
Nature Synthesis | Volume 4 | July 2025 | 848–858 848

nature synthesis

Article https://doi.org/10.1038/s44160-025-00759-x

A three-step strategy for the conversion of 
pyridines into benzonitriles
 

Reyhan Güdük1, Niklas Kehl1,5, Chiara Stavagna1,5, Michael J. Tilby2, 
Oliver Turner3, Alessandro Ruffoni    1  , Henry P. Caldora    4   & 
Daniele Leonori    1 

Bioisosteric replacement is a key strategy in drug discovery. Although 
modifying peripheral functionalities is relatively straightforward, 
substituting core ring structures often demands a complete synthetic 
redesign. Substituting benzenes with pyridines is often pursued because the 
nitrogen atom in pyridine can enhance biological potency and metabolic 
stability. Conversely, replacing pyridines with benzenes, particularly 
benzonitriles, can also be of value. Benzonitriles are similarly polarized 
to pyridines and can effectively mimic their hydrogen-bond acceptor 
properties. Here we introduce a strategy for converting pyridines into 
benzonitriles. The method uses a three-step protocol, beginning with 
pyridine N-oxidation, followed by photochemical deconstruction in 
the presence of an amine. This sequence produces a nitrile-containing 
butadiene, which then undergoes a formal Diels–Alder cycloaddition with 
alkynes and alkenes to construct the benzonitrile ring. This methodology 
provides a retrosynthetic tactic for the preparation of benzonitriles from 
pyridine-based starting materials and enables direct, modular late-stage 
diversification of drug molecules.

Bioisosteric replacement is a pivotal strategy extensively used during 
critical phases of drug discovery campaigns1. At the lead optimization 
stage, it is often used in library generation for both hit expansion and 
structure–activity relationship (SAR) studies. Additionally, it is an effec-
tive method to circumvent patent protection, something generally 
referred to as ‘scaffold hopping’2.

Although the bioisosteric replacement of specific peripheral 
functional groups can be performed in a modular and programmable 
fashion (for example, via amidation, cross-coupling or C–H activa-
tion), the bioisosteric replacement of a core ring structure within 
a bioactive molecule often necessitates a ground-up redesign of 
the entire synthetic sequence. This endeavour is necessarily time 
consuming and costly3. Consequently, reactions enabling modular 
late-stage ‘ring replacement’ allow for rapid diversification in ret-
rosynthetically unconventional manners. Such processes are in high 

demand yet remain rare due to the considerable synthetic challenges  
they pose4–16.

A highly sought-after ring replacement in medicinal chemistry 
involves substituting benzene with pyridine because the incorporation 
of a nitrogen atom in the arene can often boost biological potency. 
This phenomenon, frequently observed and now termed the ‘neces-
sary nitrogen effect’, is mainly due to the inherent metabolic stability 
imparted by the nitrogen atom (pyridine is more difficult to oxidize 
than benzene) and the potential for hydrogen-bond interactions 
through its lone pair of electrons17–21.

However, given the ubiquity of pyridine-containing bioactive 
material22, the opposite direction of ring replacement, namely, 
pyridine to benzene, can also provide many opportunities for SAR 
studies (Fig. 1a). Among the various types of benzenoid systems,  
benzonitriles hold a privileged position. A nitrile group can effectively 
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Overall, designing a synthetic strategy for pyridine-to-benzonitrile 
replacement might be a useful tool for SAR studies and scaffold hop-
ping purposes. Here we present a photochemical strategy that converts 
4-substituted pyridines into 2-substitute benzonitriles in just three 
steps (Fig. 1d). The method requires initial pyridine N-oxidation, for 
photochemical deconstruction into a nitrile-containing linear inter-
mediate. This species is then rearomatized into the corresponding 
2-substituted benzonitrile via Diels–Alder cycloaddition with various 
dienophiles. This process leverages the externalization of the pyridine 
nitrogen atom into the nitrile functionality, thereby bypassing the need 
for toxic cyanide sources typically used in transition-metal-mediated 
cyanation strategies40.

Results and discussion
Design plan
The design of our three-step process is based on a strategic photochemi-
cal pyridine deconstruction step to form an acyclic-nitrile-containing 
intermediate (Fig. 2a). For this step to occur, initial pyridine activation 
is required by N-oxidation generally with meta-chloroperoxybenzoic 
acid (mCPBA) (step a, I → II). Pleasingly, many pyridine-N-oxides are 
also commercially available, thus reducing the pyridine-to-benzonitrile 
replacement to effectively two steps.

In the key photochemical deconstruction event, one pyridine 
endocyclic C–N unit is transformed into a nitrile group, while creating 
a dienic structure (IX) capable of participating in ring-constructing 
reactions, such as Diels–Alder cycloaddition, with a second synthon 
(IX + X → XI)41–46. For the deconstruction step, we drew inspiration 
from the pioneering work of Buchardt, Lohse and Albini showing that 
4-substituted pyridine-N-oxides, upon irradiation with a mercury 
lamp in the presence of an amine, undergo a photochemical ring open-
ing sequence producing an aminopentadienenitrile intermediate. 
However, this reactivity proved low yielding, giving the desired prod-
uct alongside 2-formyl pyrrole derivatives and tarring under the stated 
conditions47–53. Mechanistically, it has been postulated that, upon 
irradiation, II populates its S1 state that has π,π* character (step b).  
This excited state species would then initiate an oxygen-atom inser-
tion to provide a transient oxaziridine (step c, IV)54, evolving by elec-
trocyclic 6π ring opening into a 1,2-oxazipine V (step d)55. At this point, 
a second photon absorption event would deliver the S1-VI (step e)  
from where a triplet nitrene can be extruded (step f, VI → VII)56.  
Exploitation of the intrinsic acidity of the α-nitrene C(sp2)–H bond 
in VII allows for deprotonation to generate the nitrile function
ality in VIII (step g)57–60. The resulting enolatepentadienenitrile VIII  
can then condense with an amine to furnish the desired aminopen-
tadienenitrile IX (step h).

For the third and final step of our strategy, we postulated that IX 
would be sufficiently electron-rich to undergo [4πs + 2πs] Diels–Alder 
cycloaddition followed by concomitant aromatization with a suitably 
electron-deficient dienophile X (step i).

Overall, the successful implementation of this synthetic design 
would generate a benzonitrile species XI in which the nitrogen atom 
has been externalized and converted into a nitrile functionality, while 
the pyridine substituent at the 4-position has been translated, in a 
programmable and regioselective manner, to its 2-position. Moreover, 
the introduction of a difunctionalized dienophile at the cycloaddition 
stage can potentially enable simple access to 1,2,3,4-tetrasubstituted 
aromatics, which are challenging synthetic derivatives due to their 
sterically congested cores61.

Reaction development and understanding
We proceeded with the optimization of the key pyridine deconstruc-
tive step by using the commercial 4-BnO-pyridine-N-oxide 1a (Fig. 2b). 
Pleasingly, irradiation (λ = 310 nm) of 1a and morpholine (10 equiv.) 
in CH3CN solvent at room temperature for 15 h provided diene 1 in 
high yield (entry 1). The use of lower amounts of morpholine (entry 2) 

polarize the aromatic ring similarly to pyridine, thereby enhancing 
metabolic stability in most cases23–27. In practice, two main types of 
pyridine-to-benzonitrile replacements have demonstrated strong 
potential and consequent applicability in medicinal chemistry. First, 
2-substituted benzonitriles have been identified as effective bioisos-
teres for 4-substituted pyridines23,28–33 (Fig. 1b). This is particularly 
important given that the 4-substituted pyridine motif appears in nearly 
one-third of all US Food and Drug Administration (FDA)-approved 
drugs featuring this azine core22. Furthermore, another commonly 
used replacement involves substituting the pyridine nitrogen atom 
with a ‘C–CN’ unit because the nitrile group can mimic the pyridine 
hydrogen-bond acceptor ability34 (Fig. 1c). This approach has been 
particularly useful when one bridging H2O molecule is involved in 
the binding of a bioactive pyridine with its biological target27. This 
bioisosteric replacement can effectively displace the ‘unhappy water’ 
from the interaction site, thereby reducing the entropy of binding35,36. 
Such a strategy has often been pivotal in the development of com-
mercial drugs such as neratinib and bosutinib from Pfizer or other 
highly active molecules such as a p38 inhibitor under development by 
Bristol-Myers Squibb27,37–39.
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Fig. 1 | The ‘ring replacement’ of pyridines into benzonitriles. a, The 
bioisosteric replacement of pyridines with benzonitriles is often used in 
medicinal chemistry studies23,28. b, 2-Substituted benzonitriles are powerful 
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or piperidine as the amine (entry 3) successfully delivered 1 albeit in 
slightly diminished yields.

Ultraviolet–visible absorption spectroscopy analysis on 1a 
revealed high absorption in the 280–330 nm region with a tail reach-
ing the near-visible region (Fig. 2c). However, utilization of purple 
light-emitting diodes (λ = 390 nm) resulted in low conversion in the 
deconstructive process (entry 4). Interestingly, we noticed a consid-
erable solvochromic effect, and in tetrahydrofuran, the absorption 
profile of 1a showed a notable bathochromic (red) shift, which in turn 
enabled the use of lower-energy light sources for the conversion into 
1 (entry 5) (Supplementary Information). Control experiments in the 
absence of either morpholine (entry 6) or light irradiation (entry 7) or 
using 4-BnO-pyridine in place of the N-oxide 1a (entry 8) resulted in 
no product formation.

Because this photochemical event is intrinsically reliant on 
the absorption profile of the various pyridine-N-oxide reagents, we 
quickly evaluated other derivatives featuring different electronic 
perturbations of the azine ring. In particular, 4-Ph and 4-alkyl deriva-
tives 2a and 3a display a markedly lower absorption profile, but using 
λ = 310 nm we obtained the desired dienes 2 and 3 in good yields  
(Fig. 2c).

With a strategy for pyridine-N-oxide deconstruction in place, we 
then focused our attention on the following rearomatization step via 
Diels–Alder cycloaddition (Fig. 2d). This was initially performed on 
isolated diene 1, which was routinely prepared on up to 5-mmol scales 
using our aforementioned photochemical ring-opening methodo
logy. Although the supplementary material describes all optimiza-
tion efforts using ethyl propiolate 4a (Supplementary Information, 
section 4, and Supplementary Tables 10–14), we identified two sim-
ple thermal conditions using toluene as the solvent. In general, reac-
tive dienophiles could be engaged at 120 °C (conditions A), whereas 
less-reactive ones required more forcing conditions, which were met 
with the use of a standard microwave apparatus (conditions B). Under 
these conditions, we successfully accessed benzonitriles 4–15 featuring 
meta-ester (4 and 5), primary amide (6), ketone (7 and 8) and sulfone 
(9) functionalities. It is interesting to note that the cycloaddition does 
not require the use of an alkyne dienophile as 8 was obtained using 
Me-vinyl-ketone 8a. In this case, we propose that the cycloadduct 
intermediate undergoes morpholine elimination followed by aroma-
tization by hydride transfer to the enone (Supplementary Informa-
tion, section 12, and Supplementary Fig. 15). The formation of 5 is also 
synthetically noteworthy as the redox-active ester functionality can 
now be used in several radical-based cross-coupling manifolds for 
further functionalization62–64. Disubstituted alkynes were screened 
next and enabled access to tetrasubstituted aromatics with additional 
ester (10), bromine (11) and aryl (12) substituents. In terms of limita-
tions, we did not succeed in engaging benzyne 13a and the ‘click chem-
istry’ alkyne 14a in the process. Preliminary computational studies 
indicated that the lack of a functionality on the alkyne of 14a inhibits 
reactivity, while the finding for 13a is probably a consequence of the 
high reactivity of benzyne (Supplementary Information, section 12, 
and Supplementary Fig. 41).The retrosynthetic opportunity that this 
approach might provide for the preparation of functional materials was 
demonstrated by the synthesis of tetralone 15. This species has been 
recently patented by Takeda Pharmaceuticals as an intermediate in the 
synthesis of an API targeting the β-adrenoceptor65,66. Interestingly, its 
preparation was achieved using an eight-step synthetic route start-
ing from phenol 16. The unusual tactic introduced by our methodol-
ogy simplified its preparation, shortening it to just two steps using  
commercial 1a and 15a.

A key observation in terms of limitations was that it could not 
be extended to 3- and 2-substituted pyridine-N-oxides such as 16a 
and 17a (Fig. 2e). In the case of 16a, photochemical ring opening 
resulted in a complex mixture of products, possibly owing to the 
instability of its corresponding nitrene intermediate. By contrast, 17a 

underwent efficient ring opening; however, the following cycloaddi-
tion with diene 17 could not be achieved because it led to extensive 
decomposition.

At the moment, our strategy enables the conversion of 
4-substituted pyridines into 2-substituted benzonitriles with an addi-
tional electron-withdrawing substituent placed at C5. Although this 
group is necessary to favour the Diels–Alder step, it would be syntheti-
cally valuable to identify conditions to access C5-unsubstituted deriva-
tives (Fig. 2f). This proposal would require a challenging cycloaddition 
step with gaseous acetylene. Hence, we decided to identify a potential 
synthon acting effectively as an acetylene surrogate. Specifically, we 
were pleased to identify that the use of (vinylsulfinyl)benzene 19a 
as the dienophile led to the direct formation of 19 in 20% yield. We 
believe the initial sulfoxide-containing cycloadduct undergoes a 
tandem Ei-type elimination followed by aromatization by morpholine 
elimination67,68.

The final cycloaddition event has not been studied before, and 
therefore we initiated a computational study with 1 and methyl propio-
late (I) as the model partners (Fig. 3a). After a detailed conformational 
search of possible intermediates and transition states (Supplementary 
Information, section 12, and Supplementary Figs. 25 and 26) we found 
that the lowest-energy conformation of 1 has a s-trans arrangement. 
However, the lowest-energy transition states located for cycloaddition 
with I proceed through an s-cis conformation (ΔG‡ = 38.1 kcal mol–1),  
although the penalty of 1 adopting this reactive conformation is 
ΔG° = 2.7 kcal mol–1. Considering the whole ensemble of feasible tran-
sition state structures of 1 reacting with A, it is noted that all occurred 
with a key r(C3–C4) bond distance >2.92 Å and a much shorter r(C1–C2) 
averaging 1.95 Å. This suggests the process occurs via an energetically 
concerted, highly asynchronous Diels–Alder process to give C that can 
eliminate morpholine to D or a more complex mechanism potentially 
through a stepwise process, potentially via intermediate B.

To understand the underlying physical contribution, we applied a 
distortion-interaction analysis to a model transition state primed for a 
concerted addition 69–73, which revealed that for this system the distor-
tion energy is over twice the interaction energy (ΔE‡

dis = 30.7 kcal mol–1 
and ΔE‡

int = 11.9 kcal mol–1) (Fig. 3b). However, if the transition state 
is constrained to a more synchronous Diels–Alder type reactivity 
(r(C1–C2) = 2.10 Å and r(C3–C4) = 2.35 Å) a slight increase in interaction 
energy is observed (ΔE‡

int = 15.7 kcal mol–1) but this does not compen-
sate for the additional distortion (ΔE‡

dis = 38.1 kcal mol–1). These find-
ings further suggest that a synchronous Diels–Alder reaction does 
not provide sufficient energetic gains because it leads to a notable 
increase in strain.

The exemplar transition state was further studied with an analysis 
inspired by the work of Wheeler74–77, in which the substituents were 
individually removed and capped with a hydrogen atom to discern 
their specific effects (Fig. 3c). These data point towards the -CN and 
-OBn groups contributing to the transition state through destabi
lizing interactions (ΔΔE‡ < 0 and ΔΔE‡

int > 0) with minimal additional 
strain. This effect is offset by the morpholine and carboxylate groups, 
which now predominantly act to stabilize the transition state through 
the interaction term (ΔΔE‡ > 0 and ΔΔE‡

int < 0). Overall, this analysis 
suggests the key strain energy associated with the transition state is 
intimately associated to its distorted six-membered-ring core with 
minimum impact from the various substituents.

Further analysis of the transition state revealed the presence of 
charge-transfer from the diene to the alkyne (ΔCT‡ = –0.33e). This 
can potentially be explained through the formation of a zwitterionic 
intermediate B undergoing cyclization to C. Our analysis suggested 
this process to be barrierless, hence potentially involving an ‘entropic 
dynamic intermediate’78,79. To provide insights into this, we calculated 
intrinsic bonding orbitals80,81 along the intrinsic reaction coordinates, 
which provide an intuitive way to understand the flow of electrons 
throughout the reaction, depicted on an ideal path along the More 
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O’Ferrall–Jencks plot for a model system82 (Fig. 3d). The intrinsic bond-
ing orbital at the beginning of the reaction clearly indicates three 
π-bonds delocalized by their neighbouring environment (int-A); on 
progressing to the transition state two π-bonds spatially change with 
one converting to a σ-bond and the other a π-lone pair (TS). This is again 

in stark contrast to a standard Diels–Alder reactivity in which the other 
π-bond is involved to form a second σ-bond. This finding further rein-
forces the likelihood that even when the alkyne is aligned with the diene, 
the cycloaddition progresses through a stepwise zwitterionic entropic 
intermediate (TS → int-B → int-C). Therefore, to determine whether the 
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aligned system truly went through a dynamically concerted asynchro-
nous Diels–Alder process or a dynamically stepwise process, Born– 
Oppenheimer molecular dynamics were applied to a model system at a 
suitable transition state geometry83–86 (Fig. 3e). After random initiation, 
the productive runs were shown to form r(C1–C2) < 1.6 Å on average 
in 37 fs; by contrast, the r(C3–C4) bond occurred 198 fs later and one 
trajectory did not even form a bond after >1,000 fs. The smallest time 
gap between the two bond-forming processes found was 52 fs, which is 
at the upper timescale of a C–C bond vibration (30–60 fs)87, hence we 

propose that the reaction occurs through a dynamic stepwise mecha-
nism forming an entropic zwitterionic intermediate before cyclizing 
to the productive Diels–Alder adduct85.

Scope of the process
Having identified suitable conditions for the ring opening of 
pyridine-N-oxides and subsequent benzonitrile construction, we 
sought to combine both reactions into a one-pot process, thereby 
avoiding the isolation of any synthetic intermediate. This was achieved 
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through directly telescoping both sets of reactions utilizing only evapo-
ration of volatiles after the photochemical process to facilitate the 
switch in solvent and allow for the removal of the remaining morpho-
line (Fig. 4a).

We started scope exploration by first evaluating 4-alkyl pyridines. 
This enabled the use of primary groups (20–25) including derivatives 
with positions that are enthalpically (22, benzylic) or polarity (24, 
α-O) activated towards hydrogen-atom transfer88,89. This evaluation 
also demonstrated tolerance of silyl-protected alcohol (23), ester (24) 
and amide (24) functionalities. The reactivity was also extended to 

substrates containing secondary and tertiary alkyl substituents, such as 
a 4-N-Ts-piperidine (26) and a gem-difluoro-cyclobutane (27), and bulky 
t-Bu (28) and adamantyl (29) groups. It is interesting to note that many 
of these 4-alkyl-pyridine-N-oxides are accessed by straightforward 
Minisci reactivity90–93. This means that radical chemistry can be used 
as a stepping stone to functionalize in a selective manner the pyridine 
starting material for subsequent translation into the benzonitrile 
product. This offers valuable complementarity to the preparation of 
derivatives that would otherwise require C(sp2)–C(sp3) cross-couplings 
with transition metals94,95.
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4-Aryl groups were explored next, and the two-step one-pot cas-
cade allowed for the synthesis of Ph (30), 4-Cl-C6H4 (31), 3-CN-C6H4 (32) 
and 1-naphthyl (33) containing biaryls.

Ortho-substituted benzonitrile ethers were prepared starting from 
4-hydroxy-pyridine via a Mitsunobu reaction with secondary alcohols. 
Subsequent photochemical deconstruction and thermal cycloaddition 
gave 34 and 35 in good yield.

The scalability of the overall process was explored using 
4-i-Pr-pyridine-N-oxide, which was converted in three telescoped 
steps (deconstruction, cycloaddition, ester hydrolysis) into the ben-
zonitrile 36 on a 2-mmol scale in overall 75% yield. Furthermore, the 
use of 19a could be adapted in the telescoped approach to give 37 in 
overall 30% yield.

An interesting outcome was obtained while extending this chem-
istry to 4-Cl-pyridine-N-oxide 38a, which under the telescoped condi-
tions delivered the 2-aminated benzonitrile 38 (Fig. 4b). Because 38a is 
a commercial building block often used in nucleophilic aromatic substi-
tution (SNAr) chemistry, we initially reasoned that 38a was undergoing 
in situ amination before ring opening en route to 38. Alternatively, we 
hypothesized that morpholine expelled upon aromatization after the 
cycloaddition step might have resulted in a tandem Diels–Alder–SNAr 
sequence. However, control experiments revealed that no SNAr took 
place either with 38a (45 °C) or 38c (120 °C). This outcome is not sur-
prising because these conditions are effectively base-free, which would 
limit the nucleophilic properties of the amine. Furthermore, several 
literature methods for SNAr aminations were attempted 38c and in all 
cases, the yield of the desired aminated benzonitrile did not exceed 14% 
(Supplementary Information, section 12, and Supplementary Table 17, 
entries 3–4). These observations suggested that ring opening occurred 
to generate chlorine-substituted aminopentadienenitrile 38b, which 
undergoes addition–elimination with the amine to give 39 before 
Diels–Alder reactivity.

Recognizing the potential of this reactivity for tandem 
pyridine-to-benzonitrile conversion and ortho-amination, we 
explored the compatibility of the telescoped process with various 
amine coupling partners. Pleasingly, pyrrolidine (40), piperidine (41), 
azepane (42) and Bn2NH (43) were tolerated, giving their constituent 
2-aminobenzonitriles 40–43 in moderate to good yield. The ability of 
the strategy to deliver complex materials was further demonstrated by 
the arylation of alkaloid nortropine (44), the smoking cessant cytisine 
(45) and nor-dextromethorphan (46).

We believe this strategy for pyridine-to-benzonitrile ring replace-
ment can have two main applications.

Considering the large number of pyridine-containing drugs, it can 
find use as a late-stage ‘ring-replacer’ to access new types of deriva-
tives without the need for de novo individual synthesis, which is the 
current-state-of-the-art (Fig. 5a). This concept was showcased with 
the three-step modification of the anticancer opaganib (47a), the HBB 
inhibitor 48a and the pupil dilator tropicamide (49a). These bioac-
tive materials feature a 4-substituted pyridine core and underwent 
N-oxidation followed by photochemical deconstruction and thermal 
reconstruction with ethyl propiolate in overall good yields (47–52). In 
the case of 49a, the photochemical step was run on a 0.3-mmol scale, 
which enabled parallel preparation of other derivatives (49, 50, 51) 
by changing the nature of the dienophile. We hope this can provide a 
powerful opportunity for library screening purposes by exploiting, 
in a modular manner, already established bioisosterism principles.

Furthermore, the alternative tactic for aromatic construction 
provided by this method can streamline the preparation of functional-
ized benzonitriles from unusual pyridine starting materials (Fig. 5b). 
We were keen to showcase this unique retrosynthetic opportunity 
and decided to prepare the ‘unhappy water’ benzonitrile analogues 
of pyridine-based losmapimod (58), JNJ-39220675 (63) and the key 
aniline fragment of sonidegib (67). The syntheses of 57 and 62 started 
from 4-iodopyridine 53 that underwent either Suzuki–Miyaura 

cross-coupling with 54 (three steps) or Ulmann coupling with phe-
nol 59. These steps provided access to 4-functionalized pyridines 
that were subjected to the three-step procedure for benzonitrile con-
struction. Pleasingly, both derivatives were converted into 55 and 60, 
respectively, in good yields. At this point, ester hydrolysis followed by 
amidation with either 56 or 61 provided the ‘unhappy water’ analogues 
57 and 62 in five steps. The preparation of the sonidegib intermediate 
67, harnessed the tandem amination discussed above (Fig. 4b). Hence, 
commercial 4-chloropyridine-N-oxide 38a was directly converted into 
the morpholine-containing derivative 65 in good yield. Subsequent 
hydrolysis and Curtius rearrangement led to aniline 66 in four steps. 
This highlights the versatility of the ester substituent which can be 
manipulated as a synthetic handle for further downstream function-
alization in the synthesis of complex aromatic targets.

Conclusions
We have presented a method for the direct conversion of pyridines 
into benzonitriles. This strategy harnesses pyridine N-oxidation as an 
entry point for a photochemical event that deconstructs the azine into 
a nitrile-containing diene primed for Diels–Alder cycloaddition. The 
method displays a wide functional group tolerance allowing for the 
streamlined preparation of complex arene building blocks. We have 
demonstrated how this approach is amenable to the late-stage ring 
replacement of a variety of 4-substituted pyridine drug derivatives 
and allows for the rapid assembly of densely functionalized molecular 
libraries. We hope that the commercial availability of pyridines and 
the broad scope demonstrated here will make this strategy of use to 
industrial and academic end-users.

Methods
General procedure for the synthesis of  
aminopentadienenitriles
Pyridine-N-oxide (0.1 mmol, 1 equiv.) was added to a microwave vial, 
which was then capped with a Supelco aluminium crimp seal with a 
septum (PTFE/butyl), evacuated and purged with argon (×3). Degassed 
CH3CN (5 ml, 0.02 M) was added followed by morpholine (88 μl, 1 mmol, 
10 equiv.) and the solution was degassed with a stream of argon for 
20 s. The microwave vial was then irradiated with 310 nm light in a 
Helios photoreactor for 15 h. The cap was then removed, and the sol-
vent was evaporated to give a crude residue which was purified via 
column chromatography eluting on neutral Al2O3 to give the pure 
aminopentadienenitrile.

General procedure for the Diels–Alder cycloaddition
1 (27 mg, 0.1 mmol, 1 equiv.) was added to a microwave vial followed 
by dienophile (0.4 mmol, 4 equiv.), if solid. The vial was capped with 
a Supelco aluminium crimp seal with a septum (PTFE/butyl), evacu-
ated and purged with argon (×3). Toluene (0.1 ml, 1 M) and dienophile 
(0.4 mmol, 4 equiv.), if liquid, were added. The sealed vial was then 
heated at 120 °C for 15 h. The cap was then removed, and the solvent 
was evaporated to give a crude residue which was purified via column 
chromatography eluting on silica gel to give the pure benzonitrile.

General procedure for one-pot arene synthesis
Step 1 (ring opening). Pyridine-N-oxide (0.1 mmol, 1 equiv.) was added 
to a microwave vial, which was then capped with a Supelco aluminium 
crimp seal with a septum (PTFE/butyl), evacuated and purged with 
argon (×3). Degassed CH3CN (5 ml, 0.02 M) was added followed by 
morpholine (88 μl, 1 mmol, 10 equiv.) and the solution was degassed 
with a stream of argon for 20 s. The microwave vial was then irradiated 
with 310 nm light in a Helios photoreactor for 15 h. The cap was then 
removed, and the solvent was evaporated to give the crude aminopen-
tadienenitrile which was dried under high vacuum to remove trace 
volatiles to give a crude residue which was used directly in the next 
step without further purification.

http://www.nature.com/natsynth


Nature Synthesis | Volume 4 | July 2025 | 848–858 856

Article https://doi.org/10.1038/s44160-025-00759-x

Step 2 (cycloaddition). To the crude aminopentadienenitrile from step 
1, toluene (0.1 ml, 1 M) and ethyl propiolate (41 μl, 0.4 mmol, 4 equiv.) 
were added. The vial was capped with a microwave vial lid and the reac-
tion was then heated in a microwave (μW) reactor at 150 °C for 2 h. The 
cap was then removed, and the solvent was evaporated to give a crude 
residue which was purified via column chromatography eluting on 
silica gel to give the pure benzonitrile.

Data availability
The authors declare that the data supporting the findings of this study 
are available within the paper and its Supplementary Information files.
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