fourier number is represented by the same function. This resembles an errof
function and is thus express as a power law of this.

. After the thermal characterization, the consideration of the effect of PCMs on the mech-

anical behaviour of the composites is treated. The effect of the considered PCMs on the
effective stiffness of the component is mostly negligible, due to the low Young Modulus
of such materials. However, the material in its solid state still constitutes an elastic bed
for the lattice struts. A numerical investigation was performed, which showed that the
elastic bed constituted by the PCM impedes de-facto a failure due to buckling of the lat-
tice struts. An experimental verification was attempted. This qualitatively demonstrated
that this is the case, and that failure through rupture of the struts occures always before
buckling.

. With the findings obtained in the previous chapters, in particular making use of the ef-

fective thermophysical properties obtained in Chapter 4, and of the effective stiffness
presented by Biihring et al. [40], a framework for the multi-functional optimisation of
these components was successfully developed. Particular focus is set at the finding of
Pareto-optimal geometries, capable to satisfy the mass constraints fixed by the designer,
as well as requirements of maximum stiffness and maximum thermal conductivity. The
framework was extended to a topology optimisation in which rather than maximising
the thermal conductivity, the thermal goal function is the minimisation of the wall tem-
perature with consideration of phase transition. This is done via the proposed effective
thermophysical properties and implementation of an apparent heat capacity method. The
results indicate that the two goal functions are essentially monotonic in the same dir-
ection, thus the maximisation of the thermal conductivity can mostly be used to find an
optimal geometry. This holds true up to a critical volume fraction, after which the amount
of PCM within the domain is so reduced that the two functions are in counter-tendence.
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With these results, the hypotheses made in Chapter 1 can be reviewed. The first hypothesis
is validated, although the analytical form of the effective thermal conductivity tensor could be
only obtained via fitting with numerical data. The second hypothesis is confirmed, as long as
minimum 10 unit-cells can be found within the domain, for each relevant heat transfer direc-
tion. The third hypothesis is confirmed. The fourth hypothesis is confirmed without restriction,
except the missing consideration of a liquid PCM. However, further experimental verification is
needed, and an extension to three-dimensional domains and boundary conditions is necessary
to represent realistic scenarios.

Outlook Detailed outlooks for each considered section are given in the respective chapters.
However, some general remarks can be made.

This work focused on the thermal and mechanical behaviour of the considered composites.
However, the effect of the phase change on the mechanical behaviour was not considered. This
is a relevant aspect, as the phase change is associated with a volume change, which can induced
significant load cases on the structural component. Furthermore, the assumption was made that
the PCM has no influence on the effective stiffness of the composite. While this can be con-
sidered to be true, as the Young Modulus of the considered PCMs is significantly lower than the
one of the lattice struts, PCMs employed for high temperature applications, i.e. salt mixtures,
exhibit Young moduli which are in the same order of magnitude of aluminium. Thus, the effect
of the PCM on the effective stiffness of the composite should be considered.

Finally, the coupled thermomechanical behaviour of the composite was not considered in this
work. For room temperature applications, the thermal expansion is limited, and of poor rel-
evance. However, for high temperature applications, or there where thermal loads constitute a
design driver, e.g. in satellite structures, the thermomechanical behaviour should be modelled
as well, including the derivation of the effective coefficient of thermal expansion of the com-
posite material.

The results could be implemented in the framework presented in Chapter 6, to extend the multi-
functional optimisation of the composites.

To do so, it is necessary to improve the optimisation of the domain by consideration of the
phase-change problem, and addition of natural convection within the optimisation scheme. This
is particularly relevant if the acceleration field caused by volume forces acting on the domain
are higher than 1g, i.e. in multi-functional structures for reusable launch vehicles.
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A Non-dimensional numbers for heat transfer

In the following, useful definitions for non-dimensional numbers are introduced, which are used
to describe the heat transfer phenomena. These are the Nusselt, Reynolds, Prandtl, Grashof,
Rayleigh, Fourier, and Stefan numbers.

A

Empirical correlations relate the Nusselt number to other relevant non-dimensional numbers.
Typically, for a natural convection case, the Nusselt number can be expressed as a function of
the Rayleigh (Ra) and Prandtl (Pr) numbers, while for forced convection, the Nusselt number
is a function of the Reynolds (Re) number and of the Prandtl number. These non-dimensional
numbers are defined in the following.

_ 1 L
——— hdxL Al
Nu {/0 dx } (A.1)

* Prandtl number: is the ratio between the momentum diffusivity and the thermal diffusiv-

ity. It is defined as

v _Gm
Pr= i (A.2)

where Vv is the kinematic viscosity, o is the thermal diffusivity, and u the dynamic vis-
cosity.

* Reynolds number: is the ratio between inertial forces and viscous ones and is associated
with the characteristics of a flow, i.e. laminar or turbulent.

_uL
Y,

Re (A.3)

where u is the fluid velocity and L is a characteristic length.

* Grashof number: represents the ratio between buoyancy and viscous forces. It is often
used for the description of a flow in which natural convection plays a dominant role.

_ 8B(Ty—Ty)

Gr
V2

(A4)

where g is the gravitational acceleration, f3 is the coefficient of thermal expansion, T,, is
the surface temperature and 77 is the fluid bulk temperature.



206

A Non-dimensional numbers for heat transfer

* Rayleigh number: is defined as the product of the Grashof and the Prandtl numbers. For

a porous medium it is defined as

_ pgB (T, —Ty)LK
Vo

Ra (A.5)

where K is the permeability of the porous medium, f is the coefficient of thermal expan-
sion, T, is the surface temperature and 77 is the fluid bulk temperature.

Fourier number: is the ratio between the thermal diffusivity and the time scale of the

process. It is expressed as
ot

T2
where ¢ is the characteristic time and L is a characteristic length.

Fo (A.6)

Stefan number: is the ratio between the latent heat and the thermal energy. It is defined as

C,AT

Ste =
e Hf

(A.7)

where AT is the temperature difference between the considered temperature 7" and the
melting temperature T5,. Hy is the latent heat of fusion.

These non-dimensional numbers are used to describe the heat transfer phenomena in porous
media.



B Material properties considered

Table B.1: Mechanical material properties of the lattice structure (AlSi10Mg) and PCM (paraffin).

AlSi110Mg Paraffin

Young’s modulus E [MPa] 75,000 210
Poisson ratio v [-] 0.3 0.49
Yield strength (compression) Ry, [MPa] 250 ~3
Yield strength (tension) R0 [MPa] 210 1-2

Table B.2: Thermophysical properties of the employed n-Octadecane paraffin wax.

Property Solid Liquid
Density [kg/m’] 814 774
Specific heat capacity [J/(kgK)] 2150 2180
Thermal conductivity [W/(mK)] 0.358 0.152
Melting point [°C] 29 -
Latent heat of fusion [kJ/kg] 244 -

Table B.3: Thermophysical properties of the considered materials

Material Density [kgm =]  Specific Heat Capacity [Jkg~' K] ~Thermal Conductivity [Wm~'K] Melting point [°C] Latent heat of fusion [kJkg~']
n-Octadecane (liquid) 814 2180 0.358
n-Octadecane (solid) 774 2150 0.152 29 240

AlSi10Mg (solid) 2700 888 120
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D Experimental setup of the thermal experiments

All specimens utilized in the experiment were additively manufactured by EOS GmbH, utiliz-
ing an AlSi10Mg aluminum alloy. They possess a cubic morphology with a 50 mm edge length
and feature a periodic internal structure consisting of a single unit cell topology. These samples
exhibit unit cells with uniform cell widths of 5 mm, 1 mm strut diameters, and a cubic shape.
Owing to variations in the number and geometric arrangement of struts within each cell, the
volume fraction differs among the tested specimens, and this information is detailed in Table
4.4. The available samples, shown in Figure 4.21, enable the investigation of how unit cell topo-
logy influences heat transfer, while keeping cell size, aspect ratio, and strut diameter constant.
Two sides of the cube are sealed with 1 mm thick aluminium sheets that are additively manu-
factured along with the samples. Meanwhile, the remaining four sides remain open, facilitating
the observation of the phase change phenomenon and the integration of temperature sensors.

The experimental configuration, as depicted in Figure 4.22, comprises the composite specimens,
a heating system, a containment box, measurement instruments, and a data acquisition system.
The heating system comprises a cartridge heater with a length of 50 mm and a diameter of 6.5
mm (100 W class from Horst GmbH, Germany). This cartridge heater is installed within an
aluminum heat spreader measuring 15 mm x 50 mm x 50 mm. To maintain a consistent input
power of 40 W, a PWM controller equipped with a solid-state relay (specifically, the CL.240D05
by Crydom Inc., USA) is employed. To ensure effective thermal contact between the aluminum
face sheet of the test sample and the heat spreader, a high-conductivity paste is utilized. As
shown in Figure 4.22, a Germanium window is mounted on a flange and sealed on the test
sample surface. Germanium is a semiconductor material with a narrow energy bandgap, which
means it has excellent optical transmission properties in the infrared region of the electromag-
netic spectrum. This property is crucial for IR visualization because it allows Germanium to
transmit IR radiation efficiently without significant absorption. When using Germanium as an
optical material, photons in the IR range can pass through it with minimal energy loss. Ger-
manium is commonly used for IR imaging in the mid-infrared (MIR) region of the spectrum,
which typically spans wavelengths from approximately 2.5 to 25 micrometers (um). This is
also known as thermal infrared, as it corresponds to the IR radiation emitted by objects at tem-
peratures ranging from ca. -180°Cto ca. 900°C. Specifically, this range covers the wavelengths
emitted by objects with temperatures in the hundreds of degrees Kelvin and higher. The rela-
tionship between temperature (T) and the peak wavelength (A1) of emitted thermal radiation is
described by Wien’s displacement law:

~2.898-107°

Amax T

(D.1)
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where A, is the peak wavelength in micrometers (um), and T is the temperature in Kelvin (K).
In summary, Germanium is used for IR visualization in the mid-infrared (MIR) wavelength
range due to its excellent optical transmission properties in this region. This allows infrared
(IR) visualization of the melting front expansion. The Germanium window is circular with a
diameter of 50 mm, manufactured by Edmund Optics Inc. It is mounted on, and bonded to, an
aluminium plate. In order to avoid reflection issues related to the reflectivity of aluminium, a
PTFE plate is added to the construction (see Figure 4.22b).

On the opposing side of the Germanium window, an expansion plate, known as the Backplate
(as illustrated in Figure D.1) is affixed. This backplate contains 100 empty chambers with
square holes measuring 1 mm in width. These holes serve the purpose of enabling a uniform
volume expansion of the PCM of up to 10% during the melting process and help alleviate the
potential risks associated with pressure buildup. The compact dimensions of the orifice in each
chamber prevent significant disruption of both the melting front’s shape and expansion. The
backplate component is additively manufactured using a proprietary resin from Formlabs, Inc,
and it is securely bolted to one side of the cubic specimen. An airtight seal is achieved using
an O-ring. The measurement system consists of temperature sensors and infrared visualization.

As manufactured CAD - section view

Fig. D.1: Epoxy resin-based backplate for the pressure compensation during melting of the PCM.

Ten four-wire PT100 temperature sensors are symmetrically positioned on two of the lateral
sides of the cube, as depicted in Figure D.2. These sensors offer an accuracy of +0.21 K at
40°C (tolerance class of F 0.15 A by Heraeus GmbH, Germany). The sensors are labeled in
a progressive order as shown in Figure D.2. So, the sensor 2 and 7 are the closest to heating
plate on each side, while the numbers 4 and 9 the furthest. The sides "A" and "B" represent the
one that is facing the lower and upper orientation, respectively, when the test is conducted in
"side" orientation. These PT100 sensors are connected through a PXI interface to a data logger
(NI PXIe-1078 by National Instruments Corporation®), and the acquired data is processed
and stored using the commercial software Dasylab® by measX GmbH. The sensors’ casing is
sealed with a bi-component epoxy glue on three of the six surfaces of the cubic specimen to
create an airtight container for the PCM. Indeed, the cubic sample has one faces sealed during
the manufacturing process, so that the heating plate can be thermally connected to the sample.
One of the four orthogonal faces to the heater is enclosed from the Germanium window. The
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opposite side is sealed with means of the Backplate, while the remaining faces are bonded to the
Epoxy component shown in Figure D.2. Infrared inspection is conducted using a medium-wave-

B-B

|<£ i»l
| |

Fig. D.2: As manufactured casing for the PT100 sensor and schematics of the placement of the
Sensors.

cooled IR camera (ImageIR® 8300 from Infratec GmbH). The entire test cell is enclosed within
a Polycarbonate box, accompanied by polystyrene foam (Styrodur®) that serves as insulation to
isolate the test cell from the surrounding environment, as shown in Figure 4.22.






E Temperature profiles and Infrared frames

Temperature profiles for top heating

Results showing the temperature evolution on available PT100 sensors, plotted against experi-
ment time for the top-heating orientation.
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Temperature profiles for side heating

Results showing the temperature evolution on available PT100 sensors, plotted against experi-
ment time for the side-heating orientation.
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Temperature profiles for bottom heating
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Results showing the temperature evolution on available PT100 sensors, plotted against experi-

ment time for the bottom-heating orientation.
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IR frames

Fig. E.13: foccz: (a) heating from top-orientation, (b) from side-orientation, (¢) from bottom orient-
ation.
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Fig. E.14: bcc: (a) heating from top-orientation, (b) from side-orientation, (c) from bottom orienta-
tion.
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Fig. E.15: bccez: (a) heating from top-orientation, (b) from side-orientation, (¢) from bottom orient-
ation.
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Fig. E.16: f>bcc: (a) heating from top-orientation, (b) from side-orientation, (c) from bottom orient-
ation.






F Algorithm Implementation Natural Convection

F.0.1 Algorithm implementation

Based on the CoMeTFoam solver from Schiiller [158], a novel solver dedicated for PCMs em-
bedded in orthotropic porous media is developed. The solver CoMeTFoam itself is based on
the buyont Boussinesq PimpleFoam solver, implemented in OpenFoam version 5, and it makes
use of the Enthalpy-Porosity method described in Chapter 2, and is capable to describe the be-
haviour of pure PCMs only. Therefore, the implementation of the conservation equations for
porous media must be included. The following list of assumptions is made:

* The Boussinesq approximation is valid for the relevant physical cases;
* Local Thermal Equilibrium is valid;
* The flow is so slow that a Darcy-regime can be assumed a-priori.

The last assumption allows to write the momentum conservation equation with the Darcy-
Forchheimer sink term, but without the need to calculate the Friction Coefficient, i.e. the sink
term depends only on the permeability.

With reference to Figure F.1, the solver algorithm is described. Commencing from the pre-
scribed initial and boundary conditions, the comprehensive characterization of the velocity,
temperature, and pressure fields throughout the entire domain is established. Utilizing the tem-
perature information, critical parameters such as the liquid fraction denoted as @, along with
indispensable material properties encompassing density (p), heat capacity (Cp), kinematic vis-
cosity (v), the Boussinesq term (BT), and the Darcy term (DT), are computed. These calculated
values serve as the foundation for the subsequent progression in the algorithm. The algorithm
proceeds to the initial time increment, where the velocity equation is systematically resolved
using the variables obtained from the preceding iteration or time step. Additionally, the unad-
justed mass and pressure fluxes are determined.

Subsequent to the resolution of the corrected continuity equation, adjustments are made to the
velocity, pressure, and mass flow parameters. The liquid fraction iteration process is then initi-
ated. Within each iteration, material properties are initially computed using the liquid fraction
at the current step. Subsequently, the energy equation is solved, and the liquid fraction is iter-
ated utilizing a procedure involving a so-called source term.

It’s imperative to note that due to the nonlinear characteristics of the phase change, the liquid
fraction term necessitates linearization. This linearization of the term results in a situation
where the temperature 7! may no longer be inherently consistent with the liquid fraction
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@1 and, thus, not with the enthalpy H"T!. Consequently, the enthalpy HP", determined as
the mean of the inconsistent temperature 7!, must align with the consistent enthalpy H"*!
within the confines of this specific iteration step.

HP® = gt (F.1)
which is equivalent to
CpeT" ! + @y = Cpest T + D" iy, (F2)

T¢°" is related to the liquid fraction at the iteration step 7, and it can be calculated via Equation
F.3. The liquid fraction at the iteration step n + 1 is calculated via Equation F.4.

T = (T — T,)®" + T (F3)

0, T <T;
¢n+1 — n <p n+1 _ ~corr F4
P +¢relath(T T )’ Ts<T<Tl ()

1, T>T

@, represents an underrelaxation term which is added to the iteration, and which influences
the numerical stability and accuracy of the solution. The value shall lie between 0 and 1.

The computational procedure involves an iterative refinement of the liquid fraction until con-
vergence is achieved between the temperature and liquid fraction fields. Once this convergence
is attained, the computed values for the liquid fraction and temperature are employed to adjust
the Darcy term (DT), the Boussinesq term (BT), and the fluid’s viscosity (V). Subsequently, the
residuals arising from the continuity and momentum equations are scrutinized. Should these
residuals fall below a predefined tolerance, the next time step is initiated. The simulation con-
cludes upon the completion of the specified number of time steps.

As previously indicated, the PCM-lattice composite is simulated under the assumption of local
thermal equilibrium. To achieve this, the effective thermophysical properties presented in sec-
tion 4.1.3 are used, along with the permeability calculated in section 4.3.1. In addition to the
standard equations for the enthalpy-porosity method presented in the literature by Brent et al.
[159] and adjusted for several purposes by other authors [160, 161, 158], the momentum equa-
tion is corrected adding a Darcy-Brinkman-Forchheimer term. Given the assumption of low
velocities the Forchheimer, i.e. the non-Darcy flow regime, part of this term is neglected.
Subsequent adjustments involve the inclusion of porosity, so that one obtains the equations
4.23,4.24,4.25. The lattice structures under investigation exhibit anisotropic topology, resulting
in directionally dependent thermal conductivity and permeability. As a result, the developed
solver treats these parameters as tensors. However, due to limitations in OpenFOAM, the im-
plementation of the Darcy source term must be explicit, causing minor instabilities in the ve-
locity field. To address this and improve stability, a relaxation factor of 0.7 is applied to the
velocity calculation. To calculate the permeability, numerical investigations in the section 4.3.1
are proposed.
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Validation of the PCM-lattice solver
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Fig. F.6: Melting front expansion: (a) experiments and (b) simulations for the bccz sample, bottom
heating orientation.




G Derivations of the equations for the stability of beams

G.0.1 Derivation of Euler’s critical load

This chapter derives the analytical solution for the critical buckling load of a beam as presented
by Timoshenko and Gere [101]. The beam is considered to be ideal, meaning that it is per-
fectly straight and perfectly elastic, and is submitted to a centrally applied axial load P. It is
modelled as a Euler-Bernoulli beam, without rotary inertia and shear deformations. The beam
shall initially have hinged supports at both ends (fig. G.1). Before reaching the critical buckling
load, the beam remains straight and is considered stable. This means that if a lateral force is
applied and a small deflection produced, the deflection disappears after removing said lateral
force. This is not the case when reaching the critical buckling load, as in this state small lateral
forces will produce deflections that will remain even when removing the lateral load.

1 <

Fig. G.1: Buckling of a beam under an axial load.

To use beam theory, the beam must have a high slenderness. For a beam with circular cross-
section, the slenderness is defined as the ratio between the beam’s length L and its diameter
D, and, typically, a slenderness of 10 or more is considered sufficiently slender. Additionally,
assuming small deflections, the relationship between the curvature d?y/dx* and the bending
moment M at a specific section of the beam is

2
M=% (G.1)
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Fig. G.2: Forces and moments on the infinitesimal beam element.

where y is the deflection and EI the flexural rigidity of the beam. EI is the product of the
Young’s modulus E of the material and the bending moment of inertia / of the cross section,
which are both assumed to be constant.

Another set of equations can be derived by considering the infinitesimal element of the beam
from figure G.2. The angle dy/ dx is generally small, leading to tan (dy/dx) ~dy/dx. An
equilibrium of moments around point n and an equilibrium of forces in y direction yield respect-
ively

d
M+(V+dV)dx—(M+dM)+Pd—zdx:0 (G.2)

V—(V+dV)=0 (G.3)

Equation G.3 leads to dV = 0, which shortens equation G.2 to

Vdx—dM +Pdy=0 (G4)
Dividing by dx and substituting M from equation G.1 yields

3

d’y _dy
El— +P—=-V G.5
dx3 * dx ( )

or

d*y d%y dv
El— +P——=—— G.6
dx* + dx? dx G-6)

Inserting dV = 0 and defining P/ (EI) = A? leads to
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d4y
12
A +

¢y _

=0 (G.7)

This differential equation has the following general solution

y = Cysin(Ax) +Cycos (Ax) + Csx+ Cy (G.8)
with the derivatives
dy .
— =CjAcos (Ax) — CaAsin (Ax) +C3
dx
2 (G.9)
_ 2. 2
2= —C1A7sin (Ax) — CoA“ cos (Ax)

The constants of integration C; and C; can be determined by inserting known conditions at the
beam’s ends. For the beam with hinged ends, they are

d2y

y

at both x = 0 and x = L. Applying these conditions to equation G.8 and its derivatives leads to
C,=C3=C4=0and

sin(AL) =0 (G.11)

Here it is convenient to define 7 = AL as this parameter becomes significant later on (Timoshenko
[101] uses the variable u instead of 1) but this conflicts with the notation of other variables in
this work). Equation G.11 is fulfilled for n = mz with m € IN™. The lowest possible value of
A that induces buckling is wanted, and A ~ /P. Therefore, m = 1 and

n:AL:\/%L:n (G.12)

Hence, the critical buckling load is

T2El
L2

P, — (G.13)

This value for P, is known as Euler’s critical load. The deflection curve is described by
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Y= Asian”x (G.14)

where A is the amplitude of the deflection, which, due to the state of instability, cannot be
determined. Taking m > 1 leads to higher critical buckling loads which correspond to higher
modes of deflection. As can be seen in fig. G.3, m determines the number of half-sine waves of
the deflection curve. The length of each half-sine wave is L/m.

»!
'

L/2

L/3

|
<

m=1 m=2 m=3

Fig. G.3: Deflection curves for different values of m.

The beam with hinged ends is called the fundamental case of buckling as it is assumed more
frequently than any other case. The solutions for other end conditions of the beam is not derived
here as they can be obtained simply by inserting their corresponding end conditions into the
general solution (eq. G.8) and solving the system of equations. The most common combinations
of boundary conditions are shown in figure G.4. Their critical buckling loads only differ by a
factor n, which is called the end constraint factor. The end constraint factors for the different
cases are also shown in figure G.4. Hence, the general equation for the critical buckling load
is

2
n°El
P, = n2 2 (G15)
The general equation may also be defined as
2
EI
p, =1 (G.16)

LZ
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with n = n7. The end constraint factor is important for the lattice problem as the end conditions
of the individual struts of the lattice structure do not belong to one of the basic configurations.
Instead, they could be described by intermediate variants of the basic end conditions. For ex-
ample, the end of a strut may be able to rotate, but there is also some rigidity against rotation
provided by other struts that connect at that end. This means that the end condition of a beam
in a lattice lies between the cases with n = 1 and n = 2, 1.e., between the rigidly built-in end
condition and the one which can rotate freely. A method to find the equivalent end constraint
factor is presented in sections G.0.3 and further tools are introduced in H.0.2.

lp P P ip

| AR

ANy

n=0.5 n=1 n=1.43 n=2

Fig. G.4: Different cases of buckling and their corresponding end constraint factor 7.

G.0.2 Derivation by use of the energy method

An alternative way to calculate the buckling load is using the energy method. This method will
be useful to calculate the solution for the elastically bedded beam in section H.0.1. The energy
method, as presented by Timoshenko in [101], first requires assuming the deflection curve of the
beam. With that, it’s possible to derive the critical load. Unless the assumed deflection curve is
exactly the correct one, the derived critical load will be larger than the true value. This problem
can be bypassed by defining the assumed deflection curve with multiple parameters. Then, the
parameters can be determined in such a way that they produce the lowest possible load, which
will correspond to the most accurate critical load. For the case of the beam with hinged ends,
such a parametric expression of the deflection curve is the following trigonometric series

= sin — + sin— + sin— + = sin _X (G 1 7)
a a a a .
y 1 [ 2 [ 3 [ m [

m=1
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For x = 0 and x = L, all terms of expression G.17 as well as the terms in its second derivative
become zero. Therefore, the series satisfies the end condition of the beam from eq. G.10. The
goal is now to find the parameters a,, that produce the deflection curve corresponding to the
lowest load P.

The energy method works by assuming a small lateral displacement of the beam. This displace-
ment will increase the strain energy of the system by an amount AU. Simultaneously, the load
P will produce an external work AT on the system by moving a small distance. As long as
AU > AT, the system will remain stable. However, if the external work surpasses the increase
in strain energy, i.e., when AU < AT, the system is unstable. Thus, the critical load can be
found when the condition

AU = AT (G.18)

is fulfilled. For the buckled beam, the strain energy of bending is

L M2 L
AU = / 35l dx= 2EI y Zdx (G.19)

After inserting eq. G.17 and performing some operations it can be shown that the expression
can be rewritten as

P2Lm —o0
G.20
~ 4E] Z i (G-20)

The work produced by the load P during buckling is

P (L (dy\?
:E/o <£) dx (G.21)

Again, eq. G.17 1s inserted, and the integral can be replaced by a sum

AW =——Y m’a (G.22)
4L = "
Equating G.20 and G.22 leads to
PZL mZDO mioo 5 5
a,, m-a (G.23)
4E1 ~ —1 "

Solving for P:
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_ mEIYI=T m*a’,

P G.24
I yrva (G2

Now the combination of parameters a,, that lead to the smallest value of P must be found. It
can be shown that this minimum value of P is achieved by setting all parameters a,, equal to
zero, except for one. The parameter that is different from zero must be ap, as it is multiplied
with the smallest value of m?2, i.e., m> = m = 1. This leads to

T2El
or = (G.25)

which is the same result that was derived previously.

G.0.3 Solution for a beam with rotational springs at the ends

Lattice structures present a more complex system where individual beams are combined into a
three-dimensional structure. The points where two or more beams intersect is called a vertex.
As stated in the previous chapter, when multiple beams are connected at their ends, a solution
for the buckling load may be obtained by determining the end constraint factor of the critical
beam and applying it to the general formula (eq. G.15). The critical beam is the one which
buckles first. Local buckling of a lattice structure can thus be investigated by only considering
the critical beam and introducing the combined effect of the beams connected at both vertices
through the end constraint factor.

As the connected beams at a vertex will exert reactive moments on the critical beam and the
vertex itself can rotate, the general end condition of the critical beam is a hinged support with
an applied moment. This requires the assumption that the vertex is fixed regarding lateral trans-
lations. As the reactive moments are proportional to the rotation angle 6 of the vertex, the
applied moments can be replaced with rotational springs with the spring constant ¢ (fig. G.5).
The spring constant can be determined from the bending rigidity of the connected struts, and
tools to calculate this bending rigidity will be presented in section H.0.2. This entire process of
replacing the connecting beams at the vertices with equivalent elements, for example springs,
is called the equivalent member method.

Assuming that the system is symmetrical and the same end-moment M) is applied at both ends,

the boundary conditions are

y=0 (G.26)

(G.27)
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atbothx =0and x = L.
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Fig. G.5: a) Critical beam inside a symmetrical lattice structure. b) Modelling of the critical beam
by replacing the connected beams with rotational springs.

Taking advantage of the relation My = ¢0 = cdy/ dx, equation G.27 becomes

dzy_ c dy

—_— = —— G.28
dx? Eldx ( )

Inserting the boundary conditions into the general solution (eq. G.8) and its derivatives and
solving the system of equations leads to

cos (AL) — lg sin(AL) =1 (G.29)
c

Introducing again the notation N = AL and defining { = EI/(cL) the equation becomes

cos(n)—ngsin(n) =1 (G.30)
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This equation must be solved for 1 as the end constraint factor is n = 1/ x. Note that 7 =0
is already a solution, but the lowest possible value for n > 0 is required. It is not possible to

solve equation G.30 for 7, so the solution must be approximated. Newmark [157] provides an
approximation with an error of less than 4%.

(" +4/¢
n_n<—ﬂ2+2/é) (G.31)

After determining 7, the buckling load can be calculated via equation G.16.






H Fundamentals on the modelling of beams on elastic
foundations

Winkler presented in 1867 [96] the first fundamental work regarding beams on elastic founda-
tions. His goal was describing the behaviour of rails, which are supported by soil. As schemat-
ically shown in Figure H.1, the foundation is represented by an infinite number of linear springs.
The spring are independent from each other.

Fig. H.1: Beam on a Winkler foundation.

By representing the foundation through a configuration of uniformly distributed springs char-
acterized by a consistent rigidity parameter denoted as o, their influence on the beam can be
substituted with that of an elastic medium. This elastic medium, when considered at any given
cross-sectional area, responds in proportion to the deflection experienced at that specific section.
The assumed reaction forces are restricted to vertical directions aligned with the deflection of
the beam. As elucidated by Timoshenko [101], the stiffness of the elastic medium can be quan-
tified as follows.

(04
k = kmedium - Z (Hl)
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where the variable a signifies the spacing between each spring. The parameter £ is often denoted
as the embedding coefficient, foundation modulus, modulus of subgrade reaction, or Winkler
modulus, with the specific designation often dependent on the context of application. For the
purposes of this study, it is termed the foundation modulus. This parameter possesses the di-
mensions of an elastic modulus (force divided by the square of length). It serves as the constant
of proportionality connecting the deflection y and the foundation’s response g (with dimensions
of a line load in a 2D model) at any given point along the beam.

q = ky (H.2)

As highlighted in the review conducted by Younesian et al. [100], a limitation of the Winkler
model lies in the assumption that the springs are independent, whereas in reality, the deflection
at a specific point is influenced not only by the pressure at that point but also by the pressure
in adjacent points (see Figures H.2a and H.2b). The Winkler model, depicting a discontinuous
pressure distribution, deviates from the continuous pressure distribution expected in reality.
Therefore, a more accurate representation involves introducing interaction among the springs.
Various models have been proposed to enhance the Winkler model by incorporating additional
parameters. Typically, these models introduce a layer with specific properties between the beam
and the springs, resulting in a continuous pressure distribution and a two-parameter model. One
such model was developed by Pasternak in 1954 [97]. Pasternak postulates the existence of
a layer deforming solely in transverse shear (refer to Figure H.2c), characterized by the shear
stiffness Gp. Vertical deformation is restricted to the springs. The foundation’s response is
governed by

2

d
q—= ky—GP@ (H.3)

(b) Foundation model with continuous pres-
(a) Winkler model. sure distribution.

Elastic shear layer

iy,
iy,
Iy

(c) Pasternak model.
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Utilizing Winkler or Pasternak models presents a limitation as the foundation parameters, de-
noted as k or Gp, are often unknown. Given the scarcity of experimental data, it is preferable
to have analytical equations that derive these parameters from the material properties of the
foundation, specifically the elastic modulus E; and Poisson’s ratio V. One solution involves
modeling the medium as an elastic continuum and implementing certain simplifications or con-
straints. Vlasov’s model [98] adopts this approach, assuming that the displacement distribution
in the elastic medium can be represented by shape functions integrated over the entire depth
of the foundation. Expressing k and Gp in terms of Er, V7, and the shape functions, however,
encounters a fundamental challenge due to the difficulty in determining these shape functions.

The complexity of the problem is increased by considering its three-dimensional nature. Her-
rmann et al. [99] propose a solution for £ and Gp in the context of a circular beam fully sur-
rounded by a three-dimensional elastic continuum, employing a Vlasov model. The modeling
of shape functions involves Bessel functions. In their study, both an exact solution and an ap-
proximate solution are presented. The approximate solution, neglecting tangential reactions of
the elastic medium, does not yield a solution for Gp. It is, however, acknowledged that the
approximate model achieves sufficient accuracy when the ratio between the shear moduli of
the foundation and beam is less than approximately 0.03. The equation for the approximate

solution of & is
167'L'Gf(1 — Vf)

k errmann — H.4
" 23— 4v,)Ko (W) + VK1 (V) D

where Gy represents the shear modulus of the foundation, and the factor y is defined as
v = mnD/(2L). The functions Ky() and K;() denote the modified Bessel functions of the
second kind for orders 0 and 1, respectively. Notably, the parameter m signifies the number of
half-sine waves characterizing the deflection curve. It is essential to have knowledge of or make
assumptions about the shape of the deflection curve of the beam before applying the formula.
In seeking more straightforward, empirical, approximations for k£ within the context of model-
ing the medium as a Winkler foundation, challenges arise due to the three-dimensional nature
of the beam against the two-dimensional nature of the Winkler model. Biot [162] proposed a
solution by considering an infinitely long beam with finite width supported by a 3D, homogen-
eous, isotropic, semi-infinite (one-sided) elastic medium.

A relationship between these parameters can be established by equating the moments on the
beam generated by an elastic medium with foundation modulus k to those of an elastic medium
with material properties Ef and v;. The solution involves numerically solving various integrals
for the bending moments, rendering it complex. Alternatively, Vesic [163] presented a simpli-
fied formula for k by aligning the maximum displacements produced by both models instead of
focusing on the bending moments. Vesic’s solution is expressed as

0.65E; 1»E b
kvesic = H.5
Ves 1— V2 E] ( )

f
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where EI represents the bending stiffness of the beam, and b denotes the width of the contact
between the beam and the foundation. It is noteworthy that the beam’s diameter D can be em-
ployed as the foundation width b. Regrettably, empirical approximations for the shear modulus
G, of the shear layer in a Pasternak foundation for an embedded three-dimensional beam could
not be located.

H.0.1 Mechanical stability of beams on elastic foundations

The foundational theories and current advancements outlined thus far provide a valuable frame-
work for modeling an elastic foundation. The models described above can be effectively em-
ployed to delve deeper into the stability analysis of embedded lattice struts. To facilitate this
analysis, a further abstraction is proposed. The individual strut can be reformulated as an em-
bedded beam featuring simple supports. Subsequently, rotational springs are introduced at the
hinged supports to incorporate more realistic boundary conditions. This modification enhances
the model’s capacity to represent realistic boundary conditions.

Solution for an embedded beam with rotational springs at the ends

The examination of buckling in more intricate structures necessitates an investigation into scen-
arios where moments are applied at the ends of the beam (see Figure H.3a). Aristizabal and
Ochoa [164] developed the formulation for the problem of an elastically embedded beam with
general end conditions, including rotational springs. This formulation builds upon the earlier
work of Hetényi [102], who determined the buckling load of a beam on an elastic founda-
tion using the differential equation of the deflection curve. Unfortunately, Hetényi’s work only
considers a pure Winkler foundation, thereby neglecting shear effects of the foundation. An
analogous model incorporating shear effects (i.e., a Pasternak foundation) could not be found
in the literature.

n
\ M+ dM

(a) Beam on elastic foundation under axial (b) Forces and moments on the infinitesimal
load and rotational springs at the supports. beam element.

>,

Fig. H.3: Schematic representation of the system considered in the derivation.
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Through the application of moment and force equilibriums on the infinitesimal beam element
(see Figure. H.3b), it is possible to derive the differential equation governing the deflection
curve. However, in contrast to equation G.7, an extra term ky is introduced, representing the
pressure exerted by the elastic medium.

d4y dzy
El— +P— +ky=0. H.6
dx4 * dx? * (H.6)

In accordance with Hetényi [102], the solution to this differential equation is contingent upon
the relationship between P and v/4kEI. Considering that a positive P indicates compression, it
is imperative for P to be positive. When 0 < P < v/4kEI, the general solution to the differential
equation is given by H.7.

y = (C1e® 4+ Cre™ %) cos(Bx) + (C3¢** 4 Cqe~*) sin(PBx), (H.7)

with

d B=1/y/ 4+ . 0.3
sg; P 261 T 3Bl (H.8)

For P > +/4kEI, the solution to Equation H.6 is given by means of Equation H.9.

y = Cjcos(yx) + Cpcos(0x) + Cysin(yx) + Cy sin(0x) (H.9)

with

2 2
P P k P P k
=y (2=) -5 and =] ) - H.10
"=\ 2E1 (2151) El 2E1 (2E1> El (H.10)

The solution for P = v/4kEI corresponds to the deflection curve of an infinitely long beam on
an elastic foundation, which does not necessitate further analysis in this context. Hetényi [102]
establishes that the general solution in the first case (0 < P < v/4kET) cannot be satisfied by real
values of o and 8. Consequently, buckling is only feasible for the case P > v/4kEI.

The determination of the four constants C; — C4 involves inserting the boundary conditions from
Equations G.26 and G.27 into the general solution (Equation H.9) and its second derivative.
This process results in a system of linear equations, which is expressed in a matricial form via
Equation H.11. The buckling load of the system is then computed by setting the determinant of
this matrix to zero.
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Al —Anp Al3 Ay
Az —Ap An3 Ay |=0 (H.11)
cos(yL) —cos(8L) sin(yL) sin(dL)

where the terms A;; are

An = —=3pysin(yL) —L(1—p)y*cos(L)
Ay = —3p8sin(SL) —L(1—p)&?cos(SL)]
A1z =3pycos(yL) — L(1 —p)y’sin(yL)
A1y =3p&cos(SL) — L(1—p)&*sin(SL)]

(H.12)
Ay =L(1-p)y
Ay =L(1—p)8?
Az =3py
A24 = 3[)5

Here, p = 1/(143¢), and the coefficient { = EI/(cL) represents the ratio between the rigid-
ity of the spring and the rigidity of the beam, as previously employed in equation G.30.
The critical buckling load is the smallest value of P that satisfies equation H.11.

H.0.2 Stiffness matrices of beams on elastic foundations

As discussed in section G.0.3, the examination of local buckling in a lattice structure involves
employing the equivalent member method. In this approach, the beams connected at the ver-
tices of the studied beam are substituted with a spring characterized by a spring constant c. This
constant must be ascertained based on the rigidity of the adjacent beams. This can be addressed
through the use of stiffness matrices. Therefore, a brief introduction to stiffness matrices will
be provided here.

Cook et al. [144] in their book on finite element analysis, represent a beam as a structural ele-
ment with a node at each end, the stiffness matrix establishes a relationship between the applied
load on the nodes of the beam (expressed by a load vector F) and the resulting displacements
of the nodes (expressed by a nodal displacement vector d). Assuming linear-elastic behavior,
this relationship is expressed as F = Kd, where K represents the stiffness matrix of the beam
element.

The dimensions of this matrix are contingent on the degrees of freedom of the element. In
three-dimensional space, each node will have 6 degrees of freedom (three translational and
three rotational). With two nodes, this results in a 12 x 12 matrix. Through the utilization of
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symmetries and boundary conditions, the degrees of freedom can be reduced, leading to a sim-
plified matrix.

The entries of the stiffness matrix can be determined using various methods. In the following,
the potential energy approach as outlined by Zhaohua and Cook [165] will be discussed. This
work also derives the stiffness matrix of the beam when it is placed on an elastic foundation.
The following assumptions are considered:

* For the sake of simplification, each node of the beam is assumed to have only two degrees
of freedom: lateral displacement v and cross-sectional rotation ©,.

* Shear deformations are neglected.

* The elastic foundation is represented by a two-parameter model. However, for the pur-
pose of simplifying the derivation of the stiffness matrix, a one-parameter Winkler found-
ation is assumed. This implies that the elastic medium only generates radial reactions.

The approach commences by establishing an expression for the overall potential (strain) energy
of the beam. The contributions from bending and the elastic foundation are extracted from
equations 2.69 and 2.72, respectively, resulting in

1 (L d*v 1L,
AU = - [ El—d — [ kvd H.13
2 /0 dx? )f+ 2 /0 ! )i ( )
Benvding Elastic I;(;mdation

Subsequently, the process involves expressing the potential energy in relation to the nodal dis-
placement vector d. To interpolate the displacements along the length of the beam, a cubic
polynomial is employed, following standard finite-element practices. Thus, at any point in the
beam, v can be represented as

=Nd (H.14)
®22

The cubic shape functions, denoted as N; in Equation H.14, are expressed in terms of the local
coordinate & = x/L. They are [144]

Ny =1-3E2—-2¢3
Ny =L(§—28+¢&°)
N3 =3E* 283

Ny =L(-§*+¢&7)

(H.15)
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Since the derivative in Equation H.13 can be expressed as in Equation H.16, the notation ex-
pressed in Equation H.17 is introduced.

d?v &
a2 = e (110
d2
BgoN=(-f+% —f+i &% -1+8) @.17)
Thus, Equation H.13 can be modified as
L7 L7 1.7
AUZEd Kbd—l—Ed dezid (Kb+Kf)d (H.18)

where Kj, is the bending stiffness matrix and K¢ the stiffness matrix of the elastic foundation.
These are defined in Equations H.19, and H.20.

(12 6L —-12 6L ]
L El 4172 —6L 217
Ky = / BE/Bdx= "5 (H.19)
0 L 12 —6L
Sym. 412
[ 13 1172 9 —1372]
5L al” WL ol
L 1 g3 B2 1.3
K = / NTkNdx =k e (H.20)
0 3L a0l
| sym. %L{

These solutions hold under the assumption of constant material properties and sections through-
out the length of the beam. Combining these matrices yields the total element stiffness matrix
K = K}, + K.

While a similar approach can be used to derive an additional stiffness matrix for the elastic
foundation, which shall account for shear effects in Pasternak-like models, it is not practical for
this work. In the model discussed in section H.0.1, where rotational springs are implemented,
a Winkler foundation is utilized. Consequently, introducing a Pasternak elastic foundation for
the beams connected at the vertices would be inconsistent.

A more intricate solution for the stiffness matrix of embedded beams is presented by Yokohama
[166]. In this model, the beam is treated as a Timoshenko beam, thus incorporating shear de-
formations. Additionally, the impact of axial load on transversal displacement is considered.
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Consequently, the potential energy is given by:

EI [Ld?y F, [Ld?v
AU = — dx+ < KGA/ ( —@) dx+ = /vd dx (H.21)

2 Jo dx2 2 o dx dx2
—_——— —
Bending Shear Foundatlon Ax1al load

In the given expression, k represents the shear coefficient, G is the shear modulus, and A de-
notes the cross-section. With respect to Equation H.13, two additional stiffness matrices can be
derived from the corresponding terms in Equation H.21: the shear stiffness matrix Kg, and the
geometric matrix Kg. The total element stiffness matrix can be obtained by summing up the
individual contributions: K = Ky + K¢ + K¢ + K.

Cook [144] points out that the stiffness matrix of the elastic foundation K¢ is approximate due to
the inexact nature of the shape functions in N. As established in earlier sections, the deflection
of the beam in a Winkler foundation is described by exponential and trigonometric functions,
not cubic polynomials. One approach to address this discrepancy is to increase the number of
elements in the beam, although this falls under a numerical finite-element approach.

In this work, an assessment is presented, to determine if this more complex solution is necessary
or if the simpler model with only bending and foundation stiffness matrices suffices. Specific-
ally, the consideration of shear deformation may not be necessary for this study. Indeed, this
work delves into stability investigations, which are relevant only for slender beams. Thus, the
influence of shear deformation shall be minimal.

The first assumption, made to perform the derivation described above, was monodimensional-
ity. For a three-dimensional beam with a total of 12 degrees of freedom, the stiffness matrix can
be formulated with bearing in mind that [144]:

* Assuming a symmetrical cross-sectionn (I, = I, = I)and a foundation on all sides, the
same stiffness matrix values can be applied to both the w and ®, degrees of freedom.

* The axial degree of freedom u, which describes the axial stretching, is characterised by
the stiffness coefficient a = AE /L.

* Regarding the ©, degree of freedom, representing twisting around the x axis, the torsional
stiffness coefficient b = GI; /L needs to be incorporated into the matrix. Here, I; denotes
the torsional constant, which, for a circular section, equates to the polar moment of inertia
of the section.

For convenience, the entries of the 4 x 4 stiffness matrix of the beam with only two degrees of
freedom are generalized

K= (H.22)

sym. Ks
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It is important to note that within the bending stiffness matrix, the entries K, and K4 are equi-
valent, and K3 is equal to —K;. However, these equivalences do not extend to the stiffness
matrix of the elastic foundation. Consequently, these relations cannot be employed to simplify
the general stiffness matrix.

When employing the generalized matrix coefficients as per equation H.22 for a three-dimensional
element, the expression F = Kd can be developed as Equation H.23 [144].

Fa 4 0 00 0 0]|—a 0 0 0 0 0 |{uw
Fy Kl 00 0 K|O0O K5 0 0 0 K Vi
F Kl O K 0/ 0 0 K3 0 —K4 O w1
My b 0 0/0 0 0 —b 0 0 O
My, Ks 00 Ki 0 K¢ O 0,
M| Ks| 0 —K4 0 0 0 K 0,
Fo | a 0 0 0 0 0 "
Fy KK 0 0 0 -k vy
Fo Ki 0 K 0 wa
M. b 0 0 Ou
My, Ks 0 Oy
My, | sym. K5 | O,
(H.23)

If the element coordinate system deviates from alignment with the global coordinate system, an
adjustment is required for the stiffness matrix K. This involves rotation using a rotation matrix
R through an angle ¢. The rotational operation is expressed as RTKR. The rotation matrix
applicable to the 12 x 12 stiffness matrix is defined as follows.

Ry 0 0 0]
0 Ry 0 0
R— (H.24)
0 0 Ry 0
0 0 0 Ry

After establishing Ry as the fundamental 3 x 3 rotation matrix centered around the designated
axis of rotation, the process of orienting beam elements ensues. Subsequently, the overall stiff-
ness matrix for a specific structure, consisting of interconnected beams, is derived. This process,
known as the assembly of elements, involves the summation of entries corresponding to each
loaded degree of freedom within the local stiffness matrices of all beam elements sharing a
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common node.

The stiffness matrices used by Yokohama [166] include the effects of shear deformation, i.e.,
the beams are modelled as Timoshenko beams. The effect of shear deformation is described
by the factor ®@ = 12EI/(kL*GA). The stiffness matrices for Timoshenko beams on elastic

foundations derived by Yokohama are:

12 6L 12 6L
K, — EI (4420 + D)2 —6L (2—2P—D?)[?
L(1+)? 12 —6L
sym (4420 + P?)L2
4 2L -4 2L
K, — KGAD? > 2L I?
AL(14 @)? 4 2L
sym L?
BT R R
Kf:_(lﬁp)z (105 + & + 150)L (%+3—§;+‘§2
E R
i sym
(¢ 120 + @2 L ~(¢+20+9?)
2
K, — P (5+5+7)L 1oL
L(1+ @) 81204 @2
I Sym.

~(F+ i+ oL

~(tio + 5 + )L

~(F+r+ 5L

(s + &%+ 0L |
L
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I Beam elements model implementation for embedded
lattices

The implementation of this process is here briefly expounded upon, with a focus on one of the
eight diagonal struts within a bcc cell. The same set of steps must be iterated for the remaining
struts.

The coordinate system is established at the center of the cell volume. Firstly, a vector Tggrut
representing the strut direction is formulated. The entries, simplified to £1 for convenience,
are determined based on the chosen diagonal strut. In the implemented code, these values are
ascertained from the node coordinates of the first element in the strut.

Subsequently, three direction vectors for the springs are computed, each corresponding to one
of the three springs attached to each node in the strut. The initial spring direction vector Tgpy. 1 is
chosen freely but must be orthogonal to the strut direction vector. A solution is attained through
the dot product, which equals zero when the vectors are perpendicular. For simplicity, the 1-
and 2-coordinates of the strut direction vector are identical, and the 3-coordinate is determined
to satisfy the dot product’s zero condition. For instance, with the direction vector Tsgryt =
(1,1,—1)T for a specific diagonal strut in a bcc cell, the equation to solve is

1 1
Tstruthpr,l = 1 1 =0, (LD
—1 ZLz,spr, |

whose solution yields z = 2. It can be demonstrated that the required z-coordinate, denoted
as t;spr1, 18 equal to —2t, o, for all diagonal struts. Conversely, for a focc cell, 1,51 =
—t, strur 18 derived, signifying that altering the sign of the z-coordinate is sufficient to obtain a
perpendicular vector. A visualization of the resulting vectors is depicted in Figure I.1.
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......... ,.,' 1
: Tspr,l =
|
o 1
n
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' 1
1
: Tstrut = 0
' -1

(a) for bce unit cells, the perpen- (b) for fycc unit cells, the per-

dicular spring vector is ob-  pendicular spring vector is ob-
tained by multiplying the z-  tained by multiplying the z-
coordinate of the strut direc-  coordinate of the strut direc-
tion vector with —2 tion vector by —1.

Fig. I.1: The principle is applicable to all eight diagonal struts.

Subsequently, the vector Tspr 1 undergoes normalization (division by its length) and is then
multiplied by the desired length of the springs. The second and third spring direction vectors
(Tspr,2, Tspr,3) are obtained via a rotation Tspr 1 about Tserye With angle 6 = 120° once and
twice, respectively. This kind of rotation around an arbitrary axis requires 5 sub-steps, which get
combined into a rotation matrix. With a normalised rotation axis, the matrix can be expressed
as postulated by Cole [167],

cos@ +12(1—cosB)  tty(1—cos@) —t,sin@ tt,(1—cos@)+1,sin0
R= |nt (1 —cosB)+1sin0 cosO+r7(1—cosB) 11.(1—cos®)—1,sin0|, (1.2)
tte(1—cosO) —t,8in0 t;t,(1 —cos@)+1,sin®  cosO +12(1—cosH)

with T = (tx,ty,tZ)T being the normalized rotation axis vector, which is equal to Tgry.
Ultimately, the determination of the three spring end nodes involves the addition of the spring
direction vectors to the coordinates of the node where the three springs are attached. This pro-
cess is iteratively carried out for each node along the diagonal beam and for all the beams within
the structure.
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I.1 Analytical solution for unit cells

The equivalent member method is applied here to obtain the analytical solution for the isolated
case, and afterwards an analogous solution for the embedded case is derived.

To formulate the analytical solutions, it is instructive to consider the buckling shapes of the
various cell types. As depicted in Figure 5.15, the critical strut in the fyccz and becz cells is
consistently the vertical strut. The system can be decomposed into the vertical strut and an outer
cell, which is a fycc cell for the fccz system and a bcec cell for the becz system. Utilizing the
equivalent member method, the outer cell is replaced by rotational springs acting at the lower
and upper vertices. The equations required to calculate the critical buckling load for a strut with
springs at the ends are derived in Appendix G.0.3 and H.0.1 for both the isolated and embedded
cases.

The only missing parameter to apply these equations is the spring stiffness c. The spring stiff-
ness is defined as ¢ = M /6, where M is the end symmetric moment, and 6 is the end slope of
the bending curve. Consequently, as shown in Figure 1.2a, for a given applied moment M at the
cell ends, the angle 0 is required. To determine the spring constant ¢, a moment is applied at
the upper and lower vertex of the unit cell and the angle 6 is determined from the assembled
stiffness matrix of the unit cell itself.

0

4
(a) Example of the equivalent

model, based on a f>cc unit (b) Naming convention for the
cell. vertices of a frcc cell.

Fig. 1.2: Schematic representation of the equivalent model.

The relationship between loads and displacements is governed by the stiffness matrix of the
cell, which can be formed from the stiffness matrices of its constituent beams. To obtain the
stiffness matrices of the beams, the stiffness matrix of a horizontal beam (see Equation H.23),
aligned with the x-axis, is rotated into the correct orientation. This rotation is accomplished by
using @4 pc for the bee cell and ¢y 4, for the foce cell. To perform this rotation, the 12 x 12
rotation matrix (Equation H.24) is constructed, utilizing the basic 3 X 3 rotation matrix around
the z-axis
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cos(¢) sin(¢) O
Ry = | —sin(¢) cos(¢) 0 (1.3)
0 0 1

This basic rotation matrix is employed to build the 12 x 12 rotation matrix, which is used to
orient the stiffness matrix of the horizontal beam to the desired orientation.

Exploiting symmetries within the stiffness matrices of the diagonal beams, where rotation
angles are either ¢ or 180° — ¢, enables simplifications such as cos(¢) = —cos(180° — ¢)
and sin(¢) = sin(180° — ¢). Additionally, further symmetries exist among the displacements
of the vertices in the specific loading case involving two applied moments about the z-axis at
vertices 1 and 4. For the f>cc cell, these symmetries can be expressed as in Equation 1.4.

Uy = uzr = 0

Vv)y=v3=vy =vy =0

Wy = w3
Wor = Wsy/ (1-4)
@z,Z’ - @z,3’

O =0,3= @y,zf = @y,y =0
®x,2 = ®x,3 - ®x,2’ - ®x,3’ =0

The subscripts denoted by indices 2, 2/, 3, and 3’ correspond to the respective vertices of the
cell, following the naming convention illustrated in Figure [.2b. Considering the equations from
.4 along with the boundary conditions at vertices 1 and 4, the remaining displacements to be
determined are ©y 1, ©,y, wy, and w,. The equation F = Kf,.d can thus be reduced to a
four-dimensional problem, where K, is the assembled stiffness matrix of the f,cc cell

M 2K10,10+2K1212 2K105 2K103 2Ki12;1 0.,
My | 2Ks,10 2Kss 2Ks3 0 O (15)
Fo 2K3,10 2K35 2K33 0 wor
F» 2Ky,12 0 0 2Ky, W

Equation .5 represents the relationship between the applied moments and displacements for
the f>cc cell under the condition of lateral fixing at the vertices. The stiffness matrix Kg,ce
is assembled from the stiffness matrices of the rotated (diagonal) beams. The stiffness matrix
entries K; ; are determined based on the rotated beam’s stiffness matrix, with 7 as the row index
and j as the column index.

To solve for the slope @, at vertex 1 when the load condition F = (M,1,0,0,0)7 is applied, the
system is linear, and an arbitrary value of 1 Nmm can be used for the applied moment M,; due
to the problem’s linearity.
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For the f>cc cell, symmetry implies equal bending rigidity around the x- and y-axes. However,
for calculating the critical buckling loads of the vertical strut, only a rotational spring around
the y-axis is needed, given that the buckling problem is addressed in a 2D-plane.

Equation 1.5 is also applicable for determining the M /0 relation for the bcc cell, as indicated
in [40]. The bcc cell can be considered as a fcc cell rotated 45° around the z-axis (with the
exception of the longer struts), with the primary change being the use of Ly p. instead of Ly g,cc
to calculate the stiffness matrix entries.

The stiffness matrix of an individual beam involves the combination of bending Ky, and shear Kg
stiffness matrices, as well as the foundation stiffness matrix K¢ in the embedded case. A shear
coefficient of ¥ = 9/10, corresponding to a circular cross-section, is applied for the beam. The
geometric matrix Kg, dependent on the axial load Fy acting on the beam element, requires an
iterative process for determination. However, since the outer cell’s axial load cannot be easily
calculated, and previous work by [40] demonstrated that the geometric matrix is not crucial for
cells with a vertical strut, it is omitted in this analysis.

In the isolated case, after obtaining the spring constant ¢, the end constraint factor » is determ-
ined through equation G.30 by solving for {, as the equation cannot be directly solved for 1. As
the equation cannot be solved for 7, it is solved for { instead (Equation 1.6). Figure 1.3 shows
the behaviour of the variable 7, plotted against (.

~ cos(n)—1
IR (16)
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Fig. 1.3: Relationship between 7 and §.
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Via curve fitting, the following rational function can deliver a more useful inverse relationship
between the two variables, with an error with a root mean square of less than 0.1% in the fitted
interval. Equation 1.7 provides a more exact fit than Newmark [157] (Equation G.31).

317482+ 11148 +2.486
B ¢ +0.3952

{d.7)

In the embedded case, the critical buckling load is determined using Equation H.11. As it is not
feasible to solve this equation directly for P, the following approach is employed:

* The determinant’s value from Equation H.11 is computed for a range of loads, initiating
with the smallest viable solution P,;, = V4kEI (as it has been established that the beam
will not buckle at smaller values). Increments of AP = 1N are applied, with a maximum
load of P,,,x = 4P, seeming sufficient.

* A curve is fitted to the data points employing a piecewise polynomial.

* The zeroes of the fitted curve are calculated using an iterative method. The critical load
corresponds to the first zero greater than P,;,. Higher-valued zeroes indicate higher
modes of buckling for the beam.

The equivalent member method, as applied by Biihring does not yield satisfactory analytical
solutions for the local buckling of bcc and f)cc cells. Instead, an approximation for the crit-
ical buckling load is made by considering that one of the diagonal beams will buckle. Euler’s
formula for a beam on hinged supports, P., = 72EI/ (LZ), is then employed, ignoring the in-
fluence of surrounding beams. Biihring introduces a correction factor of 4sin(¢ ), reflecting the
division of the applied force among the diagonal struts (see Figure 1.4). In the embedded case,
the same approximation is used, applying Equation 2.76 for a Winkler model or Equation 2.81
for a Pasternak model.

X

Fig. I.4: The load acting on the entire cell is distributed among the four struts. Force equilibrium
dictates that Pueyy = 4sin(¢) Py
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This section explores lattice components constructed from the individual unit cells examined
in the previous section. The numerical models of lattice components can be generated by rep-
licating the cell models in the three Cartesian coordinates. The size of the lattice component
is defined by three parameters, denoted as n, X n, x n,, representing the number of cells in
the x-, y-, and z-directions, respectively. While numerical analyses using volumetric elements
can become computationally expensive due to the high element count, they are employed for
specific lattice configurations to validate results obtained with beam elements. Subsequently,
the beam/spring model is utilized for a broader range of cell sizes, allowing for more extensive
analyses. The section concludes with a comparison of the different geometries.

As observed in the analysis of individual unit cells, the chosen boundary conditions significantly
impact the modes of buckling and, consequently, exert a substantial influence on the critical
buckling load. Here, the selection of boundary conditions is tailored to emulate a compression
test. Figure J.1 illustrates a fundamental configuration depicting how a compression test might
be conducted by inserting the lattice component into a cuboid-shaped casing.

7

L

X

Fig. J.1: Schematic representation of a physical compression test, which is reproduced numerically
in the following.

In the numerical model, the upper and lower faces of the component are connected to a plate,
preventing transverse strain in those regions. This is simulated by establishing a rigid region
between the upper nodes and replicating the same procedure for the lower nodes. For the lower
master node, all translations and rotations are constrained. Conversely, at the upper master node,
only translations in the x- and y-directions are restricted, as additional constraints would res-
ult in an over-constrained model, making a solution through eigenvalue analysis unattainable.
Moreover, outward translations must be restricted for the nodes on the lateral faces of the lattice
component. This restriction assumes that the nodes at the lateral vertices are in direct contact
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with the inner faces of the case in the uncompressed state, necessitating a perfect fit between
the lattice component and the case. For the two lateral faces of the lattice in the xz-plane, trans-
lations in the y-direction are constrained; for the lateral faces in the yz-plane, translations in the
x-direction are restricted. It is important to note that these boundary conditions are approximate,
as in the compressed state, the nodes are pushed outward, generating friction forces that also
partially restrict translations in the other two directions. Determining the friction forces requires
non-linear analysis, making it unclear how the other directions should be restrained. Here, two
cases are examined separately: Case I, where only the outward direction is restrained, and Case
II, where both x- and y-directions are restrained. A constraint in the z-direction is illogical, as
movement in the direction of the load must be permitted. The numerical model based on beam
elements is shown in Figure J.2.

Fig. J.2: Numerical model with beam elements for a 4 x 4 x 4 — bcc lattice component in the isolated
case. Cyan triangles denote translational restrictions, orange triangles rotational restrictions
and pink triangles and lines constraint equations between nodes due to rigid regions.

If the entire component assumes the form of a slender column, global buckling of the component
may occur. Biihring [142] offers a comprehensive method to analytically ascertain the critical
buckling loads for global buckling of slender lattice components. However, the boundary con-
ditions previously outlined for the lattice component in this work eliminate the possibility of
global buckling. This is because the lateral restrictions and the restrained rotations at the ends
of the structure leave no degrees of freedom for bending in the macrostructure.

Results comparison between beam model and volumetric model The beam/spring model
is utilized for simulating the components. Here a comparison of the model outcomes is first
made between beam/spring and volumetric model, with the scope of verification. To maintain
analogous boundary conditions for this analysis, the lateral faces of the components are left
unrestricted in both models.

The anticipated outcome of this analysis was that, for low strut slenderness ratios, the volu-
metric model would yield higher critical buckling loads due to volume overlap at the vertices,
outperforming the beam model. Conversely, for high slenderness ratios, the beam model should
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surpass the volumetric model, as the springs in the beam model are independent, while the volu-
metric foundation can move between cells, theoretically reducing the stability of the structure.
However, this expectation proved to be partly incorrect. The results of the analysis are depicted
in Figure J.3. It’s worth noting that the embedded volumetric model could not be analyzed for
slenderness ratios greater than L/ D = 20 due to computational limitations.

- - NUM beam, isolated - - NUM beam, embedded
100000F  »o -+~ NUM volumetric, isolated - 2= NUM volumetric, embedded
; ~ RS ““"""“A ___________ e
SN N R
Z 10000+
5 SRS < .
I N -
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.
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Critical strut slenderness L/D [-]

Fig. J.3: Critical buckling load comparison between the beam/spring and volumetric models for a
2 %2 x 3 — bcc lattice.

In the isolated case, the results align with the studies conducted on individual cells. However,
in the embedded case, the volumetric model yields high critical buckling loads, even at high
slenderness ratios. This notable difference from the solutions of the beam/spring model was
not observed when analyzing individual cells. A hypothesis is proposed that this discrepancy is
related to the stiffness provided by the rigid regions at the top and bottom faces of the model.
To investigate this, an individual bcc cell is studied where, instead of using a symmetry bound-
ary condition on the side of the foundation model, the top and bottom faces of the foundation
volume are part of the corresponding rigid region (see Fig. J.4). The results are displayed
in Figure J.5, revealing that this boundary condition produces similarly high critical buckling
loads. The difference from the solution curve of the embedded beam model even appears larger
than with the 2 x 2 x 3 component, likely because the rigid regions are closer to each other for
the individual cell. The impact of this boundary condition should diminish for larger lattice
components, as the distance to the rigid regions increases for most elements in the model. Un-
fortunately, this cannot be studied further, as a 2 x 2 x 3 component is already near the limit of
what can realistically be numerically analyzed with the available computational resources.

Figure J.6 illustrates the node displacement corresponding to the critical buckling load for a strut
slenderness of L/D = 20. The observed displacements in the elastic medium are primarily loc-
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Fig. J.4: Section view of a volumetric model for a bcc unit-cell. The top and bottom faces of the

foundation volume are part of the rigid region.
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Fig. J.5: Critical buckling load for the case considered and shown in Figure J.4.

alized around the buckling strut, with minimal propagation to neighboring cells. Consequently,
it appears that the stability reduction in the structure caused by the deformable elastic medium,
when employing volumetric elements, has a negligible impact, as the deformations remain con-
fined to the vicinity of the buckling strut. This finding lends additional support to the beam/s-
pring model, wherein the foundation is treated independently for each strut.

It can be inferred that the imposed boundary conditions in the volumetric model, which in-
clude rigid top and bottom faces of the component, result in critical buckling loads significantly
surpassing those obtained with the beam/spring model. While this conclusion holds true for
lattice components with a small amount of unit-cells, it is anticipated that the impact dimin-
ishes for larger lattice components, where global buckling is the concern, rather than local
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Fig. J.6: Nodal displacements within the lattice structure a) and elastic medium b) at critical buckling
load for the 2 x 2 x 3 — bcc lattice with L/ D = 20. Units in mm.

one. This assumption cannot be validated due to the computational expenses associated with
volumetric models. The subsequent subsection explores lattice components using beam/spring
elements, recognizing that the solution likely differs markedly from that derived using volu-
metric elements. Nevertheless, the investigations previously described suggest that the model
based on beam/spring elements should yield conservative results, thus allowing valid qualitative
(although not quantitative) considerations.

Component size variation using the beam model

To investigate the size effect, i.e. scale variance, on the critical buckling load, numerical ana-
lyses are conducted on lattice components of varying sizes using the beam/spring model, as
mentioned above. Initially, cubic components with an equal number of cells in all three dir-
ections are examined to maintain a constant aspect ratio. When these lattice components are
subjected to a compressive load, the force is distributed among the cells in the xy-plane. To
facilitate a meaningful comparison across differently sized lattice components, the results of
the critical buckling load are normalized dividing them by the number of cells in the xy-plane.
For instance, in a lattice component based on a repetition of 3 x 3 x 3 unit cells (i.e. three in
each direction), the results are divided by 9. Figures J.7 to J.10 depict the critical buckling loads
for the different unit-cells. The solutions are presented as functions of the component size for
selected critical strut slenderness ratios of L/D = 5,15,30. The component sizes vary from 1
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to 8 cells.
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Fig. 1.8: foccz.

The lattice structures with f>cc and f>ccz unit-cells exhibit variations in critical buckling loads
under different boundary conditions, specifically Cases I and II, as illustrated in Figures J.7 and
J.8. Conversely, the bcce and becz lattice structures demonstrate minimal discrepancies in critical
buckling loads, with deviations on the order of approximately 1% in both boundary condition
cases. The graphical representation in the figures exclusively displays the solution for Case I
for clarity. This observed behavior can be ascribed to the stability of the lateral vertices inherent
in the lattice structure.

Figure J.11a) portrays the buckling phenomenon in a f>cc lattice under Case I, wherein the outer
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Fig. J.10: bccz.

struts of the outer cells exhibit sideways buckling. In contrast, in Case II (Figure J.11b), these
outer struts are constrained, preventing lateral movement and leading to the buckling of inner
struts. Consequently, distinct buckling modes emerge with different critical buckling loads.
This principle is similarly applicable to the embedded case, as well as the lattices with f>ccz
unit-cells.

In contrast, the bcc lattice (Figure J.11c) presents a unique structural arrangement, where, when
viewed from above, the struts align diagonally, and the diagonals connect at the outer vertices,
impeding lateral translations along the boundary wall. As a result, for both bcc and bcecz lat-
tices, there is negligible disparity in critical buckling loads between the two boundary condition
cases.

The resulting curves manifest a diminishing scale variance in the embedded scenario across all
cell topologies, indicating a subtle augmentation in the critical buckling load concerning larger
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Fig. J.11: Top view of the buckled shape for lattices with a size 4 x 4 x 4 and with L/D = 15. a)
and b) show f>cc lattices under both case I and case 11, respectively. c) shows a bcc lattice
under case 1.

lattice components. This decreasing size effect is similarly discernible in isolated bcc and becez
lattices, suggesting that augmenting the number of cells in these instances reinforces the stiff-
ness of the vertices. Conversely, isolated fcc and f>ccz lattices exhibit a stiffening size effect in
case II. An explicable rationale for this behavior emerges upon scrutinizing the buckling modes
portrayed in Figure J.12, illustrating the buckled configuration of lattices sized 3 x 3 x 3 for
diverse cell types.

In the isolated setting, bcc and becez types manifest simultaneous buckling of all cells, forming
windmill-like structures characterized by point symmetry at the vertices. In contrast, for facc
and fyccz types, in case I, the outer cells of the xy-plane buckle, while in case 11, the inner cells
predominantly undergo buckling. Notably, in case II, rotational movement of the vertices in
the outer cells is restricted. With an increase in lattice size, the number of inner cells experi-
ences a more rapid increase than the number of outer cells, facilitating additional rotations of
the vertices. This serves as a plausible explanation for the observed stiffening size effect in this
particular case.

In the isolated scenario, the deflection curves of the struts display a singular half-sine wave,
resulting in windmill-like structures with point symmetry at the vertices. Conversely, in the em-
bedded scenario, cells do not buckle simultaneously; those situated at the top of the lattice (near
the applied load) are the initial ones to buckle. The struts exhibit deflection curves characterized
by multiple half-sine waves, as anticipated.

The investigation also delves into how the critical buckling load varies with the aspect ratio of
the lattice component. Lattices with 5 x 5 cells in the xy-plane and a variable number of cells
in the vertical direction are explored. The outcomes, depicted in Figure J.13 for a bcc lattice
and Figure J.14 for an f>ccz lattice, are not normalized by the number of cells in the xy-plane,
as such normalization is unnecessary for result comparison within this context. In the isolated
case, a stiffening size effect is apparent, whereas a consistent softening size effect is observed
in the embedded case.

In summary, the imposed boundary conditions appear to induce a relatively modest size effect.
Consequently, solutions obtained for individual cells closely align with those acquired for the
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Fig. J.12: Buckled shapes for all lattices both in isolated and embedded conditions. Top and side
columns describe two different views of the component. Size 3 x 3 x 3 at L/D = 30.
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components, necessitating straightforward multiplication by the number of cells in the xy-plane
for conversion. It is imperative to underscore that this conclusion is contingent upon the specific
nature of the provided boundary conditions.

isolated embedded
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Fig. J.13: Critical buckling loads for a bcc lattice with 5 x 5 cells in the xy plane while varying the
number of vertical cells (numerical analysis using beam/spring elements, for case I).
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Automatic differentiation (AD) is a powerful numerical tool that is capable of computing exact
derivatives (to machine precision) of computer programs. This is possible based on the idea
that computer programs are made up of elementary operations such as multiplication, division,
addition and subtraction [20]. The key to AD is the application of the chain rule [20], shown in

equation K.1.
d _dfdg

8w =30 (K.)

Automatic differentiation can be implemented through operator overloading and the use of dual
numbers [20]. Dual numbers are similar to complex numbers, in that they are expressed as
a+ be. The variable £ is defined to be 0 and the values a and b are both real numbers. The
operations performed on dual numbers act as normal, as shown below in equation K.2 [20].

(a+be)+ (c+de)=(a+c)+ (b+d)e (K.2a)

(a+be) x (c+de) = (ac) + (ad + bc)e (K.2b)

Dual numbers are powerful tools when passed into any smooth function f. By Taylor expansion,
it can be shown that the function evaluation, as well as its derivative, can be found [20].
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Furthermore, AD can be used in either forward or reverse mode. Consider a generic problem

where the Jacobian %; is to be computed, where i € [1,2,...,n] and j € [1,2,...,m|. Forward
mode AD is capable of computing the Jacobian column-by-column dd—xfj. In reverse mode, the

Jacobian is computed row-by-row %. How this is achieved will be discussed in the following
sections. For the following examples, the derivative of the function in equation K.4 will be
evaluated.

f(x1 ,x2) = X1X2 + X1 Sin(XQ) (K4)

Forward Mode

As was mentioned, forward mode AD computes a Jacobian column-by-column. This means it is
more efficient to use forward mode when n < m. The evaluation of equation K.4 can be thought
of visually as a directed acyclic graph (DAG), where each sub-evaluation is a vertex. The lines
connecting each vertex can be thought of as where the derivatives are evaluated. The DAG for
equation K.4 is shown in figure K.1. With forward mode AD, a function can be differentiated

sin(va) VqV3

Fig. K.1: Graph of equation K.4

with respect to a single variable in each forward pass. A forward pass is simply computing
the DAG from left to right. To achieve this using dual numbers, the dual number for only one
variable is "seeded.’ In this example f(a,b), equation K.5. In this example, v4 and vs using
equation K.2b and vg used equation K.2a. To compute the full derivative, two forward passes
are required.

vi=a+le V4 = V1V = ab + be
vy =b+0¢ vs = vivz = asin(b) +sin(b)e (K.5)
v3=sin(b) +0e  ve=vs+vs=ab+asin(b)+ (b+sin(b))e

Reverse Mode

Reverse mode AD computes a Jacobian row-by-row. This makes it more efficient when m < n.
Reverse mode AD consists of a forward pass where the vertices and lines are computed, and
a reverse accumulation pass. In this case, the lines are the derivatives of v; w.r.t v; rather than
w.r.t the variable.
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The reverse pass requires the evaluation of equation K.6. The parents (p) of vertex i are all the
forward vertices connected to v;. For this example, v, has v3 and v4 as parents. From equation
K.6, it is clear that the entire DAG needs to be stored in memory to be able to compute the
derivative. However, it is now also possible to compute the derivative w.r.t all the inputs.

Vi pEparent(i) Vp OVi






L Calculation of the Phase Change sensitivity

Recall that the residual form to solve the phase change problem is given as shown below. This
was derived and given by [168]

R(T™) = fAr+CT" — (L' — L") — (C+KAr)T""!

Linear Gradient

When the system of equations is linear, the gradient can be computed as follows. Equation L.1
shows the simplified residual equation when the latent heat vectors are equal. The equation
essentially becomes a linear system of equations that can be solved.

" = (C+KAr) "' (fAr+CT™)

gty 8

The gradient of this temperature vector can then be determined as follows in equation L.2. One
thing to note from this derivative is that the derivative of the previous temperature vector is
required. This means that the derivatives need to be tracked throughout each iteration. This has
the effect of accumulating the transient effects throughout the entire simulation.
oT"t1 0
= A
ap ap
JA™! db
= b+A" 1=
ap ap

(L.2a)
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ob 0 "
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Non-Linear Gradient

The computation for the non-linear gradient needs to consider the latent heat vectors, as these
are no longer equal and have a significant effect on the gradient. Due to the non-linearity,
the temperature is iteratively determined using a Newton iteration, where the Jacobian, J, of
equation L is required. Using these, the temperature of the next time step can be determined.

n
T =T+ Y (AT); (L.3a)
Where: TO”H =T7T"

(AT); = [J(T ] 'R(T) (L.3b)

The gradient of the temperature vector can then be determined as shown in equation L.4. Some
complications arise with the latent heat vector and matrix as the gradient of the previous tem-
perature vector is required.
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