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1. Introduction

Let V := (Fq)d be a d-dimensional vector space over the field Fq of order q. Given 
positive integers e1, e2 satisfying e1 + e2 = d, let Xi denote the set of ei-dimensional 
subspaces of V for i ∈ {1, 2}. The bipartite q-Kneser graph Γ = Γe1,e2 has vertex set 
V Γ = X1∪̇X2 (disjoint union) and edge set EΓ = {{S1, S2} | S1 ∈ X1, S2 ∈ X2, S1∩S2 =
0}. We emphasise that the subsets X1, X2 are regarded as disjoint vertex-subsets, even 
in the case e1 = e2. A 4-tuple (S0, S1, S2, S3) ∈ X2 × X1 × X2 × X1 is called a 3-walk
if {S0, S1}, {S1, S2}, {S2, S3} are edges of Γ; a 3-walk is called closed if {S3, S0} is also 
an edge, and it is called a 3-arc if S0 �= S2 and S1 �= S3. Dfine P (e1, e2) to be the 
proportion of 3-walks of Γe1,e2 which are closed 3-arcs. Our first result determines an 
exact formula for P (e1, e2) in terms of the following function:

ω(e) :=
e ∏

i=1
(1 − q−i), for e ∈ Z with e � 1, and ω(0) = 1. (1.1)

Theorem 1.1. Let d = e1 + e2 with 1 � e2 � e1. Let q > 1 be a prime power, and let 
P (e1, e2) denote the proportion of 3-walks of Γe1,e2 which are closed 3-arcs. Then

P (e1, e2) = −(1 − q−e1e2)q−e1e2 +
e2−1∑
�=0 

ω(e1)ω(e2)q−(e1−e2+�)�

ω(e1 − e2 + �)ω(�) (1.2)

= 1 −O(1/q).

Although the exact formula (1.2) for the proportion P (e1, e2) is intricate, it allows us 
to prove that P (e1, e2) is close to 1− q−1 − q−2. This requires very delicate calculations, 
especially for ‘small’ q. The lower bound given below was our primary objective to help 
understand the complexity of a probabilistic generation algorithm, especially for ‘small’ q.

Theorem 1.2. If e2 = 1, then

1 − q−1 − q−2 < P (e1, 1) < 1 − q−1 for e1 � 3, and

1 − q−1 − q−2 < P (e1, e2) < 1 − q−1 − q−2 + 2q−3 − 2q−5 for 2 � e2 � e1.

The proportion P (e1, e2) also arises when considering certain 2-generated irreducible 
subgroups of GL(V ). To describe this key connection, we need additional terminology.

An element g �= 1 of the general linear group GL(V ) = GLd(q) is called an e-stingray
element if g acts irreducibly on the image U = V (g − 1) = im(g − 1) of g − 1, and 
dim(U) = e. A pair (g1, g2) of elements in GL(V ) is called an (e1, e2)-stingray duo if 
gi is an ei-stingray element for i ∈ {1, 2}, and U1 ∩ U2 = {0} where Ui = im(gi − 1). 
A pair (g1, g2) ∈ G × G is called irreducible if the 2-generated subgroup 〈g1, g2〉 of 
GL(V ) acts irreducibly, that is, the only subspaces of V invariant under 〈g1, g2〉 are V
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and {0}. Clearly, for an (e1, e2)-stingray duo (g1, g2), the subgroup 〈g1, g2〉 is reducible 
whenever e1 + e2 < d as it fixes the proper subspace U1 + U2. The graph-theoretic 
invariant P (e1, e2) described in Theorem 1.1 has a representation-theoretic interpretation 
as described below.

Theorem 1.3. If d = e1 + e2 with 1 � e2 � e1, and if SLd(q) � G � GLd(q), then with 
P (e1, e2) as in (1.2),

P (e1, e2) = Number of irreducible (e1, e2)-stingray duos in G×G

Number of (e1, e2)-stingray duos in G×G
.

An (e1, e2)-stingray duo (g1, g2) is called generating if 〈g1, g2〉 contains the special 
linear group SLd(q). For algorithmic purposes we are interested in the proportion of 
(e1, e2)-stingray duos that are generating. This will be a smaller proportion than the 
proportion P (e1, e2) of stingray duos that are irreducible. We believe that this smaller 
proportion is also 1−O(q−1), but a proof of this fact requires a very careful analysis of 
when 〈g1, g2〉 ∩ SLd(q) is a proper subgroup of SLd(q). When non-generation occurs, it 
is almost always because 〈g1, g2〉 is a reducible subgroup. By the previous two theorems, 
the proportion of (e1, e2)-stingray duos in G × G that are reducible is 1 − P (e1, e2) <

q−1 + q−2. By contrast, we believe that the proportion of (e1, e2)-stingray duos that 
are non-generating and irreducible is substantially smaller: at most O(q−ce1e2) for some 
constant c. This is known to be the case when e1 = e2 = d/2, see [14, Theorems 5 and 6] 
and Section 7, which is the case underpinning the algorithm presented in [4]. Theorem 1.2
and Corollary 7.4 lead to an improved complexity analysis for the algorithm in [4], for 
further details see the forthcoming paper [8].

The estimates obtained in this paper will be applied in [8] to prove a key theorem 
underpinning the complexity analysis of a new generation of recognition algorithms for 
classical groups. These new algorithms are described in Rademacher’s PhD thesis [15] 
where, in addition, information is given on implementation details and comparative tim
ings for the new algorithm against the current-best algorithm in [4] for various values 
of the dimension and field size. The latter indicate considerably improved running times 
for the new algorithm, especially as the dimension increases.

The bipartite q-Kneser graph Γe1,e2 was also used to solve another problem that 
arises from computational group theory. Suppose that V is a (e1 + e2)-dimensional clas
sical space (symplectic or orthogonal) over a finite field Fq, and let Yi be the set of 
non-degenerate ei-subspaces of V (of a particular type in the orthogonal case). A pair 
(U1, U2) ∈ Y1 × Y2 is called spanning if V = U1 + U2, that is to say, if {U1, U2} is 
an edge of Γe1,e2 . Thus the proportion of pairs (U1, U2) ∈ Y1 × Y2 that are spanning 
equals the proportion of pairs (U1, U2) ∈ Y1 ×Y2 that are edges of the induced subgraph 
[Y1 ∪̇Y2] of Γe1,e2 with vertex set Y1 ∪̇Y2. It was shown in [6, Theorem 1.1] that this 
proportion is 1 − O(q−1), and a stronger estimate was obtained in [5, Theorem 1.1]: 
namely the proportion is at most 1 − 3 

2q unless (e1, e2, q) = (1, 1, 2). (The bound also 
applies for a unitary space (Fq2)d if we replace q with q2.) The proof in [5] uses the 
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Bipartite Expander Mixing Lemma, and knowledge of the eigenvalues of the induced 

subgraph [Y1 ∪̇Y2] which are determined via a deep geometric algorithm [3] dating back 

to Brouwer [2], and the representation theory of the symmetric group. By contrast, the 

present paper uses elementary combinatorics, linear algebra and group theory to prove 

the above theorems.
The research in this paper sheds light on a very difficult part of a larger problem of 

recognising classical groups computationally. Much has been written on the computa
tional complexity of classical recognition algorithms including [4,6,7,11,10,14], and with 

the benfit of hindsight, the ‘right’ proportions were not always studied. An overview 

of this larger picture, and some of the nuances, is discussed more fully in Section 7. 
In particular, by noting that some of these algorithms work with stingray duos instead 

of ‘stingray pairs’ we obtain probability estimates which allow the hypothesis q > 4 to 

be removed from [4, Theorem 1.2], and the hypothesis q > 2 to be removed from [14, 
Theorem 2]. Application of our Theorem 1.2 also improves the analogous upper bound 

for duos in the linear case in [14, Theorem 5].
Although a major motivation for this paper is analysing a classical recognition algo

rithm, including the case of special linear groups, we stress that this paper is motivated by 

the linear case. The hard problem for the analysis is showing that the subgroup 〈g1, g2〉, 
generated by a stingray duo (g1, g2), lies inside a proper subgroup of the quasisimple 

classical group, with low probability. It is shown in [8] that in the symplectic, unitary, 
and orthogonal cases the probability is at most c1q−c2d for positive constants c1, c2. By 

contrast, in the linear case, Theorems 1.2 and 1.3 of this paper imply that even the 

probability that 〈g1, g2〉 lies in a reducible subgroup of GLd(q) is much higher, namely 

just less than q−1 + q−2. Obtaining this highly accurate estimate has proved critical for 
giving complexity estimates for the recognition algorithm for SLd(q) that are effective 

even for small values of q (which previous results were unable to handle).
In Section 2, we give a more general definition of a bipartite q-Kneser graph where 

e1 + e2 � d, but because of our applications, we focus on the case where e1 + e2 = d. 
We count the number of 3-walks and 3-arcs in Γe1,e2 , see Remark 2.1 and Lemma 2.2. 
In Section 3, we analyse stingray pairs and duos. Lemma 3.5 gives criteria for a stingray 

duo (g1, g2) to be irreducible in terms of subspaces U1 = im(g1−1) and U2 = im(g2−1), 
and these are shown in Lemma 3.6 to hold precisely when we have a closed 3-arc in 

Γe1,e2 . Section 4 counts the number of closed 3-walks and closed 3-arcs of Γe1,e2 . These 

counts are used in Section 5 to compute the proportion P (e1, e2) of 3-walks that are 

closed 3-arcs. The q-identity in Corollary 4.2 allows us to highlight the dominant terms 
of P (e1, e2). This is used in Section 6 to prove the upper and lower bounds for P (e1, e2)
in Theorem 1.2. Finally, the computational context for this work is described in Sec
tion 7.
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2. The q-Kneser graph

2.1. Walks and arcs in graphs

A k-walk of a graph Γ is a sequence (v0, v1, . . . , vk) of k + 1 vertices of Γ such that 
{vi−1, vi} is an edge for 1 � i � k. We call a k-walk (v0, v1, . . . , vk) of Γ a k-arc if 
vi−1 �= vi+1 for 1 � i < k, see [1, p. 130]. For a k-arc, imagine ‘walking’ from v0 to vk via 
edges of Γ, where we cannot walk from vi directly back to vi−1, but we can walk to any 
other adjacent vertex. A 1-arc (v0, v1) is commonly called an arc, and is viewed as the 
edge {v0, v1} directed from v0 to v1. A k-walk or a k-arc (v0, v1, . . . , vk) is called closed1

if {vk, v0} is an edge of Γ. If Γ has n vertices and its adjacency matrix has eigenvalues 
λ1, . . . , λn (counting multiplicities), then it follows from [1, Additional Results 2h] that 
the number of closed k-walks of Γ equals 

∑n
i=1 λ

k+1
i . We dfine the bipartite q-Kneser 

graph below, and show that the number of closed 3-walks can be counted without using 
eigenvalues.

If Γ is a bipartite graph, then a 3-arc has four distinct vertices, as the only edges join 
the ‘left’ vertices to the ‘right’ vertices of Γ.

2.2. Bipartite q-Kneser graphs

Let V := (Fq)d be a d-dimensional vector space over the field Fq of order q. Given 
positive integers e1, e2 satisfying e1 + e2 � d, let

Xi denote the set of ei-subspaces of (Fq)d for i ∈ {1, 2}. (2.1)

We follow [5] and dfine the bipartite q-Kneser graph Γ := Γd,e1,e2 . The vertex set V Γ
is the disjoint union X1∪̇X2, and the edge set EΓ comprises all 2-subsets {S1, S2} with 
S1 ∈ X1, S2 ∈ X2 and S1 ∩ S2 = {0}. If e1 + e2 > d, then Γd,e1,e2 has no edges, and if 
d = e1 + e2, then we write Γe1,e2 instead of Γd,e1,e2 .

When e1 = e2 there is a non-bipartite q-Kneser graph Γ̃ with vertex set X1 = X2 and 
{S1, S2} is an edge precisely when S1 ∩ S2 = {0}. The bipartite graph Γ is the standard 
bipartite double-cover of the non-bipartite graph Γ̃, so that λ is an eigenvalue of Γ̃ if 
and only if ±

√
λ are eigenvalues of Γ as explained in [5]. We henceforth consider Γ and 

not Γ̃. We warn the reader that we sometimes refer to Γ simply as the q-Kneser graph, 
omitting the important adjective ‘bipartite’.

Because of a link which we uncover in Section 3 between irreducible 2-generated linear 
groups and closed 3-arcs in Γe1,e2 (see Lemma 3.6) we shall assume after Section 4 that 
e1 + e2 = d holds. We refer to the quantity ω(e, q) = |GLe(q)|/qe

2 simply as ω(e), 
suppressing q, as per the definition given in (1.1). We count the number of 3-walks of 

1 Our definition of ‘closed k-walk’ differs from [1]. The (k + 2)-tuple (S0, . . . , Sk, S0) is a closed (k + 1)
walk according to Biggs [1, p. 12]. For us, the (k + 1)-tuple (S0, . . . , Sk) a closed k-walk when {Sk, S0}
is an edge.
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Γe1+e2,e1,e2 , and the number of 3-arcs, in Lemma 2.2. The different types of 3-walks, 
with possible repeated vertices, are illustrated in Fig. 1; only the leftmost represents a 
3-arc.

Fig. 1. 3-walks (F1, U1, U2, F2) with possible repeated vertices; in the second, third and fourth diagrams we 
have U1 = F2, U2 = F1 and (U1, U2) = (F2, F1), respectively.

Remark 2.1. As Γd,e1,e2 is a bipartite graph with vertex set X1∪̇X2, there are two types 
of 3-walks: those in W1 := X1×X2×X1×X2 and those in W2 := X2×X1×X2×X1. The 
reversal map (S0, S1, S2, S3) 	→ (S3, S2, S1, S0) is a bijection W1 → W2 which preserves 
3-walks, 3-arcs, closed 3-walks, and closed 3-arcs. Hence the proportion of 3-walks (resp. 
3-arcs) in Γd,e1,e2 that are closed equals the proportion of 3-walks (resp. 3-arcs) in W2
that are closed. This explains why we restrict to W2 in Lemma 2.2 and Theorems 4.3, 4.4.

Lemma 2.2. If d = e1 + e2, then the number of 3-walks in X2 ×X1 ×X2 ×X1 is q4e1e2ξ, 
and the number of 3-arcs is q4e1e2ξ(1 − q−e1e2)2, where ξ = ω(e1+e2) 

ω(e1)ω(e2) with ω(e) as in 
(1.1).

Proof. We first count the number of 3-walks (F1, U1, U2, F2) ∈ X2 ×X1 ×X2 ×X1. The 
number of choices of F1 is

|X2| = |{ e2-subspaces of(Fq)e1+e2 }| = qe1e2ξ where ξ := ω(e1 + e2) 
ω(e1)ω(e2)

. (2.2)

There are qe1e2 choices for each of the complements U1 of F1, U2 of U1 and F2 of U2, so 
the number of 3-walks of Γ is q4e1e2ξ with ξ as in the statement. Similarly, the number of 
3-arcs of Γ is qe1e2ξqe1e2(qe1e2 − 1)2 = q4e1e2ξ(1− q−e1e2)2 as U2 �= F1 and F2 �= U1. �
Remark 2.3. For d = e1+e2 and e2 � e1 it is proved in [5] that Γe1,e2 has 2(e2+1) distinct 
eigenvalues and their values are ±μ0, . . . ,±μe2 where μj = qe1e2−j(e1+e2−j)/2 for 0 � j �
e2. Let Mj denote the multiplicity of the eigenvalue μj . This is also the multiplicity of 
−μj . By [1, Additional Results 2h] the number of closed k-walks is 2

∑e2
j=0 Mjμ

k+1
j and 

hence the number of closed 3-walks in Γe1,e2 is 2
∑e2

j=0 Mjq
4e1e2−2j(e1+e2−j). Computing 

formulas for the μj is not elementary. Indeed, the proof in [5] uses the representation 
theory of the symmetric group, and a sophisticated geometric algorithm due to [2] and [3]. 
We shall compute both the number of closed 3-walks in Γe1,e2 , and the number of closed 
3-arcs, by using linear algebra and group theory only. This bypasses the need to calculate 
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the multiplicities Mj , 0 � j � e2, which were not described in [5] for j �= 0. Our proof 
involves elementary arguments only. �
3. Stingray duos and the q-Kneser graph

We view V := (Fq)d as the natural module for the general linear group Gd := GLd(q). 
Let e1 + e2 � d with each ei � 1. Fix g1, g2 ∈ GLd(q) and set Ui := im(gi − 1), 
Fi := ker(gi − 1) and ei = dim(Ui) for i ∈ {1, 2} where ker(x) denotes the kernel of a 
linear transformation x, and as in Section 1, V x = im(x) denotes its image.

Definition 3.1. An element g ∈ GL(V ) is called a stingray element if g acts irreducibly 
and non-trivially on U := im(g−1). A stingray element g is called an e-stingray element
if dim(U) = e. (The first author coined this term as the matrix of g looks like relative 
to a suitable basis, where the body has dim(U) rows, and the tail has dim(V/U) rows.)

Definition 3.2. Given stingray elements g1, g2 ∈ GL(V ) set Ui := im(gi − 1) and Fi :=
ker(gi−1) for i ∈ {1, 2}. We call a pair (g1, g2) a stingray pair, or an (e1, e2)-stingray pair, 
if dim(U1) = e1 and dim(U2) = e2. We call a stingray pair a stingray duo if U1∩U2 = {0}.

Remark 3.3. If the minimal polynomial of g ∈ GL(V ) is a product a(t)b(t) of coprime 
polynomials, then V = ker(a(g)) ⊕ ker(b(g)) and ker(a(g)) = im(b(g)). If g is an e
stingray element, then its minimal polynomial has this form with a(t) irreducible and 
b(t) = t − 1, and we have V = U ⊕ F where U = ker(a(g)) and F = ker(g − 1). If 
dim(V ) = e1 + e2, then an (e1, e2)-stingray duo has V = U1 ⊕ U2 = U1 ⊕ F1 = U2 ⊕ F2, 
and hence {U1, U2}, {U1, F1} and {U2, F2} are edges of Γe1,e2 and (F1, U1, U2, F2) is a 
3-walk of Γe1,e2 . �
Definition 3.4. A stingray duo (g1, g2) is called an irreducible stingray duo if 〈g1, g2〉 is 
an irreducible subgroup of GL(V ), otherwise it is called a reducible stingray duo.

If (g1, g2) is an (e1, e2)-stingray duo in GL(V ), then e1 + e2 � d := dim(V ) since 
U1 ⊕ U2 � V . The following lemma is reminiscent of [7, Lemma 3.7]. It characterises an 
irreducible stingray duo (g1, g2) in terms of the subspaces Ui, Fi. As 〈g1, g2〉 fixes U1+U2, 
an irreducible (e1, e2)-stingray duo must have d = e1 + e2 and V = U1 ⊕ U2.

Lemma 3.5. Suppose that (g1, g2) is an (e1, e2)-stingray duo in GLd(q). Then the 2
generated subgroup 〈g1, g2〉 of GLd(q) acts irreducibly on V = (Fq)d if and only if

(a) V = U1 ⊕ U2 (so d = e1 + e2),
(b) F1 ∩ F2 = {0}, and
(c) U1 �= F2 and U2 �= F1.
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Proof. Certainly gi preserves the decomposition V = Ui ⊕ Fi, and fixes Fi elementwise. 
Hence if Ui � W � V , then gi fixes W . Thus U1+U2 is invariant under G := 〈g1, g2〉, and 
also G fixes F1 ∩ F2 elementwise. Moreover, if U1 = F2, then G fixes F2, and similarly if 
U2 = F1, then G fixes F1. Hence if G is irreducible, then the conditions (a)-(c) all hold.

Conversely, suppose that (a)-(c) hold. We argue first that a gi-invariant subspace Z of 
V satifies Z � Fi or Ui � Z. If some z ∈ Z satifies z �∈ Fi, then z(gi − 1) is a non-zero 
element of Ui. However, gi acts irreducibly on Ui and so Ui � Z as claimed. Suppose 
now that W is a non-zero proper subspace invariant under G := 〈g1, g2〉. Then W � F1

or U1 � W , and W � F2 or U2 � W . It is not possible that U1 � W and U2 � W

as then V = U1 + U2 � W by (a). Also, it is not possible that W � F1 and W � F2

as then W � F1 ∩ F2 = {0} by (b). Hence either W � F1 and U2 � W , or W � F2

and U1 � W . In the former case, U2 � F1 and d = dim(V ) = e1 + e2 by (a), so that 
e2 = dim(U2) � dim(F1) = d − e1 = e2 and hence U2 = F1. In the latter case, similar 
reasoning shows that U1 = F2. In either case, this contradicts (c). Therefore G preserves 
no proper non-zero subspace, and so G acts irreducibly on V as claimed. �

For the subgroup 〈g1, g2〉 to be irreducible, we require d = e1 + e2 by Lemma 3.5(a). 
Under this assumption we have multiple important links with the q-Kneser graph Γe1,e2 .

Lemma 3.6. Let d = e1 + e2. Let g1, g2 be stingray elements of Gd = GLd(q). Write 
ei = dim(im(gi − 1)) and Ci = {x−1gix | x ∈ Gd} for i ∈ {1, 2}.

(a) For each i, the map φi : Ci → EΓe1,e2 : g 	→ {im(g−1), ker(g−1)} dfines a surjection 
from Ci to the set EΓe1,e2 of edges of Γe1,e2 .

(b) Consider the map ψ : C1 × C2 → X2 × X1 × X2 × X1 : (g′1, g′2) 	→ (F ′
1, U

′
1, U

′
2, F

′
2), 

where U ′
i = im(g′i − 1) and F ′

i = ker(g′i − 1), for i = 1, 2.

(i) The pair (g′1, g′2) is a stingray duo if and only if ψ((g′1, g′2)) is a 3-walk in Γe1,e2 .
(ii) Restricting ψ to stingray duos yields a surjection onto the set of 3-walks 

in Γe1,e2 .
(iii) For an (e1, e2)-stingray duo (g′1, g′2), the subgroup 〈g′1, g′2〉 � GLd(q) acts irre

ducibly on (Fq)d if and only if the image ψ((g′1, g′2)) is a closed 3-arc in Γe1,e2 .

Proof. (a) For g ∈ Ci we see that {im(g − 1), ker(g − 1)} forms a direct decomposition 
of the vector space V = (Fq)d, and hence is an edge of Γe1,e2 by Remark 3.3. Each edge 
arises as an image of some element of Ci under φi since Gd = Ge1+e2 acts transitively 
on the set of decompositions V = U ⊕ F with dim(U) = ei.

(b) Note first that each conjugate of an e-stingray element is also an e-stingray 
element, and a conjugate in Gd×Gd of an (e1, e2)-stingray duo (g1, g2) is also an (e1, e2)
stingray duo. Fix (g′1, g′2) ∈ C1 × C2. Then, for each i ∈ {1, 2}, we have U ′

i ∩ F ′
i = {0}

so {F ′
1, U

′
1}, {U ′

2, F
′
2} ∈ EΓe1,e2 . Thus (F ′

1, U
′
1, U

′
2, F

′
2) is a 3-walk in Γe1,e2 if and only if 
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{U ′
1, U

′
2} is also an edge, that is, if and only if U ′

1∩U ′
2 = {0}. It follows from Definition 3.2

that (F ′
1, U

′
1, U

′
2, F

′
2) is a 3-walk if and only if (g′1, g′2) is a stingray duo, proving part (i).

Suppose that the 3-walk (F ′
1, U

′
1, U

′
2, F

′
2) is the image of the stingray duo (g′1, g′2) in 

C1 ×C2 under ψ, and let (F1, U1, U2, F2) be an arbitrary 3-walk in Γe1,e2 . Since Gd acts 
transitively on the decompositions V = U ′

i⊕F ′
i with dim(U ′

i) = ei, for each i = 1, 2, there 
exist x1, x2 ∈ Gd such that (F ′

1, U
′
1)x1 = (F1, U1) and (U ′

2, F
′
2)x2 = (U2, F2). Then ψ maps 

the pair ((g′1)x1 , (g′2)x2) ∈ C1 × C2 to (F1, U1, U2, F2), and by part (i), ((g′1)x1 , (g′2)x2) is 
a stingray duo. This proves part (ii).

Finally, we prove part (iii). Let (g′1, g′2) be a stingray duo, so U ′
i ∩ F ′

i = {0} and 
dim(F ′

i ) = d − ei for each i ∈ {1, 2}, and also U ′
1 ∩ U ′

2 = {0}; and by part (i), 
(F ′

1, U
′
1, U

′
2, F

′
2) is a 3-walk. Suppose first that 〈g′1, g′2〉 acts irreducibly on V . Then by 

Lemma 3.5(b), we have F ′
1 ∩ F ′

2 = {0} so {F ′
1, F

′
2} is also an edge of Γe1,e2 , so the 

3-walk (F ′
1, U

′
1, U

′
2, F

′
2) is closed; also U ′

1 �= F ′
2 and U ′

2 �= F ′
1 by Lemma 3.5(c), and 

therefore (F ′
1, U

′
1, U

′
2, F

′
2) is a 3-arc. Suppose conversely that (F ′

1, U
′
1, U

′
2, F

′
2) is a closed 

3-arc in Γe1,e2 . Then the vertices F ′
1, U

′
1, U

′
2, F

′
2 are pairwise distinct so Lemma 3.5(c) 

holds; {F ′
1, F

′
2} is an edge so Lemma 3.5(b) holds; and also the condition V = U ′

1 ⊕ U ′
2

of Lemma 3.5(a) holds since {U ′
1, U

′
2} is an edge. Thus 〈g′1, g′2〉 acts irreducibly by 

Lemma 3.5. �
We next prove that each of the maps φ1, φ2, ψ in Lemma 3.6 has fibres of constant size, 

and moreover that the Gd-conjugacy classes of stingray elements are also conjugacy 
classes for any group between SLd(q) and Gd.

For an e-stingray element g ∈ GL(V ) let U(g) := im(g − 1) and F (g) := ker(g − 1).

Lemma 3.7. Let g be an e-stingray element of Gd = GLd(q). For any subgroup G of 
GLd(q) containing SLd(q) let Cg(G) = {x−1gx | x ∈ G} be the G-conjugacy class of 
g ∈ Gd. We allow g �∈ G.

(a) The G-conjugacy class Cg(G) is independent of the choice of G, and has size

|Cg(G)| = |Gd| 
(qe − 1) · |Gd−e|

.

(b) The number of g′ ∈ Cg(G) such that (U(g), F (g)) = (U(g′), F (g′)) is |Ge|/(qe − 1).
(c) For i = 1, 2, let gi be an ei-stingray element in Gd and let Ci be the Gd-conjugacy 

class containing gi. Then the number of pairs (g′1, g′2) ∈ C1×C2 such that the 4-tuple 
(F (g′1), U(g′1), U(g′2), F (g′2)) equals (F (g1), U(g1), U(g2), F (g2)), is

|Ge1 | · |Ge2 | 
(qe1 − 1)(qe2 − 1) . (3.1)

Proof. (a) Let h be the restriction of g to U(g). Then h is irreducible on U(g) by 
Definition 3.1, and CGL(U(g))(h) = Zqe−1 is cyclic of order qe − 1 by [9, Satz II.7.3, 
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p.187]. Therefore X := CGd
(g) = Zqe−1×GL(F (G)). In particular, X contains a diagonal 

matrix of arbitrary non-zero determinant so |det(X)| = q − 1. Since G contains SLd(q), 
this implies that Gd = GX, so |det(G)| divides q − 1, so

|Cg(G)| = |G| 
|CG(g)| = |G| 

|G ∩X| = |GX|
|X| = |Gd|

|X| = |Cg(Gd)|.

As Cg(G) ⊆ Cg(Gd), equality holds and |Cg(G)| = |Gd| 
(qe−1)|Gd−e| .

(b) By part (a), the number of g′ ∈ Cg(G) such that U(g′) = U(g) and F (g′) = F (g)
is the number of g′ ∈ Cg(Gd) with this property. Thus we may, and shall, assume that 
G = Gd. Since g is an e-stingray element, we have V = U(g)⊕F (g) with dim(U(g)) = e. 
If g′ = gx where x ∈ G, we have U(g′) = U(g)x as

U(g′) = V (g′ − 1) = V (x−1gx− 1) = V x−1(g − 1)x = V (g − 1)x = U(g)x.

Similarly F (g′) = F (g)x. Thus the number of g′ ∈ Cg(G) such that U(g′) = U(g)
and F (g′) = F (g) is equal to the number of choices for x ∈ G with U(g)x = U(g) and 
F (g)x = F (g) divided by |CGd

(g)|. As G = Gd, this equals (|GL(U(g))×GL(F (g))|)/|X|
with X = CGd

(g) = Zqe−1 ×GL(F (G)) as in part (a). Therefore, the number we seek is 
|GL(U(g))|/(qe − 1) = |Ge|/(qe − 1), and part (b) is proved.

(c) By part (b) there are |GLe1(q)|/(qe1−1) choices for g′1 ∈ C1 and |GLe2(q)|/(qe2−1)
choices for g′2 ∈ C2. Hence the number of pairs (g′1, g′2) ∈ C1 × C2 is as claimed. �
4. Closed 3-walks and closed 3-arcs of Γe1,e2

In the light of Lemma 3.5 we shall assume henceforth that e1 + e2 = d and therefore 
V = Fe1+e2

q . In this section we count the number of closed 3-walks and closed 3-arcs 
of Γe1,e2 . This is twice the number that occur in X2 × X1 × X2 × X1 by Remark 2.1. 
Recall from (2.1) that Xi denotes the set of ei-subspaces of V = (Fq)e1+e2 for i ∈ {1, 2}. 
It will be convenient to represent a subspace of V as the row space of a block matrix. Let 
Me×d denote the vector space of e× d matrices over Fq. As the general linear group Gd

is transitive on the set of decompositions V = U1 ⊕ U2 where U1 ∈ X1 and U2 ∈ X2, we 
write U1 as the row space of (I | 0) ∈ Me1×d, and U2 as the row space of (0 | I) ∈ Me2×d. 
We use the shorthand U1 = RS(I | 0) and U2 = RS(0 | I) where the number of rows of I
and 0 can be inferred from dim(Ui) = ei. The number of columns of 0 can be inferred, as 
I is always a square matrix, and there are d columns in total. Therefore U1 = RS(I | 0)
has 0 ∈ Me1×e2 and U2 = RS(0 | I) has 0 ∈ Me2×e1 .

We dfine the action of the group Ge2 ×Ge1 on a matrix A ∈ Me2×e1 , and on a pair 
(A,B) ∈ Me2×e1 ×Me1×e2 : for (X,Y ) ∈ Ge2 ×Ge1 write

A(X,Y ) = X−1AY and (A,B)(X,Y ) = (X−1AY, Y −1BX). (4.1)
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(These are actions as (A(X1,Y1))(X2,Y2) = A(X1X2,Y1Y2) and ((A,B)(X1,Y1))(X2,Y2) =
(A,B)(X1X2,Y1Y2).)

Since the rank of A equals the dimension of the row space of A, and the dimension of 
the column space of A, it follows that A and X−1AY have the same rank. Indeed, the 
set of matrices of a given rank forms an orbit under the group Ge2 ×Ge1 . Since e2 � e1, 
it follows that Ge2 ×Ge1 has e2 + 1 orbits on Me2×e1 , and Ge1 ×Ge2 has e2 + 1 orbits 
on Me1×e2 . Denote the set of e2 × e1 matrices rank k over Fq by M (k)

e2×e1 . Let R(k)
e2×e1 be 

(Ge2 ×Ge1)-orbit representatives for M (k)
e2×e1

where

R
(k)
e2×e1

:=
(
Ik 0
0 0

)
∈ M

(k)
e2×e1

⊆ Me2×e1 for 0 � k � e2. (4.2)

The matrices in the second row of R(k)
e2×e1 have e2 − k rows, and those in the second 

column have e1 − k columns. In particular, R(0)
e2×e1 is the e2 × e1 zero matrix.

The cardinality |M (k)
e2×e1

| is known, see Morrison [12, §1.7]. We give a short proof to 
describe the structure of a stabiliser and to introduce our notation in the next lemma.

Lemma 4.1. If 0 � k � e2 � e1, then the stabiliser of R(k)
e2×e1

in Ge2 ×Ge1 equals

Hk =
{

(X,Y ) ∈ Ge2 ×Ge1 | X =
(

X11 X12
0 X22

)
and Y =

(
X11 0
Y21 Y22

)}
where

X11 = Y11 ∈ Gk, X22 ∈ Ge2−k, Y22 ∈ Ge1−k, X12 ∈ Mk×(e2−k) and Y21 ∈ M(e1−k)×k. 
Hence the number of rank-k matrices in Me2×e1 is |M (k)

e2×e1 | = |Ge1 × Ge2 |/|Hk| where 
|Hk| equals |Gk||Ge1−k||Ge2−k|qk(e1+e2−2k).

Proof. The stabiliser Hk of R(k)
e2×e1 in Ge2 ×Ge1 is easy to compute because the identity 

R
(k)
e2×e1 = (R(k)

e2×e1)
(X,Y ) says that XR

(k)
e2×e1 = R

(k)
e2×e1Y . In terms of matrices, this says(

X11 X12
X21 X22

) (
Ik 0
0 0

)
=

(
Ik 0
0 0

) ( Y11 Y12
Y21 Y22

)
that is

(
X11 0
X21 0

)
=

(
Y11 Y12
0 0

)
.

Hence X21 = 0, Y12 = 0 and X11 = Y11 ∈ Gk. Thus X22 ∈ Ge2−k and Y22 ∈ Ge1−k. 
Also X12 ∈ Mk×(e2−k) and Y21 ∈ M(e1−k)×k are arbitrary. It follows that the sta
biliser Hk of R(k)

e2×e1 is as claimed, and its order is |Gk||Ge1−k||Ge2−k|qk(e1+e2−2k). 
By the orbit-stabiliser lemma the set of rank-k matrices in Me2×e1 has cardinality 
|Ge2 ×Ge1 |/|Hk|. �

When counting algebraic objects over Fq, factoring out the dominant power of q
determines the asymptotic behaviour as q → ∞. For example, |GLe(q)| = qe

2
ω(e) using 

(1.1), and ω(e) =
∏e−1

i=0 (1−q−i) = 1−O(q−1) so |GLe(q)| ∼ qe
2 as q → ∞. By Lemma 4.1, 

|M (k)
e2×e1 | ∼ qx where x = e2

2+e2
1−k2−(e1−k)2−(e2−k)2−k(e1+e2−2k) = k(e1+e2−k). 

A precise formula for |M (k)
e2×e1 | follows from Lemma 4.1:

|M (k)
e2×e1 | = ω(e2)ω(e1)qk(e1+e2−k)

ω(k)ω(e1 − k)ω(e2 − k) where 0 � k � e2. (4.3)
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Corollary 4.2. If 1 � e2 � e1 and q > 1 is a prime power, then using (1.1),

e2∑
k=0

ω(e1)ω(e2)q−(e1−k)(e2−k)

ω(k)ω(e1 − k)ω(e2 − k) =
e2∑
�=0 

ω(e1)ω(e2)q−(e1−e2+�)�

ω(e2 − �)ω(e1 − e2 + �)ω(�) = 1.

Proof. Since 
∑e2

k=0 |M
(k)
e2×e1 | = |Me2×e1 |, we have 

∑e2
k=0

ω(e2)ω(e1)qk(e1+e2−k)

ω(k)ω(e1−k)ω(e2−k) = qe1e2

by (4.3). Setting � = e2 − k, the result follows from

−e1e2 + k(e1 + e2 − k) = −(e1 − k)(e2 − k) = −(e1 − e2 + �)�. �
We are now ready to count the closed 3-walks.

Theorem 4.3. Suppose that d = e1 + e2 and q > 1. Then the number of closed 3-walks 
(F1, U1, U2, F2) ∈ X2 ×X1 ×X2 ×X1 in the bipartite q-Kneser graph Γe1,e2 equals

q4e1e2ω(e1 + e2)
e2∑
�=0 

q−(e1−e2+�)�

ω(e1 − e2 + �)ω(�) .

Proof. As Gd is transitive on decompositions V = U1 ⊕ U2, we may assume that U1 =
RS(I | 0) ∈ X1 and U2 = RS(0 | I) ∈ X2. There are qe1e2 complements F1 ∈ X2 to 
U1 in V and these can be written uniquely as F1 = RS(A | I) where A ∈ Me2×e1 and 
I = Ie2 has e2 rows (and columns). Similarly, the qe1e2 complements of U2 can be written 
uniquely as F2 = RS(I | B) ∈ X1 where B ∈ Me1×e2 . The number of pairs (U1, U2) is

|Ge1+e2 | 
|Ge1 ×Ge2 |

= q2e1e2ξ where ξ := ω(e1 + e2) 
ω(e1)ω(e2)

.

Hence the number of 3-walks (F1, U1, U2, F2) ∈ X2 ×X1 ×X2 ×X1 is q4e1e2ξ (as we saw 
in Lemma 2.2). The number of closed 3-walks in X2 ×X1 ×X2 ×X1 is less than this, 
namely N · q2e1e2ξ where N is the number of choices of pairs (F1, F2), given (U1, U2), 
such that V = U1 ⊕ F1 = U2 ⊕ F2 = F1 ⊕ F2. We now find N .

The following are equivalent: {F1, F2} is an edge of Γe1,e2 ; F1 ∩ F2 equals {0}; and 
F1 + F2 equals V . In terms of matrices, each of these conditions is equivalent to the 
constraint that the d×d matrix 

(
A I
I B

)
is invertible. However, 

(
I −A
0 I

) (
A I
I B

)
=

( 0 I−AB
I B

)
. 

Therefore the condition that {F1, F2} lies in EΓe1,e2 is equivalent to the condition that 
Ie2 −AB is invertible. It is possible for Ie2 −AB to have full rank e2, and lie in Ge2 , due 
to our assumption that e2 � e1.

Thus we must determine the number N of pairs (A,B) ∈ Me2×e1 ×Me1×e2 for which 
I − AB is an invertible e2 × e2 matrix. Recall the action (4.1) of (X,Y ) ∈ Ge2 × Ge1

on a pair (A,B) in Me2×e1 × Me1×e2 . This action preserves pairs (A,B) with I − AB

invertible since (A′, B′) = (A,B)(X,Y ) implies

I −A′B′ = I − (X−1AY )(Y −1BX) = I −X−1ABX = X−1(I −AB)X,
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and hence det(I − A′B′) = det(I − AB). Therefore I − AB is invertible precisely when 
I −A′B′ is invertible, and

N =
e2∑
k=0

#{A | A ∈ M
(k)
e2×e1} · #{B ∈ Me1×e2 | I −AB ∈ Ge2}.

For A ∈ M
(k)
e2×e1

, we may choose (X,Y ) ∈ Ge2 ×Ge1 so that X−1AY = R
(k)
e2×e1

is the 
rank-k representative dfined by (4.2). Therefore,

N =
e2∑
k=0

|M (k)
e2×e1 | · #{B ∈ Me1×e2 | I −R

(k)
e2×e1B ∈ Ge2}.

Write B =
(

B11 B12
B21 B22

)
where B11 ∈ Mk×k. Since I −R

(k)
e2×e1

B =
(
I−B11 −B12

0 I

)
, a neces

sary and sufficient condition for I −R
(k)
e2×e1B to be invertible is that I −B11 ∈ Gk. The 

matrices B12, B21, B22 may be chosen arbitrarily. However, the number of matrices B11
with I −B11 ∈ Gk is the number of k × k matrices not having 1 as an eigenvalue. This 
equals the number of k×k matrices not having 0 as an eigenvalue, that is |Gk| = qk

2
ω(k). 

In summary, the number of choices for B11, B12, B21, B22 is qk2
ω(k), qk(e2−k), q(e1−k)k, 

q(e1−k)(e2−k), respectively. Consequently, there are qe1e2ω(k) choices for B.
The formula (4.3) for |M (k)

e2×e1 | shows that

N =
e2∑
k=0

ω(e2)ω(e1)qk(e1+e2−k)

ω(k)ω(e1 − k)ω(e2 − k) · qe1e2ω(k) =
e2∑
k=0

ω(e2)ω(e1)qe1e2+k(e1+e2−k)

ω(e1 − k)ω(e2 − k) .

Multiplying by the number q2e1e2ξ of pairs (U1, U2), the number of closed 3-walks is

q2e1e2ω(e1 + e2)
ω(e1)ω(e2) 

e2∑
k=0

ω(e2)ω(e1)qe1e2+k(e1+e2−k)

ω(e1 − k)ω(e2 − k) .

Observing that e1e2 + k(e1 + e2 − k) = 2e1e2 − (e1 − k)(e2 − k), this equals

q4e1e2ω(e1 + e2)
e2∑
k=0

q−(e1−k)(e2−k)

ω(e1 − k)ω(e2 − k) = q4e1e2ω(e1 + e2)
e2∑
�=0 

q−(e1−e2+�)�

ω(e1 − e2 + �)ω(�)

where in the last step � := e2 − k ranges from e2 down to 0. �
Now we determine the number of closed 3-arcs.

Theorem 4.4. Suppose that 1 � e2 � e1 and q > 1 is a prime power. Then the number of 
closed 3-arcs (F1, U1, U2, F2) ∈ X2 ×X1 ×X2 ×X1 in the q-Kneser graph Γe1,e2 equals

q4e1e2ω(e1 + e2)
e2−1∑
�=0 

q−(e1−e2+�)�

ω(e1 − e2 + �)ω(�)

(
1 − q−e1e2

ω(e2 − �)

)
.
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Proof. Our proof uses the arguments and the notation of Theorem 4.3. We count the 
closed 3-arcs (F1, U1, U2, F2) with V = U1 ⊕ U2. There are q2e1e2ξ choices for the pair 
(U1, U2) in X1 ×X2. Each choice of (U1, U2) gives rise to the same number of choices of 
(F1, F2) in X2×X1 such that (F1, U1, U2, F2) is a closed 3-arc. Hence we take U1 = RS(I |
0) and U2 = RS(0 | I). Following the proof of Theorem 4.3, we write F1 = RS(A | I) and 
F2 = RS(I | B) where A ∈ Me2×e1 and B ∈ Me1×e2 . We require that F1 �= U2, F2 �= U1, 
and that I −AB ∈ Me2×e2 is invertible. That is, A �= 0, B �= 0 and I −AB ∈ Ge2 .

Suppose that A has rank k. As A �= 0 and e2 � e1, we have |M (k)
e2×e1 | choices for A

where k ∈ {1, . . . , e2}. Each A ∈ M
(k)
e2×e1 gives the same number of choices for B, so we 

may assume that A equals R(k)
e2×e1 as per (4.2). Writing B =

(
B11 B12
B21 B22

)
with B11 ∈ Mk×k, 

we require that B �= 0 and I−B11 ∈ Gk. If B11 = 0, there are qe1e2−k2 −1 choices for B, 
namely any non-zero matrix B =

(
0 B12

B21 B22

)
. If B11 �= 0, then B11 = I − g where g ∈ Gk

is non-identity and B12, B21, B22 are arbitrary, so the number of choices for B is(
qk

2
ω(k) − 1

)
· qk(e2−k) · q(e1−k)k · q(e1−k)(e2−k) = qe1e2

(
ω(k) − q−k2

)
.

Hence for each A ∈ M
(k)
e2×e1 the total number of choices for B ∈ Me1×e2 is

qe1e2ω(k)xk where xk := 1 − q−e1e2

ω(k) .

Therefore, the number of pairs (F1, F2) is the number of pairs (A,B) namely (using the 
formula (4.3))

e2∑
k=1

ω(e2)ω(e1)qk(e1+e2−k)

ω(k)ω(e1 − k)ω(e2 − k) · qe1e2ω(k)xk =
e2∑
k=1

ω(e2)ω(e1)qe1e2+k(e1+e2−k)xk

ω(e1 − k)ω(e2 − k) .

Multiplying by the number q2e1e2ξ of pairs (U1, U2), the number of closed 3-arcs is

q2e1e2ω(e1 + e2)
e2∑
k=1

qe1e2+k(e1+e2−k)xk

ω(e1 − k)ω(e2 − k) .

Observing that e1e2 + k(e1 + e2 − k) = 2e1e2 − (e1 − k)(e2 − k), this equals

q4e1e2ω(e1 + e2)
e2∑
k=1

q−(e1−k)(e2−k)xk

ω(e1 − k)ω(e2 − k) = q4e1e2ω(e1 + e2)
e2−1∑
�=0 

q−(e1−e2+�)�xe2−�

ω(e1 − e2 + �)ω(�)

where in the last step � := e2 − k ranges from e2 − 1 down to 0. �
4.1. Proof of Theorem 1.1: an explicit formula for P (e1, e2)

We finish this section by drawing together the results on 3-walks and 3-arcs in Γe1,e2

to prove Theorem 1.1. Thus we assume that q > 1 is a prime power and d = e1 + e2
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with 1 � e2 � e1, and we consider the proportion P (e1, e2) of 3-walks of Γe1,e2 which are 
closed 3-arcs. To prove Theorem 1.1 we must prove that (1.2) holds for P (e1, e2), that 
is,

P (e1, e2) = −(1 − q−e1e2)q−e1e2 +
e2−1∑
�=0 

ω(e1)ω(e2)q−(e1−e2+�)�

ω(e1 − e2 + �)ω(�) = 1 −O(1/q).

In addition, it suffices to consider 3-walks and 3-arcs in X2×X1×X2×X1 by Remark 2.1. 
Let V = (Fq)d and note that we may choose decompositions V = (Fq)d = U1 ⊕ F1 =
U2 ⊕ F2 with U1, F2 ∈ X1 of dimension e1 and U2, F1 ∈ X2 of dimension e2.

The number n of closed 3-arcs in W2 := X2 ×X1 ×X2 ×X1 is then given by Theo
rem 4.4, and the number of 3-walks in W2 is q4e1e2ξ by Lemma 2.2 where ξ = ω(e1+e2) 

ω(e1)ω(e2) . 
Thus by Remark 2.1, P (e1, e2) = n 

q4e1e2ξ and we have

P (e1, e2) = q4e1e2ω(e1 + e2)
q4e1e2ξ

e2−1∑
�=0 

q−(e1−e2+�)�

ω(e1 − e2 + �)ω(�)

(
1 − q−e1e2

ω(e2 − �)

)

= ω(e1)ω(e2)
e2−1∑
�=0 

q−(e1−e2+�)�

ω(e1 − e2 + �)ω(�)

(
1 − q−e1e2

ω(e2 − �)

)
.

Corollary 4.2 implies that 
∑e2−1

�=0
ω(e1)ω(e2)q−(e1−e2+�)�

ω(e2−�)ω(e1−e2+�)ω(�) = 1 − q−e1e2 . Hence

P (e1, e2) =
(

e2−1∑
�=0 

ω(e1)ω(e2)q−(e1−e2+�)�

ω(e1 − e2 + �)ω(�) 

)
− (1 − q−e1e2)q−e1e2

as in (1.2). When � = 0 the summand is ω(e1)ω(e2)
ω(e1−e2) = 1 − O(1/q). Finally, this implies 

that P (e1, e2) = 1 −O(1/q), as claimed. �
5. Proportions: closed 3-arcs and stingray duos

The aim of this section is to prove Theorem 1.3. We do this in two steps. Our first 
result considers stingray duos in a fixed pair of conjugacy classes.

Theorem 5.1. Let d = e1 + e2 with 1 � e2 � e1, let SLd(q) � G � GLd(q), and for 
i = 1, 2, let Ci be a G-conjugacy class of ei-stingray elements. Then the proportion

Number of irreducible stingray duos in C1 × C2

Number of stingray duos in C1 × C2

equals the proportion P (e1, e2) given by (1.2) of 3-walks of Γe1,e2 which are closed 3-arcs.
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Proof. By Lemma 3.7(a), C1 and C2 are conjugacy classes of Gd = GLd(q), and so 
we may assume that G = Gd. It follows from Lemma 3.7(c) that, for each 3-walk 
(F1, U1, U2, F2) in X2 ×X1 ×X2 ×X1 of Γe1,e2 , the equalities

Ui = im(gi − 1) and Fi = ker(gi − 1), for i = 1, 2, (5.1)

all hold for the same number (3.1) of stingray duos (g1, g2) ∈ C1 × C2. This is true, 
in particular, for closed 3-arcs (F1, U1, U2, F2). Further, by Lemma 3.6(b), either all 
or none of the pairs (g1, g2) satisfying the equalities in (5.1) have 〈g1, g2〉 irreducible, 
and irreducibility occurs precisely when (F1, U1, U2, F2) is a closed 3-arc. Hence the 
proportion of (e1, e2)-stingray duos (g1, g2) in C1 × C2 for which 〈g1, g2〉 is irreducible, 
equals the proportion of 3-walks (F1, U1, U2, F2) ∈ X2 ×X1 ×X2 ×X1 which are closed 
3-arcs. Moreover, this proportion is the quantity P (e1, e2) in (1.2) by Remark 2.1. �

Theorem 5.1 is an important component in the proof of Theorem 1.3 below.

Proof of Theorem 1.3. Recall that d = e1+e2, 1 � e2 � e1, and the subgroup G satifies 
SLd(q) � G � Gd = GLd(q). Let Ei be the set of all ei-stingray elements in G, for i = 1, 2. 
Clearly G acts on Ei. Let Yi be the set of G-conjugacy classes that partition Ei. Then 
Y1 × Y2 := {C1 × C2 | C1 ∈ Y1,C2 ∈ Y2} is the set of (G × G)-conjugacy classes that 
partition E1 × E2. For a subset Z of E1 × E2 let D(Z) denote the set of (e1, e2)-stingray 
duos in Z, and let I(Z) denote the (sub)set of irreducible (e1, e2)-stingray duos in Z. 
Paraphrasing Theorem 5.1 gives |I(C1 × C2)| = P (e1, e2) · |D(C1 × C2)|. We must prove 
that |I(E1×E2)| = P (e1, e2)·|D(E1×E2)|. Since I(E1×E2) is a disjoint union of I(C1×C2)
where C1 × C2 ranges over Y1 × Y2, and similarly for D(E1 × E2) and D(C1 × C2), we 
have

|I(E1 × E2)| =
∑

C1×C2

|I(C1 × C2)| =
∑

C1×C2

P (e1, e2) · |D(C1 × C2)|

= P (e1, e2) · |D(E1 × E2)|. �
6. Explicit upper and lower bounds for P (e1, e2)

Recall that P (e1, e2) is the proportion of (e1, e2)-stingray duos in GLd(q) that are 
irreducible by Theorem 1.3. In this section we prove Theorem 1.2 giving precise upper 
and lower bounds for P (e1, e2) where 1 � e2 � e1, and q > 1 is an arbitrary prime power.

The ordering of two real numbers written in base-q is determined by the largest power 
of q where the digits differ. For example, if a(q) =

∑
i�s aiq

i and b(q) =
∑

j�s bjq
j are 

(necessarily convergent) Laurent series in q, with ai, bj ∈ {0, 1, . . . , q − 1}, bs �= 0 and 
as < bs, then a(q) � b(q) holds. Further, if as < bs, then a(q) = b(q) holds precisely 
when bs = as + 1 and, for each i < s, ai = q − 1 and bi = 0. An example with s = 0 is ∑

i<0(q−1)qi = q0. Note that we can only compare Laurent series in q if the coefficients 
are not too large (in absolute value). For example,
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1 − 2q−2 − 2q−3 + q−4 + 4q−5 + q−6 − 2q−7 − 2q−8 + q10 � 1 − 2q−2

holds for all q � 5. However, direct evaluation shows that it is also true for q ∈ {2, 3, 4}.

Proof of Theorem 1.2. Upper and lower bounds for P (e1, 1) are best handled separately. 
Substituting e2 = 1 into the formula (1.2) for P (e1, e2) in Theorem 1.1 gives

P (e1, 1) = −(1 − q−e1)q−e1 + (1 − q−1)(1 − q−e1) = (1 − q−e1)(1 − q−1 − q−e1).

Therefore P (e1, 1) = 1 − q−1 − 2q−e1 + q−e1−1 + q−2e1 . For e1 � 3 and for all q � 2 we 
have 1 − q−1 − q−2 < P (e1, 1) < 1 − q−1. (The upper bound even holds for e1 � 1.)

Henceforth suppose that 2 � e2 � e1. The case when e1 = e2 requires delicate 
estimations. We first prove the upper bound when e1 = e2 = e � 2. Theorem 1.1 gives

P (e, e) = −(1 − q−e2)q−e2 +
e−1 ∑
�=0 

ω(e)2q−�2

ω(�)2 .

Setting e = 2 gives

P (2, 2) = 1 − q−1 − q−2 + 2q−3 − 2q−4 − q−5 + q−6 + q−8.

It follows that 1− q−1 − q−2 < P (2, 2) < 1− q−1 − q−2 +2q−3 − 2q−5. Suppose now that 
e1 = e2 = e � 3. Since ω(e) � ω(3) and ω(∞) < ω(�), we have

P (e, e) <
∞ ∑
�=0 

ω(e)2q−�2

ω(�)2 < ω(3)2
(

1 + q−1

ω(1)2 + q−4

ω(2)2 +
∞ ∑
�=3 

q−�2

ω(∞)2

)

< ω(3)2
(

1 + q−1

ω(1)2 + q−4

ω(2)2 +
∞ ∑
�=3 

q−8(�−2)

ω(∞)2

)
;

where the last line uses the fact that 8(� − 2) � l2 for all � � 3. Adding the geometric 
series 

∑∞
�=3 q

−8(�−2) gives q−8

1−q−8 . We use the inequality 1 − q−1 − q−2 + q−5 < ω(∞), 
which follows from the proof of [13, Lemma 3.5], so that

P (e, e) < ω(3)2
(

1 + q−1

ω(1)2 + q−4

ω(2)2 + q−8

(1 − q−1 − q−2 + q−5)2(1 − q−8)

)
. (6.1)

Since (1 − q−1 − q−2 + q−5)2(1 − q−8) > 1 
16 � q−4 for all q, we have by (6.1) that

P (e, e) < ω(3)2
(

(1 + q−4) + q−1

ω(1)2 + q−4

ω(2)2

)
= ω(3)2(1 + q−4) + (1 − q−2)2(1 − q−3)2q−1 + (1 − q−3)2q−4.
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The inequality below is true for q � 5 by comparing Laurent series in q:

(1 − q−2)2(1 − q−3)2 = 1 − 2q−2 − 2q−3 + q−4 + 4q−5 + q−6 − 2q−7 − 2q−8 + q10

� 1 − 2q−2.

However, the inequality (1 − q−2)2(1 − q−3)2 � 1 − 2q−2 is also true for q ∈ {2, 3, 4}. 
Hence ω(3)2 < (1 − q−1)2(1 − 2q−2), and so

P (e, e) < (1 − q−1)2(1 − 2q−2)(1 + q−4) + (1 − 2q−2)q−1 + (1 − q−3)2q−4

= 1 − q−1 − q−2 + 2q−3 − 2q−5 − q−6 + 2q−7 − 2q−8 + q−10.

The above reasoning proves that the upper bound P (e, e) < 1− q−1 − q−2 +2q−3 −2q−5

holds for all e � 2 and all prime powers q � 2.
We next prove that the lower bound 1−q−1−q−2 < P (e, e) holds for e � 3 and q � 2. 

Setting e1 = e2 = e in Theorem 1.1 gives

P (e, e) = −(1 − q−e2)q−e2 +
e−1 ∑
�=0 

ω(e)2q−�2

ω(�)2 > −q−9 + ω(e)2
2 ∑

�=0 

q−�2

ω(�)2 .

Now

ω(2)2
2 ∑

�=0 

q−�2

ω(�)2 = 1 − q−1 − q−2 + 2q−3 − q−5 + q−6

> 1 − q−1 − q−2 + 2q−3 − q−5 = (1 − q−2)(1 − q−1 + q−3).

Using ω(e) > ω(∞) > 1 − q−1 − q−2 + q−5 and the above inequality gives

P (e, e) > −q−9 + ω(e)2

ω(2)2 (1 − q−2)(1 − q−1 + q−3) = −q−9 + ω(e)2(1 − q−1 + q−3)
(1 − q−1)2(1 − q−2) 

> −q−9 + (1 − q−1 − q−2 + q−5)2(1 − q−1 + q−3)
(1 − q−1)2(1 − q−2) .

We approximate the denominator using: (1−q−1)−2 =
∑∞

i=0(i+1)q−i >
∑6

i=0(i+1)q−i

and (1 − q−2)−1 =
∑∞

i=0 q
−2i >

∑2
i=0 q

−2i. Hence

P (e, e) > −q−9 + (1 − q−1 − q−2 + q−5)2(1 − q−1 + q−3)
( 6 ∑

i=0 
(i + 1)q−i

)( 2 ∑
i=0 

q−2i

)
= 1 − q−1 − q−2 + q−5 − 2q−6 − 8q−7 + 16q−8 + q−9 − 5q−10 + q−11 − 5q−12

+ 26q−13 − 12q−14 − 7q−15 − q−16 − 9q−17 + 6q−18 − 17q−19 − 3q−20

+ 5q−21 + 6q−22 + 7q−23.
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The above Laurent series is therefore greater than 1−q−1−q−2 for q � 27, and a computer 
calculation shows it is greater than 1−q−1−q−2 for 3 � q < 26. The same lower bound for 
P (e, e) also holds for q = 2 if we replace the bound ω(∞) > 1−q−1−q−2+q−5 = 0.28125
with the sharper inequality ω(∞) > 0.288. Thus the bound P (e, e) > 1−q−1−q−2 holds 
for e � 3 and all prime powers q � 2. This establishes the lower bound in Theorem 1.2
for the case e1 = e2. Henceforth assume that e1 �= e2.

We next prove that P (e1, e2) < 1 − q−1 − q−2 + 2q−3 − 2q−5 when 2 � e2 < e1. It is 
convenient to write P (e1, e2) = −(1 − q−e1e2)q−e1e2 + L(e1, e2) + M(e1, e2) where

L(e1, e2) :=
1 ∑

�=0 

ω(e1)ω(e2)q−(e1−e2+�)�

ω(e1 − e2 + �)ω(�) and M(e1, e2) :=
e2−1∑
�=2 

ω(e1)ω(e2)q−(e1−e2+�)�

ω(e1 − e2 + �)ω(�) .

When e2 or q is large, the term L(e1, e2) dominates P (e1, e2). Rearranging gives

L(e1, e2) :=
1 ∑

�=0 

ω(e1)ω(e2)q−(e1−e2+�)�

ω(e1 − e2 + �)ω(�) = ω(e1)ω(e2)
ω(e1 − e2) 

+ ω(e1)ω(e2)q−(e1−e2+1)

ω(e1 − e2 + 1)ω(1) 

= ω(e1)ω(e2) 
ω(e1 − e2 + 1)ω(1)

(
(1 − q−(e1−e2+1))(1 − q−1) + q−(e1−e2+1)

)
= ω(e1)ω(e2) 

ω(e1 − e2 + 1)ω(1)

(
1 − q−1 + q−(e1−e2+2)

)
. (6.2)

The inequalities ω(e1) < ω(e1 − e2 + �), ω(e2) < ω(�) and e1 − e2 � 1 imply that

M(e1, e2) <
e2−1∑
�=2 

q−(�+1)� < q−6+
∞ ∑
�=3 

q−(�+1)� < q−6+
∞ ∑
�=3 

q−4� � q−6+2q−12 < q−6+q−7.

If e2 = 2, then M(e1, e2) = 0. Using (6.2) and the inequality ω(e1) < ω(e1−e2+1) gives

P (e1, 2) < L(e1, 2) = (1 − q−e1)(1 − q−2)(1 − q−1 + q−e1)

= (1 − q−2e1 − q−1 + q−(e1+1))(1 − q−2)

< (1 − q−1 + q−4)(1 − q−2) = 1 − q−1 − q−2 + q−3 + q−4 − q−6

< 1 − q−1 − q−2 + 2q−3 − 2q−5.

Suppose now that 3 � e2 < e1. In this case ω(e2) � ω(3), so we have the upper bounds 
L(e1, e2) < ω(3)

ω(1) (1 − q−1 + q−3) and M(e1, e2) < q−6 + q−7. Hence

P (e1, e2) < L(e1, e2) + M(e1, e2) <
ω(3)
ω(1)(1 − q−1 + q−3) + q−6 + q−7

= (1 − q−2)(1 − q−3)(1 − q−1 + q−3) + q−6 + q−7

= 1 − q−1 − q−2 + q−3 + q−4 − q−6 + q−7 + q−8
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< 1 − q−1 − q−2 + 2q−3 − 2q−5.

Thus the bound P (e1, e2) < 1−q−1−q−2 +2q−3−2q−5 holds for 2 � e2 � e1 and q � 2.
We now prove that 1 − q−1 − q−2 < P (e1, e2) for 2 � e2 < e1. By Theorem 1.1, 

P (e1, e2) = −(1− q−e1e2)q−e1e2 +L(e1, e2)+M(e1, e2). If e2 = 2, then M(e1, 2) = 0 and

P (e1, 2) = −(1 − q−2e1)q−2e1 + L(e1, 2)

= −(1 − q−2e1)q−2e1 + (1 − q−e1)(1 − q−2)(1 − q−1 + q−e1) by (6.2)

> −q−2e1 + (1 − q−2)(1 − q−1 + q−e1 − q−e1 + q−e1−1 − q−2e1)

> −q−4 + (1 − q−2)(1 − q−1)

= −q−4 + 1 − q−1 − q−2 + q−3 > 1 − q−1 − q−2.

Suppose now that 3 � e2 < e1. Since −(1− q−e1e2)q−e1e2 � −(1− q−9)q−9 > −q−9 and 
M(e1, e2) � 0, we have P (e1, e2) > −q−9 + L(e1, e2). We next find a sharp lower bound 
for L(e1, e2) for 3 � e2 < e1. Set �0 := e1 − e2 + 2. Then 3 � �0 < e1 and

ω(e1) 
ω(�0 − 1) =

e1∏
i=�0

(1 − q−i) > 1 −
e1∑

i=�0

q−i > 1 −
∞ ∑

i=�0

q−i = 1 − q−�0

1 − q−1 .

In addition,

ω(e2)
ω(1) >

ω(∞) 
1 − q−1 .

Multiplying the previous two inequalities shows:

ω(∞)(1 − q−1 − q−�0)
(1 − q−1)2 <

ω(e1)ω(e2) 
ω(e1 − e2 + 1)ω(1) . (6.3)

Recall that �0 := e1 − e2 + 2 and 3 � e2 < e1. Using the formula (6.2) for L(e1, e2) and 
equation (6.3) gives

P (e1, e2) > −q−9 + ω(∞)(1 − q−1 − q−�0)(1 − q−1 + q−�0)
(1 − q−1)2

= −q−9 + ω(∞)(1 − 2q−1 + q−2 − q−2�0)
(1 − q−1)2 .

We next use ω(∞) > 1 − q−1 − q−2 + q−5 (see [13, Lemma 3.5]) and

1 
(1 − q−1)2 =

∞ ∑
i=0 

(i + 1)q−i >

6 ∑
i=0 

(i + 1)q−i.
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Since �0 � 3, we have

P (e1, e2) > −q−9 + (1 − q−1 − q−2 + q−5)(1 − 2q−1 + q−2 − q−6)
( 6 ∑

i=0 
(i + 1)q−i

)
= 1 − q−1 − q−2 + q−5 − q−6 − 9q−7 + 15q−8 + q−9 − 5q−10

+ 2q−11 − 6q−12 + 17q−13 + 3q−14 − 5q−15 − 6q−16 − 7q−17

� 1 − q−1 − q−2;

the last inequality holds since q−5 − q−6 − 9q−7 + 15q−8 + · · · − 7q−17 > 0 for q > 17, 
and direct calculation shows that it also holds for 2 � q � 17. This establishes the lower 
bound of Theorem 1.2 for 2 � e2 < e1 and q � 2, and completes the proof. �
7. Motivation from computational group theory

We noted in Section 1 that the results of this paper relate to a larger problem of 
recognising finite classical groups, see [4,6,7,11,14]. This section describes the context of 
this problem, and why the lower bound 1− q−1 − q−2 for the proportion P (e1, e2) given 
in this paper is helpful, while the lower bound 1 − 2q−1 + O(q−2) given in [14], for a 
related proportion, is problematic.

Let GXd(q) denote a classical group over the field Fd
qδ of type X, where X is L (linear), 

U (unitary), S (symplectic), or O (orthogonal) and δ = 1 unless X = U when δ = 2. 
Then GXd(q) acts naturally on a vector space V = Fd

qδ . If GXd(q) is not solvable, let 
ΩXd(q) be the smallest normal subgroup of GXd(q) for which GXd(q)/ΩXd(q) is solvable 
and let SXd(q) denote the subgroup of GXd(q) comprising matrices with determinant 1. 
If X = L,S,U then SXd(q) = ΩXd(q), whereas |SOd(q) : Ωd(q)| = 2 when X = O. We 
present the key strategy for constructive recognition algorithms of classical groups, first 
introduced in the state-of-the-art algorithm [4], a strategy which is also adopted in a 
new algorithm currently being developed.

Conceptually we start with a group G = 〈A〉 which is (either known to be, or believed 
to be) a classical group G = SYn(q) of type Y acting on a vector space V = Fn

qδ as above. 
The aim of a constructive recognition algorithm is to write the elements of a pre-defined 
generating set for SYn(q) as words in A. Algorithms following the strategy in [4] are 
recursive. In the first step, see for example [4, p. 232 or Section 5], they construct a ‘first 
subgroup H’ which, with respect to an appropriate basis, has the form

H =
(

SXd(q) 0
0 In−d

)
where d < n and either X = Y or (Y,X, q) = (S,O, even). To construct H, the algo
rithms seek a generating (e1, e2)-stingray duo, namely a (e1, e2)-stingray duo (g1, g2) in 
GXd(q) for which 〈g1, g2〉 contains ΩXd(q). The correctness and the complexity anal
ysis, as well as the practical runtime, of a given constructive recognition algorithm, 
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is underpinned by tight estimates for the proportion of (e1, e2)-stingray duos (g1, g2)
in ΩXd(q) (or in some specfied pair of ΩXd(q)-conjugacy classes) that are generating 
and for which each gi has prime order. For example, the algorithm in [4] seeks pairs 
of (e1, e2)-stingray duos of the form (g, gx) with g ∈ G and gx a random G-conjugate, 
where e = e1 = e2 = d/2 for some d ∈ [n/3, 2n/3]. With high probability (g, gx) is a 
generating (e, e)-stingray duo, see [4, Section 5.1]. This is implied by [4, Lemma 5.8] in 
case L, and in [7, Lemma 3.4] for cases X = S,U, and O. (There was an unfortunate 
gap in extending the proof of [4, Lemma 5.8] to cases other than L which was repaired 
in [7, Lemma 3.4], see [7, Remark 3.5].) In forthcoming algorithms, we choose d to be 
O(log(n)) and construct (e1, e2)-stingray duos with d = e1 + e2.

The results in the present paper yield substantial improvements for the analyses of 
constructive recognition algorithms in three ways.

Firstly, they are required for the analysis of the above mentioned forthcoming algo
rithm, which hinges on proving that the proportion of generating (e1, e2)-stingray duos 
among all (e1, e2)-stingray duos in ΩXe1+e2(q) is large, which will be proved in [8].

Secondly, they improve existing estimates for the proportion of (e, e)-stingray duos 
of the form (g, gx) for g ∈ ΩXd(q) that are generating, where difficulties in handling 
small values of q have resulted in restrictions in the applicability of complexity estimates 
for these algorithms. For example, the main theorem for the constructive recognition 
of classical groups in even characteristic [4, Theorem 1.2] requires q > 4 because the 
estimation result about stingray elements it relied on (from a preprint version of [14]) 
had this restriction. In the published version [14, Theorem 2], the only restriction is 
‘q > 2 in the orthogonal case’, see our discussion in [7, Remark 3.5(b)].

Finally, our results improve the bounds for the complexity analysis of existing algo
rithms, by noting that the proportions used to estimate the performance of algorithms 
underestimated the proportion of elements actually constructed in the algorithm.

We address these aspects in the following two subsections.

Estimating the proportion of (e1, e2)-stingray duos

Let G be a group satisfying ΩXd(q) � G � GXd(q). The proportion of (e1, e2)
stingray duos (g1, g2) in G (or in some specfied pair of G-conjugacy classes) that are 
generating can be estimated by bounding the proportion of (e1, e2)-stingray duos (g1, g2)
which do not generate, and therefore lie in a proper maximal subgroup of ΩXd(q). This 
approach was pioneered in [14, Theorem 6] for a classical group SXd(q) of type X with 
d = 2e even, and an SXd(q)-conjugacy class C of e-stingray elements of prime order: the 
results [14, Theorem 2, 5, 6] show that with probability 1−O(q−δ) a pair in C ×C will 
generate a subgroup SX′

d(q) of type X′ (provided q > 2 if X = O), where as noted above, 
X′ = X or (X,X′, q) = (S,O, even). Equivalently, the probability that such a pair (g, gx)
fails to generate is O(q−δ). The probability that 〈g, gx〉 is irreducible and lies in a proper 
maximal subgroup of SXd(q), i.e. it fails to generate, is shown to be very small, namely 
O(q−cd2) where c is a constant depending on the type X, [14, Theorem 6]. Therefore, 
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the leading terms in the estimates correspond to pairs where 〈g, gx〉 is reducible on 
Fd
qδ . In forthcoming work [8] we are finding that a similar dichotomy holds for general 

(e1, e2)-stingray duos. Also here, the most difficult problem arises when X = L, where the 
probability that an (e1, e2)-stingray duo is not generating is dominated by the probability 
that an (e1, e2)-stingray duo is reducible. Using the lower bound for P (e1, e2) obtained 
in Theorem 1.2 we arrive at such a bound.

Corollary 7.1. Suppose that d = e1 + e2 with 2 � e2 � e1, and SLd(q) � G � GLd(q). 
Then

Number of reducible (e1, e2)-stingray duos in G×G

Number of (e1, e2)-stingray duos in G×G
≤ q−1 + q−2.

Similarly, if Ci is a GLd(q)-conjugacy class of ei-stingray elements for i = 1, 2, then

Number of reducible (e1, e2)-stingray duos in C1 × C2

Number of (e1, e2)-stingray duos in C1 × C2
≤ q−1 + q−2.

Proof. The stated proportion is 1 − P (e1, e2) by Theorem 5.1. Then by Theorem 1.2, 
1−q−1−q−2 < P (e1, e2) holds, so that 1−P (e1, e2) < q−1 +q−2 as claimed. The bound 
when restricted to stingray duos in C1 × C2 follows by the same argument applying 
Theorem 1.3 rather than Theorem 5.1. �
Stingray pairs versus stingray duos

We now discuss how our results improve the analysis of the algorithm given in [4] 
originally based on the results in [14]. The bounds did not accurately rflect the practical 
performance in the linear case L where the classical group is SLd(q) with natural module 
Fd
q , where d = 2e is even. Let C be an SLd(q)-conjugacy class of e-stingray elements. By 

[14, Lemma 5.3], the proportion of pairs from C ×C that generate a reducible subgroup 
is at most

2q−1 + q−2 − 2q−3 − q−4 + 2q−d2/4. (7.1)

By [14, Theorem 6],2 the proportion of pairs from C × C that generate an irreducible 
proper subgroup of SLd(q) is O(q−d2/4+d/2+2). Thus, for sufficiently large d, the proba
bility that a random pair C × C generates SLd(q) is at least 1 − 2q−1 + O(q−2), which 
is not a very useful bound if q = 2!

Our suggested solution is to exploit the fact that the algorithm in [4], and other algo
rithms under development, do not choose random pairs in C ×C , rather they construct 
stingray duos. Thus the appropriate proportions to estimate are of the form:

2 In the course of our work for [8] we discovered a problem with the proof of [14, Lemma 10.1] which is 
corrected and generalised in [8], so [14, Theorem 6] is valid.
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Number of stingray duos in C × C with a desired property
Number of stingray duos in C × C

,

or in the more general setting where we are considering (e1, e2)-stingray duos coming 
from C1 × C2, where Ci is a conjugacy class of ei-stingray elements, estimates of the 
form:

Number of stingray duos in C1 × C2 with a desired property
Number of stingray duos in C1 × C2

.

In other words, the proportions required for the complexity analysis of the recognition 
algorithms mentioned above require a different denominator. For the case where the 
desired property we wish to estimate is reducibility, Corollary 7.1 yields an upper bound 
that is independent of e1, e2 and, in particular, is an improvement on the bound obtained 
by applying Equation (7.1) to the case relevant to [4,14]. However, to derive estimates 
for the proportion of stingray duos which are irreducible but non-generating using the 
estimates from [14, Theorem 6], we need to know the proportion of pairs in C1 × C2
which are stingray duos. This proportion is given in Theorem 7.2 below.

Theorem 7.2. Let d = e1 + e2 and let Ci be a GLd(q)-conjugacy class of ei-stingray 
elements, for i = 1, 2. Then

Number of stingray duos in C1 × C2

|C1 × C2| 
= 1

ξ
, where ξ = ω(d) 

ω(e1)ω(e2)
.

Moreover, if 2 � e2 � e1, then (1−q−d)(1−q−(d−1))
(1−q−1)(1−q−2) � ξ < 1 

1−q−1−q−2+q−5 .

Proof. Let Gd = GLd(q). By Lemma 3.7(a),

|C1 × C2| = |Gd| 
|Ge2 | · (qe1 − 1) · |Gd| 

|Ge1 | · (qe2 − 1) = |Gd|2
|Ge1 | · |Ge2 | · (qe1 − 1)(qe2 − 1)

and we note that

|Gd| 
|Ge1 | · |Ge2 |

= qd
2−e21−e22ξ = q2e2e2ξ.

Next, by Lemmas 3.6(b)(ii) and 3.7(c), the number of stingray duos in C1 × C2 is equal 
to the number of 3-walks in Γe1,e2 times |Ge1 |·|Ge2 | 

(qe1−1)(qe2−1) . Moreover, by Lemma 2.2, the 
number of 3-walks in Γe1,e2 is q4e1e2ξ. Thus the number N of stingrays duos in C1 × C2
is equal to

N = q4e1e2ξ · |Ge1 | · |Ge2 | 
(qe1 − 1)(qe2 − 1) .

The proportion of stingray duos in C1 × C2 is therefore equal to
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N

|C1 × C2|
= q4e1e2ξ · |Ge1 | · |Ge2 | 

(qe1 − 1)(qe2 − 1) · |Ge1 | · |Ge2 | · (qe1 − 1)(qe2 − 1)
|Gd|2

= 1
ξ

as claimed. In [7] the q-binomial notation 
(
d
e 
)
q

= ω(d) 
ω(e)ω(d−e) is used. Using this notation 

ξ =
(
d 
e2

)
q
, and (1−q−d)(1−q−(d−1))

(1−q−1)(1−q−2) � ξ < ω(∞)−1 by [7, Lemma 5.2], with ω(∞) as in 

(1.1). Moreover ω(∞) > 1 − q−1 − q−2 + q−5 by [7, Lemma 5.1]. �
Note that Theorem 7.2 yields a new upper bound on the proportion of pairs from 

C1 × C2 that generate a reducible subgroup.

Lemma 7.3. Let d = e1 + e2 with 2 � e2 � e1, and let Ci be a GLd(q)-conjugacy class 
of ei-stingray elements, for i = 1, 2. Then the proportion of pairs from C1 × C2 that 
generate a reducible subgroup is 1 − P (e1,e2)

ξ with ξ as in Theorem 7.2, and

1 − P (e1, e2)
ξ

< 2q−1 + q−2 − 2q−3 − q−4.

Proof. Let I be the set of pairs (g1, g2) ∈ C1 × C2 such that 〈g1, g2〉 is irreducible, so 
the proportion we need to bound is 1− |I|/|C1 ×C2|. If (g1, g2) ∈ C1 ×C2 and 〈g1, g2〉 is 
irreducible, then the corresponding subspaces U1, U2 in Definition 3.2 must be disjoint, 
as otherwise 〈g1, g2〉 would leave invariant the proper subspace U1 + U2. Hence (g1, g2)
is a stingray duo. Thus I is the set of irreducible stingray duos in C1 ×C2. Therefore, if 
N = Number of stingray duos in C1 × C2, then Theorem 5.1 gives

|I| 
|C1 × C2|

= |I|
N

· N

|C1 × C2|
= P (e1, e2) ·

N

|C1 × C2|
.

Theorem 7.2 gives N
|C1×C2| = 1

ξ > 1−q−1−q−2+q−5 and, in addition, Theorem 1.2 gives 
P (e1, e2) > 1− q−1 − q−2. The following calculation completes the proof as q−6 + q−7 <

q−5

1 − |I| 
|C1 × C2|

= 1 − P (e1, e2)
ξ

< 1 − (1 − q−1 − q−2) · (1 − q−1 − q−2 + q−5)

= 2q−1 + q−2 − 2q−3 − q−4 − q−5 + q−6 + q−7. �
The upper bound in Lemma 7.3 with e1 = e2 always improves the bound in (7.1). 

When q = 2, this yields the upper bound 15/16 for all d. Finally, the following lower 
bound for the proportion of pairs sought in the algorithm in [4] improves its analysis, 
and better rflects the fact that the algorithm produces stingray duos.

Corollary 7.4. Let C be an SXd(q)-conjugacy class of e-stingray elements with e = d
2 . 

Then, for some positive constant c,

Number of generating stingray duos in C × C

Number of stingray duos in C × C
> 1 − q−1 − q−2 − c · q−d2/4+d/2+2.
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Proof. Applying the bound in Theorem 7.2 together with [14, Theorem 6] to the linear 
case L where C1 = C2 = C is an SLd(q)-conjugacy class of e-stingray elements for 
e = d/2 of order equal to a primitive prime divisor of qd/2 − 1 we find:

Number of irreducible but non-generating stingray duos in C × C

Number of stingray duos in C × C
=

Number of irreducible but non-generating stingray duos in C × C

|C × C |/ξ < c · q−d2/4+d/2+2

for some positive constant c. By Theorem 1.3, the proportion of irreducible (e, e)-stingray 
duos is P (e, e), and by Theorem 1.2, P (e, e) > 1 − q−1 − q−2, and hence the proportion 
of stingray duos in C × C which generate SLd(q) is at least

P (e, e) − c · q−d2/4+d/2+2 > 1 − q−1 − q−2 − c · q−d2/4+d/2+2. �
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