
ORIGINALARBEITEN/ORIGINALS

https://doi.org/10.1007/s10010-025-00806-1
Forschung im Ingenieurwesen (2025) 89:53

0123456789

Enhancing model-based development with formalized requirements:
integrating temporal logic and SysML v2 for comprehensive state and
transition modeling

Simon Dehn1 · Georg Jacobs1 · Philipp Höck1 · Gregor Höpfner1

Received: 16 September 2024 / Accepted: 12 February 2025
© The Author(s) 2025

Abstract
Modern vehicles are complex cyber-physical systems with numerous customer functions and operating states, requiring
careful management during development. Ensuring that all potential states and transitions are rigorously defined at the
requirement stage is critical for vehicle safety and reliability. Due to stringent regulatory requirements and competitive
market pressures, it is essential to articulate these requirements unambiguously, free of redundancy, and correctly.
However, even a formally correct set of requirements can be underspecified, leading to unintended operating states that
compromise vehicle functionality. To ensure requirement completeness, various approaches have been proposed to generate
operating states and transitions allowed by a given set of requirements, ensuring that only intended behaviors are permitted.
Existing methodologies often rely on natural language requirements, prone to ambiguities and errors. Furthermore, several
methods formalize requirements using temporal logic languages, which can be checked algorithmically.
Because of the complexity of modern vehicles, Model Based Systems Engineering (MBSE) has become state of the art in
vehicle requirements engineering, as MBSE enables rigorous traceability of requirements and early model-based validation
of requirement fulfillment.
Currently a gap remains in integrating the comprehensive generation of operating states and transitions with the formal-
ization in temporal logic languages, specifically for the use in MBSE development environments.
This paper introduces a multi-step approach that formalizes requirements using Linear Temporal Logic (LTL) and generates
operating states and transitions, which are then modeled in a SysML v2 state machine diagram, enhancing both the
development process and the system’s reliability.

1 Introduction

Modern vehicles are becoming increasingly sophisticated
cyber-physical systems, characterized by a vast array of
customer functions and a multitude of operating states and
transitions that must be carefully managed during the devel-
opment process. The complexity of these systems demands
that all potential operating states and their permissible tran-
sitions are rigorously defined to ensure safe and reliable
vehicle behavior. Given the strict regulatory requirements
and intense market competition, it is essential that these

� Simon Dehn
post@imse.rwth-aachen.de

1 Institute for Machine Elements and Systems Engineering at
RWTH Aachen University, Schinkelstraße 10, 52062 Aachen,
Germany

requirements are articulated in a manner that is unambigu-
ous, free of redundancy, and correct in content. Despite this,
even a formally correct set of requirements can be under-
specified, leading to the possibility of unintended operating
states that could compromise the vehicle’s functionality or
safety.

To prevent such outcomes, an approach based on [1, 2] is
proposed, in which all operating states and state transitions
that are allowed by a given set of requirements are gener-
ated, thereby enabling to check that only intended behaviors
are permitted. However, existing methodologies predom-
inantly rely on requirements written in natural language,
which are inherently prone to ambiguities, redundancies,
and other errors [3]. While the literature offers several ap-
proaches to address these issues through the formalization
of requirements—e.g. translating them into temporal logic
languages such as Linear Time Logic (LTL) that can be
checked algorithmically [4, 5]—there remains a gap in in-

K

https://doi.org/10.1007/s10010-025-00806-1
http://crossmark.crossref.org/dialog/?doi=10.1007/s10010-025-00806-1&domain=pdf
http://orcid.org/0000-0001-7049-151X
http://orcid.org/0000-0002-7564-288X
http://orcid.org/0000-0003-4451-3978

 53 Page 2 of 9 Forschung im Ingenieurwesen0123456789

tegrating this formalization with the comprehensive gen-
eration of operating states and state transitions given by
formalized requirements.

In response to this challenge, this paper presents a multi-
step approach that utilizes requirement specifications for-
malized by LTL expressions to generate every operating
state and transition permitted, according to the specified re-
quirements. The outcome is presented as a SysML v2 state
machine diagram, facilitating further model-based develop-
ment activities, i.e. as described in [6, 7]. This method not
only ensures a formally consistent requirements base but
also provides a robust framework for the accurate and un-
ambiguous generation of vehicle operating states, thereby
enhancing both the development process and the final prod-
uct’s reliability.

The work is structured as follows: The following chapter
introduces the current state of the art in formalization and
modeling of state-based system behavior, Chap. 3 explains
the need for an integrated approach to requirement formal-
ization and modeling. The individual steps of the proposed
approach are described in Chap. 4. A simplified industry
example is introduced to illustrate the process. Chapter 5
discusses current limitations of the approach regarding ap-
plicability as well as scalability and suggests further re-
search need to enable full automation of the process.

2 State of the art

The formalization of system requirements is a critical step
in ensuring the development of reliable and error-free sys-
tems, particularly in the context of complex, safety-criti-
cal applications. This chapter presents an overview of cur-
rent methodologies and tools used in the formalization of
requirements (2.1), the detection of off-nominal behavior
(2.2), and the modeling of operational states and transitions
(2.3) in cyber-physical systems (CPS).

2.1 Requirements formalization

The formalization of requirements in temporal logic ex-
pressions has emerged as an approach for ensuring the cor-
rect and reliable behavior of systems that exhibit operat-
ing states and transitions. Temporal logic provides a robust

Table 1 Propositional Logic and
LTL operators used in this paper

Operator Connection Meaning

XOR A XOR B A XOR B is true if either A or B is true. It is false if A and B is true

! !A !A is true if A is false

! A!B If A is true, then B must also be true

X X B In the next state, B must be true

G G B B must be true in all states

framework for specifying requirements in a mathematically
precise manner [8].

Temporal logic languages use mathematical operators
to define rules that govern the transitions between states.
These operators, whose meanings are unambiguously de-
fined, eliminate the vagueness often associated with natural
language specifications. This precision ensures that require-
ments formulated in temporal logic carry a single meaning
and can be consistently interpreted across different stages
of the system development process.

Specifically, the Linear Temporal Logic language (LTL)
is widely used to specify temporal properties of systems [9].
It allows for the expression of requirements such as safety
(“something bad never happens”) and liveness (“something
good eventually happens”). LTL is particularly useful in
model checking, where it helps to verify that a system
model adheres to its temporal specifications [10]. LTL also
incorporates the basic Propositional Logic operators that are
commonly used to express logical relationships between
propositions. The Propositional Logic and LTL operators
used in this paper are shown in Table 1.

One of the most significant advantages of using temporal
logic for requirements formalization is the ability to per-
form model checking [4]. Model checking is an automated
process that verifies whether the behavior of a system com-
plies with the specified requirements. By applying temporal
logic rules to the system model, it is possible to rigorously
check if all possible state transitions meet the defined re-
quirements, thereby identifying potential design flaws early
in the development cycle.

By using temporal logic languages to formalize require-
ments, the risk of ambiguities and errors in the system de-
sign can be significantly reduced, ultimately leading to safer
and more dependable products.

2.2 Detecting off-nominal behavior in cyber-
physical-systems

Underspecification remains a pervasive challenge in the
requirements engineering process, often leading to unin-
tended or off-nominal system behavior [11]. This issue
arises when requirements are not detailed enough to cover
all possible scenarios, leaving gaps that can result in system
states not anticipated during the design phase. Such over-
sights can lead to critical failures or unexpected behavior in

K

Forschung im Ingenieurwesen 53 Page 3 of 9 0123456789

complex systems, particularly in domains such as automo-
tive engineering, where reliability and safety are paramount
[12].

One notable approach to identifying and mitigating off-
nominal behavior caused by under specification is presented
in [1]. Their methodology focuses on the concept of global
system states, which are defined as the aggregate of the
states of all system components. By considering all pos-
sible combinations of component states, this approach en-
sures a comprehensive examination of the system’s operat-
ing space.

In the framework introduced in [1], transitions between
global system states are triggered by specific events, with
each transition corresponding to a change in exactly one
sub-state. This granular approach to state transitions allows
for precise tracking of how the system evolves in response
to different stimuli. The rules governing these sub-state
changes are derived directly from natural language (NL)
requirements, which are systematically extracted and ap-
plied to the explicit global system states. By mapping these
rules onto the full range of possible system states, the ap-
proach aims to identify transitions that lead to undesirable
or off-nominal states. This method is particularly effective
in uncovering potential system vulnerabilities that may not
be immediately apparent from the requirements alone. The
identification of these undesirable state transitions is crucial
for refining the requirements and ensuring that the system
behaves as intended under all possible conditions.

By ensuring that all potential global system states are
considered and that transitions are rigorously analyzed,
their approach provides a robust mechanism for enhancing
system reliability and reducing the likelihood of unexpected
behavior.

2.3 Formalmodeling of operational states and state
transitions

Modeling the operating states and transitions of cyber-phys-
ical systems (CPS) supports evaluating their correct and re-
liable functioning, especially given the complex interplay
between physical processes and computational control. The
state of the art in this domain encompasses a variety of
methodologies, each with its strengths and application ar-
eas, aimed at accurately representing and managing the be-
havior of these systems.

Finite State Machines (FSM) are one of the most widely
used approaches for modeling the operating states and tran-
sitions of CPS [13, 14]. FSMs represent the system as a fi-
nite number of states and transitions between those states,
triggered by events or conditions. Each state represents
a particular system configuration at a specific point in time.
The discrete changes in system configuration over time are
modeled as the state transitions. This method is particularly

Fig. 1 Structure of a SysML v2 state machine diagram

useful for systems with a well-defined number of states
and predictable behavior. FSMs are straightforward to im-
plement and understand, making them suitable for many
industrial applications.

SysML is a modeling language designed specifically for
systems [15]. It provides a comprehensive suite of dia-
grams and tools for modeling the structure, behavior, re-
quirements, and parameters of CPS. SysML state machine
diagrams are based on the concept of FSM and are par-
ticularly useful for modeling the operating states as well
as the transitions of complex systems. By integrating state-
based behavior with other aspects of the system, SysML
enables a holistic approach to system design and analysis.
Its versatility and support for model-based systems engi-
neering (MBSE) make it a preferred choice for large-scale
and interdisciplinary projects. In its most recent version
SysML v2, models can be described with code and saved
to a database via an API interface, allowing for an easier
way to automatically generate models using algorithms.

In this paper we choose to model the operating states and
state transitions in SysML v2 state machines, as it can be
continuously used in an MBSE design process. The struc-
ture of such a state machine is shown in Fig. 1. State ma-
chines consist of a composite state, capturing the full system
behavior, and nested states that define the system modes.
Transitions between states are depicted as open arrows. Full
circles mark the starting state of a system. The end state is
represented by a banded circle. In the given example, the
behavior of a windscreen wiper is modeled. When the sys-
tem is initialized, the wiper is turned off. The system can
transition from the ‘Wiper on’ state to the ‘Wiper off’ state
any number times. While in the ‘Wiper off’ state, the sys-
tem can also transition to its end state.

3 Problem statement and research need

Despite the established methods in the individual areas in
requirements modeling [1, 14, 16], there currently exists

K

 53 Page 4 of 9 Forschung im Ingenieurwesen0123456789

no comprehensive method that effectively integrates the
formalization of requirements using logic languages with
the automated generation and analysis of permissible sys-
tem states within an MBSE framework. This gap represents
a limitation in the MBSE development process, where a uni-
fied approach could enhance the reliability, safety, and cor-
rectness of complex systems.

The lack of such an integrated method prevents engi-
neers from fully leveraging the strengths of formal logic in
the context of MBSE, particularly in ensuring that all pos-
sible system states are accounted for and that unintended
behaviors are systematically identified and mitigated. As
a result, the development process remains fragmented, with
potential vulnerabilities that could lead to system failures
being overlooked until later stages of development, where
rectification is costlier in both, time and money [12, 17].

Therefore, there is a need for a method that combines
the formalization aspect of logic languages with the ca-
pability to generate and evaluate permissible system states
and transitions, seamlessly integrating this process into the
MBSE workflow. Such a method would not only enhance
the accuracy and thoroughness of system design but also
provide a robust framework for early detection and cor-
rection of potential system failures, thereby improving the
overall safety and reliability of complex cyber-physical sys-
tems. This leads to the following problem statement:

How can LTL expressions be transformed into a SysML
v2 state-machine model, that represents all permissible sys-
tem states and state transitions as they are specified by the
LTL expressions?

In the following chapter, a multi-step approach is intro-
duced to address this challenge. This approach is founded
on several key concepts:

Capturing all system states and state transitions allowed
to occur according to the requirements, is an effective strat-
egy for formalizing these requirements in a system model.
This approach facilitates further analysis, particularly in as-
sessing the completeness of the requirements.

To enhance integration with MBSE workflows, the
model is developed using SysML v2 state machines. As
SysML v2 is a contemporary modeling language tailored
for mechatronic systems and state machines are well suited
to capture state-based behavior [14, 15]. Creating such
a model requires extracting detailed information about
system behavior from natural language requirements. To
structure this information and ensure unambiguousness, the
data is formalized using LTL. This formalization supports
automatic processing through algorithms for generating the
desired model.

4 Approach for generating and modeling
operational states and state transitions

In this chapter, an approach to generate a SysML v2 state
machine from natural language requirements is introduced.
The state machine contains all system operating states and
state transitions that are conform to the requirements set.
These elements are referred to as permissible states and
permissible transitions. Each permissible state consists of
a unique set of system requirements, that must be fulfilled
in the given state.

To facilitate the generation and subsequent modeling
of permissible states and transitions, information must be
extracted and transformed from the requirement specifi-
cations, which are usually stated in natural language. To
model the permissible states, the state dependent require-
ments of the system, as well as rules regarding possible
combinations of these requirements must be identified.
These rules are structured using Propositional Logic, as
this allows for automatic identification of permissible
states using algorithms. Additionally, rules regarding the
temporal order of states are identified and formalized us-
ing LTL. These rules are used to identify the permissible
transitions.

Figure 2 shows the steps and artifacts of the presented
methodology as well as the corresponding sections, in
which the steps of the methodology are presented in detail.
Section 4.1 describes how the state-dependent system pa-
rameters and requirements as well as rules for states and

Natural Language

Requirements

Section 4.1: Extracting Information from
Natural Langugage Requirements

State-dependent

Requirements

Rules for

Permissible States

Rules for Permissible

Transitions

Section 4.2: Generating
Permissible Operating

States

Permissible

states

Section 4.3: Generating
Permissible State

Transitions

Permissible Transitions

Section 4.4: Modelling of
Operating States and

Transitions in SyML v2

SysML v2

state machine

Step

Artifact

Fig. 2 Overview of the steps and artifacts of the presented methodol-
ogy

K

Forschung im Ingenieurwesen 53 Page 5 of 9 0123456789

Table 2 Requirements for a simplified lighting system of a car

Requirement Expression
Natural Language

1 The system shall be operating at brightness levels of either
0cd, 17,500 cd or 50,000 cd

2 The traffic sensor shall always be off while the system oper-
ates at a brightness of 0cd

3 Before the system is set to a brightness level of 50,000 cd, it
has to be set to 17,500 cd first

4 While the system is operating at a brightness level of 17,500
cd or 50,000 cd, the traffic sensor is also activated

5 When traffic is detected, the brightness level shall be either
17,500 cd or 0cd

state transitions are extracted and modeled. Section 4.2
describes how the information regarding state-dependent
system requirements and Propositional Logic expressions
is used to generate the system states that are permitted by
the requirements. In Sect. 4.3 the generation of permissible
state transitions based on LTL expressions is shown. Sec-
tion 4.4 closes Chap. 4 by describing the compilation of
a SysML v2 state machine using the artifacts created in the
prior sections.

The steps of the methodology will be explained using
a simplified example of a cars’ lighting system and corre-
sponding requirements, shown in Table 2.

The lighting system is composed of a low beam light,
a high beam light as well as a traffic sensor that can be
turned on and off. The traffic sensor is used to detect on-
coming vehicles in order to prevent blinding other road
users by turning off the high beam light. Over the course of
the next chapters, these requirements will be systematically
transformed into a state machine diagram, which enables
engineers to validate the correct specification as well as
the intended behavior of the system. The resulting SysML
v2 model can further be used in model-based development
processes.

Table 3 Requirement specifica-
tion containing state-dependent
system parameters

Requirement Expression
Natural Language

Slot Requirement Expression
Parameter-based

Boolean
Parameter

1 The system shall be operating at
brightness levels of either 0cd,
17,500cd or 50,000cd

1 Brightness_level= 0cd B_1

2 Brightness_level= 17,500 cd B_2

3 Brightness_level= 50,000 cd B_3

2 The traffic sensor shall always be
off while the system operates at
a brightness of 0cd

4 Traffic_sensor= on T_1

5 Traffic_sensor= off T_2

5 When traffic is detected, the
brightness level shall be either
17,500 cd or 0cd

6 Traffic_detected= true D_1

7 Traffic_detected= false D_2

4.1 Extracting information from natural language
requirements

In order to create the necessary artifacts for generating the
permissible states and state transitions, it is necessary to
extract information about the systems’ state-dependent pa-
rameters as well as the validity of states and state transi-
tions. This chapter describes how this information can be
derived from natural language requirements.

Identificationof state-dependent systemparameters and re-
quirements The identification of state-dependent system
parameters and requirements represents the first step in
our multi-step approach. We define a state-dependent sys-
tem parameter as a variable of the system, which has to
take on different discrete values, depending on the require-
ment specification. To create a machine-readable model,
each natural language requirement expression is converted
into a parameter-based requirement expression. This is done
by manually analyzing the system requirements. In the re-
quirements, first parameters that are assigned multiple val-
ues are identified. For each value assigned to the parameter,
a parameter-based requirement expression is created. These
expressions consist of the identified state-dependent param-
eter, i.e. brightness_level (cf. Table 3), and one of the val-
ues assigned to it. One expression is created for each value
the parameter can take according to the requirements. For
reasons of readability, this parameter-based requirement ex-
pression is then defined as a Boolean parameter, i.e. B_1,
and assigned to a specific slot in a list. The corresponding
Boolean parameters’ value will be used to indicate whether
the requirement needs to be fulfilled in a given state or
not. Specifically, if a requirement is true in a state, the cor-
responding Boolean parameter value is set to one; if the
requirement does not need to be fulfilled, the value is zero.
This approach captures system states as vectors of Boolean
values.

The process of creating this representation begins with
the identification of requirements that contain state-depen-
dent parameters within the natural language specifications.
This identification is done manually by analyzing the re-

K

 53 Page 6 of 9 Forschung im Ingenieurwesen0123456789

Table 4 Deriving Propositional Logic expressions from natural language requirements

Requirement Expression
Natural Language

Derived Propositional Logic Expression

1 The system shall be operating at brightness levels of either 0cd, 17,500 cd or 50,000 cd (B_1 XOR B_2 XOR B_3)

2 The traffic sensor shall always be off while the system operates at a brightness of 0cd (T_2)! (B_1)

quirement specification. Table 3 shows the requirement ex-
pressions #1, #2 and #3, stated in natural language, and their
derived state-dependent parameters brightness_level, traf-
fic_sensor, and traffic_detected. Their respective values are
assigned to the list slots 1–7, as stated in the requirement.
The corresponding Boolean parameter names are defined
as B_1, B_2, B_3, T_1, T_2, D_1 and D_2. Subsequently,
the requirements that need to hold in a system state can
be unambiguously defined by assigning the values 0 or 1 to
the Boolean parameters. For example, if in a state the traffic
sensor shall be turned on and the brightness level of the sys-
tem shall be 50,000 cd, the corresponding Boolean vector
(B_1, B_2, B_3, T_1, T_2, D_1, D_2) could be expressed
as (0, 0, 1, 1, 0, 0, 1)T.

Definition of rules for operating states In the next step, we
define rules for single operating states in Propositional
Logic expressions from the requirements stated in Table 2.
These rules constrain the set of valid state-dependent re-
quirements combinations. Some of these rules are explicitly
stated within the requirements, while others are inferred
from implicitly defined relations.

Table 4 shows the derived Propositional Logic expres-
sions based on the explicitly stated requirements #1 and
#2. Note, that this is not the full list of derived expres-
sions. Requirement #1 states, that only one of the systems’
brightness levels shall apply at the same time. This can be
expressed using the “exclusive-or” (XOR) operator and the
corresponding Boolean parameters B_1, B_2 and B_3. Re-
quirement #2 states, that the traffic sensor shall be in off
state (T_2), when the system is operating at a brightness of
0cd (B_1). The derived logical expression is stated as T_2
“implies” (logical operator:!) B_1.

An example for an implicit requirement would be, that
the traffic sensor cannot be “on” and “off” at the same time
(T_1 XOR T_2). This relation will most likely not be ex-
pressed in a typical requirement document, but is necessary
to clearly define the system’s behavior.

Definition of rules for state transitions The third informa-
tion artifact that needs to be extracted from the requirement
are rules for state transitions, stated as Linear Temporal
Logic (LTL) expressions (cf. Fig. 2). LTL expressions can
be used to explicitly define which state transitions are al-
lowed within the system. In our approach, this formaliza-
tion process is done by manually analyzing and translating

Table 5 Translation of natural language requirements into LTL expres-
sion

Requirement Expression
Natural Language

Derived LTL
Expression

3 Before the system is set to a brightness level
of 50,000 cd, it has to be set to 17,500 cd
first

G((B_1)!
X!(B_3))

the natural language requirements set. By translating the re-
quirements into LTL, potential ambiguities and inconsisten-
cies are eliminated, resulting in a precise and unambiguous
representation of the system’s permitted state transitions.

In Table 5, an example for this translation step is shown.
The natural language expression of requirement #3 is trans-
lated into the LTL expression “G((B_1)!X!(B_3))”. This
means, that at all times—globally (“G”)—B_1 implies, that
in the next state B_3 cannot be true.

4.2 Generating permissible operating states

For the generation of all permissible operating states, ev-
ery possible combination of Boolean values for the vec-
tors representing the system’s states is considered, creating
a comprehensive set of potential states. This exhaustive list
of combinations is then subjected to a verification process,
where each state vector is checked for conformity against
the predefined logical rules regarding requirement combi-
nations as outlined in Sect. 4.2 (Fig. 3).

To facilitate this verification, the rules are implemented
into an algorithm designed to evaluate each possible state.
For each identified type of relationship, a specific function
is created to ensure that all rules of that type are satisfied.
The algorithm systematically checks each state vector, and
those that comply with all the established rules are compiled
into a list of allowed states, ensuring that only permissible
states are considered in the model of the system’s operating
states.

In our example, any of the states that begin with (1,
1, 1, ...), (1, 1, 0, ...), (1, 0, 1, ...) or (0, 1, 1, ...) will be
considered as not permissible, as these combinations violate
the derived Propositional Logic expression “(B_1 XOR B_2
XOR B_3)”. The process is repeated until every parameter
combination has been checked against every Propositional
Logic expression.

K

Forschung im Ingenieurwesen 53 Page 7 of 9 0123456789

Fig. 3 Steps for generating the
permissible operating states

Fig. 4 Steps for generating the
permissible state transitions

4.3 Generating permissible state transitions

The necessary steps for generating the permissible state
transitions are shown in Fig. 4. In the generation process,
state transitions are represented as pairs of allowed states,
where the first state in the pair is the starting state and
the second state is the target state. To describe all possible
state transitions, the Cartesian product of the allowed states
is taken, which systematically combines each starting state
with every potential target state. These generated state pairs
are then subjected to a verification process, where an algo-
rithm checks each pair against the Linear Temporal Logic
(LTL) rules that govern permissible transitions. These LTL
rules are implemented within the algorithm to ensure that
only those state pairs that fully comply with the specified
rules are retained. The algorithm returns a list of state pairs
that meet all the requirements, representing the valid tran-
sitions within the system.

This verified information can then be used to construct
a state machine diagram that accurately reflects the allowed
behavior of the system, providing a clear and precise model

for further development and analysis. For smaller examples,
this approach can be demonstrated to illustrate how the
system’s behavior is systematically captured and verified.
The following Fig. 5 shows the implementation of the LTL
expression introduced in Table 5 as a ‘LTL rule’ in the
algorithm.

The LTL expression “G((B_1)!X!(B_3))” is imple-
mented by evaluating two vectors ‘V_1’ and ‘V_2’ in terms
of meeting a ‘condition’ and a ‘consequence’. ‘V_1’ and
‘V_2’ consist of seven slots to store information about the

Fig. 5 Implementation for the evaluation of the LTL expression
“G((B_1)!X!(B_3))”

K

 53 Page 8 of 9 Forschung im Ingenieurwesen0123456789

Boolean parameters as stated in Table 3. The Boolean pa-
rameter ‘B_1’ is stored in slot no. 1 and the parameter
‘B_3’ is stored in slot no. 3. In code, this translates to
the array positions ‘V_1[0]’ and ‘V_2[2]’. To meet the
‘condition’, slot ‘V_1[0]’ must be equal to ‘1’. In ‘conse-
quence’, ‘V_2[2]’ must be equal to ‘0’. For every generated
pair of vectors—representing a transition between two sys-
tem states—the algorithm checks, if the implemented rules
are met. If a generated pair is compliant to the rules, it is
added to a list of valid state transitions. The algorithm loops
through all possible combinations and finally returns a list
of all valid state transitions.

4.4 Modeling of operating states and transitions in
SysML v2

The formal graphical modeling of the generated operating
states and transitions is achieved by utilizing the two lists
of permissible states and state transitions to create a SysML
v2 state machine. The resulting state machine based on the
requirements presented in Table 2 is shown in Fig. 6.

This state machine incorporates the state-dependent sys-
tem parameters and requirements, ensuring a comprehen-
sive representation of the system’s behavior. The entire sys-
tem model is hosted on a server using the SysML v2 API
services implementation provided by the Object Manage-
ment Group (OMG) [15].

To facilitate this, the information is transformed into
a JSON file structure, where each system element is as-
signed a unique identifier (ID) during the initial publishing
to the server. These IDs are crucial for correctly interrelat-
ing the JSON objects that represent the various elements of
the system. After the IDs are assigned, the detailed informa-
tion necessary to fully specify the state machine is added

Fig. 6 State-machine based on the requirements of the exemplary sys-
tem

to the elements. This structured information is then sub-
mitted to the server via API POST requests, ensuring that
the model is accurately captured and accessible for further
development and analysis within the SysML v2 framework.

5 Discussion, conclusion and future work

In this paper we presented a multi-step approach that en-
ables the formal representation and verification of the op-
erating states and state-transitions of a CPS in an MBSE
compatible framework, i.e. a SysML v2 state machine dia-
gram.

For a given set of rules specifying the operating states
and their permitted transitions, a procedure was presented,
in that all possible combinations were formed and checked
for validity using algorithms. Currently, integrating the rules
into the algorithms is not automated and thus requires man-
ual effort. Moreover, as the number of state-dependent re-
quirements increases, the effort to determine valid states and
transitions grows. The potential number of states to be ver-
ified rises exponentially with the number of requirements,
causing a corresponding increase in computation time. As
a result, the current implementation only supports a lim-
ited number of state-dependent requirements. More effi-
cient verification algorithms that do not rely on generating
all states could address this issue.

Furthermore, as of now the formalizing of the require-
ments from natural-language to Propositional Logic and
LTL has also been carried out manually. However, there
have been efforts to automate such a formalization step in
a similar context [18], so that a further automatization of
this approach could be investigated in future work.

Automating the entire method could significantly de-
crease the modeling workload, thereby streamlining the
adoption of model-based development methodologies.

Acknowledgements This research has been carried out as part of the
research project “KIZAM” which is funded by the Federal Ministry
for Economic Affairs and Climate Action (BMWK). On behalf of all
authors, the corresponding author states that there is no conflict of in-
terest.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access Dieser Artikel wird unter der Creative Commons Na-
mensnennung 4.0 International Lizenz veröffentlicht, welche die
Nutzung, Vervielfältigung, Bearbeitung, Verbreitung und Wieder-
gabe in jeglichem Medium und Format erlaubt, sofern Sie den/die
ursprünglichen Autor(en) und die Quelle ordnungsgemäß nennen,
einen Link zur Creative Commons Lizenz beifügen und angeben, ob
Änderungen vorgenommen wurden. Die in diesem Artikel enthaltenen
Bilder und sonstiges Drittmaterial unterliegen ebenfalls der genannten
Creative Commons Lizenz, sofern sich aus der Abbildungslegende
nichts anderes ergibt. Sofern das betreffende Material nicht unter der
genannten Creative Commons Lizenz steht und die betreffende Hand-

K

Forschung im Ingenieurwesen 53 Page 9 of 9 0123456789

lung nicht nach gesetzlichen Vorschriften erlaubt ist, ist für die oben
aufgeführten Weiterverwendungen des Materials die Einwilligung des
jeweiligen Rechteinhabers einzuholen. Weitere Details zur Lizenz ent-
nehmen Sie bitte der Lizenzinformation auf http://creativecommons.
org/licenses/by/4.0/deed.de.

References

1. Aceituna D, Do H Exposing the susceptibility of off-nominal
behaviors in reactive system requirements. In: 2015 IEEE 23rd in-
ternational requirements engineering conference (RE). IEEE,
pp 136–145

2. Wymore AW, Wymore AW (1993) Model-based systems engineer-
ing: an introduction to the mathematical theory of discrete systems
and to the tricotyledon theory of system design. Systems engineer-
ing series. CRC Press, Boca Raton, Fla

3. Mokos K, Katsaros P (2020) A survey on the formalisation of sys-
tem requirements and their validation. Array 7:100030. https://doi.
org/10.1016/j.array.2020.100030

4. Clarke EM, Henzinger TA, Veith H (2018) Introduction to model
checking. In: Clarke EM, Henzinger TA, Veith H et al (eds) Hand-
book of model checking. Springer, Cham, pp 1–26

5. Pnueli A The temporal logic of programs. In: 18th annual sym-
posium on foundations of computer science (sfcs 1977). IEEE,
pp 46–57

6. Höpfner G, Jacobs G, Zerwas T et al (2021) Model-based design
workflows for cyber-physical systems applied to an electric-me-
chanical coolant pump. IOP Conf Ser Mater Sci Eng 1097:12004.
https://doi.org/10.1088/1757-899X/1097/1/012004

7. Zerwas T, Jacobs G, Spütz K et al (2021) Mechanical concept
development using principle solution models. IOP Conf Ser Mater
Sci Eng 1097:12001. https://doi.org/10.1088/1757-899X/1097/1/
012001

8. Cherukuri H, Ferrari A, Spoletini P (2022) Towards explainable
formal methods: from LTL to natural language with neural ma-

chine translation. In: Gervasi V, Vogelsang A (eds) Requirements
engineering: foundation for software quality, vol 13216. Springer,
Cham, pp 79–86

9. Brunello A, Montanari A, Reynolds M (2019) Synthesis of LTL
formulas from natural language texts: state of the art and research
directions. Schloss Dagstuhl – Leibniz-zentrum Inform Lipics.
https://doi.org/10.4230/LIPIcs.TIME.2019.17

10. Baier C, Katoen J-P (2008) Principles of model checking. MIT
Press, Cambridge, Mass

11. VDA (2024) Automotive VDA-Standardstruktur komponenten-
lastenheft: empfehlung zur spezifikation von systemen, software,
modulen, komponenten und einzelteilen

12. Leveson NG (2004) Role of software in spacecraft accidents.
J Spacecr Rockets 41:564–575. https://doi.org/10.2514/1.11950

13. Delligatti L (2014) SysML distilled: a brief guide to the systems
modeling language. Addison-Wesley, Upper Saddle River, NJ, Mu-
nich

14. Zdanis L, Cloutier R The use of behavioral diagrams in SysML.
In: 2007 IEEE long island systems, applications and technology
conference. IEEE, p 1

15. OMG (2024) OMG systems modeling language
16. Salado A, Wach P (2019) Constructing true model-based re-

quirements in SysML. Systems 7:19. https://doi.org/10.3390/
systems7020019

17. Bender B (2022) Anforderungsengineering im kontext des IDE. In:
Vajna S (ed) Integrated design engineering. Springer Berlin Heidel-
berg, Berlin, Heidelberg, pp 659–688

18. Bertram V, Kausch H, Kusmenko E et al Leveraging natural lan-
guage processing for a consistency checking toolchain of automo-
tive requirements. In: 2023 IEEE 31st international requirements
engineering conference (RE). IEEE, pp 212–222

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

K

http://creativecommons.org/licenses/by/4.0/deed.de
http://creativecommons.org/licenses/by/4.0/deed.de
https://doi.org/10.1016/j.array.2020.100030
https://doi.org/10.1016/j.array.2020.100030
https://doi.org/10.1088/1757-899X/1097/1/012004
https://doi.org/10.1088/1757-899X/1097/1/012001
https://doi.org/10.1088/1757-899X/1097/1/012001
https://doi.org/10.4230/LIPIcs.TIME.2019.17
https://doi.org/10.2514/1.11950
https://doi.org/10.3390/systems7020019
https://doi.org/10.3390/systems7020019

	Enhancing model-based development with formalized requirements: integrating temporal logic and SysML v2 for comprehensive state and transition modeling
	Abstract
	Introduction
	State of the art
	Requirements formalization
	Detecting off-nominal behavior in cyber-physical-systems
	Formal modeling of operational states and state transitions

	Problem statement and research need
	Approach for generating and modeling operational states and state transitions
	Extracting information from natural language requirements
	Generating permissible operating states
	Generating permissible state transitions
	Modeling of operating states and transitions in SysML v2

	Discussion, conclusion and future work
	References

