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ABSTRACT 

  
i 

ABSTRACT 

Sodium (23Na) plays a critical role in cellular metabolic processes via the regulation of the 

sodium-potassium pump, which maintains a large gradient between intracellular and 

extracellular sodium concentrations at the expense of energy. Cellular dysfunction can lead to 

an elevated intracellular sodium concentration, whereas the extracellular sodium concentration 

remains primarily unchanged due to tissue perfusion. Therefore, intracellular sodium, as a 

direct link to cell integrity and tissue viability, promises means for an insight into pathological 

processes. 

Conventional sodium Magnetic Resonance Imaging (MRI) with a single radiofrequency pulse 

can only detect total sodium. Based on the quadrupolar nature of the sodium nucleus, an 

advanced technique, Multiple-Quantum-Filtered (MQF) sodium MRI, is proposed to monitor 

restricted (mainly intracellular) sodium. However, the clinical application of MQF sodium 

MRI is hampered by the relatively low image quality and associated long acquisition times. 

This thesis aims to mitigate the limitations of MQF sodium MRI by exploiting two aspects: 

data acquisition and image reconstruction. Regarding data acquisition, this thesis optimised the 

enhanced SImultaneous Single-quantum and TrIple-quantum-filtered imaging of 23NA 

(SISTINA) sequence using a highly efficient non-Cartesian sampling scheme. Qualitative 

validation of this sequence optimisation was conducted by comparing the optimised sequence 

with a conventional enhanced SISTINA sequence in phantom measurements at 7T. The 

optimisation greatly improved the visual performance of ultra-short-echo-time images, while 

maintaining the visual quality of MQF images and introducing incoherence in raw data for the 

application of Compressed Sensing (CS) acceleration. 

Regarding image reconstruction, this thesis applied CS to accelerate enhanced SISTINA 

acquisitions by exploiting image sparsity to compensate for incoherent undersampling artefacts. 

Quantitative validation of the CS acceleration was performed by comparing the undersampled 

CS-based reconstructions with fully sampled and undersampled standard Non-Uniform Fast 

Fourier Transform (NUFFT) reconstructions in both phantom and in vivo measurements at 7T. 

Compared to NUFFT, CS accelerated enhanced SISTINA by up to twofold at 7T in this study 

with reduced noise levels, while maintaining primary structural information, reasonable 

weightings towards total and compartmental sodium and relatively accurate in vivo 

quantification.
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1 Introduction and Outline 

Nuclear Magnetic Resonance (NMR) is a physical phenomenon in which nuclei within a strong 

static magnetic field are disturbed by a weak oscillating magnetic field and respond by 

generating an electromagnetic signal with a specific frequency relative to the precession of the 

nuclear spin. It was first observed in the late 1930s by Isidor Isaac Rabi (Rabi 1937; Rabi et al. 

1938) who won the Novel Prize in Physics in 1944 for this work. NMR was independently 

demonstrated by Felix Bloch (Bloch et al. 1946) and Edward Mills Purcell (Purcell et al. 1946) 

in 1946, which was rewarded with the Novel Prize for Physics in 1952 for the two scientists. 

In 1973, Paul Lauterbur (Lauterbur 1973) and Peter Mansfield (Mansfield & Grannel 1973) 

discovered that images can be created from the NMR signal by applying spatial encoding. 

Nowadays, this innovation is called Magnetic Resonance Imaging (MRI). Its revolutionary 

medical contributions earned Lauterbur and Mansfield the Nobel Prize for Medicine in 2003. 

Another MRI pioneer was Raymond Damadian, who discovered that NMR can be used for 

medical diagnosis in 1971 (Damadian 1971) and built the first whole-body MRI scanner in 

1977 (Damadian et al. 1977). In addition, Richard Robert Ernst was awarded the Novel Prize 

in Chemistry in 1991 for his contributions to the development of the methodology of Fourier 

transform NMR spectroscopy in 1976 (Aue et al. 1976). These historical works are the 

cornerstones of technological and methodological developments with numerous contributions 

to medical diagnosis, clinical treatment and biomedical research up until today. 

MRI is widely used in hospitals and clinics because it does not require ionising radiation and 

thus is relatively harmless to the patient, distinguishing it from computer tomography and 

positron emission tomography. In addition, MRI provides better soft tissue contrast than 

computer tomography, allowing for a better distinction between fat, water, muscle and other 

soft tissues. However, it may be considered less comfortable by subjects due to the usually 

louder and longer measurements with the patient in a long and confining tube. MRI 

experiments can be performed on any nucleus with a non-zero spin quantum number. 

Hydrogen-1 (1H) nuclei have the highest natural abundance and NMR sensitivity among all 

nuclei in biological tissues and are, therefore, the target nucleus in routine clinical practice. The 

high concentration of hydrogen nuclei within soft tissues and fluids facilitates imaging with a 

high spatial resolution. MRI techniques can yield information on tissue contrasts and functional 

parameters by exploiting the complex interaction of nuclei with their environment. Common 

tissue contrasts include the total number of nuclei (i.e. spin density), NMR-signal-related 
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properties (e.g. longitudinal and transverse relaxation times) and magnetic susceptibility of 

various compounds (e.g. blood, iron and diamagnetic calcium). Functional parameters are 

associated with changes in blood flow, such as blood-oxygen-level-dependent response, 

arterial spin labelling, diffusion and perfusion. 

Despite the great success of hydrogen MRI in clinical routine and scientific research, the 

standard MRI is relatively limited in providing direct biochemical markers for tissue viability 

and cell integrity or for tracking temporal changes in tissue viability during medical treatment. 

On the other hand, MRI based on other nuclei (termed X-nuclei) focuses on revealing the 

underlying changes in physiological processes, thus providing complementary information to 

hydrogen MRI. Magnetic resonance observable nuclei that have physiological roles in the 

human body include Sodium-23 (23Na) with a link to cell vitality, Potassium-39 (39K) and 

Chlorine-35 (35Cl) relative to the functioning of muscle and neuronal cells and Oxygen-17 (17O) 

associated with energy metabolism. 

The potential of X-nuclei MRI was investigated early. In 1985, only about a decade after the 

first hydrogen images were produced, sodium was chosen for the first in vivo X-nuclei 

experiments on the human body (Hilal et al. 1985). This was because sodium yields the second 

strongest NMR signal among all nuclei within biological tissues, surpassed only by the 

hydrogen nucleus. Sodium MRI was subsequently applied to investigate brain tumours and 

ischemia in the late 1980s (Grodd & Klose 1988). Three decades after the first in vivo sodium 

images (Hilal et al. 1985), the first potassium and chlorine MRI images were published (Nagel 

et al. 2014; Umathum et al. 2013). Compared with potassium and chlorine MRI, the first in 

vivo oxygen MRI image was shown earlier (Fiat et al. 2004). Despite these early starts, X-

nuclei MRI, particularly sodium MRI, did not witness the same rapid development as hydrogen 

MRI, primarily due to the interrelated issues of relatively poor quality of sodium images and 

long measurement times. These issues were mainly caused by technical limitations, relatively 

low in vivo concentration, low NMR sensitivity and complex NMR properties of sodium nuclei. 

In the 1990s, interest in sodium MRI grew due to the increased access to stronger magnetic 

fields (3T or higher) and improved acquisition strategies and hardware. Novel contrasts such 

as multiple-quantum filtering offered further promise for tissue discrimination and 

characterisation (Hancu et al. 1999; Wimperis & Wood 1991). This trend has continued and 

intensified throughout the 2000s until today. 

Today, sodium MRI has made remarkable progress with an increasing number of pathological 

examinations and clinical studies. Nevertheless, sodium MRI still suffers from comparably low 
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image quality and long acquisition times. Currently, sodium MRI research is conducted in two 

directions (Madelin et al. 2014): (1) methodological advancements associated with data 

acquisition and image reconstruction and (2) the application of new techniques over various 

pathologies. This thesis follows the first direction, i.e. methodological development for sodium 

MRI, and mainly focuses on data acquisition and image reconstruction. The main interests are 

an improvement of image quality and image sparsity by implementing an advanced data 

acquisition scheme (Chapter 5) and reducing data acquisition time by applying an iterative non-

linear reconstruction method (Chapter 6). 

Thesis Outline 

This thesis is structured in two parts. Part I, consisting of three chapters, provides the 

motivation and theoretical background of sodium MRI. It outlines the physiological basis of 

sodium ions in biological tissues, relevant NMR physics and the resulting imaging 

requirements for sodium nuclei. 

Chapter 2 Physiological Significance of Sodium introduces the biological background of 

sodium ions in the human body. It provides an overview of the biomedical implications of 

sodium homeostasis in healthy physiology. In particular, this chapter covers its importance in 

cell metabolism and integrity regulated by the sodium-potassium pump and its role as a counter 

ion to large macromolecules in the extracellular space. Furthermore, the association between 

the disruption of sodium homeostasis and various pathologies is briefly discussed. 

Chapter 3 Nuclear Magnetic Resonance reviews the fundamental NMR physics based on 

both classical and quantum mechanical descriptions. This framework is necessary to 

understand the specific NMR signal characteristics of sodium nuclei. This chapter commences 

with an introduction to nuclear spin and magnetism, followed by a description of spin-1/2 

dynamics. Furthermore, the spin-3/2 dynamics are introduced, with particular attention given 

to the description of relaxation mechanisms based on Hamiltonians and density matrices. 

Finally, the characteristics of the NMR spectra of sodium ions in biological tissues are briefly 

introduced. 

Chapter 4 Magnetic Resonance Imaging is the last background chapter and closes the circle 

from physiology to NMR fundamentals and finally imaging. It describes data acquisition and 

image reconstruction for MRI, particularly sodium MRI. It commences with a brief 

introduction to the hardware structure of a typical MRI scanner. Then, it outlines the principles 

of NMR-based imaging, focusing on MRI aspects that are of particular relevance to the 
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remainder of this work. This chapter proceeds with an overview of sodium MRI-specific 

imaging approaches. Regarding data acquisition, this chapter describes typical non-Cartesian 

sampling schemes and sequence timing approaches associated with sodium signal acquisition. 

Regarding image reconstruction, two common approaches are examined: (1) standard image 

reconstruction based on gridding and (2) iterative reconstruction based on Compressed Sensing 

(CS) techniques. The latter approach is of particular interest due to its great potential to 

accelerate image acquisition. 

Part II presents the critical novel contributions of this work. Within the scope of this thesis, 

advances in sodium MRI focusing on multiple-quantum filtering were explored from two 

different perspectives, each presented in a separate chapter in this part. They are followed by 

the final concluding chapter. 

Chapter 5 Data Acquisition investigates the data acquisition aspect of Multiple-Quantum-

Filtered (MQF) sodium MRI. In this work, MQF sodium MRI was based on the enhanced 

SImultaneous Single-quantum and TrIple-quantum-filtered imaging of 23NA (SISTINA), a 

sodium MRI technique allowing images to be weighted towards restricted (mainly intracellular) 

sodium. This chapter aimed to optimise the enhanced SISTINA sequence using a high-

efficiency non-Cartesian sampling scheme. The optimised sequence was compared with a 

conventional enhanced SISTINA sequence in phantom measurements. The optimisation 

greatly improved the Ultra-short Echo Time (UTE) image quality from visual inspection, while 

maintaining the visual performance of MQF images and satisfying the prerequisite for CS 

application (Chapter 6) by introducing incoherence to the raw data. 

Chapter 6 Image Reconstruction explores the reconstruction aspects of MQF sodium MRI. 

MQF sodium MRI often suffers from low image quality and associated clinically infeasible 

acquisition times. This study aimed to alleviate the above limitation by applying CS to 

accelerate enhanced SISTINA acquisitions at 7T without a noticeable loss of information. 

Compared with standard Non-Uniform Fast Fourier Transform (NUFFT), CS accelerated 

enhanced SISTINA by up to twofold at 7T in this study with reduced noise levels, while 

maintaining primary structural information, reasonable weightings towards total and 

compartmental sodium and relatively accurate in vivo quantification. 

Chapter 7 Conclusion presents the last chapter of this thesis and summarises the main 

contributions of this work. In addition, an outlook for future study is given. 
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2 Physiological Significance of Sodium 

From Physiology to Nuclei 

Sodium is an essential component of the human body. A better understanding of the 

significance of sodium in physiological processes and functions could shed light on its relation 

to some pathological conditions. The physiological significance of sodium homeostasis is the 

cornerstone of scientific research into the potential implications for early diagnosis and medical 

management. This chapter provides an overview of the physiological significance of sodium 

homeostasis in human biology and briefly outlines the association between the disruption of 

sodium homeostasis and various pathologies. 

2.1 Sodium in Health 

Sodium has two primary biological functions in the human body: an active role in the energy-

consuming process of membrane transport and a passive role as the primary counter ion that 

balances charges of anionic macromolecules in tissues. 

2.1.1 Membrane Transport – Active Role 

In tissues, semi-permeable membranes separate compartments within and between individual 

cells, and large ionic concentration gradients exist between intracellular and extracellular 

spaces. Multiple transport mechanisms provide pathways for the influx and efflux of sodium, 

among which the sodium-potassium pump (Na+/K+-ATPase) (Rose & Valdes 1994), a 

membrane-bound protein, plays a primary role in establishing the sodium electrochemical 

gradient. As shown in Figure 2.1, the sodium-potassium pump maintains the transmembrane 

sodium and potassium gradients by extruding three sodium ions from the cell while 

transporting two potassium ions into the cell at the expense of energy given by the hydrolysis 

of Adenosine TriPhosphate (ATP). In healthy tissues, the intracellular sodium concentration 

(typically 10 – 15 mmol/L) is about ten times lower than the extracellular sodium concentration 

(typically 140 – 150 mmol/L); conversely, the intracellular and extracellular potassium 

concentrations are 140 mmol/L and 5 mmol/L, respectively (Madelin et al. 2014). 
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Figure 2.1 Schematic representation of the sodium-potassium pump activity. The sodium-potassium 

pump maintains large sodium and potassium gradients across the cell membrane by moving three 

sodium ions out of the cell and simultaneously transferring two potassium ions into the cell. This process 

is powered by the hydrolysis of the third high-energy phosphate bond of adenosine triphosphate. 

The sodium-potassium pump is of fundamental importance in various physiological processes 

and thus earned its discoverer, Jens Christian Skou, a Nobel Prize in Chemistry in 1997. In the 

following, its principal functions are briefly discussed. 

Controlling Cell Volume 

The osmolarity of a cell is defined as the sum of the concentrations of various ion species, 

proteins and other organic compounds inside the cell. If the osmolarity of a cell is higher than 

the osmolarity outside the cell, water flows into the cell through osmosis, causing it to swell 

and thus increasing its volume. By regulating the balance of sodium and potassium ions across 

the cell membrane, the sodium-potassium pump helps maintain the normal cell volume in the 

biological tissues. Failure of this regulation can result in cell swelling and eventual rupture. 

Molecule Transport 

The concentration gradients established by the sodium-potassium pump provide the driving 

force for the several secondary active transport proteins, which carry ions (e.g. calcium and 

proton), metabolites and nutrients (e.g. glucose and amino acids), neurotransmitters (e.g. 

glutamate) and other molecules across the membrane. For example, in the gut, sodium is 

transported out of the re-absorbing cell on the blood (interstitial fluid) side through the sodium-

potassium pump; however, on the re-absorbing (lumenal) side, the sodium-glucose symporter 

imports both sodium ions and glucose by consuming energy provided by the created sodium 



2 Physiological Significance of Sodium 

 
9 

gradient. The sodium-potassium pump is an essential component of membrane transport and 

plays a vital role in maintaining cell metabolism and function.

Signal Transmission 

The sodium-potassium pump expels three sodium ions and introduces two potassium ions, 

resulting in a net export of a single positive charge per pump cycle. This establishes a relatively 

static membrane potential of quiescent cells, called the resting membrane potential (–60 to –70 

mV in neurons). This electrical potential is the basis for the action potential in excitable cells, 

including neurons, muscle cells and some plant cells. Via action potentials, neurons propagate 

signals along the neuron’s axon for communication across cells; other types of cells utilise the 

signals to activate intracellular processes, such as muscle contraction. Signal transmission is 

based on the disturbance of the resting membrane potential beyond a threshold voltage that 

leads to the opening of voltage-gated ion channels and the rapid influx of sodium ions, causing 

a reversal of electric polarity across the plasma membrane. After the action potential, the ion 

channels close, and the resting potential is re-established by the sodium-potassium pump. 

2.1.2 Counter Ions – Passive Role 

Since macromolecules (e.g. proteins and nucleic acids) that contribute to the structural integrity 

of tissues have electrostatically charged functional groups, counter ions are required to balance 

the resulting electrostatic interactions. Sodium as a counter ion plays a crucial role in 

maintaining the structural and functional integrity of these macromolecules in both intracellular 

and extracellular spaces in all tissues. For example, cartilage comprises an extracellular matrix 

with cross-linked glycosaminoglycan polymers. Sodium acts as the counter ion to control the 

bound water and electrostatic repulsion of the glycosaminoglycan network, thereby 

determining the compressive elasticity for buffer weight bearing in joints. The brain’s 

extracellular matrix differs from that of cartilage – it consists primarily of macromolecules of 

proteoglycans with variable glycosaminoglycan polymers such as chondroitin sulphate. 

Nevertheless, the structural principle of the macromolecules and sodium counter ions still 

applies. The electrostatic effect of the extracellular matrix provides a structural scaffold for 

controlling tissue integrity while balancing the water distribution between the intracellular and 

extracellular compartments and buffering cationic concentrations in small interstitial spaces.
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2.2 Sodium in Disease 

Sodium ion homeostasis in the human body is of great significance in ensuring the proper 

functioning of a cell. Disruption of cell membrane integrity or impairment of energy 

metabolism can increase the intracellular sodium concentration; in contrast, the extracellular 

sodium concentration remains largely unchanged due to tissue perfusion. Thus, the elevated 

intracellular sodium concentration resulting from abnormal sodium ion homeostasis is often 

considered a sensitive early indicator of various pathological conditions. Multiple reviews have 

discussed the link between sodium homeostasis breakdown and specific pathologies in various 

anatomical regions (Bangerter et al. 2016; Francis et al. 2017; Madelin et al. 2014; Shah et al. 

2016; Thulborn 2018; Zaric et al. 2021). Since sodium within the brain is of particular interest 

in this thesis, a couple of neurological applications of sodium imaging will be emphasised in 

the following overview. In addition, the promising applications of sodium ion detection on 

other anatomical regions across the human body will be briefly discussed. 

2.2.1 Brain Diseases 

Many sodium MRI studies have been performed on the human brain to evaluate its possible 

use in the assessment of various neurological diseases. Sodium MRI can probe the changes in 

cellular integrity and viability in the brain tissues through the alternations in intracellular 

sodium concentration and/or extracellular volume. 

Stroke 

A stroke is characterised by the impaired blood supply to the brain with rapid onset of 

neurological symptoms. Strokes can be classified into two major categories: ischemic (i.e. 

blockage of blood supply to the brain) and hemorrhagic (i.e. blood vessel rupture). Both cases 

can cause lasting brain damage, long-term disability or even death. Ischemic strokes are more 

common, constituting about 87% of strokes. The decrease in blood supply can lead to a loss of 

cellular energy production, which impairs the sodium-potassium pump and thus induces a 

breakdown of sodium ion balance across the cell membrane. An increase in intracellular 

sodium due to the loss of cell integrity and an increase in extracellular volume due to cell death 

could increase Total Sodium Concentration (TSC). Therefore, quantitative sodium MRI can 

non-invasively provide accurate spatial information on tissue viability and temporal 

information on stroke onset, which has potential clinical implications for stroke management 

(Boada et al. 2012; Jones et al. 2006; Thulborn et al. 1999). Advanced sodium MRI techniques 

based on, for example, multiple-quantum filtering (Hancu et al. 1999) or inversion recovery 
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preparation (Madelin et al. 2010; Stobbe & Beaulieu 2005), enable images to be weighted 

towards intracellular sodium content. These techniques may have more clinical significance 

and are thus worthy of further investigation. 

Tumours 

Tumours are characterised by abnormal cell division and proliferation, which can be initiated 

by changes in Na+/H+ exchange kinetics and therefore changes in intracellular and extracellular 

acid-base balance. This mechanism causes reduced sodium-potassium pump activity, leading 

to an increased intracellular sodium concentration. Similarly, both tumour neovascularisation 

and increased interstitial space result in an increased extracellular volume fraction. Due to the 

increased intracellular sodium and extracellular volume, TSC levels in malignant tumours are 

likely to be elevated and could be non-invasively measured by single-pulse quantitative sodium 

MRI. Implementation of multiple-quantum filter (Fiege et al. 2013) or inversion recovery 

(Nagel, Bock, et al. 2011) preparations in sodium acquisitions could provide more specific 

information on changes in the intracellular content by reducing the weight of fluids and/or 

extracellular sodium in image contrast. 

Multiple Sclerosis 

Multiple Sclerosis (MS) is an inflammatory neurological disease characterised by focal and 

diffuse inflammation in White Matter (WM) and Grey Matter (GM), demyelination of the 

axons and neuroaxonal injury and loss (Bjartmar & Trapp 2001). The cellular and molecular 

mechanisms causing neurodegeneration and neuroinflammation in MS are closely related to 

sodium. It has been shown that the decreased ATP supply in MS may lead to the breakdown 

of the sodium-potassium pump and thus toxic sodium accumulation in the intracellular space 

(Huhn et al. 2019). Consequently, the increased intracellular sodium concentration may 

provoke a reverse action of the Na+/Ca2+ exchanger followed by calcium accumulation, leading 

to the activation of neurodegenerative signalling cascades. A preliminary sodium MRI study 

showed that TSC in acute and chronic lesions was elevated compared to normal-appearing 

tissues in MS patients (Inglese et al. 2010). Going forward, the compartmental discrimination 

between intracellular and extracellular sodium using triple-quantum-filtering or inversion 

recovery techniques may provide additional valuable information for understanding the 

pathophysiological mechanisms involved in tissue damage in MS (Shymanskaya et al. 2019).  
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Alzheimer’s Disease 

Alzheimer’s Disease (AD) is a neurodegenerative disease with a pattern of progressive 

cognitive and functional impairment. It is the cause of 60 – 70% of dementia cases. There is a 

significant interest in finding biomarkers for detecting early signs of AD and tracking its 

progression. Sodium MRI was suggested to have the potential to be a clinically useful tool to 

detect the neuropathologic changes associated with AD with the hypothesis that the alterations 

of the sodium levels in the brains of AD patients are related to AD cell death. A slight increase 

in sodium signal intensity (7.5%) was found in the brains of AD patients compared to healthy 

controls (Mellon et al. 2009). However, the physiological basis of this increase in sodium 

content remains unclear. Possible explanations are that the extracellular volume increases due 

to cell death and fluid invasion and/or the intracellular sodium concentration increases due to 

amyloid beta channels in the cell membrane or the impairment of the sodium-potassium pump. 

Advanced sodium MRI techniques allowing fluid suppression and/or intracellular sodium 

isolation (e.g. inversion recovery or multiple-quantum filter) may provide complementary 

information on studying the pathophysiological mechanisms underlying AD progression. 

Huntington’s Disease 

Huntington’s Disease (HD) is an autosomal dominant, progressive neurodegenerative disorder 

clinically characterised by progressive motor dysfunction (e.g. hyperkinesia), cognitive decline 

and psychiatric impairment. A pilot study found that TSCs of the whole brain in HD patients 

were elevated compared with healthy controls (Reetz et al. 2012). However, similar to AD, 

these elevated TSCs have not been satisfactorily explained due to limited data, poor image 

resolution and lack of differentiation between intracellular and extracellular sodium content. 

The use of sodium MRI with multiple-quantum filtering (Hancu et al. 1999; Kjemp-Harper et 

al. 1995) may help explain these observed TSC variations, which are often associated with 

changes in cellular and metabolic integrity that may contribute to structural degeneration in 

HD. 

2.2.2 Other Organ Diseases 

In addition to the brain, sodium provides a valuable marker for diseases in other anatomical 

regions across the human body. Some of them are briefly outlined below. 

Heart (Myocardial Infarction) 

In myocardial infarction, the sodium-potassium pump function is inhibited due to energy 

depletion, and the extracellular volume is enlarged due to myocardial oedema formation or 
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scarring. These pathophysiological conditions can lead to an increase in intracellular sodium 

concentration. Quantitative sodium MRI is considered a good candidate for the detection of 

cardiac infarction by measuring localised increased sodium content in cardiac tissues, thereby 

helping distinguish viable tissues from non-viable tissues (Bottomley 2016). Advanced sodium 

MRI techniques that enable images to be weighted towards intracellular sodium (e.g. multiple-

quantum filter) might better represent infarcted tissues and adjacent areas. 

Skeletal Muscle 

The resting membrane potential maintained by the sodium-potassium pump is critical for 

proper skeletal muscle functioning. Muscle contraction is based on the action potential – the 

disturbance of resting membrane potential by rapid sodium influx and potassium efflux through 

sodium- and potassium-gated channels. Many pathological conditions, such as diabetes, 

starvation and hypothyroidism, can be linked to a reduction in sodium-potassium pump activity 

in skeletal muscle (Clausen 2003). For example, the number of sodium-potassium pumps is 

reduced, and the pumping activity is weakened in diabetic patients, resulting in a decrease in 

the ability to extrude sodium from cells and thus an increase in intracellular sodium content in 

muscle tissues. Sodium MRI has the potential to provide insights into muscle physiology and 

disorders by measuring the changes in sodium intensities and relaxation times in muscles after 

voluntary muscle contractions. Furthermore, Suppression of fluid and/or extracellular sodium 

signal suppression by multiple-quantum filtering or inversion recovery may provide 

complementary information for investigating the pathophysiological basis of skeletal muscle. 

Cartilage (Osteoarthritis) 

OsteoArthritis (OA) is a degenerative disease of the articular cartilage, characterised by a 

reduction of fixed charge density concentration, possible changes in the size and organisation 

of the collagen fibres and aggregation of the proteoglycans. Since there are no known curative 

or preventive treatments for OA, early detection of OA before irreversible morphological 

changes and an accurate method to quantify the effects of potential treatments are of 

fundamental importance. Sodium concentration has been shown to strongly correlate with fixed 

charge density and glycosaminoglycan content in cartilage, so quantitative sodium MRI can 

also be used to directly detect glycosaminoglycan loss in early OA (Wheaton et al. 2004). Due 

to the presence of synovial fluid or joint effusion, applying multiple-quantum filtering or 

inversion recovery to suppress signals from surrounding fluids can help measure small changes 

in TSCs within the cartilage.
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Kidney 

The kidneys play a critical role in regulating homeostatic functions such as extracellular fluid 

volume, acid-base balance, electrolyte concentrations and blood pressure (by maintaining salt 

and water balance) (Zöllner et al. 2016). This role is tightly dependent on the regulation of 

extracellular sodium in the kidney, resulting in a concentration gradient from the cortex to the 

medulla. Therefore, by detecting changes in sodium gradient or differences in the relaxation 

times, quantitative sodium MRI may provide valuable information for assessing renal functions 

in various diseases such as nephropathy, renal failure and renal transplantation.

2.3 Motivation for Sodium Imaging 

In addition to the prevention of diseases, the focus of medical and related research is on the 

effective management of diseases, which is based on an early and accurate diagnosis and the 

monitoring of treatments. Many disease manifestations begin at the cellular level, with 

perturbations in cellular structure and metabolism. Ideally, detection techniques measure the 

onset of biochemical changes before clinical symptoms appear and facilitate the accurate 

assessment of physiological parameters during and after treatment. 

The appeal of sodium-based imaging lies in its direct link to biochemical information, 

endowing biomarkers with the potential for diagnostic and monitoring applications. The 

concept of MRI establishes an approach for the non-invasive in vivo detection of sodium and 

is therefore of great clinical significance. Compared to the widely used hydrogen MRI, sodium 

MRI provides a specific marker for cell physiology that enables a distinct interpretation. 

Furthermore, the intracellular sodium concentration is sensitive to cellular metabolic 

dysfunctions, whereas the extracellular sodium concentration remains relatively constant due 

to tissue perfusion. In light of the above, the advancement of restricted (predominantly 

intracellular) sodium-weighted MRI techniques for applications to the human brain is the 

primary purpose of this thesis.
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3 Nuclear Magnetic Resonance 

From Nuclei to Signal 

This chapter describes the fundamental physics of Nuclear Magnetic Resonance signal 

generation. Nuclear spin and magnetism are introduced using quantum mechanical and semi-

classical approaches. Further, the origin of the NMR signal is explained in both classical and 

quantum mechanical treatments. Spin-3/2 Hamiltonians are introduced, and density matrix 

formalism is used to describe NMR signal generation and relaxation. Finally, the physical 

properties of sodium ions in biological tissues are discussed. This chapter mainly follows the 

book of (Levitt 2008). 

3.1 Spin and Angular Momentum 

Spin is an intrinsic property of particles. It is also a form of angular momentum. A solid 

understanding of the concept of spin is crucial in this work, as spin provides a wonderful tool 

for peering into the microscopic and internal structures of objects without disturbing them. This 

section first introduces the angular momentum of rotating molecules. The specific concept of 

spin angular momentum is further described. Finally, the combination of multiple angular 

momenta is discussed. 

3.1.1 Rotational Angular Momentum 

Fundamentally, matter is made of atoms that consist of a hull containing negatively charged 

electrons and a nucleus. The atomic nucleus comprises two types of nucleons: charge-free 

neutrons and positively charged protons. Essential physical properties originate from these 

elementary particles. The mass of the nucleus accounts for most of the atomic mass. Many 

other physical properties, such as heat capacity, are strongly dependent on the nuclear mass. 

The chemical properties of an atom are determined by the number and the configuration of 

electrons in the hull. The magnetic interactions of atomic nuclei with the molecular 

environment and an external apparatus can reveal detailed information on the atomic structure, 

molecular composition and macroscopic structure of an investigated sample. The probe into 

this information is the spin of the nucleons. 

Spin is an intrinsic property of an elementary particle. Due to its quantum mechanical 

properties, the concept of spin may never be fully grasped without knowledge of quantum 

mechanics. Formally, spin is also a mathematical form of angular momentum. It has a classical 
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analogue: Any rotating object possesses an angular momentum – a quantity vector. The 

direction of the vector can be determined using the “right-hand rule”: If the right-hand fingers 

“wrap around” in the direction of the rotation, the thumb points in the direction of the angular 

momentum vector. In classical mechanics, the macroscopic angular momentum of a rotating 

object may take any value. 

In quantum mechanics, the microscopic angular momentum of a molecule can only take 

specific values (i.e. quantised – hence the name “quantum mechanics”). For example, A 

rotating diatomic molecule possesses a set of rotational states, in which the total angular 

momentum, Ltot, has one of the values: 

 Ltot=[J(J + 1)]
1 2⁄ ℏ, (3.1) 

where J takes integer values J = {0, 1, 2, …}, and ℏ is the Planck’s constant divided by 2π. The 

value of J determines the rotational state of the molecule, which depends on the history and 

environment of the molecule. 

The rotational energy of the molecule is proportional to the square of the total angular 

momentum, and thus the energy is also quantised. The rotational energies, EJ, of the stable 

rotational states are: 

 EJ = BJ(J + 1), (3.2) 

where B  is the rotational constant for the molecule, determined by the properties of the 

molecule. 

The total angular momentum of the molecule determines the speed of its rotation but contains 

no information on the direction of the rotation. This information is given by specifying an 

additional quantum number, m, which is sometimes referred to as the azimuthal quantum 

number. This quantum number takes an integer value from the total (2J + 1)  values of 

{–J, –J + 1, …, +J}. The quantum number m makes no contribution to the rotational energy in 

the absence of an external magnetic field, as can be seen in Eq. (3.2). Therefore, each of the 

(2J + 1) states with the same value of J but different values of m have the same energy; these 

states are said to be degenerate. However, applying a magnetic field may cause each of the 

(2J + 1) sublevels to have a slightly different energy. The breakdown of the degeneracy is 

called the Zeeman effect. The energy separation between the m  sublevels in an external 

magnetic field is called the Zeeman splitting. 
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3.1.2 Spin Angular Momentum 

As mentioned above, spin – as a quantity – can also be described mathematically using angular 

momentum. However, it is not produced by the actual rotation of the particle but is an intrinsic 

property of the particle itself. Analogously to Eq. (3.1), the total angular momentum of particles 

due to spin takes values of the form: 

 Ltot=[S(S + 1)]1 2⁄ ℏ. (3.3) 

Each elementary particle has a specific value for the spin quantum number S. Here, S is used 

to replace J to distinct between the spin angular momentum and rotational angular momentum. 

Again, the direction of the spin may be specified with the spin azimuthal quantum number, m, 

taking one of the (2S + 1) possible values. The sublevels are degenerate without an external 

field but may have different energies with an applied electric or magnetic field. In contrast to 

J, S can be given a half-integer or integer value. For example, the electron has a spin S of 1/2, 

and the photon possesses a spin S of 1. The spin of an elementary particle (e.g. an electron) is 

intrinsic and independent of its history and environment. Even at the absolute zero of the 

temperature scale, an elementary particle (such as an electron) simply has spin; in contrast, all 

rotational motion disappears and hence J = 0 in Eq. (3.1). However, an electron may have both 

angular momenta – an “intrinsic” spin angular momentum and a “conventional” angular 

momentum due to motion such as orbital angular momentum resulting from its circulating 

motion around the nucleus. How multiple angular momenta are combined is discussed in the 

next section.

3.1.3 Combining Angular Momenta 

The combination of multiple angular momenta leads to a total angular momentum. Consider a 

system with two parts with quantum numbers J1  and J2 . Each part is a source of angular 

momentum that may originate from spin or rotational motion. The total angular momentum of 

the entire system is given by: 

 Ltot = [Jtot(Jtot + 1)]
1 2⁄ ℏ, (3.4) 

where Jtot is the total angular momentum quantum number of the complete system. It takes one 

of the following possible values: 

 Jtot = {|J1 – J2|, |J1 – J2| + 1, ..., |J1 + J2|}. (3.5) 
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Two particles of spin 1/2, i.e. S1 = S2 = 1/2, is often used to explain this combination rule in 

detail. In this case, there are only two possible states for the total angular momentum quantum 

number, namely Stot = |S1 – S2| = 0 and Stot = |S1 + S2| = 1. In the formal state, the two spins 

cancel each out, being said as “the spins are anti-parallel”. The latter state is often expressed as 

the two spins being “parallel”. The anti-parallel configuration has only one state with azimuthal 

quantum number m = 0 and thus is not degenerate. This state is called a singlet state. The 

parallel configuration, on the other hand, leads to three substates with azimuthal quantum 

numbers m = {–1, 0, 1}. These states are often called triplet states to emphasise their threefold 

degeneracy, which may be broken by applying an external field. 

3.2 Nuclear Spin 

The spin originating from the nucleus is of particular interest in this thesis. Therefore, this 

section begins with an introduction to the nuclear spin and its ground state. The splitting of 

energy sublevels within the nuclear ground state is then described. Finally, nuclei with various 

spins are briefly listed. 

3.2.1 Nuclear Spin States 

An important example of a system with multiple angular momenta is the nucleus. The nucleus 

possesses nuclear spin, and the nuclear spin quantum number is conventionally denoted as I. 

Except that the nucleus of 1H hydrogen contains a single proton and has spin I = 1/2, the spin 

of a nucleus is formed by combining the spins of 1/2 originating from both the protons and the 

neutrons, according to the usual rule in Eq. (3.5). 

The nucleus containing exactly one proton and one neutron is 2H deuterium, which is used here 

as an example. The combination of the two spin-1/2 nucleons results in either nuclear spin I = 0 

or nuclear spin I = 1, as outlined in Section 3.1.3. These two nuclear spin states are found to 

have an energy difference of ~1011 kJ/mol. This figure essentially exceeds the energies 

available to usual electromagnetic fields or common chemical reactions, exemplified by the 

available thermal energy at room temperature of ~2.5 kJ/mol). Therefore, for NMR 

experiments, the nuclear-excited states may be ignored, and only the lowest energy nuclear 

state (i.e. ground state) is considered. The value of I in ground state is called the ground state 

nuclear spin, referred to as the “nuclear spin” in this thesis for simplicity. In the case of 

deuterium, the nuclear spin is I = 1. 
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However, large nuclei, consisting of many nucleons, have many possible states, of which the 

ground state cannot be determined with a simple rule in general. Nevertheless, some properties 

can be derived from the following three rules: 

1. Nuclei with odd mass numbers possess half-integer nuclear spin, and nuclei with even mass 

numbers possess integer nuclear spin, such as 1H (I = 1/2, 1 proton), 2H (I = 1, 1 proton and 

1 neutron) and 23Na (I = 3/2, 11 protons and 12 neutrons). This is a direct consequence of 

Eq. (3.5). 

2. If the numbers of protons and neutrons are both even, the nuclear spin is I = 0. For example, 

the 16O nucleus, containing eight protons and eight neutrons, has spin I = 0. 

3. If the numbers of both protons and neutrons are odd, the nuclear spin is an integer larger 

than zero, such as 40K nuclear spin I = 4 (19 protons, 21 neutrons). 

The ground state nuclear spin and some other properties of some nuclei are shown in Table 3.1. 

Table 3.1 A selection of nuclei and their properties (Levitt 2008). 

 

3.2.2 Nuclear Zeeman Splitting 

For all nuclei with nuclear spin I, there is (2I + 1)-fold degeneracy in the ground state. This 

degeneracy is broken if a magnetic field is applied. The splitting between the nuclear spin 

energy levels is called the nuclear Zeeman splitting. The spectroscopy technique that probes 

this splitting is NMR, as is discussed in this thesis. 

In the presence of a magnetic field along the z-axis, the projection of the spin angular 

momentum Ŝ on the z-axis, Ŝz, is quantised: 

 Ŝz = Îzℏ = mℏ, (3.6) 

 

Nucleus 
Ground-state 

spin 

Natural 

abundance (% ) 

Gyromagnetic ratio 

(106 rad∙s-1∙T -1) 

NM R frequency 

at 7T  (M H z) 
1H 1/2 ~100 267.522 298.042 
2H 1 0.015 41.066 45.751 
13C 1/2 1.1 67.283 74.959 
15N 1/2 0.37 –27.126 –30.221 
17O 5/2 0.04 –36.281 –40.420 
19F 1/2 ~100 251.815 280.543 

23Na 3/2 ~100 70.808 78.886 
31P 1/2 ~100 108.394 120.760 

35Cl 3/2 75.77 10.610 11.820 
129Xe 1/2 24.4 –74.521 –83.023 

12C 0 98.9 - - 
16O 0 ~100 - - 
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where m  is the azimuthal quantum number, from the total (2I + 1)  values of 

{–I, –I + 1, ..., I – 1, I}; ℏ is the reduced Planck constant; Îz  is a component of the angular 

moment operator of a single spin, 𝑰̂, in the Zeeman eigenbasis (more details in Section 3.4.2). 

Note that the operators used in quantum mechanics (e.g. Ŝz) are denoted by a hat (ˆ) in this 

thesis. Figure 3.1 sketches the nuclear Zeeman sublevels of a 1H nucleus, a 15N nucleus and a 

23Na nucleus with respect to the applied magnetic field. Both 1H and 15N nuclei possess spin-

1/2; thus, their ground states split into two sublevels in the magnetic field (since 2 × 

(1 2⁄ ) + 1 = 2). The 23Na nucleus has spin-3/2; its ground state splits into four sublevels in the 

magnetic field (since 2 × (3 2⁄ ) + 1 = 4). The Zeeman splitting (i.e. the energy gap between the 

energy sublevels) of a 1H nucleus is much larger than that of a 15N nucleus in the same magnetic 

field. This is because the energy gap is relative to the magnetic properties of the nucleus, which 

will be discussed in Section 3.3.3. 

 

Figure 3.1 Schematic of the nuclear Zeeman sublevels of the 1H, 15N and 23Na nuclear ground states. 

3.2.3 Nuclei with Various Spins 

Zero-spin nuclei 

The periodic table lists 118 elements. A minority of these isotopes have a nuclear spin of I = 0 

and display no nuclear Zeeman splitting effect. Therefore, they cannot be detected by NMR. 

Unfortunately, organic matter contains many spin-free isotopes, such as 12C, 16O and 32S. 

Spin-1/2 nuclei 

For in vivo NMR spectroscopy, other nuclei with non-zero spin in the organic materials must 

be used, such as 1H, 31P, 15N and 19F. These are spin-1/2 nuclei. Such nuclei are spherical in 

shape and have convenient magnetic properties. They are typically scattered on the right-hand 
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side of the periodic table. The 1H nucleus is of particular importance; standard clinical 

applications of NMR and MRI are based on signals from this nucleus. 

Quadrupolar nuclei 

Nuclei with spin I > 1/2  are known as “quadrupolar nuclei” because their electric charge 

distribution is not spherically symmetrical. The NMR of such nuclei is a more prosperous but 

complicated field than that of spin-1/2 nuclei. Quadrupolar nuclei with integer spin are 

uncommon, the most abundant nucleus of which is 14N with a natural abundance of almost 

100%. The 176Lu has the highest nuclear spin, I = 7, in the periodic table. Quadrupolar nuclei 

with half-integer spin are common, such as 23Na with I = 3/2, 25Mg with I = 5/2 and 133Cs with 

I = 7/2. With a natural abundance of ~100%, sodium plays a crucial role in cell physiology, 

making it an attractive target for in vivo NMR and MRI. 

3.3 Magnetism 

Magnetism is another intrinsic physical property of particles. Magnetic nuclei interact with 

magnetic fields. The extremely weak magnetic interactions of atomic nuclei can provide 

detailed molecular information currently unobtainable by any other methods. This section starts 

with a brief introduction to the electromagnetic field. Furthermore, macroscopic and 

microscopic magnetism are introduced, followed by spin precession and Larmor frequency 

concepts. The longitudinal and transverse magnetisation and relaxation are then discussed in 

detail. Finally, the creation of the NMR signal is briefly illustrated. 

3.3.1 The Electromagnetic Field 

Either a classical or a quantum description can be used for electromagnetic fields. In the 

classical description, the electromagnetic field is represented by two vector fields, E and B, at 

each point in space. The electric field, E, interacts with electric charges. The magnetic field, B, 

interacts with magnetic moments. The behaviour of these two vector fields in time and space 

is governed by Maxwell’s equations. The quantum description, where the field is treated as a 

collection of photons, is accurate but difficult to use. Nevertheless, the discrepancy between 

these two descriptions is negligible, and the simpler classical formalism is preferable whenever 

possible.

3.3.2 Macroscopic Magnetism 

In general, all matter is magnetic, i.e. has the capability to interact with magnetic fields. Such 

interaction is usually represented by its associated magnetic moment, μ. Some substances have 
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a permanent magnetic moment, such as a bar magnet or a compass needle. However, most 

substances exhibit induced magnetism and have a magnetic moment only in an external 

magnetic field. The magnetic energy, Emag, of a small object in a magnetic field, B, is given 

by: 

 Emag = –μ ∙ B. (3.7) 

The magnetic energy of a large object should be obtained by integrating this equation over its 

volume. The magnetic energy is lowest (highest) if the magnetic moment is parallel (anti-

parallel) to the magnetic field. 

For substances with an induced magnetic moment, the equilibrium state of the induced moment, 

μ
induced

, in the applied magnetic field, B, is given by: 

 μ
induced

 = μ
0
–1VχB, (3.8) 

where μ
0
 is a constant called vacuum permeability; V is the volume of the object; and χ is the 

magnetic susceptibility of the material. This susceptibility, which can be positive or negative, 

determines how an applied magnetic field is distorted. Paramagnetic materials with a positive 

χ tend to pull the magnetic field into the material. Most materials are found to have a negative 

χ and are called diamagnetic. In diamagnetic objects, the magnetic field tends to be pushed out 

of the material. 

3.3.3 Microscopic Magnetism 

The magnetism of substances has three sources: (1) the circulation of electric currents, (2) the 

magnetic moments of the electrons and (3) the magnetic moments of the atomic nuclei. The 

first two electronic contributions are almost always many orders of magnitude larger than the 

third nuclear contribution. The first source results in a negative value to the susceptibility, 

whereas the second and third sources add a positive value. 

The first contribution can be understood simply from the motion of electrons in their atomic 

orbits. For example, the electron circulates the proton in a hydrogen atom, forming a small 

“current loop” that generates a magnetic field. In contrast, the second and third contributions 

are intrinsic properties. Like elementary particles intrinsically possess a spin, they also 

intrinsically possess a permanent magnetism. In quantum mechanics, their spin angular 

momentum, Ŝ, and their magnetic moment, μ̂, are proportional to each other: 
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 μ̂ = γŜ, (3.9) 

where the proportionality constant, γ, is called the gyromagnetic ratio. It may have either sign: 

A positive (negative) value indicates that the magnetic moment is parallel (anti-parallel) to the 

spin angular momentum. The gyromagnetic ratios of some nuclei commonly employed by in 

vivo NMR and MRI are shown in Table 3.1. 

In the presence of a magnetic field B0 , which direction is defined as the z-direction or 

longitudinal direction, the projection of 𝝁̂  on the z-axis, 𝜇̂𝑧 , amounts to (2I + 1)  values 

according to Eq. (3.6). Each 𝜇̂𝑧 corresponds to a nuclear Zeeman sublevel with an azimuthal 

quantum number, m. The energy of this sublevel, Em, is given by: 

 Em = – 𝜇̂z ∙ B0 = – γB0ℏÎz = – γℏmB0. (3.10) 

Therefore, the energy gap between the two adjacent nuclear Zeeman sublevels is ΔE = γB0ℏ, 

as shown in Figure 3.2b. 

3.3.4 Spin Precession and Larmor Frequency 

Any particle with spin possesses an associated angular momentum. This angular momentum is 

a vector and may point in any possible direction in space. The direction of this vector is called 

the spin polarisation axis. The magnetic moment of a nucleus with a positive (negative) γ value 

points in the same (opposite) direction to the spin polarisation axis. In the absence of a magnetic 

field, a sample in equilibrium has an isotropic distribution of magnetic moments, meaning that 

its spin polarisation axes are randomly oriented in space. When an external magnetic field is 

applied, the magnetic moment of the spin moves around the magnetic field, keeping a constant 

angle between the spin magnetic moment and the field, as if the magnetic moment is moving 

around a cone. This motion is called precession. The angle of the precession cone depends only 

on the initial spin polarisation. 

The precession frequency of a particle with spin angular momentum, ω0, is equal to: 

 ω0 = –γB0. (3.11) 

For nuclear spins, ω0 is called the nuclear Larmor frequency. It is proportional to the strength 

of the applied magnetic field. Consequently, different magnetic field strengths require different 

RadioFrequency (RF) hardware in NMR or MRI experiments. Similarly, since γ is an intrinsic 

property of nuclei, different nuclei require different RF hardware at the same field strength. 
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The Larmor frequencies of some ordinary nuclei in a typical static main field of 7T are given 

in Table 3.1. 

3.3.5 Spin-Lattice Relaxation: Nuclear Paramagnetism 

Consider the simple model of 1H nuclei in a sample of water. In the absence of an external 

magnetic field, the nuclei in the sample have spin polarisation axes that point to all possible 

directions in space. The total magnetic moment of this sample is very close to zero because, 

due to the enormous number of nuclear spins in the sample, there are approximately the same 

number of spins pointing in and against a given direction.  

If an external magnetic field is applied, all nuclei start executing Larmor precession around the 

field. This precessional motion alone does not change the total magnetic moment of the sample 

– it remains zero. This is because the isotropic distribution of spin polarisations does not 

contribute to the magnetism of the material. 

However, each nucleus is part of a larger molecule containing other magnetic particles: 

Electrons and nuclei are sources of magnetic fields. At room temperature, all molecules 

undergo violent rotations and collisions. Still, this motion has little effect on the spin precession 

of the nucleus. Only the local magnetic fields from the molecular environment slightly 

influence the nuclear spins. These fields are microscopic compared to the external magnetic 

field and fluctuate rapidly due to the thermal motion of the environment. Consequently, each 

spin experiences a slightly fluctuating total magnetic field. This fluctuation affects both 

magnitude and direction; therefore, the spin polarisation axis of every nuclear spin is slightly 

changed at any given time. As a result, over a long time, the magnetic moment of each spin 

wanders around, moving between different “precession cones” and eventually sampling all 

possible orientations. This wandering motion (on the order of seconds) is much slower than the 

precessional motion (on the order of nanoseconds). 

Note that the wandering motion is not completely isotropic. Since the sample is at a finite 

temperature, the nuclear spin is slightly more likely to be driven towards an orientation with 

low magnetic energy, i.e. with magnetic moment parallel to the magnetic field (Eq. (3.7)). After 

sufficient time, the biased wandering motion leads to a stable anisotropic distribution of nuclear 

spin polarisations, called thermal equilibrium. This anisotropy points in a direction such that 

the sample has the lowest magnetic energy, e.g. 23Na (17O) nuclear spins parallel (anti-parallel) 

to the external magnetic field. As a result, the entire sample acquires a small net magnetic 
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moment along the external magnetic field, i.e. a longitudinal magnetic moment (Figure 3.2a). 

This is the microscopic mechanism of nuclear paramagnetism. 

 

Figure 3.2 Schematic of thermal equilibrium. (a) Longitudinal magnetisation parallel to the external 

magnetic field B0. (b) Boltzmann distribution of populations for the spin-1/2 ensemble (positive γ), 

with the lower energy Zeeman sublevel being more populated. 

Quantum statistical mechanics states that, at any thermal equilibrium temperature, T, there is 

no net transfer between the nuclear Zeeman energy sublevels; and the populations of spins in 

the energy sublevels obey the Boltzmann distribution (Figure 3.2b). As described by 

Boltzmann distribution, the number of nuclear spins in each energy sublevel is proportional to 

exp(Em kT⁄ ) = exp(γℏmB0 kT⁄ ) , where k = 1.38066×10
–23

J/K  is the Boltzmann constant. 

Therefore, in a sample containing N nuclear spins, the longitudinal magnetisation in thermal 

equilibrium, M0, is given by: 

 M0 = Nγℏ
∑ m exp(γB0mℏ kT⁄ )I

m = –I

∑ exp(γB0mℏ kT⁄ )I
m = –I

. (3.12) 

Assuming the external magnetic field is turned on at ton along z-axis, the temporal evolution of 

this macroscopic longitudinal magnetisation, Mz, is formulated as: 

 Mz(t) = M0 (1 – e
– 
t – ton

T1 ) , (3.13) 

for t > ton. The exponential time constant T1 (typically in milliseconds to seconds) is known as 

either the spin-lattice relaxation time constant or the longitudinal relaxation time constant. The 
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term “relaxation” indicates the re-establishment of thermal equilibrium after some perturbation 

is applied. 

3.3.6 Transverse Magnetisation and Transverse Relaxation 

The longitudinal nuclear spin magnetisation along the field, as described above, is almost 

undetectable due to its small magnitude. Therefore, the voltage induced by the magnetisation 

perpendicular to the external magnetic field is measured in NMR and MRI experiments. 

However, such magnetisation does not exist in thermal equilibrium. When the polarisation of 

every spin is suddenly rotated by 90° by applying an appropriate RF pulse (i.e. an oscillating 

magnetic field), the entire nuclear magnetisation distribution of the sample is also rotated by 

90° (Figure 3.3a). The pulse equalises the spin populations of Zeeman energy sublevels and 

converts the population difference into net transfer between the Zeeman energy sublevels 

(Figure 3.3b). As a result, the net spin polarisation along the field (along the z-axis) is 

transferred into the net spin polarisation along an axis perpendicular to the magnetic field 

(along the y-axis). The resulting net magnetic moment perpendicular to the magnetic field is 

called transverse magnetisation. 

 

Figure 3.3 Polarisation distribution immediately after an RF pulse. (a) Transverse magnetisation 

perpendicular to the external magnetic field B0. (b) Two Zeeman sublevels for spin-1/2 ensemble with 

equal spin populations and net transfer between them after the RF pulse excitation. 

This macroscopic transverse magnetisation, Mxy, rotates in the xy-plane at the nuclear Larmor 

frequency, ω0. Mxy at a time, t, after the RF pulse excitation is expressed as: 

 Mxy(t) = M0 ∙ e–iω0t ∙ e
– 

t
T2. (3.14) 
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The equilibrium magnetisation, M0 , precesses in the xy-plane at the Larmor frequency ω0, 

represented by the first complex exponential term. The second exponential term describes the 

decay of transverse magnetisation. The macroscopic transverse magnetisation decays slowly 

due to the loss of coherence between the precessing microscopic nuclear magnetic moments. 

All spin polarisation axes in the sample are perfectly in phase (i.e. coherent) just after the RF 

pulse; however, due to the surrounding microscopic fluctuating magnetic fields, the different 

spins precess at slightly different frequencies, so the spins are gradually out of phase with each 

other (i.e. loss of coherence). This decay process is irreversible. The time constant T2 is often 

called the transverse relaxation time constant or spin-spin relaxation time constant. For small 

molecules in liquids, T2 is typically of the same order of magnitude as T1, i.e. seconds. In other 

cases, such as for large molecules in liquids or solids, T2 may be as short as milliseconds. 

3.3.7 NMR Signal 

The precessing transverse magnetisation after the RF pulse excitation is detectable despite its 

small magnitude because it oscillates at a well-defined frequency – the Larmor frequency. As 

a rotating magnetic moment, transverse magnetisation produces a rotating magnetic field. The 

changing magnetic field is associated with an electric field, as described by Faraday’s law of 

induction. Suppose that a wire coil is near the sample. In this case, the electric field moves the 

electrons in the wire, i.e. an oscillating electric current flows in the wire (Figure 3.4). 

 

Figure 3.4 The induction of an NMR signal. 

The oscillating electric current induced by the precessing transverse magnetisation is often 

called an NMR signal or free induction decay. It can be detected using a receiver chain, i.e. the 

hardware components that convert the received signal into digital data and go through several 

filtering steps to maximise the Signal-to-Noise Ratio (SNR) from the sample.
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In summary, a typical NMR spectrometer is basically a device capable of (1) magnetising 

nuclear spins with a large external magnetic field; (2) generating transverse nuclear 

magnetisation by rotating spin polarisation axes with RF pulses; and (3) detecting small 

oscillating electric currents induced by the precessing transverse magnetisation. 

3.4 Spin-1/2 Dynamics 

This section provides classical and quantum mechanical descriptions of the spin-1/2 ensemble 

dynamics. In most cases, a classical treatment adequately describes the macroscopic behaviour 

of the spin-1/2 ensemble dynamics in a concise manner. However, quantum mechanics 

provides a rigorous and accurate description of the spin-1/2 ensemble dynamics, which can be 

generalised to quadrupolar spin systems such as the spin-3/2 ensemble. The quantum 

mechanical descriptions of spin-1/2 dynamics mainly follow Chapter 2 of the book of (Slichter 

1990). 

3.4.1 Classical Description 

Bloch introduced the magnetisation vector, M, to represent the sum of all magnetic moments 

per unit volume: M = ∑μ
i

∆V⁄  (Bloch et al. 1946). If the magnetisation vector is placed in an 

applied external magnetic field, B, a torque, L = M × B, acts on the magnetisation vector. The 

motion of M is given by: 

 
dM

dt
 = γL = γ(M × B). (3.15) 

According to Eq. (3.8), in the presence of a static main external B0 field, the magnetisation 

vector M  in thermal equilibrium is equal to M0 = 
χ

μ0

B0  along the z-axis. In this case, M 

precesses with a fixed angle around the B0 field at the Larmor frequency of ω0 = –γB0. This 

motion is given by: 

 
dM

dt
 = γM × B0. (3.16) 

The thermal equilibrium is perturbed by applying an oscillating external magnetic field, B1, in 

the xy (transverse) plane at the resonance frequency, ω = –γB0. Effectively, B1 applies a torque 

which rotates M  by a prescribed angle dependent on the strength of B1  (typically a few 

microteslas) and its duration (typically several milliseconds), as shown in Figure 3.5a. The 

motion equation in this case is given by: 
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dM

dt
 = γM × (B0 + B1). (3.17) 

 

Figure 3.5 B1 field induces rotation of magnetisation vector M towards transverse plane in (a) the 

laboratory frame and (b) the rotating frame. Strength and duration of B1 is set for a 90°-rotation, leaving 

M entirely in the transverse plane. 

Relaxation back to thermal equilibrium also occurs, in which the transverse and longitudinal 

components of M, Mxy and Mz, do not remain constant over time. As proposed by (Bloch et al. 

1946), the longitudinal relaxation time constant, T1, is used to characterise the return of Mz, 

while the transverse relaxation time constant, T1, is used to characterise the decay of Mxy: 

 

{
 
 

 
 dMz

dt
 = –

Mz – M0

T1

dMxy

dt
 = –

Mxy

T2

. (3.18) 

Bloch supposed that the behaviour of the magnetisation vector, M, is governed by the torque 

from external magnetic fields and longitudinal/transverse relaxation (Bloch et al. 1946). This 

is described phenomenologically by the so-called Bloch equation: 

 
dM

dt
 = γ(M × B) – 

Mx i + My j

T2

 – 
Mz – M0

T1

k, (3.19) 

where i, j and k are unit vectors in the x, y and z directions, respectively. M0 is the equilibrium 

magnetisation vector arising from the static main field, B0. B includes the various applied 

magnetic fields. 

For convenience, the laboratory frame is transformed into a frame of reference rotating about 

the z-axis at the frequency ω  of the B1  excitation field. Figure 3.5, which compares the 

behaviours in the laboratory and rotating frames, illustrates the simplification afforded by the 

rotating frame representation. Ignoring the relaxation contribution, the Bloch equation in the 

rotating frame is given by (more details in Chapter 6 in the book of (Nishimura 2010)): 
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dM

dt
 = γM × Beff, (3.20) 

where Beff = B0 – 
ω

γ
 + B1 is the effective field. This equation indicates that if the rotating frame 

rotates at the Larmor frequency ω = ω0 = –γB0 (i.e. at the magnetic resonance condition), B0 

is not seen by M in the rotating frame. In this case, M only rotates around B1 that is applied 

along the x-axis, as shown in Figure 3.5b. The effective field becomes: 

 Beff = B1 + (B0 – 
ω

γ
)  = B1i + (B0 – 

ω

γ
) k. (3.21) 

By substituting Eq. (3.21) to Eq. (3.20), the Bloch equation with the contribution of relaxation 

in the rotating frame becomes: 

 

{
  
 

  
 

dMx

dt
 = My(ω – ω0) – 

Mx

T2

dMy

dt
 = –ω1Mz – Mx(ω – ω0) – 

My

T2

dMz

dt
 = Myω1 + 

M0 – Mz

T1

. (3.22) 

Note that the Bloch equation can only adequately represent the magnetisation dynamics in less 

viscous liquid samples. Quantum mechanics is required to accurately describe the spin 

ensemble dynamics in highly viscous liquid or solid samples. 

3.4.2 Quantum Mechanical Description 

Schrödinger Equation 

In a quantum mechanical treatment, a spin-1/2 nucleus has two Zeeman eigenstates: |
1

2
, +

1

2
⟩ 

and |
1

2
, –

1

2
⟩. The angular moment operator of a single spin-1/2, 𝑰̂, has three components in the 

Zeeman eigenbasis: Îx, Î𝑦 and Îz. These three components fulfil the condition: Î
2
 = Îx

2
 + Îy

2
 + 

Îz

2
, and obey the Pauli matrices, Îx,y,z = ℏ 2⁄  ∙ σ̂x,y,z: 

 Îx = 
1

2
(
0

1

1

0
) ,      Îy = 

1

2i
(

0

–1

1

0
) ,      Îz = 

1

2
(
1

0

0

–1
) . (3.23) 

The quantum state of a spin system at time, t, is described by a wave function, ψ(t). It is either 

a stationary eigenstate or an un-stationary superposition state. All internal and external 

interactions on a spin system are represented by a Hermitian operator, known as Hamiltonian, 

𝐻̂. For example, the Hamiltonian for the interaction of each spin with the static longitudinal 
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field B0 is given by Ĥ
static

 = –γℏB0Îz. The dynamics of the spin system are given by solving the 

following Schrödinger equation: 

 
d

dt
ψ(t) = –iℏ

–1
Ĥψ(t). (3.24) 

Spin in a Static Field 

As described in Section 3.3.3, a spin in a static field B0 gives energies, Em = – γℏmB0, in terms 

of the azimuthal quantum number, m. The energy is an eigenvalue of the component of spin Îz 

parallel to the static B0 field. The corresponding eigenfunction (i.e. wave function) of the time-

independent Schrödinger equation is denoted by uI,m . The time-dependent solution 

corresponding to a particular value of m  is ψ
I,m
(t) = uI,me–(i/ℏ)Emt . The most general time-

dependent solution is therefore: 

  ψ(t) = ∑ cmuI,me–(i/ℏ)Emt

+I

m = –I

. (3.25) 

where cm’s are complex constants. The expectation value of any observable may be computed 

using the wave function, ψ(t), as the x-component of the spin magnetic moment μ̂, μ̂
x
, is given 

by: 

 〈μ̂
x
(t)〉 = ∫ψ*(t) μ̂

x
ψ(t)dτ. (3.26) 

By using the fact that μ̂
x
 = γℏ𝐼x, and that ψ(t) is given by Eq. (3.25), 〈μ̂

x
(t)〉 is extended as: 

 
〈μ̂

x
(t)〉 = ∑ γℏcm'

* cm(m'|Îx|m)e
(i/ℏ)(Em' – Em)t

m,m'

, 
(3.27) 

where (m'|Îx|m) defined as (m'|Îx|m) ≡ ∫ u*
I,m' ÎxuI,mdτ is a time-independent matrix element. 

Expressions similar to Eq. (3.27) would hold for any operator, such as y- and z-components of 

the spin magnetic moment 𝝁̂, μ̂
y
 and μ̂

z
. It is denoted that the expectation value will generally 

be time-dependent, consisting of a number of terms oscillating harmonically, and that the 

possible frequencies 
Em' – Em

ℏ
 correspond exactly to the frequency of absorption or emission 

between states m and m'. This denotation is based on the Heisenberg and Born’s formulation 

of the quantum theory in matrix form, with the assumption that observable properties of any 

quantum system must be given by expressions such as Eq. (3.27). 
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Since matrix elements (m'|Îx|m) vanish unless m' = m ± 1, all the terms of Eq. (3.27) have an 

angular frequency of either – γB0 or γB0. Their sum must also contain just γB0. The expectation 

value, 〈μ̂
x
(t)〉 , therefore oscillates in time at the classical Larmor precession frequency, 

ω0 = γB0. 

Here, it is convenient to introduce the well-known raising and lowering operators, Î
 +

 ≡ Îx + iÎy 

and Î
 –

 ≡ Îx – iÎy, respectively. Accordingly, Ix and Iy can be expressed as: Îx = 
1

2
(Î
 +
 + Î

 –
) and 

Îy = 
1

2i
(Î
 +
 – Î

 –
). The operators are called “raising” or “lowering” because of the effect they 

produce when they operate on a function uI,m: 

 {
I +uI,m = √I(I + 1) – m(m – 1)uI,m+1

I –uI,m = √I(I + 1) – m(m – 1)uI,m–1

. (3.28) 

I + (or I –) turns uI,m into a function whose m value has been raised (or lowered) by one unit. 

Therefore, (m'|Î
 +
|m)  vanishes unless m = m + 1 , whereas (m'|Î

 –
|m)  vanishes unless 

m = m – 1. This indicates that the Îx  and Îy  operators can induce transfer only between the 

neighbouring eigenstates. 

Consider the form of Eq. (3.27) takes for a spin-1/2. Given that the diagonal matrix elements 

of Îx vanish, 〈μ̂
x
(t)〉 is given as: 

 〈μ̂
x
(t)〉 = γℏ [c1 2⁄

* c–1 2⁄ (
1
2
|Îx|–

1
2
) e–iγB0t + c–1 2⁄

* c1 2⁄ (–
1
2
|Îx|

1
2
) eiγB0t] . (3.29) 

Given that the Larmor frequency ω0 = γB0 and (
1

2
|Îx|–

1

2
) is the conjugate of (–

1

2
|Îx|

1

2
), 〈μ̂

x
(t)〉 

is simplified as: 

 〈μ̂
x
(t)〉 = 2γℏ Re {[c1 2⁄

* c–1 2⁄ (
1
2
|Îx|–

1
2
)] e–iω0t} . (3.30) 

where the symbol “Re” signifies “take the real part of”. According to Eq. (3.28) and Îx = 

1

2
(Î

 +
 + Î

 –
) , (

1

2
|Îx|–

1

2
)  is equal to 

1

2
. Here, c1 2⁄  and c–1 2⁄  is expressed as: c1 2⁄  = aeiα  and 

c–1 2⁄  = beiβ . The normalisation of the wave function gives a2 + b
2
 = 1. Therefore, 〈μ̂

x
(t)〉 is 

given in Eq. (3.31). Similarly, 〈μ̂
y
(t)〉 and 〈μ̂

z
(t)〉 are also given in Eq. (3.31): 
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 {

〈μ̂
x
(t)〉 = γℏab cos(α – β – ω0t)

〈μ̂
y
(t)〉  = –γℏab sin(α – β + ω0t)

〈μ̂
z
(t)〉 = γℏ(a2 – b

2) 2⁄

. (3.31) 

Eq. (3.31) indicates that both 〈μ̂
x
(t)〉 and 〈μ̂

y
(t)〉 oscillate in time at the Larmor frequency 

ω0 = γB0, whereas 〈μ̂
z
(t)〉 is independent of time. Moreover, the maximum amplitude of 〈μ̂

x
(t)〉 

and 〈μ̂
y
(t)〉 are the same. The expectation value of 𝝁̂ is defined as 〈μ̂〉 ≡ i〈μ̂

x
〉 + j 〈μ̂

y
〉  + k〈μ̂

z
〉. 

Given that μ̂
x

2 + μ̂
y

2
 = constant, it can be seen that 〈μ̂〉 behaves like a vector that precesses in 

the xy-plane at a fixed angle with the z-direction. 

Equations of Motion of the Expectation Value 

The correspondence between the classical and quantum mechanical treatments becomes 

especially clear by examining a differential equation related to the temporal variations of the 

expectation values, 〈μ̂
x
〉, 〈μ̂

y
〉 and 〈μ̂

z
〉. 

Suppose that a pair of wave functions, ψ(t) and ϕ(t), are both solutions of the same Schrödinger 

equation in Eq. (3.24), i.e. –
ℏ

i

dψ

dt
 = Ĥψ and –

ℏ

i

dϕ

dt
 = Ĥϕ. In case that some operator, F, has no 

explicit time dependence, then: 

 
d

dt
∫ ϕ

*
Fψdτ  = ∫

dϕ
*

dt
Fψdτ + ∫ ϕ

*
F

dψ

dt
dτ = 

i

ℏ
∫ ϕ

*(ĤF – FĤ)ψdτ . (3.32) 

Since F  is time independent, the operator, 
dF

dt
, is defined by ∫ ϕ

* dF

dt
ψdτ  = 

d

dt
∫ ϕ

*
Fψdτ . 

Therefore, 
dF

dt
 is given by: 

 
dF

dt
 = 

i

ℏ
[Ĥ, F], (3.33) 

where [Ĥ, F] is the usual commutator, ĤF – FĤ. The time derivative of the expectation values 

of μ̂
x
, μ̂

y
 and μ̂

z
 can be computed using this equation. Given that the Hamiltonian of the static 

B0 field is Ĥ
static

 = –γℏB0Îz and that three components of spin angular momentum cyclically 

commute, i.e. [Îx, Îy] = iÎz ↺  (further reading in Section 7.6.1 of (Levitt 2008)), the time 

derivative of the x-component of spin angular momentum is given by: 

 
dÎx

dt
 = 

i

ℏ
[Ĥ

static
, Îx]  = –γB0i[Îz, Îx] = γB0Îy. (3.34) 
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Similarly, 
dÎy

dt
 = γB0Îx and 

dÎz

dt
 = 0. These equations are the component equations of the vector 

operator equation: 
dÎ

dt
 = γÎ × B0, where 

dÎ

dt
 = i

dÎx

dt
 + j

dÎy

dt
 + k

dÎz

dt
. 

Since the magnetic moment of a single spin is μ̂ = γℏÎ, the expectation value of the magnetic 

moment is given by: 

 
d〈μ̂〉

dt
 = γ〈μ̂〉 × B0. (3.35) 

This equation of motion obeys the classical Bloch equation. For a spin ensemble with a 

magnetic moment, μ̂
k
, for the kth spin, its total magnetic moment is μ̂ = ∑ μ̂

kk . If the spins do 

not interact with one another, Eq. (3.35) also holds for the expectation value of the total 

magnetisation. 

Note that Eq. (3.35) is also valid for a time-dependent magnetic field, not simply a static field. 

This allows one to use a classical picture for studying the effects produced by alternating 

magnetic fields. 

Effect of Alternating Magnetic Fields 

Suppose that an alternating magnetic field, B1(t) = B1(i cos ω1t  + j sin ω1t), is applied along 

the x-axis. B1 oscillates at the frequency ωz along the z-axis. Then, the equation of motion of a 

spin, including the effects of both B1(t) and the static field B0 = kB0, is given by: 

 
d〈μ̂〉

dt
 = γ〈μ̂〉 × (B0 + B1(t)). (3.36) 

The time dependence of B1 can be eliminated by using the rotating frame that rotates about the 

z-direction at frequency ω1. In such a frame, B1 becomes static. Since the axis of rotation 

coincides with the direction of B0, B0 is also static. Then, Eq. (3.36) becomes: 

 
d〈μ̂〉

dt
 = γ〈μ̂〉 × Beff, (3.37) 

where Beff = k (B0 – 
ω1

γ
)  + iB1 . This equation indicates that the magnetic moment in an 

alternating field obeys the classical equation of motion in Eq. (3.20). Physically, this equation 

states that in the rotating frame, the moment acts as though it effectively experiences a static 

magnetic field Beff . The moment, therefore, precesses in a cone of fixed angle about the 

direction of Beff at an angular frequency of γB
eff

.  
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Density Matrix 

Since a spin ensemble contains a large number of spins, the formalism of the spin density 

matrix operator is used to calculate a macroscopic quantity, such as magnetisation. 

Consider a sample of many non-interacting spins-1/2. There will be a wave function for each 

spin-1/2, but in general, it will not be in one of the Zeeman eigenstates (|r⟩ = |
1

2
, +

1

2
⟩ or |s⟩ = 

|
1

2
, –

1

2
⟩ ); rather, it will be in some linear combination of these two eigenstates, i.e. a 

superposition state, |ψ⟩ = (cr

cs
). For a given spin, there will be a particular set of values for cr 

and cs (Eq. (3.25)); these values will differ from spin to spin. According to Eq. (3.26), the 

expectation value of an operator Q̂ is given by 〈Q̂〉 = ⟨ψ|Q̂|ψ⟩ = Tr{|ψ⟩⟨ψ|Q̂}. For an ensemble 

containing N non-interacting spins, the macroscopic observation of Q̂ for the entire ensemble 

of spins is most likely 〈Q̂
macro

〉 = Tr{∑ |ψ
i
⟩⟨ψ

i
|N

i=1 Q̂} = NTr{ρ̂Q̂}, where ψ
i
 is the quantum state 

of the ith spin. The operator, ρ̂ = 
1

N
∑ |ψ

i
⟩⟨ψ

i
|N

i=1  = |ψ⟩⟨ψ|̅̅ ̅̅ ̅̅ ̅̅ , is known as the spin density operator. 

The operator ρ̂ describes the quantum state of the entire spin ensemble without referring to the 

individual spin states. This indicates that any macroscopic observation may be deduced from 

two spin operators: the observable itself, Q̂, and the state of the entire spin ensemble, ρ̂. The 

matrix representation of the density operator for an ensemble of non-interacting spins-1/2 is 

given by: 

 ρ̂ = (

ρ|r⟩ ρ
prsqrs

ρ
psrqsr

ρ|s⟩
)  = (

crcr
*̅̅ ̅̅ ̅̅

cscr
*̅̅ ̅̅ ̅̅

crcs
*̅̅ ̅̅ ̅̅

cscs
*̅̅ ̅̅ ̅̅ ) . (3.38) 

Here, the overbars indicate an average over the ensemble. The right-hand-side in this equation 

is the spin density matrix operator, often referred to as the “density matrix”.

The diagonal elements, ρ|r⟩  and ρ|s⟩  are called the populations of state |r⟩ and state |s⟩ (i.e. 

ρ|r⟩ = ⟨r|ρ̂|r⟩), giving the probabilities of occupation of the various eigenstates. The difference 

in populations between the two states indicates net longitudinal spin polarisation. For example, 

a state with ρ|r⟩ > ρ|s⟩ indicates there is a net polarisation of the spins in the sample along the 

external field direction. In the case of thermal equilibrium of spin-1/2 system (Figure 3.2), both 

ρeq
prsqrs

 and ρeq
psrqsr

 are zeros, whereas ρeq
|r⟩

 and ρeq
|s⟩

 obey the Boltzmann distribution: 
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ρeq
|r⟩

 = 1 (1 + exp( γB0ℏ kT⁄ ))⁄  and ρeq
|s⟩

 = 1 (1 + exp(– γB0ℏ kT⁄ ))⁄ , where k  is the 

Boltzmann constant. 

The off-diagonal elements, ρ
prsqrs

 and ρ
psrqsr

, are called coherences between the two 

eigenstates, e.g. ρ
prsqrs

 = ⟨r|ρ̂|s⟩. The subscript p
rs

 denotes the coherence order, which is equal 

to the difference in the azimuthal quantum number m for the connected states, i.e. p
rs

 = mr – 

ms. The sub-subscript q
rs

 is called the satellite order and is equal to the difference in the squares 

of the azimuthal quantum numbers m  for the connected states, i.e. q
rs

 = mr
2 – ms

2 . The 

presence of coherences indicates transverse spin magnetisation, i.e. a net spin polarisation 

perpendicular to the external magnetic field. Immediately after 90°-pulse excitation (Figure 

3.3), the spin density operator has the form: ρ|r⟩ = ρ|s⟩ = 
1

2
 and ρ

prsqrs

 = 𝜌∗
psrqsr

 ≠ 0. 

The temporal evolution of ρ̂ is governed by the Liouville von Neumann equation: 

 
d

dt
ρ̂(t) = –

i

ℏ
[Ĥ, ρ̂]. (3.39) 

This equation relates the time derivative of the density operator to the Hamiltonian of the 

system. It can be used to characterise the spin relaxation dynamics. 

3.5 Spin-3/2 Dynamics 

Spin-3/2 dynamics cannot be described using classical physics because the classical 

understanding of transverse magnetisation as a vector cannot account for the occurrence of 

biexponential decay in an uncoupled spin-3/2 ensemble. Hence, a more elaborate quantum 

mechanical treatment is required for spin-3/2 dynamics. 

3.5.1 Spin-3/2 Energy Levels 

In the case of spin-3/2, there are four eigenstates of angular momentum along the z-axis, 

denoted |
3

2
, m⟩, where the azimuthal quantum number, m, is equal to {+

3

2
, +

1

2
, –

3

2
, –

1

2
}. The 

eigenvalues of the Hamiltonian Ĥ of the spin system in the static magnetic field B0 are the 

allowed energies, Em = – γℏmB0, as shown in Figure 3.6. 
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Figure 3.6 Energy levels of a spin-3/2 nucleus in a homogeneous static magnetic field B0, in the case 

of a positive gyromagnetic ratio. 

Similar to Pauli spin-1/2 matrices (Eq. (3.23)), the three components of a spin-3/2 angular 

moment operator 𝑰̂  in the Zeeman eigenbasis: Îx , Î𝑦  and Îz , can be expressed with higher 

dimensional matrices, as follows: 

 

Îx = 
1

2

(

 
 

0 √3 0 0

√3 0 2 0

0 2 0 √3

0 0 √3 0 )

 
 

, 

Îy = 
1

2i

(

 
 

0 √3 0 0

–√3 0 2 0

0 –2 0 √3

0 0 –√3 0 )

 
 

, 

Îz = 
1

2
(

+3 0 0 0

0 +1 0 0

0 0 –1 0

0 0 0 –3

) . 

(3.40) 

3.5.2 Spin-3/2 Density Matrix 

The quantum state of a spin-3/2 ensemble may be written as a time-dependent 4×4 density 

matrix, as follows: 

 ρ̂(t) = |ψ(t)⟩⟨ψ(t)|̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 

(

 
 

ρ|+3 2⁄ ⟩
ρ

+1+2
ρ

+2+2
ρ

+30

ρ
–1–2

ρ|+1 2⁄ ⟩
ρ

+10
ρ

+2–2

ρ
–2–2

ρ
–10

ρ|–1 2⁄ ⟩
ρ

+1–2

ρ
–30

ρ
–2+2

ρ
–1+2

ρ|–3 2⁄ ⟩)

 
 

. (3.41) 

The populations of the four Zeeman states are denoted {ρ|+3 2⁄ ⟩
, ρ|+1 2⁄ ⟩

, ρ|–1 2⁄ ⟩
, ρ|–3 2⁄ ⟩

}. The 12 

coherences of the spin-3/2 ensemble are labelled using the coherence order and satellite order, 
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as defined in Section 3.4.2. For example, the coherence ρ
+1+2

 is given by the density matrix 

element: ρ
+1+2

 = ⟨3 2⁄ , + 3 2⁄ |ρ̂| 3 2⁄ , + 1 2⁄ ⟩ , where  p = (
3

2
)  – (

1

2
)  = +1  and  q = (

3

2
)

2

 – 

(
1

2
)

2

 = +2. Other order labels in Eq. (3.41) can be derived similarly. 

As shown in Figure 3.7, the spin-3/2 ensemble supports six single-quantum (SQ) coherences 

with order p = ±1, {ρ
–1–2

, ρ
–10

, ρ
–1+2

, ρ
+1–2

, ρ
+10

, ρ
+1+2

}, four double quantum coherences 

with order p = ±2, {ρ
–2–2

, ρ
–2+2

, ρ
+2+2

, ρ
+2–2

}, and a pair for triple-quantum (TQ) coherences 

with order p = ±3 , {ρ
–30

, ρ
+30
} . The coherences, ρ

–10
 and ρ

+10
, are associated with the 

central transition of the spin-3/2 system. 

 

Figure 3.7 Multiple quantum coherences for a spin-3/2 ensemble. The red arrow indicates that there is 

a coherence between the two states. For ρ
p

rsqrs

, the arrow points from state |s⟩ to state |r⟩. 

The coherence order, p, remains constant during the interaction of the spin-3/2 system with the 

internal Hamiltonian but can be changed after the application of an RF pulse. The longitudinal 
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magnetisation has a coherence order of p = 0. Transverse magnetisation has a coherence order 

of p = ±1; and the coherence with p = –1 is the only one that can be directly detected by NMR 

or MRI instruments (detailed explanation in Session 11.11 of (Levitt 2008)). Coherences with 

a higher order of p = ±2  or p = ±3 , are associated with specific tissue properties and are, 

therefore, of particular interest in clinical practice. Their detection is achieved by using a phase 

cycling combination (Section 4.3.4). 

3.5.3 Electric Quadrupolar Interaction 

Nuclear Spin Hamiltonian 

As mentioned in Section 3.4.2, the Liouville von Neumann equation involves the motions of 

all particles in the system of interest, and the Hamiltonian operator contains all interactions 

between these particles. However, for practical reasons, only the nuclear spin Hamiltonian is 

considered here, which contains only terms that depend on the orientation of the nuclear spin 

polarisation. A single atomic nucleus interacts with its environment because (1) it has an 

electric charge that interacts with electric fields, and (2) it may have a magnetic moment that 

interacts with magnetic fields. The nuclear spin Hamiltonian operator generally has two terms 

– an electric spin Hamiltonian and a magnetic spin Hamiltonian: Ĥ = Ĥ
elec

 + Ĥ
mag

. The 

magnetic interactions of the spin system with an external static field are described above using 

the Zeeman Hamiltonian, Ĥ
static

. In the sample itself, fast-moving electrons in the environment 

exert averaged magnetic and electrical influences in addition to the influence of external 

magnetic fields. 

Electric Field Gradient 

The rotational motion of nuclei due to the surrounding fields can change the energy of the 

nucleus, which is of interest in NMR. This is because the nuclear electric charges and magnetic 

moment adopt a different orientation regarding the surrounding fields. 

The electric part of the nuclear spin Hamiltonian is present due to the electric charge 

distribution in the nucleus. The electric charge distribution is a superposition of electric 

multipoles, denoted by ℂ(r) = ℂ(0)(r) + ℂ(1)(r) + ℂ(2)(r) +… . Here, ℂ(0)  represents a 

spherical charge distribution, ℂ(1)  denotes a dipolar electric charge distribution and ℂ(2) 

signifies a quadrupolar electric charge distribution. The magnitudes of the ℂ(0), ℂ(1) and ℂ(2) 

terms are called the total electric charge of the nucleus, the electric dipole moment of the 

nucleus and the electric quadrupolar moment of the nucleus, respectively. 
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The electric potential in a nucleus varies from one side of the nucleus to the other, which 

influences its rotational motion. The electric potential field is represented as a superposition of 

terms: V(r) = V
(0)(r) + V

(1)(r) + V
(2)(r) +…. Here, V

(0) is the electric potential at the centre 

of the nucleus; V
(1) is the potential gradient at the centre of the nucleus and V(2) is the gradient 

of gradient (i.e. the slope) of the potential changes. 

The electric interaction energy of the nucleus and the field may be written as Eelec = Eelec
(0) + 

Eelec
(1) + Eelec

(2) +… . Here, each term comes from the interaction of a single multipole 

component of the charge distribution with a different aspect of the potential. The first term, 

Eelec
(0) = ∫ℂ(0)V

(0)dr, represents the electrostatic forces between the nuclei and the electrons; 

therefore, it is of no direct importance in NMR. The second term, Eelec
(1) = ∫ℂ(1)V

(1)dr, 

represents the interaction of the nuclear electric dipole moment with the gradient of the electric 

potential, i.e. the electric field. However, it has been shown that there is no nuclear electric 

dipole moment within experimental error (Wood et al. 1997). Therefore, the electric terms, 

Eelec
(1), Eelec

(3), Eelec
(5),…, all disappear. In addition, ℂ(n) is zero for n > 2I, due to a symmetry 

property that links the shape of the nucleus to the value of the nuclear spin (Chapter 10 of 

(Slichter 1990)). Hence, Eelec
(n) vanishes for n > 2I. 

Consequently, in the case of spherical spin-1/2 nuclei with a uniform electric charge 

distribution, all electric multipole moments vanish except ℂ(0). This means that no electric 

energy terms depend on the orientation or internal structure of the spin-1/2 nucleus. The electric 

interactions vanish, i.e. Ĥ
elec

 = 0 for spin-1/2. 

On the other hand, in the case of quadrupolar (i.e. spin > 1/2) nuclei (e.g. sodium), the electric 

charge distribution is not spherically symmetric. The electric energy of the nucleus depends on 

its orientation relative to the rest of the molecule. The main orientation-dependent electric term, 

Eelec
(2) = ∫ℂ(2)V

(2)dr, is non-zero, and it represents the interaction of the electric quadrupole 

moment of the nucleus with the electric field gradient in the surrounding space, as shown in 

Figure 3.8. 
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Figure 3.8 Electric quadrupolar interaction. (a) A spherical spin-1/2 nucleus has a uniform electric 

charge distribution; thus, its electric quadrupolar interactions vanish. (b) A spin > 1/2 nucleus has a 

non-uniform electric charge distribution and thus, it interacts with the surrounding electric field gradient. 

First-order Quadrupolar Coupling 

The electric part of the spin Hamiltonian is therefore called the electric quadrupole interaction, 

i.e. Ĥ
elec

 = Ĥ
Q

 for spin I > 1/2. For spin-3/2, Î, the electric quadrupole interaction Hamiltonian 

for an arbitrary molecular orientation, Θ, is given by: 

 ĤQ

full
(Θ) = 

eQ

2I(2I – 1)ℏ
Î ∙ V(Θ) ∙ Î, (3.42) 

where Q is the nuclear quadrupole moment; I is the nuclear spin quantum number; e is the 

proton charge; and V is the electric field gradient. The highest contribution to the quadrupolar 

interaction Hamiltonian in Eq. (3.42) is given by the first-order term: 

 ĤQ

(1)
 = ωQ

(1)
 × 

1

6
(3Îz

2
 – I(I + 1)1̂) . (3.43) 

Here, ωQ

(1)
 is the first-order quadrupolar coupling, given by: 

 ωQ

(1)
=

3eQVzz

2I(2I – 1)ℏ
, (3.44) 

where Vzz signifies the average of the secular electric field gradient component, Vzz(Θ), over 

molecular motion. 

For spin-3/2 (I = 3/2), the first-order quadrupolar Hamiltonian is given by: 

 ĤQ

(1)
 = ωQ

(1)
 × 

1

6
(3Îz

2
 – 

15

4
1̂) . (3.45) 

The four Zeeman eigenstates of spin-3/2, |
3

2
, m⟩, are eigenstates of ĤQ

(1)
: 

+ +
+

+

++

Electric field gradient

Magnetic

moment

Electric

charge

+

+

–

–

(b) spin > 1/2(a) spin = 1/2

Magnetic

moment
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 ĤQ

(1)
|
3

2
, m⟩  = +

1

2
(m2 – 

5

4
)ωQ

(1)
|
3

2
, m⟩ , (3.46) 

leading to the following two eigenequations: 

 {
ĤQ

(1)
|
3

2
, ±

3

2
⟩  = +

1

2
ωQ

(1)
|
3

2
, ±

3

2
⟩

ĤQ

(1)
|
3

2
, ±

1

2
⟩  = –

1

2
ωQ

(1)
|
3

2
, ±

1

2
⟩

. (3.47) 

If the first-order quadrupolar coupling, ωQ

(1)
, is positive, then the energies of the outer states, 

|
3

2
, ±

3

2
⟩, in Figure 3.6 are shifted upwards in energy by ωQ

(1)
2⁄ ; in contrast, the energies of the 

inner states, |
3

2
, ±

1

2
⟩ , are shifted down in energy by the same amount (Figure 3.9). The 

quadrupole coupling, ωQ

(1)
, is usually much smaller than the Larmor frequency. 

 

Figure 3.9 Energy levels of a spin-3/2 nucleus, in the case of a positive gyromagnetic ratio. ω0 is the 

Larmor frequency of the nucleus. ωQ

(1)
 is the first-order quadrupolar coupling. 

Evolution Frequencies of Coherences 

The evolution frequencies of the spin-3/2 coherences (Figure 3.7) under the influence of the 

static quadrupolar Hamiltonian (Eq. (3.47)) are given by: 
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{
 
 
 
 

 
 
 
 Ω –1+2

 = –Ω +1–2
 = Ω

0
 – ωQ

(1)

Ω –10
 = –Ω +10

 = Ω
0

Ω –1–2
 = –Ω +1+2

 = Ω
0
 + ωQ

(1)

Ω –2+2
 = –Ω +2–2

 = 2Ω
0
 – ωQ

(1)

Ω –2–2
 = –Ω +2+2

 = 2Ω
0
 + ωQ

(1)

Ω –30
 = –Ω +30

 = 3Ω
0

. (3.48) 

Here, Ω
0
 = –γB0(δ – δref) is the chemical shift offset frequency, where δ is the chemical shift 

and δref is the chemical shift corresponding to the spectrometer reference frequency. 

Spin-3/2 NMR Signal 

A complex NMR signal is given by the following expression (more details in Appendix A.5 of 

the book of (Levitt 2008)): 

  s(t) ~ 2i 〈Î
 +
〉 exp{–iϕ

rec
}. (3.49) 

where ϕ
rec

 is the receiver phase and Î
 +

 is the raising operator. According to Eq. 3.5.1, Î
 +

 of 

spin-3/2 is given by: 

 Î
 +

 ≡ Îx + iÎy = (

0 √3 0 0

0 0 2 0

0 0 0 √3

0 0 0 0

) . (3.50) 

Using 〈Î
 +
〉  = Tr {ρ̂Î

 +
}, the spin-3/2 NMR signal is given by: 

  s(t) ~ 2iexp{–iϕ
rec
} (√3ρ

–1–2
(t) + 2ρ

–10
(t) + √3ρ

–1+2
(t)) . (3.51) 

Each (–1)-quantum coherence gives rise to an NMR signal, but the three coherences do not 

contribute equally. The peak intensity ratio of ρ
–1–2

, ρ
–10

 and ρ
–1+2

 is 3:4:3, corresponding to 

the squares of the Î
 +

 matrix elements, which are given by {√3, 2, √3} (Eq. (3.49)). Therefore, 

the NMR spectrum of a single spin-3/2 ensemble, excited by a strong 90°-RF pulse, is a 3:4:3 

triplet, with a splitting of ωQ

(1)
 between adjacent peaks (Eq. (3.48)), as shown in Figure 3.10. 
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Figure 3.10 The spectrum of a spin-3/2 ensemble and the corresponding (–1)-quantum coherences. 

The central peak of the spin-3/2 triplet spectrum is of particular importance and is called the 

central transition. The outer peaks are named satellite transitions. 

3.5.4 Relaxation Mechanisms of Spin-3/2 

In NMR, relaxation was phenomenologically considered by adding additional terms to the spin 

precession equation. This leads to Bloch’s equations (Equations (3.19) and (3.22)) to describe 

the precession and relaxation of magnetisation in an external magnetic field. However, in the 

case of spin-3/2 nuclei, the quadrupolar interactions also contribute to the relaxation behaviour. 

Irreducible Tensor Operators 

To describe the spin-3/2 dynamics, extensive use of the irreducible tensor operator 

representation will be made. The advantage of this representation is that it is relatively easy to 

follow the rank and coherence order of the density operator in a complicated sequence of RF 

pulses and evolution periods. 

Table 3.2 lists the spin-3/2 irreducible tensor operators, Tlm, where l is the rank and m is the 

coherence order. The orthonormal unit tensor operators, 𝑇̂lm , are related to their Tlm 

counterparts according to T̂00 = 1 2⁄ T00 , T̂1m = 1 √5⁄ T1m , T̂2m = 1 2⁄ √2 3⁄ T2m  and T̂3m = 

1 3⁄ √2T3m. The rank-1 operators are proportional to longitudinal (T̂10 operator) and transverse 

(symmetric and antisymmetric T̂11 operators) magnetisations. T̂20 represents the quadrupolar 

spin polarisation. The symmetric and antisymmetric T̂21  ( T̂22 ) operators represent rank-2 

single- (double-) quantum coherences. The symmetric and antisymmetric T̂31 , T̂32  and T̂33 

operators represent rank-3 single-, double- and triple-quantum coherences, respectively. 

Therefore, the density matrix can be expanded to 16 basis operators. 
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Table 3.2 Irreducible tensor operators for spin-3/2. 

 

Time Evolution of Spin-3/2 System 

The spin-3/2 system evolves under the action of the Zeeman, RF, static and fluctuating 

quadrupolar Hamiltonians (Van Der Maarel 2003). The Zeeman Hamiltonian Hz = ω0T10 in 

the rotating frame vanishes. With the RF field applied exactly on resonance along the x-axis 

with field strength ω1 = –γB1 , the corresponding Hamiltonian is time-independent: H1 = 

√5ω1T̂11(a) . The static quadrupolar Hamiltonian originates from the static quadrupolar 

interaction: HQS = ωQT̂20, where ωQ denotes the residual quadrupolar interaction parameter. 

The fluctuating quadrupolar Hamiltonian, HQF , arises from the zero-average fluctuating 

component of the quadrupolar interaction (Van Der Maarel 2003): 

 HQF(t) = CQ ∑ (–1)m

2

m = –2

T2m × exp(imω0t)[F2 – m(t) – 〈F2 – m〉]. (3.52) 

Here, CQ = eQ ℏ√6⁄ , where Q is the quadrupolar moment of the nucleus and other symbols 

have their usual meaning. The electric field gradient tensor components, F2m, takes the form 

F20 = 1 2⁄ Vzz , F2 ± 1 = 1 √6⁄ (Vxz ± iVyz)  and F2 ± 2 = 1 2√6⁄ (Vxx – Vyy ± 2iVxy) ; and 〈F2m〉 

represents their average values. The electric field gradient components are time-dependent due 

to molecular motion. The influence of fluctuating quadrupolar interaction can be considered in 

the Redfield regime, where relaxation is described by second-order perturbation theory. This 

theory is valid under the condition that changes in the density operator are small on the 

correlation time τc of the lattice motions: 〈HQF
2 〉τc

2 ≪ 1 (Van Der Maarel 2003). 

The time evolution of the density operator is governed by the Liouville von Neumann equation. 

This equation relates the time derivative of the spin density operator to the Hamiltonian of the 

spin system and a relaxation superoperator, f(ρ̂): 

 
d

dt
ρ̂(t) = –

i

ℏ
[Ĥ1 + ĤQS, ρ̂] + f(ρ̂). (3.53) 



3.5 Spin-3/2 Dynamics 

 
46 

Here,  f(ρ̂) = –∫ 〈[ĤQF(t), [exp(–i(Ĥ1 + ĤQS)τ)ĤQF(t – τ)exp(i(Ĥ1 + ĤQS)τ), ρ̂(t)]]〉
∞

0
dτ . 

The Zeeman Hamiltonian, Ĥ0 = ω0T10, vanishes in Eq. (3.53) due to the use of the Larmor 

frequency-rotating frame. 

Thermal Relaxation in an Isotropic Environment 

Suppose only static and fluctuating quadrupolar interactions exist (i.e. in the absence of an RF 

field); in that case, the static Hamiltonian ĤQS commutes with ĤQF(t) and accordingly, is seen 

as vanishing in the relaxation superoperator (Eq. (3.53)). Furthermore, if the electric field 

gradient is completely averaged to zero by molecular motion on a timescale faster than the 

inverse Larmor frequency (i.e. in an isotropic environment, 〈F2m〉 = 0), ĤQS is equal to zero 

and the time dependence is given by the relaxation contribution only. In an isotropic 

environment, with the fluctuating Hamiltonian in Eq. (3.52), the Liouville von Neumann 

equation in Eq. (3.53) is simplified as: 

 
d

dt
ρ̂(t) = – ∑ [T2m, [T2m

†
, ρ̂]]  × (Jm(mω0) + iKm(mω0))

2

m = –2

. (3.54) 

Jm(mω0) and Km(mω0) are the real and imaginary parts of the Fourier transform of the electric 

field gradient correlation function: 

 Jm(mω0) = (eQ ℏ⁄ )2Re∫ 〈[F2m(t) – 〈F2m〉] × [F2m(t – τ) – 〈F2m〉]〉exp
∞

0

(imω0τ)dτ, (3.55) 

 Jm(mω0) = (eQ ℏ⁄ )2Im∫ 〈[F2m(t) – 〈F2m〉] × [F2m(t – τ) – 〈F2m〉]〉exp
∞

0

(imω0τ)dτ. (3.56) 

Due to the symmetry properties of the double commutator in the relaxation superoperator in 

Eq. (3.54), the coherence order is conserved under relaxation, whereas the rank can change; 

additionally, the rank-2 coherence can never be created by relaxation or by coherence transfer 

(Van Der Maarel 2003). 

The complete derivation of the relaxation rates R1
(1)

 and R2
(1)

 can be found in (Mclachlan 1964; 

Van Der Maarel 2003). They both depend on Jm(mω0): R1
(1)

 = J0 + J1 and R2
(1)

 = J1 + J2. The 

derivation is based on the line descriptions of each resonance line in the spectrum, with 

negligible hyperfine interactions. This means that the static quadrupolar interaction has no 

contribution to the spin dynamics in the case of an isotropic environment. Two transverse 

relaxation rates arise from the derivation, representing the fast and slow relaxation times in the 

presence of a zero-average fluctuating Hamiltonian. Based on the Redfield relaxation matrix 
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(Jaccard et al. 1986), the fast and slow relaxation times are defined as: 1 T2f⁄  ∝ R1
(1)

 and 

1 T2s⁄  ∝ R2
(1)

. 

Thermal Relaxation in an Anisotropic Environment 

So far, the formalism is strictly valid for nuclei in an isotropic environment, where the nuclei 

experience a zero-average electric field gradient. In many important systems, such as biological 

tissue and lyotropic liquid crystals, the quadrupolar interaction is not completely averaged by 

molecular motion (i.e. in an anisotropic environment). Accordingly, to extend the range of 

applications to this important class of materials, it is necessary to include the static quadrupolar 

Hamiltonian in the calculation of the time evolution of the density operator. 

In the case of an anisotropic environment, the time dependence of the density operator now 

reads: 

 
d

dt
ρ̂(t) = – iωQ √6⁄ [T20, ρ̂] – ∑ [T2m, [T2m

†
, ρ̂]]  × (Jm(mω0) + iKm(mω0))

2

m = –2

. (3.57) 

Due to the evolution under the static quadrupolar Hamiltonian, the decoupling of the odd and 

even rank tensor operators is lifted. This phenomenon allows for the creation of rank-2 

coherence, providing for a unique experimental method to probe the existence of higher-order 

coherences. 

The complete derivation of the relaxation rates R1
(1)

 and R2
(1)

 can again be found in (Mclachlan 

1964; Van Der Maarel 2003). In the presence of a static quadrupolar interaction, R1
(1)

 depends 

on both Jm(mω0) and the quadrupolar coupling: R1
(1)

 = J0 + J1 + J2 – (J2 – ωQ
2 )

1 2⁄
, whereas 

R2
(1)

 = J1 + J2 . For ωQ = 0 , these expressions reduce to those in the case of an isotropic 

environment.

3.6 Physical Properties of Sodium in Biological Tissues 

The previously described effects of spin-3/2 are of interest primarily for in vivo NMR and MRI 

using the sodium nucleus. As discussed in Chapter 2, sodium plays a significant role in 

maintaining the proper cellular physiology in the human body. Systemic hyponatremia or 

hypernatremia is a life-threatening condition. In addition, local deviations from normal sodium 

levels also indicate specific pathologies. Thus, spatially resolved detection of sodium levels is 
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highly desirable. Of significant interest is the intracellular sodium concentration because it is a 

sensitive biomarker for the cell’s health. 

Therefore, a mechanism for the suppression of extracellular sodium is highly desirable. Taking 

advantage of the sensitive interaction of spin-3/2 sodium nuclei with their local environment, 

various approaches have been proposed to selectively monitor the intracellular sodium ions via 

sodium MRI. One approach utilised shift reagents to create a resonance frequency offset for 

the extracellular sodium ions. Hence, it can differentiate intra- and extracellular sodium signals 

by chemical-shift-selective NMR measurements. However, its clinical application is not 

readily feasible due to the reagents’ high toxicity and inability to cross the blood-brain barrier 

(Bansal et al. 1992; Naritomi et al. 1987; Winter et al. 1998). Second, given that the 

intracellular sodium was reported to exhibit shorter relaxation times (Madelin et al. 2014), 

inversion recovery techniques can suppress the sodium NMR signal for a weighting towards 

intracellular sodium, although the residual signal from the extracellular compartment remains 

unclear (Nagel et al. 2011). Another approach performed tissue compartment mapping using a 

bi-exponential transverse decay model based on the assumption that 60% and 40% of the tissue 

sodium signal represent short and long transverse components, respectively (Blunck et al. 

2018). Nevertheless, whether the ratio of these two components can be constrained to 60:40 

requires further investigation. 

The approach used in this thesis is based on the multiple-quantum filtering technique, which 

probes the multiple quantum coherences that evolve primarily in the intracellular space 

characterised by slow-moving molecular (i.e. restricted) environments (Seshan et al. 1997; 

Tauskela et al. 1997). However, several experimental studies found that extracellular sodium 

also contributed to multiple quantum coherences due to the labile macromolecular interactions 

(Hutchison et al. 1990; Jelicks & Gupta 1989, 1993); thus, (Burstein & Springer 2019) claimed 

that extracellular and intracellular sodium cannot be discriminated by the spin dynamics due to 

the similarity of MR properties. Nevertheless, this thesis assumes that multiple quantum 

coherences originate from restricted (primarily intracellular) environments. A mathematical 

treatment of the multiple quantum coherence phenomenon is given in Section 3.5.3. The time 

dependence of the quadrupolar coupling frequency, ωQ, determines the spectrum of the sodium 

nuclei. As introduced by (Rooney & Springer 1991), four types of SQ spectra, termed type a, 

b, c and d, may arise from different molecular environments. Figure 3.11 depicts the energy 

level diagrams (top row), representative spectra (middle row) and quadrupolar time 
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dependence (bottom row) of sodium spin ensembles in these four different molecular 

environments. 

 

Figure 3.11 Four types of sodium NMR characteristics in different molecular environments. Top row: 

energy level diagrams. Middle row: schematic SQ spectra corresponding to the mean quadrupolar 

frequency, 𝜔̅Q; the x-axis represents frequency, ω; the y-axis represents signal intensity. Bottom row: 

scheme of the time dependence of quadrupolar frequency, ωQ, for the four spectral types. The Type d 

spectrum is a narrow Lorentzian line; the type c spectrum is a superposition of a narrow and a broad 

Lorentzian line; the type b spectrum consists of a central narrow Lorentzian line with two broad satellite 

Lorentzian lines; and the type a spectrum comprises three separated narrow Lorentzian lines. Source: 

Figure reproduced from (Rooney & Springer 1991) with permission from John Wiley and Sons (License 

No. 5745351153482). 

In the type d environment, the quadrupolar fluctuations are so fast that the correlation times are 

short compared with the Larmor period, 1 ω0⁄ . In this case, the quadrupolar splitting of the 

sodium nucleus can be ignored, i.e. ωQ = 0. Consequently, the three SQ coherences yield three 

isochronous spectral peaks of equally narrow widths; and multiple quantum coherences do not 

arise. Practically, this case was observed from the sodium cations in a homogeneous aqueous 

environment, e.g. solutions of up to moderate sodium concentrations (Figure 3.12a). However, 

this phenomenon usually is not observed in biological tissues. 
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Figure 3.12 Interaction of a sodium cation with its surrounding environment. (a) Homogeneous 

environment. (b) Inhomogeneous environment. The sodium cation interacts with a negatively charged 

macromolecule (green area) through the electric field gradient (EFG). 

In biological tissues, sodium aquocations exist in compartmentalised spaces. However, in both 

intracellular and extracellular environments, the cation encounters many negatively charged 

macromolecules, such as polyelectrolytes, in its diffusional excursions (Figure 3.12b). This 

interaction primarily produces a slower ωQ modulation that is superimposed on the modulation 

generated by the rapid fluctuations of the hydration shells, as shown in the corresponding time 

course in Figure 3.11. The non-zero 𝜔̅Q can be observed on a short time scale, but it stays zero 

for longer period. The resulting SQ spectrum comprises three isochronous homogeneous 

resonances. The narrow central SQ coherence (|1 2⁄ ⟩→|– 1 2⁄ ⟩) is superimposed on the broader 

resonances of the two satellite SQ coherences (|3 2⁄ ⟩→|1 2⁄ ⟩ and |– 1 2⁄ ⟩→|– 3 2⁄ ⟩). In this 

case, sodium nuclei exhibit biexponential transverse relaxation: the central SQ transition yields 

a slow T2 value, whereas the two satellite SQ transitions result in a fast T2 value. 

If the electric field fluctuations become more prominent, such that sodium ions remain in 

regions with a non-zero 𝜔̅Q for a period longer than the Larmor period, a type b spectrum (so-

called powder spectrum) is generated. The spectrum comprises the homogeneous central 

resonance and the two different inhomogeneous “powder” patterns of the satellite resonances. 

If the value of 𝜔̅Q is always non-zero, a type a spectrum is yielded. It occurs in the case of 

anisotropic samples on the macroscopic scale, single crystals or oriented liquid crystals. The 

well-known triplet spectrum with an intensity ratio of 3:4:3 is observed. 

In the human body, type d spectra are commonly observed in aqueous solutions such as 

CerebroSpinal Fluid (CSF) and are typical for extracellular sodium. Type b and c are typical 

for intracellular sodium. The type a spectrum is less likely to occur in biological tissues. 
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4 Magnetic Resonance Imaging 

From Signal to Image 

This chapter aims to introduce the generation of Magnetic Resonance Imaging images based 

on the Nuclear Magnetic Resonance signal. First, the MRI scanner structure is briefly 

introduced. Second, the fundamental concepts and rules of MRI closely relative to the 

remainder of this thesis are introduced. Furthermore, the principles of k-space sampling are 

described. Finally, the image reconstruction strategies are explained. 

4.1 Scanner Structure 

The structure of clinical superconductive magnetic resonance scanners is similar to Figure 4.1. 

 

Figure 4.1 Structure of a superconductive magnetic resonance scanner. (a) A representative cross-

section of a superconducting scanner. Two types of patient coils: a transmit/receive knee coil and a 

receive-only spine coil array. (b) The scanner has a superconducting coil that generates a static B0 field, 

an RF coil that produces a circularly polarised B1 field in the transverse plane (xy-plane) and three 

gradient coils that yield a linear alteration of the z-component of the magnetic field depending on the x, 

y and z positions, BG. Red dot: isocentre. (c) The action of gradient fields. Note that x, y and z-gradients 

only alter the magnetic field along the z-direction. 

The current passing through a superconducting coil within the helium-filled cryostat generates 

the main static B0 magnetic field, which creates an initial longitudinal magnetisation in the 

subject. The B0 field is created in the scanner bore with the highest field homogeneity around 

the isocentre (red dot in Figure 4.1b), which is usually a specific point within the anatomical 

region of interest. Active shielding coils can reduce the static fringe field produced by the main 

magnet, which are typically located within the cryostat just outside the main field coils. 
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However, B0 field inhomogeneities in the scanner bore may occur due to susceptibility effects 

in the patient or surrounding environment, as well as manufacturing imperfections. Shimming, 

which can be passive or active, is used to correct the B0 field. Passive shimming is performed 

by placing small pieces of ferromagnetic materials (typically iron or steel) in a regular pattern 

at specific locations along the inner bore of the magnet. Active shimming uses currents directed 

through specialised shim coils to generate a magnetic field that compensates for the B0 field 

inhomogeneities. There are two types of active shim coils: (1) superconducting coils located 

inside a cryostat containing liquid helium and (2) resistive coils mounted along with the 

gradient coils inside the room-temperature inner walls of the scanner. 

The gradient coils are primarily used for spatial encoding of the NMR signal. They are placed 

just inside the bore of a scanner and generate a secondary magnetic field. This gradient field 

slightly alters the main magnetic field along the z-direction, causing the resonance frequency 

of target nuclei to vary as a function of position in the scanner. Note that the x- and y-gradients 

do not yield transverse components that rotate B0 by a certain angle (Figure 4.1c). The rapidly 

changing gradients can induce eddy currents in metallic parts of the scanner. Actively shielded 

gradient coils just superficial to the imaging gradients can dynamically eliminate changing 

magnetic fields and decrease eddy currents produced in the main magnet structure. 

The RadioFrequency coils can act as transmitters, receivers or both. When used as a transmitter, 

the RF coil generates an oscillating B1 field perpendicular to B0 field. If the oscillations closely 

match the intrinsic precession of the nuclear spins around the Larmor frequency, energy is 

deposited into the spin system, causing a change in its net alignment. The B1 field is generated 

by the transmit RF coil in response to the strong current generated by the scanner’s transmit 

circuitry. B1 is usually turned on for a short time (typically a few msec), called an “RF pulse”. 

By adjusting the magnitude or duration of the RF pulse, the nuclear spin system can be rotated 

by a variable flip angle, such as 90° or 180°. When used as a receiver, the RF coil detects the 

NMR signal. The oscillating net magnetic flux from the excited nuclear spin system can be 

captured by the coil. Consequently, an induced electric current is generated in the RF coil. Then, 

this current is amplified, digitised and filtered to obtain frequency and phase information. 

4.2 Imaging Principles 

This section presents the fundamental concepts and rules of MRI, which are of particular 

interest to sodium MRI and are of importance for the second part of this thesis. The 

explanations mainly follow the book of (Brown et al. 2014). 
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4.2.1 Spatial Encoding: Gradient and K-space 

As described in Section 3.3.7, the origin of the NMR signal is a voltage that is induced in the 

receiver coil,Vind, due to a change in the magnetic flux, Φ: 

 Vind = –
d

dt
Φ = –Φ̇. (4.1) 

The magnetic flux Φ  varies with time due to the oscillating magnetic moments, i.e. the 

magnetisation vectors. According to (Brown et al. 2014), the bulk signal measured by the 

receiver coils is proportional to the transverse magnetisation vector. For imaging, the measured 

bulk signal of a spin ensemble needs to be disentangled regarding the spatial distribution. On 

that account, the magnetic field gradient is introduced to spatially encode the received signal 

using the concept of k-space. 

According to the magnetic resonance condition: ω = ω0 = –γB0, if a small, changing magnetic 

field (i.e. gradient field) is added to the B0 field along/against the z-direction, the uniformity of 

the B0 field is degraded, with different resonance frequencies at different positions along the 

gradient direction (x, y or z-direction) (Figure 4.2). For example, the additional magnetic 

gradient field changing along the x-direction, BGx
 = x∙Gx, provides the resonance frequency, 

ωx: 

 ωx = –γ(B0 + x∙Gx) = ω0 + ∆ωx. (4.2) 

In this way, the spatial displacement, x, is converted into the resonance frequency shift, ∆ωx, 

so as to obtain the spatial information inside the object. This process is known as spatial 

encoding. The MRI scanner is equipped with three sets of gradient coils to generate gradient 

fields in the x, y and z directions (Figure 4.1c). The total gradient is given as G = (Gx, Gy, Gz), 

and the corresponding total gradient field is given as BG = G ∙ r = (x∙Gx, y∙Gy, z∙Gz), resulting 

in a resonance frequency shift ∆ω = –γBG .  r = (x, y, z) is the position with respect to the 

isocentre. 
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Figure 4.2 Gradient field and resonance frequency. A small, linearly changing gradient field, BG, is 

added to the B0 field (B0 = 1.5T) along/against the z-direction. Different positions along the gradient 

direction (x, y or z) possess different resonance frequencies. The isocentre has a resonance frequency of 

ω0 = –γB0. 

In the absence of gradient fields, if the relaxation effect is neglected, the transverse 

magnetisation after RF pulse excitation is given as: 

 Mxy(r, t) = e–iω0t∙Mxy(r, t = 0). (4.3) 

The phase of Mxy is ω0t. 

In the presence of additional magnetic gradient fields, Mxy  produces an additional phase 

accumulation, φ(r, t): 

  φ(r, t) = ∫ωG(r, τ)dτ

t

0

 = ∫ γBG(r, τ)dτ

t

0

 = ∫ γG(τ)∙rdτ

t

0

 = γ∙r∙∫G(τ)dτ

t

0

. (4.4) 

Here, define k(t) as: 

  k(t) = 
γ

2π
∫G(τ)dτ

t

0

, (4.5) 

and substitute Eq. (4.5) to Eq. (4.4), the phase term becomes: 

  φ(r, t) = 2π∙k(t)∙r. (4.6) 

Add the phase term to Eq. (4.3), Mxy becomes: 

 Mxy(r, t) = e–iω0t ∙ e–i∙2π∙k(t)∙r ∙ Mxy(r, t = 0). (4.7) 

The signal measured by the receiver coils, U(t), is determined by the transverse magnetisation 

of every excited spin. Therefore, U(t) is proportional to all transverse magnetisations within 

the sample: 
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 U(t) = c∙∫Mxy(r, t)dr  = c∙∫ e–iω0t∙e–i∙2π∙k(t)∙r∙Mxy(r, t = 0)dr 

= 𝑐̂∙e–iω0t∙∫ e–i∙2π∙k(t)∙r∙ρ(r)dr . 

(4.8) 

According to Eq. (3.12), the spin density ρ(r) is proportional to Mxy(r, t = 0), so the scaling 

constant, c, is updated as 𝑐̂ with respect to ρ(r). After signal demodulation, the e–iω0t term in 

Eq. (4.8) is removed. The signal, S(t), is seen in a rotating frame: 

  S(t) = eiω0t∙U(t) = ĉ∙∫ e–i∙2π∙k(t)∙r∙ρ(r)dr . (4.9) 

Substitute t with k in Eq. (4.9), the received signal is proportional to the Fourier transform of 

the spin density, ρ(r): 

  S(k) = ĉ∙∫ e–i∙2π∙k∙r∙ρ(r)dr  = ĉ∙FT[ρ(r)]. (4.10) 

This Fourier space is called k-space and is denoted as k (Eq. (4.5)). The spatial information 

collected at time t is placed at the corresponding k(t) in the k-space. In practice, the received 

signal is affected by relaxation. For an accurate representation of S(t), a relaxation term should 

be included in Eq. (4.10). For most samples, T1 and T2 relaxation times are spatially correlated. 

Therefore, the relaxation term should be placed within the integral of Eq. (4.10). 

4.2.2 Excitation in Presence and Absence of Gradients 

Gradients are primarily used to traverse k-space after signal induction through an RF pulse. 

However, the spatial encoding capacities of gradients are also of interest during the RF 

excitation process. 

In the presence of gradients, the spin density in Eq. (4.10) is weighted by the spectral profile 

of the RF pulse, P(ω). This factor is obtained by the Fourier transform of the RF pulse in time 

domain, P(t). In this case, Eq. (4.10) becomes: 

  S(k) = ĉ∙FT[ρ(r)∙P(ω)]. (4.11) 

Since ω = γGr, Eq. (4.11) further becomes: 

  S(k) = ĉ∙FT[ρ(r)∙P(r)]. (4.12) 

It should be noted that P can also depend on k in the case of varying gradients during RF 

excitation. 



4.2 Imaging Principles 

 
56 

According to Eq. (4.12), the RF pulse acts as a filter in the range of spin precession frequencies 

resulting from the applied gradient. This mechanism provides a useful tool for spatial 

selectivity. MRI scanners offer a variety of spatially selective effects on RF excitation, which 

can be broadly grouped into two categories: non-slice-selective excitation in the absence of 

gradients and slice-selective excitation in the presence of gradients. 

In the absence of gradients, excitations with a rectangular hard pulse are non-slice-selective. 

The hard pulse has a shorter time course compared to the abovementioned sinc pulse, and the 

corresponding spectral profile is sinc-shaped. For a fast-sampling onset, the acquisition of fast 

decaying NMR signals (e.g. sodium signals) is commonly based on the more efficient hard 

pulse with a non-slice-selective excitation. In the presence of gradients, two steps are required 

to uniquely excite a slice in Two-Dimensional (2D) MRI, as discussed in Appendix A1. 

4.2.3 Gradient Echoes and T2
* 

As indicated in Eq. (4.4), gradients lead to a spatially dependent phase accumulation across the 

entire excited spin ensemble, i.e. increasing k, as described in Eq. (4.5). Consequently, the 

application of gradients results in a reduction in the net NMR signal by dephasing. This signal 

loss can be recovered by applying a counteracting gradient, i.e. a gradient of opposite polarity 

that refocuses the introduced field inhomogeneity. For such a signal refocusing, these two 

gradients, G and Gref, should fulfil: 

 φ
G

 – φ
Gref

 = γ∙r∙∫ G(τ)dτ

t1

t0

 – γ∙r∙∫ Gref(τ)dτ

t2

t1

 = 0, (4.13) 

i.e. the cumulative phase produced by the first gradient should be cancelled out by the following 

refocusing gradient. At time t2, the signal is completely refocused, and a so-called gradient 

echo is generated. The time interval from time t0 to time t2 is called the Echo Time (TE). 

It should be noted that only gradient-induced inhomogeneities are reverted. Inherent dephasing 

through other mechanisms, e.g. microscopic magnetic field fluctuation (Section 3.3.6) or 

quadrupole interactions (Section 3.5.3), are irreversible. Therefore, the echo underlies signal 

loss through T2  transverse relaxation. In the presence of additional external macroscopic 

inhomogeneities, such as B0 field inhomogeneity, the signal decay should consider another 

relaxation time constant, commonly termed T2
' . Hence, the total echo signal generated by the 

refocusing gradient is governed by two decay processes, resulting in a relaxation time constant, 

T2
*: 
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1

T2
*

 = 
1

T2

 + 
1

T2
'

, (4.14) 

where 
1

T2
'  = γ∆B, with ∆B denoting the local macroscopic field inhomogeneity. 

In addition to gradients, the phase dispersion of spins can be unravelled through a refocusing 

RF pulse (typically a 180°-pulse). The refocusing pulse flips all spins by 180°; thus, the phase 

is inverted. Every spin ends up experiencing effects from the opposite macroscopic field 

inhomogeneity spectrum. This pulse-based refocusing of the dephasing signal is known as spin 

echo. Its primary advantage over gradient echo is that the spin-flipping also cancels dephasing 

effects induced by the macroscopic field inhomogeneities, i.e. it allows a direct measure of T2 

signal decay (Figure 4.3). However, the application of a refocusing pulse has two disadvantages 

listed below. 

1. The additional RF power disposition accelerates the violation of the Specific Absorption 

Rate limit, necessitating longer acquisition times, especially at ultra-high field strengths 

(≥7T). 

2. Since detecting signal during RF excitation is impossible, the additional time spent on 

applying the refocusing pulse results in a longer TE, greatly reducing the information 

content that can be sampled. This is especially detrimental to the detection of rapidly 

decaying sodium signals. 

 

Figure 4.3 T2
* and T2 decay. The gradient echo results in a T2

* decay, whereas the spin echo yields a T2 

decay. 

4.2.4 Data Acquisition Principle: Nyquist Sampling Criterion 

The Fourier transform serves as a continuous linear mapping between the time and frequency 

domains. In practice, the acquired signal is neither continuously sampled nor measured for 

infinite time. The discrete sampling and truncated data acquisition do not preclude the use of 

the Fourier relationship between the acquired NMR signal and the reconstructed spin density 
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image. Nevertheless, the data sampling process must obey a certain criterion for artefact-free 

reconstruction – the Nyquist sampling criterion. This criterion acts as a fundamental bridge 

between continuous- and discrete-time signals. It sets up a sufficient condition for a sampling 

rate that allows a discrete sequence of samples to capture all information from a bandwidth-

limited continuous-time signal. 

Infinite Discrete Sampling 

The continuously induced signal in the receiver coil is digitised via an Analog-to-Digital 

Converter (ADC). This process corresponds to a discrete sampling of k-space. According to 

Eq. (4.5), the finite sampling interval, ∆t, links to the sample spacing in k-space, ∆k: 

 ∆k = 
γ

2π
∫ G(τ)dτ

∆t

0

. (4.15) 

The NMR signal is generally collected over a set of uniformly spaced points in k-space. For a 

constant readout gradient, GRO, such sampling is achieved along the readout direction with the 

k-space spacing, ∆k = 
γ

2π
GRO∆t . Denoting each integer sampling step, p , the infinite data 

sampling can be described via a “Dirac comb” function, iii(k): 

  iii(k) ≡ ∆k ∑ δ(k – p∆k)

∞

p = –∞

, (4.16) 

where δ corresponds to the Dirac delta function. The discretised signal, Sd(k), is given by the 

multiplication of the continuous-time signal, S(k), and the “Dirac comb” function, iii(k): 

 Sd(k) = S(k)∙iii(k) = ∆k ∑ S(p∆k)δ(k – p∆k)

∞

p = –∞

. (4.17) 

The inverse Fourier transform of an infinitely sampled NMR signal, Sd(k) , leads to a 

reconstructed image, ρ
d
(r), of the spin density in the object, ρ(r): 

 

ρ
d
(r) = ∫ dkSd(k)e

i2πkr
∞

–∞

 = ∫ dk [∆k ∑ S(p∆k)δ(k – p∆k)

∞

p = –∞

] ei2πkr
∞

–∞

 

= ∆k ∑ S(p∆k)

∞

p = –∞

ei2πp∆kr. 

(4.18) 

This expression is an infinite Fourier series, representing a histogram approximation of the 

continuous inverse transform of the physical spin density, ρ(r). If ρ(r) vanishes outside a finite 
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interval, the periodic Fourier series produces an infinite set of exact copies of the physical spin 

density, provided that the period associated with the copies is larger than the interval. A period 

that is too small gives rise to an “aliasing” problem, which will be discussed in the next section. 

ρ
d
(r)  can be described equivalently by the convolution of  ρ(r)  and the inverse Fourier 

transform of iii(k) in the time domain, III(r): 

 ρ
d
(r) = ρ(r)*III(r), (4.19) 

where * represents the convolution operator and III(r) is also a “Dirac comb” function: 

  III(r) = ∑ δ(r – q ∆𝑘⁄ )

∞

q = –∞

, (4.20) 

with q indicating sampling steps. 

The convolution of any function f(x) with a delta function δ(x – x0) is easily seen to be: 

  f(x)*δ(x – x0) = ∫ dx' f(x')δ(x' – x0
' ) = f(x – x0). (4.21) 

According to Eq. (4.21), the convolution of the infinite sum (Eq. (4.20)) with any function 

gives an infinite series, in which each term is a copy of the function shifted by the interval 

1 ∆𝑘⁄  from the next term. That is, Eq. (4.19) becomes: 

 ρ
d
(r) = ∑ ρ(r)*δ(r – q ∆𝑘⁄ )

∞

q = –∞

 = ∑ ρ(r – q ∆𝑘⁄ )

∞

q = –∞

. (4.22) 

Nyquist Sampling Criterion 

It is observed from Eq. (4.18) that the periodicity corresponds to the fact that ei2πp∆kr  is 

unchanged for any p, if r → r + 1 ∆k⁄ . This replication concept is evident from Eq. (4.22) and 

demonstrates that ρ
d
(r) is translationally invariant. This is: 

 ρ
d
(r) = ρ

d
(r + 1 ∆k⁄ ). (4.23) 

Therefore, the periodicity of ρ
d
(r)  is given by the reciprocal of the spacing of the delta 

functions in the Fourier transform of the sampling function, 

 1 ∆k⁄  ≡ L ≡ FOV. (4.24) 
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The uniform spacing, ∆k, between k-space data points is 1 L⁄ , where L is the spatial interval 

over which the reconstructed image repeats itself. The spatial interval L is named the Field Of 

View (FOV). 

To construct an image, one of these copies is chosen. If the copies overlap, there will be a 

significant difference between ρ(r) and what is displayed as an image. This type of artefact is 

generally referred to as aliasing. A general requirement, or criterion, can be found for the 

sampling rate to remove this artefact. 

The criterion can be introduced by considering what happens if L is too small. If the spatial 

period, L, of the replica is greater than the length of the object being imaged, A, there is no 

aliasing artefact in the reconstructed image. However, if L < A, then those parts of the image 

corresponding to the pixels near the edges of the object (which must be assigned somewhere 

in the image) will be mapped back inside L. The object is aliased due to the overlap of the 

copies, with the left edge mapped into the right side of the interval, L, and vice versa for the 

right edge. To avoid this type of image error, data must be sampled such that the inverse of the 

sampling step in k-space, 1 ∆k⁄ , is larger than the size of the object to be imaged, A. This means 

that the FOV must be larger than the object size: 

 L > A   or   ∆k < 1 A⁄ . (4.25) 

Eq. (4.25) is referred to as the Nyquist sampling criterion. 

Truncated Signal Acquisition 

The measurement of the image space (r) itself is discretised and truncated. The reason for the 

truncation is that no new information can be gained from other copies of the image. The 

discretisation is performed over spatial steps with a uniform step size, ∆r, since there is a lower 

limit to the spatial information, or resolution, available in the reconstructed spin density. A root 

cause of the lower limit is the blurring artefacts in the image space that arise from the truncation 

of the k-space data. 

The data truncation, or windowing, is modelled mathematically by multiplying the sampled 

data by a rectangular function, rect(
k + 

1

2
∆k

W
) (details in Chapter 9 of (Brown et al. 2014)). After 

data truncation, the “Dirac comb” function in Eq. (4.16) becomes: 
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  iii(k)∙rect(
k + 

1
2

∆k

W
)  = ∆k ∑ δ(k – p∆k)

n – 1

p = –n

, (4.26) 

where the total number of points is N = 2n and W ≡ 2n∆k = N∆k. An integration over Eq. (4.26) 

yields ∆k for each sampled k-space point. Thus, 2n∆k is the total interval covered in k-space, 

containing 2n total points. 

The final expression for the signal distribution corresponding to truncated signal acquisition, 

or measured signal distribution, Sm(k) , is the product of three functions (infinite signal, 

sampling and window) given by: 

 Sm(k) = S(k)∙iii(k)∙rect(
k + 

1
2

∆k

W
)  = ∆k ∑ S(p∆k)δ(k – p∆k)

n – 1

p = –n

. (4.27) 

The result is the expected discrete and finite sum of delta function terms whose coefficients are 

again the sampled k-space signal, S(p∆k). 

The reconstructed spin density resulting from truncated acquisition is called 𝜌̂d(r), and it is 

defined by the inverse Fourier transform of Sm(k): 

 ρ̂
d
(r) ≡ ∫ dkSm(k)e

i2πkr
∞

–∞

 = ∆k ∑ S(p∆k)

n – 1

p = –n

ei2πp∆kr. (4.28) 

The periodicity in Eq. (4.23) survives in Eq. (4.28): 𝜌̂d(r) = 𝜌̂d(r + 1 ∆k⁄ ). Therefore, the 

Nyquist criterion also applies to the truncated data. 𝜌̂d(r)  arose from the finite discrete 

sampling is an approximation of ρ
d
(r) from the infinite discrete sampling in Eq. (4.18). 

The total number of sampling points, N = 2n, provides the basis for the spatial resolution of the 

reconstructed image due to: 

 ∆r = 
FOV

N
 = 

1

N∆k
 = 

1

2n∆k
 = 

1

2kmax

, (4.29) 

with n∆k = kmax.The resolution, ∆r = 
FOV

N
, is thus fixed by N and FOV, commonly referred to 

as the pixel size or voxel size of the image. This concludes that more minor spatial details 

require more outer k-space sampling. 

The finite sampling function in the image domain resembles Eq. (4.16), but with steps ∆r, given 

by: 
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 IIÎ(r) = ∆r ∑ δ(r – q∆r)

∞

q = –∞

. (4.30) 

Consider the number of sampling points equal to 2n' rather than 2n and perform a calculation 

like that in Eq. (4.27). The measured reconstructed spin density distribution for 2n' sampled 

points, ρ
m
(r), counterparts to the measured signal distribution, Sm(k), in Eq. (4.27), given by: 

 ρ
m
(r) = 𝜌(r)∙IIÎ(r)∙rect(

r + 
1
2

∆r

FOV
)  = ∆x ∑ ρ(q∆r)δ(r – q∆r)

n' – 1

q = –n'

, (4.31) 

with the relation, FOV =2n'∆r, analogous to that for Eq. (4.26). 

Therefore, the discrete and finite sampled signal, Ŝd(k), is the Fourier transform of ρ
m
(r). Ŝd(k) 

counterparts to the reconstructed spin density, 𝜌̂d(r), in Eq. (4.28), given by: 

 Ŝd(k) = ∫ dr ρ̂
m
(r)e–i2πkr = ∆r ∑ ρ(q∆r)e–i2πkq∆r

n' – 1

q = –n'

. (4.32) 

Point Spread Function 

Suppose that the k-space data, S(k), collected continuously but only from –n∆k to (n–1)∆k. 

Then, the collected data are said to be truncated by the filter given by the rectangular function 

Hw(k) ≡ rect(
k + 

1

2
∆k

W
). The collected data, Sw(k), are computed by: 

 Sw(k) = S(k)∙Hw(k), (4.33) 

where S(k) is the untruncated continuous Fourier transform of the physical spin density, ρ(r). 

The reconstructed image from this data is given by: 

 ρ
w
(r) = FT–1[S(k)∙Hw(k)] = ρ(r)*hw(r). (4.34) 

Here, hw(r) is defined to be the inverse Fourier transform of the Hw(k), or the Point Spread 

Function (PSF). It defines the associated convolutional effects in the image domain, given by: 

 PSF = hw(r) = Wsinc(πWx)e–iπ∆kr. (4.35) 

Hence, the truncated acquisition of k-space yields a sinc-shaped point spread profile, i.e. the 

information in each image location comes from a weighted contribution across the entire 

acquisition space. 
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Other factors that modify the MRI signal may also be modelled as filters, such as relaxation 

exponentials. Furthermore, additional filters may be applied to the data after collection (i.e. 

post-processing) in order to, for example, enhance certain image features. These additional 

filters also have an effect on PSF (more details in Chapter 13 in the book of (Brown et al. 

2014)). 

4.2.5 Noise in MRI 

In MRI, the Signal-to-Noise Ratio is a critical parameter in determining the effectiveness of 

any given imaging experiment. If the SNR is not high enough, it will be impossible to 

distinguish tissues from each other or the background. Since the signal has been discussed to 

some extent in previous sections, the study of the noise properties and the development of 

expressions of SNR that depend on imaging parameters are the primary focus of this section. 

Generally, the noise voltage mainly derives from random fluctuations in the receive coil 

electronics and the sample (Appendix A2). The measured k-space signal is the sum of the true 

k-space signal, S(k), with white noise ε(k) added to it to give the noisy measured signal, Sm(k): 

 Sm(k) = S(k) + ε(k). (4.36) 

Noise ε(k) is typically Gaussian distributed with zero mean and variance σthermal: ε(k) ~ 𝔫(0, 

σthermal). This leads to an image noise variation of σI
2 = σthermal

2 N⁄  in the image domain, with N 

denoting the total number of sampling points. This relationship implies two significant 

properties between data acquisition and image noise: 

1. The variance measured in any voxel in the image domain is the same for all voxels and is 

N times smaller than that of the detected signal. 

2. As N increases to aN (a > 1), e.g. longer sampling, the standard noise deviation in the 

resulting image decreases by a factor of 1 √a⁄ . 

SNR can be improved by repeating an entire imaging experiment Nacq times and averaging the 

signal over these Nacq measurements (Appendix A2). The averaged k-space signal, Sm,av(k), of 

Sm(k) is: 

 Sm,av(k) = 
1

Nacq

∑ Sm,i(k)

Nacq

i =1

. (4.37) 

The SNR of the k-space signal becomes:
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 SNR(k) = 
Sm,av(k)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

σthermal,av(k)
 = √Nacq

S(k)

σthermal(k)
. (4.38) 

Hence, if the noise is uncorrelated from one experiment to the next, the standard noise deviation 

is reduced by a factor of 1 √Nacq⁄ . This yields an increase in SNR by a factor of √Nacq. 

The image data is complex, with white noise in real and imaginary components. In MRI, the 

magnitude image is typically used on many occasions. This linear mapping is known to change 

the noise characteristics (Gudbjartsson & Patz 1995). The signal in magnitude images, ρ̃, 

follows a Rician distribution. The Rician distribution becomes a Rayleigh distribution in the 

case of a signal-free background. The Rayleigh distribution facilitates the estimation of the 

standard noise deviation, σthermal, from the magnitude image. For an unbiased estimate of SNR, 

the Rician noise needs to be considered. Typically, this is achieved by a simple correction of 

the magnitude image intensities, as suggested by (Gudbjartsson & Patz 1995): 

  ρ ≈ √|ρ̃ – σthermal
2 |. (4.39) 

4.3 Data Acquisition 

The previous sections described the principles of k-space sampling. Various image acquisition 

approaches exist, each tailored to the individual goals of an MRI experiment. In the case of 

sodium MRI, the major constraints come from the fast decay of the NMR signal and the 

complex evolution of multiple quantum coherences. This condition requires dedicated 

sequence timing concepts and sampling strategies, which are discussed in more detail in this 

section. 

4.3.1 MRI Sequence Definition: Gradient-Echo Sequence 

An MRI sequence is a specific time scheme of RF excitation pulses, gradients and signal 

sampling, resulting in a specific image appearance. One typical depiction of an MRI sequence 

is the sequence diagram, as shown for a gradient-echo sequence in Figure 4.4. This compact 

depiction shows one block that gets repeated after a Repetition Time (TR). However, the 

repetitions are not identical since some parameters may vary for each repetition, such as the 

phase encoding steps (green block), RF phases and receiver phases. 
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Figure 4.4 Diagram of a 2D gradient-echo sequence. This sequence performs phase encoding (PE) for 

nPE times. The number of frequency encoding (FE) steps is nFE. SS = slice selection. 

The k-space can also be used as a scheme for MRI sequences. The k-space positions traversed 

during the gradient-echo sequence are shown in Figure 4.5. This map is given by the cumulative 

sum of the gradient moments in x and y directions after each excitation according to Eq. (4.15), 

called the k-space trajectory of a sequence. In Figure 4.5, the colour code of the k-space line 

acquisition indicates that this is a centre-reordered gradient-echo sequence with the central k-

space lines acquired first, followed by the outer k-space lines. The k-space trajectory of the 

gradient-echo sequence is a Cartesian grid since the sequence performs Cartesian sampling. In 

the case of Cartesian sampling, MRI images can be directly reconstructed by performing the 

inverse Fourier transform (according to Eq. (4.28)) on the acquired raw data. 

 

Figure 4.5 An MRI sequence scheme using k-space. In addition to the sampling locations (red dots), 

the k-space trajectories (coloured lines) are also given. This scheme reflects the cumulative sum of 

gradient moments and the coverage of the acquired k-space. The colour code from black to magenta 

represents the phase encoding steps from 1 to 12. 
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4.3.2 Non-Cartesian Sampling 

The fast biexponential sodium NMR signal decay with a rapid component of down to 0.5 msec 

necessitates a quick onset of data sampling. Therefore, sodium MRI sampling methods usually 

commence at the centre of the k-space, i.e. right after signal excitation. This centre-out 

sampling scheme often results in non-Cartesian k-space trajectories. In addition, the non-slice-

selective hard pulse is utilised due to its higher efficiency, leading to the Three-Dimensional 

(3D) acquisition of k-space. The most common of such non-Cartesian 3D sampling patterns 

are covered below. 

Radial 

The shortest (i.e. fastest) trajectory towards high spatial frequencies is a straight line from the 

centre of k-space, k0 , to the point of the highest spatial frequency in k-space, kmax . The 

measurement of k-space is performed through successive trajectories radiating out along 

different polar and azimuthal angles. This means that the k-space acquisition is conducted in a 

radial fashion. The recent revival of radial acquisition is mainly due to specialised applications 

with strict time constraints, i.e. short T2 species or real-time MRI (e.g cardiac MRI). Each 

radial spoke describes a projection of an associated plane; therefore, this method is also often 

called projection imaging. Given the centre-out sampling, each spoke encodes a half-projection. 

A uniform sampling of k-space is critical. As shown in Figure 4.6, the work in this thesis 

employed a 3D radial sampling scheme called DIrection SCheme Obtained By ALigning points 

on Latitudes (DISCOBALL) (Stirnberg et al. 2009). This scheme applied a strong simplified 

version of an approach published by (Saff & Kuijlaars 1997) to achieve a uniform distribution 

of points on a sphere. The gradient waveforms of a representative projection of this 3D radial 

sampling scheme are shown in Figure 4.7a.  
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Figure 4.6 DISCOBALL radial k-space sampling. The DISCOBALL scheme employs 4452 projections 

for (a) a homogeneous distribution of points in a sphere and (b) the corresponding k-space trajectories. 

Points and projections are colour-coded from black to red, indicating that DISCOBALL first acquires 

k-space lines at the top and bottom of the sphere and then the k-space projections in the middle. 

 

Figure 4.7 Representative gradient waveforms for 3D radial sampling. Gradient ramp-up and initial 

traversal are identical for (a) 3D radial and (b) 3D density-adapted acquisitions up until k0  at t0 

indicated by the black dashed line. This line marks the onset of density adaption, achieved by a reduction 

in gradient strength and a consequent slow-down in k-space traversal speed. Gradient ramp-down is not 

shown here. 

Whereas radial sampling provides the fastest traversal of k-space from the centre to the 

periphery, the resulting pattern is characterised by substantial variations in sampling density, 

with a high oversampling of the k-space centre and a decrease in density towards higher spatial 

frequencies. This non-uniformity causes a reduction in image SNR due to an inhomogeneous 

distribution of noise in k-space (Liao et al. 1997). 

An improvement in the sampling density of 3D radial trajectories in sodium MRI was proposed 

by (Nagel et al. 2009). The 3D density-adapted radial sampling approach is based on the 

modification of the gradient shapes such that the outer part of the k-space maintains a constant 

sampling density. As shown in Figure 4.7b, the method follows a standard radial trajectory up 

to k0 and then density-corrected sampling from k0 to kmax. The value of k0 is determined by 

hardware limitations, such as maximum gradient strength or slew rate. Density-adapted 3D 

(a) (b)Radial Density-Adapted Radial
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radial sampling has two main advantages: (1) its implementation is relatively simple and 

flexible since it is based on a standard radial sequence; (2) for a fixed readout duration, 

compared with a standard radial sampling, the increased sampling uniformity improves the 

image SNR. 

Various twisted/spiral sampling schemes have also been employed to improve k-space 

sampling uniformity and efficiency, such as Twisted Projection Imaging (TPI) (Appendix A3), 

3D Cones (Appendix A3) and Fermat Looped, ORthogonally Encoded Trajectories (FLORET). 

Fermat Looped, Orthogonally Encoded Trajectories 

When choosing a trajectory, a number of metrics should be considered, such as the time to 

sample a particular volume of k-space, the relative SNR due to data weighting, off-resonance 

artefact expression, motion, sensitivity to eddy currents and the nature of undersampling 

(relevant to parallel imaging and non-linear iterative reconstruction methods). Another 

desirable characteristic is the ease of trajectory design and sequence implementation. 

This thesis adopted a rapid 3D centre-out k-space sampling scheme proposed by (Pipe et al. 

2011). This method is based on a Fermat spiral 2D trajectory, called Fermat Looped, 

ORthogonally Encoded Trajectories (FLORET). The 2D Fermat spiral (Figure 4.8a) is given 

by: 

 kr = c * θ
1 2⁄

, (4.40) 

where c is a constant determining the variable pitch rate; kr and θ are the trajectory radius and 

angle in polar coordinates. The Fermat spiral is characterised by substantial undersampling in 

the centre of k-space, followed by an increase of sampling density towards higher spatial 

frequencies. This can also be seen by taking the derivative of Eq. (4.40) with respect to θ: 

 
dkr

dθ
 = 

c

2
θ

–1 2⁄
 = 

c2

2

1

kr

. (4.41) 

A 3D interleaf is played out in each TR by projecting the base 2D spiral trajectory onto a cone 

concentric with a given axis (e.g. the kz axis), as illustrated in Figure 4.8b. The cone is defined 

by the angle of its surface with a plane perpendicular to this axis (e.g. kx-ky plane), α. 
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Figure 4.8 2D Fermat spiral trajectory. By projecting the base 2D Fermat spiral (a) onto a cone, an 

interleaf of 3D FLORET (b) is generated. The cone is concentric with a given axis shown as the thick 

black line (here defined as the kz axis) and defined by a certain angle, α, between its surface and the 

plane (here kxy plane) perpendicular to the given axis. 

The interleaf played out on a cone at the angle α is based on the base 2D Fermat spiral trajectory 

{bx(t), by(t)} as: 

 

{
 
 

 
 kx(t) = cos(α)  ∙ bx(t)

ky(t) = cos(α)  ∙ by(t)

kz(t) = sin(α)  ∙ √bx
2(t) + by

2(t)

. (4.42) 

In addition, each interleaf is also rotated by an angle, β, about the given axis (e.g. the kz axis) 

by the golden angle (Winkelmann et al. 2007), π ∙ (3 – √5), relative to its neighbours. The set 

of N interleaves formed about a given axis is called a hub, with successive interleaves lying on 

cones with angles linearly changing from +α0 to –α0. Thus, the nth interleaf in a hub is played 

out on a cone at an angle, αn: 

 αn = α0 [1 – 
2n

N – 1
] , n ∈ [0, 1, 2, …, N – 1], (4.43) 

and is rotated about, for example, the kz axis by: 

 β
n
 = nπ(3 – √5). (4.44) 

If the cones are concentric about the kz axis, as denoted thus far, this hub is called a kz hub 

(Figure 4.9a). An important feature of this hub is that as the trajectories fan out with kr, the 

overall angular sampling distance becomes proportional to kr , while the radial sampling 

distance is proportional to 1 kr⁄ . This feature, along with the spacing resulting from the golden 

angle (Eq. (4.44)), leads to a very uniform inter-trajectory spacing. 
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By rotating the kz hub with α0 = 45° around kx by 90°, the ky hub (Figure 4.9b) is generated. 

Similarly, the kx hub (Figure 4.9c) is produced by rotating the kz hub around k𝑦 by 90°. By 

combining these three hubs, the FLORET can thoroughly sample the entire sphere of k-space 

twice in orthogonal directions (three times in some small transition regions) (Figure 4.9d). The 

gradient waveforms of a representative FLORET interleaf of the FLORET sphere are shown 

in Figure 4.10. 

 

Figure 4.9 FLORET k-space trajectories. The (a) kz hub, (b) ky hub and (c) k𝑥 hub are combined to 

form a FLORET sphere in k-space. 

 

Figure 4.10 Gradient waveforms of a representative interleaf of the FLORET sphere in k-space. 

(a) (b)

(c) (d)
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A unique feature of FLORET is the two-fold oversampling in the orthogonal directions. This 

feature creates interesting properties in the presence of deliberate data undersampling. The first 

property is that, in the case of undersampling, the “cross-hatch” sampling pattern keeps the 

undersampling regions both localised and irregular. Figure 4.11 illustrates the effect of uniform 

undersampling by a factor of nine on PSFs. The random pattern of the PSFs is desirable both 

for incoherent representation of undersampling artefacts and for non-linear iterative 

reconstruction (Lustig et al. 2007). Another unique aspect of undersampling in FLORET is that 

the inefficiency inherent in FLORET’s design, i.e. two-fold oversampling, decreases as 

undersampling increases. For example, in the case of Nyquist acquisition, FLORET doubles 

the number of interleaves of a stack of spirals (Mirkes et al. 2016); however, it requires 

approximately the same number of trajectories to sample 1/3 of the volume or less (Pipe et al. 

2011). 

 

Figure 4.11 Undersampling of FLORET results in incoherent aliasing. A (a) fully sampled and (b) 

nine-fold undersampled trajectory sets are illustrated, along with 2D cross sections of their respective 

PSFs (c, d). Source: Figure reproduced from (Pipe et al. 2011) with permission from John Wiley and 

Sons (License No. 5745411307698). 

The FLORET trajectory is gradient-efficient and uniformly spaced, improving SNR and scan 

time efficiency. It has the beneficial properties of centre-out methods with low gradient 

moments, which are desirable for acquiring fast-decaying NMR signals such as sodium signals. 

In addition, FLORET produces very incoherent aliasing artefacts, making it an excellent 

candidate for CS-based reconstruction. Finally, the design and implementation of FLORET are 

straightforward, requiring the design of only one base Fermat spiral waveform. 

4.3.3 Ultra-short Echo Time Acquisition 

The acquisition of a fast-decaying NMR signal requires a dedicated sequence with an emphasis 

on the rapid start of sampling, i.e. ADC onset. The sequence with Ultra-short Echo Time 

described below is one of the sequence families that focuses on the acquisition of fast T2 

species. 

(a) (b) (c) (d)
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UTE sequences implement a straightforward sequence timing concept where signal acquisition 

commences immediately after RF excitation, as in a standard pulse-acquire experiment. The k-

space traversal is performed with signal detection, i.e. all encoding gradients are turned on 

during the ADC. This yields a sampling pattern that commences in the centre of k-space with 

radial or spiral gradient waveforms, as described in Section 4.3.2. For time reasons, RF 

excitation is performed using a more efficient rectangular hard pulse without slice selection 

gradients (Section 4.2.2), which results in a 3D acquisition of k-space. 

Figure 4.12 depicts the sequence diagram of a spiral UTE acquisition. The hardware constraints 

affect the switching time between RF excitation and ADC sampling, commonly denoted 

transmit-receive switch time or dead time, td. For standard clinical systems, this time ranges 

between 40 to 100 us; and yet the waiting time for sampling onset is often chosen 

conservatively more to the longer end of this time range. In addition, the limited B1  field 

strength results in a finite pulse duration, tRF , typically on the order of a few hundred 

microseconds for a π 2⁄ -pulse in sodium MRI at 7T. The sampling onset time, TE, is defined 

as the time interval originating from the system dead time and half the length of the excitation 

pulse: 

 TE = 
1

2
tRF + td, (4.45) 

where the notation TE is slightly misleading since only a simple free induction decay signal is 

sampled, and no echo is created. However, this term is conventionally used for the definition 

of sampling onset in the centre of k-space. 

 

Figure 4.12 Diagram of a spiral UTE sequence. Gradient and data acquisition are synchronised and 

commence after the dead time, td. ADC readout length is denoted as TRO. The echo time, TE, results 

from td and the RF pulse length, tRF.  

RF

Gx,y,z

ADC

tRF

TE

td

TRO
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4.3.4 Multiple-Quantum Filter: Phase Cycling 

As mentioned in Section 3.5, sodium nuclei experience complex evolution of multiple quantum 

coherences in various environments. If the difference in the azimuthal quantum numbers of 

two states is ∆m = ±1, the coherence is related to the transverse magnetisation. If ∆m ≠ ±1, the 

coherence does not lead to observable magnetisation and can only be detected indirectly. A 

sequence of RF pulses that perturbs the equilibrium density matrix, creating transitions with 

∆m ≠ ±1 , and then converts the multiple quantum coherences into observable signal (i.e. 

transverse magnetisation) is called a multiple-quantum filter. It consists of three or more non-

slice selective RF pulses. 

A phase cycling technique (Jaccard et al. 1986) is always associated with a multiple-quantum 

filter to measure signals from different coherence orders. It allows one to capture the signal 

from desired coherence transfer pathways and filter out that from undesired pathways. In most 

MRI experiments, the phase of the transmitter is normally locked to the phase of the receiver. 

Changing these phases independently through phase cycling results in proper signal pathway 

creation. The receiver phase is changed during phase cycling, generally between 0 and π. Only 

the coherences with the same phase shift relative to the receiver will contribute to the signal. 

Thus, the signals are additionally influenced through the receiver phase, φ
rec

, and the numerical 

phase, φ
num

, which is applied in post-processing. The RF pulses of the sequence possess phases, 

which are shifted appropriately, and the resulting signals are dedicatedly added. 

The effect of the phase φ of the RF pulse is to change the axis about which the spin polarisations 

rotate. The rotation axis is still in the xy-plane but subtends an angle φ with respect to the +x-

axis. For example, a pulse of a phase φ = 0 (or π/2) rotates the spin polarisation around the +x-

axis (or +y-axis) through an angle equal to the flip angle of the RF pulse, θ = –γB1τRF, where 

τRF  is the RF duration. The rotating-frame Hamiltonian during the RF pulse is given as: 

ĤRF = –γB1(Îx cos φ  + Îy sin φ) (Levitt 2008). The evolution of the spherical tensor operators 

Tlp (with rank l and coherence order p) under this RF Hamiltonian is given in terms of the arrow 

notation by (Sørensen et al. 1984): 

 Tlp

ĤRF
→ ∑ Tlp'd

p'p

(I)
(θ)e–i∆pφ

p' = I

p = –I

, (4.46) 
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where p' denotes the new coherence order; ∆p = p' – p is the change of the coherence order 

under the RF pulse; I is the nuclear spin quantum number of the nucleus; and d
p'p

(I)
 is the Winder 

rotation matrix elements presented in (Müller et al. 1987). Free precession in the absence of 

RF perturbations changes the rank l  of the tensors without affecting the order. The rank 

indicates the potential of a density operator to evolve for a certain coherence order. For example, 

rank-3 Single-Quantum can evolve to Triple-Quantum coherences, whereas rank-1 SQ 

coherences cannot. 

Since the longitudinal magnetisation possesses the coherence order p = 0, the pathways start 

with this value, and the transverse magnetisation is excited with the first RF pulse and detected 

with the last RF pulse with p = –1, which is the only detectable coherence. Under the influence 

of ith RF pulses with phase φ
i
 (i = 1, …, N), the pathway is characterised by a vector: ∆p = 

{∆p
1
, …, ∆p

N
} . The measured signal  s(t)  is a superposition of contributions from all 

pathways: s(t) = ∑ s∆p(t)∆p . 

For a single pathway, ∆p, the signal s∆p(Φ, t) = s∆p(0, t)e–i∆pΦ is associated with a phase shift 

e–i∆pΦ, which depends on the phases of N RF pulses: Φ = {φ
1
, …, φ

N
} (Bodenhausen et al. 

1984). The separate measurements of the desired coherence pathway, s∆p , is achieved by 

applying a phase cycling scheme for relative RF phases (Zhu & Smith 1995). The phase cycling 

scheme implemented for a sequence is a phase cycle with M steps, with the counter 

j = 0, 1, …, M – 1. This can be used to separate the signals form single pathways using the 

inverse Fourier transform. To acquire signal from the desired pathway, all combinations of j 

for every ith of N RF pulses are combined with single phases being φ
i
 = j

i
2π Mi⁄  as: s∆p(t) = 

M1
–1∙…∙MN

–1∙∑ …
M1 – 1

j1 = 0
∑ s(t)ei(∆p

1
φ

1
 + … + ∆p

N
φ

N
)MN – 1

j1 = 0 . In a sequence consisting of three RF 

pulses, the overall phase change accumulated after the coherence transfer is: Ψ∆p(j) = 

φ
1
∆p

1
(j) + φ

2
∆p

2
(j) + φ

3
∆p

3
(j) + φ

rec
(j) + φ

dig
(j), where φ

dig
 is the phase offset relative to the 

hardware. The signal from pathway ∆p is detected, if M–1∙∑ eiΨ∆p(j)M – 1
j = 0  = 1. 

Multiple phase cycling stores the signals from each phase step sm(t) separately and combines 

them in post-processing: s(P)(t) = ∑ sj(t)e
–iφ

num
(P) (j)M – 1

j = 0 . Index P describes the desired pathway. 

Therefore, the appropriate choice of the numerical phase φ
num

 allows for detecting desired 

pathways.
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4.4 Image Reconstruction 

As described in the previous sections, the relatively complicated signal sampling strategies in 

sodium MRI result in 3D non-Cartesian raw data, justifying the necessity for elaborate image 

computation. 

Non-Cartesian image reconstruction methods can be broadly classified into (1) standard 

reconstruction and (2) non-linear iterative reconstruction. The former aims to calculate an 

image from the measured projections only, whereas the latter determines image formation by 

solving constrained optimisation problems. Since standard reconstruction methods rely solely 

on measured raw data, such methods require a sufficiently sampled k-space, as explained in 

Section 4.2.4. Non-linear iterative approaches can incorporate additional knowledge about the 

underlying objects, enabling the reconstruction of images from NMR signals sampled below 

the Nyquist sampling rate. 

In the following, an introduction to sodium MRI reconstruction is given. After a short 

explanation of the required raw data pre-processing – density compensation, the standard 

reconstruction methods, exemplified by gridding, are described. Furthermore, a typical non-

linear iterative reconstruction approach, Compressed Sensing, is discussed. Finally, the 

evaluation approaches of image reconstruction performance are briefly listed. 

4.4.1 Density Compensation 

Independent of the chosen reconstruction scheme, non-Cartesian raw data requires pre-

processing for the sampling inhomogeneity, which is called density compensation. In general, 

centre-out non-Cartesian trajectory schemes (e.g. 3D radial) suffer from a strong oversampling 

in the central part of k-space. According to Eq. (4.33) – (4.35), the central oversampling results 

in a PSF with a larger Full Width at Half Maximum (FWHM). A “wider” PSF results in a 

degraded localisation performance, which causes blurring and information loss of small 

structures in the reconstructed image. This leads to the realisation that some weighting must be 

included to account for the sampling density. 

A good description of general inhomogeneity compensation can be found in (Pipe & Menon 

1999). In particular, numerical computation of the area associated with each data sample is 

often used as the density estimate. The area is approximated by the spacing of samples along 

the trajectory multiplied by the spacing between adjacent trajectories. This thesis used a 

numerical algorithm called the Voronoi diagram for density estimation (Rasche et al. 1999). 
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The remarkable thing about the Voronoi diagram is its very efficient algorithms for 

computation, making it very attractive for density estimation. 

4.4.2 Standard Non-Cartesian Reconstruction: Gridding 

Generally, non-Cartesian MRI data is reconstructed by using methods that essentially aim to 

associate the measured data with a Cartesian grid. Using the convenient Fourier relationship 

between k-space and image space (Eq. (4.10)), uniformly spaced n-dimensional Cartesian data 

can be reconstructed very efficiently via an n-dimensional Fast Fourier Transform (FFT) 

(Cooley & Tukey 1965). 

For the application of FFT, the sampled data points have to lie on a Cartesian grid. If the 

acquisition scheme is not inherently Cartesian, a gridding reconstruction method can be used 

to approximate the measured data samples onto a Cartesian grid. The basic idea of gridding is 

illustrated in Figure 4.13. Data points lie on certain trajectories through k-space. Each data 

point is convolved with a gridding kernel, and the results are sampled and accumulated on a 

Cartesian grid. After all data samples have been processed, an FFT produces a reconstructed 

image. 

 

Figure 4.13 Basic idea of gridding. The data samples (black dots) lie on some trajectory through k-

space (dashed line). Each data point is conceptually convolved with a gridding kernel (green cone). The 

convolution is evaluated at the adjacent grid points (red arrows). 

The overview of this gridding framework is displayed in Figure 4.14. The overall concept of 

gridding can be described with mathematics as follows (Jackson et al. 1991). 

 

Figure 4.14 Overview of the gridding process. 

Cartesian Grid

Convolution Kernel

K-space Trajectory
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Sampling Data 

As described in Eq. (4.10), the NMR-signal acquisition S in 3D k-space (kx, ky, kz) is related 

to the imaged spin ensemble ρ in 3D image space (x, y, z) through a Fourier Transform: 

  S(kx, ky, kz) = ∫ ρ(x, y, z)exp[–2πi(kxx + kyy + kzz)]dxdydz

∞

–∞

. (4.47) 

According to Eq. (4.17), the sampled signal is denoted Sd and is measured by a non-Cartesian 

sampling function, Fs: 

 
Sd(kx, ky, kz) = S(kx, ky, kz) ∙ Fs(kx, ky, kz), 

with Fs(kx, ky, kz) = ∑ δ(kx – kx,i, ky – ky,i, kz – kz,i)
N
i = 1 , 

(4.48) 

where Fs describes a general discrete sampling with variable density. In case of a non-uniform 

distribution of data samples, the acquired signal, Sd, needs to be compensated for these density-

inhomogeneities. The weighted signal is given as Sdw(kx, ky, kz) = S(kx, ky, kz) ∙ Fs(kx, ky, 

kz) ∙ w(kx, ky, kz), where w(kx, ky, kz) is the density compensation factor of a sampled k-space 

data point at the position of (kx, ky, kz). 

Convolution 

The finite image support yields a convolution of the sampling space with a sinc function (Eq. 

(4.35)). Denoting the sampled and convolved signal, Sdc , this apodisation effect can be 

incorporated through a convolution kernel, C(kx, ky, kz): 

 Sdwc = [S(kx, ky, kz) ∙ Fsw(kx, ky, kz)] * C(kx, ky, kz), (4.49) 

where Fsw(kx, ky, kz)  is the non-Cartesian sampling function after density compensation. 

Ideally, the acquired signal would be convolved with a sinc function. The infinite range of the 

sinc function representing contribution from all measurement points to each grid point makes 

its implementation impractical. Instead, several other convolution functions (e.g. cosines and 

Gaussian) have been investigated in (Jackson et al. 1991). 

A truncated zero-order prolate spheroidal wave function of the first kind is well band-limited, 

i.e. it exhibits minimal energy outside the desired bandwidth. However, it is also 

computationally challenging. The Kaiser-Bessel function approximates this zero-order 

function and has been shown to be an optimal gridding kernel. It is easy to compute the Kaiser-

Bessel in both the frequency and image domains. 
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The One-Dimensional (1D) Kaiser-Bessel function in the frequency domain is formulated as: 

 
CKB(k) = 

I0 [b√1 – (
2k
w
)

2

]

I0(b)
rect (

2k

w
) , 

(4.50) 

where I0 is the zero-order modified Bessel function of the first kind; w denotes the kernel width; 

b is a tunning parameter; and rect is a rectangular function. 

In the image domain, 1D Kaiser-Bessel function becomes: 

 CKB(x) = 
sin (√π2w2x2 – b

2)

√π2w2x2 – b
2

, 
(4.51) 

with kernel width, w, and tunning parameter, b. 

Gridding 

After convolving the sampled data with a finite Kaiser-Bessel kernel, the filtered sampling 

points are gridded onto a Cartesian grid via a “Dirac comb” function: 

 III(
kx

∆kx

, 
ky

∆ky

, 
kz

∆kz

)  = ∑ δ (
kx

∆kx

 – i)

i

∑ δ(
ky

∆ky

 – j)

j

∑ δ (
kz

∆kz

 – k)

k

. (4.52) 

The discretised, convolved, and re-sampled signal is given by: 

 

Sdwcs(kx, ky, kz) = [(S(kx, ky, kz) ∙ Fsw(kx, ky, kz))  * C(kx, ky, kz)] 

∙ III(
kx

∆kx

, 
ky

∆ky

, 
kz

∆kz

) . 

(4.53) 

Inverse Fourier Transform 

By performing an inverse Fourier transform on Eq. (4.53), a reconstructed image, ρ̂ , is 

produced: 

  ρ̂(x, y, z) = [(ρ(x, y, z) * f
sw
(x, y, z))  ∙ c(x, y, z)]  * III(

x

FOVx

, 
y

FOVy

, 
z

FOVz

) (4.54) 

The elements of Eq. (4.54) have various effects. The ideal image, ρ(x, y, z), is first blurred by 

convolution with the inverse Fourier transform of the sampling function, f
sw
(x, y, z) . In 

addition, sidelobes are often created due to the pattern of the samples in k-space (e.g. ring 

sidelobes caused by spiral sampling). Next, the image is apodised (i.e. higher spatial 



4 Magnetic Resonance Imaging 

 
79 

frequencies are scaled down smoothly) by the inverse Fourier transform of the gridding 

kernel, c(x, y, z). While this apodisation effect causes attenuation at the image borders, it also 

has the desirable effect of suppressing the sidelobes generated by the convolution with the 

sampling function. Finally, the finite discrete sampling in k-space causes replication in the 

image space. Sidelobes from the first replicas interfere with the desired image. 

Deapodisation 

The apodisation effect described above can be corrected by dividing the reconstructed 

image, ρ̂(x, y, z), by the inverse Fourier Transform of the applied gridding kernel. For example, 

this deapodisation function is given in Eq. (4.51) for a Kaiser-Bessel window. 

After deapodisation, the reconstructed image, ρ̂, of the detected spin ensemble, ρ, is given as: 

 

ρ̂(x, y, z) = 
1

c(x, y, z)
 ∙ 

{[(ρ(x, y, z) * f
sw
(x, y, z))  ∙ c(x, y, z)]  * III(

x

FOVx

, 
y

FOVy

, 
z

FOVz

)} . 

(4.55) 

Note that the deapodisation occurs after the convolution of the III(∙) function. 

Oversampling 

So far, a severe problem lies in that the adjacent replica sidelobes have the same amplitude as 

the desired image at the edge of the FOV. This problem is because there is no space for a 

transition band between the desired image and the replica sidelobes. This is a consequence of 

reconstructing the image using the same grid as the underlying sampling of the k-space data 

(referred to as the “1X” grid). It is possible to choose a denser grid at the only cost of increased 

computation time. Reconstruction on a denser grid, (
∆kx

α
, 

∆ky

α
, 

∆ky

α
), with α > 1, allows for a 

transition band to move the replica sidelobes out of the FOV and significantly reduce both the 

apodisation and aliasing. Then, the reconstructed image becomes: 

 

ρ̂(x, y, z) = 
1

c(x, y, z)
 ∙ 

{[(ρ(x, y, z) * f
sw
(x, y, z))  ∙ c(x, y, z)]  * III(

x

αFOVx

, 
y

αFOVy

, 
z

αFOVz

)} . 

(4.56) 

After reconstruction, the oversampled image can be cropped to obtain the desired size. In 

practice, a 2X grid (α = 2), i.e. two-fold oversampling, is commonly used and yields good 

performance for most reasonable convolution kernels. The only disadvantage is the increased 
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computation time for the discrete Fourier transform and the fact that it becomes expensive in 

terms of memory requirement in 3D acquisitions. The Non-uniform Fast Fourier Transform 

can be used to speed up Fourier transform calculations for non-uniformly spaced data. Its 

detailed theory is presented in (Fessler & Sutton 2003). 

Part of the work presented in the following 4.4.3 and 4.4.4 sections were published in: Chen Q., Shah N. J., 

Worthoff W. A.: Compressed Sensing in Sodium Magnetic Resonance Imaging: Techniques, Applications, and 

Future Prospects. J. Magn. Reson. Imaging (2022) 55: 1340–1356. 

4.4.3 Non-linear Iterative Reconstruction: Compressed Sensing 

In general, non-uniform acquisition of k-space is inefficient because the Nyquist criterion needs 

to be satisfied in the least densely sampled region of k-space. Consequently, other areas of k-

space are oversampled, which is usually associated with increased measurement times. Long 

MRI scans could lead to motion artefacts, high costs and patient discomfort. 

Accurate reconstruction of specific signals or images from raw data sampled below the Nyquist 

sampling criterion is of central interest in many disciplines. It is the foundation of a sampling 

and reconstruction scheme called Compressed Sensing. CS is based on the principle that an 

image with a sparse representation in a transform domain can be recovered from incoherent 

undersampled k-space data by a non-linear iterative reconstruction. 

In the following, the basic concepts of CS and the application of CS to MRI (in particular, 

sodium MRI) are introduced. The explanation of the theory of CS follows the work of (Candès 

et al. 2006b, 2006a; Donoho 2006). The introduction of the specific application of this theory 

to MRI is based on the work published by (Lustig et al. 2007). 

Biomedical images are naturally compressible with little or no visual loss of information. 

Traditionally, image compression is performed after image acquisition to save transfer time 

and storage space. The image content is transformed to a vector of sparse coefficients through 

compression tools (e.g. wavelet transform or Discrete Cosine Transform (DCT)). Standard 

compression strategies are used to encode the few important coefficients and discard the most 

unimportant or negligible coefficients, thus achieving near-perfect reconstruction of the 

original data. Since sodium MRI suffers from relatively low image quality and associated long 

measurement times, reducing scan time without significantly degrading image quality is critical 

for it to become clinically feasible. The following question naturally arises: Is it possible to 

directly obtain compressed information from MRI images while retaining most of the 

reconstructed image quality? 
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Note that MRI scanners naturally measure Fourier-encoded coefficients (i.e. k-space samples) 

instead of pixels, wavelet or DCT coefficients (Eq. (4.12). Thus, the above question can be 

restated: Can one reconstruct MRI images without significant perceptual loss by sampling a 

small subset of the k-space? The mathematical theory of CS proposed by (Candès et al. 2006b, 

2006a; Donoho 2006) clears the path for MRI acceleration. According to the mathematical 

results, there are three fundamental requirements for the application of CS to MRI (Lustig et 

al. 2007), as follows: 

1. The image must have a sparse representation in a transform domain so that the noise can 

be separated and removed from the desired image content. 

2. The undersampled k-space data should have low coherence so that the generated artefacts 

exhibit a noise-like pattern in the image domain and even more so in a properly chosen 

transform domain. 

3. The desired image should be reconstructed using a non-linear iterative reconstruction to 

balance the sparse representation of the desired image and the data consistency of the 

reconstructed image with the acquired k-space data. 

The above three ingredients are discussed one by one in more detail as follows. 

Transform Sparsity 

A vector is “sparse” if most of its coefficients equal zero and only a few contain all information. 

From the perspective of signal processing, most energy of a sparse signal is contained in a few 

measurements, while others are zero or negligible. In mathematical terms, the transform 

sparsity can produce a sparse vector after a specific transformation, defined as follows: If an 

unknown signal with m samples is a vector, x ∈ ℂm, which can be expressed in terms of an 

orthonormal basis set (ψ
i
: i = 1, …, m) for ℂm (e.g. orthonormal wavelet basis), as follows: 

 θi = ψ
i
x,   i = 1, …, m      or      θ = Ψx, (4.57) 

where θ ∈ ℂm is the transform coefficient set of x; the orthonormal basis set (ψ
i
: i = 1, …, m) 

in matrix form, Ψ ∈ ℂm×m, is known as sparsifying transform operator. Then, the signal, x, is 

said to be k-sparse if only k elements of θ are non-zeroes (k ≪ m), while the remaining (m – k) 

elements are zeroes (as shown in Figure 4.15a). 

Sparsifying transform projects an MRI image into a sparse domain based on some transform 

coefficients, thereby suggesting the number of measurements demanded by exact 

reconstruction. However, selecting the right sparsifying transform tool to exploit the sparsity 
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of a particular class of images is a challenging task and an ongoing research field. Fixed 

sparsifying transform operators are frequently employed in sodium MRI, such as wavelets 

(Blunck et al. 2019), finite differences (Behl et al. 2016; Lachner et al. 2019; Utzschneider et 

al. 2021) or the orthogonal DCT (Blunck et al. 2019). Furthermore, it is possible to conduct a 

sparse representation of sodium MRI images based on a trained dictionary (Behl et al. 2016; 

Platt et al. 2018; Utzschneider et al. 2020, 2021) or others (Adlung et al. 2021; Utzschneider et 

al. 2021). 

 

Figure 4.15 Schematics of fundamentals of a sparse representation. (a) Transform sparsity produces a 

set of sparse transform coefficients, θ, with k  non-zero elements after a sparsifying transform, Ψ, 

operating on a signal, x. (b) An m × 1 𝑘-sparse signal can be converted to an n × 1 set of measurements, 

y, through an n × m sampling matrix, A, (k ≪ n < m). The colours indicate the values of the elements in 

the matrices. The elements of θ in white are zeros. Source: (Chen et al. 2021) with permission from 

John Wiley and Sons (License No. 5745420106236). 

Incoherent Undersampling 

A fundamental requirement of CS is that the aliasing artefacts arising from undersampled k-

space data due to violation of the Nyquist constraint are incoherent (i.e. noise-like) in the image 

domain. Given the fast biexponential relaxation behaviour of sodium signals, non-Cartesian 

UTE k-space sampling schemes are commonly employed in sodium MRI, such as 3D radial 

(Nielles-Vallespin et al. 2007), stacks of spirals (Mirkes et al. 2016), density-adapted 3D 

projection (Nagel et al. 2009), Twisted Projection Imaging (TPI) (Appendix A3) (Boada et al. 

1997, 1997a), flexible TPI (Lu et al. 2010), 3D cones (Appendix A3) (Gurney et al. 2006) and 

FLORET (Pipe et al. 2011). Typically, k-space undersampling is performed by pseudo-
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randomly skipping a subset of phase-encoded lines in a Cartesian acquisition or projections in 

a non-Cartesian acquisition (as shown in Figure 4.16), such as a variable-density sampling 

scheme (Greiser & von Kienlin 2003; Marseille et al. 1996), resulting in reduced scan times. 

The undersampling artefacts exhibit a noise-like pattern in the image domain and even more 

so in a properly chosen sparse domain. 3D non-Cartesian sampling, such as FLORET (Figure 

4.16f), provides better sparsity and thus yields higher CS performance than conventional 2D 

Cartesian sampling characterised by incoherently undersampled phase-encodes and fully-

sampled readouts (Figure 4.16a). This enables 3D non-Cartesian sampling as an outstanding 

candidate for CS-based acceleration (Lustig et al. 2007, 2008). 

 

Figure 4.16 k-space trajectories with two-fold incoherent undersampling. Grey phase-encoded lines or 

projections are skipped, while red ones are measured. (a) 2D Cartesian trajectories with pseudo-

randomly undersampled phase-encoded lines and fully-sampled readouts. (b-f) 3D non-Cartesian UTE 

k-space trajectories that are often used in sodium MRI: (b) 3D radial, (c) stacks of spirals, (d) 3D cones, 

(e) TPI and (f) FLORET. Source: (Chen et al. 2021) with permission from John Wiley and Sons 

(License No. 5745420106236). 

Non-linear Iterative Reconstruction 

In the case of the above undersampling, only n linear measurements (n < m) of the unknown 

signal, x ∈ ℂm, with m samples, are obtained, expressed as: 

 y
i
 = aix,   i = 1, …, n        or        y = Ax, (4.58) 

where ai ∈ ℂm is a known sampling vector in the ith measurement; A ∈ ℂn×m is the sampling 

matrix of dimension n × m ; y ∈ ℂn  is the measured dataset with n  samples from n 

measurements by applying the sampling matrix, A. A more intuitive interpretation of this 

Slice 1

Slice 2

Slice 3

Slice 4

(a) (b)

(d) (e) (f)

(c)
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undersampling is presented in Figure 4.15b. Of special interest is the exact recovery of signal 

x in the extremely undersampled situation, where the number of unknowns (m) is much larger 

than the number of the observations (n), which at first glance might seem impossible. (Candès 

et al. 2006c, 2006a; Candes & Tao 2005) proposed that the signal of interest, x, can be exactly 

recovered by solving the following ℓ1-convex problem if the sampling matrix, A, has the 

restricted isometry property (Candès et al. 2006a): 

 min
x
‖x‖1       subject to      y = Ax, (4.59) 

where the ℓ1-norm is the sum of the amplitudes of vector x. More specifically, for a given 

restricted isometry constant, δ2k, a sampling matrix, A, has a k-restricted isometry property if 

it meets the following condition for all k-sparse vectors x1 and x2 for ℂm: 

 (1 – δ2k)‖x1 – x2‖2
2 ≤ ‖Ax1 – Ax2‖2

2 ≤ (1 + δ2k)‖x1 – x2‖2
2. (4.60) 

There is a high probability of satisfying this condition if the undersampling scheme is 

incoherent and if the amount of measurements is larger than a given constant that is determined 

from the number of samples, m, and the sparsity value, k (Candes & Tao 2005). 

In clinical routine, the signal x is usually transformed onto a specific domain to enhance its 

sparsity as much as possible, thereby decreasing the number of unknowns to achieve near-

optimal image reconstruction, as shown in the unconstrained formula adapted from Eq. (4.59): 

 x̂ = arg min
x
{‖Ψx‖1 + λ‖y – Ax‖2

2} , (4.61) 

where x  is the iteratively reconstructed image; x̂  is the final reconstructed image; y  is the 

acquired k-space raw data; A is the Fourier transform operator; Ψ is the sparsifying transform 

operator that makes Ψx sparse; and λ is a regularisation parameter to balance the ℓ1-norm (i.e. 

the sum of the absolute values of the vector) and ℓ2-norm (i.e. the square root of the sum of the 

squared vector values). Minimising the ℓ1 -norm improves sparsity, whereas the ℓ2 -norm 

constraint ensures data consistency. In other words, among all potential solutions consistent 

with the measured data, y , Eq. (4.61) finds one that is compressible with transform Ψ . 

Furthermore, the Total Variation (TV) norm (i.e. the ℓ1-norm of the variations of neighbouring 

pixels or voxels) can facilitate image restoration since the finite difference operator acts as an 

edge-preserving filter to smooth regions with constant intensity (Rudin et al. 1992). Therefore, 

to enforce the image sparsity in both the transform domain and the finite-difference domain, a 

TV penalty is added to Eq. (4.61), as follows: 
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 x̂ = arg min
x
{αTV(x) + ‖Ψx‖1 + λ‖y – Ax‖2

2} , (4.62) 

where α is the weighing factor for the TV penalty. 

4.4.4 Reconstruction Performance Evaluation 

Researchers face a crucial hurdle – the difficulty of evaluating CS reconstruction performance 

since the true assessment of a reconstruction relies on the diagnostic value of resulting images, 

which clearly cannot be known in a development cycle. Therefore, the quantitative and 

qualitative methods and statistical analysis mentioned below are often used as proxies. 

The quantitative method calculates image metrics by comparing resulting images with ground 

truth images acquired from fully-sampled k-space data by using the standard NUFFT algorithm. 

Common image metrics include Structural SIMilarity (SSIM) in terms of degradation of 

structural information (Adlung et al. 2021; Behl et al. 2016; Blunck et al. 2019; Lachner et al. 

2019; Lachner, Ruck, et al. 2020; Wang et al. 2004), normalised root-mean-square error for 

measuring numerical similarity (Lachner, et al. 2020; Utzschneider et al. 2020, 2021; 

Weingärtner et al. 2015), SNR difference to ground truth (Adlung et al. 2021; Gnahm et al. 

2014; Gnahm & Nagel 2015; Madelin et al. 2012; Zhao et al. 2021) and peak SNR (Behl et al. 

2016). Moreover, quantitative sodium MRI provides Total Sodium Concentration that is linked 

to cellular integrity and tissue viability (Boada et al. 2005; Madelin et al. 2014; Thulborn et al. 

2009; Winkler 1990). Accordingly, the error of TSC to the ground truth can be set as an image 

metric unique to sodium MRI techniques (Adlung et al. 2021; Utzschneider et al. 2021). 

However, for the clinical establishment of an advanced reconstruction technique, its ability to 

show specific pathologies and anatomical structures is more critical to radiologists than 

mathematical matching to a ground truth that might still be flawed. Thus, a qualitative 

assessment is recommended in clinical studies with blinded image quality grading by multiple 

radiologists (Sandino et al. 2020). Image quality can be assessed against a set of criteria, 

including overall image quality, residual artefacts, sharpness, image contrast, perceived SNR 

and diagnostic confidence, with specifically defined scores ranging from 1 (non-diagnostic) to 

5 (excellent) (Adlung et al. 2021; Chen et al. 2018; Sandino et al. 2020). However, even this is 

only a proxy for a true assessment of diagnostic accuracy in clinical practice. 

Suppose the number of consecutive scans is meaningful in statistics (typically greater than 20). 

In this case, statistical analysis can be performed to show the differences between two sets of 

images or two reconstruction approaches (Madelin et al. 2018). Since image metrics (such as 



4.4 Image Reconstruction 

 
86 

TSC error and SSIM) regarding ground truth generally follow a normal distribution, a paired 

Student’s t-test can be applied to assess the statistical significance of image metrics from two 

reconstruction techniques (Adlung et al. 2021). The difference in image quality scores between 

two sets of images can be statistically evaluated by a non-parametric statistical test, e.g. a 

Wilcoxon test, which can check whether the scores of two different reconstructions originate 

from the same distribution (Sandino et al. 2020). Ideally, a CS-based reconstruction for 

undersampled k-space data should yield results from the same distribution as the ground truth 

images. 
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5 Multiple-Quantum-Filtered Sodium MRI at 7T: Optimisation of the Enhanced 

SISTINA Sequence Using FLORET K-space Trajectories 

Data Acquisition 

5.1 Introduction 

Sodium (23Na) plays a key role in cellular metabolism via the regulation of the intracellular and 

extracellular sodium concentration gradient (Madelin et al. 2014; Rose & Valdes 1994). The 

increased intracellular sodium caused by abnormal sodium ion homeostasis is often considered 

a sensitive early indicator of various pathological conditions (Madelin et al. 2014). Multiple-

Quantum-Filtered sodium Magnetic Resonance Imaging was proposed as a non-invasive tool 

Abstract 

Purpose Multiple-Quantum-Filtered sodium Magnetic Resonance Imaging, such as enhanced SImultaneous 

Single-quantum and TrIple-quantum-filtered imaging of 23NA, enables images to be weighted towards 

restricted sodium – a promising biomarker in clinical practice. However, MQF sodium MRI suffers from 

clinically infeasible measurement times and low image quality. This work aims to optimise the enhanced 

SISTINA sequence to promote its potential for image quality improvement and imaging acceleration. 

Method The conventional enhanced SISTINA sequence with Three-Dimensional radial Ultra-short Echo 

Time readouts and 3D Cartesian MQF readouts was optimised at 7T using Fermat Looped, Orthogonally 

Enhanced Trajectories k-space trajectories with high k-space filling efficiency and good undersampling 

potential. The 3D radial (Cartesian) scheme was replaced with a dense (sparse) 3D FLORET scheme for UTE 

(MQF) acquisitions. A qualitative comparison of image quality between the conventional and optimised 

enhanced SISTINA was conducted in three phantom measurements. 

Result The sequence optimisation using FLORET k-space trajectories greatly improved the visual quality of 

UTE images, while maintaining the visual performance of MQF images. Furthermore, it introduced 

incoherence to the MQF raw data, which satisfied one of the requirements for applying Compressed Sensing 

to accelerate enhanced SISTINA. 

Conclusion Successful implementation of an optimised enhanced SISTINA sequence with an incoherent 

sampling scheme at 7T was demonstrated. This sequence optimisation improved/maintained the visual quality 

of images and met the prerequisite for applying CS techniques to enhanced SISTINA for faster acquisition in 

future. 

 

Part of the work presented in this chapter was published in: Chen Q., Worthoff W. A., Shah N. J.: Triple-

Quantum-Filtered Sodium MRI at 7T: Optimization of the Enhanced SISTINA Sequence Using FLORET k-

space Trajectories. Proc. 29th Annu. Meet. ISMRM (2021). 
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to study the in vivo pathological processes at the cellular level by monitoring the restricted 

(mostly intracellular)-weighted sodium content (Choi et al. 2020; Jaccard et al. 1986; Rooney 

& Springer 1991; Shymanskaya et al. 2020; Worthoff et al. 2020). However, MQF sodium 

MRI still needs to improve on the interrelated issues of relatively low image quality and long 

measurement times (often more than 10 minutes). SImultaneous Single-quantum and TrIple-

quantum-filtered imaging of 23NA is a delicate MQF sodium MRI technique that can 

simultaneously acquire Single-Quantum and Triple-Quantum coherence signals from sodium 

nuclei (Figure 3.7) as well as total sodium-weighted signal (Fiege et al. 2013). This work aims 

to optimise the conventional enhanced SISTINA (Worthoff et al. 2019) sequence by employing 

the highly efficient incoherent FLORET (Section 4.3.2) sampling scheme, thus promoting its 

potential for image quality improvement and imaging acceleration. 

5.2 Materials and Methods 

5.2.1 Multiple-Quantum Filter 

A multiple-quantum filter with a twelve-step phase cycling scheme (Worthoff et al. 2019) was 

employed in the enhanced SISTINA sequence. The filter consists of three RF hard pulses with 

flip angles of θ1 = θ2 = θ3 = π 2⁄ , as shown in Figure 5.1. 

 

Figure 5.1 Multiple-quantum filter of the enhanced SISTINA sequence. The filter consists of three 

π 2⁄ -RF hard pulses with an application of a twelve-step phase cycling scheme. The diagram shows two 

possible coherence transfer pathways to yield signals from TQ coherences. Here, τ is the preparation 

time, and δ is the evolution time. Time points are indicated by numbers within blue circles. 

The diagram in Figure 5.1 shows two possible coherence transfer pathways for signals 

originating from TQ coherences. The evolution of the density matrix in terms of spherical 

tensor operators along the TQ pathways is described step-by-step as follows. 
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1. Before t1, i.e. before any RF pulses is applied, the spin system is in equilibrium with a 

density operator of T10. 

2. From t1 to t2, the first RF pulse θ1(φ1
) converts T10 to transverse magnetisation T1±1: 

 T10

θ1(φ1
)

→   –
i

√2
(T1+1eiφ

1 + T1–1e–iφ
1). (5.1) 

3. From t2 to t3, i.e. between the first and second RF pulses, the rank-1 SQ coherence, T11, 

evolves and partially transforms into the rank-2 and rank-3 SQ coherences: 

 T11

τ
→ f

11

1 (τ)T11 + f
21

1 (τ)T21 + f
31

1 (τ)T31. (5.2) 

4. From t3 to t4, the second RF pulse converts the rank-3 SQ coherence, T31, into the TQ 

coherence, T33: 

 T31

θ2(φ2
)

→   –
1

4
T31 + 

√15

4
T33. (5.3) 

However, the rank-1 and rank-2 SQ coherences (T11 and T21) are not affected by the second 

RF pulse, because there is a phase shift of π 2⁄  between the first and second RF pulses. 

5. From t4 to t5, i.e. between the second and third RF pulses, neither the coherence order nor 

the rank is changed: 

 T33

δ
→ f

33

3 (δ)T33. (5.4) 

As only the rank-1 SQ coherences, T11, can be detected, a third RF pulse is required to 

convert the rank-3 TQ coherence, T33, back to the rank-3 SQ coherence, T31, that evolves 

into the detectable SQ coherence, T11, during the Echo Time. 

6. From t5 to t6, the third RF pulse converts the rank-3 TQ coherence, T33, to the rank-3 SQ 

coherence, T31: 

 T33

θ3(φ3
)

→   
1

4
T33 + 

√15

4
T31. (5.5) 

7. From t6 to t7, i.e. during TE, the final detectable signal is generated: 
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 T31

TE
→ f

13

1 (TE)T11 + f
23

1 (TE)T21 + f
33

1 (TE)T31. (5.6) 

Therefore, the final TQ-filtered signal is STQF∝
15

16
f
31

1 (τ)f
33

3 (δ)f
33

1 (TE), where f
31

1 (∙), f
33

3 (∙) and 

f
33

1 (∙) are scaling factors relative to the quadrupolar frequency and the fast and slow transverse 

relaxation rates (Benkhedah et al. 2013). 

Similarly, there are seven possible pathways for signals originating from SQ coherences, listed 

in Table 5.1. 

Table 5.1 Seven SQ coherence pathways. 

 

A twelve-step phase cycling scheme is applied in this filter to separate signals originating from 

SQ coherences and TQ coherences (Worthoff et al. 2019): the first RF phase, φ
1
 = {

π

6
, 

π

2
, 

5π

6
, 

7π

6
, 

3π

2
, 

11π

6
, 

7π

6
, 

3π

2
, 

11π

6
, 

π

6
, 

π

2
, 

5π

6
} , the second RF phase, φ

2
 = φ

1
 + 

π

2
, the third RF phase, 

φ
3
 = 0 and the receiver phase, φ

rec
 = {0, π, 0, π, 0, π, 0, π, 0, π, 0, π}. The numerical phase used 

for filtering TQ signal is φ
TQ, num

 = {0, 0, 0, 0, 0, 0, π, π, π, π, π, π}. The numerical phase for 

filtering SQ signal with coherence order of +1 after the second RF pulse is φ
SQ_p1, num

 = {–

7π

6
, –

5π

2
, –

11π

6
, –

19π

6
, –

5π

2
, –

23π

6
, –

13π

6
, –

7π

2
, –

17π

6
, –

25π

6
, –

7π

2
, –

29π

6
} . The numerical phase for 

filtering SQ signal with coherence order of –1 after the second RF pulse is φ
SQ_n1, num

 = {
2π

3
, 0, 

4π

3
, 

2π

3
, 0, 

4π

3
, 
5π

3
, π, 

7π

3
, 

5π

3
, π, 

7π

3
} . These two filtered SQ signals were summed in post-

processing to form the final SQ signal. 
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5.2.2 Enhanced SISTINA Sequence Implementation 

A conventional enhanced SISTINA sequence with two readout trains (Figure 5.2a) was 

implemented based on the multiple-quantum filter described in Section 5.2.1. 

 

Figure 5.2 Diagrams of enhanced SISTINA sequences. (a) Conventional enhanced SISTINA sequence 

with DISCOBALL UTE and MGRE MQF readouts. (b) Optimised enhanced SISTINA sequence with 

FLORET UTE and FLORET MQF readouts. Source: (Chen et al. 2021). 

As shown in Figure 5.2a, the multiple-quantum filter consists of three π 2⁄ -hard pulses 

separated by a preparation time of τ = 10 ms and an evolution time of δ = 50 us. During the 

preparation time, a five-echo Three-Dimensional-radial Direction Scheme Obtained By Aligning 

points on Latitudes (DISCOBALL) (Figure 5.3a) UTE readout train delivers information on total 

sodium distribution. After the third RF pulse, a multi-echo gradient echo (MGRE) MQF 

readout train provides information on multiple quantum coherences. The gradient moment is 

completely rewound after each readout to mitigate the interference of residual magnetisation 
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on SQ and TQ coherences. Furthermore, after the last MQF readout, a strong gradient is applied 

to spoil the residual transverse magnetisation. 

 

Figure 5.3 k-space trajectories of enhanced SISTINA. (a) DISCOBALL trajectories (4452 projections) 

for UTE readouts of conventional enhanced SISTINA in the first measurement. FLORET trajectories 

for (b) UTE readouts (4464 projections) and (c) MQF readouts (372 projections) of the optimised 

enhanced SISTINA in the third measurement. Source: (Chen et al. 2021). 

The conventional enhanced SISTINA sequence was optimised by employing two sets of 3D 

spiral-based FLORET k-space trajectories (Figure 5.2b). The FLORET trajectories were 

calculated and implemented based on the user-defined parameters of maximum slew rate, 

maximum gradient strength, Field-Of-View, resolution and the number of projections, aiming 

to improve the quality of UTE images and introduce high incoherence to SQ and TQ raw data. 

The FLROET with 4464 projections (Figure 5.3b) was used to replace the 3D-radial 

DISCOBALL, and the FLORET with 372 projections (Figure 5.3c) was employed as the 3D-

Cartesian MGRE. The sequence parameters for the conventional and optimised enhanced 

SISTINA are listed in Table 5.2.  
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Table 5.2 Enhanced SISTINA sequence parameters for three measurements (repetition time = 213.5 

ms, total acquisition time = ~16 min). FWHM: full width at half maximum of the point spread function, 

calculated using the MIRT toolbox. Source: (Chen et al. 2021).

 

5.2.3 Data Acquisition 

All MRI images were acquired on a Siemens 7T Terra scanner (SIEMENS Healthineers, 

Erlangen, Germany) with a maximum gradient of 80 mT/m and a maximum slew rate of 200 

mT/(m*ms). Agarose phantoms (Figure 5.4) were scanned for the validation of the 

conventional and optimised enhanced SISTINA sequences using a dual-tuned single-channel 

1H/23Na transmit-receive birdcage coil (RAPID Biomedical, Germany). This phantom consists 

of multiple tubes with various sodium chloride concentrations in mmol/L and agarose weights 

per deionised water volume in percent for the simulation of less-restricted (2% and 3% agarose) 

and restricted (6% and 10% agarose) environments. Three measurements were conducted to 

evaluate the performance of enhanced SISTINA with different implementations of k-space 

trajectories. The sequence parameters for these three measurements are listed in Table 5.2. A 

conventional enhanced SISTINA (Figure 5.2a) with 3D-radial DISCOBALL (Figure 5.3a) 

UTE readouts and MGRE MQF readouts was performed in the first measurement, and 

DISCOBALL was replaced by 3D-spiral FLORET in the subsequent measurement. In the last 

measurement, both DISCOBALL and MGRE were replaced by FLORET (Figure 5.2a). The 

FLORET k-space trajectories for UTE and MQF readouts are shown in Figure 5.3b and Figure 

5.3c, respectively. Non-Cartesian UTE, SQ and TQ raw data were reconstructed using Jeff 

 

Measure

ment 

Readout 

module 

TE (ms) Bandwidth 

(Hz/pixel) 

Voxel size 

(mm3) 

FOV (mm3) Sampling 

scheme 

FWHM 

(mm) 

Total 

projection 

1 UTE 0.37, 2.27, 4.17, 

6.07, 7.97 

1000 5 iso 320 iso DISCOBALL 10.3 4452 

MQF 10.0, 19.13, 

28.26, 37.39, 

46.52, 55.65 

120 10 iso 320 ´ 240 ´ 200 MGRE   

2 UTE 0.36, 2.26, 4.16, 

6.06, 7.96 

840 5 iso 320 iso FLORET 6.8 4452 

MQF 10.0, 19.13, 

28.26, 37.39, 

46.52, 55.65 

120 10 iso 320 ´ 240 ´ 200 MGRE   

3 UTE 0.36, 2.26, 4.16, 

6.06, 7.96 

840 5 iso 320 iso FLORET 6.8 4464 

MQF 10.0, 13.2, 16.4, 

19.6, 22.8, 26.0 

375 10 iso 320 iso FLORET 14.0 372 
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Fessler’s Michigan Image Reconstruction Toolbox (MIRT) (Fessler & Sutton 2003). B0 

mapping was performed with a dual-echo 3D spoiled gradient-echo sequence, and flip-angle 

maps were obtained using a phase-sensitive B1 mapping sequence (Allen et al. 2011; Morrell 

2008) with a gradient-echo readout. B0 and B1 maps with a resolution of 10 mm cubic were 

acquired to correct SQ and TQ images and were gridded to 5 mm cubic to correct UTE images 

in post-processing (Worthoff et al. 2019). 

 

Figure 5.4 Agarose phantoms. The schematic presents sodium concentrations in mmol/L and agarose 

concentrations in percent (e.g. 2% indicates 2 grams of agarose powder per 100 ml of deionised water). 

The 2% and 3% agarose phantoms simulate the less-restricted environment, whereas the 6% and 10% 

agarose phantoms mimic the restricted environment. Source: (Chen et al. 2021). 

5.3 Results 

Figure 5.5 shows the first-echo UTE, SQ and TQ images after B0 and B1 field correction 

(Worthoff et al. 2019) from the abovementioned three measurements. As can be observed in 

all measurements, UTE images exhibit higher signal intensity in phantoms with higher sodium 

concentrations (e.g. 145 mmol/L) regardless of the agarose concentration, indicating UTE 

images are weighted towards total sodium. SQ images are weighted towards less-restricted 

sodium (2% and 3% agarose) since the restricted sodium (6% and 10% agarose) is more likely 

to evolve from SQ into TQ coherences through the excitation of the multiple-quantum filter. 

As expected, the 2% agarose phantoms show much higher SQ signal intensity than the 6% and 

10% agarose phantoms at similar sodium concentrations. In contrast, the TQ images are 

weighted towards restricted sodium. As expected, the 6% agarose phantoms with a sodium 

concentration of 145 mmol/L present high TQ signal intensity, whereas the TQ signal from 2% 

and 3% agarose phantoms is well-suppressed. The signal intensity of the 10% agarose phantom 
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in the TQ image might be degraded by the fast T2
* relaxation but is still higher than that in the 

SQ image. The above observations suggest that the employment of FLORET sampling schemes 

does not affect the quantum mechanics of the enhanced SISTINA sequence. 

Compared with the first measurement (Figure 5.5a), the replacement of DISCOBALL UTE 

readouts (Full Width at Half Maximum of Point Spread Function = 10.3mm) with FLORET 

(FWHM = 6.8mm) in the second measurement (Figure 5.5b) effectively reduces the image 

blurring and promotes the visual performance of the UTE image (Figure 5.5b left) without 

introducing noticeable difference to the SQ and TQ images (Figure 5.5d middle and right). 

In the last measurement (Figure 5.5c), the substitution of FLORET for MGRE MQF readouts 

has little effect on the UTE images, given the noise-like UTE image difference between the 

second and third measurements (Figure 5.5d left). Furthermore, SQ and TQ images obtained 

from FLORET MQF readouts agree well with those from MGRE MQF readouts. This indicates 

that the non-Cartesian sampling and reconstruction do not significantly affect the visual 

performance of MQF images obtained from FLORET readouts. More importantly, the non-

Cartesian MQF sampling introduces incoherence to SQ and TQ raw data, which satisfies one 

of the requirements for applying CS for scan acceleration. 

5.4 Discussion 

Motivated by the fact that the clinical application of MQF sodium MRI is hindered by long 

measurement times and low image quality, this work implements a novel enhanced SISTINA 

sequence with an incoherent sampling scheme at 7T and demonstrates that the novel enhanced 

SISTINA has better visual performance than the conventional enhanced SISTINA in a phantom 

study. The contrasts of UTE, SQ and TQ images remained unchanged across the three 

measurements. This suggests that modifications to the UTE and MQF sampling schemes have 

little impact on the functionality of the enhanced SISTINA sequence. The employment of 

FLORET to replace DISCOBALL in the UTE readouts can greatly improve UTE image quality 

without significantly affecting MQF data acquisition. 

Furthermore, the introduction of FLORET as an alternative to 3D-Cartesian MGRE in the MQF 

readouts can maintain the performance of SQ and TQ images while preserving the quality of 

UTE images from visual inspection. Moreover, it introduces an incoherent pattern to the SQ 

and TQ raw data, which is required by the CS acceleration.
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The ultra-high field system can offer a higher SNR for MRI images. The optimised enhanced 

SISTINA sequence has excellent potential for the simultaneous acquisition of higher-quality 

UTE, SQ and TQ images in an accelerated scan at 7T by using CS reconstruction, thereby 

promoting its applicability in scientific research and clinical practice. 

 

Figure 5.5 The first-echo UTE, SQ and TQ images after B0 and B1 correction obtained from three 

measurements described in Table 5.2. Source: (Chen et al. 2021). 

5.5 Conclusion 

Successful implementation of an optimised enhanced SISTINA sequence with an incoherent 

sampling scheme at 7T was demonstrated in this study. The optimised enhanced SISTINA 

generally has better performance than the conventional enhanced SISTINA. This sequence 

optimisation satisfies the prerequisite for future application of CS reconstruction to accelerate 

MQF sodium MRI (Chapter 6). 

(d)

UTE SQ TQ

(a)

(b)

(c)
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6 Accelerated Enhanced Simultaneous Single-Quantum and Triple-Quantum-Filtered 

Sodium Magnetic Resonance Imaging Using Compressed Sensing at 7T 

Image Reconstruction 

6.1 Introduction 

Chapter 5 applied enhanced Simultaneous Single-quantum and TrIple-quantum-filtered 

imaging of 23NA technique for restricted (mostly intracellular) sodium-weighted imaging, 

Abstract 

Purpose Enhanced SImultaneous Single-quantum and TrIple-quantum-filtered imaging of 23NA enables 

images to be weighted towards restricted sodium – a sensitive biomarker for metabolic cellular 

dysfunction. However, enhanced SISTINA often suffers from low image quality and associated clinically 

infeasible acquisition times. This study aims to alleviate the above limitation by applying Compressed 

Sensing to accelerate enhanced SISTINA acquisitions at 7T without a noticeable loss of information. 

Methods Fully sampled data were acquired from one phantom and ten healthy subjects at 7T using an 

optimised enhanced SISTINA sequence with a Three-Dimensional spiral-based sampling scheme. The 

fully sampled data were then retrospectively undersampled by various undersampling factors. 

Quantitative evaluation was performed by comparing undersampled CS reconstructions to fully sampled 

and undersampled Non-Uniform Fast Fourier Transform reconstructions. Reconstruction performance 

was assessed using Signal-to-Noise Ratio, Structural SIMilarity, weightings towards total and 

compartmental sodium and in vivo quantitative estimates. 

Results CS-based images have lower noise levels and better structural delineation, while maintaining the 

weightings towards total, non-restricted (mainly extracellular) and restricted (mainly intracellular) 

sodium. CS generally performs better than NUFFT, with higher SNR and greater SSIM, except for the 

SSIM in TQ brain images, which may be due to massive noise contamination. With an undersampling 

factor of up to two, CS enables relatively reliable in vivo quantitative estimates with less than 15% errors. 

Conclusions Compared with NUFFT, CS can accelerate enhanced SISTINA by up to twofold at 7T with 

reduced noise levels, while maintaining primary structural information, reasonable weightings towards 

total and compartmental sodium and relatively accurate in vivo quantification. The associated acquisition 

time reduction has the potential to promote the applicability of enhanced SISTINA in clinical practice. 

 

The work presented in this chapter mainly comes from: Chen Q.,* Worthoff W. A.,* Shah N. J.: 

Accelerated Multiple-Quantum-Filtered Sodium Magnetic Resonance Imaging Using Compressed 

Sensing at 7T. Magn. Reson. Imaging (2024) 1–22. 
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indicating its potential of non-invasive investigation on in vivo pathological processes at the 

cellular level (Choi et al. 2020; Jaccard et al. 1986; Rooney & Springer 1991; Shymanskaya et 

al. 2020; Worthoff et al. 2020). However, the clinical application of enhanced SISTINA is 

hindered by the interrelated issues of relatively low image quality and long acquisition times 

(often more than ten minutes) due to multiple factors (Chapter 5). Compressed Sensing 

(Session 4.4.3) has been shown to speed up sodium Magnetic Resonance Imaging and improve 

the quality of sodium images in various studies (Chen et al. 2022). Since the applicability of 

CS in sodium MRI was first demonstrated in 2012 (Madelin et al. 2012), it has been utilised to 

improve sodium MRI on various anatomical regions, including the human knee (Madelin et al. 

2012), brain (Adlung et al. 2021; Behl et al. 2016; Blunck et al. 2019; Gnahm et al. 2014; 

Gnahm & Nagel 2015; Kratzer et al. 2020, 2021; Weingärtner et al. 2015; Zhao et al. 2021), 

breast (Lachner et al. 2019, 2020), skeletal muscle (Utzschneider et al. 2020, 2021) and human 

torso (Platt et al. 2018). Furthermore, its clinical potential has been preliminarily demonstrated 

in several pathological conditions, such as ischemic stroke (Adlung et al. 2021; Weingärtner et 

al. 2015), multiple sclerosis (Gnahm & Nagel 2015) and brain tumours (Regnery et al. 2020; 

Zhao et al. 2021). However, these studies have only sped up conventional total sodium-

weighted imaging. Intracellular sodium-weighted images are less compressible than total 

sodium-weighted images due to high noise contamination and low image resolution. CS 

acceleration of intracellular sodium-weighted imaging, which may provide greater clinical 

implications, has not been studied. This proof-of-concept study investigated the feasibility of 

using CS to accelerate enhanced SISTINA acquisitions (Fiege et al. 2013; Worthoff et al. 2019) 

at 7T. The optimised enhanced SISTINA sequence introduced in Chapter 5 was used for data 

acquisition (Chen et al. 2021). Fully sampled enhanced SISTINA data were first obtained from 

a phantom and ten healthy subjects and then retrospectively undersampled over various 

UnderSampling Factors (USFs). Finally, CS-based images were compared with fully sampled 

and undersampled images reconstructed using Non-Uniform Fast Fourier Transform to assess 

the impact of CS on image quality, weightings towards total and compartmental sodium, as 

well as in vivo quantitative estimates. 

6.2 Materials and Methods 

6.2.1 Optimised Enhanced SISTINA Sequence 

The optimised sequence for enhanced SISTINA acquisitions (Chen et al. 2021) is schematically 

shown in Figure 5.2b. This sequence employs two sets of Three-Dimensional spiral-based 
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FLORET k-space trajectories, introducing high incoherence into UTE, SQ and TQ raw data 

for CS reconstruction. The sequence has a Repetition Time of 150 ms and a total acquisition 

time of 11 min 10 s. The multiple-quantum filter in this sequence consists of three hard RF 

pulses separated by a preparation time of τ = 9.5 ms and an evolution time of δ = 60 us. The 

flip angles are 𝜃1 = 𝜃2 = 𝜃3 = 90° and the RF phases are φ
1
, φ

2
 and φ

3
 with the application of 

an appropriate twelve-step phase cycling scheme (Worthoff et al. 2019). Table 6.1 lists the 

parameters of the optimised enhanced SISTINA sequence. 

Table 6.1 Sequence parameters of the optimised enhanced SISTINA. TE = echo time; FOV = field-of-

view; FWHM = full width at half maximum; UTE = ultra-short echo time; MQF = multiple-quantum-

filtered; Voxel size = nominal resolution of the reconstructed image. 

 

6.2.2 Data Acquisition 

All MRI raw data were acquired on a Siemens 7T Terra scanner (SIEMENS Healthineers, 

Erlangen, Germany) with an 80 mT/m maximum gradient amplitude and a 200 mT/m/ms 

maximum slew rate. A single-channel transmit-receive dual-tuned 1H/23Na RF coil (RAPID 

Biomedical, Germany) was utilised for both hydrogen and sodium imaging. A cylindrical 

phantom (radius = 9 cm, height = 14 cm) (Figure 6.2a) was scanned to validate the optimised 

enhanced SISTINA sequence. This phantom comprises six compartments with various sodium 

chloride concentrations of {50, 100, 140} mmol/L and agarose weights per deionised water 

volume of {0%, 2%, 6%}  to simulate non-restricted (compartments 1 – 2) and restricted 

(compartments 3 – 6) environments. Brain imaging of ten healthy volunteers (3 females, 29.6 

± 3.8 years) was performed to investigate the in vivo performance of the optimised enhanced 

SISTINA sequence. All human imaging was performed with the approval of the ethics 

committee of RWTH Aachen University, Aachen, Germany. Written informed consent was 

obtained from all volunteers before their participation in the study. In addition, B0 shimming, 

B0 and B1 field mapping, and hydrogen anatomical imaging were conducted during the 

 

Readout 

module 

TE (msec) 
Bandwidth 

(Hz/pixel) 

Voxel size 

(mm3) 

FOV 

(mm3) 

FWHM 

(mm) 

Total 

projection 

Average 

UTE 0.56, 2.41, 4.26, 6.11, 7.96 840 5 cubic 320 cubic 6.8 4464 1 

MQF 

10.50, 19.63, 28.76, 37.89, 

47.02, 56.15 

130 10 cubic 320 cubic 13.7 372 12 
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measurement. The entire measurement took about 30 minutes under the First-Level controlled 

operating mode. 

B0 shimming was applied based on a vendor-supplied 3D shimming routine with hydrogen 

excitation to decrease static field inhomogeneity. For optimisation, the “standard” shimming 

routine was performed two times, followed by the “advanced” shimming routine three times. 

B0 and B1 field maps with a nominal resolution of 10 mm cubic were obtained to correct SQ 

and TQ images and were then gridded to 5 mm cubic to correct UTE images in post-processing. 

Hydrogen anatomical information was acquired to support White Matter segmentation of 

sodium images using an MP2RAGE sequence (Marques et al. 2010) with parameters: inversion 

times of 1 s and 3.2 s; 4° flip angles ; TR of about 8.2 s; TE of 1.91 ms; GRAPPA factor = 1; 

Field-Of-View = 240×224×144 mm3; resolution = 2 mm cubic; and acquisition time of about 

15 minutes. 

6.2.3 Data Undersampling 

Before undersampled image reconstruction, retrospective undersampling was conducted on the 

fully sampled UTE, SQ and TQ k-space raw data by pseudo-randomly dropping a subset of 

projections with five USFs = {1.5, 2, 3, 4, 5} , resulting in decreased numbers of UTE 

projections = {2976, 2232, 1488, 1116, 888}, reduced numbers of Multiple-Quantum-Filtered 

projections = {248, 186, 124, 93, 74}  and accelerated measurement times = 

{447, 335, 224, 168, 134} s. Figure 6.1b and Figure 6.1i show the FLORET k-space trajectories 

of UTE and MQF readouts with original fully Nyquist sampling, respectively. The variously 

undersampled UTE and MQF k-spaces are present in Figure 6.1c-g and Figure 6.1j-n, 

respectively. The pseudo-random undersampling was performed offline on MATLAB 2019a 

(Mathworks, Natick, MA, USA). This undersampling scheme produces noise-like 

undersampling artefacts, which are added incoherently to the sparse representation of FLORET 

non-Cartesian raw data with low coherence. Therefore, the above undersampling combined 

with the FLORET sampling scheme is greatly desirable for CS acceleration. 
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Figure 6.1 FLORET k-space trajectories. (a) and (h) present the first (in red), middle (in green) and 

last (in blue) projections of UTE and MQF FLORET, respectively. Fully sampled (b) UTE and (i) MQF 

FLORET k-space trajectories were pseudo-randomly and retrospectively undersampled by factors of 

{1.5, 2, 3, 4, 5}: undersampled (c-g) UTE and (j-n) MQF k-spaces. TA = total acquisition time. Source: 

(Chen et al. 2024). 

6.2.4 Image Reconstruction 

The traditional non-linear iterative algorithm proposed by (Lustig et al. 2007) was employed 

for CS reconstruction, formulated as a constrained optimisation problem: 

 x̂ = arg min
x
{‖y – Fux‖2

2 + λ1‖Ψx‖1 + λ2TV(x)} , (6.1) 

where ‖∙‖1 and ‖∙‖2 represent the l1- and l2-norms, respectively; x is the iteratively generated 

image; x̂  is the final reconstructed image; y  is the measured k-space data; Fu  is the 

undersampled NUFFT operator; Ψ is the sparsifying transform operator such that Ψx becomes 

sparse; TV is the finite difference operator that promotes image restoration (Rudin et al. 1992); 

and λ1  and λ2  are the weighting factors of the transform sparsity and finite difference, 

respectively. The first term enforces data consistency. The second and third terms promote 

image sparsity in the sparsifying transform domain and finite-difference domain, respectively. 

The minimisation problem in Eq. (6.1) was solved for 320 iterations using a non-linear 

conjugate gradient method with a wavelet transform operator (Lustig et al. 2007). The optimal 

weighting factors, λ1 and λ2, can be different for dataset types; in addition, λ1 and λ2 might vary 

slightly over echoes, subjects and USFs due to differences in raw data. Therefore, an empirical 

search for the best regularisation parameters was conducted for each reconstruction in a range 

of weightings: λ1= [0, 1.0] , step size of 0.1 ; for UTE and SQ, λ2 = 

{0, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5} ; and for TQ, λ2 = 

{0, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. The 

Reference USF=1.5 USF=2 USF=3 USF=4 USF=5
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weighting factors that produced the highest Structural SIMilarity (Wang et al. 2004) were 

selected. 

NUFFT was used to reconstruct fully sampled and undersampled UTE, SQ and TQ raw data 

based on the Michigan Image Reconstruction Toolbox (Fessler & Sutton 2003). The fully 

sampled NUFFT-based images acted as reference images. Each reconstructed image was 

scaled by its maximum intensity to produce an intensity range from 0 to 1 for image comparison. 

All reconstructions were conducted offline on MATLAB 2019a. 

6.2.5 Image Segmentation 

Hydrogen WM was extracted from high-resolution MP2RAGE images. Then, the hydrogen 

WM was binarily masked and linearly coregistered to the UTE reference to produce UTE WM. 

Similarly, the UTE WM was binarily masked and then linearly coregistered to SQ reference to 

obtain WM for SQ and TQ data. Hydrogen WM segmentation and linear coregistration were 

performed with the FAST and FLIRT functions in FSL software (FMRIB, Oxford, UK). The 

resulting partial volume effect maps were thresholded at 0.9, 0.8 and 0.7 to generate binary 

WM masks for MP2RAGE, UTE and SQ/TQ images, respectively. The brain region was 

masked manually with caution to exclude the skull. Likewise, the phantom masks were 

obtained manually with care to avoid partial volume effects. 

6.2.6 Image Evaluation 

SSIM and SNR were employed to assess overall image quality. SSIM compared a test image 

to a reference image via pixel-by-pixel correlation to obtain the structural degradation of an 

undersampled reconstruction. The SSIM value (from 0 to 1) was computed over a certain 

support region (e.g. the entire brain region) to avoid background noise interference. A large 

SSIM value indicates a high similarity between the test and reference images. The signal 

amplitude was corrected in each reconstruction to reduce the noise effect and thus obtain an 

unbiased SNR. The corrected signal is given as Θ = √|mean(signal)
2
 – σnoise

2 |, where σnoise is 

the standard deviation of the noise distribution, which is assumed to follow a Rayleigh 

distribution. The unbiased SNR provided by Θ ∙ σnoise
–1  was determined in a specific region of 

interest (e.g. WM). 

Contrasts of total, non-restricted and restricted sodium were examined to investigate whether 

SISTINA images retain weightings towards total and compartmental sodium after CS 

acceleration. According to the quantum mechanics of SISTINA (Fiege et al. 2013), UTE 
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images exhibit contrast proportional to total sodium content, regardless of the mobility of 

sodium ions. Furthermore, since restricted sodium is more likely to evolve from SQ coherences 

to TQ coherences under multiple-quantum filter excitation, SQ images are weighted towards 

non-restricted sodium, whereas TQ images are weighted towards restricted sodium (Jaccard et 

al. 1986). 

To investigate the CS effect on in vivo quantitative estimates, the Total Sodium Concentration, 

T2f
*  and T2s

*  of WM in all undersampled reconstructions were calculated and compared to those 

values from reference reconstructions. The TSC value in WM, TSCWM, was determined as 

TSCWM = TSCref ∙ SNRWM SNRref⁄ , where the SNR of the vitreous humour of the eyes was 

taken as a reference, SNRref, with a fixed TSC, TSCref = 135 mmol/L (Coe 1969). SNRref was 

calculated based on the top five high-intensity voxels in the vitreous humour to reduce partial 

volume effects. Both SNRWM and SNRref were obtained from the first-echo UTE images to 

mitigate signal loss due to relaxation. T2f
*  of WM was determined from the UTE fit given by 

(Worthoff et al. 2019): 

 SNRUTE = A ∙ exp(–
TEUTE

T2f
*
)  + B ∙ exp (–

TEUTE

T2,fix
*

) , (6.2) 

where A and B are constants; SNRUTE and TEUTE are UTE SNR of WM and UTE echo times, 

respectively. The first term represents the fast relaxation component ( T2f
*  from restricted 

sodium). The second term accounts for the slow relaxation component (T2
* from non-restricted 

sodium and T2s
*  from restricted sodium), assumed to have a fixed slow relaxation time 

T2,fix
*  = 35 ms. The T2s

*  of WM was obtained from the TQ fit given by (Worthoff et al. 2020): 

 SNRTQ = C ∙ [exp(–
TEMQF

T2f
*
)  – exp(–

TEMQF

T2s
*
)]  ∙ [exp(–

λ + τ

T2f
*
)  – exp(–

λ + δ

T2s
*
)] , (6.3) 

where C is a constant; SNRTQ  and TEMQF  are the TQ SNR of WM and MQF echo times, 

respectively; λ = 1 ms is the RF pulse duration; τ = 9.5 ms is the preparation time, and δ = 60 us 

is the evolution time. T2f
*  is the value from UTE fit in Eq. (6.2). If UTE fit was unreliable (i.e. 

the fit error was greater than 50%) or if the fit did not converge, Eq. (6.3) was used to obtain 

both T2f
*  and T2s

*  values (Worthoff et al. 2020).

Statistical analysis was utilised to evaluate the in vivo CS performance. A paired right-tailed 

Student’s t-test was used to compare SSIM and SNR values between NUFFT and CS 
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undersampled reconstructions in ten healthy subjects. A Wilcoxon right-tailed rank sum test 

was applied if SSIM or SNR did not follow a normal distribution (examined by a Lilliefors 

test). P-values of 0.05 or less were considered significant. Descriptive statistics for all 

quantitative parameters (TSC, T2f
*  and T2s

* ) were provided as means and standard deviations 

over all subjects. In vivo quantitative performance was assessed by calculating the difference 

in mean quantitative values between test and reference reconstructions. For example, the 

difference (in %) in TSC from CS is given by ∆ = (TSCCS – TSCref)/TSCref, where TSCCS and 

TSCref  are the mean TSC values over all subjects obtained from CS and reference 

reconstructions, respectively. The quantification of the test reconstruction was considered 

relatively reliable if the absolute differences of these three quantitative parameters were less 

than 15%. 

6.3 Results 

6.3.1 Phantom Results 

The NUFFT and CS reconstructions of the first-echo enhanced SISTINA data from a sodium 

agarose phantom (Figure 6.2a) with various USFs are shown in Figure 6.2b. In the case of 

undersampling, CS is generally superior to NUFFT, with noticeably reduced noise and overall 

better preservation of structures present in the reference images. Moreover, the CS-based 

SQ/TQ images and highly undersampled CS-based UTE images show less noise than the 

corresponding reference images. However, as USFs increase, more blurring occurs in CS-based 

images, which may lead to a loss of information and contrast. 

As shown in Figure 6.2b, for both NUFFT and CS, UTE images show contrast proportional to 

sodium concentration and independent of agarose concentration. However, SQ and TQ images 

show contrast dependent on the agarose concentration: SQ signal intensity decreases, whereas 

TQ signal intensity increases with increasing agarose concentrations. Moreover, the TQ signal 

of sodium liquids with a non-restricted environment is well suppressed. These observations 

align with the quantum mechanics of SISTINA (Fiege et al. 2013). 
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Figure 6.2 Schematic and first-echo enhanced SISTINA images of a phantom. (a) The schematic 

displays sodium chloride concentration in mmol/L and agarose weight/deionised water volume in 

percentage. (b) Visual comparison between NUFFT and CS across all USFs on the first-echo UTE, SQ 

and TQ images of the phantom. Source: (Chen et al. 2024). 

Figure 6.3 presents the quantitative image quality measures for both CS and NUFFT 

reconstructions of phantom data across all USFs and echoes. In various cases of undersampling, 

CS yields better SSIM and SNR values than NUFFT, except that four SQ/TQ SSIM values 

from CS are slightly lower than the values from NUFFT but still show relatively high values 

of approximately 0.9. Moreover, the CS-based SNR values are even greater than the reference 

values in most reconstructions (especially for SQ and TQ). In the case of CS with increasing 

USFs, SNR tends to increase while SSIM decreases slightly, possibly due to blurring and loss 

of small structures caused by strong undersampling. 
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Figure 6.3 Image quality measures for NUFFT and CS reconstructions of phantom (Figure 6.2a) data 

across all USFs and echoes. The fully sampled NUFFT reconstructions were used as references (green). 

NUFFT (blue) and CS (red) reconstructions with various USFs are represented by different colour 

gradients. SSIM values were computed over the entire phantom for (a) UTE and (c) SQ images, and 

over the phantom compartments 3 – 6 for (e) TQ images. SNR was computed over the phantom 

compartment 6 for (b) UTE, (d) SQ and (f) TQ images. The legend in (d) applies to all other subplots. 

Source: (Chen et al. 2024). 

6.3.2 In Vivo Results 

Figure 6.4 shows NUFFT and CS reconstructions of an in vivo dataset with five USFs. From 

visual inspection, CS generally yields remarkedly reduced noise and better structure 

delineation than NUFFT at different USFs. It should be noted that the information contained 

in the TQ reference image may be affected by severe noise contamination, which makes it 

difficult to compare the CS-based undersampled TQ image with the TQ reference image. At 

high USFs (e.g. USF = 4 or 5), even large structures like grey matter are barely visible in 

NUFFT due to the high noise level, whereas grey matter can be reliably delimited in CS. 

However, a loss of contrast and information resulting from excessive smoothing can be 

observed in CS with high undersampling. 
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In Figure 6.4, as expected, the CerebroSpinal Fluid region with the highest sodium concentration 

exhibits the highest brightness in all UTE and SQ images. In contrast, the signal from the CSF 

region with a non-restricted environment is well suppressed in all TQ images. In addition, in 

all TQ images, brain tissues (consisting of grey matter and WM) with both non-restricted and 

restricted environments yield higher signal intensity than the CSF region despite the relatively 

low tissue sodium concentration (Madelin et al. 2014). The weightings towards total, non-

restricted and restricted sodium in in vivo images (Figure 6.4) agree well with those in phantom 

images (Figure 6.2b). 

 

Figure 6.4 Visual comparison between NUFFT and CS on the first-echo in vivo images across all USFs. 

The UTE, SQ and TQ data were obtained from the brain of a 32-year-old healthy female. Source: (Chen 

et al. 2024). 

Reconstruction of data from other volunteers and other echoes yielded similar results. Figure 

6.5 illustrates the quantitative evaluation of NUFFT and CS reconstruction performance using 

SSIM and SNR over ten healthy subjects across all echoes and all USFs. CS produces 

significantly (p ≤ 0.05) higher SNR values than NUFFT in UTE, SQ and TQ images for all 

USFs and all echoes (Figure 6.5b, d, f). Moreover, the CS-based SNR values are higher than 
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the reference values in most cases. As USF increases, NUFFT-based SNR decreases due to 

undersampling, whereas CS-based SNR rises because CS tends to over-smooth at high USFs. 

As shown in Figure 6.5a and c, in UTE and SQ images, CS-based SSIM values are significantly 

better than those from NUFFT, except for a few cases where CS-based SSIM is only 

comparable to NUFFT-based SSIM, but with a sufficiently high value of around 0.9. However, 

in TQ images, most CS reconstructions lead to similar or even worse SSIM compared to 

NUFFT (Figure 6.5e), although CS generally outperforms NUFFT with better preservation of 

the primary structural information for all USFs based on visual inspection (Figure 6.4). Both 

NUFFT-based and CS-based SSIM values decrease as USFs increase, but CS-based SSIM 

decreases more slowly than NUFFT-based SSIM due to the denoising property of CS. 

 

Figure 6.5 Image quality measures for both NUFFT and CS of in vivo data across all subjects, echoes 

and USFs. SSIM and SNR values were calculated from reference (green), undersampled NUFFT (blue) 

and undersampled CS (red) reconstructions. The means and standard deviations of SSIM and SNR 

values over ten healthy subjects are indicated by dots and whiskers, respectively. SSIM (a, c, e) and 

SNR (b, d, f) were calculated over the whole brain region and the WM region, respectively. An asterisk 

(*) is marked if the CS-based SSIM or SNR value is significantly (p ≤ 0.05) higher than that from 

NUFFT. The legend in (d) applies to all other subplots. Source: (Chen et al. 2024). 
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Table 6.2 presents the summary statistics for the quantitative analysis of ten healthy subjects. 

The reference values for WM calculated from original, fully sampled NUFFT-based 

reconstructions are: T2f
*  = 4.8 ± 0.3 ms , T2s

*  = 29.9 ± 2.0 ms  and TSC = 41.9 ± 1.2 mmol/L . 

These values are comparable to values in literatures: T2f
*  from 0.5 ms to 5 ms, T2s

*  from 15 ms 

to 30 ms and TSC of 43 ± 3 mmol/L (Inglese et al. 2010; Niesporek et al. 2015). NUFFT yields 

less than 15% bias in both T2f
*  and TSC for all USFs, whereas quantification of T2f

*  and TSC 

with CS is only reliable at low USFs (1.5 and 2). However, it is worth noting that for all USFs, 

the CS-based T2s
*  values agree well with the reference values, whereas the NUFFT-based T2s

*  

values are overestimated with a difference greater than 15%.

Table 6.2 Summary statistics for quantitative analysis of ten healthy subjects. Quantitative parameters 

( T2f
* , T2s

*  and TSC) obtained from fully sampled NUFFT-based reconstructions, are provided as 

reference values. Values in the form of (mean ± std) represent the means and standard deviations of 

quantitative parameters over ten healthy subjects. Differences between quantitative estimates and 

reference values are provided in parentheses. Differences within the range from –15% to 15% are 

marked in bold. Source: (Chen et al. 2024). 

 

6.4 Discussion 

In this work, CS had three advantages that were especially suitable for accelerating enhanced 

SISTINA. First, CS improved the image quality of undersampled SISTINA images through 

extensive noise suppression and sound structural information recovery. The visual performance 

of CS was better than NUFFT at various USFs, with remarkably reduced noise in both phantom 

(Figure 6.2b) and in vivo (Figure 6.4) measurements, which was confirmed by SNR measures 

(Figure 6.3b, d, f and Figure 6.5b, d, f). Most undersampled CS reconstructions yielded even 

greater SNR values than reference reconstructions. The remarkable noise reduction facilitated 

the delineation of structures in CS, whereas these structures were difficult to distinguish from 

the heavy noise contamination in NUFFT. Consequently, CS generally performed better than 

NUFFT in SSIM measures of phantom (Figure 6.3a, c, e) and in vivo (Figure 6.5a, c) images,  

 
  Reference USF = 1.5 USF = 2 USF = 3 USF = 4 USF = 5 

T2f
*  (ms) 

NUFFT 4.8 ± 0.3 4.5 ± 0.4 (–5%) 4.3 ± 0.4 (–9%) 4.3 ± 0.5 (–9%) 4.1 ± 0.5 (–14%) 4.1 ± 0.5 (–14%) 

CS - 4.3 ± 1.4 (–9%) 4.1 ± 1.2 (–13%) 3.2 ± 1.1 (–33%) 3.3 ± 1.7 (–31%) 3.3 ± 1.6 (–31%) 

T2s
*  (ms) 

NUFFT 29.9 ± 2.0 36.6 ± 2.9 (22%) 38.7 ± 2.8 (30%) 43.4 ± 3.9 (45%) 43.5 ± 3.6 (46%) 44.9 ± 4.1 (50%) 

CS - 28.6 ± 3.3 (–4%) 27.8 ± 3.3 (–7%) 28.9 ± 2.3 (–3%) 28.3 ± 3.0 (–5%) 28.3 ± 3.6 (–5%) 

TSC 

(mmol/L) 

NUFFT 41.9 ± 1.2 42.0 ± 1.2 (0%) 41.6 ± 1.8 (–1%) 42.1 ± 1.1 (1%) 41.4 ± 1.8 (–1%) 41.0 ± 2.3 (–2%) 

CS - 41.9 ± 1.2 (0%) 43.7 ± 1.7 (4%) 47.9 ± 0.8 (14%) 52.8 ± 1.5 (26%) 54.1 ± 2.3 (29%) 
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except for TQ brain images (Figure 6.5e). One possible explanation for the inferior in vivo 

performance of TQ SSIM is that severe noise contamination in TQ brain images may lead to 

biased estimates of SSIM and, in particular, the CS-based SSIM was underestimated by 

comparison of greatly denoised CS-based TQ brain images with heavily noisy TQ reference 

brain images. Despite the lack of reliable metrics, CS generally yielded better visual 

performance than NUFFT in TQ reconstructions across various USFs in both phantom (Figure 

6.2b) and in vivo (Figure 6.4) studies. 

The second advantage of CS was that it had little effect on the weightings towards total, non-

restricted and restricted sodium in SISTINA images from both phantom (Figure 6.2b) and in 

vivo (Figure 6.4) measurements. This implied that with CS-based acceleration, the enhanced 

SISTINA sequence can still maintain its performance in producing UTE images weighted 

towards total sodium and SQ (TQ) images weighted towards non-restricted (restricted) sodium. 

Third, CS enabled relatively reliable quantification of T2f
* , T2s

*  and TSC values at a USF of up 

to two, whereas NUFFT failed in this quantification due to T2s
*  overestimation (Table 6.2). A 

possible explanation for the overestimation of T2s
*  is that the SNR values obtained from 

undersampled NUFFT-based TQ brain images were too low for the signal decay fit routine to 

get reliable T2s
* . 

Despite the abovementioned advantages, there were three prominent limitations and 

considerations in practice when applying CS to enhanced SISTINA. First, no gold standard 

exists for SNR and structure preservation calculations in non-linear iterative reconstructions, 

which makes it difficult to compare different algorithms. Common methods for determining 

SNR values rely on a spatially uniform noise distribution with known statistical characteristics. 

For example, the approach used in this work required a Rayleigh noise distribution. Unlike 

NUFFT-based noise profiles sufficiently described by the Rayleigh distribution, the statistical 

and spatial properties of noise from non-linear iterative reconstructions remain unclear. This 

may introduce bias to the estimation of SNR values (Figure 6.3b, d, f and Figure 6.5b, d, f) and 

other relative parameters, such as T2f
* , T2s

*  and TSC obtained from CS (Table 6.2). SSIM was 

chosen to measure the degradation of structural delineation, but it is only meaningful if the 

ground truth image is known. Since ground truth images were not available in this work, 

reference images were used as an alternative for SSIM calculation. This may result in unreliable 

SSIM values if the reference image is not in line with the ground truth, such as the TQ reference 

brain image being substantially contaminated by noise (Figure 6.4, Figure 6.5e). The structural 
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degradation could be better investigated by calculating a local Point Spread Function (Wech et 

al. 2012). However, it cannot be directly applied to non-Cartesian FLORET k-space data 

because the image reconstruction involves gridding interpolation. 

The second limitation was long reconstruction times and difficult parameterisation of CS. CS 

requires complex iterative algorithms to resolve non-linear optimisation problems, resulting in 

long processing times (often hours). Additionally, manual tunning of regularisation parameters 

was performed in every reconstruction, leading to an excessive computational burden. It was 

observed that CS showed poor generalisation across data types but good generalisation across 

echoes, subjects and USFs. Therefore, the regularisation parameters (λ1 and λ2) can remain 

constant for different echoes, subjects and USFs to mitigate this computational burden. 

Moreover, the CS reconstruction performance was sensitive to parameter tunning. The rigid 

manual tunning based on empirical search may have led to image quality dispersion among 

different echoes and subjects, which may have biased the TSC estimation and echo fit for T2f
*  

and T2s
* . Deep learning has been proposed to enable rapid and accurate reconstruction of 

undersampled data without manual parameter tunning and might be an option to alleviate this 

limitation (Adlung et al. 2021; Wang et al. 2016). 

Third, the noise level reduced with increasing USFs (Figure 6.3b, d, f and Figure 6.5b, d, f), 

while the errors in image contrast (Figure 6.3a, c, e, and Figure 6.5a, c, e) and quantitative 

analysis (Table 6.2) increased. Therefore, consideration must be given to choosing a proper 

USF that balances the above two factors. In this study, CS only enabled a USF of up to two for 

enhanced SISTINA with reduced noise and appropriate maintenance of structural information 

and quantitative estimation with error below 15%. Compared with hydrogen MRI, the 

achievable USF in non-hydrogen MRI is limited, primarily due to the strong noise caused by 

the relatively low NMR sensitivity of non-hydrogen nuclei. Previous studies have indicated 

that the CS performance (Eq. (6.1)) in sodium MRI can be further promoted by incorporating 

hydrogen anatomical constraints (Gnahm et al. 2014; Gnahm & Nagel 2015; Zhao et al. 2021) 

or sparsity in learned dictionaries (Behl et al. 2016; Kratzer et al. 2020, 2021). Furthermore, 

providing prior knowledge about the temporal evolution of signal allowed for a more accurate 

estimation of transverse relaxation times for CS in hydrogen MRI (Zimmermann et al. 2018). 

The above constraints can be added to the CS cost function in Eq. (6.1), which might enable a 

higher USF for enhanced SISTINA.
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6.5 Conclusion 

Driven by the interest in acquisition time reduction for enhanced SISTINA, this proof-of-

concept study demonstrated the feasibility of applying CS to accelerate enhanced SISTINA 

acquisitions of the human brain at 7T. The experimental results on retrospectively 

undersampled k-space data show that CS accelerated enhanced SISTINA by up to twofold at 

7T in this study with higher SNR and better structure preservation compared to NUFFT, while 

maintaining relatively reliable in vivo quantitative estimates and reasonable weightings 

towards total and compartmental sodium. The feasibility of the reduction in acquisition times 

may have the potential to facilitate the applicability of enhanced SISTINA in scientific research 

and clinical practice. 
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7 Conclusion 

The hydrogen nucleus has been the target nucleus for standard MRI applications, with 

descriptive interpretation mainly focusing on tissue contrasts and signal appearance. However, 

the indirect association of the hydrogen nucleus with biochemical processes renders it a rather 

unspecific correlate for various pathologies and makes the traditional MRI inherently 

challenging. 

Sodium MRI, particularly Multiple-Quantum-Filtered sodium MRI, with its essential role in 

various biochemical processes, could significantly improve medical diagnosis and treatment 

planning possibilities. Its direct link to cell integrity and tissue viability allows specific 

interpretation of MQF sodium MRI acquisitions. With a suitable measurement protocol, MQF 

sodium MRI can be interpreted as a clinical biomarker and thus extend and complement current 

imaging techniques. For example, Enhanced SImultaneous Single-quantum and TrIple-

quantum-filtered imaging of 23NA is one of the MQF sodium MRI techniques that can 

selectively detect the distribution of restricted (mostly intracellular) sodium, which may be 

sensitive to metabolic cellular dysfunction. 

MQF sodium MRI has great potential but faces similarly significant challenges. The 

disadvantage is that the clinical application of MQF sodium MRI is mainly hampered by its 

low image quality and long acquisition times. Alleviating these limitations has been the 

primary focus of recent developments in MQF sodium MRI and is also the focus of this thesis. 

In the following, the novel contributions of this work will be summarised, and suggestions for 

future research will be proposed. 

7.1 Thesis Contribution 

This work has emphasised two main aspects of MRI: data acquisition and image reconstruction. 

The main contributions are briefly recapitulated in the following: 

Chapter 5 Data Acquisition In this work, the enhanced SISTINA sequence was optimised for 

7T using Fermat Looped, ORthogonally Encoded Trajectories, which have high k-space filling 

efficiency and good undersampling potential. A qualitative comparison of image quality 

between the optimised enhanced SISTINA sequence and the conventional sequence was 

conducted in phantom measurements. The experimental results showed that the optimised 

enhanced SISTINA sequence greatly improved Ultra-short Echo Time image quality, while 

maintaining MQF image performance and introducing incoherence to the raw data. The 
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sequence optimisation satisfies the prerequisite for applying Compressed Sensing technique to 

enhanced SISTINA for faster scanning. 

Chapter 6 Image Reconstruction In this work, the CS technique was applied to the optimised 

enhanced SISTINA proposed in Chapter 5 to achieve faster acquisition without significantly 

degrading image quality. Quantitative validation of reconstruction performance was conducted 

in both phantom and in vivo measurements. The undersampled CS-based SISTINA images 

were compared to fully sampled and undersampled Non-Uniform Fast Fourier Transform-

based images. The experimental results showed that CS accelerated enhanced SISTINA 

acquisitions by up to twofold in this work with less noise and better structure preservation than 

NUFFT, while maintaining relatively accurate in vivo quantification and proper contrasts of 

total and compartmental sodium. The acquisition time reduction might have the potential to 

improve the applicability of enhanced SISTINA in scientific research and clinical practice. 

In a nutshell, the presented work mitigates the challenges of MQF sodium MRI by (1) 

optimising the enhanced SISTINA sequence for improving image quality and introducing 

incoherence to raw data and (2) applying CS reconstruction to reduce enhanced SISTINA 

acquisition times. Together these findings indicate the potential of MQF sodium MRI in a 

clinical setting. 

7.2 Future Research 

In the future, the clinical potential of CS-based accelerated MQF sodium MRI may be further 

explored in several areas. For example, since the resolution of conventional enhanced SISTINA 

images is commonly sacrificed in favour of shorter acquisition times and a higher Signal-to-

Noise Ratio, the application of CS to achieve MQF sodium MRI with a higher resolution while 

maintaining an acceptable protocol duration offers the potential to yield a clinical significance. 

Furthermore, since the intracellular sodium concentration, volume fraction and molar fraction 

can provide valuable information for medical diagnosis or medical treatment (Shymanskaya et 

al. 2020; Worthoff et al. 2019, 2020), it is worthwhile to investigate the effect of CS on 

intracellular sodium quantification. 

Finally, CS is not limited to sodium MRI but can also be applied to other nuclei with even 

lower Nuclear Magnetic Resonance sensitivity, such as potassium (39K), chlorine (35Cl) and 

oxygen (17O) (Hu et al. 2020). 
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APPENDIX 

A1 Slice-Selective Excitation 

In the presence of gradients, two steps are required to uniquely excite a slice in Two-

Dimensional MRI. First, a slice-selective gradient is applied along an axis perpendicular to the 

desired slice plane, resulting in a linear variation of spin precession frequencies in that direction. 

Second, a specially tailored RF pulse is imposed simultaneously, whose frequency components 

match the narrow range of frequencies contained in the desired slice. The combination of these 

two steps ensures that only nuclei within the selected slice are excited. 

As shown in the figure below, each slice has a different centre frequency, ωc, determined by 

its position, z, along the slice-selective gradient, Gz, given by: 

 ωc = γ(B0 + z∙Gz) = ω0 + γ∙z∙Gz, (A1) 

where B0 is the main magnetic field strength and ω0 is its corresponding Larmor frequency. 

Each slice has a finite width, ∆z , and therefore, it contains a range of spin precession 

frequencies centred around ωc. These quantities are related by the equation below: 

 ∆ω = γ∙∆z∙Gz. (A2) 

In common practice, ∆ω is held constant (on the order of 1-2 kHz) and slice thickness ∆z is 

changed by adjusting Gz. Stronger gradients result in thinner slices, and vice versa. 

In this way, the frequency-encoding gradient uniquely identifies a slice using the centre 

frequency, ωc, to determine the slice position and using the frequency range, ∆ω, to determine 

the slice thickness, ∆z. 

 

Figure A1 Slice-selective excitation. (a) An excited slice of the human brain (red dashed box). (b) the 

relationship between the slice position (z) and the spin precession frequency (ω) in the presence of the 

slice-selective gradient, Gz. 
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The next step is to stimulate the slice with an RF pulse, which uniformly excites a specific 

range of frequencies. The ideal RF excitation to achieve this frequency profile is a so-called 

sinc pulse because it denotes a rectangular spectral profile along an axis. In practice, the sinc 

pulse is modified by a process called apodisation to limit the number of side lobes and change 

its shape. Other pulse shapes, including those with a Gaussian envelope, are also used in 

practice. 

A2 Noise in MRI 

Origin of Noise 

According to Faraday’s law, the magnetic flux produced by the rotating magnetic moments 

creates an electromotive force (emf) in the receive coil. Generally, the noise voltage mainly 

derives from random fluctuations in the receive coil electronics and the sample. The variance 

of the fluctuating noise voltage is given by: 

 var(emfnoise) ≡ σthermal
2 ∝(emfnoise – emfnoise

̅̅ ̅̅ ̅̅ ̅̅ ̅)
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 = 4kT∙R∙BW, (A3) 

where the horizontal bar over a value implies an average value; R is the effective resistance of 

the coil loaded by the body, and BW is the bandwidth of the noise-voltage detecting system. 

As represented in Eq. (A3), the random thermal fluctuations in the measured signal are called 

white fluctuations with a Gaussian distribution.  

Improving SNR by Signal Averaging 

It is well-known that the SNR can be improved by repeating an entire imaging experiment Nacq 

times and averaging the signal over these Nacq measurements. The averaged k-space signal, 

Sm,av(k), of Sm(k) is: 

 Sm,av(k) = 
1

Nacq

∑ Sm,i(k)

Nacq

i =1

. (A4) 

The individual Nacq measurements are assumed to be statistically independent from each other. 

Therefore, the mean signal remains unchanged: 

 Sm,av(k)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  = 
1

Nacq

∑ Sm,i(k)̅̅ ̅̅ ̅̅ ̅̅

Nacq

i =1

 = 
1

Nacq

(NacqS(k))  = S(k). (A5) 

As a result, the noise variance from each measurement, σthermal
2 , adds in quadrature to the total 

noise variance of the average signal, Sm,av(k): 
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 σthermal,av
2 (k) ≡ var (Sm,av(k))  = 

1

Nacq

∑ var (Sm,i(k))

Nacq

i =1

 = 
σthermal

2 (k)

Nacq

. (A6) 

Therefore, 

 σthermal,av(k) = 
σthermal(k)

√Nacq

. (A7) 

The SNR of the k-space signal becomes: 

 SNR(k) = 
Sm,av(k)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

σthermal,av(k)
 = √Nacq

S(k)

σthermal(k)
. (A8) 

Hence, if the noise is uncorrelated from one experiment to the next, the standard noise deviation 

is reduced by a factor of 1 √Nacq⁄ . This yields an increase in SNR by a factor of √Nacq. 

Signal and Noise in Magnitude Images 

The signal in magnitude images, ρ̃, follows a Rician distribution: 

 p
ρ̃
 = 

ρ̃

σthermal
2

exp {–
ρ̃2 + ρ2

2σthermal
2

} I0 (
ρ̃∙ρ

σthermal
2

) , (A9) 

where I0 is the modified Bessel function and ρ is the signal from the background. The Rician 

distribution becomes a Rayleigh distribution in the case of a signal-free background, i.e. ρ → 0: 

 p
ρ̃
 = 

ρ̃

σthermal
2

exp {–
ρ̃2

2σthermal
2

} . (A10) 

The Rayleigh distribution facilitates the estimation of the standard noise deviation, σthermal, 

from the magnitude image. The mean and variance in regions without NMR signal are 

determined analytically by: 

 ρ̅̃ = σthermal√
π

2
,      σρ̃

2 = (2 – 
π

2
) σthermal

2 . (A11) 

For an unbiased estimate of SNR, the Rician noise needs to be considered. Typically, this is 

achieved by a simple correction of the magnitude image intensities, as suggested by 

(Gudbjartsson & Patz 1995): 

  ρ ≈ √|ρ̃ – σthermal
2 |. (A12) 
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A3 Non-Cartesian Sampling 

Twisted Projection Imaging 

Twisted Projection Imaging (TPI) aims to reduce acquisition time by sampling spirally along 

the concentric cones in k-space. Although this implies longer trajectories from the k-space 

centre to kmax, the twisted trajectory design can be optimised to mitigate sampling inefficiency 

simultaneously. The original concept was proposed in 2D by (Jackson et al. 1992), who showed 

that a more uniform sampling density could be achieved by twisting spokes. 

Boada et al. extended this idea into 3D in 1997 (Boada, et al. 1997b). The 3D TPI is shown in 

Figure A2. To ensure spherically symmetric sampling in k-space, the number of sampling 

points inside a spherical shell needs to be proportional to the volume of the shell. TPI consists 

of two main steps: 

1. The sampled sphere in k-space is divided into multiple latitudinal rings. According to the 

Nyquist criterion, the spacing between each circle is designated as FOV-1. Together with 

the centre of k-space, each ring defines a cone over which the sampling points should be 

uniformly distributed. 

2. Due to hardware limitations and the initial condition k0 ≠ 0, the twisting trajectory starts 

after a fraction p of the spoke, i.e. sampling starts radially from the centre of k-space and 

traverses in a twisted way after pk
max

. 

 

Figure A2 Twisted projection imaging. (a) Multiple projections on a concentric cone in k-space. (b) 

The gradient waveforms of a representative projection. 

The choice of p  affects the number of projections required to achieve uniform sampling 

distributions on each cone. A lower fraction of radial sampling trajectory will reduce the 

number of required projections by a factor of p, thus reducing the total data acquisition time by 

a factor of 1 – p. However, a lower p requires a higher slew rate of the readout gradient. 

(a) (b)
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Another consideration in choosing p is the desired readout time. A lower fraction leads to more 

twisting and longer sampling trajectories. The highest traversal speed through k-space is 

limited by the achievable gradient strength and is thus another design parameter in TPI 

acquisitions. It should be noted that p is kept constant throughout the entire acquisition to 

ensure an isotropic PSF. 

TPI significantly reduces acquisition times and provides a uniform sampling pattern for good 

SNR efficiency. However, the complicated k-space trajectory design poses challenges to 

implementation and hardware. Furthermore, the readout trajectory length is inherently limited 

due to the fast decay of the sodium NMR signal. Nevertheless, TPI yielded improved image 

quality compared to standard sodium acquisition schemes with fixed readout durations and 

measurement times (Romanzetti et al. 2014). 

3D Cones 

TPI consists of two components with different sampling strategies: (1) k < k0  is acquired 

radially, and (2) k > k0 is sampled along spiral cone trajectories. The transition between radial 

and twisted sampling usually marks the point of maximum slew rate constraint. Gurney et al. 

proposed the 3D cones in 2006 (Gurney et al. 2006), as shown in Figure A3. 3D cones utilise 

a numerical algorithm for radial and twisted trajectories in 3D, focusing on slew rate constraints. 

The application of 3D cones in sodium MRI has been demonstrated by (Riemer et al. 2014; 

Staroswiecki et al. 2010). 

 

Figure A3 3D cone trajectories. (a) part of the k-space. (b) the gradient waveforms of a representative 

projection. 

The 3D cones trajectories emphasise hardware limitations and provides elegant descriptions of 

gradient waveforms. However, the condition of uniform sampling density is less stringently 

pursued, and therefore, the SNR efficiency is lower compared to TPI and density-adapted radial 

(a) (b)
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acquisitions. Furthermore, the length of each projection varies between different cones, making 

data acquisition difficult. 
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