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Simple Summary: Inter-alpha-trypsin inhibitor-5 (ITIH5), a class II tumor suppressor gene, encodes a
protein that is lost during tumor progression in many solid cancers. Unexpectedly, however, ITTH5 is
significantly upregulated in cholangiocarcinoma (CCA), making it a potential liquid biopsy marker
for early CCA detection, as recently shown. Indeed, CCA is the first tumor entity described in which
ITIHS is upregulated rather than downregulated in the tumor compared to normal tissue. In our
study, we demonstrate that CCAs with abundant ITIH5 protein expression have favorable survival, a
low UICC stage and the absence of perineural invasion. The re-expression of ITTH5 impairs the colony
growth of cholangiocarcinoma cell lines. Although ITIH5 is upregulated in the tumor, it retains
its tumor-suppressive function in CCA, similar to other tumor entities such as breast cancer and
pancreatic cancer, where it is downregulated. Thus, ITIH5 may have both diagnostic and prognostic
biomarker potential in CCA. The mechanisms of ITIH5 upregulation, particularly in intrahepatic
CCAs, during oncogenic transformation remain unclear, but their elucidation could improve future
CCA therapies.

Abstract: Background: Cholangiocarcinoma (CCA) are aggressive bile duct cancers with a poor
prognosis for which there are only few established prognostic biomarkers and molecular targets
available. The gene ITIH5, a known class II tumor suppressor gene (C2TSG), encodes a secreted
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protein of the extracellular matrix mediating tumor suppressive properties. Recently, it was surpris-
ingly found that the ITTH5 protein is specifically upregulated in CCAs and that ITIH5 detection in
blood could be an excellent liquid biopsy marker for indicating the presence of a CCA tumor in a
patient. We therefore investigated whether patients with CCAs with abundant versus low ITIH5
protein expression also differ in their prognosis. Methods: To clarify this question, a large CCA
cohort (n = 175) was examined using immunohistochemistry on a tissue microarray (TMA). Results:
Abundant ITIH5 expression in CCA was associated with favorable survival, a low UICC stage and
the absence of perineural invasion (PNI). Conclusions: ITIH5 has biomarker potential not only for
the early detection of CCA from blood-based liquid biopsies but also as a prognostic tissue biomarker
for risk stratification. Our results suggest that the upregulation of ITIH5 is particularly abundant
in intrahepatic CCAs (iCCA). The mechanisms mediating the strong initial upregulation of ITIH5
during the oncogenic transformation of bile duct cells are still unclear.

Keywords: Cholangiocarcinoma (CCA); bile duct cancer; ITIH5; class II tumor suppressor gene
(C2TSG); ITIHS5 upregulation

1. Introduction

Cholangiocarcinoma (CCA) is a malignant tumor of the bile duct system and the
second most common primary liver tumor [1,2]. CCAs are classified as intrahepatic (iCCA)
or extrahepatic (eCCA) according to their anatomical location. eCCAs are located either
perihilar (pCCA) near the bifurcation of the common hepatic duct and the cystic duct
or distal (dCCA) to the liver [3]. Gallbladder carcinomas are considered separately [4].
In addition to anatomical location, CCA subtypes also differ in epidemiology (with the
highest incidence in Southeast Asia [5]), immunological status [6], genome aberrations [7],
etiopathogenesis and treatment [3,8,9]. Risk factors include primary sclerosing cholangi-
tis [10], hepatolithiasis, biliary malformations and hepatobiliary parasites [11]. Since most
patients remain asymptomatic in the early tumor stages and the occurring symptoms are
nonspecific, CCAs are usually only diagnosed in advanced stages [8,12]. The gold standard
for therapy is surgical resection or, if the tumors are not resectable, chemotherapy with
gemcitabine and cisplatin [13]. However, the prognosis is still very poor, even in complete
resections (RO) [14].

The gene encoding Inter-alpha-trypsin inhibitor heavy chain 5 (ITIH5) was first de-
scribed in 2004 [15]. ITIH5 is located on human chromosome 10p14 and contains 14 exons.
The ITIHS protein harbors the typical domains found in the ITI protein family, i.e., the VIT
domain (Interpro number IPR013694) and the vWA domain (Interpro number SM00327),
as well as a conserved cleavage site [16]. In healthy tissues, including placenta, breast
and ovaries, abundant ITIH5 expression has been found in epithelial cells [15]. ITIH5
has been identified as an epigenetically silenced (class II) tumor suppressor gene (which
we abbreviate as C2TSG [17]) in breast cancer [18] and multiple other tumor entities—for
example, bladder [19] and colon cancer. In addition, ITIH5 may act as a metastasis suppres-
sor gene in several tumor entities [20]; this property has been best studied in pancreatic
cancer [21-24] and breast cancer [18]. In all cancer tissues analyzed so far, the downreg-
ulation or loss of ITIH5 was shown to be caused by promoter DNA hypermethylation
and was associated with unfavorable prognosis in most cases [16,18,19,22,25,26]. In cancer
cell models, the forced overexpression of ITIHS5 often slows down cellular characteristics
that constitute the hallmarks of cancer [27], i.e., triggering a reduction in cell proliferation,
migration and invasion [16,19,21,25]. While the functions of the individual domains of
ITIHS have not been fully elucidated, it is assumed that an important function of ITIH5 is
the stabilization of the extracellular matrix (ECM). This is conveyed through the covalent
binding of hyaluronic acid (HA), a ubiquitous component of the ECM [28]. The binding
reaction occurs via the C-terminal amino acids in the conserved cleavage site of ITIH5 and
is catalyzed by TSG-6, encoded by the TNFAIP6 gene [18,29,30]. Young et al. showed that
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a modified ITIH5 protein, which lacks the signal peptide necessary for secretion, still has
similar effects as the unmodified full-length ITIHS5 protein in cellular models of pancreatic
carcinoma, suggesting that ITIH5 may also act intracellularly [24]. Furthermore, Rose et al.
showed recently that the VIT domain may play a central role in the tumor-suppressive
function of ITIHS, as a shortened ITIH5 protein (161 amino acids), basically truncated to
the VIT domain, still exhibits tumor-suppressive effects on various cancer cell lines [31].

Recently, it was found that the ITIH5 protein is specifically upregulated in CCAs
and that the ITIH5 protein detected in blood serum could be a promising liquid biopsy
marker for indicating the presence of a CCA in a patient [32]. In our study, we therefore
investigated whether CCAs with abundant and low ITIHS protein expression also differ in
their prognosis. This is important since CCA is the first tumor entity described in which
ITIH5 is upregulated rather than downregulated in the tumor compared to normal tissue.
To clarify this question, a large CCA cohort with a total of 175 tumors was examined
using ITIH5 immunohistochemistry on tissue microarrays (TMA). Remarkably, abundant
ITIH5 expression was associated with favorable survival, indicating that ITIH5 continues
to function as a tumor suppressor protein in CCA.

2. Materials and Methods
2.1. Human Bioprobes/Data Collection

The Cancer Genome Atlas (TCGA) dataset “CHOL” was accessed via UCSC Xena
(https:/ /xenabrowser.net/). The dataset contains mRNA expression data as normalized
counts created with the Illumina HiSeq 2000 RNA Sequencing platform, DNA methylation
data created with the Illumina Infinium HumanMethylation450 platform and correspond-
ing clinical data. In the TCGA dataset “CHOL”, there are 36 CCA samples and 9 normal
tissue samples, which match cases to 9 of the CCA samples taken from the same patients.

A normal tissue microarray (normal TMA) analyzed containing 27 samples of various
normal tissues derived from intrahepatic bile ducts (n = 2), perihilar bile ducts (n = 6), distal
bile ducts (n = 8), intrapancreatic bile ducts (n = 3) and gallbladder (n = 8) was stained
and analyzed. This retrospective study was carried out according to the guidelines of the
Declaration of Helsinki and approved by the local ethics committee of the Medical Faculty
of RWTH Aachen University (ethical vote EK173/06 and EK 100/21).

The clinical data of the CCA tissue microarray (TMA) were obtained from RWTH
Aachen University Hospital (ethical vote EK173/06). The CCA TMA contains 175 samples
of intrahepatic (n = 93), perihilar (n = 79) CCA, mixed type (n = 2) and combined gall
bladder tumors (n = 1). The additional gall bladder tumor sample was excluded from the
analysis, as it has a different pathophysiology from CCA. For the Cox regression analysis,
we excluded cases of death within one month post-surgery to more accurately assess the
true impact of tumor biology on survival and to avoid the confounding effects of surgery-
related mortality [33]. The clinical characteristics of the CCA TMA cohort and the TCGA
cohort are shown in Tables S1 and S2.

For the methylation analysis of the ITIH5 promoter in the TCGA dataset, six CpG sites,
i.e., cg15924332, cg09445472, cg01382938, cg10119075, cg25575628 and cg10151473, were
chosen based on the previous work of our group [16,21,25].

2.2. Cell Lines

The human extrahepatic cholangiocarcinoma cell lines EGI-1 (RRID: CVCL_1193)
and CCC-5 (RRID: CVCL_LMS83) were purchased from the DSMZ—German Collection
of Microorganisms and Cell Cultures GmbH (Braunschweig, Germany). The intrahepatic
cholangiocarcinoma cell line hCKC was a gift from the lab of Prof. Ralf Weiskirchen. All
cell lines were authenticated within 12 months of being used in the study and were cultured
as described previously [34] and regularly tested for the absence of mycoplasma infection
using the PCR-based Venor® GeM Mycoplasma Detection Kit (Minerva Biolabs, Berlin,
Germany). The cells were cultured under standardized conditions (37 °C, 5 vol% CO,,
20% Oy, 95% humidity). EGI-1 was cultivated in Gibco™ Minimal Essential Medium
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(MEM), supplemented with 10% fetal bovine serum, 1 mM sodium pyruvate and Gibco™
MEM amino acids (both essential and non-essential). CCC-5 was cultivated in Gibco™
Dulbecco’s Modified Eagle Medium (DMEM) low glucose and Gibco Keratinocyte SFM at
a 2:1 ratio, supplemented with 20% fetal bovine serum. Also, 50 U ml-1 penicillin, 50 mg
ml-1 streptomycin and 2 mM L-glutamine were added to all media.

2.3. Immunohistochemistry

First, 2 um slices were cut from the paraffin-embedded tissue with a microtome and
transferred onto slides. For the automated immuno-staining, the Lab Vision Autostainer
360-2D (Thermo Fisher Scientific, Waltham, MA, USA) was used with the EnVision™ Flex
detection kit (Agilent Dako, Santa Clara, CA, USA). The immunohistochemistry samples
and TMAs were stained with a custom-made ITIHS antibody (Pineda, Berlin, Germany)
named “2013-Tier 3” in a dilution of 1:500. This ITIH5 antibody directed against the C-
terminal end of the ITIHS polypeptide has been described recently [35]. The secondary
antibody was horseradish peroxidase (HRP)-conjugated, which oxidizes the chromogen
3,3'-Diaminobenzidine (DAB). For counter-staining and fixation hematoxylin, alcohol and
xylene were used. ITIH5 expression was judged using the Immunoreactive score (IRS) [36].
The IRS score (0-12) is defined as the product of the staining intensity score (between 0 and
3) multiplied by the score of positive cells proportion (between 0 and 4).

2.4. Nucleic Acid Extraction and Reverse Transcription PCR

Nucleic acid extraction from cells was carried out using the NucleoSpin® RNA plus kit
(Macherey-Nagel, Diiren, Germany) for RNA and the QIAamp DNA Mini Kit (QIAGEN,
Hilden, Germany) for DNA according to the manufacturer’s instructions. The nucleic
acid concentration was measured with the NanoDrop ND-1000 Spectrophotometer (VWR,
Radnor, PA, USA). The isolated RNNA was stored at —80 °C, and the DNA was stored at
—20 °C. In total, 1 pg of the obtained RNA was used for reverse transcription with the
Reverse Transcription System Kit (Promega, Madison, WI, USA).

2.5. Semiquantitative Real-Time PCR

For the semiquantitative PCR, the iTaq™ Universal SYBR® Green One-Step Kit (Bio-
Rad Laboratories, Munich, Germany) and the CFX96 Touch Real-time PCR Detection
System (Bio-Rad Laboratories, Munich, Germany) were used. All reactions were performed
in triplicate with the reference gene GAPDH. The primer sequences are listed in Table S3.
The annealing temperatures were set to 60 °C. Melting curve analysis was conducted to
control product specificity. The relative expression ratio of mRNAs in each group was
calculated by the 272A¢T method.

2.6. Pyrosequencing

First, 500 ng of DNA was bisulfite-converted for 16 h using the EZ DNA Methylation
Kit (Zymo Research, Bad Homburg, Germany), following the manufacturer’s instructions.
For Pyrosequencing, the PyroMark Q48 Autoprep Instrument (QIAGEN, Hilden, Germany)
was used with the PyroMark PCR Kit, PyroMark Q48 Disc, Pyromark Q48 Magnetic Beads
and PyroMark Q48 Advanced CpG Reagents (QIAGEN, Hilden, Germany). The primer
sequences are shown in Supplementary Table 54.

2.7. In Vitro Demethylation

The whole-genome demethylation of human cholangiocarcinoma cell lines was per-
formed as follows: The demethylation agent 5-aza-2'-deoxycytidine (DAC) was added to a
final concentration of 5 uM on days 1, 2 and 3. On day 3, the cells were additionally treated
with 300 nM trichostatin A (TSA) (Sigma-Aldrich, St. Louis, MO, USA). The cells were
harvested on day 4 for RNA and DNA extraction.
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2.8. Protein Isolation from Cells and Western Blot

SDS-polyacrylamide gel electrophoresis (SDS-page) and Western blotting were per-
formed as previously described [37], with slight modifications. The extraction of proteins
from the cells was performed with NuPage LDS sample buffer (Invitrogen Life Tech-
nologies, Darmstadt, Germany) containing dithiothreitol (DTT) for reducing conditions.
The lysates were then sonicated using the Sonopuls HD2070 ultrasonic device (Bandelin
electronic, Berlin, Germany). The protein lysates were separated in 4-12% Bis-Tris gels
(Invitrogen Life Technologies, Darmstadt, Germany) using MOPS-SDS running buffer and
then electroblotted onto nitrocellulose membranes (0.2 um, GE Healthcare, Chicago, IL,
USA). The antibodies used were the generated C-terminal ITIH5 antibody (1:1000, Pineda),
which was previously described [19] with secondary HRP conjugated anti-rabbit (1:10,000,
Dako-Agilent, Santa Clara, CA, USA). In addition, 3-actin antibody (1:2000, Sigma-Aldrich,
Deisenhofen, Germany) with the secondary HRP-conjugated anti-mouse antibody (1:10,000,
Dako-Agilent, Santa Clara, CA, USA) was used to monitor equal protein loading. For anti-
body detection, the SuperSignal West Femto Maximum Sensitivity reagent (Thermo Fisher
Scientific, Waltham, MA, USA) was used. The original Western blot images can be found in
Supplemental Materials Figure S4.

2.9. Stable Transfection of EGI-1 and CCC-5 Cells

EGI-1 and CCC-5 cells were transfected with either the ITIH5-pBK-CMYV vector, which
contains full-length ITTH5, or with the mock vector [15]. FuGENE® HD transfection reagent
(Promega, Madison, WI, USA) was used for transfection according to the manufacturer’s
instructions. An ideal ratio of transfection reagent to DNA of 3:1 was determined for both
cell lines. 48 h after transfection, a cell dilution series was performed. From then on, the
cells were cultivated in a conditioned medium treated with the antibiotic Geneticin (G418,
Invitrogen Life Technologies, Darmstadt, Germany) as a selective agent for transfected
clones at a concentration of 500 pug-mL~! for EGI-1 and 1000 pg-mL~! for CCC-5. After
two to three weeks, single-cell colonies were picked and cultured. The mRNA and protein
expression were analyzed by qPCR and Western blot. For the cell culture assays, four ITIH5
and four mock clones were selected for EGI-1, and two ITIH5 and two mock clones were
selected for CCC-5.

2.10. XTT Assay

The XTT assay was performed with EGI-1 and CCC-5 ITIH5 and mock clones using
the XTT Cell Proliferation Kit II (Roche Diagnostics, Rotkreuz, Switzerland), as previously
described [26]. Three independent runs were performed.

2.11. CFA Assay

EGI-1, CCC-5 ITIH5 and mock clones were seeded in triplicate in six-well plates
(EGI-1 500 cells per well, CCC-5 750 cells per well). The cells were cultivated under ideal
conditions, and selection pressure by geneticin was maintained. After 14 days, the cells
were fixated and stained with 3.5% formaldehyde, 80% methanol and 6.1 mM crystal violet
for 30 min. Afterwards, the colonies were photographed with the Gel Jet Imager (Intas,
Gottingen, Germany), and densitometric analysis was performed using Image] (National
Institutes of Health, Bethesda, MD, USA). Three independent runs were performed.

2.12. Statistical Methods

The software used for statistical analysis was SPSS 27.0 (SPSS, Chicago, IL, USA) and
GraphPad Prism 5.0 (GraphPad Software Inc., La Jolla, CA, USA). The nonparametric
Mann-Whitney U test was applied to compare the two groups, and the nonparametric
Kruskal-Wallis test was used to compare more than two groups. The survival analysis
was performed with Kaplan-Meier curves and the log rank test. Univariate Cox regression
was used to correlate clinicopathological features to survival. Multivariate Cox regression
was performed for all clinicopathological features that showed a p-value of <0.5 in the
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univariate Cox regression in order to eliminate confounders. For correlation analysis, the
Spearman’s rank correlation coefficient was used. Overall survival (OS) was measured
from surgery until relapse (local/distant) and was censored for patients without evidence
of tumor recurrence at the last follow-up date. Fisher’s exact test was used to analyze
clinical pathological features. Differences were considered statistically significant if the two
sides’ p values were less than 5% (<0.05). Scatter plots were illustrated as the Mean + SEM.

3. Results
3.1. Expression of ITIH5 Is Strongly Upregulated in Cholangiocarcinoma with Special Emphasis in
Intrahepatic Cholangiocarcinoma (iCCAs)

First, the publicly available TCGA datasets for CCAs (n = 36) and corresponding
normal tissue (n = 9) were analyzed. A significant upregulation (approx. 65-fold) of
ITIH5 mRNA expression was detected in CCA tumor tissue compared to normal bile
duct tissues (p < 0.0001 ***) (Figure S1). As the analysis of only nine normal tissues may
fail to describe a representative pattern of ITIH5 expression, we analyzed ITIH5 protein
expression in a larger collective of normal tissues (n = 27), which also reflected different
areas of the bile duct. Figure 1A shows the median IRS scores of low ITIH5 expression
(IRS 0 to 4) detectable in perihilar, distal and intrapancreatic bile duct tissue and the
gallbladder, with minimal expression observed in intrahepatic bile duct tissue. Exemplary
immunohistochemistry images of these topological distinct bile duct cells are shown in
Figure 1B, showcasing the low ITIH5 expression in different anatomical locations of normal
bile duct tissue. Subsequently, a comprehensive CCA cohort was examined, comprising
175 cholangiocarcinoma specimens arranged on a tissue microarray. Based on that, the
upregulation of ITIH5 protein expression was significantly confirmed compared to normal
tissue (mean IRS 3.99 in normal tissue vs. 5.43 in tumor tissue, p = 0.0159 *, Figure 1C).
Figure 1D illustrates representative images of different IRS scores of ITIH5 expression
in these CCA samples of the tissue microarray. Finally, sub-classifying the CCAs of the
tissue microarray into subtypes (iCCA and pCCA) revealed that the ITIH5 protein is
predominantly expressed in iCCAs compared to pCCAs (mean IRS 6.99 in iCCA vs. 3.52 in
pCCA vs. 3.99 in normal tissue, p = 0.0124 *, p < 0.0001 ***, Figure 1E). Representative images
of intrahepatic and perihilar tumors, along with normal tissue samples, are presented in
Figure 1F, highlighting the elevated expression of ITIH5 in iCCAs.

There are only a few cholangiocarcinoma cell lines available worldwide, and these
are even difficult to obtain. Therefore, we could only examine the mRNA expression and
DNA methylation of ITIHS5 in three CCA cell lines, i.e., EGI-1 and CCC-5 (extrahepatic cell
lines) and hCKC (intrahepatic cell line). Indeed, the two extrahepatic cell lines showed
very low ITIH5 expression, while the hCKC cell line showed moderate expression (Ct
value of 28), and the two eCCA cell lines exhibited abundant promoter DNA methylation
(Figure S2). The functional relationship between the methylation of the ITIH5 promoter
and the silencing of the ITIH5 gene was further substantiated by in vitro demethylation
experiments (Figure S3). For this purpose, the two cholangiocarcinoma cell lines CCC-5
and EGI-1 were treated with 5-aza-2'-deoxycytidine (AZA) or trichostatin A (TSA) or a
combination of these two substances. AZA is a deoxycytidine analog that is typically used
to activate methylated and silenced genes by promoter demethylation [38], while TSA is
a well-characterized histone deacetylase (HDAC) inhibitor [39]. This treatment led to a
significant restoration of ITTH5 mRNA expression (Figure S3). As reported in a previous
work of our group, the upregulation of ITIH5 mRNA expression was particularly evident
in the combination of the two epigenetic drugs [19]. Thus, this limited analysis of CCA
cell lines reflects the picture observed in CCA tumors, i.e., lower ITIH5 mRNA expression
in eCCA most likely caused by promoter DNA hypermethylation and considerably more
abundant ITIH5 expression in iCCA.
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Figure 1. ITIH5 mRNA and protein expression is strongly upregulated in cholangiocarcinoma
compared to normal tissue. (A) Low ITIH5 protein expression in different normal bile duct tissues,
n =27, mean + SEM; (B) IHC images of normal tissue samples from different anatomical locations,
stained with ITIH5 antibody. The arrows indicate sites with low ITIH5 expression in normal tissues;
(C) mean ITIH5 protein expression in normal vs. tumor tissue in a CCA TMA, stained with ITIH5
antibody; quantification of protein expression by IRS score; (D) IHC images of tissues with different
tumor ITIHS5 protein expression levels, quantified by IRS score; (E) Mean ITIH5 protein expression in
iCCA vs. pCCA from CCA TMA, with a significant upregulation of ITIHS in iCCA; (F) IHC images
of intrahepatic and perihilar tumor and normal tissue samples. * p < 0.05, *** p < 0.001.
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3.2. Abundant ITIH5 Expression in CCA Is Associated with Favorable Overall Survival

For the survival analysis of the tissue microarray CCA dataset, ITIH5 expression was
dichotomized into low to moderate (IRS of 0 to 8) and high expression (IRS of 8 to 12)
groups, as shown in Figure 2A. Patients with strong ITIH5 expression were characterized
by a longer overall survival (log rank p = 0.0385 *). The median overall survival (OS) was
nearly twice as long in the high ITIH5 expression group as in the low to moderate ITIH5
expression group (40 vs. 21 months). The risk of death was also significantly lower in
the high ITIH5 expression group (HR = 0.5939, 95% CI = 0.3830-0.9209). In Figure 2B,
an analysis was performed on only the intrahepatic cases of the tissue microarray. The
observation of a survival benefit in the group of patients with abundant ITIH5 expres-
sion remained and achieved statistical significance (log rank p = 0.0371 *). The median
OS was 38 months in the high ITIH5 group, compared to 19 months in the low ITIH5
group. The risk of death was significantly reduced in the high ITIH5 expression group
(HR = 0.5653, 95% CI = 0.3412-0.9368). To investigate whether ITIH5 expression represents
an independent predictor of survival, Cox regression analyses were conducted. In uni-
variate regression, ITIH5 demonstrated a statistically significant impact on OS (HR = 0.58;
p = 0.04 *). This effect persisted through a multivariate Cox regression, without reaching
statistical significance, however (HR = 0.61; p = 0.10). The results highlight that ITIH5
expression is indeed an independent predictor of survival in CCA patients, even when
accounting for possible confounding variables (Tables S5 and S6).

A B
CCA Tumor iCCA

1.0 1.0
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Figure 2. Survival analysis in terms of overall survival rate (OS). Statistical significance determined
by log rank test. (A) Kaplan-Meier plot of CCA TMA data; ITIH5 expression grouped in IRS 0-8 (low
and moderate ITIH5 expression, blue) and 8-12 (high ITIH5 expression, red); (B) Kaplan-Meier plot
of CCA TMA, including only intrahepatic samples. * p < 0.05.

3.3. ITIH5 Expression in CCAs in Relation to Perineural Invasion and UICC Tumor Stages

The correlation of ITIHS5 expression and the clinical pathological parameters of our
CCA cohort applying the Fisher’s Exact Test (Table 1) revealed significant associations
between ITIH5 expression and the tumor type, tumor size, number of lesions, vascular
invasion, perineural invasion and UICC tumor stage. Tumors with high ITIH5 expression
correlate with the diagnosis of iCCA, the absence of perineural invasion and a lower
UICC tumor stage. Perineural invasion (PNI) is defined as the invasion of nerves and
the perineural area by tumor cells, a mode of tumor spread [40]. As shown in Figure 3A,
tumors without PNI were characterized by higher ITIH5 expression (mean IRS of 6.66 in
samples without PNI vs. 4.22 in samples with PNI, p = 0.0001 ***). We further analyzed
the association between ITIH5 expression and the tumor stage. Figure 3B shows a steady
decline in ITIH5 expression, with tumor progression represented by the UICC stage. A
Mann-Whitney U test revealed a significant difference in ITIH5 expression between stage
I and stage II (p = 0.0014 **), stage I and stage III (p = 0.0016 **) and stage I and stage IV
(p = 0.0219 *). Interestingly, the results of Figure 3C,D show that large-sized tumors and
multifocal tumors have higher ITIH5 expression. This can be attributed to the fact that the
majority of tumors in our CCA TMA cohort larger than the median diameter of 55 mm
were iCCA (iCCA /tumor = 72/82), whereas most tumors with a diameter of 55 mm or
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less were pCCA (pCCA /tumor = 65/87). Furthermore, almost all multifocal tumors were
iCCA (iCCA/tumor = 31/32), whereas the numbers of iCCA and pCCA were roughly the
same for unifocal tumors (pCCA /tumor = 79/143). Typically, iCCA presents with a larger
tumor size at diagnosis due to the absence of early symptoms, in contrast to pCCA, which
is often detected earlier due to obstructive symptoms [41]. In addition, the multicentric
origin, the rich hepatic blood supply and the histological characteristics contribute to the
more frequent multifocality in iCCA, while the anatomical location and biological behavior
of pCCA generally lead to a unifocal presentation [1].

Table 1. Clinical pathological parameters of the CCA TMA cohort. * p < 0.05, ** p < 0.01, *** p < 0.001.

Variable N ITIH5 Low ITIH5 High p-Value
175 137 38
Male 93 74 19
Gender Female 80 63 17 0.8946
Unknown 2 - -
<Median (68 y) ) 72 20
Age >Median (68 y) 83 65 18 09933
iCCA 93 61 32
pCCA 79 75 4
Tumor type Mixed type 2 N _ <0.0001 ***
GBC excluded 1 - -
<Median (55 mm) 87 79 8
Tumor size >Median (55 mm) 82 52 30 <0.0001 ***
Unknown 6 - -
Number of 1 143 118 25
lesions >2 32 19 13 0.0041 **
Yes 49 41 8
Lymph node No 112 85 27 0.2708
Invasion Unknown 14 - -
Yes 59 52 7
Vascular invasion ~ No 107 80 27 0.0411 *
Unknown 9 - _
. 1 Yes 79 71 8
Permgura No 31 23 8 0.0359 *
Invasion Unknown 65 - -
. . . Yes 5 5 0
Liver cirrhosis No 170 132 38 0.5867
Gl+QG2 113 88 25
Tumor Grade G3+G4 50 42 8 0.3696
Unknown 12 - -
UICC Tumor I 37 23 14
stage I+ 10+ IV 138 114 24 0.0074**
RO 136 107 29
Resection margin ~ R1 + R2 23 18 5 0.7366
Unknown 16 - -
A B o — C D
® 12+ ? 12+ - 12 -T- ® 12+
8 ] ] 8
@ 10 » 10 » 10 » 10
c c [ c
2 6 S 6 2 6 2 64
: g g g
5 47 & 47 g g 4]
3 3 3 3
w 27 w 27 w 27 0 27
I ko z I
E 0 T T E 0 T T T E 0 1 E 0 T T
No Yes | ] m v <55mm >55mm =1 22
Perineural invasion UICC stage Tumor size Number of lesions

Figure 3. Analysis of the association between ITIH5 protein expression and clinical-pathological
parameters. (A) ITIHS5 expression is notably lower in tumors with perineural invasion; (B) Compari-
son of ITIH5 expression levels between UICC stage I and stages II/III/IV; (C) ITIH5 expression is
significantly higher in tumors larger than 55 mm; (D) Increased ITIHS expression is observed in cases
with more than two lesions. * p < 0.05, ** p < 0.01, *** p < 0.001.
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3.4. ITIH5 Re-Expression in Cholangiocarcinoma Cell Lines May Impair Colony Growth but Not
Cell Proliferation

With regard to the prognostic significance of ITIH5 expression in cholangiocarcinoma,
we hypothesized that ITIH5 is functionally involved in mechanisms that may inhibit tumor
progression in this tumor entity. To functionally test this hypothesis, we restored ITIH5
expression in the two eCCA cell lines, i.e., CCC-5 and EGI-1 by stable transfection with a
full-length ITIH5 cDNA pBK-CMYV expression vector (ITIHS clones) or the empty vector
alone (mock clones). Ectopic ITIH5 expression in the stable CCC-5 and EGI-1 clones
was confirmed by real-time PCR and Western blotting (Figure 4A,B). We then used these
in vitro tumor models to analyze the effects of ITIHS5 re-expression on tumor cell behavior.
Although no significant effect on the proliferation rate of CCC-5 and EGI-1 cancer cells was
observed (Figure 4C-F), colony formation ability, which to some extent reflects the ability of
a tumor to spread, was significantly impaired by ITIH5 in CCC-5 tumor cells (Figure 4G,H).
Densitometric analysis revealed a highly significant delay in colony formation in ITIH5-
expressing CCC-5 cells by 38.29 % (p < 0.01). For EGI-1, the effect did not reach the
significance threshold (p = 0.37) (Figure 4L]).
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Figure 4. Forced ITIH5 re-expression significantly impairs colony formation of the CCC-5 cell line.
(A,B) Single-cell ITIH5 overexpressing clones of cell lines CCC-5 and EGI-1 was established. Gain-of-
function models show significant re-expression of ITIH5 in the ITIH5 clones on mRNA and protein
levels in both CCC-5 (#1, #15) and EGI-1 (#5, #9, #22, #23). [3-Actin served as a loading control
in the Western blot; (C—F) The XTT assay shows no significant difference in relative proliferation
over 96 h between ITIH5 and mock clones. The metabolic activity on day 1 was set as the baseline
for each clone; (G,H) Colony formation assay shows a significantly reduced colony formation in
ITIH5-overexpressing CCC-5 clones after 14 days; (I,J) No significant differences were observed
between ITTH5 and mock clones in the colony formation assay in the EGI-1 cell line. ns, not significant,
**p<0.01.

3.5. ITIH5 mRNA Expression Correlates with Promoter Hypomethylation in CCAs

Given the unexpected overexpression of ITIH5, associated with favorable progno-
sis in CCA, we finally aimed to decipher putative reasons for its gene regulation. Since
the ITIH5 tumor suppressor gene has been shown to be frequently silenced by promoter
DNA hypermethylation in various entities [16,21,25], we first focused on its epigenetic
configuration and whether an association with mRNA expression could be confirmed.
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For this purpose, the DNA methylation of six CpG dinucleotides in the ITIH5 promoter
region was analyzed and correlated with ITTH5 mRNA expression using the TCGA CCA
dataset. All six CpG dinucleotides are located in the upper region of the ITIH5 pro-
moter (—1818 bp to +28 bp relative to the expected TSS, Figure 5A), which have already
been characterized as diagnostically particularly relevant in an earlier publication of our
research group [16]. Interestingly, abundant promoter DNA methylation was present
in normal tissue (mean methylation: 0.29), while CpG sites were characterized by hy-
pomethylation in cancerous tissues (mean methylation: 0.257), especially the CpG sites
cg09445472 and cg10119075. Consistent with previous findings [25], the hypomethyla-
tion of cg10119075 (Spearman’s p = —0.46, p = 0.001 **) and cg09445472 (Spearman’s
p = —0.46, p = 0.001 **) was significantly associated with increased ITIH5 expression, sug-
gesting a role as molecular mechanisms for ITIH5 gene regulation by providing an open
and accessible promoter region.

GRCh38: 7,559,270 chr10 (p14) 7,668,498 7P53 [uness 17%
" " ITIH5 ) 2.9%
g\ W x\
0\ ORI IR P oW
5 CUUGERY N a3 QN
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< =
k] normal (n=9) |*e:50 22 Gt &3 947 0.0 DNA methylation beta-values # Missense mutation (unkown significance) | No alteration
g rimary tumor (median B-values) - v # Truncating mutation (putative driver)
Q P (n;yiiﬁ) 0.45 0.30 011 0.15 0.47 0.06
- 13, tumor tissue healhy tissue
Signifi ns "k ns * e . Spearmanr (TP53 WT n=29) 10.59 (n=9)
nificance
s Correlation g low 5 12 & 5
0.16 - 0.25 -0.41 0.09 0.28 methy-exp ] % 10.0: °
8 . %e° 2 e o
4 4 $
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-1500 -1002 =777 +28 ATG % 10 e é 9.0 o
1 1 1 J £ L]
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5 ITIH5 gene 3 P il
7ss B : 80
S 5 8 o P © A ° o
ITIH5 mRNA expression ITIHS mRNA expression

Figure 5. ITIH5 mRNA expression correlates with promoter hypomethylation in CCA, while p53
signaling may lose its potential impact on ITIH5 expression. (A) Visualization of the ITIH5 promoter
region, methylation level (mean 3-values) of 6 CpG sites in normal and tumor tissue samples (red) and
Spearman correlation of DNA methylation and ITIH5 expression for each CpG site in tumor tissue
samples (green); Numbers in (B) indicate percentage of tumors exhibiting predicted pathological
mutations, which is very low for ITIH5; Correlation between TP53 and ITIH5 mRNA expression in
CCA cases that are wild-type for TP53 (C) and healthy tissue (D) using the TCGA dataset. ns, not
significant, * p <0.05, ** p < 0.01.

Since Liu and colleagues showed the transcriptional activation of the ITIH5 gene by
p53 [42], we next correlated TP53 and ITIH5 gene expression in the CCA TCGA dataset
(Figure 5B-D). Samples with pathogenic mutations in the TP53 gene indicating a non-
functional p53 signaling were excluded from the Spearman rank coefficient calculations,
as an altered p53 protein may not be able to activate ITIH5 transcription [34]. Overall, no
positive correlation between TP53 mRNA and ITIH5 mRNA expression was detectable in
CCA cases that were wild-type for TP53. Interestingly, the expression of both genes tends
to be co-regulated in healthy tissue in spite of increased ITIH5 promoter DNA methylation,
arguing for a general p53 responsiveness of ITIH5 in normal cells, while p53 signaling may
lose its impact on ITIH5 expression in CCA.

4. Discussion

Patients with CCA are usually diagnosed at advanced tumor stages using conventional
methods such as imaging and histological confirmation [12]. In addition, CCA patients
have a poor prognosis that is not sufficiently improved by current classic treatment options
like surgical resection and chemotherapy [43,44]. A more personalized approach could
improve the treatment options and thus the prognosis of CCA. For this purpose, molecular
diagnostic and prognostic markers are indispensable [45,46]. Two examples of approved



Cancers 2024, 16, 3647

12 of 16

personalized therapy drugs used for CCA therapy are Pemigatinib, which functions as an
FGFR?2 inhibitor [47], and Ivosidenib, which represents an IDH1 inhibitor [48]. In order to
broaden the spectrum of options, the molecular pathways involved in the development of
CCA tumors needs to be further explored [49].

Numerous studies in the last 15 years have shown that the well-characterized tumor
suppressor gene ITIH5 is epigenetically silenced, and thus, ITIH5 transcription is consider-
ably downregulated in many tumor entities [16,18,19,22,25,26], while forced re-expression
in tumor cell lines has demonstrated strong tumor suppressive effects, like a reduction in
proliferation and the migration and invasion of cells [16,19,25]. In stark contrast to these
previous observations, we have now defined CCA as a tumor entity, where ITIH5 expres-
sion is strongly upregulated in the tumor tissue compared to normal tissue (which is bile
duct tissue in the case of CCA). This raises the question of whether ITIH5, although higher
expressed, still has a tumor suppressive function, as in all other tumor entities described so
far, or whether it may exceptionally act as a cancer-promoting factor in this specific tumor
entity. To answer this question, overall survival rates were analyzed, comparing patient
groups with low and high ITIH5 expression. Interestingly, the patient group with high
ITIH5 expression still demonstrates a favorable overall survival, like in tumor entities such
as breast [16] and bladder cancer [19], where ITIH5 is clearly downregulated in the tumor,
compared to their normal tissue counterparts. In many cancer entities like, e.g., breast,
bladder and pancreatic cancer, it was described previously that ITIH5 represents a typical
class II tumor suppressor gene [50] being silenced by epigenetic promoter hypermethyla-
tion [19,26]. Transferring this mechanism to CCA, one might expect an opposite starting
position and course of events and thus high ITIH5 promoter DNA methylation in normal
tissue where ITIH5 expression is low (and possibly epigenetically silenced) and a reduced
or completely lost ITIH5 promoter DNA methylation in CCA tumor tissue where ITIH5
mRNA and protein are strongly expressed. So far, we could only analyze this putative
relation between DNA methylation and expression in the tumor samples of the TCGA
dataset. It would be meaningful to assess DNA methylation in pathological specimens
from patients with varying ITIH5 expression levels in the TMA. Indeed, when comparing
the mean DNA methylation of six CpG sites in the ITIH5 promoter between low and high
ITIH5-expressing tumors, we observed the expected negative correlation between ITIH5
promoter DNA methylation and ITIH5 mRNA expression using Spearman correlations.
This is consistent with the previous findings that ITIH5 expression is regulated by promoter
DNA methylation.

Perineural invasion (PNI) has been described as an independent predictor associated
with a poor prognosis in CCA in several studies [51,52]. Interestingly, our data demonstrate
a connection between ITIH5 expression and the absence of PNI. Namely, in patients with
high ITIH5 expression, PNI is observed significantly less frequently. This may lead to the
hypothesis that the prevention of perineural invasion could be a mechanism of ITIH5’s
tumor suppressive action in CCA. Furthermore, in the CCA TMA data, a tendency of
higher ITIH5 expression in earlier tumor stages was observed. This may suggest an initial
upregulation of ITIH5 in the early tumor stages, possibly as a protection mechanism of the
organ by taking advantage of its tumor suppressive effects.

Interest in ITIH5 biology in the field of basic cancer research but also personalized di-
agnostics of cholangiocarcinoma could increase significantly in the future. Recently, it was
shown by Chen et al. that serum ITIHS levels are considerably elevated in cholangiocarci-
noma compared to controls (i.e., hepatocellular carcinoma, benign disease, chronic hepatitis
B and healthy individuals) [32]. Serum ITIH5 yielded areas under the ROC curve (AUCs)
of 0.839 to 0.851 to discriminate cholangiocarcinoma from controls, and the combination
of ITIH5 with carbohydrate antigen 19-9 (CA19-9) improved the diagnostic efficacy even
further [32]. We have now shown in our study that ITIH5 can also be a prognostic marker
in CCA tumor tissue. The clear interplay of ITIH5's prognostic significance in both the
tissue and blood of CCA patients could make ITIH5 an important tool in the personalized
medicine of iCCA, similar to other CCA biomarkers that have been discussed recently [53].
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In addition, tumor suppressor proteins such as ITIH5 could also become interesting for the
cancer therapy of cholangiocarcinoma in the longer term [54]. One possible therapeutic
approach is the recently proposed concept of small-molecule tumor mimetics for class I
tumor suppressor genes (C2TSGs), which aims to phenotypically mimic the effect of tumor
suppressor proteins such as ITIH5 [17].

We are aware that this study has several limitations. Our hypothesis is that ITIHS5 ex-
pression is initially upregulated by ITIH5 promoter DNA hypomethylation and potentially
later downregulated again during tumor progression. To understand the time course of
ITIH5 upregulation in CCA tumor development more comprehensively, additional data
on early tumor stages, e.g., in biliary intraepithelial neoplasia (BilIN) [55] and intraductal
papillary neoplasm of the bile duct (IPNB) [56], are required. These precursor lesions have
to be analyzed in detail by ITIH5 expression and methylation analysis. However, as CCA
is a rare disease that is mostly diagnosed in advanced tumor stages, sample collection
for early tumor stages is compromised. Our study so far has focused on ITIH5 mRNA
and protein data. To gain further insight into the tumor suppressive function of ITIH5 in
CCA, a much more comprehensive analysis of CCA in vitro models than presented here is
necessary. The corresponding author would also be grateful to readers of this article, who
could provide additional CCA cell lines as part of a collaboration.

In summary, for the first time, we described an upregulation of ITIH5 expression in
cholangiocarcinoma on mRNA and protein levels compared to normal tissue, abundant
ITIHS5 expression in the tumor still being associated with favorable overall survival.

5. Conclusions

In conclusion, ITIH5 shows low expression in normal bile duct tissue and is signifi-
cantly upregulated in cholangiocarcinoma, especially in intrahepatic CCA. ITIH5 upreg-
ulation may be associated with ITIH5 promoter DNA demethylation. ITIH5 expression
in CCA is still associated with favorable overall survival; therefore, ITIH5 has a potential
tumor suppressive effect in CCA.
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