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Abstract

Patient transportation systems are instrumental in lowering access barriers in pri-
mary care by taking patients to their general practitioners (GPs). However, the eco-
nomic sustainability of such transportation systems based on ride sharing strongly
depends on how well transportation requests can be bundled. We consider a dial-a-
ride setting where the transportation requests consist of a ride to the GP and back.
Patients may be chronic or “walk-in” patients, with the latter requiring transportation
on short notice. In the general setting, the GPs fix appointments without considera-
tion of the transportation. In our flexible scheduling setting, for chronic patients only
an appointment range is fixed a priori, and the exact time is determined when the
vehicle routes are computed. To tackle this setting, we propose a novel extension of
the dial-a-ride problem, the dial-a-ride problem with combined requests and flexible
scheduling (DARPCF). We introduce a heuristic for the DARPCEF, called MCLIH,
that is designed to exploit this increased flexibility. Initially, MCLIH computes so-
called mini-clusters of outbound requests. Then, the mini-clusters are linked by solv-
ing a traveling salesman problem and creating routes of outbound rides with a split-
ting procedure. Our computational study shows that in rural regions with MCLIH
and the flexible scheduling of chronic appointments, the average number of served
transportation requests can be increased by 38% compared to a non-flexible setting.

Keywords Dial-a-ride problem (DARP ) - Heuristics - Patient transportation -
Primary care

1 Introduction

The aging population in rural areas is facing increasing barriers accessing pri-

mary care services (Syed et al. 2013). On the one hand, public transportation sys-
tems are often poorly developed and impractical for visiting a general practitioner
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(GP) (Berg and Ihlstrom 2019). On the other hand, individual mobility decreases
with age and the use of a cab is generally expensive (Ahern and Hine 2012).

To offer an efficient and convenient alternative, we explore the use of so-called
dial-a-ride systems for transporting patients to GPs. These systems provide the
comfort of direct transportation between patients’ homes and GPs, while achiev-
ing greater cost-efficiency than cab services by pooling transportation requests.
The standard process of arranging transportation in such systems is the follow-
ing. First, a patient contacts their GP to arrange a fixed-time appointment, e.g.,
Monday 10 a.m. This time is then communicated to the transportation provider
which in turn makes a commitment to take the patient from their home to the
appointment and back. While this procedure is relatively comfortable for GPs and
patients, it comes with the downside of not synchronizing appointment schedul-
ing and patient transportation. As a result, geographically similar transportation
requests may be widely spread in time, which prevents an efficient pooling and
ultimately implies high transportation cost.

To alleviate this drawback, we propose a new concept for dial-a-ride systems
that enables a partial synchronization of appointment scheduling and patient
transportation. We thereby focus on appointments that are known several weeks
in advance and introduce the so-called flexible scheduling. The idea of flex-
ible scheduling is to change the arrangement of appointments and transporta-
tion: when a patient arranges an appointment with their GP, only a range for the
appointment is fixed, e.g., Monday morning. The transportation provider can then
flexibly schedule and reschedule the patient’s rides within the previously agreed
range. Finally, the transportation provider fixes the vehicle routes a few days
ahead of transportation and thereby determines the exact appointments which are
then communicated to patients and GPs.

While flexible scheduling clearly offers the potential to reduce transportation cost,
it requires a certain degree of flexibility from both patients and GPs. For patients,
this means that the exact appointment times are confirmed closer to the actual
appointment date. This approach is particularly suited to non-urgent cases, such as
individuals with predictable care needs and regular schedules, like weekly appoint-
ments. Similar to current medical practice, we define these patients as chronic
patients. By contrast, we refer to the remaining (non-chronic) patients as walk-in
patients, i.e., those with fixed-time appointments scheduled on shorter notice. These
two patient types form the basis of the model and the terminology used through-
out the paper. While flexible scheduling demands some spontaneity from chronic
patients, it offers a key benefit: guaranteed transportation to and from appointments,
addressing a challenge that might otherwise leave them uncertain about access to
transport services.

From the GPs’ perspective, we require the reservation of flexible appointment
slots that will only be filled a few days in advance. As a result, physicians always
know if there remain gaps in their schedules, however can only start filling them
with fixed-time appointments or walk-in patients shortly beforehand. Such provider
prescribed restrictions on how available slots may be filled are a common concept in
appointment scheduling (Gupta and Denton 2008).
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Ideally, the GP and the transportation provider are integrated into a dedicated
organizational structure, such as a Primary Care Network in the UK, that coordi-
nates healthcare services, aligns financial incentives for insurers and others, and
streamlines patient transportation in the spectrum between non-specialized private
cabs and high-priority emergency transport.

As part of our proposed concept, we allow walk-in patients to request transporta-
tion for the specific times of their appointments on short-notice. However, the trans-
portation provider may turn these requests down if they do not fit into the current
vehicle routes. Moreover, each request comprises two rides: an outbound ride from
the patient to their GP and an inbound ride from the GP back to the patient’s home.
Once a transportation request has been accepted, it must be serviced entirely, i.e.,
neither the outbound nor the inbound journey may be canceled.

In this paper, we investigate the extension of the classical dial-a-ride problem
(DARP) with combined outbound and inbound rides per request by flexible schedul-
ing. To that end, we introduce the dial-a-ride problem with combined requests and
flexible scheduling (DARPCF) that allows a flexible scheduling of the outbound
rides. Each flexibly scheduled outbound ride entails a subsequent inbound ride with
a fixed time window. The resulting problem is both A’P-hard and hard to solve in
practice, as it is an extension of the classic DARP problem (Parragh et al. 2008).

As our main contribution, we present a heuristic called Mini-Cluster Linking and
Insertion Heuristic (MCLIH) for the DARPCEF that enables transportation compa-
nies to use flexible scheduling. MCLIH consists of two phases: First, the requests of
chronic patients in the DARPCEF setting are processed and second, the requests of
walk-in patients are inserted by an online algorithm. The procedure starts by cluster-
ing the chronic patient requests. MCLIH then solves a traveling salesman problem
(TSP) and creates routes of outbound rides with a splitting procedure and greedily
inserts inbound rides. Finally, we compare the performance of MCLIH with exact
and other heuristic methods on realistic test instances. Because of the large number
of requests in the considered scenarios, the solution quality is not evaluated by the
length of the vehicle routes but rather by the number of served customers. We show
computationally that flexible scheduling can accommodate between 16—38% more
patient requests compared to traditional systems, depending on the topology of the
instances considered.

The remainder of this paper is structured as follows: We start by reviewing rel-
evant literature in Sect. 2. Then, in Sect. 3, we formally introduce the DARPCF,
followed by a description of the solution approach in Sect. 4. The results of our
computational study are presented in Sect. 5. Finally, Sect. 6 concludes with a short
summary and outlook on future work.

! See https://www.england.nhs.uk/primary-care/primary-care-networks/.
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2 Literature review

We begin by giving a general overview of dial-a-ride problems and algorithms,
followed by a discussion of existing work on integrating scheduling and routing
in healthcare.

2.1 State-of-the-art

Dial-a-ride problems belong to the most classical optimization problems in trans-
portation. For a detailed review on models and techniques, we refer to the exten-
sive surveys of Molenbruch et al. (2017) and Ho et al. (2018). Additionally, Cord-
eau et al. (2023, 2024) provide two more specialized and recent surveys focused
on attended home delivery and service problems, a DARP subclass with applica-
tions in home healthcare.

Problem formulation The DARP is a special case of the general pickup and
delivery problem, where transportation must be facilitated between different cus-
tomers with paired demands (Parragh et al. 2008). A key property is the introduc-
tion of different user-oriented service constraints such as maximum ride times
and time windows. The seminal work by Cordeau and Laporte (2003) has become
the standard setting for the DARP (Molenbruch et al. 2017). We present this
problem definition in Sect. 3. Moreover, Cordeau (2006) proposed a widely-used
MILP formulation, which serves as the foundation for the mixed-integer linear
programs we use, see Appendices C, D.

Exact methods The first exact approach for the single-vehicle DARP was pub-
lished in 1980 by Psaraftis (1980) who solved the problem with up to nine users
through dynamic programming. However, the algorithm does not consider time
windows but only so-called maximum position shifts. The first Branch-and-Cut
algorithm using different types of valid inequalities was proposed by Cordeau
(2006).

According to the extensive survey by Molenbruch et al. (2017), the most effi-
cient exact algorithm known at that time (having solved all of Cordeau’s instances
with up to 96 users) was a Branch-and-Cut-and-Price method by Gschwind and
Irnich (2015).

Heuristics and metaheuristics The first work on the DARP by Wilson et al.
(1971) was further improved by Jaw et al. (1986) and by Madsen et al. (1995).
The latter proposed the so-called REBUS algorithm, a fast insertion heuristic
which can also process requests interactively, thus solving the dynamic DARP
with time windows on departure or arrival. REBUS is a greedy algorithm that
builds the schedule successively by inserting transportation requests in a fashion
such that the cost function is minimized. An essential concept used is that of the
time slack of a stop in the schedule, which is the largest increase of the departure
time that is possible without violating any time window constraints. We use a
greedy insertion heuristic (GIH) based on REBUS both as a baseline and as part
of our solution approach, see Sect. 4.
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Bodin and Sexton (1986) first proposed cluster-first route-second methods in
1986. After using a clustering method for assigning requests to vehicles, a heuris-
tic single-vehicle solution is computed, which involves a Benders decomposition
and a so-called space-time heuristic.

The notion of mini-clusters which we use in this work was introduced by Desro-
siers et al. (1988) and describes a geographically cohesive set of requests that is
served in one vehicle route segment. The authors propose an algorithm where
mini-clusters are generated by using neighboring criteria and the routing problem
is solved by column generation. Ioachim et al. (1995) improved this approach by
applying a column generation algorithm in the mini-clustering phase.

An adaptive large neighborhood search metaheuristic that is claimed to be
competitive with all state-of-the-art heuristics has been published by Gschwind
and Drexl (2019). Recently, Gaul et al. (2021) solved a DARP problem with 500
requests using a rolling time-horizon approach and employing both ejection chains
(Glover 1996; Curtois et al. 2018) and the ruin-recreate principle (Christiaens and
Vanden Berghe 2020).

2.2 Integration of scheduling and routing in healthcare

A related field in healthcare where scheduling and routing are combined is home
healthcare (HHC), as presented in a review by Fikar and Hirsch (2017). The
approaches in that field also aim at combining different decision levels in order
to improve operations. In the regular setting, this comprises organizing shifts, the
assignments of nurses to patients, and routing decisions. However, the resulting
routing problem does not compute a route with pick-up and delivery of patients as in
the DARP, but rather minimizes the operator’s routing cost or other objective func-
tions without any kind of ride sharing or relevant vehicle capacity constraints (e.g.,
Cappanera and Scutella (2015); Grenouilleau et al. (2019)). Compared to our work,
another main difference is that, in HHC, capacity of routes tends to be limited by
the combined time needed for transportation and serving patient requests. On the
contrary, in our setting, capacity is the physical vehicle capacity and service at the
patient location only consists of the time needed for pickup/delivery.

More closely related to vehicle routing but without joint scheduling, a recent
paper by Adelhiitte et al. (2021) considers patient transportation with incomplete
information and semi-plannable transports, i.e., the outbound trip to the treatment is
given with complete information, whereas the return trip has initially unknown time
windows. The authors formulate a vehicle routing problem with general time win-
dows and show in their numerical study that incorporating semi-plannable transport
reduces waiting times compared to the previous scheduling method.

A similar result can be found in a paper by Schilde et al. (2011) who consider a
DARP setting where stochastic information on whether an outbound request causes
a corresponding inbound request is taken into account. The used algorithms are
modifications of the two metaheuristic approaches of variable neighborhood search
(VNS) and multiple plan approach (MPA) (e.g., Mladenovi¢ and Hansen (1997);
Bent and Van Hentenryck (2004)). In the first, the stochastic information about the
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return trips is used for comparing candidate solutions. The MPA extension uses
sample return trips for extending initial solutions and eventually removes the return
trips again in order to produce gaps for the insertion of the actual return trips.

Finally, Johnn et al. (2021) integrate multiple uncertainties concerning home ser-
vice assignment, routing, and appointment scheduling. While their HHC problem
setting differs from the one in this work, they use a similar idea of incrementally
specifying the specific time of appointments.

2.3 Summary and contributions of the paper

In contrast to previous literature, we propose a novel setting in which the the deci-
sion maker can control both routing of patients to GPs and the respective appoint-
ment scheduling. Since patients. rather than personnel, are transported in this set-
ting, new challenges are introduced: vehicle capacity and ride-sharing become
crucial considerations—differing from most home healthcare contexts. Furthermore,
the GP appointments impose a special structure, where fixing one initial outbound
ride introduces constraints on the inbound ride. This also differs from the work on
attended home delivery, as noted above.

We not only introduce this novel problem setting, but also provide an algorithm
suitable to solve realistic instances including walk-in demands in practice. For that,
we use two established heuristic principles from literature: REBUS and mini-clus-
ters. We show how those can be combined to solve outbound sub-problems to opti-
mality, and then add inbound routes via an insertion heuristic based on REBUS. Our
computational experiments quantify the benefits of adopting the proposed setting
and applying our algorithm.

In the next section, we describe the aforementioned problem setting and formu-
lation, formally introduce the set of chronic patients, and define the more flexible
approach to handling their appointments and associated transportation requests.

3 Problem description and notation

We begin this section by introducing the standard problem setting for the static
(i.e., offline) dial-a-ride problem as presented by Cordeau and Laporte (2003),
which was adopted by most authors in recent years Molenbruch et al. (2017). Then,
we discuss the DARPCF and its alterations to the DARP through the concept of
flexible scheduling. For an overview of all notation used in this work, we refer to
Appendix A.

3.1 The static dial-a-ride problem

Let n € N denote the number of requests (or patients) to be served. We define the
DARP on a complete directed graph G = (N,A), called the DARP road graph,
where N=PuDu{0,2n+1}, P={1,2,...,n} and D={n+1,n+2,...,2n}.
By R={r,...,r,}, we denote the set of all requests where each request

@ Springer



The dial-a-ride problem in primary care with flexible...

; pick-up E delivery

10:00 10:15 10:|30 10:45 11I:00
, a ti,'n+i :| 30 min "
a L; = 45 min "

Fig. 1 Implicit pick-up time window for outbound ride r; = (i,n +i) € R with direct travel time

tinti € Ryoand maximum user ride time L; € R,

r;=(,n+1i) € RC PXD is represented by a pick-up node i € P and a drop-off
(delivery) node n + i € D. The nodes 0 and 2n + 1 represent an origin and a destina-
tion depot for the fleet of m € N homogeneous vehicles. We denote by 7; € R, the
non-negative travel time between nodesi € N and j € N. We associate a load g; € Z
with each node i € N, by default +1 for pick-up nodes and —1 for delivery nodes
with a non-negative service duration d;,i € N, where d, = d,,,; = 0. The time win-
dow for a node i € N is denoted by [e;, ;] for e;,]; € R,e; < [; and has a maximum
lengthof W € R, i.e.,[; —e; < W.

Moreover, let Q € N denote the passenger capacity of each vehicle and T}, € R,
the maximum route length for each vehicle. The maximum user ride time L; € R of
request r; fori = 1, ..., n describes the maximum time the user may be on the vehi-
cle for the ride. It can either be constant for all i € {1, ... ,n} or proportional to the
direct ride time, e.g., L; = 1.5 1; .

As done by Cordeau and Laporte (2003), we assume that for outbound trips only
a time window for the delivery is specified, while for inbound trips there is only a
time window for the pick-up. All other time windows are not specified explicitly,
but derived implicitly from the maximum and minimum ride time constraints. For
example, consider a customer requesting an outbound ride with a direct ride time
of 30 minutes and a maximum ride time of 45 minutes. If the time window for the
delivery is set to [10:45, 11:00], the implicit time window for the pick-up would be
[10:00, 10:30] because no other pick-up time could result in a feasible ride; com-

pare Fig. 1.
An optimal solution consists of a set of m vehicle routes from node 0 to node
2n + 1such that for each request r; fori = 1, ..., n the nodes i and n + i are contained

in the same vehicle route in the correct order (the so-called precedence constraint).
Moreover, the capacity and service constraints need to be satisfied and the routing
cost must be minimized.

3.2 DARP with combined requests and flexible time windows (DARPCF)

We extend the above problem setting to the flexible scheduling of chronic patients.
User requests now consist of two rides: an outbound trip to the appointment without
time window, i.e., a time window which comprises the whole service period, and an
inbound trip which has to take place within a time window of length W that starts
when the stay at the GP of constant duration dgp € R, ends.
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The adaptation of the discussed model is straightforward: The set R, € P X D
only includes the chronic outbound requests. For the corresponding inbound
trips, we introduce new vertex sets D and P which are copies of D and P, respec-
tively. The inbound trip belonging to outbound trip r; = (i, n + i) is now given by
r=m+ i,;) €DxP. Thus, the set R_L ={r,....1,} € D x P denotes the set of
chronic inbound requests. The travel times for nodes j, k and their copies j. k are set
canonically to

= I

e 1=

1z =0, 7= e

tj_k .
The load of a copy is the negative of the original vertex, i.e., q; = —q;,] € PUD,
and the time window for request 7; is denoted by [e;, £].

Definition 1 (DARPCF) Let the set of requests R consist of n pairwise outbound and
inbound requests, i.e., R=R.U ITC CPXxDUDXP and let the DARP road graph
G =(N,A) with N=PUDU DUPU {0,2n + 1} be the complete directed graph
which contains a pick-up and a delivery node for each request. There is a homogene-
ous fleet of m vehicles with start depot at node 0 and end depot at node 2n + 1. Fur-
thermore, dgp denotes the duration of stay at the GP and W is the time window length.

We define the DARP with Combined Requests and Flexible Time Windows (DAR-
PCF) as the problem of finding m vehicle routes on G which serve the pairwise
requests in R in the following fashion: If an outbound request r; is scheduled to
arrive at time #,, then the departure time 7; of the corresponding inbound request
7; must satisfy 7; € [; + dgp, 1; + dgp + W]. Moreover, the vehicle capacities, maxi-
mum route length and the maximum user ride time must be respected.

This extension makes the problem more complex since time windows of corre-
sponding outbound and inbound trips are linked: We do not allow long waiting times
between the outbound and inbound ride of a patient, or even worse, to schedule the
inbound trip before the outbound trip. Moreover, the two rides may be scheduled on
different vehicles.

In the definition above, we only model the requests of chronic patients. In a next
step, we extend this definition to walk-in patients. In that context, we introduce the
overall objective of the problem.

3.3 Extended DARPCF with walk-in requests

In the reality of primary care, a considerable amount of patients is not scheduled a
long time in advance. In the following, we refer to these patients who have short-
notice (non-flexible) appointments as walk-in patients. Their transportation requests
are also pairwise outbound and inbound requests, and the corresponding sets are
denoted by R,, and R_W, respectively. . o

Given the appointment time s; of the patient with requests (r",r") € R, X R,,
we assume that the time windows for delivery at the GP and departure at the GP are
given by [e;, [;]] = [s; — W, s;] and [e;, ] = [s; + dgp, 5; + dgp + W], i.e., the outbound
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delivery needs to be at most W before the appointment, and the inbound pick-up at
most W after the end of the appointment.

Definition 2 (Extended DARPCF) Let R =R, U ITC UR, U R_W be a set of requests
consisting of pairwise requests of both chronic and walk-in patients, and let the
DARP road graph and the other parameters be given as in the DARPCF. We define
the Extended DARPCF as the problem aiming to find vehicle routes which maxi-
mize the number of served requests in the following fashion:

(i) Chronic requests R, U R, are scheduled flexibly as in the DARPCF.

(i) Walk-in patients are served by scheduling the out- and inbound requests
(r?, ?) ER, X R_W within the given time windows and by satisfying all other
service and routing constraints as in the DARP.

In the reality of a healthcare service with limited budget, it is likely that the fleet is
not sufficient to serve also all chronic and walk-in requests. Therefore, we explicitly
allow to reject chronic requests as well. Nonetheless, it can be assumed that they are
implicitly prioritized over walk-in patients due to their flexibility. Thus, the minimiza-
tion of the number of rejected patients becomes the objective rather than total distance
minimization.

Moreover, this problem definition assumes that the problem is solved only once
when all requests are known. In fact, our algorithms schedule the two request types (i)
and (ii) of the Extended DARPCEF in separate stages and allow for further extensions
that we briefly introduce in the following.

Further extensions We benchmark our approaches with an integer program for the
Extended DARPCF which is laid out in Appendix D. However, our approaches also
satisfy stricter constraints and can be applied in other problem variants which we sum-
marize in the following.

e Online requests: Each walk-in request (ry,?) ER, xR_W has a release time ;
(potentially during the service period), and the operator must either accept and
schedule or reject the request. When accepting the request, the resulting schedule S
must remain the same for all stops before 7.

e Non-continuous opening hours (lunch breaks): Arrivals at the GP may not be
scheduled during a specific time window during the days and must therefore be
assigned either to the morning or the afternoon session.

e Congestions at GPs: Given parameters C;p, Wip € N, the schedules must satisfy
that, when dividing the service period into intervals of length W, not more than
Cp patients arrive within each of those intervals.

4 Solution methodology
In the following, we introduce a solution procedure for the Extended DAR-

PCF, namely the Mini-Cluster Linking and Insertion Heuristic (MCLIH). For
another procedure that we developed, a rolling horizon approach with specialized
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Fig.2 The solution procedure

MCLIH Mini-Clustering

PDP MILP solution

(Chronic Patients)

DARPCF CVRP by TSP + Split

GIH for return trips

i
|
i
|
i
|
i
|
i
| Static Phase
i
|
i
|
i
|
i
|

i
: Dynamic Phase

i\ (Walk-In Patients)
| Extended DARPCF
i

matching problems called Mini-Cluster Matching Algorithm, we refer the reader
to Biising et al. (2021). MCLIH consists of two phases: In the first phase, all
chronic patient requests are scheduled and in the second phase, all walk-in
requests are added.

To obtain a schedule for the chronic patient requests, MCLIH uses a greedy
mini-clustering algorithm which we present in Sect. 4.1. The algorithm calculates
a partition V = {M,, ..., M, } of the set R, of all chronic outbound trips. Sub-
sequently, an optimal route within each of these so-called mini-clusters is com-
puted. Finally, the mini-clusters need to be linked to obtain the daily route for every
vehicle.

As a linking procedure, MCLIH solves a capacitated vehicle routing problem
(CVRP) on the mini-clusters V. To that end, it links the mini-clusters to a TSP tour
that is then split into the respective vehicle routes. Subsequently, a greedy insertion
heuristic (GIH) based on the REBUS algorithm (Jaw et al. 1986; A heuristic algo-
rithm 1995) is used to insert the chronic inbound trips. This GIH explores all pos-
sible insertions into the existing schedules and greedily chooses the one that mini-
mizes a prespecified metric.

Eventually, MCLIH solves the online extension of the DARPCF by using the
GIH for the insertion of walk-in patients. An overview of the different subroutines in
MCLIH can be found in Fig. 2. Moreover, we include a pseudocode for MCLIH in
Appendix B.

4.1 Mini-clustering

We start by introducing the notion of a mini-cluster which is a set of requests
meant to be served by a single vehicle such that the vehicle is empty before and
after serving the requests and such that no other request is served by that vehicle
in this period. In our case, the mini-clusters initially only consist of up to QI out-
bound requests, thus allowing us to relax the capacity constraint for the intra-
cluster routes. We define a measure of how close two outbound requests r;,r; € R,
are by considering a directed graph G’ = (V, E): we create one vertex v € V for
each outbound request r € R, and introduce arc costs clf]. € R, according to the

@ Springer



The dial-a-ride problem in primary care with flexible...

travel time of the shortest possible way to serve the requests r; and r; by starting at
the pick-up location i of request r;. Only the edges between requests which are
profitable to combine are added, i.e., for some proximity parameter p > 0, it must
hold that c <p-(, ). As the departure points differ, c and c are usu-

ally not equal and therefore the edge costs are asymmetric. The mini- clusters on
G’ are then computed by using a simple greedy algorithm similar to Kruskal’s
algorithm which grows mini-clusters (trees on G’) until their size reaches the
vehicle capacity Q.

Note that the definition of ¢’ is useful specifically due to the flexible scheduling
concept. In the classical DARP setting, two requests that lie close to each other are
frequently not compatible due to their time windows. Here, outbound trips can be
scheduled freely within a time slot and thus this problem disappears.

Optimal routes within mini-Clusters by solving MILP

Next, we compute for each mini-cluster an optimal route satisfying all patient
requests within the considered cluster.

In comparison to the standard DARP formulation, we can omit the capacity and
maximum route length constraints since the capacity constraint is satisfied due to
the size of the mini-clusters and the maximum route length is checked afterwards
when linking the mini-clusters (see Sect. 4.2). Moreover, no time windows need
to be respected since the mini-clusters only consist of flexible outbound trips. The
resulting problem is the classical Pickup and Delivery Problem (PDP, also referred
to as pickup-delivery TSP (Kalantari et al. 1985)) with an additional maximum user
ride time constraint. As the problem sizes are small, we can solve the PDP exactly
by using an extension of the open TSP formulation as discussed, e.g., in Parragh
et al. (2008).

1, I‘l+l j n+j

4.2 TSP and split approach with GIH for return trips

Let us now consider the next step in the MCLIH procedure, which generates routes
consisting of the mini-clusters computed in the preceding section.

We consider the graph H = (V, A) where each mini-cluster M € V corresponds
to a vertex and where the arc costs ¢; € Ry for M;, M; € V are set to the travel
time from the last drop-off location i 1n the optlmal route 8 on M, to the first pick-
up location in S;. We interpret the problem as a capacitated Vehrcle routing prob-
lem (CVRP) w1th slightly adjusted constraints compared to the standard formulation
(Labadie 2016).

The basic idea of finding vehicle routes R, R,, ..., R, starting from a depot is
the same as in the CVRP, however, we observe that our problem is set on a directed
graph with asymmetric arc costs. Moreover, there is no actual capacity constraint to
be considered because the vehicles are empty between mini-clusters. The route dura-
tion d,, within each mini-cluster M can be interpreted as service duration at that
node. Thus, the important restriction for each vehicle, the maximum route duration,
is of the form
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Z c, + Z d; <Ty )

e€A(Ry) I€EV(Ry)

for each route R, for k = 1, ..., m. We can solve the problem in question by adapting
CVREP algorithms to consider directed graphs and to respect equation (1) instead of
the usual route length and capacity constraints.

Considering that it is a common and simple heuristic approach which has proven
to produce competitive solutions, in particular for large instances (Prins et al. 2014),
we decide to use the classical split method by Beasley (1983) in a more compact
version proposed by Prins (2004) and Labadie et al. (2016). The method starts by
solving a TSP on the vertices of H. To that end, we use an ant swarm TSP heuristic
following the approach proposed by Dorigo et al. (1996).

The next step, splitting the TSP tour into sub-tours can be solved optimally in
polynomial time by using a shortest-path algorithm on an auxiliary graph (Beasley
1983). The only necessary adaptations of the two algorithms to our setting are that
the TSP needs to be solved with asymmetric edge costs and that the splitting proce-
dure must respect equation (1). This can be done by modifying the CVRP capacity
constraint by interpreting the service duration of a mini-cluster M as the load and
by including the arc costs in the load calculation.

From the obtained vehicle routes we can deduce the times when the appoint-
ments of the chronic patients can start and thus determine the time windows for
the inbound trips. By using the greedy insertion heuristic GIH based on Jaw et al.
(1986) and Madsen et al. (1995) for the inbound trips, we finalize the schedules of
the chronic patients. We assume that the number of vehicles is always large enough,
such that this insertion is possible. However, it is also an option to remove an out-
bound request from the schedules in case of an unsuccessful insertion of the corre-
sponding inbound trip and try reinsertion for different time windows.

5 Computational results

In this section, we describe the results of the study which we performed with our
algorithm MCLIH. The aim is to verify whether or not the idea of flexible schedul-
ing can improve a dial-a-ride system in primary care. Therefore, the focus lies on
comparing the results in a flexible scheduling setting with the results in the standard
setting. Moreover, we justify our choice to target rural areas by comparing realistic
primary care settings in different regions. In particular, we describe in Sect. 5.1 how
we generate instances for primary care in rural/semi-urban and urban areas, and lay
out the obtained results in Sect. 5.2. Apart from that, we also illustrate the need
for heuristic approaches and their performance by a comparison with a commercial
solver.
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Table 1 Considered regions for different degrees of urbanization

Region Year Population (>16) Type Size [km?] GPs
Roetgen, Simmerath, Monschau 2011 35542 (29975) rural 245.06 13
City of Pirmasens 2022 40403 (35584) semi-urban 61.37 14
Monheim am Rhein 2022 43063 (37880) urban 23.05 15

The number of adults is mapped to a 100 m square grid using aggregated regional data and the respective
Community Identification Numbers

5.1 Data generation and study design

We evaluate the presented flexible scheduling approach based on real-world primary
care systems in Germany. For that we consider three settings: a rural, a semi-urban
and an urban one. Table 1 gives an overview of the regions chosen:

For that, we accessed data of the German National Census. The rural region is
based on the 2011 census (Census 2011), as it is based on the existing model of
the rural primary care system considered in the hybrid agent-based simulation tool
SiM-Care (Comis et al. 2021). GP numbers and locations are the actual locations
of GPs in the regions, based on publicly available data. As empirical transportation
requests are unavailable, we resort to SiM-Care to generate artificial requests that
reflect the system’s structural characteristics. SiM-Care models both patients and
GPs as individual agents and tracks their micro-interactions. As a result, we obtain
the scheduled appointments of chronic and acute patients as well as the visits of
walk-in patients for a one-year horizon. We set up two additional instances to model
the effect of different topologies on the algorithm performance. For that, we used the
current 2022 census data for Germany (Census 2022), and mapped the data to the
region via the approach described in Comis et al. (2021). In line with Comis et al.
(2021), we assume that children under the age of 16 will not make use of individual
doctors appointments, these were excluded from the data.

Combining these with the locations of GPs, we generate the required outbound
and inbound transportation requests that serve as the input to our models. We group
these requests into instances that correspond to one day of simulated GP services for
a sample of 13/14/15 GPs with a service period of six hours each. The number of
pairwise requests per instance varies between 344 and 505. Table 2 shows the sam-
ple of 20 instances of the rural area corresponding to an arbitrarily chosen period of
four weeks used in the study. The distances between the locations are based on road
network data and computed by using the Open Source Routing Machine (OSRM)
(Luxen and Vetter (2011).

Study design As described in the previous paragraph, we consider 20 instances,
each comprising more than 360 patient requests. Since each patient request is due
to a required consultation with a GP, it eventually results in one outbound trip and
one inbound trip which have to be scheduled. In the flexible setting, represented
by MCLIH, we discard the original appointment times of chronic patients that are
provided from the simulation and re-schedule them throughout the whole service
period.
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Table 2 Patient structure in the considered instances of the rural setting and the algorithm performances
on these instances with default parameter choices

Instance (Number of requests) Results (served requests)
Day Total Chronic Walk-in Proportion GIHTW GIHflex MCLIH
chronic
490 349 310 39 0.89 165 116 254
491 472 254 218 0.54 170 144 225
492 475 259 216 0.55 182 162 229
493 487 256 231 0.53 176 164 235
494 457 255 202 0.56 166 161 241
497 373 313 60 0.84 160 117 227
498 469 276 193 0.59 175 149 222
499 502 233 269 0.46 175 159 231
500 466 233 233 0.50 171 149 233
501 453 242 211 0.53 164 146 233
504 354 307 47 0.87 164 122 236
505 445 266 179 0.60 165 138 232
506 491 261 230 0.53 169 151 232
507 479 243 236 0.51 159 158 217
508 432 240 192 0.56 165 147 214
511 344 318 26 0.92 142 133 237
512 456 263 193 0.58 168 141 227
513 484 248 236 0.51 162 162 212
514 469 248 221 0.53 165 168 236
515 438 235 203 0.54 164 161 229

As a reference for the standard setting we use GIH, the greedy insertion heu-
ristic inspired by Madsen’s REBUS algorithm (Jaw et al. 1986; Madsen et al.
1995). For GIH in the standard setting, denoted by GIHTW, we keep the orig-
inal appointment times and create time windows before and after the appoint-
ment for the outbound trip and inbound trip, respectively. Recall that GIH is also
part of MCLIH for the insertion of walk-in patients, therefore the main differ-
ence between the two settings is how many of the walk-in patients can still be
inserted into the schedules after the static phase. In order to see if GIH can also
profit from the flexible setting, we include it in a variant denoted by GIHflex.
This means that the outbound trip can be inserted throughout the entire service
period, and the subsequent insertion of the inbound trip needs to satisfy a time
window derived accordingly.

In our study, we use the default values for the parameters depicted in Table 3.
Moreover, we perform sensitivity analyses where single parameters like the maxi-
mum user ride time and vehicle capacity are varied to better understand the behavior
of the algorithms.
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Table 3 Default parameter

. Parameter Value Information
choices

m 10 Fleet size

0 4 Vehicle capacity

w 20 min. Maximum time window length

dgp 30 min. Duration of each stay at the GP

L; LSt The maximum user ride time
(proportional to direct travel
time)

p 1.5 Measure of proximity of requests

(C,W)gp (6,30 min.) GP congestion parameters (each
30 min. max. 6 patients may
arrive)

For the comparison with a commercial solver, we reduce the instance sizes by
sampling subsets of requests from the complete instances described above. We use
the Gurobi Optimizer in version 11.0.1 and perform experiments with a time limit
of 60 min.

Implementation All algorithms presented in this work were implemented in Java
(SE 17) and the experiments were performed on a linux computing environment (64
Bit) with 8 available Intel(R) Xeon(R) Gold 6240 CPUs clocked at 2.60GHz and 2
GB memory per CPU. The resources and services used in this work were provided
by the VSC (Flemish Supercomputer Center), funded by the Research Foundation -
Flanders (FWO) and the Flemish Government.

We use the following external libraries or source codes: The routes between the
different locations are calculated by using OSRM (Luxen and Vetter 2011). For the
mini-clustering step, we modified the disjoint-set data structure and the Kruskal
algorithm implementation by Esmer (2017). The MILP solution for the intra-cluster
routes as well as the benchmark solutions are computed by using the Java API of the
Gurobi Optimizer (version 11.0.1) (Gurobi 2023). The TSP tour that links the mini-
clusters is computed by an ant colony optimization algorithm implemented by Dodd
(2013) based on Dorigo et al. (1996).

5.2 Results

In this section, we present the results of our computational study. First, we evaluate
which algorithm produces the best solutions in the default setting. Then, we analyze
the algorithms’ sensitivity to changes in the default parameter choices.

Main result

Based on the results depicted in Fig. 3 and included in Table 2, we can state that
the introduced algorithm MCLIH employing the flexible scheduling of chronic
patients outperforms GIH.

On average, across the 20 instances considered, MCLIH serves about 230 requests
(mean: 230.1, median: 231), whereas GIHTW serves in excess of 60 requests fewer
(mean: 166.35, median: 165). In fact, by using MCLIH and the flexible scheduling
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Overall Algorithm Performance
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Fig. 4 Sensitivity of algorithm performances with respect to vehicle capacity and maximum user ride
time

system, about 38% more requests can be served compared to the default system
using GIHTW. Moreover, MCLIH gives good solutions consistently, with a standard
deviation of 9.5.

The second observation is that using MCLIH in the flexible setting indeed makes
a difference compared to using an algorithm like GIHflex which can schedule flex-
ibly, but is not tailored to it. In fact, GIHflex cannot even outperform its non-flexible
counterpart GIHTW, as it does not manage to group similar requests together effi-
ciently and does not spread them over the entire service period.

Let us now perform some sensitivity analyses, and then look into further metrics
and details of the setting.
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Table 4 Comparison of route

. Algorithm  GIHTW GIHflex MCLIH
performance metrics across

different topologies Metric Setting

Total Requests Served rural 1.0 0.89 1.38

(relative to GIHTW) semi-urban 1.0 0.76 1.16
urban 1.0 0.78 1.19

Total Route Duration  rural 1.0 0.72 0.97

(relative to GIHTW) semi-urban 1.0 0.65 0.93
urban 1.0 0.63 0.96

Average User Detour  rural 9.1% 12.7% 11.7%
semi-urban  12.0% 15.0% 14.0%
urban 10.0% 14.0% 13.0%

Sensitivity to vehicle capacity and maximum user ride time

We compare the performance of our algorithms for different vehicle capacities
with values O € {2,3,4,5, 6} and different maximum user ride times L;. The results
are visualized in Figs. 4a and 4b.

Note that we limit the vehicle size to 6 as this keeps the run-time for the exact
MILP solution within the mini-clusters mentioned in Section 4.1 in the range of sec-
onds. In some cases for Q = 6, we use the current best intra-cluster route in case the
MILP is not solved optimally after 30 s. The results are shown in Fig. 4a and we
can conclude that an increased vehicle capacity does not generally imply that more
requests are served.

We actually note that most requests are served by MCLIH for Q = 5, where the
mean over all instances is 236.9. Analysis of the resulting schedules shows that
even though we increase the vehicle capacity to 5 or higher, it hardly happens that
5 or more patients are on board of a vehicle at the same time. This suggests that the
imposed capacity limit of Q = 6 does not pose a restriction in reality. One reason
could be that the limit on the user ride time is a more limiting constraint during the
schedule creation than the vehicle capacity, which we want to study in the following.

Therefore, we investigate how changes in the maximum user ride time L; influ-
ence the resulting schedules. Reasonable choices for L; include all values between
1.25 (i.e., 25% increase compared to direct ride) and 2 (rides can take twice as long).
Figure 4b shows the results for different values of L; while keeping all other param-
eters at their default setting.

We can observe a similar behavior as for increased Q, i.e., the three algorithms
can profit from the increasing flexibility only to a small extent. For MCLIH, the
mean number of served requests increases by about 11.7% when increasing the max-
imum user ride time from 1.25 to 2. This small increase does not reinforce our pre-
sumption that the number of served requests is more sensitive to the vehicle capacity
than to the maximum user ride time. It seems more likely that the detour potential to
combine requests is not larger because of the resulting inherent difficulty in provid-
ing the return trips within time. We now study how the chosen rural setting favors
our approach.
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Vehicle utilization of algorithms in different areas
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Fig. 5 Distribution of different vehicle occupancy levels across different topologies

Non-rural settings and further metrics Performing the experiments on the semi-
urban and urban instances described in Table 1 demonstrates that the approach is
particularly tailored to a rural setting. While the increase in performance in rural
settings when utilizing MCLIH and flexible scheduling is 38%, Table 4 shows that is
only 16 and 19% in the semi-urban and urban regions, respectively. Notably, MCLIH
achieves these additional requests without extending the total route duration; in fact,
there is a 2.8% decrease in the rural setting. However, this improvement is accompa-
nied by a slight increase in the average user detour (i.e., the additional time patients
spend on board compared to a direct ride, which is capped at a 50% in the default
parameter setting). Specifically, patients experience an average detour of 9.1% under
the GIHTW model, while this rises to 11.7% with the flexible setting of MCLIH. In
non-rural topologies, these differences become even smaller.

For further understanding of MCLIH’s performance, Fig. 5 provides an analy-
sis of the maximum occupancy of each route segment between non-empty rides.
In urban contexts with Q =4, MCLIH reaches occupancy levels of 3 or 4 pas-
sengers in around 25% of it’s route segments (i.e., the mini-clusters between
empty rides). This value increase to approximately 30% in rural settings. In con-
trast, GIHTW reaches only 14.6% and 11.7% of segments with 3 or 4 passengers
in these areas, respectively. A detailed examination of the schedules and metrics
of GIHflex reveals that it initially accepts requests and creates efficient schedules
with good utilization, but quickly struggles to insert further requests. The issue
arises because requests are scheduled very tightly together in only a small part
of the session as this minimizes the objective of the greedy insertion. However,
this complicates the accommodation of the respective return trips as there is lit-
tle space for insertion. This leads to the rejection of many requests and ultimately
results in shorter total route durations.

Comparison with commercial solver When using Gurobi (with default settings
and time limit of 3600 seconds), as soon as instances have 20 requests or more,
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Table 5 Mear.l numbe.r of served n 8 12 16 20 24
requests for different instance
sizes Algorithm
Gurobi 780 11.65 1435 1575 16.25
MCLIH 7.60 1030 12.05 1285 14.50

Ratio Gurobi/MCLIH ~ 1.03  1.13 1.19 1.23 1.12

Compared to the default setting, we reduce fleet size and vehicle
capacity to m =2 and Q = 3, respectively. Moreover, the service
period is reduced to three hours. When increasing the number of
requests, two requests are added to the instances of the previous size.
The only modification to default parameters of Gurobi involved set-
ting MIP_HEURISTIC = 0.3 in order to find more feasible solutions

the problem cannot be solved to (proven) optimality in any of the cases, however,
feasible solutions are always found. The results are depicted in Table 5.

We can see that, for n = 20, MCLIH serves on average 2.9 requests less which
corresponds to the largest gap of 23%. When adding further requests, there are
instances where either Gurobi or MCLIH can accommodate additional requests,
however, no clear pattern can be identified. Considering that MCLIH’s runtime in
these situations is less than a second and thus three orders of magnitude smaller,
the trade-off of solution quality to runtime of MCLIH appears promising. Note,
however, that the solution properties on such small scale instances are different as
also the vehicle fleet size and time horizon are reduced. Moreover, as mentioned
in Sect. 3.2, the formulation (see Appendix D) does not satisfy certain additional
constraints that we impose for MCLIH. Therefore, the true optimality gap of
MCLIH may still be smaller. Overall, the size limitations of the exact method
justify the usage of our fast heuristic approaches.

Summary The algorithm MCLIH shows that the number of transported
patients can be considerably increased in a flexible scheduling setting. Our sen-
sitivity analyses reveal that the overall behavior of MCLIH appears to be stable
with respect to evaluated parameters. In fact, we observe that increasing the vehi-
cle size can slightly improve the performance of MCLIH, but “overly optimistic”
mini-clusters which make the assignment of the return trips inefficient may also
occur. Increasing the maximum user ride time L; (and similarly also the maxi-
mum time window W) generally helps improving the schedules to a small extent,
but must be chosen moderately in a real setting. Using a commercial solver like
Gurobi cannot be considered a realistic alternative due to its runtime. Moreover,
we see that on small instances MCLIH performs almost as good as Gurobi.

6 Conclusion
In this paper, we introduced the DARPCF as a new extension to the standard DARP
which has applications in customer transportation for customers with time flexibil-

ity. It allows flexible scheduling of the outbound ride and requires that the corre-
sponding inbound ride is scheduled within a predetermined time after the first ride.
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We developed an algorithm, MCLIH, which first creates mini-clusters of similar
outbound rides and then links them to vehicle schedules in a route-first cluster-sec-
ond method for capacitated vehicle routing problems. The method solves a TSP and
splits the tour into sub-tours.

As the bases of our computational study, we generated transportation requests
for a real-world rural primary care system using SiM-Care (Comis et al. 2021) and
compared the new algorithms to the regular DARP setting when using a greedy
insertion heuristic. Within our experiments, an increase of 38% of the number of
served requests could be obtained in the rural setting, with notable but less pro-
nounced improvements of 16—19% in the urban and semi-urban settings.

A limitation of the proposed flexible dial-a-ride system is its reliance on the flex-
ibility of both customers and GPs. Consequently, the reported 38% increase in ride
efficiency may not be sufficient to persuade operators to adopt new approaches to
handling requests and appointments. In particular, networks of GPs with the author-
ity and capacity to schedule appointments and coordinate patient transportation must
be established and tailored to the regulatory framework of the respective healthcare
system. Moreover, we see room for several improvements of presented algorithms,
e.g., through more advanced mini-clustering techniques like a neighborhood search.
Next to these improvements, future work should investigate algorithms for the DAR-
PCF that further exploit the information that each outbound ride is followed by
an inbound ride. Finally, we would like to investigate how historical data or prob-
abilities for short-notice requests or appointment durations can be used to further
improve the vehicle schedules.

7 Supplementary information

Not applicable

Appendix A: Notation

Table 6 summarizes the node sets in the DARP road graph, and Table 7 gives an
overview of all further notation used, as defined in Sect. 3.1 and the following
sections.

Recall that by choice of the indices, it holds that for a pick-up node i € P, the node
i +n € D corresponds to the delivery, and i€ P tothe respective inbound pick-up
node in case of the Extended DARPCF. Furthermore, for the Mixed Integer Programs
given below, we use Ml’.; > max{0,/; +d; +t; —¢;} and W;;. > min{Q,, O, + g;} for
Big-M type constraints.
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Table6 Overview of the different node sets in the road graph G = (V,A = N X N) for the Static DARP
and the Extended DARPCF. Note that each GP is represented by multiple vertices in the same geographi-
cal location, i.e., there is one copy per patient arrival and departure

Static DARP

(Mixed out- and inbound)

N=PuDu{0,2n+1}

Pick-up Delivery
P={l,....,.n} D={n+1,...,2n}
Extended DARPCF

N=PUDUPUDU{0,2n+ 1}

Outbound Inbound
Pick-Up Delivery Pick-Up Delivery

Chronic P De P D
Walk-In PY D" P’ D’
Together P={l,...,n} D={n+1,....2n} p=1(1,....7} D={n+1,..,2n}
Table.7 Qver view of notation Parameters Meaning Defined on
used in this work

n total number of patients -

m total number of vehicles -

m the set of all vehicles -

Ty maximum vehicle route duration -

0 vehicle capacity

dgp constant appointment duration -

w maximum patient time window

I travel time from i to j (i,j)) ENXN

d; service duration at i ieN

L; maximum user ride time ieP

e; earliest arrival time at i ieEN

[; latest arrival time at i ieN

q; load of i ieEN
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Appendix B: Pseudocode MCLIH

Algorithm 1 gives an overview of the Mini-Cluster Linking Insertion Heuristic
(MCLIH).
Algorithm 1 Mini-Cluster Linking Insertion Heuristic (MCLIH)

Input: Transportation requests R = R.U R. U R, U R,, with corresponding
DARP road graph G = (N, A), vehicle fleet size m, vehicle capacity @, maximum
route length Ty, maximum user ride time L; for each request r;, mini-clustering
parameter p.
Compute set of mini-clusters V by using modified Kruskal’s algorithm on auxiliary
graph G’
for M €V do
Compute intra-cluster route S on M by solving PDP formulation
end for
Construct complete directed auxiliary graph H = (V, A, ¢) where ¢(M,, M) reflects
distance between last stop of S; and first stop of S;
Compute TSP tour T on H
Construct auxiliary graph H' = (V, E’) modeling all feasible vehicle routes obtained
by splitting T'; see Labadie et al. (2016); Prins (2004)
Compute shortest path on H’, obtaining vehicle schedules R1,Ra, ..., Rm
for r € R, do
Set appointment time after arrival of r
Construct time windows for corresponding inbound request 7 € R,

Insert 7 into Ry, Ra,. .., Ry using GIH (if it fails: remove and re-insert r and 7
with different time windows)
end for

Notify chronic patients about appointments, start handling walk-in rides on request
for (r,7) € (R, UR,) do
Insert r and 7 into R, Ra,..., R, by GIH in an online fashion
if Insertion successful then
continue
else
Reject (r,T)
end if
end for
return R;,Ra,...,Rm
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Appendix C: Static DARP MIP

The static DARP can be formulated as the following Mixed Integer Program
cf. Cordeau (2006). As explained in Cordeau (2006), this formulation can be
strengthened via cutting planes if O, = Q.

mn 33 S

iEN jeN kem

s.t. Z ijt‘/ =1 Vi e P (All Pickups take place)
kemjeN

[lex] Z x{; - xiﬂ.‘]. =0 i€ P, kem (Started jobs are finished)
JjEN JjEN

[lex] ) xf; =1 Vk €m (Vehicles start at depot)
JEN

[lex] Z x{.‘zn 41 =1 Vk € m (Vehicles end at depot)
ieN

[lex] fol - Z )/; =0 Vie PuD, kem (Flow conservation)
JjEN jEN

[ex]Bf +d; +t; — ij(l - xk]) <B* VieN,jeN,keim (Service times)
[lex]QF +qj—W;;(1 —xfj) <o VieN,jeN,kem (Load)
[ex]Bt,, — (Bf +d,) <L Vie P,kem (Userride time)

[lex1BS ., — B

1 <Ty Vk € m (Route length)

Where the variables are given by

Bfele ] VieN kem (Arrival times)
[lex]Q € [max{O, 4}, min{Qy. O, + qi}] VieN, kem (Loads)
[1ex]x{;. €{0,1} VieN,jeN, kem (Route)

Appendix D: Extended DARPCF MIP

Note that, apart from introducing the different patient and journey types, the most
important difference is that the maximization of scheduled rides constitutes the
new objective function.
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s.t.

g €

PIDIEEPIIPN

ieP* jeN kem i€P jeN kem

2 /al; - n+l,/ =0

JEN JEN

k _
Zxoj'—

jEN

2 l2n+l

ieN

DEEDEEL

JEN JEN

B+ d; +1y —Mk(l—xk)<B"
O +q,- W?‘.(l —x..) < QJ’.‘

k
n+1 (B +d)<L

k k
BZHJr1 By <Ty

PRI

JEN kem JEN kem Y

Bf +dgp < B
1

i+n

k k
BI- <Bj,+tdgpt+W

Where the variables are given by

k
Bi

iePu F, k em (Started jobs are finished)

Vk € m (Vehicles start at depot)

Vk € m (Vehicles end at depot)

Vie N\ {0,2n+ 1},k € m (Flow conservation)

Vie N,je N,k em (Service times)
Vie N,jeN,kem (Load)

Vie PUPkEm (User ride time)
Vk € m (Route length)

i € P (Out- and inbound link)

Vie P,k em (Appointment duration)

Vie P,k € m (Appointment duration)

€ le;, ;] Vie N,kem (Arrival times)
[max{0, g;}, min{Q,, O; + ¢,}] Vie N,kem (Loads)

.%emJ} VieN,jeN,kem (Route)

improved the manuscript.

Acknowledgements The authors thank the anonymous reviewers for numerous helpful suggestions that

Author’s contribution FR developed the algorithms, implemented them, and evaluated results. Further-
more, he wrote the paper. EA implemented the integer program. CB acquired funding and revised the
text. MC generated the testing data, co-developed the algorithms and wrote the paper. FE generated the

testing data and revised the text.

Funding Open Access funding enabled and organized by Projekt DEAL. This work was supported by the
Freigeist-Fellowship of the Volkswagen Stiftung; the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) — 443158418; GRK2236/2 — 282652900; the German Federal Ministry of Edu-
cation and Research (grant no. 05SM16PAA) within the project “HealthFaCT-Health: Facility Location,
Covering and Transport”; and by the special research fund of KU Leuven (project C14/22/026).

Data availability All data is publicly available or derived from the SiM-Care simulation.

Code availability Code can be made available upon request.

Declarations

Conflict of interest Not applicable.

Ethics approval Not applicable.

@ Springer



The dial-a-ride problem in primary care with flexible...

Consent to participate Not applicable.

Consent for publication Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

Adelhiitte D, Braun K, Liers F, Tschuppik S (2021) Minimizing delays of patient transports with incom-
plete information including covid-19 requirements. http://www.optimization-online.org/DB_
HTML/2021/02/8242.html

Ahern A, Hine J (2012) Rural transport-Valuing the mobility of older people. Res Transp Econ 34(1):27-
34. https://doi.org/10.1016/j.retrec.2011.12.004

Beasley J (1983) Route first-cluster second methods for vehicle routing. Omega 11(4):403—408. https://
doi.org/10.1016/0305-0483(83)90033-6

Bent RW, Van Hentenryck P (2004) Scenario-based planning for partially dynamic vehicle routing with
stochastic customers. Oper Res 52(6):977-987. https://doi.org/10.1287/opre.1040.0124

Berg J, Ihlstrom J (2019) The importance of public transport for mobility and everyday activities among
rural residents. Soc Sci 8(2):58. https://doi.org/10.3390/s0csci8020058

Bodin LD, Sexton T (1986) The multi-vehicle subscriber dial-a-ride problem. TIMS Stud Manage Sci
26:73-86

Biising C, Comis M, Rauh F (2021). The dial-a-ride problem in primary care with flexible scheduling.
(arXiv:2105.14472) 10.48550/arXiv.2105.14472 arxiv:2105.14472 [math]

Cappanera P, Scutella MG (2015) Joint assignment, scheduling, and routing models to home care optimi-
zation: a pattern-based approach. Transp Sci 49(4):830-852. https://doi.org/10.1287/trsc.2014.0548

Census 2011. RDC of the federal statistical office and statistical offices of the federal states of Germany
(2011). https://doi.org/10.21242/12111.2011.00.04.1.1.0

Census 2022. RDC of the Federal Statistical Office and Statistical Offices of the Federal States of Ger-
many (2022)

Christiaens J, Vanden Berghe G (2020) Slack induction by string removals for vehicle routing problems.
Transp Sci 54:417-433. https://doi.org/10.1287/trsc.2019.0914

Comis M, Cleophas C, Biising C (2021). Patients, primary care, and policy: agent-based simulation mod-
eling for health care decision support. Health Care Manage Sci, pp 1-28. https://doi.org/10.1007/
$10729-021-09556-2

Cordeau J-F, Iori M, Vezzali D (2024) An updated survey of attended home delivery and service
problems with a focus on applications. Ann Oper Res 343:885-922. https://doi.org/10.1007/
$10479-024-06241-9

Cordeau J-F (2006) A branch-and-cut algorithm for the dial-a-ride problem. Oper Res 54(3):573-586.
https://doi.org/10.1287/opre.1060.0283

Cordeau J-F, Laporte G (2003) A tabu search heuristic for the static multi-vehicle dial-a-ride problem.
Transp Res Part B Methodol 37(6):579-594. https://doi.org/10.1016/s0191-2615(02)00045-0

Cordeau JF, Iori M, Vezzali D (2023) A survey of attended home delivery and service problems with a
focus on applications. 40R 21(4):547-583. https://doi.org/10.1007/s10288-023-00556-2

Curtois T, Landa-Silva D, Qu Y, Laesanklang W (2018) Large neighbourhood search with adaptive
guided ejection search for the pickup and delivery problem with time windows. EURO J Transp
Logist 7(2):151-192. https://doi.org/10.1007/s13676-017-0115-6

@ Springer


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.optimization-online.org/DB_HTML/2021/02/8242.html
http://www.optimization-online.org/DB_HTML/2021/02/8242.html
https://doi.org/10.1016/j.retrec.2011.12.004
https://doi.org/10.1016/0305-0483(83)90033-6
https://doi.org/10.1016/0305-0483(83)90033-6
https://doi.org/10.1287/opre.1040.0124
https://doi.org/10.3390/socsci8020058
http://arxiv.org/abs/2105.14472
http://arxiv.org/abs/2105.14472
https://doi.org/10.1287/trsc.2014.0548
https://doi.org/10.21242/12111.2011.00.04.1.1.0
https://doi.org/10.1287/trsc.2019.0914
https://doi.org/10.1007/s10729-021-09556-2
https://doi.org/10.1007/s10729-021-09556-2
https://doi.org/10.1007/s10479-024-06241-9
https://doi.org/10.1007/s10479-024-06241-9
https://doi.org/10.1287/opre.1060.0283
https://doi.org/10.1016/s0191-2615(02)00045-0
https://doi.org/10.1007/s10288-023-00556-2
https://doi.org/10.1007/s13676-017-0115-6

F.Rauh etal.

Desrosiers J, Dumas Y, Soumis F (1988) The Multiple Vehicle DIAL-A-RIDE Problem. In: Daduna JR,
Wren A (eds) Computer-aided transit scheduling, pp 15-27. Springer, Berlin, Heidelberg. https://
doi.org/10.1007/978-3-642-85966-3_3

Dodd L (2013) Java implementation of ant swarm TSP solver. GitHub. https://github.com/lukedodd/
ant-tsp

Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents.
IEEE Trans Syst Man Cybernet Part B (Cybernetics) 26(1):29—41. https://doi.org/10.1109/3477.
484436

Esmer B.C (2017). Java program for Kruskal’s algorithm. GitHub. https://github.com/barisesmer/Algor
ithm-Bundle

Fikar C, Hirsch P (2017) Home health care routing and scheduling: a review. Comput Oper Res 77:86—
95. https://doi.org/10.1016/j.cor.2016.07.019

Gaul D, Klamroth K, Stiglmayr M (2021). Solving the dynamic dial-a-ride problem using a rolling-hori-
zon event-based graph. In: Miiller-Hannemann M, Perea F (eds) 21st Symposium on algorithmic
approaches for transportation modelling, optimization, and systems (ATMOS 2021). Open Access
Series in Informatics (OASIcs), vol 96, pp 8-1816. Schloss Dagstuhl — Leibniz-Zentrum fiir Infor-
matik, Dagstuhl, Germany. https://doi.org/10.4230/OASIcs.ATMOS.2021.8. https://drops.dagstuhl.
de/opus/volltexte/2021/14877

Glover F (1996). Ejection chains, reference structures and alternating path methods for traveling salesman
problems. Disc Appl Math 65(1):223-253. https://doi.org/10.1016/0166-218X(94)00037-E. First
International Colloquium on Graphs and Optimization

Grenouilleau F, Legrain A, Lahrichi N, Rousseau LM (2019) A set partitioning heuristic for the home
health care routing and scheduling problem. Eur J Oper Res 275(1):295-303. https://doi.org/10.
1016/j.ejor.2018.11.025

Gschwind T, Drexl M (2019) Adaptive large neighborhood search with a constant-time feasibility test for
the dial-a-ride problem. Transp Sci 53(2):480-491. https://doi.org/10.1287/trsc.2018.0837

Gschwind T, Irnich S (2015) Effective handling of dynamic time windows and its application to solving
the dial-a-ride problem. Transp Sci 49(2):335-354. https://doi.org/10.1287/trsc.2014.0531

Gupta D, Denton B (2008) Appointment scheduling in health care: challenges and opportunities. IIE
Trans actions 40(9):800-819. https://doi.org/10.1080/07408170802165880

Gurobi Optimization, LLC: gurobi optimizer reference manual. (2023) https://www.gurobi.com

Ho S.C, Szeto W.Y, Kuo Y.-H, Leung J.M.Y, Petering M, Tou T.W.H (2018). A survey of dial-a-ride
problems: Literature review and recent developments. Transp Res Part B Methodol 111:395-421.
https://doi.org/10.1016/j.trb.2018.02.001

Toachim I, Desrosiers J, Dumas Y, Solomon MM, Villeneuve D (1995) A request clustering algorithm
for door-to-door handicapped transportation. Transp Sci 29(1):63-78. https://doi.org/10.1287/trsc.
29.1.63

Jaw J-J, Odoni AR, Psaraftis HN, Wilson NHM (1986) A heuristic algorithm for the multi-vehicle
advance request dial-a-ride problem with time windows. Transp Res Part B Methodol 20(3):243—
257. https://doi.org/10.1016/0191-2615(86)90020-2

Johnn S-N, Zhu Y, Miniguano-Trujillo, A, Gupte A (2021) The home service assignment, routing, and
appointment scheduling (H-SARA) problem with uncertainties*. https://doi.org/10.13140/RG.2.2.
16295.88485

Kalantari B, Hill AV, Arora SR (1985) An algorithm for the traveling salesman problem with pickup and
delivery customers. Eur J Oper Res 22(3):377-386. https://doi.org/10.1016/0377-2217(85)90257-7

Labadie N, Prins C, Prodhon C (2016) metaheuristics for vehicle routing problems. John Wiley & Sons,
Inc., Hoboken, NJ, USA. https://doi.org/10.1002/9781119136767

Luxen D, Vetter C (2011) Real-time routing with OpenStreetMap data. In: Proceedings of the 19th ACM
SIGSPATIAL international conference on advances in geographic information systems. GIS 11, pp
513-516. ACM, New York, NY, USA. https://doi.org/10.1145/2093973.2094062

Madsen OBG, Ravn HF, Rygaard JM (1995) A heuristic algorithm for a dial-a-ride problem with time
windows, multiple capacities, and multiple objectives. Ann Oper Res 60(1):193-208. https://doi.
org/10.1007/BF02031946

Mladenovi¢ N, Hansen P (1997) Variable neighborhood search. Comput Oper Res 24(11):1097-1100.
https://doi.org/10.1016/S0305-0548(97)00031-2

Molenbruch Y, Braekers K, Caris A (2017) Typology and literature review for dial-a-ride problems. Ann
Oper Res 259(1-2):295-325. https://doi.org/10.1007/s10479-017-2525-0

@ Springer


https://doi.org/10.1007/978-3-642-85966-3_3
https://doi.org/10.1007/978-3-642-85966-3_3
https://github.com/lukedodd/ant-tsp
https://github.com/lukedodd/ant-tsp
https://doi.org/10.1109/3477.484436
https://doi.org/10.1109/3477.484436
https://github.com/barisesmer/Algorithm-Bundle
https://github.com/barisesmer/Algorithm-Bundle
https://doi.org/10.1016/j.cor.2016.07.019
https://doi.org/10.4230/OASIcs.ATMOS.2021.8
https://drops.dagstuhl.de/opus/volltexte/2021/14877
https://drops.dagstuhl.de/opus/volltexte/2021/14877
https://doi.org/10.1016/0166-218X(94)00037-E
https://doi.org/10.1016/j.ejor.2018.11.025
https://doi.org/10.1016/j.ejor.2018.11.025
https://doi.org/10.1287/trsc.2018.0837
https://doi.org/10.1287/trsc.2014.0531
https://doi.org/10.1080/07408170802165880
https://www.gurobi.com
https://doi.org/10.1016/j.trb.2018.02.001
https://doi.org/10.1287/trsc.29.1.63
https://doi.org/10.1287/trsc.29.1.63
https://doi.org/10.1016/0191-2615(86)90020-2
https://doi.org/10.13140/RG.2.2.16295.88485
https://doi.org/10.13140/RG.2.2.16295.88485
https://doi.org/10.1016/0377-2217(85)90257-7
https://doi.org/10.1002/9781119136767
https://doi.org/10.1145/2093973.2094062
https://doi.org/10.1007/BF02031946
https://doi.org/10.1007/BF02031946
https://doi.org/10.1016/S0305-0548(97)00031-2
https://doi.org/10.1007/s10479-017-2525-0

The dial-a-ride problem in primary care with flexible...

Parragh SN, Doerner KF, Hartl RF (2008) A survey on pickup and delivery problems: part II: transporta-
tion between pickup and delivery locations. Journal fiir Betriebswirtschaft 58(2):81-117. https://doi.
org/10.1007/s11301-008-0036-4

Prins C (2004) A simple and effective evolutionary algorithm for the vehicle routing problem. Compu
Oper Res 31(12):1985-2002. https://doi.org/10.1016/S0305-0548(03)00158-8

Prins C, Lacomme P, Prodhon C (2014) Order-first split-second methods for vehicle routing problems:
areview. Transp Res Part C Emerg Technol 40:179-200. https://doi.org/10.1016/j.trc.2014.01.011

Psaraftis HN (1980) A dynamic programming solution to the single vehicle many-to-many immediate
request dial-a-ride problem. Transp Sci 14(2):130-154. https://doi.org/10.1287/trsc.14.2.130

Schilde M, Doerner KF, Hartl RF (2011) Metaheuristics for the dynamic stochastic dial-a-ride problem
with expected return transports. Comput Oper Res 38(12):1719-1730. https://doi.org/10.1016/j.cor.
2011.02.006

Syed ST, Gerber BS, Sharp LK (2013) Traveling towards disease: transportation barriers to health care
access. J] Commun Health 38(5):976-993. https://doi.org/10.1007/s10900-013-9681-1

Wilson NH, Sussman JM, Wong HK, Higonnet T (1971). Scheduling algorithms for a dial-a-ride system.
Massachusetts Institute of Technology. Urban Systems Laboratory Report

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Felix Rauh'?® . Emma Ahrens' - Christina Biising’ - Martin Comis’ -
Felix Engelhardt'

< Felix Rauh
felix.rauh @rwth-aachen.de

P4 Felix Engelhardt
engelhardt@combi.rwth-aachen.de

Emma Ahrens
ahrens @cs.rwth-aachen.de

Christina Biising
buesing @combi.rwth-aachen.de

Martin Comis

comis @math2.rwth-aachen.de

Teaching and Research Area Combinatorial Optimization, RWTH Aachen University,
Templergraben 55, 52062 Aachen, Germany

Research Center for Operations Management, KU Leuven, Naamsestraat 69, 3000 Leuven,
Belgium

@ Springer


https://doi.org/10.1007/s11301-008-0036-4
https://doi.org/10.1007/s11301-008-0036-4
https://doi.org/10.1016/S0305-0548(03)00158-8
https://doi.org/10.1016/j.trc.2014.01.011
https://doi.org/10.1287/trsc.14.2.130
https://doi.org/10.1016/j.cor.2011.02.006
https://doi.org/10.1016/j.cor.2011.02.006
https://doi.org/10.1007/s10900-013-9681-1
http://orcid.org/0000-0002-9383-4287

	The dial-a-ride problem in primary care with flexible scheduling
	Abstract
	1 Introduction
	2 Literature review
	2.1 State-of-the-art
	2.2 Integration of scheduling and routing in healthcare
	2.3 Summary and contributions of the paper

	3 Problem description and notation
	3.1 The static dial-a-ride problem
	3.2 DARP with combined requests and flexible time windows (DARPCF)
	3.3 Extended DARPCF with walk-in requests

	4 Solution methodology
	4.1 Mini-clustering
	4.2 TSP and split approach with GIH for return trips

	5 Computational results
	5.1 Data generation and study design
	5.2 Results

	6 Conclusion
	7 Supplementary information
	Appendix A: Notation
	Appendix B: Pseudocode MCLIH
	Appendix C: Static DARP MIP
	Appendix D: Extended DARPCF MIP
	Acknowledgements 
	References


