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A B S T R A C T

While conventional pendulum impact tests only measure a material’s integral energy absorption, 
the instrumented version of the test provides valuable additional insights by extracting force
–displacement behaviour of the loaded specimen. The latter, however, requires auxiliary testing 
equipment, calibration procedures and evaluation methods. Therefore, this study aims to predict 
force–displacement behaviour of instrumented Charpy impact tests solely on the basis of 
analyzing images of specimen fracture surfaces postmortem. This is explored and achieved by 
using unsupervised machine learning techniques for computer vision. By using unsupervised 
computer vision on fracture images from 4 steels, we assess the feasibility of classifying fracture 
surfaces and deriving statistical force–displacement curves and provide crucial interpretability of 
the model’s decision making. The results indicate the model’s ability to learn the necessary 
representations without the need of supervision. The unsupervised model can extract significant 
insights from fracture images alone, supporting efficient, accurate, and interpretable materials 
testing, where confidence intervals of 97 % can already be met for the upper shelf. This allows 
detailed information about the mechanical behaviour of the material to be obtained from non- 
instrumented tests.

1. Introduction

Pendulum or Charpy impact testing is a widely used test method to determine the toughness of a material under impact loading by 
measuring the amount of absorbed energy by the material [1–3]. This is of particular importance for materials used in safety–critical 
components in nuclear power and safety industries such as reactor pressure vessels (RPV), piping and pipeline steels to avoid brittle 
failure. While conventional pendulum impact tests only measure a material’s integral energy absorption, the instrumented version of 
the test provides valuable additional insights by extracting force–displacement behaviour of the loaded specimen. The instrumented 
Charpy V-notch pendulum impact test [4,5], however, requires auxiliary testing equipment, calibration procedures and evaluation 
methods. To complement the well-established and well-defined methods, this study aims to investigate whether the prediction of 
force–displacement curves from fracture surfaces alone is possible using unsupervised learning in order to avoid these additional 
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expenditures.
Although supervised machine learning approaches have proven to be very efficient, the requirement of an extensive and time-costly 

data labeling process constitutes a drawback and the reliance of the annotation process on human input can potentially introduce bias 
or errors [6]. In materials science the supervised computer vision is frequently used for classification of microstructures [7–9] and 
fracture mechanisms [10,11]. Semantic segmentation is used for crack size measurements [12] and fractography [13,14], whereas 
instance segmentation can be utilized for advanced microstructure analysis in cast iron [15] or martensitic steels [16,17]. In contrast, 
unsupervised machine learning describes a kind of machine learning where the model learns from data without human supervision. In 
this context the need for interpretability of the decision making is key for a trustworthy use [18,19]. In materials science, explainable 
AI is an eminently important to increase trust in such approaches [20–22]. Also, it intends to increase adaptation to challenges in the 
industrial context [9,23]. Already, unsupervised computer vision is used to predict fatigue crack growth metrics [24] and pore-scale 
structural analysis of fractured porous media [25]. These types of models also proved applicable to classify steel surface defects image 
data [26] or segment microstructures by mimicking metallurgists pattern recognition [27]. In fault detection, state of the art unsu
pervised models are used for wind turbines [28] as well as defect detection on an atomic scale [29]. Furthermore, Yu et al. [30] used 
unsupervised models for calibration of micromechanical fracture models of ultra-low cycle fatigue in steel structures. An overview of 
computer vision and machine learning for microstructural characterization and analysis was given by Holm et al. [31]. For impact 
testing, machine learning has been used to predict the total impact energy based on chemical composition, heat treatment, 
manufacturing parameters and mechanical properties [32,33]. Bianco et al. [34] trained deep convolutional neural networks to 
correlate the fractographic images with quantitative toughness values. Lee et al. [35] utilized k-means clustering to predict the ductile 
fracture area. However, no in-depth correlation between fractographic features and mechanical behaviour has been investigated. This 
is what our study tries to provide.

We therefore decided to utilize unsupervised computer vision on a database of Charpy V-notch fracture surface images tested in 
previous projects [36–40]. The database consists of a ferritic-bainitic reactor pressure vessel steel of type 22NiMoCr3-7 (see [41]), 

Nomenclature

A Elongation at fracture
CV Coefficient of variation
F Force
Fa Crack arrest force
Fgy General yield force
Fiu Unstable crack initiation force
Fm Maximum force
l Arc-length
nspecimens Number of specimens
s Displacement
sa Crack arrest displacement
sgy General yield displacement
siu Displacement at unstable crack initiation
sm Displacement at maximum force
st Total displacement
s(t) Displacement of test piece at time t
S Distance between anvils (span)
t Time
T0 Master Curve Reference Temperature ASTM E1921
T28J 28 J transition temperature Charpy impact test
UTS Ultimate tensile strength
v0 Initial striker impact velocity
v(t) Striker impact velocity at time t
Wa Crack arrest energy
Wiu Energy at unstable crack initiation
Wm Energy at maximum force
Wt Total impact energy
σ Standard deviation
σy Yield strength
Grad-CAM Gradient-weighted Class Activation Mapping
HAZ Heat-affected zone
PCA Principal component analysis
RPV Reactor pressure vessel
YOLO You only look once
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including the heat-affected zone (HAZ), S3NiMo1 weld (see [42]) metal of this RPV and a quenched and tempered steel of type 
20MnMoNi5-5 for comparison. Three main questions shall be addressed: 

1) Is such a model able to cluster Charpy-V notch fracture surfaces without supervision (e.g., into lower or upper shelf experiments)?
2) Does the model allow us to go beyond and infer previously non-tangible information, like Charpy Impact Energy or force

–displacement curve, from simply using fracture surface image data?
3) Can we determine which features of the fracture surface the model uses to identify the clusters and predict mechanical behaviour? 

Also, we would like to ascertain if this selection process can be comprehended by a human domain expert.

Our approach combines object detection-based data preprocessing, as well as feature extraction and reduction using state-of-the-art 
methods. To provide interpretability, we implemented a gradient-weighted class activation mapping (Grad-CAM) [19]. Selvaraju et al. 
[19] introduced this method to provide the possibility of good visual explanation. By providing an explainable reasoning of the model’s 
decision, the trust in the proposed method shall be increased. Correlations and newfound causalities become reasonable and show 
which parts of the input data contribute most to a particular feature representation or cluster assignment. Thus, this study explores the 
inference of statistical force–displacement corridors [43,44] based on unsupervised fractography for Charpy-V notched pendulum 
impact testing. Our approach could be used to derive the materials energy absorption characteristics without the need for instru
mentation, heavily simplifying the experimental setup and reducing costs. Additionally, we assess the potential use of these models in 
calibration of pendulum impact testing machines.

2. Materials and methods

2.1. Instrumented Charpy V-notch pendulum impact test

In comparison to the Charpy pendulum impact test described in ASTM E23 [1] or EN ISO 148–1 [2], the instrumented Charpy V- 
notch pendulum impact test [4,5] provides further information on the fracture behaviour of the material under impact testing con
ditions by measuring the force F at the time t after the beginning of the deformation at t0. Instrumented pendulum impact tests are used 
to determine the toughness of a material under impact loading by measuring the amount of energy the material is able to absorb and 
characteristic values such as the maximum force Fm, unstable crack initiation force Fiu or crack arrest force Fa can be analyzed [4]. The 
test method is especially valuable in understanding how materials behave under dynamic loading conditions, such as sudden impacts, 
at various temperatures. The characteristic force, displacement and energy values are defined by their suffix, which are defined in 
Table 1. In general, a fit through the oscillations yields reliable characteristic values.

The general experimental workflow is shown in Fig. 1. In the instrumented Charpy V-notch impact test, a V-notched specimen is 
struck by a pendulum hammer, causing it to fracture. The force–displacement curve can be calculated as follows. The measured 
force–time relationship is proportional to the acceleration characteristic. By double numerical integration, the displacement of test 
piece at time s(t) is calculated as 

v(t) = v0 −
1
m

∫ t

0
F(t)dt, (1) 

s(t) =
∫ t

0
v(t)dt, (2) 

where m is the effective mass of the (assumed) rigid pendulum, v0 is the initial impact velocity. The characteristic values of impact 
energy can then be calculated by integrating the F-s curve from

s = 0 mm to the characteristic displacement (e.g., the crack arrest energy Wa at sa). By testing at different temperatures, defined 
characteristic transition temperatures from ductile-to-brittle behaviour (ductile-to-brittle transition temperature) can be found.

According to EN ISO 14556 [4], six characteristic types of F-s curve types can be distinguished (A to F). In turn ASTM E23 [1]
divides the curves into three distinct regimes: lower shelf, upper shelf and ductile-to-brittle transition. In our database curves of type B, 
C, D, E and F are given. Fig. 2 shows exemplary F-s curves for each type in our database. In contrast to EN ISO 14556 [4] we do not 
define type B to show crack arrest. For the lower shelf experiments (type B and C), only unstable crack propagation occurs, the material 
behaviour is exclusively brittle and small displacements are observed. Both stable and unstable crack propagation, including crack 
arrest, can occur for types D and E (ductile-to-brittle transition). The upper shelf curves of type F show only stable crack propagation 

Table 1 
Suffix definitions for characteristic values.

Suffix Definition

gy General yield force / displacement
m Maximum force, displacement / energy at maximum force
iu Unstable crack initiation force, displacement / energy at unstable crack initiation
a Crack arrest force / displacement / energy
t Total displacement / impact energy
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with exclusively ductile failure.

2.2. Material and experimental data

The RPV material, including the heat-affected zone (HAZ), consists of the ferritic-bainitic steel of type 22NiMoCr3-7. The weld 
metal is a ferritic filler material of type S3NiMo1, which has been optimized for the submerged arc welding process. In addition, a 
quenched and tempered steel of type 20MnMoNi5-5 is used for comparison. The mechanical properties of the materials investigated in 
this study are given in Table 2 and were determined in previous research projects [36–40].

22NiMoCr3-7 and 20MnMoNi5-5 show similar yield and ultimate strength (σy and UTS), but the latter exhibits higher toughness in 
terms of 28 J transition temperature and Master Curve reference temperature T0. The weld’s yield strength and UTS are higher, 
whereas toughness is between that of 22NiMoCr3-7 and 20MnMoNi5-5. No tensile tests were performed for the HAZ, but toughness is 
very high as indicated by T28J. In Fig. 3 the absorbed energy for a V-notch test piece KV is given in dependency of the test temperature T 
for all considered materials. For reference, the transition temperature at 50 % of the absorbed energy of the upper shelf Tt50%US is given. 
The HAZ material shows the lowest transition temperature, while 22NiMoCr3-7 exhibits the highest Tt50%US values.

The specimen geometry is given in Fig. 4 with a specimen length of 55 mm and both the thickness and width are 10 mm. All 
specimens have been tested with the same experimental setup using a 300 J pendulum. The pendulum has a mass of 20.278 kg with an 
effective mass of the pendulum corresponding to its effective weight of 1.376 kg. The initial striker impact velocity v0 is constant with 
5.440 m/s. The distance between anvils (span) S is 42 mm. In Fig. 5 a series of tested Charpy-V notch weld material specimens is 
shown. The displayed fracture surfaces range from almost no plastic deformation to high deformation. In total, 150 specimens were 
captured. For 17 specimens no experimental data is available. Nevertheless, these specimens respectively their fracture surfaces are 
valuable input data for the machine learning model.

2.3. Preprocessing of the image data

As the ductile deformation increases with increased energy consumption (Fig. 5), the need for a semi-automated image handling 
becomes apparent. There are two challenges for the creation of the data set. First, for each specimen two fracture surfaces must be 
extracted from the image. To solve this, we decided to train a you only look once (YOLO) model [45], specifically YOLOv5, to detect the 
corners of each specimen half and crop them into separate images. Second, as the ductile deformation increases, the specimen does not 
fully separate in some cases (Fig. 5). For these fracture surfaces the crack plane and image plane are not parallel. To prevent any bias on 
the subsequent clustering due to this, affine transformations have to be applied to ensure that all parallel lines in the original image are 
still parallel in the output image. We implemented the affine transformations using OpenCV [46]. In Fig. 6 the initial workflow for the 
fracture surface detection and subsequent affine transformation is shown. After the affine transformation, all images are resized to a 
size of 512x512 pixels. This workflow is performed automatically for all 150 input images, resulting in a dataset of 300 fracture surface 
images. Before training, the images are converted to grayscale to cover for potential bias due to for example variances in the back
ground color.

To artificially increase the size and diversity of our training dataset, we apply augmentations to our image data. The preprocessing 
and the augmentations (using OpenCV [46] and Torchvision [47]) are summarized in Table 3. The images are flipped using Ran
domHorizontalFlip and RandomVerticalFlip. To account for variability in the lightning conditions, ColorJitter adjusts image bright
ness, contrast, saturation, and hue with the specified ranges. All augmentations are applied with a probability of 50 %.

2.4. Unsupervised computer vision model

In contrast to supervised learning as in [7,10,11,13,48], unsupervised learning describes a kind of machine learning where the 
model learns from data without human supervision. Like this, the model is allowed to discover patterns without human bias, which 
could potentially introduce errors. Additionally, the requirement of extensive and time-costly data labeling can be neglected.

Fig. 1. General experimental workflow.
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The general workflow of our approach is shown in Fig. 7. Our model utilizes a pre-trained ResNet50 architecture [48,49] to process 
the input images. The model was imported using PyTorch respectively Torchvision [47]. By removing the classification layer, the 
feature representations can be extracted from the input images. The features are extracted from the final layer of the network. As a 

Fig. 2. Characteristic force–displacement curves of types B, C, D, E and F.

Table 2 
Mechanical properties of the investigated materials.

Material σy[MPa] UTS[MPa] A[%] T28J[◦C] T0[◦C]

22NiMoCr3-7 433 584 23 − 44 − 64
Weld material 557 634 29 − 66 − 100
HAZ N.A. N.A. N.A. − 131 N.A.
20MnMoNi5-5 447 597 32 − 98 − 114
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result, a 2048-dimensional feature vector can be extracted for every image. To reduce the dimensionality of the feature vector, a 
principal component analysis (PCA) is performed, retaining 95 % of the overall feature variance using Scikit-learn [50]. Like this, the 
dimensionality is reduced to 56 features per image. Our working hypothesis is that the model is able to distinguish between the 5 
different F-s curve types based on the fracture surfaces. Therefore, a k-means clustering is performed, to group the images into 5 
clusters [50]. To visualize the results, the feature vectors are further reduced into two dimensions (PCA components) by performing 
another PCA.

Fig. 3. KV(T) curves for the considered materials (as specified in ISO 148–1).

Fig. 4. Charpy V-notch Impact specimen dimensions (all values in mm).
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3. Results and discussion

3.1. Clustering

After 21 iterations the k-means clustering yields the results shown on the left in Fig. 8. Each fracture surface half is represented by a 
scatter point. The clusters are decoded by their color and their marker shape. Throughout this study, the marker shapes remain 
constant for each cluster (0: , 1: , 2: , 3: , 4: ). The 5 clusters are clearly separable from each other. Along the cluster borders 
only little scattering, for example between cluster 3 and 4, can be observed. As mentioned, no experimental data is available for 17 
specimens respectively 34 fracture surfaces. Nevertheless, these specimens respectively their fracture surfaces are valuable input data, 
as the model has more data available to identify the principal components for clustering. For the following correlation analysis, the 
corresponding 34 fracture surfaces are removed. The results are displayed on the right in Fig. 8.

The key properties of the remaining 133 experiments are summarized in Fig. 9. Regarding the characteristic force–displacement 
curve type, the dataset contains 37 experiments associated with lower shelf experiments (type B and C). Most of the experiments (77) 
belong to the ductile-to-brittle transition region (type D and E) and 19 are associated with the upper shelf region (type F). The material 
types are equally distributed with the most experiments being available for 22NiMoCr3-7 (52). For the other materials at least 26 

Fig. 5. Tested Charpy-V notch weld material specimens with an increase in measured total impact energy from left to right.

Fig. 6. Initial image data preprocessing.

Table 3 
Summary of the preprocessing steps and applied augmentations.

Preprocessing steps Augmentations

cv2.resize(image, (512, 512)) transforms.RandomHorizontalFlip()
transforms.RandomGrayscale(p = 1) transforms.RandomVerticalFlip()
transforms.Normalize(mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 

0.225])
transforms.ColorJitter(brightness = 0.2, contrast = 0.2, saturation = 0.2, hue =
0.1)
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specimens can be considered. The total impact energy is equally distributed amongst the data. The removed specimens mainly belong 
to cluster 4.

In addition, the model categorizes corresponding pairs of fracture surfaces of 12 specimens into different clusters. Since there is no 
ground truth in unsupervised training, these specimens cannot be further evaluated and must be removed for the correlation analysis. 
The removed fracture surfaces are marked in Fig. 8. The most inter cluster mix-up for corresponding fracture surfaces can be observed 
for cluster 3 and 4 (8 specimens). For each other cluster combination only one fracture surface pair must be removed. A gradient- 
weighted class activation mapping (Grad-CAM) analysis shows which parts of the input data contribute most to a particular feature 

Fig. 7. Workflow for unsupervised clustering.

Fig. 8. Left: Results of the k-means clustering (5 labels) for the 300 fracture surface images dataset. Right: Dropouts that cannot be considered in the 
evaluation due to no experimental data (F-s curves) available () or unequal predictions for the different specimen halves (× ).

Fig. 9. Dataset composition for training and correlation analysis regarding the experiment type, the material type and the total impact energy.
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representation or cluster assignment. Selvaraju et al. [19] invented this method to provide the possibility of good visual explanation by 
being class-discriminative (localization) and providing a high resolution. In Fig. 10 three Grad-CAM examples for the inter cluster mix- 
ups are given. All examples have in common that one fracture surface is highly activated (unstable or ductile fracture region), while the 
corresponding half of the specimen is significantly less activated. Accordingly, the model assigns them different clusters. The 
remaining 121 experiments are summarized in Fig. 9. In comparison to the unfiltered dataset, no significant change in dataset 
composition can be observed, as mainly 22NiMoCr3-7 and weld material specimens were removed but the total impact energy dis
tribution remains uniform. Therefore, no correlation can be found between inter cluster mix-ups and the material properties. Also, the 
cluster size is not equally distributed, as cluster 0 is the smallest with only 6 specimens respectively 12 fracture surface images. Cluster 
1, 2 and 3 are equally large with 19, 21 and 24 specimens. Cluster 4, however, is by far the largest, with 51 specimens.

3.2. Correlation analysis

The following correlation analysis corresponds to the 121 specimens where the corresponding pairs of fracture surfaces are 
categorized in the same clusters. In Fig. 11 the results of the correlation analysis plots regarding the material types (left) and F-s curve 
types (right) are given. Although cluster 0 solely corresponds to weld material, all other clusters show a material type mix. In cluster 1 
and 3 the majority of the points correlates to 22NiMoCr3-7 with some weld material specimens present. Cluster 2 mainly responds to 
HAZ material and 20MnMoNi5-5, while cluster 4 hosts all four material types present in the dataset. Due to the material mix in clusters 
2 and 4, the possibility of the model “simply” categorizing the materials, e.g. because of their color or fracture surface features, is ruled 
out. However, for clusters 0 (weld material) as well as 1 and 3(22NiMoCr3-7) a differentiation of material types is recognizable.

For the F-s curve types, a correlation to the clusters can be seen. Cluster 4 represents the upper shelf with curve types F and E. 
Cluster 3 shows a wide range of ductile-to-brittle transition experiments with 4 only fracture surfaces corresponding to type F. For 
clusters 0, 1 and 2 all F-s types except F are represented. The further the points are located from the center, the more F-s curves of type B 
and C occur. Therefore, these clusters can be correlated to a behaviour in between the ductile-to-brittle transition and the lower shelf.

To further examine this observation, the correlation with the total impact energy Wt was performed in Fig. 12. In doing so, a range 
of numerical values can be correlated to the clusters qualitatively. For the total impact energy Wt (plot on the left), a distinct gradient 
can be seen from high Wt values (bright) on the left to low Wt values (dark) on the right. Here, cluster 4 corresponds to upper shelf 
specimens. Cluster 3 and the left parts of clusters 0, 1 and 2 show mid-range total impact energies. These experiments can therefore be 
associated with the ductile-to-brittle transition. The scatter points on the right of clusters 0, 1 and 2 show low Wt values and therefore 
correspond to the lower shelf regime.

To correlate the characteristic values of the F-s curves and the clusters, the difference of unstable crack initiation force Fiu and crack 
arrest force Fa denoted as ΔF was calculated. The results are shown in the right plot of Fig. 12. The results are congruent and emphasize 
the results for the total impact energy, but the gradient is reversed. Upper shelf experiments show only little to no force drop (no 
unstable crack initiation ), as the specimen fail mostly ductile. These specimens are once again located in cluster 4. In the ductile-to- 
brittle transition region, the unstable crack is initiated, but the crack can be arrested (e.g., F-s curve type D). This is resembled by 

Fig. 10. Three Grad-CAM examples for the inter cluster mix-ups (regions defined according to [1]).
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medium range ΔF values. If the unstable crack cannot be arrested, a high drop in force will be measured as there is no crack arrest force 
measurable. To plot the according scatter points, Fa was set to 0 kN. This applies to the F-s curve types B and C. The scatter points are 
located on the right side of clusters 0, 1 and 2.

Providing explainable reasoning or some kind of interpretability of the model’s decision making plays a key role in building 
trustworthiness for the use of (unsupervised) machine learning models. Based on this, correlations and newfound causalities become 
reasonable. Therefore, we once more applied Grad-CAM to our model. In Fig. 13 the results of the Grad-CAM analysis for the five 
different F-s curve types in our dataset are given. The fracture surfaces correspond to the F-s curves given in Fig. 2. In addition, the 
assigned cluster is given for each specimen. Dark red corresponds to high activation. Low activation mapping is decoded in blue. For 
the type B specimen, no ductile fracture is visible on the fracture surface. The Grad-CAM shows a high activation for the center of the 
fracture surface (brittle fracture region) itself, as well as the corners of the notch. For the fracture surfaces corresponding to the type C 
F-s curve, solely the brittle fracture is activated. For the specimen associated to type D, ductile tearing is clearly distinguishable from 
the unstable fracture in the center of the fracture surface. The Grad-CAM analysis shows that the model still focuses on the unstable 
fracture region for its decision making. Additionally, to this, also the area left and right of the shear lips is slightly activated. As the total 
impact energy rises further (type E and F) the regions with the highest activation are changing. For type E the fracture initiation region 
(ductile) is more activated than the unstable fracture region (brittle). Parts of the brittle fracture are even marked as low activated 
regions, which is in contrast to the behaviour observed earlier. Remarkably, the activation of the area next to the shear lips is becoming 
stronger as the ductility grows further (type F).

This means the model tends to classify the lower shelf by its visible unstable or brittle fracture, where the activation of the brittle 

Fig. 11. Correlation analysis for the material types (left) and the F-s curve types (right).

Fig. 12. Correlation analysis for the total impact energy Wt (left) and the difference of unstable crack initiation force Fiu and crack arrest force Fa 

denoted as ΔF (right).
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fracture regions for the clustering is reasonable from a domain expert point of view. The decision-making changes for the higher energy 
specimen, where the focus on the area next to the shear lips is a clear indicator on the decision making of the model being rather simple. 
Rather than solely learning the complex patterns of ductile and brittle fracture, the model instead choses to distinguish the specimen 
shape after testing. This could be reminiscent of the behaviour of non-domain experts (e.g., children) when sorting fractured specimens 
according to their shape first rather than focusing on other, more complex features. However, this also corresponds to domain 
knowledge, since toughness is also commonly determined by lateral expansion measurements [1,51,52], where a higher expansion 
corresponds to higher toughness. Specimens that showed more ductility (types E and F) are mostly grouped into cluster 4 because of 
their distorted shape from the original dimensions. As this feature seems predominant, no further distinction between type E and F is 

Fig. 13. Grad-CAM analysis for different F-s curve types (regions defined according to [1]).

Table 4 
Material specific statistical analysis of the clusters.

Cluster Material nspecimens ΔF[kN] Wt[J]

0 Weld 6 14.7 (±4.3) 37.2 (±33.0)
1 22NiMoCr3-7 16 16.6 (±1.4) 35.5 (±31.9)

Weld 3 13.7 (±1.6) 35.2 (±22.9)
​ Weld 1 11.5 54.6
2 HAZ 10 18.3 (±2.4) 43.9 (±24.9)
​ 20MnMoNi5-5 10 17.8 (±1.5) 55.4 (±27.7)
3 22NiMoCr3-7 19 14.1 (±2.6) 75.4 (±33.3)

Weld 3 3.8 (± 5.3) 127.6 (±56.8)
HAZ 1 9.9 119.2
20MnMoNi5-5 1 15.8 72.1

4 22NiMoCr3-7 13 5.8 (±3.1) 153.8 (±17.7)
Weld 9 4.3 (± 1.9) 154.2 (±24.2)
HAZ 15 3.4 (±4.4) 188.7 (±21.5)
20MnMoNi5-5 14 5.7 (±5.1) 174.5 (±26.0)

J. Rosenberger et al.                                                                                                                                                                                                   



Engineering Failure Analysis 175 (2025) 109551

12

achieved. This also explains the sheer size of the 4th cluster (51 specimens). The specimens with F-s curves of type B, C and D are more 
distinguishable for the model but still there is a mix of types in clusters 1, 2 and 3. The model learns to recognize the different rep
resentations of unstable (brittle) fracture rather than basing its decision on the specimen shape. The Grad-CAM analysis shows that the 
model is basing its decision on domain knowledge without being supervised.

In order to combine the image data with quantitative conclusions and to draw added value from the unsupervised clustering, we 
performed a cluster-sensitive and material-specific statistical analysis of the data. In Table 4, the mean ΔF (ΔF) and Wt (Wt) values are 
given for each material in each cluster. The standard deviation σ is given in brackets. These two characteristic parameters describe the 
overall material behaviour during the pendulum impact test in a meaningful way. The model’s material sensitivity regarding the weld 
material (cluster 0) and the RPV steel (clusters 1 and 3) becomes apparent, as it was observed in Fig. 11 (left). The mean ΔF values 
noticeably differ for the five clusters. While for cluster 4 ΔF ranges from 3.4 to 5.8 kN for all considered materials, ΔF lies above 14 kN 

Fig. 14. Cluster and material sensitive boxplots regarding the total impact energy Wt (boxplot requires min. 5 specimens): triangles indicate the 
mean, orange lines the median value.
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for the other clusters if at least 6 or more specimens are considered per material. This is in agreement to the observations made for 
Fig. 12, where cluster 4 shows the smallest ΔF values. For cluster 2 the ΔF values are the highest, followed by cluster 1 and clusters 
0 and 3 slightly below. Considering the total impact energy Wt similar observations can be made. For cluster 4 Wt ranges from 153.8 to 
188.7 J, while for the other clusters considerably lower values are observed. Also, a clear distinction between the 22NiMoCr3-7 
specimens in cluster 1 and in cluster 3 can be made, as cluster 3 lies above cluster 1. For ΔF no such clear difference can be found. 
In general, HAZ and 20MnMoNi5-5 show higher total impact energies than 22NiMoCr3-7 and the weld material for cluster 4. 
Comparing the clusters 0, 1 and 2, the highest Wt values can be found for 20MnMoNi5-5, followed by the HAZ material. Weld and 
22NiMoCr3-7 show similar but the overall lowest Wt values.

In Fig. 14 material sensitive boxplots are drawn for Wt for each cluster if a minimum number of specimens nspecimens of 5 are 
available. Otherwise, solely the mean value is given indicated by a triangle. Overall, Wt rises with the cluster label. For cluster 0 and 1 
only one material each can be analyzed (weld material and 22NiMoCr3-7). However, in combination with cluster 2, all four material 
types are covered, resembling the lower shelf. In contrast, cluster 4, shows much higher total impact energy values (upper shelf). The 
boxplots for clusters 0, 1 show similar values for weld and 22NiMoCr3-7. In comparison, the HAZ and 20MnMoNi5-5 (cluster 2) boxes 
are slightly elevated and narrower, indicating less scatter. The standard deviation values in Table 4 support this. For 22NiMoCr3-7 
three ranges can be distinguished for Wt, corresponding to the lower shelf (cluster 1), the ductile-to-brittle transition (cluster 3) 
and the upper shelf (cluster 4).

In summary, the correlation analysis connecting clusters with material properties and the interpretability provided by the Grad- 
CAM analysis allow us to use the model for quantitative inference, where from a fracture surface image a prediction regarding the 
characteristic F-s curve parameters like Fiu or Fa and the total impact energy Wt can be made.

3.3. Inference of Force-Displacement behaviour

To fully utilize the potential of the methodology, we inferred material type sensitive statistical F-s curves for each cluster, using the 
characteristic force–displacement values and derived a statistical response corridor. It is calculated using the ARCGen python library 
by Hartlen et al. [43]. The method consists of three stages: arc-length reparameterization, signal registration and statistical analysis.

The arc-length reparameterization (first stage) scales a set of n input signals (F-s curves) and computes the arc-length l for each 
point in the signal. The components si,j and Fi,j are scaled by the mean extrema (smax, smin, Fmax, Fmin) of all signals 

ŝi,j =
si,j

smax − smin
, (3) 

F̂ i,j =
Fi,j

Fmax − Fmin
, (4) 

where j denotes an arbitrary point of the i th signal (i = 1,⋯,n). This maintains the relative shape and size of each F-s curve relative to 
one another. Starting at the first point of each individual signal and assuming linear behaviour between discrete points, the arc-length 
of each j th data point li,j can be computed as 

li,j =
∑j

k=2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
ŝi,k − ŝi,k− 1

)2
+
(
F̂ i,k − F̂ i,k− 1

)2
√

. (5) 

Following, the arc-length is normalized (denoted as ̂li,j) to the total arc-length of each individual signal. Now both components (axes) of 
each signal can be defined with respect to the normalized arc-length, yielding si (̂li) and Fi (̂li). By resampling at regular intervals with 
respect to ̂l, all signals have the same number of points. These points are also located at the same normalized arc-lengths, which is 
necessary for the statistical analysis in stage three.

In the second stage (signal registration), critical features such as Fgy, Fm or Fa are aligned using warping functions to prevent 
distortion, when determining the characteristic averages. This assumes that for all signals the critical features occur at approximately 
the same normalized arc-length. The normalized arc-length was remapped using strictly monotonic and signal-specific warping 
functions hi (̂l) in the form of monotonic cubic Hermite interpolation splines. Two exterior control points ([0,0] and [1,1]) were 
defined. In this study, the number of interior control points used in the warping functions was set to 2. The penalty factor, that in
fluences the amount of warping, was set to 10-2. Larger values will minimize the degree of warping. After re-parameterization and 
signal registration, the normalized arc-length is used to infer a point-wise statistical analysis (third stage) under the assumption, that 
all points at a given normalized arc-length are uncorrelated and normally distributed. This includes computing the mean of all signals 
at each normalized arc-length and calculating the standard deviation for s and F at each point. To compute the uncertainty, a two- 
dimensional uncorrelated normal distribution was used 

f(s, F) =
1

2πσsσF
exp

(

−
1
2

[(
s − s

σs

)2

+

(
F − F

σF

)2
])

, (6) 

where s and F are the mean of all points at a given arc-length and their respective standard deviations are σs and σF. This results in a 
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confidence region (ellipse) centered at the mean values s and F with axes of 1σs and 1σF. The corridors have a confidence of 68.3 % for 
one axes (solely considering s or F) and 39.4 % for the two-dimensional normal distribution [53]. Based on the statistical F-s curve, a 
characteristic average total impact energy could be inferred.

In Fig. 15 selected examples of inferred confidence interval of the F-s curves and corresponding total impact energy are given for all 
clusters and material types. For cluster 0, a statistical F-s curve corridor is shown for the weld material. Lower shelf experiments of type 
B and C with st = 1.03 (±0.18) mm and Wt = 14.5 (±3.1) J are considered. For cluster 1, the predicted 22NiMoCr3-7 F-s curve corridor 
is wider and considers more experiments. The total displacement st ranges roughly between 0.5 and 2 mm with a mean total 
displacement st of 1.22 (±0.88) mm. The expected total impact energy to be absorbed by a specimen classified in cluster 1 showing no 
crack arrest is low with 16.9 (±13.9) J. Cluster 2 is represented by HAZ data. The ductile-to-brittle transition (F-s curve types D and E) 
yields a mean total displacement of 5.74 (±2.43) mm and mean total impact energy of 63.5 (±20.2) J, which is slightly below the 
values for 22NiMoCr3-7 but with equal standard deviations. Here, st is inferred with 9.61 (±2.54) mm and Wt can be expected at 88.6 
(±22.8) j. For cluster 4, the statistical F-s curve corridors for 20MnMoNi5-5 and the HAZ are given. Both show F-s curves of type F. Both 
materials show high total impact energies with Wt = 202.0 (±3.9) J for 20MnMoNi5-5 and Wt = 196.5 (±16.5) J for the HAZ, where 
the standard deviation is increased for the HAZ. The mean total displacement is slightly higher for 20MnMoNi5-5 compared to the HAZ 
(25.41 (±1.07) mm vs. 21.62 (±2.37) mm)

The results of the material sensitive inferred mean total impact energy values per cluster and F-s curve type are summarized in 
Table 5. 20MnMoNi5-5 has the toughest properties, ahead of those of the HAZ and 22NiMoCr3-7 and the weld. To display the vari
ability in relation to the mean of the.

Wt population, we calculate the coefficient of variation CV. It is defined as 

CV =
σ

Wt
, (7) 

where σ is the standard deviation and Wt is the mean. The coefficient of variation shows that the statistical response corridor for the 
total impact energy is much narrower for the upper shelf (e.g., CV = 1.9 % for 20MnMoNi5-5 in cluster 4) and the ductile-to-brittle 
transition curves (e.g., CV = 9.7 % for 22NiMoCr3-7 in cluster 4) than for the lower shelf experiments (cluster 1 22NiMoCr3-7, cluster 2 
HAZ and 20MnMoNi5-5), where CV reaches values up to 82.2 %. Only for the weld material, the CV is equal for both lower and upper 
shelf. However, the upper shelf weld material F-s curves exhibit much larger scatter (CV = 16.6 %) than the other materials due to the 
non-homogeneity.

The small statistical response corridors (low standard deviations) for the upper shelf experiments in cluster 4 for all materials 
except the weld material, can be explained by the homogeneity of the material [51,52]. The response of the material is predominantly 
plastic, resulting in a more uniform and stable fracture mechanism (microvoid nucleation and coalescence [54]) and therefore less 
variation in impact energy measurements compared to cleavage fracture which is governed by weakest-linkFor the lower shelf (e.g., 
clusters 1 and 2), the material undergoes brittle fracture, where little to no plastic deformation occurs, and cracks propagate unstable 
with minimal energy absorption. Brittle fracture is a statistical event [54] and highly sensitive to microstructural features [55,56], 
leading to more scatter in the measured impact energies. To improve the model’s sensitivity and allow for a narrower statistical 
response corridor with high confidences (e.g., ± 3σ respectively 99.7 %) for all materials and clusters, further training on additional 
ductile-to-brittle transition and lower shelf region data would be required.

Nonetheless, our results indicate that this approach provides a feasible methodology for statistical inference of force–displacement 
curves and total impact energies from fractographic information alone. Our approach has enormous potential, as the fracture me
chanical behaviour and the energy absorption characteristics of the material can be assessed without the need of instrumentation. The 
non-instrumented Charpy-V notch impact test in combination with a post-mortem fracture surface analysis simplifies the experimental 
setup and reduces costs, which enables broader application. For our data, this could already be applied for the quenched and tempered 
20MnMoNi5-5 experiments in cluster 4 that fail solely ductile (upper shelf). For this specific material, the statistical corridor for Wt 
with a confidence of ± 3σ would be roughly ± 12 J, meaning that a test falling into this regime has a 99.7 % confidence of being 
representative for the materials upper shelf behaviour. Naturally, the scatter band for the transition region experiments is larger. 
Thinking of instrumented tests, our results also yield the possibility of extending the calibration procedure of the testing machine. 
Additionally to the specific statistical calibration described in [4] our approach also considers the fracture surface. A user could 
evaluate several Charpy-V notch specimens of a specific material type on an uncalibrated pendulum impact testing machine. The 
model could classify the specimens fracture surface following the experiment and suggest a statistical F-s curve corridor (inferred on a 
calibrated system) based on the cluster and material. If the measured force–displacement curve falls within this statistical range, it can 
be inferred that the testing machine operates with sufficient accuracy for use in this application.

4. Conclusions

Our study shows, how an unsupervised computer vision models can be used for quantitative fractography of Charpy-V notch 
pendulum impact tested specimens, where material type sensitive statistical F-s curves are inferred with a statistical response corridor 
of ± 1σ. The prior correlation analysis links the extracted clusters to material properties and model interpretability is provided by a 
Grad-CAM analysis. 
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• Unsupervised learning: A pre-trained ResNet50 architecture [48,49] is used to process the input images. By removing the 
classification layer, the feature representations can be extracted from the final layer of the network. A 2048-dimensional feature 
vector is extracted for every image. By performing a principal component analysis (PCA) is performed, the dimensionality is 
reduced to 56 features per image. The subsequent k-means clustering allows the distinction of 5 clusters in accordance with the 
number of F-s curve types in our data.

• Correlation: The clusters show high correlation to the F-s curve types and therefore the lower shelf, transition and upper shelf 
regime. By analyzing the correspondence to the unstable crack initiation force Fiu and the crack arrest force Fa expressed by their 
difference ΔF it could be seen that the clusters are highly responsive to characteristic F-s curve parameters. Using boxplots for 

Fig. 15. Selected cluster sensitive inferred F-s curves and corresponding total impact energy Wt with a confidence interval of ± 1σ for all material 
types and F-s curve types.
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statistical visualization, our results show that the model is capable of classifying lower shelf, ductile-to-brittle transition and the 
upper shelf regions according to the total impact energy Wt values for all materials in the dataset.

• Interpretability: The Grad-CAM analysis reveals that the model is using two different approaches for classification. Lower shelf 
experiments are distinguished by the activation of the unstable (brittle) fracture region in the center of the fracture surface. As the 
total impact energy increases (e.g. for upper shelf experiments), the fracture surfaces are distinguished by the distortion of their 
shape. Here, the area next to the shear lips is highly activated, thus recalling lateral expansion measurements. Therefore, both 
methods can be linked to domain knowledge, indicating the model’s ability to learn the necessary representations without the need 
of supervision.

• Inference: For each cluster, we inferred material type sensitive statistical F-s curves using the characteristic force–displacement 
values and derived a statistical response corridor with ± 1σ. Based on the statistical F-s curve, a characteristic average total impact 
energy could be inferred. For the upper shelf, statistical response corridors with low standard deviations could be found for all 
materials except the weld material. This can be attributed to the inhomogeneity of the material [51,52]. For the ductile-to-brittle 
transition and the lower shelf experiments the standard deviations are increased, due to the microstructure sensitivity [54–56]. This 
leads to an increase of the predicted corridor size.

• Potential use: Our model is feasible for inference of statistical force–displacement curves and resulting total impact energies based 
on fracture surface images. Utilizing our approach non-instrumented Charpy-V notch impact tests could be supplemented with 
information on the fracture mechanical behaviour and energy absorption characteristics of the material. The fracture surface 
analysis simplifies the experimental setup and reduces costs. The need for instrumentation could even be eliminated for a sufficient 
statistical database. Based on the results, the approach has potential utility in validating pendulum impact testing machines based 
on the fracture surface in combination with the force displacement curve. To improve the model’s sensitivity and allow for narrow 
statistical response corridors with high confidences (e.g., ± 3σ), also for lower shelf regimes, further training on additional data, 
covering the ductile-to-brittle transition and lower shelf region would be required.
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