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Abstract: Given the increasing global emphasis on sustainable energy usage and the rising
energy demands of cellular wireless networks, this work seeks an optimal short-term,
continuous-time power-procurement schedule to minimize operating expenditure and
the carbon footprint of cellular wireless networks equipped with energy-storage capac-
ity, and hybrid energy systems comprising uncertain renewable energy sources. Despite
the stochastic nature of wireless fading channels, the network operator must ensure a
certain quality-of-service (QoS) constraint with high probability. This probabilistic con-
straint prevents using the dynamic programming principle to solve the stochastic optimal
control problem. This work introduces a novel time-continuous Lagrangian relaxation
approach tailored for real-time, near-optimal energy procurement in cellular networks,
overcoming tractability problems associated with the probabilistic QoS constraint. The
numerical solution procedure includes an efficient upwind finite-difference solver for the
Hamilton–Jacobi–Bellman equation corresponding to the relaxed problem, and an effective
combination of the limited memory bundle method (LMBM) for handling nonsmooth
optimization and the stochastic subgradient method (SSM) to navigate the stochasticity of
the dual problem. Numerical results, based on the German power system and daily cellular
traffic data, demonstrate the computational efficiency of the proposed numerical approach,
providing a near-optimal policy in a practical timeframe.

Keywords: stochastic optimal control; chance constraints; Lagrangian relaxation; dynamic
programming; wireless networks

1. Introduction
Since 2021, worldwide mobile broadband traffic has increased by an average of 19.6%

annually, reaching 1 zettabyte (ZB) in 2023 [1]. The 4G network coverage increased from
41% of the world population in 2015 to 92% of the world population in 2024 [1]. The
estimated transmission network electricity consumption in 2022 was 240 to 340 TWh, an
increase of 64% from 2015 [2]. Next-generation transmission technology (e.g., 5G) requires
even more power to ensure sufficient mobile network coverage [3]. A consequence of the
high energy demand is increased greenhouse gas emissions. Data-transmission networks
accounted for around 330 Mt CO2-equivalent in 2020, around 0.9% of all energy-related
emissions [2]. About 83% of the energy consumed by cellular networks came from fossil
fuels in 2021, whereas only 9% came from renewables [4]. This problem motivates the
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coupling of cellular wireless networks with renewable energy to reduce the costs and
carbon footprint of the telecommunications industry. Hybrid energy systems provide a
consistent power supply to wireless networks by combining renewable energy sources
(e.g., solar and wind) [5]. However, modeling these systems and deriving an optimal
power-procurement policy can be challenging, due to the stochasticity of solar/wind power
and wireless channels [6].

Previous studies have considered the optimal power-procurement problem in a
discrete-time setting for isolated energy systems under an uncertain energy demand and
incoming renewable energy [7–9]. The corresponding optimization problem for wireless
networks has additional difficulties due to the uncertainty in wireless channels and prob-
abilistic constraints due to the network quality of service (QoS) [10–13]. The solution
method for this problem in the current literature can be generally categorized into robust
optimization and stochastic optimization. The robust optimization approach constructs
a bounded uncertainty set encompassing all realizations of the stochastic variables and
optimizes the worst-case objective function value [14–17]. Robust optimization, while en-
suring feasibility under the worst-case scenario, often leads to overly conservative policies
that could underutilize renewable energy resources. The stochastic optimization approach
assumes a known probability distribution for the random variables and optimizes the
expected value of the objective function over the probability distribution of the uncertain
parameters [18,19].

Chance-constrained programming is a subclass of stochastic optimization methods,
first introduced in [20,21]. This approach allows constraints to be violated with a certain
prescribed probability or risk level. The standard approach to solving discrete chance-
constrained problems is to replace the chance constraint with a conservative but tractable
approximation using the Bernstein inequality [22,23]. This approach is well-suited for
wireless networks, since the associated QoS constraint is commonly defined probabilisti-
cally, allowing the operator to balance between conservatism and optimality. However,
the computational complexity of the method in the discrete-time setting increases expo-
nentially for large datasets and complex problems. For example, the authors in [24–26]
solved the resulting discrete optimization problem using heuristic techniques, yielding
suboptimal solutions.

This work proposes a novel mathematical modeling and numerical framework for
the optimal management of hybrid energy systems to power cellular wireless networks
under uncertainty and chance constraints in continuous time for a short-term planning
horizon, where the system comprises locally installed renewable energy sources, fossil
fuel power stations, and a storage capacity modeled by a single battery. We employ
stochastic differential equations (SDEs) to model the incoming instantaneous renewable
power and wireless fading channels. Data-driven SDEs have been employed to model
instantaneous wind [27–30] and solar power [31–33]. These SDE models follow a mean
reversion to deterministic wind speed/solar irradiance forecasts. The parameters of the
SDE characterizing its uncertainty are calibrated from historic discrepancies (data) between
the actual and forecasted quantities. Moreover, we employ SDEs to model stationary
wireless fading channels. The authors in [34–37] constructed and configured SDEs to
reproduce characteristics of various fading channel models, primarily concerning their
stationary distribution.

This work formulates and solves a time-continuous stochastic optimal control problem
to derive a near-optimal policy minimizing the expected operating expenditure and carbon
footprint of cellular base stations. We optimize for both cost minimization and environ-
mental impact, introducing a trade-off parameter w ∈ [0, 1] to balance these objectives.
The optimal control is subject to demand constraints, a probabilistic and time-pointwise
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QoS constraint, and the dynamics and capacity limits of energy systems and wireless
channels. The probabilistic constraint prevents the direct application of the dynamic pro-
gramming principle because the constraint controls the joint distribution of the random
variables. The optimal policy must be a function of the current state and time for the
standard dynamic programming lemma to hold, not a function of its distribution [38]. To
overcome this problem, we pose the corresponding dual problem by introducing a time-
continuous Lagrangian relaxation to penalize violations of the probabilistic constraint [39].
This dual formulation yields a standard time-continuous stochastic optimization problem
solved iteratively by optimizing the dual function. Each iteration involves solving the
Hamilton–Jacobi–Bellman (HJB) partial differential equation (PDE) [40,41] using an up-
wind finite-difference scheme [42] to compute the dual objective value and subgradient.
With access to only noisy subgradients, we solve the convex, nonsmooth dual problem
using a novel combination of the limited memory bundle method (LMBM) [43–45] and
the stochastic subgradient method [46,47]. Moreover, we design a refinement strategy for
the Lagrangian multipliers to control the pointwise violation in the chance constraint. The
numerical experiments and results based on the German power system and daily cellular
traffic profiles validate the efficiency of the proposed models and approach.

The contributions can be summarized as follows:

1. We propose a novel time-continuous optimization framework for optimal power pro-
curement for green wireless cellular networks, subject to SDE dynamics and chance
constraints. Compared to the discrete-time formulation in previous studies [24–26],
the proposed approach decouples the model development from the numerical ap-
proximation, enhancing the model fidelity (see Remark 3). This formulation also
yields a continuous control curve over time, allowing its application for any time
discretization scheme and eliminating the need for ad hoc interpolations [48].

2. We calibrate the data-driven SDE model developed for instantaneous wind power
in [30] using German wind power data from the year 2023. The calibrated SDE is a
driving dynamic for the stochastic optimal control problem.

3. We derive an SDE to model the instantaneous Nakagami wireless fading channel [49]
with a shifted-gamma invariant distribution, using the Pearson class of diffusions [50].
This SDE is a driving dynamic for the stochastic optimal control problem.

4. We apply Lagrangian relaxation to the probabilistic QoS constraint, transforming the
problem into a standard time-continuous stochastic optimization problem. Studies
have explored numerical methods for time-continuous stochastic optimization with
final-time chance constraints using Lagrangian relaxation [51–53] or reformulation
as a stochastic target problem [54,55]. However, the proposed approach is novel in
addressing a chance constraint that must be satisfied at every time point. Moreover,
we implement this within the context of cellular wireless networks.

5. We develop an iterative algorithm to optimize the dual function within a finite-
dimensional function class numerically. Each iteration involves solving the HJB PDE
to compute the dual function value and its noisy subgradient. The proposed approach
extends the work in [48] on the time-continuous deterministic optimization of coupled
hydrothermal power systems to the stochastic setting.

6. With access only to noisy realizations of the subgradient, we combine the LMBM
method [56] with the stochastic subgradient method [47] to solve the dual optimization
problem. We iteratively refine the Lagrange multiplier to ensure compliance with the
chance constraint at every time point.

The outline of the paper is as follows. Section 2 introduces the complete system
model, detailing the costs, power generation, wireless network, and state dynamics. Next,
Section 3 formulates the primal stochastic optimal control problem and the associated dual
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problem by Lagrangian relaxation of the chance constraint. Then, Section 4 introduces
the numerical approach for solving the dual problem and presents all components of the
final algorithm in detail. This section discusses the numerical solution of the HJB PDE,
subgradient estimation, dual-problem optimization, and numerical errors arising from
the proposed approach. Finally, Section 5 demonstrates the numerical results of applying
the above approach when solving the stochastic optimization problem for a cellular base
station based on the German power system and daily cellular traffic profiles.

2. System Model
This work considers a cellular network of multiple noninteracting base stations, each

powered by renewable energy sources (solar panels or wind turbines) and battery storage.
Figure 1 in [25] depicts the schematic network. Figure 1 illustrates the electrical power flow
in each base station, each with a battery that stores the power generated from renewables
(PR). The power transmitted by the base station to serve cellular users consists of power
procured from the battery (PA) and bought from the grid (PF). Any extra energy stored in
the battery could be sold back to the grid (PS) for revenue. We aim to optimize the energy
procurement at each base station for a one-day operation cycle.

PR

PA

PF
PS

Ptx

Figure 1. Schematic illustration of the power flow in a base station (Section 2.1) in a cellular wire-
less network.

2.1. Base Station Model

The instantaneous power procured by the mobile operator from the traditional grid
to power the base station is denoted by {PF(t) ∈ R+ : t ∈ [0, T]}, where 0 and T denote
the time at the beginning and end of the day, respectively. The corresponding unit price
is denoted by {Kb(t) ∈ R+ : t ∈ [0, T]}. This price can vary during the day depending on
strategies followed by the stakeholders in the energy market. Moreover, the base station
has its own internal source of power (i.e., renewable power generator) whose generated
power is denoted by {PR(t) ∈ R+ : t ∈ [0, T]}. This power is assumed to be free of charge.
The internal power source is assumed to have a maximum power output capacity denoted
by P̄R ∈ R+. The base station has a battery, allowing the mobile operator to store the
incoming renewable power. As the base station is interconnected with the traditional grid,
the mobile operator chooses to use the stored renewable power to run the base station or
sell the extra energy back to the grid for revenue. The instantaneous power drawn from the
battery to run the base station is denoted by {PA(t) ∈ R+ : t ∈ [0, T]}. The instantaneous
power from the battery sold back to the grid is denoted by {PS(t) ∈ R+ : t ∈ [0, T]},
and the corresponding unit price is denoted by {Ks(t) ∈ R+ : t ∈ [0, T]}. We reasonably
assume Ks(t) ≤ Kb(t) for all t ∈ [0, T]. The instantaneous power transmitted by the
base station to serve its users is denoted by {Ptot

tx (t) ∈ R+ : t ∈ [0, T]}. We assume the
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total transmitted power is equally divided among each average mobile user connected
to the network. The instantaneous power transmitted by the base station per average
user is denoted by {Ptx(t) ∈ R+ : t ∈ [0, T]} and Ptot

tx (t) = Nu(t)Ptx(t) for all t ∈ [0, T],
where {Nu(t) ∈ R+ : t ∈ [0, T]} is the number of connected mobile users at time t. The
instantaneous power balance equation for the base station is

PA(t) + PF(t) = CscalNu(t)Ptx(t) + Coffset, 0 ≤ t ≤ T, (1)

where Cscal ∈ R+ represents a factor that scales with the transmitted power due to the
amplifier and feeder losses in the network, and Coffset ∈ R+ models the offset power
required to operate the base station irrespective of the transmitted power [25]. We assume
that the base station can transmit a maximum power of P̄tx ∈ R+.

Ptot
tx (t) ≤ P̄tx, 0 ≤ t ≤ T· (2)

The term Nu(t) in (1) is determined by the choice of the daily mobile user traffic model,
heavily influencing the power demand in the base station. One such model is introduced
in Section 5.1.

2.2. Cellular Network Model

According to the power law, the power transmitted by the base station decays with
increased distance from the base station. Moreover, the transmitted power is uncertain
due to atmospheric conditions, natural and human-made environmental obstacles, and
interference from other signals [11]. Hence, the instantaneous power received by a user u at
position xu(t) = (xu(t), yu(t)) ∈ R2 from a base station at xBS = (xBS, yBS) ∈ R2 is given as
Pu

rx(t) = Ptx(t)ξ(t)κ∥xu(t)− xBS∥−η , where κ, η ∈ R+ denotes the path loss constant and
exponent, respectively. Moreover, ∥·∥ denotes the Euclidean norm. ξ : [0, T]× Ω→ [ξ, ∞)

represents a stochastic process, that is greater than ξ ∈ R+ almost surely (a.s.), modeling
the wireless fading channel.

This work assumes the channel follows Nakagami fading [49]. The Nakagami fading
model is a good data-fit model for cellular systems in urban and suburban areas [57]. In this
model, the instantaneous power is gamma distributed, a Pearson type III distribution [58].
Hence, Pearson diffusion [50] is employed to model the wireless fading channel. Thus,
this work constructs an SDE for the process ξ (3) with a mean-reverting linear drift and a
squared diffusion, which is a second-order polynomial of the state, and whose invariant
distribution is the shifted-gamma distribution [50] with shape parameter µ > 1 and scale
parameter θ ∈ R+. We consider the probability space {Ω,F , {Ft}t≥0, P}, where Ft is the
filtration of the standard Wiener process W : [0, T]× Ω→ R:dξ(t) = −θ

(
ξ(t)− ξ − µ

)
dt +

√
2θ(ξ(t)− ξ)dW(t), t > 0

ξ(0) ∼ µ
ξ
0,

· (3)

where µ
ξ
0 is the invariant distribution of the process ξ.

Remark 1 (Computational efficiency of Pearson diffusions). Pearson diffusion naturally models the
continuous-time wireless fading channel, where process ξ lies in

[
ξ, ∞

)
for all t ∈ [0, T]. This model

also has the advantage of analytical tractability, providing closed-form solutions for the invariant
distribution of the process ξ and offering better insight into its behavior. This approach makes the
model choice computationally more efficient than other Markov-based models (e.g., discrete-state
Markov chains), whose complexity increases quadratically as the number of possible states increases.
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In this work, the network performance is characterized by the offered QoS, determined
by the signal-to-noise ratio (SNR) threshold SNRth. The SNR, in decibels (dB), at user u at
xu(t) served by the base station can be expressed as follows:

SNRu(t) = 10 log10

(
Pu

rx(t)
σ0

)
= 10 log10

(
Ptx(t)ξ(t)κ∥xu(t)− xBS∥−η

σ0

)
· (4)

The ambient noise level is denoted by σ0 ∈ R+. The QoS of the base station is
determined by the proportion of users whose SNR is above SNRth. A user u is defined to
be in outage at time t if SNRu(t) < SNRth. The proportion of users in outage is denoted by
{ϕout(t) ∈ [0, 1] : t ∈ [0, T]} and can be expressed as follows:

ϕout(t) =
1

Nu(t)

Nu(t)

∑
u=1

1{SNRu(t)<SNRth}, (5)

where ϕout(t) can be interpreted as an empirical average over a user distribution. The
following approximation assumes that each user is identical and that sufficient number of
mobile users exist at all times:

ϕout(t) =
1

Nu(t)

Nu(t)

∑
u=1

1{SNRu(t)<SNRth}

=
1

Nu(t)

Nu(t)

∑
u=1

1{
10 log10

(
Ptx(t)ξ(t)κ∥xu(t)−xBS∥−η

σ0

)
<SNRth

}
≈
∫
R2
1
∥z−xBS∥>

 Ptx(t)ξ(t)κ

σ010
SNRth

10

 1
η


ρz(t)dz, (6)

where ρz(t) denotes the distribution of mobile users at time t. In (6), ϕout(t) is the comple-
mentary cumulative distribution function (ccdf) of the user distribution. This quantity can
be computed (even analytically) for many well-known distributions.

The objective of the network operator is to ensure ϕout(t) < ϕth for all t ∈ [0, T], where
0 < ϕth ≪ 1 represents a threshold ratio. Due to the uncertainty associated with channel
fading, achieving the objective in an a.s. sense is infeasible. Instead, we introduce the
following chance constraint for the network QoS.

P[ϕout(t) ≥ ϕth] ≤ ϵ, 0 ≤ t ≤ T, (7)

where 1− ϵ, for 0 < ϵ ≪ 1, is the confidence level of satisfying the constraint in (7). The
network operator also generates revenue from servicing the users throughout the day:

R1 = E
[∫ T

0
Knet(t)Nu(t)(1− ϕout(t))dt

]
, (8)

where {Knet(t) ∈ R+ : t ∈ [0, T]} denotes the unit price paid by users to connect to the
network, and Nu(t)(1− ϕout(t)) represents the number of users that are connected to the
network (not in outage).

2.3. Renewable Power Model

This work also incorporates the uncertainty in renewable power generation. We apply
a data-driven parametric SDE, whose solution defines a stochastic process that models the
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error in a given forecast for renewable power [30]. Let the process R : [0, T]× Ω→ [0, 1]
denote the normalized generated renewable power.dR(t) = ( ṗ(t)− θ(t)(R(t)− p(t)))dt +

√
2αθ0R(t)(1− R(t))dW(t), t > 0

R(0) ∼ µR
0 ,

· (9)

where {p(t) ∈ [0, 1] : t ∈ [0, T]} is a deterministic forecast for the normalized power
provided by an official source and { ṗ(t) : t ∈ [0, T]} is its time derivative. In addition,
{θ(t) : t ∈ [0, T]} denotes the mean-reversion time-varying parameter ensuring that
the process R is the unique strong solution to (9) for all t ∈ [0, T] with range [0, 1], a.s.
Moreover, α, θ0 ∈ R+ are parameters inferred from discrepancies between historical real-
world observations and their forecasts. In addition, W : [0, T]× Ω → R is a standard
Wiener process. The drift function in (9) is designed such that the process reverts to its
mean p(t), with a time-varying speed θ(t) proportional to the deviation of the process
R(t) from its mean, and it tracks the time derivative ṗ(t). The diffusion function in (9) is
designed so that the process R(t) avoids exiting from the range [0, 1]. The net renewable
power generated is then given by PR(t) = P̄RR(t) for all t ∈ [0, T].

2.4. Battery Model

This work uses a simple model for the battery based on a circuit model of the state of
the charge of a lithium-ion battery [59]. We assume that it has no energy loss when used
and that no associated operational costs or aging effects exist. Process A : [0, T] → [0, 1]
denotes the normalized charge in the battery:

dA(t) =
(PR(t)− PS(t)− PA(t))

Ā
dt

A(0) = A0

−PA(A(t)) ≤ PA + PS − PR ≤ P̄A(A(t)),

· (10)

where Ā represents the maximum battery charge capacity, PA denotes the maximum power
the battery can absorb, and P̄A indicates the maximum power that the battery can supply.
These quantities are characteristic of the battery. Generally, the battery can supply more
power than it can absorb; hence, PA < P̄A for all t ∈ [0, T]. In addition, A0 ∈ [0, 1]
represents the normalized charge in the battery at the start of the day. The requirement that
0 ≤ A(t) ≤ 1 for all t ∈ [0, T] is enforced via constraints on charging and discharging at
the extremes: PR(t)− PS(t)− PA(t) ≥ 0, if A(t) = 0

PR(t)− PS(t)− PA(t) ≤ 0, if A(t) = 1·
(11)

The network operator generates revenue by selling some energy stored in the battery
throughout the day:

R2 = E
[∫ T

0
Ks(t)PS(t)dt

]
· (12)

Remark 2 (Battery model improvements). Although the battery model (10) is straightforward and
idealistic, realistic battery efficiency losses in the model can be incorporated by adding simple energy
loss terms in the objective function of the optimal control problem. For example, this adjustment could
include Ohmic efficiency losses [60] as a polynomial function of the battery discharge (PA + PS− PR),
and state-of-charge losses [61] as an exponential function of the normalized battery charge A, which
is outside the current scope of the work.
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2.5. Grid Power Model

The network operator incurs the following cost of buying power from the traditional
grid throughout the day:

C1 = E
[∫ T

0
Kb(t)PF(t)dt

]
· (13)

The power from the traditional grid is primarily generated by fossil fuel stations, and
has a highly negative environmental effect. This work does not impose an upper limit on
how much power could be bought from the grid. To restrict the green cellular network from
buying substantial amounts of grid power, we also impose an additional "environmental"
cost of buying fossil fuel-based power [62].

C2 = E
[∫ T

0

(
C1PF(t) + C2PF(t)2

)
dt
]

, (14)

where C1 ∈ R+ and C2 ∈ R+ denote the pollutant emission coefficients of grid power.

2.6. Running Horizon Framework

Although this work aims to formulate an optimal power-procurement problem for
a one-day operation cycle, such a short-term approach could lead to spurious results at
the end of the day. For example, the resulting optimal policy might have operators selling
all stored energy at the end of the day to generate revenue. This scenario is unrealistic
because the operator would prefer to keep some charge in the battery for the next day. This
work devises a running horizon framework to avoid producing such impractical optimal
policies and still work in a short-term finite horizon. The framework consists of two facets.
First, we add fictitious revenue from storing battery charge at the end of the day. More
specifically, we introduce a third revenue source, as follows:

R3 = E[PK ĀA(T)], (15)

where PK ∈ R+ represents the fictitious cost per unit of stored battery charge. For example,
publicly available deterministic forecasts of normalized renewable power and day-ahead
energy price forecasts can be applied to determine a suitable value of PK.

Next, we formulate the optimal control problem for a two-day operation cycle (instead
of one) but apply the optimal power-procurement policy only for one day. This approach
requires two-day-ahead forecasts of renewable power, energy prices, and cellular user de-
mand. The optimal power-procurement policy is updated daily, as and when the operators
receive the two-day-ahead forecasts of these quantities. Regarding the problem formulation,
the only change is that the time horizon is denoted by [0, T], where 0 denotes beginning of
the day, and T denotes the end of the second day (instead of at the end of the current day).
Henceforth, this notation is applied while formulating the optimization problem.

2.7. Model Summary

The state and control vectors are denoted by X(t) and ϕ(t), respectively:

X(t) := [A(t), R(t), ξ(t)], (16)

ϕ(t) := [PA(t), PF(t), Ptx(t), PS(t)]· (17)

The state vector X(t) is defined on a probability space (Ω,F , P) and each of its
components satisfy the controlled dynamics in (3), (9), and (10), respectively, in [0, T].
The initial conditions are also random. The control ϕ(t) := ϕ(t, X(t)) is an Ft-adapted
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Markovian control that is measurable, where {Ft, t ≥ 0} represents the filtration on the
probability space.

Constraints 1 (A.s. instantaneous control constraints). The controls must satisfy the following
constraints for all t ∈ [0, T]:

0 ≤ PA(t), (18)

0 ≤ PF(t), (19)

0 ≤ Ptx(t) ≤
P̄tx

Nu(t)
, (20)

0 ≤ PS(t)· (21)

The controls must also follow the following state-dependent constraint:

−PA(A(t)) ≤ PA(t) + PS(t)− P̄RR(t) ≤ P̄A(A(t))· (22)

Furthermore, for a given deterministic forecast of the number of cellular users con-
nected to the network, Nu(t), the controls are constrained to satisfy the following:

PA(t) + PF(t) = CscalNu(t)Ptx(t) + Coffset, 0 ≤ t ≤ T· (23)

Constraints 2 (Probabilistic instantaneous control constraints). The controls must satisfy the
following probabilistic constraint for all t ∈ [0, T]:

P[ϕout(t) ≥ ϕth] ≤ ϵ· (24)

The shorthand notation ϕout(t) := ϕout(t, X(t), ϕ(t)) is used here. The constraints in
(18) to (24) define the set of admissible Markov controls A(t, X(t)) at each time t ∈ [0, T].
Then, we define the set of admissible policies as follows:

Ā = {ϕ : ϕ is Ft-adapted, ϕ(t, ω) ∈ A(t, X(t, ω)), ∀ω ∈ Ω, ∀t ∈ [0, T]}· (25)

3. Stochastic Optimal Control Formulation
Problem 1 (Primal problem with the probabilistic constraint). Given the initial data
X(0) = [A0, R0 ∼ µR

0 , ξ0 ∼ µ
ξ
0], deterministic forecasts for daily cellular user traffic profile

Nu(t), energy spot prices Kb(t) and Ks(t), renewable energy forecast p(t), and mobile network
usage price Knet(t) for 0 ≤ t ≤ T, we solve the following:

ϕ∗ = argmin
{ϕ∈Ā}

U (ϕ) = w(C1 −R1 −R2 −R3) + (1− w)C2, (26)

where the minimization is done over all controls satisfying Constraints 1 and 2 with dynamics (3),
(9), and (10). We define U (ϕ) as the net utility of the base station. In addition, w ∈ [0, 1] is a
Pareto parameter to weigh the two objectives: financial cost (C1 −R1 −R2) and environmental
cost (C2), where w can be chosen by the base station operators, depending on how environmentally
conscious they are. The dependence of the costs on the controls ϕ in (26) is suppressed for ease
of notation.

Remark 3 (Discrete vs. continuous-time formulation). The optimal solution to a discrete-time
formulation leads to a discrete set of control decisions at each time step, dependent on the selected
discretization. Applying the dynamic programming principle to a discrete-time formulation leads
to a stochastic optimization problem at each time step. Finer grids substantially increase the
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computational work, making the problem computationally infeasible without guaranteeing that
the optimal policies would converge. In a continuous-time formulation, the limit of the dynamic
programming principle exists as the time step becomes infinitesimally small, leading to the derivation
of the associated HJB PDE. Numerical discretization methods are applied just once to solve this
PDE and obtain a solution at all time points. This approach facilitates discretization error control,
ensuring convergence to the true optimal solution, and enables the flexible application of adaptive
and higher-order numerical approximation schemes.

The probabilistic constraint in 2 does not allow classical dynamic programming to
solve Problem 1 because the constraint controls the joint distribution of the Markovian
dynamics, rather than each realization. The standard dynamic programming lemma [38]
cannot be applied if the Markovian control function depended additionally on the state’s
distribution. We overcome this problem using Langrangian relaxation of the probabilistic
constraint for all t ∈ [0, T], yielding a continuous-time Lagrangian relaxation. For this
approach, we define the time-continuous deterministic Lagrange multiplier function λ :
[0, T] → R+, associated with the relaxed constraint in 2. We let Λ denote the admissible
space of Lagrange multiplier functions. The new set of admissible controls is only defined
by the constraints in (18)–(23) and is denoted by Arel(t, X(t)) at each time t ∈ [0, T]. Then,
we define the new set of admissible policies as follows:

Ārel =
{

ϕ : ϕ is Ft-adapted, ϕ(t, ω) ∈ Arel(t, X(t, ω)), ∀ω ∈ Ω, ∀t ∈ [0, T]
}
· (27)

We define the Lagrangian using terminology from the classical Lagrangian relaxation
technique for constrained optimization problems [63] as follows:

L(ϕ, λ) = U (ϕ) +
∫ T

0
λ(t)(P[ϕout(t, X(t), ϕ(t)) ≥ ϕth]− ϵ)dt (28)

= U (ϕ) +
∫ T

0
E
[
λ(t)

(
1{ϕout(t,X(t),ϕ(t))≥ϕth} − ϵ

)]
dt·

Problem 2 (Relaxed problem). Given the initial data X(0) = [A0, R0 ∼ µR
0 , ξ0 ∼ µ

ξ
0], Lagrange

multiplier function λ, deterministic forecasts for daily cellular user traffic profile Nu(t), energy spot
prices Kb(t) and Ks(t), renewable energy forecast p(t), and mobile network usage price Knet(t) for
0 ≤ t ≤ T, we solve the following:

ϕ∗(λ) = argmin
{ϕ∈Ārel}

L(ϕ, λ), (29)

where the minimization is done over all controls satisfying the constraint in 1 with dynamics (3),
(9), and (10).

With the relaxation of the probabilistic constraint in 2, the dynamic programming
principle can be applied to solve Problem 2. The dual problem associated with the primal
Problem 1 is formulated below.

Problem 3 (Dual problem). We determine

λ∗ = argmax
λ∈Λ

Θ(λ), (30)

where the dual function Θ(λ) is given by

Θ(λ) = L(ϕ∗(λ), λ), (31)
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and ϕ∗(λ) solves Problem 2 for a given λ.

The admissible set Λ of Lagrange multiplier functions depends on the problem struc-
ture. For the considered optimization problem, λ denotes a positive real-valued function of
time t due to the deterministic nature of the relaxed constraint (24).

3.1. HJB Equation Related to Problem 2

As a first step to solving the dual problem (Problem 3), Problem 2 is solved to obtain
Θ(λ) for a given λ. Using terminology from standard continuous-time stochastic optimal
control [38,40], we first define the cost-to-go function u : [0, T]× Γ → R associated with
Problem 2 as follows:

u(t, x) = min
ϕ∈Ārel

Ut,x(ϕ)

= min
ϕ∈Ārel

E
[ ∫ T

t

(
w

(
Kb(s)PF(s)− Ks(s)PS(s)− Knet(s)Nu(s)(1− ϕout(s, ξ(s), Ptx(s)))

)

+ (1− w)
(

C1PF(s) + C2PF(s)2
)
+ λ(s)

(
1{ϕout(s,ξ(s),Ptx(s))≥ϕth} − ϵ

))
ds (32)

− PK ĀA(T)

∣∣∣∣∣X(t) = x

]
·

We define the components of x = [a, r, χ], where a, r, and χ denote the variables corre-
sponding to components of the state vector A(t), R(t), and ξ(t), respectively. In addition, Γ

denotes the domain of x, in this case [0, 1]× [0, 1]× [ξ, ∞), because A(t) and R(t) are [0, 1]-
valued random variables and ξ(t) is a [ξ, ∞)-valued random variable for all t ∈ [0, T] (see
Equations (3), (9) and (10)). Using (32), the dual function is defined as Θ(λ) = u(0, X(0)),
where u, for given λ, solves the following second-order nonlinear HJB final value PDE.

∂u
∂t

+H(t, x,∇u,∇2u; λ) = 0

u(T, x) = −PK Āa, ∀x ∈ Γ,
· (33)

where ∇· denotes the gradient vector, and ∇2· represents the Hessian matrix of a scalar-
valued function. The HamiltonianH associated with Problem 2 in (33) is defined as follows:

H(t, x,∇u,∇2u; λ) = min
ϕ∈Arel(t,x)

[
(P̄Rr− PS − PA)

Ā
∂u
∂a

+ ( ṗ(t)− θ(t)(r− p(t)))
∂u
∂r

+ αθ0r(1− r)
∂2u
∂r2 − θ

(
χ− ξ − µ

) ∂u
∂χ

+ θ(χ− ξ)
∂2u
∂χ2 + w

(
Kb(t)PF

− Ks(t)PS − Knet(t)Nu(t)(1− ϕout(t, χ, Ptx))

)
+ (1− w)

(
C1PF + C2P2

F

)
+ λ(t)

(
1{ϕout(t,χ,Ptx)>ϕth} − ϵ

)]
· (34)

We obtain an approximation Θ̄(λ) of the dual function Θ(λ) by numerically approxi-
mating the solution to (33). Section 4 discusses this approach in detail.
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3.2. Finite-Dimensional Approximation of Problem 3

Problem 3 is an infinite-dimensional optimization problem to satisfy the constraint
in 2 pointwise in time. We discretize λ(t) into a piecewise constant function to approximate
the infinite-dimensional dual problem, allowing for practical numerical optimization. This
approach implies satisfying the constraint for a finite number of subintervals in [0, T]. That
is, the integral of the pointwise violation of the constraint in 2 over each subinterval must
be 0. We consider the time discretization 0 = t0 < t1 < . . . < tℓ−1 < tℓ = T of the time
domain [0, T]. The Lagrange multiplier is approximated as follows:

λ(t) ≈ λℓ(t) =
ℓ

∑
i=1

Υℓ
i 1{t∈[ti−1,ti ]}, ∀t ∈ [0, T], (35)

where {Υℓ
i }ℓi=1 denotes components of the vector of Lagrange multipliers Υℓ. For the given

time discretization, we define

Λ̄ℓ = {λℓ : with λℓ(t) defined in (35) and Υℓ
i ∈ R+∀i ∈ [1, . . . , ℓ]}· (36)

With this approximation, the finite-dimensional approximation of Problem 3 is formulated.

Problem 4 (Finite-dimensional dual problem). For a given ℓ, we determine the following:

λ̄ℓ = argmax
λℓ∈Λ̄ℓ

Θ(λℓ)· (37)

The following Lagrangian is written for a given λℓ ∈ Λ̄ℓ:

L(ϕ, λℓ) = U (ϕ) +
ℓ

∑
i=1

Υℓ
i

(
DΘ(λℓ)

)
i

(38)

with (
DΘ(λℓ)

)
i
= E

[∫ ti

ti−1

(
1{ϕout(t,X(t),ϕ(t))≥ϕth} − ϵ

)
dt
]

, ∀i ∈ [1, . . . , ℓ], (39)

where
(
DΘ(λℓ)

)
i

denotes the ith component of an ℓ-dimensional subgradient vector

DΘ of the dual function Θ evaluated at λℓ ∈ Λ̄ℓ. To solve Problem 4, the optimal ℓ-
dimensional vector Υℓ ∈ (R+)

ℓ that maximizes the dual function Θ is selected. Hence,
Problem 4 is a convex, ℓ-dimensional optimization problem but is not generally smooth.
Therefore, we apply subgradient methods to solve Problem 4. Moreover, the choice of ℓ
and the corresponding time discretization grid is set to control the pointwise violation in
Constraint 2. Section 4 details this approach.

4. Numerical Approach
4.1. Numerically Solving the HJB PDE

We employ the explicit Euler upwind finite-difference scheme to numerically approxi-
mate the solution to the HJB equation in (33). This method provides a convergent numerical
scheme under certain conditions that can be proven for the considered problem [42].

We consider the following time and space discretization of (t, x) ∈ [0, T]× [0, 1]×
[0, 1]× [ξ, ∞), where x = (a, r, χ), and the following finite-difference grid τ = τt × τa ×
τr × τχ:

τt : 0 = t0 < t1 < . . . < tNt−1 < tNt = T, ∆t =
T
Nt
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τa : 0 = a0 < a1 < . . . < aN1−1 < aN1 = 1, ∆a =
1

N1
(40)

τr : 0 = r0 < r1 < . . . < rN2−1 < rN2 = 1, ∆r =
1

N2

τχ : 0 = χ0 < χ1 < . . . < χN3−1 < χN3 = 1, ∆χ =
1

N3
·

For the dimension χ, we approximate the domain [ξ, ∞) by [ξ, χ̄] for an appropriately
chosen χ̄, which is scaled to [0, 1]. We employ uniform grids in all dimensions; that is,

tn = n∆t, n = 0, . . . , Nt,

ai = i∆a, i = 0, . . . , N1,

rj = j∆r, j = 0, . . . , N2,

χk = k∆χ, k = 0, . . . , N3·

We combine the scaled drift and diffusion terms of dynamics (3), (9), and (10) into
vector-valued functions F and G, respectively.

F(t, x, ϕ) =


P̄Rr−PS−PA

Ā
ṗ(t)− θ(t)(r− p(t))

−θ
(

χ− µ
χ̄−ξ

)
, G(t, x, ϕ) =

 0
αθ0r(1− r)

θχ
χ̄−ξ

·
For convenience, we define the following function representing the running cost

in (34).

H(t, x, ϕ) = w(Kb(t)PF − Ks(t)PS − Knet(t)Nu(t)(1− ϕout(t, χ, Ptx)))

+ (1− w)
(

C1PF + C2P2
F

)
+ λ(t)

(
1{ϕout(t,χ,Ptx)≥ϕth} − ϵ

)
·

For a function f , we define f+(t, x, ϕ) := max( f (t, x, ϕ), 0) and f−(t, x, ϕ) := max
(− f (t, x, ϕ), 0). For a function f , we define f n

(i,j,k) := f (tn, [ai, rj, χk], ϕ(tn, [ai, rj, χk])). Let
ūn
(i,j,k) denote the numerical approximation of the cost-to-go function u(t, x) at the point

(tn, ai, rj, χk) on the grid τ. Then, the explicit update rule for the upwind finite-difference
scheme is given as follows:

ūn−1
(i,j,k) = ūn

(i,j,k)

(
1− 2(G1)

n
(i,j,k)

∆t
∆r2 − 2(G2)

n
(i,j,k)

∆t
∆χ2

− ∆t
∆a

∣∣∣(F1)
n
(i,j,k)

∣∣∣− ∆t
∆r

∣∣∣(F2)
n
(i,j,k)

∣∣∣− ∆t
∆χ

∣∣∣(F3)
n
(i,j,k)

∣∣∣) (41)

+ ūn
(i+1,j,k)

∆t
∆a

(F+
1 )n

(i,j,k) + un
(i−1,j,k)

∆t
∆a

(F−1 )n
(i,j,k)

+ ūn
(i,j+1,k)

(
(G2)

n
(i,j,k)

∆t
∆r2 + (F+

2 )n
(i,j,k)

∆t
∆r

)
+ ūn

(i,j−1,k)

(
(G2)

n
(i,j,k)

∆t
∆r2 + (F−2 )n

(i,j,k)
∆t
∆r

)
+ ūn

(i,j,k+1)

(
(G3)

n
(i,j,k)

∆t
∆χ2 + (F+

3 )n
(i,j,k)

∆t
∆χ

)
+ ūn

(i,j,k+1)

(
(G3)

n
(i,j,k)

∆t
∆χ2 + (F−3 )n

(i,j,k)
∆t
∆χ

)
+ ∆tHn

(i,j,k)·

ūNt
(i,j,k) = −PK Āai, ∀i, j, k· (42)
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In (41), we apply the notation {Fi}3
i=1 and {Gi}3

i=1 to denote the ith component of the
vector-valued functions F and G, respectively. Optimal controls at grid point (tn, ai, rj, χk),
denoted by (ϕ∗)n

(i,j,k), are computed using the known derivatives (up to the second order)
of the numerical cost-to-go-function as follows:

(ϕ∗)n
(i,j,k) = argmin

ϕ∈Arel(tn ,[ai ,rj ,χk ])

[
F+

1 (tn, [ai, rj, χk], ϕ)(∆+
a ū)n

(i,j,k) + F−1 (tn, [ai, rj, χk], ϕ)(∆−a ū)n
(i,j,k) (43)

+ H(tn, [ai, rj, χk], ϕ)

]
,

where (∆+
a ū)n

(i,j,k) and (∆−a ū)n
(i,j,k) represent the upwind derivatives given by

(∆+
a ū)n

(i,j,k) =
ūn
(i+1,j,k) − ūn

(i,j,k)

∆a
, (∆+

a ū)n
(i,j,k) =

ūn
(i,j,k) − ūn

(i−1,j,k)

∆a
· (44)

In general, boundary conditions must be imposed on the HJB PDE (33) to obtain a
unique numerical solution. However, boundary conditions at the boundaries a = 0, 1,
r = 0, 1, and χ = 0 are unnecessary in this setting because the drift terms {Fi}3

i=1 naturally
have a sign at the boundaries ensuring the use of an interior point to approximate first-
order derivatives. Similarly, the diffusion terms {Gi}3

i=1 are naturally 0 at these boundaries,
ensuring no exterior points are necessary to approximate second-order derivatives. At
the boundary χ = χ̄, we impose a nonreflective boundary condition to indicate that the
actual domain is not bounded at χ = χ̄. We impose the Courant–Friedrichs–Lewy (CFL)
condition at each grid point in τ to ensure the stability of the numerical scheme

∆t


∣∣∣(F1)

n
(i,j,k)

∣∣∣
∆a

+

∣∣∣(F2)
n
(i,j,k)

∣∣∣
∆r

+

∣∣∣(F3)
n
(i,j,k)

∣∣∣
∆χ

+
2(G2)

n
(i,j,k)

∆r2 +
2(G3)

n
(i,j,k)

∆χ2

 ≤ 1· (45)

Although the HJB PDE (33) is nonlinear, the numerical scheme given by
Equations (41)–(43) is explicit because the cost-to-go function at time tn−1 is completely
determined by its value and derivatives at time tn. However, this relationship is nonlinear
and cannot be vectorized. Moreover, the four-dimensional (4D) constrained optimization
problem in (43) must be solved at every grid point in τ. Depending on the structure of
ϕout(t, χ, Ptx), (43) can be solved analytically or numerically. Linear interpolation is applied
to extend the numerical solution ū from the grid τ to the entire domain [0, T]× Γ. Next,
the dual function Θ(λ) is approximated by Θ̄(λ) = ū(0, X(0)) for a given λ. Algorithm A1
in Appendix A presents a pseudo-algorithm of the numerical solver.

Remark 4 (Discretization error of the PDE solver). The upwind finite-difference scheme in
Section 4.1 is a first-order explicit scheme with a discretization error of O(∆t +∆a +∆r +∆χ).
When solving the overall optimization problem up to a relative tolerance of TOL with respect to the dual
function value Θ(λ), the PDE discretization error must be O(|Θ(λ)|TOL). Thus, ∆t, ∆a, ∆r, ∆χ

must be O(|Θ(λ)|TOL), implying the computational work of
O
(
|Θ(λ)|−4TOL−4

)
to solve the HJB PDE once.

4.2. Estimating Subgradient DΘ

Upon solving the HJB PDE (33) numerically and obtaining an approximate cost-to-
go function in the domain [0, T]× Γ, we can numerically simulate optimally controlled
paths of the state variable X(t) forward in time, from the initial condition X(0) using
dynamics (3), (9), and (10). We use the Euler–Maruyama time discretization of the SDEs



Entropy 2025, 27, 308 15 of 42

in (3), (9), and (10). We consider the discretization 0 = t̄0 < t̄1 < . . . < t̄N̄t
= T of the time

domain [0, T] with N̄t uniform time steps. It follows that t̄n = n×∆t̄, n = 0, 1, . . . , N̄t,
and ∆t̄ = T

N̄t
. If X̄N̄t is the time-discretized version of the stochastic process X, then the

Euler–Maruyama time discretization of the SDEs is expressed as follows:
X̄N̄t(t̄n+1) = X̄N̄t(t̄n) + F(t̄n, X̄N̄t(t̄n), ϕ∗(t̄n, X̄N̄t(t̄n)))∆t̄

+ G(t̄n, X̄N̄t(t̄n), ϕ∗(t̄n, X̄N̄t(t̄n))) :
√

∆t̄εn, n = 0, . . . , N̄t − 1

X̄N̄t(t̄0) = X(0),

· (46)

where εn ∼ N (0, I3) for n = 0, . . . , N̄t − 1, denotes independent and identically distributed
(i.i.d.) three-dimensional standard normal random variables, and · : · denotes elementwise
multiplication of two vectors. The optimal controls ϕ∗(t̄n, X̄N̄t(t̄n)) in (46) are obtained by
minimizing (43) at the current point of the state X̄N̄t(t̄n), which may be a point outside
the grid τ. The values of the numerical derivatives ∆±a ū of the cost-to-go function at those
points are linearly interpolated from the computed derivative values at the nearest points
in grid τ. The subgradient of Θ at λℓ ∈ Λ̄ℓ is computed according to (39), approximat-
ing the expected value using Monte Carlo sampling with MSG i.i.d. sample paths of the
optimally controlled process X̄N̄t . Moreover, the integral in (39) is approximated using a
forward Euler approximation. For each i ∈ [1, 2, . . . , ℓ], we consider the discretization
ti−1 = t̃0 < t̃1 < . . . < t̃Ñt

= ti of the time domain [ti−1, ti], corresponding to
the ith component of the subgradient, with Ñt uniform time steps. It follows that
t̃n = n × ∆t̃, n = 0, 1, . . . , Ñt, and ∆t̃ =

ti−ti−1
Ñt

. The numerical approximation of the

ith component of the ℓ-dimensional subgradient is denoted by (D̄Θ(λℓ))i and given by

(
D̄Θ(λℓ)

)
i
=

1
MSG

MSG

∑
m=1

Ñt

∑
n=0

(
1{ϕout(t̃n ,X̄N̄t (t̃n ,ω(m)),ϕ(t̃n ,X̄N̄t (t̃n ,ω(m))))≥ϕth} − ϵ

)
∆t̃, ∀i ∈ [1, . . . , ℓ], · (47)

where ω(m) denotes the mth i.i.d. realization of the random variables required to generate
sample paths of X̄N̄t . The time discretization for subgradient computation and the Lagrange
multiplier function λℓ generally need not coincide. In this case, Brownian bridge interpola-
tion is necessary to evaluate the optimally controlled paths X̄N̄t at the time discretization
points {t̃n}Ñt

n=0 for each i ∈ [1, . . . , ℓ]. The same MSG realisations of the optimally controlled
path X̄N̄t are used to estimate all ℓ components of D̄Θ(λℓ). Algorithm A2 in Appendix A
presents the corresponding pseudo-algorithm.

Moreover, (47) is a Monte Carlo approximation of (39). It is subject to noisy statistical
error controlled in a probabilistic sense by the choice of MSG. Thus, we only have access
to noisy subgradients of the dual function. Hence, we apply the stochastic subgradient
method (SSM) to solve the convex, nonsmooth optimization Problem 4.

Remark 5 (Subgradient estimation error). The error in the subgradient estimation consists of
two parts: a statistical Monte Carlo error from approximating the expected value in (39) using a
sample average with MSG samples and a discretization error from approximating the integral in
the expectation in (39) using a forward Euler summation with Ñt steps. From the central limit

theorem [64], the Monte Carlo approximation error is O
(

M−
1
2

SG

)
. The discretization error for

the first-order forward Euler summation is O
(

Ñ−1
t

)
, yielding a total error in the subgradient

estimation of O
(

M−
1
2

SG + Ñ−1
t

)
. When solving the overall optimization problem up to a rela-

tive tolerance of TOL with respect to the subgradient, then we must estimate the subgradients
up to an absolute tolerance of ϵTOL. This requirement implies that MSG = O

(
ϵ−2TOL−2

)
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and Ñt = O
(

ϵ−1TOL−1
)

, yielding a total computational work of O
(

ϵ−3TOL−3
)

for each
subgradient estimation.

4.3. Dual Problem Optimization

After approximating the dual function Θ(λℓ) and its subgradient DΘ(λℓ) for a given
Lagrange multiplier function λℓ ∈ Λ̄ℓ, we must solve the nonsmooth convex dual op-
timization problem in Problem 4. We solve this in two stages: (i) by constructing an
approximation λℓ, of λ (as in (35)), and (ii) by numerically optimizing the amplitudes Υℓ

of the approximated function λℓ. Algorithm 1 illustrates the overall procedure. Figure A1
depicts Algorithm 1 visually for further clarity.

Algorithm 1: Numerical dual optimization procedure

Input: TOL, TOLinit, max-iter , N̄iter, Niter, Υ1
1 = 1,

βF, MSG, Nt, N1, N2, N3, N̄t, Ñt, X(0)
Output: Optimal controls ϕ∗, optimal Lagrange multiplier function λℓ(t)
Construct λ1(t) with Υ1

1 using (35);
Obtain Υ̃1

1 using initialization Algorithm A3 with inputs TOLinit,Υ1
1 = 1,

βF, MSG, Nt, N1, N2, N3, N̄t, X(0);
Construct λ1(t) with Υ̃1

1 using (35);
Obtain Υ̂1

1 with the LMBM routine [65] with starting point Υ̃1
1 , number of iterations

Niter and parameters specified in Table A3;
Construct λ1(t) with Υ̂1

1 using (35);
while ℓ < N̄t do

ℓ← 2ℓ;
Compute Θ̄(λℓ) = ū(0, X(0)) by solving (33) using Algorithm A1 with λℓ(t)
and parameters Nt, N1, N2, N3;

Estimate D̄Θ(λℓ) using Algorithm A2 with parameters N̄t, MSG, Ñt;
k = 0;
while k < max-iter and

∥∥∥D̄Θ(λℓ)
∥∥∥ > TOLϵ do

Υℓ ← Υℓ + CSSM
D̄Θ(λℓ)

∥D̄Θ(λℓ)∥ , k ≤ N̄iter

Υℓ ← Υℓ + CSSM
k+1

D̄Θ(λℓ)

∥D̄Θ(λℓ)∥ , k > N̄iter
;

Construct λℓ(t) with Υℓ using (35);
Compute and store ϖ(k) = Θ̄(λℓ) = ū(0, X(0)) by solving (33) using
Algorithm A1 with λℓ(t) and parameters Nt, N1, N2, N3;

Estimate D̄Θ(λℓ) using Algorithm A2 with parameters N̄t, MSG, Ñt;
k← k + 1;

end
Save Υℓ corresponding to max{ϖ(1), . . . , ϖ(k)};
Construct λ2ℓ(t) with Υℓ using (35);

end

4.3.1. Lagrange Multiplier Refinement

This work constructs a finite-dimensional piecewise constant approximation, λℓ, of
the Lagrange multiplier function, λ, as detailed in Section 3.2. Increasing the refinement
level ℓ enhances the approximation quality of λ by λℓ, but also increases the optimization
dimension (also ℓ). This work determines a sufficient ℓ that controls the violation of the
relaxed constraint. We start with ℓ = 1 and keep uniformly doubling it, until the violation
of Constraint 2 is sufficiently controlled pointwise in time.
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4.3.2. Numerical Optimization

This work solves the optimization of Θ(λℓ) for λℓ ∈ Λ̄ℓ with respect to the amplitudes
Υℓ ∈ (R+)ℓ as discussed in Section 3.2. For a given evaluation point λℓ, we have access to
the dual function value (approximated in Section 4.1) and a noisy subgradient (approx-
imated in (47)). Hence, the SSM [47] is employed to solve the nonsmooth optimization
problem. The SSM is a subgradient-based search algorithm using a dual function evalu-
ation and noisy evaluation of an arbitrary subgradient at each evaluation point. At each
refinement level ℓ, the SSM runs until the subgradient norm is below a prescribed relative
tolerance TOL or the number of iterations exceeds a threshold max-iter. The algorithm
output at each ℓ is the optimal amplitude vector Υℓ. However, this optimal value is not
necessarily reached at the final iteration of the SSM because the objective function to be
maximized does not increase at every step of the subgradient method [47]. Hence, we track
the highest value of the dual function and store its corresponding Υℓ as the optimal value.

The choices for the starting point and step-size are crucial for quick convergence of
the SSM, especially in higher dimensions. This work uses a nonsummable diminishing
step-size of O

(
1

k+1

)
, where k denotes the iteration number. The convergence of the SSM

with step-size is proven in [47]. The associated constant, denoted by CSSM in Algorithm 1,
is tuned once such that the step-size taken is O

(
Υℓ
)

. CSSM need not be tuned again for a
different set of parameters with the current problem structure. For enhanced performance,
the step-size at each iteration is adjusted by dividing the current subgradient by its norm.
Furthermore, the SSM runs for the first N̄iter iterations using a constant step-size before
reverting to a diminishing step size. The Lagrange multiplier function λℓ−1(t) constructed
using the computed optimal amplitudes Υℓ−1 is used as the starting point of the SSM at level
ℓ. However, we must still choose a good starting point at level ℓ = 1. This work devises an
initialization algorithm and complements it with a nonsmooth deterministic optimizer.

Remark 6 (SSM convergence rate). A convergence rate of O
(

k−
1
2

)
for the SSM has been proven

for a class of convex functions with suitable step-size choice [66]. When solving the optimization
problem up to a relative tolerance of TOL with respect to the dual function value Θ(λ), the SSM
requires an expected number ofO

(
|Θ(λ)|−2TOL−2

)
iterations to converge under the assumptions

in [66].

Remark 7 (Primal feasible solution). Note that Algorithm 1 uses the subgradient as a stopping
criterion, instead of a duality gap. This is because the output of Algorithm 1 is already a primal
feasible solution up to given relative tolerance TOL. That is, the optimal controls produce a solution
that minimizes the primal cost while only violating Constraint 2 lesser than a small value of ϵTOL.

4.3.3. LMBM-Boosted Initialization

Level ℓ = 1 implies that the Lagrange multiplier function λ1(t) is constant in time, with
the constant denoted by Υ1

1 (see (35)). First, this work devises an initialization algorithm
starting with the arbitrary point Υ1

1 = 1 and estimating the dual function value and a
subgradient at that point. Then, if the subgradient at Υ1

1 = 1 is positive, Υ1
1 is continually

increased by a factor βF until the subgradient becomes negative or its norm reaches a
prescribed relative tolerance TOLinit. Conversely, if the subgradient at Υ1

1 = 1 is negative, Υ1
1

is continually decreased by a factor βF, until the subgradient becomes positive or its norm
reaches relative tolerance TOLinit. The final obtained point is stored as Υ̃1

1 . Algorithm A3
in Appendix A presents the pseudo-algorithm of the devised initialization procedure.
Figure A2 depicts Algorithm A3 visually for further clarity.

To obtain a better starting point, Υ̃1
1 is used as a starting point for a deterministic

nonsmooth optimization routine called the LMBM [45,56]. Bundle methods are more
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robust than a simple subgradient-based method because they approximate the entire
subdifferential of the objective function, enhancing its convergence speed [44]. However,
the LMBM requires access to deterministic estimates of the objective function value and its
subgradient at each evaluation point. Although this work only has access to noisy Monte
Carlo estimates of subgradients (47), we can still employ the LMBM routine to reach a
good starting point for the SSM, especially in the regime where changes in the objective
function value considerably outweigh the noise in subgradient estimates. This work runs
the LMBM for a fixed number of iterations Niter. Table A3 in Appendix B.4 specifies the
parameters required to run the LMBM routine [65]. The output of this routine Υ̂1

1 is applied
as a starting point for the SSM algorithm described in Section 4.3.2.

Remark 8 (Scale of λ). With respect to the parameter ϵ that determines the confidence level of
satisfying Constraint 2, the optimal primal cost U (ϕ) associated with Problem 4 is an O(1) term,
while the optimal subgradient would be O(ϵ) (ideally 0). Equation (38) then implies that the
optimal Lagrange multiplier λ is O

(
1
ϵ

)
. This yields a good guess for an initial point Υ1

1 for the
LMBM-boosted initialization procedure.

5. Numerical Experiments and Results
This section presents a model example of a cellular base station powered by the

German power grid. This section describes the system and all dynamics driving the
operation of the base station, and provides the results of applying the proposed numerical
approach to solve the optimal power-procurement problem for the system.

5.1. Description of Model Cellular Base Station System

Figure 1 schematically illustrates the considered base station model. Table A1 provides
the descriptions and numerical values of all coefficients used to describe the model.

The daily mobile user traffic profile primarily drives the power demand of a cellular
base station. The description of the daily traffic profile consists of two facets: (i) the number
of people connected to the network Nu(t), and (ii) the physical distribution of users around
the base station ρz(t). The numerical experiment applies the following sinusoidal profile to
model Nu(t):

Nu(t) = max
[

Nu, N̄u
1
2ϱ

(
1 + sin

(
πt
6

+ π

))ϱ]
· (48)

This model and the stochastic versions of it have been empirically demonstrated
to approximate practical user patterns closely for calibrated values of the smoothness
parameter ϱ [67,68]. The parameter ϱ determines the rate of increase or decrease in Nu(t)
during the day. A higher value of ϱ indicates a steeper increase or decrease rate, and ϱ = 3
in the numerical experiment. This model also considers two peak hours (about 09.00 to
10.00 and 20.00 to 21.00) and few connected users at night (00.00 to 05.00). Moreover, Nu and
N̄u denote the minimum and maximum number of users, respectively, that are connected
to the base station at any time. This work sets Nu = 100 and N̄u = 2000. These values were
selected using the data on the average population densities of German cities [69] and the
geographical area served by an average cellular base station in Germany [70]. Figure 2
depicts the model for Nu(t).

The user distribution ρz(t) crucially determines the estimation of the outage proportion
ϕout(t) at given time t (Section 2.1). Some simple 2D distributions have been employed to
model the mobile user distribution in urban zones efficiently. For example, the uniform
distribution can be employed to model the mobile user distribution in suburban areas
very well, and the Gaussian distribution is a good model for mobile user distributions in
industrial zones [71]. Figure 3 visualizes this model. Analytical expressions can be derived
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for the corresponding ϕout(t) for these distributions. Appendix B.2 provides the closed-
form expressions. For the numerical experiments, we apply the symmetric 2D Gaussian
distribution centered on the site of the base station xBS with a diagonal covariance matrix
with variance σ2

u = 3002 m2 along both directions.

Figure 2. Typical daily cellular user traffic profile, described by (48).

(a) (b)

Figure 3. Visualizing the spatial distribution of mobile users in urban zones using simple ana-
lytical 2D distributions. (a) Uniform distribution in suburban areas. (b) Gaussian distribution in
industrial zones.

We apply the SDE in (3) to model the instantaneous Nakagami fading channel, whose
invariant distribution is a shifted-gamma distribution with the shape parameter µ and
scale parameter θ. We set µ = 3 and θ = 1 so that a quick, smooth convergence occurs
to the invariant distribution and E

[
ξ(t)−2] is bounded for all t ∈ [0, T]. We set the shift

ξ, corresponding to the value of ξ that can still achieve an outage proportion of ϕth
2 in the
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worst-case scenario when Nu(t) = N̄u. Moreover, we set the initial distribution µ
ξ
0 the same

as the invariant distribution of process ξ. Figure 4 visualizes the samples paths and the
invariant distribution of the SDE in (3).

0 5 10 15 20
0

2

4

6

8

10

Time (00:00h)

ξ(
t)

Simulated sample mean
95% C.I.

(a) (b)

Figure 4. Results of numerical simulation of the SDE in (3) governing wireless fading
channel dynamics. (a) Plot of the sample mean and 95% confidence intervals of sample paths
of the SDE in (3). (b) Visualization of the invariant distribution of sample paths of the SDE in (3),
verifying that the invariant distribution of the SDE in (3) is the shifted-gamma distribution with
shape parameter µ = 3 and scale parameter θ = 1.

We set Knet(t) = 0.01 EUR/h per person for t ∈ [0, T]. The price was taken from the
Vodafone 5G prices in Germany [72]. The constant price assumption is generally valid
because regulators set these prices and do not move within a day.

We apply the SDE in (9) to model the instantaneous normalized generated renewable
power. This work uses the 2023 German wind power forecast and production data with a
15-min frequency from the operator 50Hertz [73] to calibrate the SDE in (9). The forecast
data are employed to construct p(t) and ṗ(t), and the discrepancy between the forecast
and true production data is applied to calibrate the parameters α and θ0 in (9). Apart from
these parameters, we also calibrate an additional parameter ς. The discrepancy between
the forecast and production at time t = 0 is not typically zero in real-world applications.
ς is defined as the time before t = 0, for which the forecast error can be set to zero. This
approach ensures that uncertainty also exists in renewable power production at t = 0. We
follow the calibration procedure detailed in [30] (see [30] for details). The mean-reversion
parameter θ(t) in (9) is defined as follows:

θ(t) = max
(

θ0,
αθ0 + | ṗ(t)|

min(p(t), 1− p(t))

)
·

The calibrated values for the above data are α = 0.34, θ0 = 2.3948, and ς = 0.054.
Given the deterministic forecasts of wind power from the same operator in 2024, we can
generate sample paths of the SDE in (9) with parameters α, θ0, ς calibrated from 2023 data.
Figure 5 illustrates the results for two sample days in 2024.
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(a) 12.03.2024
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Figure 5. Normalized wind power forecast and real production data in Germany in the region
operated by 50Hertz in 2024. Mean path and 95% confidence intervals of the SDE in (9) calibrated
from 2023 data.

This work applies (10) to model the instantaneous normalized battery charge. As
given in (10), the maximum charging capacity PA and the maximum discharge capacity P̄A

are defined as functions of the stored battery charge. This function is typically called the
characteristic curve of the battery. The numerical experiment employs a simple characteris-
tic curve illustrated in Figure 6. The characteristic curve imposes (11), implying that the
battery cannot discharge power when it has zero charge and can no longer charge itself
when fully charged.

Figure 6. Simple characteristic curve of a battery, described by Equations (10) and (11).

Forecasts of buying and selling prices, Kb(t) and Ks(t), are constructed from publicly
available day-ahead spot prices of grid power. We set Kb(t) = Ks(t), implying that the
buying and selling prices of power are the same. This assumption is valid because the
market commonly ensures that this holds in real life. The numerical experiment employs
the German day-ahead spot-price data from 2024 available in [74]. However, these data are
generally available only at a 1-h frequency. Hence, we smoothed and extended the data to
domain [0, T] by fitting a polynomial curve to them and using the polynomial function as
the input Kb(t). Figure 7 illustrates an example of the spot-price data.
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Figure 7. Day-ahead spot-price for grid power in Germany on 07.09.2023. Data are from [74].

5.2. Numerical Results

We present the results of solving the stochastic optimal control problem for the model
cellular base station (Section 5.1) using the numerical approach in Section 4.

5.2.1. Cost-to-Go Function of the Dual Problem

The numerical solution of the HJB PDE in (33) for a given Lagrange multiplier function
λℓ(t) (35) is obtained using the scheme in Section 4.1. We apply a uniform rectangular
spatial grid with N1 = N2 = N3 = Nx = 10, where Nt is set as the lowest value that satisfies
the CFL condition (45). In this case, we obtain Nt = 800. The presence of second-order
derivatives in the HJB PDE in (33) yields Nt = O

(
N2

x
)

for a numerically stable solution,
explaining the high value obtained for Nt. These discretization parameter choices ensure
that the relative numerical PDE discretization error is below 1%. We set χ̄ as the upper 95%
quantile of the invariant distribution of process ξ(t).

The optimization problem in (43) must be solved at each point in the grid τ. For
the simple cases of uniform or Gaussian cellular user distribution, we obtain closed-form
expressions for ϕout (Appendix B.2). The resulting ϕout ensures that (43) is a convex
optimization problem and can be solved analytically. Appendix B.3 presents additional
details. Figure 8 presents three slices of the numerical cost-to-go function ū with the optimal
Lagrange multiplier function λℓ(t), each with two fixed state variables. The numerical dual
function approximation Θ̄(λℓ) is obtained by evaluating ū(0, X(0)).
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(a) ū(t, [a, 0, 0]) (b) ū(t, [0, r, 0])

(c) ū(t, [0, 0, χ])

Figure 8. Slices of the numerical cost-to-go function ū on the axes of time and state variables. For all
slices on each component of x, the rest of the state variables are fixed at 0.

5.2.2. Obtaining Reference Costs for Comparison

This work compares the values for the dual cost above with reference values obtained
from two related, easy-to-solve stochastic optimal control problems. This comparison was
conducted to ensure that the output of the numerical algorithm makes sense with respect
to these reference values. First, we solve the same optimization problem as in Problem 1,
but with the probabilistic constraint replaced with a deterministic a.s. constraint, solving
the following problem.

Problem 5 (Primal problem with the a.s. QoS constraint). Given the initial data
X(0) = [A0, R0 ∼ µR

0 , ξ0 ∼ µ
ξ
0], and deterministic forecasts for the daily cellular user traffic

profile Nu(t), energy spot prices Kb(t), Ks(t), renewable energy forecast p(t), and mobile network
usage price Knet(t) for 0 ≤ t ≤ T, we solve the following:

ϕ∗ = argmin
{ϕ∈Ā1}

U (ϕ) = w(C1 −R1 −R2 −R3) + (1− w)C2, (49)
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where the minimization is subject to dynamics (3), (9), and (10), and is done over all controls that
satisfy the constraint in 1 and the following a.s. constraint (instead of the constraint in 2).

ϕout(t, ξ(t), Ptx(t)) = ϕth, ∀t ∈ [0, T], (50)

where (50) provides a solution for the control Ptx(t) for all t ∈ [0, T].

Hence, the control vector for this problem has only three components, ϕ(t) = [PA(t),
PF(t), PS(t)]. Problem 5 is a standard continuous-time stochastic optimal control problem;
hence the dynamic programming principle can be used to derive and numerically solve the
associated HJB PDE, analogous to Section 3.1. The cost-to-go function for this problem is
expected to be higher than the dual cost of Problem 4 because the network operator would
need to buy more power to keep ϕout constant at all times, whereas the operator is allowed
to relax the constraint probabilistically in Problem 4 as described in Constraint 2. Next, we
solve the same optimization problem as Problem 1, but without Constraint 2.

Problem 6 (Primal problem with no QoS constraint). Given the initial data X(0) = [A0, R0 ∼
µR

0 , ξ0 ∼ µ
ξ
0], and deterministic forecasts for the daily cellular user traffic profile Nu(t), energy

spot prices Kb(t), Ks(t), renewable energy forecast p(t), and mobile network usage price Knet(t) for
0 ≤ t ≤ T, we solve the following:

ϕ∗ = argmin
{ϕ∈Ārel}

U (ϕ) = w(C1 −R1 −R2 −R3) + (1− w)C2, (51)

where the minimization is taken over all controls satisfying the constraint in 1 with dynamics (3),
(9), and (10).

Problem 6 is also a standard continuous-time stochastic optimal control problem; hence
the dynamic programming principle can be applied to derive and numerically solve the
associated HJB PDE. Without the Lagrangian relaxation, the cost-to-go function associated
with this problem is the same as in (32). Thus, this problem can be solved using the
numerical scheme in Section 4.1, setting λ(t) = 0. The cost-to-go function for this problem
is expected to be less than the dual cost of Problem 4 because the network operator only
maximizes revenue without ensuring that QoS is achieved. The HJB PDEs corresponding
to Problems 5 and 6 must be numerically solved only once because no associated dual
problem needs to be solved.

5.2.3. Dual Optimization Results

This work runs Algorithm 1 with parameters set to values in Appendix B.4. Notably,
we set ϕth = 10−3 and ϵ = 0.1, implying that the network operator must ensure that
the proportion of users in outage ϕout should be less than 10−3 with a probability of
90% for all t ∈ [0, T]. Figure 9 presents the results of the initialization Algorithm A3
and the LMBM routine. Figure 9a reveals the dual cost versus Υ1

1 at each iteration of
Algorithm A3. The dual cost increases with the number of iterations, and it is within the two
reference values attained by solving Problems 5 and 6. Figure 9b plots the corresponding
estimated subgradient values. The initialization algorithm reaches the prescribed tolerance
in three iterations. Figure 9 reveals that the LMBM offers a more optimal point than the
output of Algorithm A3, providing an excellent starting point for the dual optimization in
Algorithm 1.
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Figure 9. Dual cost and subgradient norm computed with λ1 constructed from Υ1
1 attained at each

iteration of Algorithm A3, along with the corresponding quantities using the final output of LMBM
routine [65]. (a) Dual cost Θ̄(λ1). (b) Subgradient norm

∥∥D̄Θ(λ1)
∥∥.

Figure 10 illustrates the evolution of the dual function values and its corresponding
subgradient at each iteration of the SSM for a fixed ℓ. Figure 10a verifies that not every step
of the SSM is taken towards maximization. This behavior illustrates the difficulty of solving
the nonsmooth optimization in Problem 4. Due to the satisfactory choice of starting values
and step sizes (Section 4.3), Algorithm 1 converges for each ℓ within max-iter iterations
with respect to the subgradient.
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Figure 10. Dual cost and subgradient norm computed with λ2 constructed from Υ2 at each SSM
iteration of Algorithm 1 for ℓ = 2. (a) Dual cost Θ̄(λ2). (b) Subgradient norm

∥∥D̄Θ(λ2)
∥∥.

Figure 11 plots the evolving optimal dual function Θ̄(λℓ) and its corresponding subgra-
dient D̄Θ(λℓ) constructed using the optimal amplitudes Υℓ at each level ℓ of Algorithm 1.
Table 1 lists the optimal dual cost at each stage of Algorithm 1. Table 1 presents minor
increases in the dual function evaluations as the refinement level ℓ increases, implying that
we successively obtain more optimal solutions as the Lagrange multiplier function λℓ(t)
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becomes finer. We normalize the subgradient vector norm by the number of dimensions
for a fair comparison between the norm of vectors of varying dimensions.
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Figure 11. Dual cost and subgradient norm computed with λℓ constructed from the optimal Υℓ

obtained from the SSM at each refinement level ℓ of Algorithm 1. (a) Dual cost Θ̄(λℓ). (b) Subgradient

norm
∥∥∥D̄Θ(λℓ)

∥∥∥.

Table 1 also highlights the advantage of applying a probabilistic constraint to achieve
the QoS in cellular networks, instead of doing it a.s. for all t ∈ [0, T] (as in Problem 5). The
optimal dual cost achieved by Algorithm 1 is much closer to the expected optimal cost of
the unconstrained Problem 6 and around four times less expensive than satisfying (50),
a.s. (Problem 5). In rare occasions when an unreasonable surge in demand (Nu(t)) occurs,
or a very low wireless fading channel (ξ(t)) exists due to environmental conditions or
low availability of renewable power (PR(t)), the numerical approach allows the network
operator to relax the stringent QoS constraint to save substantial expenditure while still
serving as many customers as possible. This approach contrasts the solution to Problem 5,
which enforces (50) even in such periods, significantly increasing operating expenditure.

Table 1. Comparing the optimal dual costs achieved in various stages of Algorithm 1 with those of
Problems 5 and 6.

Description ℓ Optimal Cost (EUR)

Problem 5 −173.57
Problem 6 −667.83

Initialization Algorithm A3 1 −661.52
LMBM 1 −663.62

Dual optimization Algorithm 1 2 −661.8
Dual optimization Algorithm 1 4 −661.59
Dual optimization Algorithm 1 8 −660.51

Figure 12 presents the evolution of the optimal Lagrange multiplier function as the
refinement level ℓ increases in Algorithm 1. For the given example, Algorithm 1 reaches
prescribed TOL at ℓ = 8, and does not refine the Lagrange multiplier function further. High-
demand periods (Figure 2) correspond to high Lagrange multiplier function values. This
behaviour is expected because a high λℓ forces the mobile operator to satisfy Constraint 2 in
times of high demand, although it significantly increases costs. The oscillation frequency of
the base station power demand dictates the oscillations in the Lagrange multiplier function.
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Figure 12. Evolution of the optimal Lagrange multiplier function λℓ(t) at each refinement level ℓ in
Algorithm 1.

5.2.4. Optimal Power-Procurement Policy

With the optimal Lagrange multiplier function λℓ from Algorithm 1, the dual cost is
EUR −660.51 (Table 1). Figure 13 illustrates the optimal power-procurement policy for
the model cellular base station for the next 24 h using the optimal solution, including
the (a) net power consumption of the base station CscalNu(t)Ptx(t) + Coffset (refer (1)), (b)
power drawn from the battery to run the base station PA(t), (c) power bought from the grid
PF(t), (d) power sold back to the grid PS(t), and (e) optimal charge stored in battery A(t).
Figure 13a indicates that the base station consumes high power during periods of high
demand (refer Figure 2). Figure 13b–d reveal that the battery provides most of the power to
run the base station throughout the day. The clean, renewable energy stored in the battery
powers a large proportion of base station operations so that the mobile operator does not
need to buy expensive grid power. This approach reduces costs and the carbon footprint
of the base station. The operator must only buy some power from the grid to satisfy high
demand during peak hours (Figure 13c). The base station sells a negligible amount of
power back to the grid (Figure 13d). The optimal policy also advises the operator to store
incoming renewable power and charge the battery during low-demand hours before using
that power to serve customers during high-demand hours (Figure 13e). Figure 13e also
indicates that the battery has some stored energy at the end of the day that could be used
the next day. This observation establishes the effect of implementing the running horizon
framework (see Section 2.6), although we solve the problem for a short-term horizon.
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(a) CscalNu(t)Ptx(t) + Coffset
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Figure 13. Optimal power-procurement policy, with 95% confidence intervals, using the optimal
cost-to-go function ū from Algorithm 1.

We estimate the time-pointwise violation of Constraint 2 using the Monte Carlo
method and compare it with the final subgradient vector D̄Θ(λℓ) from Algorithm 1 to
validate the optimality of the solution further. We run approximate sample numerical paths
of the optimally controlled dynamics, according to (46), with the optimal policy above.
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Figure 14b plots this information for a discrete set of points in t ∈ [0, T]. We also compare
this with the optimal policy attained from solving the unconstrained problem in Problem 6
in Figure 14a. Figure 14a reveals that the user outage proportion ϕout for the optimal policy
with no constraints on the QoS is almost consistently greater than the threshold ϕth. In
contrast, the proposed optimal solution controls the probabilistic constraint in an integral
(averaged) sense (refer (39)), even though there are some oscillations around zero in the
time-pointwise violation of Constraint 2. Figure 14b illustrates this behavior, with the
time-averaged violation in the probabilistic Constraint 2 close to zero up to the prescribed
relative tolerance TOL.

(a) Solution to Problem 6 (b) Solution to Problem 4.

Figure 14. Monte Carlo estimates of the violation in constraint P[ϕout(t) > ϕth]− ϵ for each t ∈ [0, T]
using optimal controls from solving (a) Problem 6 and (b) Problem 4 using Algorithm 1.

5.2.5. Sensitivity Analysis

This work investigates the performance of the proposed algorithm under certain
scenarios that could be of interest to network operators, which are listed below.

• Scenario A: No incoming renewable power for a day (PR(t) = 0 for all t ∈ [0, T]).
• Scenario B: The wireless fading channel is substantially low due to extreme weather (ξ

is halved).
• Scenario C: High weight is assigned to minimizing operating expenditure (w = 0.99).
• Scenario D: The price users pay to connect to the network substantially reduces

(Knet = 0.001 EUR/h per person).
• Scenario E: The probabilistic QoS constraint 2 must be satisfied with low confidence

(ϵ = 0.2).

All parameters and dynamics are set as in Table A1 and Section 5.1, except for the
prescribed parameter change to simulate each scenario. For each scenario, we solve three
problems: (i) dual optimization (Problem 4), (ii) Problem 5 with a.s. QoS constraint, and
(iii) Problem 6 with no QoS constraint. Table 2 reports the optimal costs in each case for all
five scenarios.

In all scenarios, the optimal dual cost lies between the primal costs of the corresponding
unconstrained and a.s. QoS constrained problems. Moreover, the optimal dual cost is closer
to the primal cost of the unconstrained problem in all cases because it is costly to satisfy
the QoS constraint a.s. at all times. The optimal dual cost in Scenario A is 33% higher
than the optimal dual cost in Table 1 because there is no “free” incoming renewable energy
for the operator to run the base station, increasing the expenditure. The optimal dual
cost of Scenario C is 102% higher than the optimal dual cost in Table 1, directly implying



Entropy 2025, 27, 308 30 of 42

the high weight assigned to financial profits, with no regard for its carbon footprint. The
optimal cost of Scenario E confirms the intuition that it is less expensive to satisfy the QoS
with low confidence (80%), compared to 90% confidence. To quantify differences in the
optimal procurement policy for each scenario, we produced plots analogous to Figure 13,
and approximated the area below the mean curve for each plot to obtain the expected
energy balance. Table 3 lists these values. The base scenario in Table 3 refers to the original
problem described in Section 5.1.

Table 2. Comparing the optimal dual costs (in EUR) achieved with the dual optimization Algorithm 1
for each scenario with the optimal primal costs of the corresponding unconstrained and a.s. QoS
constrained problems.

Dual Algorithm 1 Problem 6 Problem 5

Scenario A −441.8 −564.9 1941.9
Scenario B −649.28 −660.27 4160.4
Scenario C −1334.7 −1338.8 1980.5
Scenario D −80.52 −92.69 1209.5
Scenario E −664.03 −667.83 −173.57

Table 3. Comparison of the expected energy balance (in Wh) balance using the optimal power-
procurement policy from the optimal ū obtained from the dual optimization Algorithm 1 for
each scenario.

Expected Energy Consumed Battery Bought Sold

Base scenario 4199.6 4079.9 119.63 49.64
Scenario A 4040 3295.7 744.36 29.94
Scenario B 4584.3 4440.6 143.68 43.5
Scenario C 4402.8 2347.5 2055.2 5363.6
Scenario D 3883.3 3811.6 71.64 50.99
Scenario E 3870.8 3763.3 107.48 52.35

In Scenario A, the operator buys six times more energy than the base scenario. The
lack of incoming renewable power forces the network operator to buy more power from
the grid to satisfy the QoS constraint. In Scenario C, the operator buys almost half the
energy consumed by the base station from the grid and sells a considerable amount of
energy stored in the battery. The optimal policy is to make as much financial profit as
possible because a high weight is assigned to minimizing financial costs. The base station
consumes 9% more energy in Scenario B than the base scenario because the energy demand
of satisfying QoS during periods of low fading channel (extreme weather) is higher. An 8%
decrease occurs in the energy consumed by the base station in Scenario E compared with the
base scenario. Less energy is required to satisfy the QoS constraint with lower confidence.

This work also performs scenario simulations over probability distributions of both
model and algorithmic parameters in Table A1 and Table A2, respectively. Table A4 lists
the various probability distributions used to randomize the simulations. Algorithm 1 is run
independently for 50 i.i.d. samples of the various parameters with no additional tuning
between runs. Figure illustrates the optimal dual cost and subgradient achieved in each
case. Figure 15b reveals that Algorithm 1 achieves the prescribed subgradient tolerance
in all 50 cases, demonstrating the robustness of the proposed numerical procedure. These
results emphasize the practicality of applying the proposed numerical approach as a
decision-making tool for stakeholders in the wireless communications industry.
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Figure 15. Optimal dual cost and subgradient norms obtained in 50 independent runs of Algorithm 1
with randomized model and algorithmic parameters as specified in Table A4. (a) Dual cost Θ̄(λℓ).

(b) Subgradient norm
∥∥∥D̄Θ(λℓ)
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6. Conclusions
This work formulates a short-term, continuous-time stochastic optimal control prob-

lem that minimizes the operating expenditure and carbon footprint of a cellular wireless
network powered by a hybrid energy system and equipped with an energy-storage capacity
under uncertainty in renewable energy and wireless fading channels. We constructed an
SDE with the shifted-gamma invariant distribution to model the stochastic Nakagami wire-
less fading channel. We employed an SDE model [30] to model the uncertain renewable
power, with parameters calibrated using publicly available German energy market data
from 2023. The QoS of the wireless network was posed as a probabilistic constraint to
address uncertainties efficiently in the system. We developed a novel Lagrangian relaxation
procedure in continuous time to relax the above probabilistic constraint. We developed
a robust numerical procedure to solve the corresponding dual problem based on a finite-
dimensional approximation of the Lagrange multiplier function, using an SSM algorithm
driven by the numerical solution of the associated HJB PDE. An LMBM-boosted initializa-
tion procedure and an adaptive refinement of the Lagrange multiplier function enhanced
algorithm performance. A running horizon framework resolved the spurious results at the
end of the day due to the short-term horizon problem formulation. The practical application
of the numerical procedure was demonstrated on a model cellular base station driven by
the German power system and daily cellular traffic demand. The results illustrate the
viability and efficiency of the proposed approach for real-world problems.

A potential future research direction is incorporating stochasticity in other dynamics,
such as energy prices Kb(t), Ks(t), and the cellular user traffic profile Nu(t) [68]. This
research would build a more realistic algorithm that is robust to random fluctuations in
these dynamics but would increase the dimension of the associated HJB PDE. Another
limitation of the current work is that small values of ϵ (≪ 10−3) cannot be achieved, which
modern-day cellular networks aim to achieve, because the naive Monte Carlo method is
employed to estimate the subgradient. For a small ϵ, the Fokker–Planck PDE for the joint
distribution of the optimally controlled dynamics could be solved to get a deterministic
estimate of the subgradient. Alternatively, importance sampling could be applied to
reduce the relative statistical error of the Monte Carlo subgradient estimates. A further
improvement is devising a better strategy for refining the Lagrange multiplier function
λ(t). The computed time-pointwise violation in constraint values could be employed to
construct a clever strategy to refine λ instead of equally spaced refinements.
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PDE Partial differential equation
QoS Quality of service
SDE Stochastic differential equation
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SSM Stochastic subgradient method
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Appendix A. Algorithms
Appendix A.1. Upwind Finite-Difference Numerical Solver for HJB PDE (33)

Algorithm A1: HJB numerical solver
Input: λ(t), Nt, N1, N2, N3;
Initialization: ūNt

(i,j,k) = −PK Āai, ∆±a ūNt
(i,j,k) = −PK Ā at grid τa × τr × τχ ;

for n = Nt, . . . , 2 do
for i = 1, . . . , N1 do

for j = 1, . . . , N2 do
for k = 1, . . . , N3 do

Using
(
∆±a ū

)n
(i,j,k), compute optimal controls (ϕ∗)n

(i,j,k) by solving (43);

Using ūn
(i,j,k) and (ϕ∗)n

(i,j,k), compute ūn−1
(i,j,k) with update rule (41);

end
end

end

Using ūn−1
(i,j,k), compute and save gradients

(
∆±a ū

)n−1
(i,j,k) using (44) at grid τa × τr × τχ;

end
Output: ū at grid τ.

https://github.com/ShyamMohanSP/SOC_wireless.git
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Appendix A.2. Euler–Maruyama Monte Carlo for Subgradient (47) Estimation

Algorithm A2: Numerical subgradient estimation
Input: ℓ, N̄t, Ñt, MSG;
Initialization: X̄N̄t (t̄0) = X(0);
for m = 1, . . . , MSG do

for n = 0, . . . , N̄t − 1 do
Generate mth i.i.d. realization of random variable εn;
Estimate ∆±a ū(t̄n, X̄N̄t (t̄n)) by linearly interpolating from

(
∆±a ū

)
values computed

in Algorithm A1 at grid τ;
Using X̄N̄t (t̄n) and ∆±a ū(t̄n, X̄N̄t (t̄n)), compute optimal controls ϕ∗(t̄n, X̄N̄t (t̄n)) by

solving (43);
Using εn and ϕ∗(t̄n, X̄N̄t (t̄n)), compute X̄N̄t (t̄n+1) using (46);

end
for i = 1, . . . , ℓ do

Construct uniform time grid τ̃ : ti−1 = t̃0 < t̃1 < . . . < t̃Ñt
= ti with ∆t̃ = ti−ti−1

Ñt
;

for n = 0, . . . , Ñt do
Interpolate X̄N̄t (t̃n) from X̄N̄t using Brownian bridge interpolation; Estimate

∆±a ū(t̃n, X̄N̄t (t̃n)) by linearly interpolating from
(
∆±a ū

)
values computed in

Algorithm A1 at grid τ;
Using X̄N̄t (t̃n) and ∆±a ū(t̃n, X̄N̄t (t̃n)), compute optimal controls ϕ∗(t̄n, X̄N̄t (t̃n))

by solving (43);

Compute ς(m)(n) =
(
1{ϕout(t̃n ,X̄N̄t (t̃n),ϕ(t̃n ,X̄N̄t (t̃n)))≥ϕth} − ϵ

)
∆t̃;

end

φ(m)(i) = ∑Ñt
n=0 ς(m)(n);

end
end(
D̄Θ(λℓ)

)
i
= ∑MSG

m=1 φ(m)(i) for each i = 1, . . . , ℓ;

Output: D̄Θ(λℓ).

Appendix A.3. Initialization Algorithm for ℓ = 1

Algorithm A3: Initialization
Input: Υ1

1 = 1, TOLinit, βF, MSG,Nt, N1, N2, N3, N̄t, MSG,X(0)
Output: Υ̃1

1
Construct λ1(t) with Υ1

1 using (35);
Compute Θ̄(λ1) = ū(0, X(0)) by solving (33) using Algorithm A1 with λ1(t) and

parameters Nt, N1, N2, N3;
Estimate D̄Θ(λ1) using Algorithm A2 with ℓ = 1,Ñt = N̄t and parameters N̄t, MSG;
if D̄Θ(λ1) > 0 then

while
∣∣D̄Θ(λ1)

∣∣ > TOLinitϵ or D̄Θ(λ1) > 0 do
Υ1

1 ← βFΥ1
1 ;

Construct λ1(t) with Υ1
1 using (35);

Compute Θ̄(λ1) = ū(0, X(0)) by solving (33) using Algorithm A1 with λ1(t) and
parameters Nt, N1, N2, N3;

Estimate D̄Θ(λ1) using Algorithm A2 with ℓ = 1,Ñt = N̄t and parameters N̄t, MSG;
end

else
while

∣∣D̄Θ(λ1)
∣∣ > TOLinitϵ or D̄Θ(λ1) < 0 do

Υ1
1 ←

Υ1
1

βF
;

Construct λ1(t) with Υ1
1 using (35);

Compute Θ̄(λ1) = ū(0, X(0)) by solving (33) using Algorithm A1 with λ1(t) and
parameters Nt, N1, N2, N3;

Estimate D̄Θ(λ1) using Algorithm A2 with ℓ = 1,Ñt = N̄t and parameters N̄t, MSG;
end

end
Υ̃1

1 = Υ1
1 ;

Construct λ1(t) with Υ̃1
1 using (35);
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Appendix A.4. Schematic Depictions of the Optimization Algorithms

Figures A1 and A2 visually depict Algorithms 1 and A3, respectively, for
easier understanding.
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Is ℓ < N̄t?

Stop Estimate Θ̄ and D̄Θ at level ℓ

Is ∥D̄Θ∥ < ϵTOL?

Take SSM step ℓ← 2ℓ

Estimate Θ̄ and D̄Θ at current step

YesNo

No Yes

Figure A1. A schematic illustration of Algorithm 1.Figure A1. A schematic illustration of Algorithm 1.
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Υ1
1 = 1

Estimate Θ̄ and D̄Θ with Υ1
1

D̄Θ > 0

∥D̄Θ∥ < TOL or D̄Θ < 0 ∥D̄Θ∥ < TOL or D̄Θ > 0

Stop Υ1
1 ← βFΥ1

1 Υ1
1 ←

Υ1
1

βF Stop

Estimate Θ̄ and D̄Θ with Υ1
1 Estimate Θ̄ and D̄Θ with Υ1

1

Figure A2. A schematic illustration of Algorithm A3.
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Appendix B. Details of Numerical Problem Described in Section 5
Appendix B.1. Model Parameters

Table A1. Parameters and coefficients for modeling the cellular base station.

Parameter Unit Description Value

Cscal Base station power-loss scaling factor 7.84
Coffset Watt (W) Base station offset power 71.5

P̄tx Watt (W) Maximum base station transmission limit 5× 103

xBS Base station location [0, 0]
κ Path loss constant 1
η Path loss exponent 2

SNRth Decibel (dB) Signal-to-noise ratio threshold 15
σ0 Watt (W) Ambient transmission noise 3.1623× 10−8

P̄R Watt (W) Maximum renewable power-production capacity 104

Ā Watt-hour (Wh) Maximum battery charge capacity 104

PA Watt (W) Maximum battery charge capacity 7.5× 103

P̄A Watt (W) Maximum battery discharge capacity 3× 104

C1 EUR/Wh Pollutant emission Coefficient 1 4× 10−4

C2 EUR/W2h Pollutant emission Coefficient 2 10−4

PK EUR/Wh Fictitious cost per unit battery charge 0.0064
w Pareto parameter 0.5

Appendix B.2. Outage Proportion for Simple Cellular User Distributions

Section 2.1 demonstrates that the outage proportion for a given distribution of cellular
users ρz(t) at time t can be written as follows:

ϕout(t) =
∫
R2
1
∥z−xBS∥>

 Ptx(t)ξ(t)κ

σ010
SNRth

10

 1
η


ρz(t)dz·

First, we consider the mobile user distribution to be a 2D uniform distribution in
the geographical domain Π served by the base station. The domain area is denoted as
AΠ . Then,

ϕout(t) = 1− π

AΠ

(
Ptx(t)ξ(t)κ

σ010
SNRth

10

) 2
η

, for ρz(t) = U(Π), ∀t ∈ [0, T]· (A1)

Next, we consider the case in which the mobile user distribution is a two-dimensional
Gaussian distribution centered at the site of the base station xBS with a diagonal covariance
matrix with variance σ2

u along both directions:

ϕout(t) = exp

− 1
2σ2

u

(
Ptx(t)ξ(t)κ

σ010
SNRth

10

) 2
η

, for ρz(t) = N (xBS, σ2
uI2), ∀t ∈ [0, T], (A2)

where I2 denotes the 2D identity matrix. Furthermore, semi-analytical expressions for
ϕout(t) can be derived for other Gaussian distributions that are not centered on xBS or with
general covariance matrices.
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Appendix B.3. Analytical Solution of the Hamiltonian (34) for Simple Cellular User Distributions

For each point (t, x) ∈ [0, T] × Γ, we must solve the optimization problem in (34).
For uniform or Gaussian cellular user distributions with closed-form expressions for ϕout

(Appendix B.2), this simplifies to solving the following constrained convex optimiza-
tion problem.

min
PF ,PS ,Ptx

a1PF + a2P2
F + b1PS + c1Ptx + c2 exp{−c3Ptx}+ λ(t)1{ϕout(t,Ptx,ξ)>ϕth}

s.t. Ptx − d3 ≤ 0

− PF + PS + d1Ptx + d2 ≤ 0

PF − PS − d1Ptx + d4 ≤ 0

− PF ≤ 0

− Ptx ≤ d5

− PS ≤ 0

PF − d1Ptx − Coffset ≤ 0

· (A3)

where

a1 =
1
Ā

∂u
∂a

(t, x) + wKB(t) + (1− w)C1,

a2 = (1− w)C2,

b1 = − 1
Ā

∂u
∂a

(t, x)− wKB(t),

c1 =


−Cscal Nu(t)

Ā
∂u
∂a (t, x)− wKnet(t)πχκ

AΠσ010
SNRth

10

,if ρz(t) = U(Π),

−Cscal Nu(t)
Ā

∂u
∂a (t, x) ,if ρz(t) = N (xBS, σ2

uI2).
,

c2 =

0 ,if ρz(t) = U(Π),

wKnet(t)Nu(t) ,if ρz(t) = N (xBS, σ2
uI2).

,

c3 =


0 ,if ρz(t) = U(Π),

χκ

2σ2
uσ010

SNRth
10

,if ρz(t) = N (xBS, σ2
uI2).

,

d1 = CscalNu(t),

d2 = −P̄A(a)− rP̄R + Coffset,

d3 =
P̄tx

Nu(t)
,

d4 = PA(a) + rP̄R − Coffset,

d5 =


(1−ϕth)AΠσ010

SNRth
10

πχκ ,if ρz(t) = U(Π),

− 2σ2
uσ010

SNRth
10 log ϕth

ξκ ,if ρz(t) = N (xBS, σ2
uI2).

·

The discontinuous indicator function in the objective function poses a difficulty while
deriving the analytical solution to (A3). Decomposing (A3) simplifies this into two con-
strained convex-optimization subproblems, which are
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

H1 = min
PF ,PS ,Ptx

a1PF + a2P2
F + b1PS + c1Ptx + c2 exp{−c3Ptx}

s.t. − Ptx ≤ −d5

Ptx − d3 ≤ 0

− PF + PS + d1Ptx + d2 ≤ 0

PF − PS − d1Ptx + d4 ≤ 0

− PF ≤ 0

− PS ≤ 0

PF − d1Ptx − Coffset ≤ 0·

·

and 

H2 = min
PF ,PS ,Ptx

a1PF + a2P2
F + b1PS + c1Ptx + c2 exp{−c3Ptx}+ λ(t)

s.t. Ptx ≤ d5

− PF + PS + d1Ptx + d2 ≤ 0

PF − PS − d1Ptx + d4 ≤ 0

− PF ≤ 0

− Ptx ≤ 0

− PS ≤ 0

PF − d1Ptx − Coffset ≤ 0·

·

The optimal controls for (A3) are given as

argmin
PF ,PS ,Ptx

(H1,H2)·

Analytical solutions to these subproblems can be derived by solving the corresponding
Karush–Kuhn–Tucker conditions for constrained optimization problems [63].

Appendix B.4. Simulation Parameters in Section 5

Table A2. Simulation parameters to run Algorithm 1 and produce numerical results as described in
Section 5.

Parameter Description Value

ϕth Mobile user outage proportion threshold 10−3

ϵ Confidence level of violating the constraint in 2 0.1
A0 Normalized battery charge level at t = 0 0.5
µ

ξ
0 Initial distribution of the wireless fading channel γ(3, 1)

µr
0 Initial distribution of the normalized wind power N (p(−ς) + ṗ(−ς)ς, 2αθ0 p(−ς)(1− p(−ς))ς)

N1 Discretization of (33) in the a domain 10
N2 Discretization of (33) in the r domain 10
N3 Discretization of (33) in the χ domain 10
Nt Discretization of (33) in the t domain 800

TOL Prescribed relative tolerance for Algorithm 1 0.1
TOLinit Prescribed relative tolerance for Algorithm A3 1
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Table A2. Cont.

Parameter Description Value

max-iter Prescribed maximum iterations in Algorithm 1 50
N̄iter Initial number of SSM iterations with a constant step-size 10
Niter Prescribed number of LMBM [65] iterations 50
βF Factor of increase/decrease in Algorithm A3 5

MSG Number of sample paths in Algorithm A2 103

N̄t Time discretization parameter in Algorithm A2 64
Ñt Time discretization parameter in Algorithm A2 N̄t

ℓ

Table A3. Parameters to run the LMBM routine [65] in Algorithm 1 to produce numerical results
described in Section 5. See [65] for more details.

Parameter Description Value

RPAR(1) Tolerance for changes in the function value 0.1
RPAR(2) Second tolerance for changes in the function value −1 (ignored)
RPAR(3) Minimum acceptable function value 0
RPAR(4) Tolerance for the first termination parameter 10−2

RPAR(5) Tolerance for the second termination parameter 10−2

RPAR(6) Distance measure parameter 0.5
RPAR(7) Line search parameter 0.2
RPAR(8) Maximum step size 10
IPAR(1) Exponent for distance measure 2
IPAR(2) Maximum iterations 50
IPAR(3) Maximum function evaluations 100
IPAR(4) Maximum iterations with changes of function values smaller than RPAR(1) 5
IPAR(5) Printout specification −1
IPAR(6) Selection of method 0 (LMBM)
IPAR(7) Selection of scaling strategy 0

Appendix B.5. Sensitivity Analysis Settings in Section 5

Table A4. Distribution of model and algorithmic parameters used to run randomized multi-scenario
simulations of Algorithm 1.

Parameter Distribution

P̄tx log10(P̄tx) ∼ U[3, 4]
σ0 σ0 ∼ N

(
3.1623× 10−8, 10−16)

P̄R log10(P̄R) ∼ U[2, 4]
Ā log10(Ā) ∼ U[3, 4]
w w ∼ U[0, 1]

ϕth log10(ϕth) ∼ U[−2,−4]
A0 A0 ∼ U[0, 1]

Knet log10(Knet) ∼ U[−1, 1]
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