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The recent release of ChatGPT, a chat bot research project∕product of natural language processing (NLP) by 
OpenAI, stirs up a sensation among both the general public and medical professionals, amassing a phenomenally 
large user base in a short time. This is a typical example of the ‘productization’ of cutting-edge technologies, 
which allows the general public without a technical background to gain firsthand experience in artificial 
intelligence (AI), similar to the AI hype created by AlphaGo (DeepMind Technologies, UK) and self-driving 
cars (Google, Tesla, etc.). However, it is crucial, especially for healthcare researchers, to remain prudent amidst 
the hype. This work provides a systematic review of existing publications on the use of ChatGPT in healthcare, 
elucidating the ‘status quo’ of ChatGPT in medical applications, for general readers, healthcare professionals as 
well as NLP scientists. The large biomedical literature database PubMed is used to retrieve published works on 
this topic using the keyword ‘ChatGPT’. An inclusion criterion and a taxonomy are further proposed to filter 
the search results and categorize the selected publications, respectively. It is found through the review that the 
current release of ChatGPT has achieved only moderate or ‘passing’ performance in a variety of tests, and is 
unreliable for actual clinical deployment, since it is not intended for clinical applications by design. We conclude 
that specialized NLP models trained on (bio)medical datasets still represent the right direction to pursue for 
critical clinical applications.
1. Introduction

In November 2022 a chat bot called ChatGPT was released. Ac-
cording to itself it is ‘a conversational AI language model developed 
by OpenAI. It uses deep learning techniques to generate human-like 
responses to natural language inputs. The model has been trained on 
a large dataset of text and has the ability to understand and gener-
ate text for a wide range of topics. ChatGPT can be used for various 
applications such as customer service, content creation, and language 
translation’. Since its release, ChatGPT has taken humans by storm and 
its user base is growing even faster than the current record holder Tik-
Tok, reaching 100 million users in just two months after its launch. 
ChatGPT is already used to generate textual context, presentations and 
even source code for all kinds of topics. But what does that mean specif-
ically for the healthcare sector? What if the general public or medical 
professionals turn to ChatGPT for treatment decisions? To answer these 
questions, we will look at published works that already reported the us-
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age of ChatGPT in the medical field. In doing so, we will explore and 
discuss ethical concerns when using ChatGPT, specifically within the 
healthcare sector (e.g., in clinical routines). We also identify specific 
action items that we believe have to be undertaken by creators and 
providers of chat bots to avoid catastrophic consequences that go far 
beyond letting a chat bot do someone’s homework. This review makes 
William B. Schwartz description from 1970 about conversational agents 
that will serve as consultants by enhancing the intellectual functions of 
physicians through interactions [120] as up-to-date as ever.

Even though the application of natural language processing (NLP) in 
healthcare is not new [42,128,140,99], the recent release of ChatGPT, 
a direct product of NLP, still generated a hype in artificial intelligence 
(AI) and sparked a heated discussion about ChatGPT’s potential capabil-
ity and pitfalls in healthcare, and attracted the attention of researchers 
from different medical specialties. The sensation could largely be at-
tributed to ChatGPT’s barrier-free (browser-based) and user-friendly 
interface, allowing medical professionals and the general public with-
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out a technical background to easily communicate with the Transformer-
and reinforcement learning-based language model. Currently, the inter-
face is designed for question answering (QA), i.e., ChatGPT responds 
in texts to the questions∕prompts from users. All established or po-
tential applications of ChatGPT in different medical specialties and∕or 
clinical scenarios hinge on the QA feature, distinguished only by how 
the prompts are formulated (Format-wise: open-ended, multiple choice, 
etc. Content-wise: radiology, parasitology, toxicology, diagnosis, medi-
cal education and consultation, etc.). Numerous publications featuring 
these applications have also been generated and indexed in PubMed

since the release. This systematic review dives into these publications, 
aiming to elucidate the current state of employment, as well as the lim-
itations and pitfalls of ChatGPT in healthcare, amidst the ChatGPT AI 
hype.

Based on the findings derived from existing publications on ChatGPT 
in healthcare, this systematic review addresses the following research 
questions:

• RQ1: What are the different medical applications where ChatGPT 
has already been tested?

• RQ2: What are the strengths, limitations and main concerns of 
ChatGPT for healthcare, especially with respect to the field they 
are applied to?

• RQ3: What are the key research gaps that are being investigated or 
should be investigated according to the existing works?

• RQ4: How can existing publications on ChatGPT in healthcare be 
categorized according to a taxonomy?

The rest of the manuscript is organized as follows: Section 2 briefly 
introduces NLP, transformers and large language Models (LLMs), on 
which ChatGPT is built. Section 3 introduces the inclusion criteria and 
taxonomy used in the systematic review, and discusses in detail the 
selected publications. Section 4 presents the answers to the above re-
search questions (RQ1 - RQ4). Section 5 and Section 6 summarize and 
conclude the review.

2. Background

For completeness of the review, this section briefly introduces nat-
ural language processing (NLP), the current state-of-the-art language 
architecture - transformers, large language models (LLMs) and their ap-
plications in the medical domain. The key methods and the common 
medical corpus involved in training large language model for medical 
applications are also discussed.

2.1. Natural language processing (NLP)

NLP [27] is an interdisciplinary research field that aims to develop 
algorithms for the computational understanding of written and spoken 
languages. Some of the most prominent applications include text classi-
fication, question answering, speech recognition, language translation, 
chat bots, and the generation or summarization of texts. Over the past 
decade, the progress of NLP has been accelerated by deep learning tech-
niques, in conjunction with increasing hardware capabilities and the 
availability of massive text corpora. Given the fast growth of digital 
data and the growing need for automated language processing, NLP 
has become an indispensable technology in various industries, such as 
healthcare, finance, education, and marketing.

2.2. Transformer

In 2017, Vaswani et al. [138] introduced the Transformer model 
architecture, replacing previously widespread recurrent neural net-
works (RNN) [98], Long short-term memory networks (LSTM) [55]
and Word2Vec [28]. Transformers are feedforward networks combined 
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with specialized attention blocks that enable the model to attend to 
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distinct segments of its input selectively. Attention blocks overcome 
two important limitations of RNNs. First, they enable Transformers to 
process input in parallel, whereas in RNNs each computation step de-
pends on the previous one. Second, they allow Transformers to learn 
long-term dependencies. Since their introduction, Transformers consec-
utively achieved state-of-the-art results on various NLP benchmarks. 
Further developments include novel training tasks [29,69,143], adap-
tions of the network architecture [52,81], and reduction of computa-
tional complexity [73,81,51]. However, the limited training data and 
the model complexities remained one of the primary factors of model 
performance. Transformers have also been used for tasks beyond NLP, 
such as image and video processing [121], and they are an active area 
of research in the deep learning community.

A basic Transformer network comprises of an encoder and a decoder 
stack, each consisting of several identical blocks of feed-forward neural 
networks and multi-head attention [138]. Both the input and output 
of a Transformer are text sequences, where the words are tokenized 
and represented as elements in a high-dimensional vector. An embed-
ding layer then projects the vector into a lower dimension space. The 
order of the sequences are also modeled into embeddings by a posi-
tional encoding. In other words, the embeddings are learned [17], and 
contain the semantic and positional information of the text sequences. 
Multi-head attention allows the network to cover different parts and in-
formation of long sequences, and it is one of the key components of a 
Transformer network.

2.3. Large language models (LLMs)

LLMs [20] refer to massive Transformer models trained on extensive 
datasets. Substantial research has been conducted on scaling the size of 
Transformer models [71]. The popular Bidirectional encoder represen-
tations from transformers (BERT) model [33], which in 2019 achieved 
record-breaking performance on seven tasks in the Glue Benchmark 
[139], possesses 110 million parameters. GPT-3 [22] had also already 
reached 175 billion parameters by 2021. At the same time, the size 
of the training datasets has continued to grow. BERT, for example, 
was trained on a dataset comprising of 3.3 billion words, while the 
recently published LLaMA [135] was trained on 1.4 trillion tokens. De-
spite their success, LLMs face several challenges, including the need for 
massive computational resources and the potential of adopting bias and 
misinformation from training data. Additionally, overconfidence when 
expressing wrong statements and a general lack of uncertainty remains 
to be a significant concern in NLP applications. As LLMs continue to 
improve and become more widespread, addressing these challenges and 
ensuring they are used ethically and responsibly is essential. ChatGPT is 
another representative LLM released by OpenAI, and other tech giants 
have also released their LLMs, such as the previously mentioned LLaMA 
from Meta, as a response. Fig. 1 illustrates the evolution of LLMs.

The training of LLMs unfolds in two distinct phases. Initially, in the 
pre-training phase, models are exposed to an extensive corpus of unla-
beled text data, learning by predicting subsequent tokens in a given text 
through autoregressive training. This unsupervised approach allows for 
training on massive datasets without the need for manual labeling. Sub-
sequently, the model undergoes instruction fine-tuning and alignment, 
a critical step to refine its understanding and application of various facts 
and concepts acquired during pre-training. This phase is crucial for mit-
igating undesired learning, such as certain human biases, insensitive 
language, and inaccuracies, ensuring the model’s reliability, especially 
in sensitive domains like medicine where precision and sensitivity are 
crucial.

2.4. Medical LLMs and corpora

In the medical domain, specialized LLMs and medical corpora are 

developed and curated for different medical tasks and specialties. For 
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Fig. 1. Evolution of large language models (LLMs) (adapted from [123]).
example, MIMIC-III [65] and MIMIC-IV [66] are among the most in-
fluential datasets for electronic health record (EHR); The MedDialog 
dataset [146] is comprised of conversation-style texts between doc-
tors and patients, which can be used in medical dialogue systems; The 
PubMed 200k RCT [32] and RCMR 280k [88] datasets consist of ab-
stracts derived from PubMed, and they are commonly used for the clas-
sification of sentences in medical literature abstracts; SumPubMed [48]
is a dataset derived from PubMed, and it is specifically designed for med-
ical literature summarization; Multimodal datasets consist of both texts 
and images. For example, MIMIC-CXR [64] provides paired radiology 
reports and chest radiographs, and it can therefore be used for auto-
mated generation of radiology reports given radiographs. The ROCO 
dataset [109] provides paired images and captions derived from PubMed 
Central. Besides these English corpora, large-scale datasets have also 
been developed for other languages, such as Chinese (MedDialog [146], 
Huatuo-26M and Huatuo_Encyclopedia_QA [87]), Japanese (MedTxt-
RR-JA [102]), French (The QUAERO French Medical Corpus) and Ger-
man [41]. However, these non-English medical language datasets are 
relative scarce.

Bidirectional language representation (i.e., BERT [33]) is one of the 
most popular methods used to improve the performance of LLMs in 
medical tasks, and it has been adopted in several influential medical 
LLMs, such as PubMedBERT [46], ClinicalBERT [61] and BioBERT [84]; 
Incorporating existing medical knowledge base, such as the Unified 
Medical Language System (UMLS), into language models has also shown 
to improve results (KeBioLM [145]); Furthermore, study has shown that 
pre-training on diverse datasets, albeit not healthcare-related, still im-
proves performance in a medical NLP task, compared to training on the 
target domain medical dataset alone [30].

2.5. ChatGPT

GPT-3 is a 175 billion parameter encoder-only model developed by 
OpenAI, trained on a diverse dataset of about 500 billion tokens. The 
data for this model is sourced from a wide array of texts, including 
various unspecified websites, collections of books, and Wikipedia. The 
model is particularly noted for its few-shot learning ability, allowing it 
to perform tasks with minimal examples or guidance effectively. Build-
ing upon GPT-3, ChatGPT is an instruction-tuned extension designed to 
interact and respond in a conversational manner.

3. Methodology

The search strategy used in this systematic review is illustrated in 
Fig. 2, according to the PRISMA guidelines. We use PubMed as the only 
3

source to search candidate publications. Since the majority of the pa-
Fig. 2. Search strategy used in this systematic review.

pers are very short (without abstracts), eligibility is determined at first 
screening based on the inclusion criteria below.

3.1. Inclusion criteria

The review is expressly dedicated to the ChatGPT released in 
November 2022 by OpenAI, excluding its predecessors (GPT-3.5, CPT-

4), other large language models (LLMs) such as InstructGPT and general 
NLP medical applications [91]. By March 20, 2023, a total of 140 pub-
lications are retrieved in PubMed (https://pubmed .ncbi .nlm .nih .gov/) 
using the keyword ChatGPT. Among them, article written in languages 
other than English (e.g., French [111]), without full text access (e.g., 
[79]), or whose main content has little to do with (or is not spe-
cific to) either ChatGPT (e.g., [56,131,40,45]) or healthcare (e.g., 
[124,130,34,8,49,15,114,26,85,144,129,53]) are excluded. Other rep-
resentative exclusions include [54,70], which deal with CPT-3, and 
[72,37,116,2], where the authors claimed that ChatGPT assisted with 
the writing of the papers or case reports, but did not provide any dis-
cussion of the appropriateness of the generated texts and how the texts 
were incorporated into the main content. Generic comments that are 
not specific to healthcare, such as [133,144,19,60], where the authors 
comment on the authorship of ChatGPT and using ChatGPT in scien-
tific writing, are also excluded. Several repetitive articles were found 

from the PubMed search results. Table 1 and Table 2 show the full 

https://pubmed.ncbi.nlm.nih.gov/
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Table 1

Summary of Level 1 and Level 2 papers.

Ref. Scenario Category Main Content Tag

[119] clinical workflow editorial discussion of the potential use, limitations and risks of 
ChatGPT in nursing practice

Level 1

[118] medical research perspective comments about ChatGPT in scientific writing; Use ChatGPT 
to summarize and compare across papers

Level 1

[106] medical research editorial generic comments on using ChatGPT in orthopaedic research Level 1

[101] medical research letter to the editor comments on using ChatGPT in scientific publications and 
generating research ideas

Level 1

[75] miscellaneous letter to the editor comments on the potential use and pitfalls of ChatGPT in 
healthcare

Level 1

[134] miscellaneous editorial discuss with ChatGPT about synthetic biology (e.g., 
applications, ethical regulations, history, research trends, 
etc.)

Level 1

[31] medical research editorial comments on the pros and cons of using ChatGPT in medical 
research

Level 1

[83] miscellaneous original article comments on the potential usage of ChatGPT in radiology 
(generate radiological reports, education, diagnostic 
decision-making, communicate with patients, compose 
radiological research article)

Level 1

[10] medical 
education & 
research

letter to the editor comments on the pros and cons of ChatGPT in medical 
education and research

Level 1

[43] miscellaneous primer short comment on ChatGPT for Urologists Level 1

[59] consultation correspondence ChatGPT for antimicrobial consultation Level 1

[58] medical research article (preprint) comments on ChatGPT in peer-review Level 1

[95] miscellaneous editorial comments on ChatGPT in translational medicine Level 1

[16] consultation letter to the editor comments on the pros and cons of ChatGPT in 
public∕community health (e.g., answer generic public health 
questions)

Level 1

[96] miscellaneous article comments on the ethics of using ChatGPT in Health 
Professions Education

Level 1

[76] medical research letter to the editor brief comments on using ChatGPT in medical writing Level 1

[105] medical 
education

editorial comment on ChatGPT in nursing education Level 1

[13] miscellaneous commentary comment on ChatGPT in translational medicine Level 1

[142] miscellaneous editorial comment on ChatGPT in healthcare Level 1

[74] medical research editorial comment on ChatGPT in medical writing Level 1

[9] medical research editorial comment on using ChatGPT for scientific writing in sports & 
exercise medicine

Level 1

[14] medical research perspective comment on medical writing Level 1

[117] miscellaneous review systematic review on ChatGPT in healthcare Level 1

[7] medical research editorial comment on the hallucination issue of ChatGPT in medical 
writing

Level 1

[94] medical research editorial ChatGPT draft an article on vaccine effectiveness Level 2

[137] medical research review review on ChatGPT in medical research, including use 
examples

Level 2

[11] medical research original article use ChatGPT to compile a review article on Digital Twin in 
healthcare

Level 2

[108] clinical workflow comment use ChatGPT to generate a discharge summary for a patient 
who had hip replacement surgeries including follow-up care 
suggestions

Level 2

[115] clinical workflow letter to the editor ChatGPT gives diagnosis, prognosis and explanation for a 
clinical toxicology case of acute organophosphate poisoning

Level 2

[24] medical research editorial ChatGPT answers questions about computational systems 
biology in stem cell research but its answers lack depth

Level 2

[50] medical research letter to the editor use ChatGPT to search literature of a given topic, but 
majority of returned publications are fabricated

Level 2

[100] medical 
(anatomy) 
education

letter to the editor ChatGPT answers anatomy-related questions; Result shows 
ChatGPT is currently incapable of giving accurate anatomy 
information

Level 2

[1] consultation letter to the editor ChatGPT answers questions on cardiopulmonary 
resuscitation

Level 2

[23] miscellaneous Discussions with Leaders 
(Invitation Only)

comment and use examples of ChatGPT in nuclear medicine Level 2

[3] medical 
education

editorial ChatGPT answers multiple-choice questions on nuclear 
medicine; Results suggest ChatGPT does not possesses the 
knowledge of a nuclear medicine physician

Level 2

[25] medical research brief report comments on using ChatGPT in healthcare (e.g., compose 
medical notes) and medical research (e.g., generate 
abstracts, research topics)

Level 2

[57] consultation commentary ChatGPT answers cancer-related questions information Level 2

[18] consultation commentary ChatGPT answers epilepsy-related questions Level 2

[127] consultation article comments on ChatGPT in diabetes self management and 
education (DSME)

Level 2

[38] medical research editorial ChatGPT generates a curriculum about AI for medical 
students and a list of recommended readings

Level 2
4
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Table 2

Summary of Level 3 papers. Note: ‘preprint’ in the ‘Journal’ column is the status of the papers at the time of 
conducting the review.

Ref. Scenario Summary Results∕Conclusion Version Journal

[113] clinical workflow decide an imaging procedure 
or evaluate whether a 
procedure is proper for breast 
cancer∕pain patients

specialized ChatGPT is 
needed

Jan. 9, 
2023

preprint

[112] clinical workflow ChatGPT supports clinical 
decision-making, by answering 
questions from Merck Sharpe 
& Dohme (MSD) clinical 
vignettes

ChatGPT achieves an 
overall accuracy of 
(71.7%) on 36 clinical 
vignettes covering the 
entire clinical 
workflow

Jan. 
9,2023

preprint

[62] medical education compare ChatGPT with 
medical students in (an 
internal) parasitology exam 
(79 questions)

ChatGPT is not 
comparable to medical 
student (Acc. 89.6%) 
in parasitology 
questions

Dec. 15, 
2022

JEEHP

[44] medical education ChatGPT takes US Medical 
Licensing Examination 
(USMLE)

ChatGPT achieved 
passing score

Dec. 15, 
2022

JMIR

[5] clinical workflow ChatGPT writes patient letters 
(e.g., communicates diagnostic 
results, gives treatment advice) 
for 38 clinical scenarios

ChatGPT achieved 
high scores on both 
the factual correctness 
and humanness 
criterion

- Lancet Digit 
Health

[126] medical education compare ChatGPT with 
medical students in 
parasitology exam (288 
questions) from the Doctor of 
Veterinary Medicine (DVM) 
exam

ChatGPT and students 
achieve similar scores

- Cell

[90] clinical workflow ChatGPT answers clinical 
decision support (CSD) alerts 
from Epic EHR

ChatGPT’s answers are 
biased and redundant, 
their acceptability in 
CDS is low

- preprint

[77] medical education ChatGPT takes USMLE (June 
2022)

ChatGPT achieved 
passing score, and its 
explanations contain 
novel insights

- PLOS Digital 
Health

[39] medical education ChatGPT takes life-support 
exams (AHA BLS ∕ CLS Exams 
2016)

ChatGPT did not reach 
passing score

Jan. 9 
and 30, 
2023

Resuscita-
tion

[68] consultation ChatGPT provides 
cancer-related information and 
feedback on cancer 
misconceptions

ChatGPT provides 
highly accurate cancer 
information

Dec. 15, 
2022

JNCI Cancer 
Spectrum

[86] medical research compared 50 
ChatGPT-generated abstracts 
with real abstracts from 
scientific publications

Grammarly can detect 
ChatGPT-generated 
abstracts with high 
accuracy

- AJOG

[110] consultation evaluate ChatGPT using 100 
questions about retinal 
diseases

ChatGPT is highly 
accurate on general 
questions but less 
accurate for treatment 
options

- Acta Oph-
thalmologica

[35] consultation compare ChatGPT with 
humans on 85 
genetics∕genomics questions

ChatGPT and humans 
perform similarly

- preprint

[67] consultation 
medical education

ChatGPT answers 284 question 
from various medical 
specialties

ChatGPT achieved 
overall high accuracies

- preprint

[141] medical education ChatGPT takes Chinese 
National Medical Licensing 
Examination

ChatGPT’s 
performance on the 
exam is well below 
passing level

- preprint

[80] medical research ChatGPT identifies research 
questions in gastroenterology 
(e.g., microbiome, endoscopy)

ChatGPT generates 
highly relevant but 
non-novel research 
questions

Dec. 15, 
2022

Scientific 
Reports

[47] medical research ChatGPT generates systematic 
review topics in plastic 
surgeries

ChatGPT performs 
moderately in 
generating novel 
systematic review 
ideas

- Aesthetic 
Surgery 
Journal

[125] consultation 
medical education

evaluate ChatGPT using 100 
OE questions about pathology

ChatGPT scored 
around 80%

Jan. 30, 
2023

Cureus
5
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Fig. 3. Application- and user-oriented Taxonomy used in the ChatGPT review. The references shown in the application boxes are the Level 3 publications.
list of selected publications based on the inclusion (exclusion) criteria. 
PubMed is a ‘pure’ medical search engine. However, PubMed does not 
index all publications in the medical field, e.g., it could be that a tech-
nical venue publishes a ChatGPT paper in the healthcare area (which 
is not indexed under PubMed). Hence, we incorporated IEEE as a ‘tech-
nical’ search engine to check if there are additional works that would 
fit into our review. The search for ‘ChatGPT’ resulted in five publica-
tions until March 2023. From these publications, two had performed 
something with ChatGPT in healthcare. However, the publications did 
not explicitly focus on healthcare, and the healthcare aspect was more a 
sub-section. Because our review focuses on publications where ChatGPT 
was solely used in healthcare, we did not include these IEEE contribu-
tions in our review.

3.2. Taxonomy

We propose a taxonomy, as shown in Fig. 3, to categorize the se-
lected publications included in the review. The taxonomy is based on 
applications, including ‘triage’, ‘translation’, ‘medical research’, ‘clin-
ical workflow’, ‘medical education’, ‘consultation’, ‘multimodal’, each 
targeting one or multiple end-user groups, such as patients, health-
6

care professionals, researchers, medical students and teachers, etc. An 
application-based taxonomy allows more compact and inclusive group-
ing of papers, compared to categorizing papers by specific medical spe-
cialties. For example, scientific progress and findings generated through 
clinical practices are documented in the form of publications and∕or 
reports, and literature reviews and novel ideas are usually required 
for medical researchers of all disciplines to publish their works. Thus, 
papers on ‘scientific writing’, ‘literature reviews’, ‘research ideas gen-
eration’, etc., can be grouped into the ‘medical research’ category. 
Similarly, the ‘consultation’ category comprises papers where ChatGPT 
is used in medical consulting settings for both corporations (e.g., in-
surance companies, medical consulting agencies, etc.) and individuals 
(e.g., patients) seeking medical information and advice. The ‘clinical 
workflow’ category includes ChatGPT’s applications in a variety of clin-
ical scenarios, such as diagnostic decision-making, treatment and imag-
ing procedure recommendation, and writing of discharge summary, 
patient letter and medical note. Furthermore, clinical departments, re-
gardless of medical specialties, may benefit from a translation system 
for patients∕visitors who are non-native language speakers (‘transla-
tion’). A triage system [12] guiding patients to the right departments 
would reduce the burden of clinical facilities and centers in general. 
Note that different categories are not necessarily completely indepen-

dent, since all applications are reliant upon the QA-based interface of 
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ChatGPT. By formulating the same questions differently according to 
different scenarios, ChatGPT’s role can change. For instance, reformu-
lating multiple choice questions about a medical specialty in medical 
exams to open-ended questions, ChatGPT’s role changes from a medical 
student (‘medical education’) to a medical consultant (‘consultation’) or 
a clinician providing diagnosis or giving prescriptions (‘clinical work-
flow’). To avoid such ambiguity, categorization of a paper is solely 
based on the scenario explicitly reported in the paper. The connections 
between the applications and end-users in Fig. 3 are also not unique. In 
this review, only the most obvious connections are established, such 
as ‘medical education’ - ‘students∕teachers∕exam agencies’, ‘medical 
research’ - ‘researchers’. The following of the review will show that 
existing publications on ChatGPT in healthcare can all find a proper cat-
egorization based on the proposed taxonomy. Besides the taxonomy, we 
further assign a tag (Level 1 - Level 3) to the selected papers to indicate 
the depth and particularity of the papers on the ‘ChatGPT in Healthcare’ 
topic:

• Level 1: Generic comments about the potential applications of Chat-
GPT in healthcare or in a specific medical specialty and∕or sce-
nario;

• Level 2: Comments with one or more example use cases of Chat-
GPT in a specific medical specialty and∕or scenario and moderate 
discussion about the correctness of ChatGPT’s answers;

• Level 3: Qualitative and quantitative evaluation of ChatGPT’s an-
swers to a decent amount of specialty- and∕or scenario-specific 
questions, with insightful discussion about the correctness and ap-
propriateness of the ChatGPT’s answers.

Shortly prior to our review, a systematic review of ChatGPT in 
healthcare was published by Sallam, M. [117]. An inclusive taxonomy 
and a proper differentiation among the selected publications (tag: Level 
1, Level 2, Level 3) is, however, lacking. We believe that the tag helps 
readers quickly filter and locate papers of interest. This review put more 
emphasis on Level 3 papers, since they provide a clearer picture of the 
real capability of ChatGPT in different healthcare applications.

3.3. General profile of Level 1 and Level 2 papers

A list of Level 1 and Level 2 papers are summarized in Table 1. It 
is not unexpected that the majority of shortlisted papers fall into the 
Level 1 and Level 2 category. As seen from Table 1, most of Level 1 and 
Level 2 papers are short editorial comments or letters to the editor from 
multidisciplinary journals like Nature (https://www .nature .com/) and 
Science (https://www .science .org/), or specialty journals like nuclear 
medicine [3,75], plastic surgery [101,47], synthetic biology [134] and 
orthopaedic [106]. These publications usually deliver high-level com-
ments about the potential impact and pitfalls of ChatGPT in healthcare 
[142], with a focus on medical publishing. Scientific journals are among 
the immediate stakeholders of the publishing industry on which Chat-
GPT will exert a significant impact. Thus, publishers introduce new 
regulations regarding the use of ChatGPT in scientific publications, 
in particular whether ChatGPT is eligible as an author and ChatGPT-
generated texts are allowed. Answers from leading publishers like Sci-

ence are in the negative [133,19]. Nature also bans ChatGPT authorship 
but takes a slightly more tolerant stance regarding ChatGPT-generated 
content, subject to a clear statement of whether, how and to what extent 
ChatGPT contributed to the submitted manuscript [130,34]. Main argu-
ment for the decision is that ChatGPT cannot properly source literature 
where its answers are derived from, causing unintentional plagiarism, 
nor can it take accountability as human authors do [133,34]. The deci-
sion is echoed by the academic community [74,124,144,85], agreeing 
that ChatGPT-generated content must be scrutinized by human experts 
before being used [74], as the generated content, such as references 
[133,14,50,38] could be fabricated. Lee, J.Y. et al. [85] reiterated from 
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ChatGPT as an author, emphasizing that a non-human cannot take le-
gal responsibilities and consequences. However, banning ChatGPT from 
scientific writing is not easily enforceable, since ChatGPT is trained to 
produce human-like texts that even scientists and specifically-trained 
AI detector sometimes fail to detect [36,9]. In short, even though the 
prospect is promising [118,31,53,129], new regulations and substan-
tial improvements are needed before ChatGPT can be safely and widely 
used for scientific writing, publishing, or medical research in general 
[133]. The scenario column in Table 1 corresponds to the taxonomy 
categorization. If the article concerns healthcare or a medical specialty
in general, it is categorized as ‘miscellaneous’. The category column in-
dicates the type of the publications.

3.4. Reviews of Level 3 papers

Level 3 papers feature extensive experiments conducted to assess 
the suitability of ChatGPT for a medical specialty or clinical scenario. 
For open-ended (OE) questions, human experts are usually involved to 
assess the appropriateness of the answers. To quantify the subjective 
assessments, a scoring criteria and scheme (e.g., 5-point, 6-point or 10-
point Likert scale) is usually required. For multiple choice questions, it 
is desirable to not only quantify the accuracies but to evaluate whether 
the ‘justification’ given by ChatGPT and the choice are in congruence. 
When it comes to comparisons (with humans or other language mod-
els), statistical analysis is usually performed. As shown in Table 2, many 
of Level 3 papers are still pre-prints (under review) at the time of writing 
this review. Most of current ChatGPT evaluations are on ‘medical educa-
tion’ (medical exams in particular), which requires no ethical approval 
to conduct. Representative works include [44,77], where the authors 
test ChatGPT in the US Medical Licensing Examination (USMLE). Even 
though the evaluations were carried out independently ([44] and [77]
were published almost at the same time), similar results were reported, 
i.e., ChatGPT achieved only moderate passing performance. [44] fur-
ther showed that ChatGPT outperformed two other language models, 
InstructGPT and GPT-3, in the exam. In both studies, ChatGPT was 
asked to give not only the answers but also the justifications, which 
were taken into consideration during evaluation (by physicians). [44]
further found that ChatGPT performed better on fact-check questions 
than on complex ‘know-how’ type questions. It is worthy of noting that 
the exam contains questions from different medical specialties. How-
ever, Mbakwe, A.B. et al. [97] raised concerns that ChatGPT, a language 
model, passing the exam indicates the flawness of the exam system.1

Besides USMLE, ChatGPT was also tested on the Chinese National Med-
ical Licensing Examination [141] and the AHA BLS ∕ CLS Exams 2016 
[39], on both of which ChatGPT failed to achieve passing scores. Chat-
GPT achieved similar performance to students examinees on a Doctor 
of Veterinary Medicine (DVM) exam containing 288 parasitology exam 
questions. One major limitation of using ChatGPT in medical exams is 
that, current release of ChatGPT can only process text inputs, whereas 
some questions are diagram-∕figure-based.2 Such questions are either 
excluded or translated into text descriptions.

Besides the standard medical exams, ChatGPT achieved promising 
results on cancer-related questions [57,68]. In [68], ChatGPT’s answers 
to common cancer myths and misconceptions were evaluated by expert 
reviewers and compared with the standard answers from the National 
Cancer Institute (NCI). Results showed that ChatGPT is able to achieve 
very high accuracies, showing that current ChatGPT is already a re-
liable source of cancer-related information for cancer patients [57]. 
Furthermore, [110] tested ChatGPT with 100 questions related to retina 
disease. The answers were evaluated based on a 5-point Likert scale by 

1 ChatGPT does not fulfill the ‘USMLE Mission Statement’, but still passes the 
exam.

2 ChatGPT developers revealed that future versions of ChatGPT will have vi-

sion capabilities, and can comprehend images.

https://www.nature.com/
https://www.science.org/


J. Li, A. Dada, B. Puladi et al.

domain experts. It is found that ChatGPT answers with high accuracy 
on general questions, while the answers are less satisfactory, sometimes 
harmful, when it comes to treatment∕prescription recommendations. 
On 85 multiple-choice questions concerning genetics∕genomics, Chat-
GPT achieved similar performance to human respondents [35]. Inter-
estingly, based on the test results, [35] also reached the conclusion 
that ChatGPT fares better on ‘memorization (fact-lookup)’ type ques-
tions than on those requiring critical thinking, similar to [110]. The 
performance of ChatGPT on these question-answering scenarios3 shows 
its potential for medical consultation and education.

A few studies evaluate the use of ChatGPT in medical research, 
particularly in scientific writing [86] and generating research ques-
tions [80] and systematic review topics [47]. In [86], the authors use 
ChatGPT to generate full abstracts, providing only the title and re-
sult sections of the abstracts from 50 real scientific publications. Even 
though previous studies [36] have shown that scientists can not tell 
apart abstracts generated by ChatGPT from those written by humans, 
[86] found that the two groups can simply be differentiated based 
on Grammarly scores. Discriminative features of ChatGPT-generated 
texts include mixed use of English dialects and language perfectness 
e.g., very few typos, more unique words, proper prepositions usage 
and no misuse of conjunction and comma. These characteristics can be 
captured by Grammarly scores. The finding indicates that Grammarly 
could potentially be adopted by scientific journals to enforce the ‘no-
AI-generated-texts’ policy. In [80], the authors use ChatGPT to identify 
research questions in gastroenterology. The answers generated by Chat-
GPT prove to be highly relevant but lack depth and novelty. In [47], 
ChatGPT is used to generate systematic review topics in plastic surgery. 
Similar to [80], ChatGPT-generated research topics are generally not 
novel. The version column in Table 2 shows the version of ChatGPT 
used for evaluation. [80] found that newer versions of ChatGPT tend 
to have better performance on the same questions. In contrast to using 
ChatGPT directly for writing, which is expressly banned by many scien-
tific journals, exploring new research ideas∕topics with the assistance 
of ChatGPT faces less ethical issues. However, [80,47] demonstrated 
that the current version of ChatGPT is not sufficiently qualified for such 
tasks. Humans still play dominating roles in ingenious and innovative 
research.

[113,112,5,90] evaluate the application of ChatGPT in clinical 
workflow. In [113], ChatGPT is used to decide the appropriate imag-
ing procedure (e.g., Mammography, MRI, US, etc.) for breast cancer 
screening and breast pain, given a description of the patients’ condi-
tions. ChatGPT’s responses were evaluated against the corresponding 
American College of Radiology (ACR) appropriateness criteria. Results 
showed that ChatGPT achieved moderate overall results, and its per-
formance is noticeably better for breast cancer screening than breast 
pain. The finding is in accordance with previous discussions that Chat-
GPT is already highly accurate on cancer-related information [57,68]. 
The authors concluded that, even though ChatGPT showed impressive 
performance on the task, specialized AI tools are desired to support 
the clinical decision-making process more reliably. In a follow-up study 
[112], the authors tested ChatGPT with 36 clinical vignettes from the 
Merck Sharpe & Dohme (MSD), covering the entire clinical workflow 
(differential diagnosis, final diagnosis and subsequent clinical manage-
ment of the patients). Overall, ChatGPT obtained a 71.8% accuracy in 
the test, and its performance on differential diagnosis is significantly 
lower than on final diagnosis. ChatGPT achieved the highest accuracy 
on a cancer vignette. The patients and their conditions in these vignettes 
are only hypothetical, which removes the ethical barrier to conduct 
the evaluation. In [5], ChatGPT is used to write patient clinic letters 
in 38 hypothetical clinical scenarios (e.g., basal cell carcinoma, ma-
lignant melanoma, etc.), where ChatGPT communicates the diagnosis 
results and treatment advice to the patients in a friendly and easily-
8
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understandable manner. The letters are evaluated from the perspec-
tive of factual correctness and humanness by clinicians, and ChatGPT 
achieved high scores on both criteria. In [90], ChatGPT is supplied with 
seven types of clinical decision support (CDS) alerts (e.g., pediatrics 
bronchiolitis, immunization, postoperative anesthesia nausea and vom-
iting, etc.) and asked to give suggestions. However, ChatGPT’s answers, 
even though highly relevant to the alerts, were not adequately accept-
able by the standard of CDS experts.

4. Results

The following presents the answers to the four research questions 
(RQ1-RQ4) based on the discussion in Section 3.

4.1. Medical applications of ChatGPT

According to Table 1, Table 2 and the taxonomy (Fig. 3), it is 
straightforward to see that ChatGPT is mostly evaluated in medical 
education, consultation and research, as well as in various scenarios 
in the clinical workflow, such as diagnosis, decision-making and clin-
ical documentation (patient letter, medical note, discharge summary, 
etc.). However, it is important to note these ‘applications’ are carried 
out in a ‘laboratory environment’, by providing ChatGPT questions 
from standard medical exams (question banks), CSD alerts from Epic 
EHR or clinical vignettes from Merck Sharpe & Dohme (MSD), through 
its QA interface. None of the reviewed publications have reported an 
actual deployment of ChatGPT in clinical settings and practices. Fur-
thermore, due to the current strict policies on AI-generated content 
imposed by publishers, the unsolved ethical issues as well as its inca-
pability in generating novel research topics, using ChatGPT for medical 
literature and research remains experimental as well. For medical con-
sultation, the fact that ChatGPT is already capable of providing highly 
accurate cancer-related information can not be generalized to all med-
ical specialties, since reliable sources of cancer information, such as 
the National Cancer Institute (NCI), are publicly accessible and could 
have already been part of ChatGPT’s training set. Its qualification as a 
medical consultant remains to be further evaluated. Overall, the out-
of-the-box performance of ChatGPT in healthcare is only moderate, 
which does not meet the high clinical standards. Improvements such 
as specialization [113] and standardization of evaluation are needed. 
Like other emerging technologies, a stable evaluation system that objec-
tively reflects the applicability of ChatGPT in a clinical scenario must be 
established, in order for the tool to be deployed reliably in clinical prac-
tices. As the Level 3 paper revealed (Section 2.3), the current evaluation 
of ChatGPT heavily relies on human input and lacks objectivity and 
scalability. Quantitative metrics reflecting the experts’ qualitative eval-
uations of ChatGPT’s performance can be computed automatically, and 
they are therefore desirable for ChatGPT’s clinical integration [147]. 
A professional version of ChatGPT specialized in a medical specialty is 
promising for clinical use after passing the said quantitative evaluation 
(to be discussed in Section 5.1).

4.2. Strengths and limitations of ChatGPT in healthcare

Strengths The QA design of ChatGPT’s interface makes it easy to be 
integrated into existing clinical workflow, providing feedback in real-
time. ChatGPT can not only give answers to specific questions but 
provide ‘justifications’ to its answers. Sometimes, ChatGPT’s ‘justifica-
tions’ and answers to open-ended question contain novel insights and 
perspectives, which might inspire novel research ideas. ChatGPT also 
shows superior performance in healthcare compared to other general 
large language models, such as InstructGPT, GPT-3.5.

Limitations The current release of ChatGPT can only take input and 
give feedback in texts, so that ChatGPT cannot handle questions requir-

ing the interpretation of images. ChatGPT is incapable of ‘reasoning’ 
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like an expert system, and the ‘justifications’ provided by ChatGPT 
is merely a result of predicting the next words according to proba-
bility. It is possible that ChatGPT makes a correct choice, but gives 
completely nonsensical explanations. Accuracy of ChatGPT’s answers 
depends largely on the quality of its training data, and the information 
ChatGPT is trained on decides how ChatGPT would respond to a ques-
tion. However, ChatGPT itself cannot distinguish between real and fake 
information fed into it, so that its answers could be highly misleading, 
biased and dangerous when it comes to healthcare. For example, one of 
the most concerning issues of current release of ChatGPT, as confirmed 
by the reviewed publications, is that it can ‘fabricate’ information and 
convey it in a persuasive tone. Therefore, its answers should always 
be fact-checked by human experts before adoption. Furthermore, Chat-
GPT’s answers, even if can be highly relevant, stay most of the time 
superficial and lack depth and novelty. Most importantly, ChatGPT is 
not fine-tuned for healthcare by design, and should not be used as such 
without specialization. Last but not least, the use of ChatGPT is not 
without barriers. Reformulating the prompt to the same question might 
change ChatGPT’s answer as well. Proper formulation of prompts is an-
other factor to obtaining desirable answers from ChatGPT. Last but not 
least, ChatGPT is a proprietary product, and therefore feeding sensi-
tive patient information into its interface in order to obtain a feedback 
might violate privacy regulations.

4.3. Research gaps and future works

Prior to the deployment of any product in clinical settings, extensive 
evaluations of the product in a laboratory environment are required 
to identify the limitations and improve the product iteratively. Since 
ChatGPT was released no more than half a year ago, it has only been 
tested in a limited number of scenarios (Table 2). ChatGPT clearly is 
still at an experimental stage, and clinical deployment faces substantial 
unsolved technical and regulatory challenges. The Level 3 publications 
provide a sound paradigm on how ChatGPT should be continued to 
be evaluated in different specialties, for future works to follow. How-
ever, before further pursuing the direction, researchers should be aware 
that, even though these evaluations provide, at best, a general picture of 
ChatGPT’s capability in a medical specialty, little contribution to the im-
provement of the underlying language model is made. The limitations 
identified through these evaluations have also long been known in NLP 
research and are not specific to ChatGPT. Most importantly, whether or 
not ChatGPT has achieved good performance in an application scenario, 
it is unlikely that the ChatGPT with general knowledge will be clinically 
deployed in the future. Specialized AI models in healthcare, which the 
NLP community has long been working on, are more promising for prac-
tical and reliable clinical applications, compared to ChatGPT.

4.4. Categorization of publications based on a taxonomy

Finally, we have shown in our review that existing publications on 
ChatGPT in healthcare can be compactly grouped according to appli-
cations and target user groups. Thus, we come up with a application-
and user-oriented taxonomy to categorize the selected publications, as 
discussed in Section 3.

5. Discussion

In this systematic review, we review published works (from Nov. 
2022 to Mar. 2023) that used ChatGPT within the healthcare sector. 
In doing so, we extract publications from PubMed using the keyword 
‘ChatGPT’ and propose a two-sided taxonomy (application-oriented and 
user-oriented) to categorize these publications, which we see as a build-
ing block for new publications on ChatGPT in healthcare. Even though 
the current taxonomy is already quite inclusive, it can be easily ex-
tended to emerging new applications or user groups. This first taxonomy 
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or upcoming) NLP models, like Bard from Google. On the one hand, the 
taxonomy helps interested readers to identify relevant works. On the 
other hand, it also helps identify areas where ChatGPT has not yet been 
applied to. The barrier-free user interface, the ability to produce human-
like texts and the breadth of its knowledge on a variety of topics are the 
key reasons why ChatGPT has amassed a phenomenally large user base 
shortly after its release. Besides the architectural design of the LLM, the 
immeasurable human efforts invested in training the LLM through rein-
forcement learning contribute greatly to its impressive performance in 
human-like conversations. Even though ChatGPT technically represents 
the productization of a NLP model by OpenAI, rather than a funda-
mental technological advance or breakthrough, it is undeniable that 
ChatGPT is a living embodiment of state-of-the-art NLP techniques. The 
efforts devoted to making the product a reality still greatly push forward 
the field as a whole. Speaking from the perspective of a tech product, 
existing publications on ChatGPT’s healthcare applications boil down 
to ‘reviews and testing of a new NLP product in healthcare’. However, 
the product is not intended for medical applications by design, and it is 
therefore not unexpected that most ‘test reports’ evaluated ChatGPT as 
‘unqualified’ or ‘of merely passing grade’ for healthcare. However, the 
reported limitations (see Section 4) of ChatGPT are not specific to the 
product, but are applicable to language models in general, as discussed 
in Section 2. These limitations can mostly be addressed by improving 
the underlying language model through NLP innovations. Nevertheless, 
the fact that ChatGPT is monetized4 and therefore not (fully) open-
sourced makes it difficult for the community to pinpoint the issues and 
come up with specific solutions for future improvement. In particular, 
the sources of datasets used for training the language model, which de-
termine the type of questions and topics of the conversations ChatGPT 
can handle, remain unclear. As suggested by van Dis et al. [34], the 
community should invest in truly open LLMs that perform on par with 
proprietary NLP products like ChatGPT, in order to fully address these 
limitations. Currently, for healthcare applications, specialized AI mod-
els trained on biomedical datasets, such as BioGPT [92], are always 
more desirable than ChatGPT.

5.1. ChatGPT medical professional edition

In this section, we discuss the factors that should be taken into con-
sideration while designing a future ChatGPT Medical Professional Edition, 
drawing insights from our review. In short, a ChatGPT Medical Profes-

sional Edition should not aim for an ‘artificial general intelligence’ that 
can handle any medical situations, in terms of both interface design, 
features and capabilities. Instead, it should be highly specialized and 
tailored to different medical specialties, situations and end users. (1) 
First and foremost, specialized training corpora should be carefully cu-
rated. The medical big data involved in training the language model 
should be specialized to the purpose, as discussed in Section 2.4. Con-
sidering that the knowledge base of different medical specialties could 
be overlapping, the training data can come from several closely related 
medical domains, and they should be up-to-date; (2) Second, the inter-
face design and features should be specialized depending on its target 
users. If the target users are the general public, the interface should 
not involve sophisticated medical terminologies. Instead, plain words 
comprehensible to those without prior medical knowledge should be 
used. An example of this is a ChatGPT-based self-diagnosis system that 
gives advice to common symptoms [78,103]. It can also provide initial 
guidance on what professional medical help they should seek (similar 
to triage). However, it should clearly state that the final diagnosis and 
the subsequent treatment (or medication) options should be based on 
(human) professional advice. If the target users are medical profession-
als, it is important to make sure that the interface and features can be 
4 OpenAI has already introduced a subscription plan for ChatGPT (Plus).
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seamlessly integrated into their existing workflow, without requiring 
complex setup.

5.2. Limitations of the review

It should be noted that, despite the aim of our review being to pro-
vide a general picture of the applications of ChatGPT in healthcare, the 
fact that a large portion of the reviewed papers are reviews themselves 
or editorial comments (as those of the Level 1 and Level 2 papers in 
Table 1) might limit or even bias our understanding of its actual clin-
ical capability and applicability. In particular, the review papers and 
editorial comments generally portray an optimistic outlook on ChatG-
PT’s application in healthcare, despite mentioning its potential pitfalls, 
whilst most of the application-oriented publications (i.e., the Level 3
papers in Table 2) reported only ‘passing performance’ of ChatGPT in 
a limited medical application scenarios. Therefore, it is not feasible 
to extrapolate the findings drawn from these publications, especially 
the limitations of ChatGPT for a particular application and the pro-
posed solutions, to the entire healthcare sector. Furthermore, the lack 
of a standardized and quantitative evaluation scheme, as discussed in 
Section 4.1, makes their findings inherently subjective and the results 
across different publications not directly comparable.

5.3. GPT-4 in healthcare

GPT-4 was released in March 2023. The enhanced version of Chat-
GPT is capable of processing not only texts, but also images, and it 
significantly outperforms existing LLMs, including ChatGPT, in a variety 
of standard NLP benchmarks, according to its official technical report 
[107]. In general, existing publications of GPT-4 in healthcare showed 
a similar pattern to those of ChatGPT, which consist of primarily short 
comments (e.g., [4,93,82]), reviews (e.g., [6]) and evaluations (e.g., 
[21,122,63]). A recent study reported that GPT-4 performs better or on 
par with state-of-the-art radiology-specific models on several common 
radiology tasks (e.g., summarization, disease classification, entity ex-
traction from radiology report) [89]; GPT-4 also passed the USMLE with 
distinction [104], which stands in contrast to the ‘passing performance’ 
of ChatGPT in the same exam [77]. The study also reported that GPT-4 
outperforms Med-PaLM [136], which is specifically fine-tuned on medi-
cal knowledge; However, like ChatGPT, GPT-4 has also had pitfalls. One 
study revealed that non-radiology physicians are more likely to adopt 
GPT-4 generated impressions of radiology reports, even if they might 
be false and harmful, due to better language coherence compared to 
the impressions written by radiologists [132]. Another study evaluated 
GPT-4’s multimodal capabilities, and reported that its performance of 
identifying anatomies and pathologies from radiological images is still 
unreliable [21]. In [147], the authors also reported suboptimal perfor-
mance of the visual feature of GPT-4, by using it to generate impressions 
from chest X-ray images.

6. Conclusion

To conclude, our review provides a general picture of the capabil-
ity of the current release of ChatGPT in healthcare. By and large, the 
training set and the underlying language model decide the quality (ac-
curacy, unbiasedness, humanness, etc.) of the responses of an AI chat 
bot to certain questions. Therefore, this review concludes that health-
care researchers in particular should retract from the AI hype generated 
by the product and focus their attention on NLP research in general 
and developing∕evaluating specialized language models for healthcare 
applications.
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