
European Journal of Operational Research 325 (2025) 20–37

A
0

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/eor

Discrete optimization

Patient-to-room assignment with single-rooms entitlements: Combinatorial
insights and integer programming formulations
Tabea Brandt ∗,1, Christina Büsing ∗,1,2, Felix Engelhardt ∗,1

Combinatorial Optimization, RWTH Aachen University, Ahornstraße 55, 52074 Aachen, Germany

A R T I C L E I N F O

Keywords:
Combinatorial optimisation
Hospital bed management
Patient-to-room assignment
Binary integer programming
Patient admission scheduling
Dynamic planning

 A B S T R A C T

Patient-to-room assignment (PRA) is a scheduling problem in decision support for hospitals. It consists of
assigning patients to rooms during their stay at a hospital according to certain conditions and objectives,
e.g., ensuring gender separated rooms, avoiding transfers and respecting single-room requests. This work
presents combinatorial insights about the feasibility of PRA and about how (many) single-room requests can
be respected. We further compare different integer programming (IP) formulations for PRA as well as the
influence of different objectives on the runtime using real-world data. Based on these results, we develop a
fast IP-based solution approach, which obtains high quality solutions. In contrast to previous IP-formulations,
the results of our computational study indicate that large, real-world instances can be solved to a high degree
of optimality within (fractions of) seconds. We support this result by a computational study using a large set
of realistic but randomly generated instances with 50% to 95% capacity utilisation.
1. Introduction

Beds and rooms for patients are important resources in hospitals
and the decision which bed and room a patient occupies impacts not
only the staff’s workload (Blay, Roche, Duffield and Robyn, 2017),
but also patient satisfaction (He et al., 2018), and the provision of
surcharges (Hendrich & Lee, 2005). The assignment of patients to beds
and rooms is usually either performed by so-called case managers or
by experienced nurses. In literature, the terms patient-to-room assign-
ment problem (PRA), patient-to-bed assignment problem (PBA), and
patient-admission scheduling (PAS) have been used to describe this
task. In their original problem definition, Demeester et al. use the term
patient-admission scheduling for the decision to which bed a patient is
assigned (Demeester, Souffriau, Causmaecker, & Berghe, 2010). This
term, however, can easily be confused with the task of scheduling
the admission dates for planned inpatient treatment, which is a very
different challenge (Schäfer, Walther, Hübner, & Kuhn, 2019). Overall,
the term bed is used synonymously for bed space. In general, there are
different bed types, e.g., for small children or heavy weight patients
which are provided as rolling stock. A room’s bed spaces, however,
can be considered as equal. The task of finding a physical bed of

∗ Corresponding authors.
E-mail addresses: brandt@combi.rwth-aachen.de (T. Brandt), buesing@combi.rwth-aachen.de (C. Büsing), engelhardt@combi.rwth-aachen.de

(F. Engelhardt).
1 This work was supported by the Freigeist-Fellowship of the Volkswagen Stiftung and by the German research council (DFG) Research Training Group 2236

UnRAVeL.
2 This work was partially supported by the German Federal Ministry of Education and Research (grant no. 05M16PAA) within the project ‘‘HealthFaCT -

Health: Facility Location, Covering and Transport’’.

appropriate bed type for a patient is independent of assigning the
patient to a room/bed space and is not further considered in this paper.
We therefore use the term PRA to avoid confusion.

Typically, there are two types of case management systems in hos-
pitals: centralised and decentralised systems. In a centralised system,
all patient-to-room assignments are decided by the same person or
work group. Whereas in a decentralised system, the patient-to-room
assignments are decided on ward or speciality level (Schmidt, Geisler,
& Spreckelsen, 2013). In both cases, PRA is based on a previously fixed
admission scheduling decision. In the first formal definition of PRA
proposed by Demeester et al. in 2010 (Demeester et al., 2010), they
considered a centralised system with multiple wards and specialities.
Patients then need a room in a ward with appropriate speciality. This
definition is still often used in literature. However, we found that in
our local hospital a decentralised system is used. In this work, we
present combinatorial insights and a solution approach for a decen-
tralised system where patient-to-room assignments are decided on ward
level. Combinatorially, the decentralised system is a special case of the
centralised system.

Another characteristic of the definition proposed by Demeester et al.
is that some patients may only be assigned to specific rooms to account
https://doi.org/10.1016/j.ejor.2025.02.018
Received 12 March 2024; Accepted 14 February 2025
vailable online 3 March 2025
377-2217/© 2025 The Author(s). Published by Elsevier B.V. This is an open access a
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/eor
https://www.elsevier.com/locate/eor
https://orcid.org/0000-0002-8252-1891
https://orcid.org/0000-0002-3394-2788
https://orcid.org/0009-0007-7705-4508
mailto:brandt@combi.rwth-aachen.de
mailto:buesing@combi.rwth-aachen.de
mailto:engelhardt@combi.rwth-aachen.de
https://doi.org/10.1016/j.ejor.2025.02.018
https://doi.org/10.1016/j.ejor.2025.02.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2025.02.018&domain=pdf
http://creativecommons.org/licenses/by/4.0/

T. Brandt et al. European Journal of Operational Research 325 (2025) 20–37
for, e.g., equipment requirements (Demeester et al., 2010). However,
we found that in our local hospital all rooms have the same default
equipment and the special equipment is rolling stock. Therefore, we
assume that a ward’s rooms are all equal and that every patient can be
assigned to every room. We experience this to be a common setting in
German hospitals.

Real-life optimisation problems often have to balance the, poten-
tially conflicting, interests of multiple stakeholders. For PRA, Schäfer
et al. identified patients, doctors and nurses as the main stakehold-
ers (Schäfer et al., 2019). Based on literature and interviews with
members of each of the groups, they concluded that patients primar-
ily desire a pleasant stay, i.e., a bed in a suitable room, without
unnecessary transfers or waiting in an overflow area, and suitable
roommates. Doctors primarily look for visiting rounds that minimise
walking distances. In comparison to that, nursing staff emphasise the
relevance of a balanced workload (Schäfer et al., 2019). A common
approach, also used by Schäfer et al. is to combine the objectives of all
stakeholders into one objective function as a weighted sum. However,
the appropriate choice of weights is not obvious and depends strongly
on the hospital management’s values. On the contrary, we consider only
two objective functions and attempt a thorough investigation of their
combinatorial structure, their performance in binary integer programs
(BIPs) and their interoperability. For this, we consider the objectives
both separately and in different hierarchical orders that are motivated
by the different stakeholders’ points of view.

Our first objective is to avoid that patients have to change rooms
during their stay, so-called patient transfers. Patient transfers increase
the staff’s workload and reduce patient satisfaction while providing
no immediate health benefits for patients (Storfjell, Ohlson, Omoike,
Fitzpatrick, & Wetasin, 2009). A case study by Blay et al. reports
that transfers require on average between11min (intra-ward transfer)
and 25min (inter-ward transfer) of direct nursing time (Blay, Roche,
Duffield, Robyn, 2017). Additionally, there are several ways (Fekieta
et al., 2020) in which these transfers can put patients health at risk,
e.g., by leading to delays in care (Johnson et al., 2013), interrup-
tions in treatment (Papson, Russell, & Taylor, 2007) and increased
infections (Blay, Roche, Duffield and Xu, 2017).

Our second objective is the assignment of single rooms to patients
who need isolation for medical reasons or who are entitled to one
because of a private health insurance (private patients). In practice,
medical reasons have priority, but the latter case is also of high interest
for the hospital management as such additional services provide income
opportunities, with, e.g., a single room surcharge numbering 175e
per day (UKA Aachen, 2021). Due to current German laws, hospitals
rely on these surcharges for income. In our computational study, we
only model the assignment of single rooms to private patients because
we lack data on which patients require isolation for medical reasons.
Therefore, we only consider single-room requests depending on the
patients’ insurance types for our computational evaluations. However,
all our results can easily be extended to incorporate medically nec-
essary isolation either as an additional objective (analogously as for
private patients but with higher priority), or as an additional feasibility
condition.

In this work, we present combinatorial insights about checking an
instance’s feasibility and about computing the maximum number of
fulfillable single-room requests. Additionally, we show that, in prac-
tice, the minimum total number of transfer can be computed efficiently
using integer programming, although minimising the number transfers
is -hard in theory (Brandt, Büsing, & Knust, 2024). We further
investigate the runtime of different BIP-formulations for solving PRA
as well as the influence of the two objectives on the runtime using
real-world data. We combine our insights into an efficient, IP-based
heuristic. Here, our combinatorial insights not only improve the heuris-
tic’s runtime but also allow an assessment of the solution’s quality. An
extensive evaluation of our heuristic using both real-world data as well
as a large set of artificial instances shows that the heuristic obtains high
21
quality solution in most cases. The code of the implementation that
we used for the computational study and the artificial instances are
publicly available for further research (Brandt & Engelhardt, 2024).

This paper is organised as follows. In Section 2, we present a formal
definition of PRA. In Section 3, we give an overview of existing research
on integer programming in the context of PRA. In Section 4, we present
combinatorial insights into both feasibility and the maximum number
of private patients that can be assigned a single bed each day. Then,
in Section 5 we propose and compare multiple IP formulations for
PRA. The computational evaluation shows that in most our (real-life)
instances, no transfers are necessary. Building on that, we propose and
compare a second set of IP formulations that contain no transfers in
Section 5.3. In Section 6, we combine the best performing IP formula-
tions with our combinatorial insights from Section 4 to solve a dynamic
version of PRA with a rolling-time-horizon approach. Although PRA is
known to be -hard (Brandt et al., 2024), we find solutions that
are optimal or close to optimality for both heterogeneous real world
data and artificial instances. Furthermore, on average, our algorithm
requires less than a second per day to find high quality solutions for
realistically sized artificial instances. Finally Section 7, we point out
multiple directions for further research.

2. Problem definition

Formally, we consider a ward with rooms  and 𝑐𝑟 ∈ N beds in room
𝑟 ∈ , as well as a discrete planning horizon  = {1,… , 𝑇 }. In our
computational study, we use 24h as length of one time period so that
𝑇 refers to the number of days in the planning horizon. However, all
concepts in this paper are easily transferable to half-day or even smaller
planning intervals. Further, let  denote the set of all patients. For
every patient 𝑝 ∈  , we know their registration period and their arrival
period 𝑎𝑝 ∈ 0 ∶=  ∪ {0}, where patients with 𝑎𝑝 = 0 are patients who
arrived in an earlier time period. Therefore, those patients already have
pre-assigned rooms which are given in the set  ⊂ {𝑝 ∈  ∣ 𝑎𝑝 = 0}×.
Commonly, patients whose arrival and registration periods are identical
are called emergency patients and otherwise elective patients (Noonan,
O’Brien, Broderick, Richardson, & Walsh, 2019). We further have every
patient’s discharge period 𝑑𝑝 ∈  satisfying 𝑎𝑝 < 𝑑𝑝, their gender, and
whether they are entitled to a single room. We denote the set of female
patients with  f ⊆  , the set of male patients with m ⊆  , and the set
of patients entitled to a single room with ∗ ⊆  . Note that we assume
 f ∩ m = ∅ and  =  f ∪ m based on the data provided by our local
hospital.

The main task in PRA is to assign every patient 𝑝 ∈  to a room
𝑧(𝑝, 𝑡) ∈  for every time period 𝑎𝑝 ≤ 𝑡 < 𝑑𝑝 of their stay. We
assume that all patients stay in hospital on consecutive periods from
admission to discharge period and that they are discharged at the
beginning of a time period. Thus, patients do not need a room in
their discharge period, which is a common assumption in literature,
cf. Vancroonenburg, De Causmaecker, and Vanden Berghe (2016). We
define the set of all patients who need a room in time period 𝑡 ∈ 
as (𝑡) = {𝑝 ∈  ∣ 𝑎𝑝 ≤ 𝑡 < 𝑑𝑝}. Further, we denote for any subset of
patients 𝑆 ⊂  the subset of patients in need for a bed in time period
𝑡 ∈  by 𝑆(𝑡) ∶= 𝑆 ∩ (𝑡).

The assignment 𝑧 of patients to rooms has to fulfil two conditions for
every room 𝑟 ∈  and every time period 𝑡 ∈  in order to be feasible:

(C) room capacities 𝑐𝑟 are respected, i.e., |{𝑝 ∈  ∣ 𝑧(𝑝, 𝑡) = 𝑟}| ≤ 𝑐𝑟,

(S) female and male patients are assigned to separate rooms, i.e.,
{𝑧(𝑝, 𝑡) ∣ 𝑝 ∈  f (𝑡)} ∩ {𝑧(𝑝, 𝑡) ∣ 𝑝 ∈ m(𝑡)} = ∅.

Theoretically, these constraints may lead to infeasibility, which is
unacceptable in practical application. However, we assume based on
practitioners demands that the case manager ensures respect of the

T. Brandt et al. European Journal of Operational Research 325 (2025) 20–37
Fig. 1. Example for  = 3 with one private patient where a patient transfer is necessary for feasibility.
ward’s capacity under consideration of the gender-separation condition.
Therefore, all considered instances in this paper are feasible under both
conditions and . We discuss how feasibility under these constraints can
be checked combinatorially in Section 4.1.

As first objective function, we minimise the total number of patient
transfers

𝑓 trans ∶=
∑

𝑝∈

⎛

⎜

⎜

⎝

𝑑𝑝−2
∑

𝑡=𝑎𝑝

|{𝑧(𝑝, 𝑡), 𝑧(𝑝, 𝑡 + 1)}| − 1
⎞

⎟

⎟

⎠

.

Another possibility of addressing the topic of patient transfers is to
minimise the maximum number of transfers per patient. According to
Brandt et al. those two interpretations of avoiding transfers are not
conflicting but can be optimised simultaneously for the case of double
rooms (Brandt et al., 2024). More precisely, they showed that there al-
ways exists an optimal solution with regard to 𝑓 trans where each patient
is transferred at most once. Therefore, we choose the minimisation of
the total number of transfers as objective function. Our computational
experiments with real life data showed that in an optimal solution
with respect to 𝑓 trans no patient is transferred twice regardless of an
upper bound on the number of transfers per patient. Moreover, the
enforcement of an upper bound on the number of transfers per patient
did not affect the runtime. Therefore, we exclusively consider 𝑓 trans as
objective function for transfers.

As second objective, we maximise the total number of time periods
that private patients spend alone in a room, as, in Germany, the fees
for a single room are paid by the insurance companies for every day
individually. Thus, we maximise

𝑓 priv ∶=
∑

𝑡∈

(

∑

𝑝∈∗(𝑡)
1 − min {1, |{𝑞 ∈ (𝑡) ⧵ {𝑝} ∣ 𝑧(𝑝, 𝑡) = 𝑧(𝑞, 𝑡)}|}

)

.

Fig. 1 illustrates the role of both objectives. Note that, in general,
transfers are necessary for feasibility in PRA. In the example, two rooms
and a time horizon of three time steps are given. In step one, both rooms
are assigned two male/female patients each. After the first step, the two
male patients leave and a third female patient arrives. Now, as two
more male patients arrive in the third step, a transfer is necessary to
ensure feasibility. The example also includes a private patient which is
marked by a ∗. Here, the private patient can be charged a single room
surcharge only for the second time step. Hence, for the assignment
depicted in the example we have 𝑓 priv = 𝑓 trans = 1 and this is optimal
for both objectives.

3. Literature review

In 2010, Demeester et al. provided the first formal definition of
a PRA problem and proposed a tabu-search algorithm for what they
called the ‘‘problem of automatically and dynamically assigning pa-
tients to beds in a general hospital setting’’ (Demeester et al., 2010).
According to their problem definition, patients have to be assigned
to suitable rooms respecting numerous equipment, specialism, and
22
age constraints. However, limiting a patient’s room choices imme-
diately renders the task of assigning patients to beds/rooms -
complete (Brandt et al., 2024). Ceschia and Schaerf extended the
definition by Demeester et al. to include dynamic admission, operating
room constraints, time horizons, and patient delays (Ceschia & Schaerf,
2009, 2011, 2012, 2014). The dynamic setting they consider is sim-
ilar to our own, but the problem definition differs slightly, as their
formulation is directly based on Demeester et al. (2010).

Next, we give an overview of published integer linear programming
approaches in PRA. For a general literature overview of PRA we refer
to the recent work by Brandt et al. on integrated planning (Br et al.,
2023), and the review by Abdalkareem, Amir, Ehkan, and Al-Betar
(2018). A frequent pattern in literature on PRA is to use a integer
linear program (IP) to formalise the problem definition, but not to use
integer programming as a solution method. This may be due to the
fact that, in 2010, Demeester et al. considered integer programming as
solution approach. However, the authors dismissed this, as the given
formulation did not result in a feasible solution within an hour and
even after a week of computation, no optimal solution was obtained
using standard solver software (Demeester et al., 2010). Ceschia and
Schaerf also used an exact solver based on IPs as a reference for small
instances, while noting its inability to solve larger instances (Ceschia &
Schaerf, 2012).

Nonetheless there are several publications that specifically make
use of mixed-integer programming (MIP) based solution approaches:
Schmidt et al. define a binary integer program (BIP) based on patients’
length-of-stay (los) and use it to compare an exact approach, using the
MIP solver SCIP, with three heuristic strategies (Schmidt et al., 2013).
Range et al. reformulate Demeester et al.’s patient admission scheduling
problem via Dantzig–Wolfe decomposition and apply a heuristic based
on column generation to solve it (Range, Lusby, & Larsen, 2014).
Turhan and Bilgen propose two MIP based heuristics which achieve
high quality solutions in fast runtimes compared to respective state
of the art studies (Turhan & Bilgen, 2016). Vancroonenburg et al.
extend the patient assignment problem formulation and develop two
corresponding online IP formulations. The first formulation focuses
on newly arrived patients, whereas the second also considers planned
future patients. They then study the effect of uncertainty in the patients’
los, as well as the effect of the percentage of emergency patients. In all
of the cases mentioned above, integer programming is used either as
a basis for the development of heuristic solutions or as a reference for
small instances, but no exact solving of larger real-world instances is
attempted.

Some recent publications also employ integer programming to
model both PRA and operating-room usage exactly (Conforti, Guido,
Mirabelli, & Solina, 2018a, 2018b). However, the models include
significant simplifications: fixed room-gender assignment, no transfers
and a limited time-horizon.

Guido, Groccia, and Conforti (2018) compare different IP formu-
lations for PRA. The authors propose iteratively extending the (PRA)

T. Brandt et al. European Journal of Operational Research 325 (2025) 20–37
search space, starting with small formulation and extending it if opti-
mality is not reached. The same idea underlies our sequential approach
for the dynamic PRA, which we improve using combinatorial insights.
Bastos, Marchesi, Hamacher, and Fleck (2019) present a MIP approach
to patient admission scheduling problem, which involves assigning
patients to beds over a given time horizon so as to maximise treatment
efficiency, patient comfort and hospital utilisation, while satisfying all
necessary medical constraints and taking into consideration patient
preferences as much as possible.

In a recent paper, Liu, Wang, and Hao (2024) revisited the original
MIP formulation by Ceschia and Schaerf (2011). The authors then
decompose room and bed assignment, and use constraint aggregation
to reduce the size of the IP formulation. This leads to improvements on
a range of reference instances. Their aggregation of patient transfers is
similar to the model used in this work, without a dynamic model and/or
same-day transfers. The gender aggregation they perform is similar
to the aggregations we perform, although we test multiple variants
thereof. Additionally, they extensively reviewed (heuristic) literature
on PRA/PBA.

There also exist solution approaches that are not based on De-
meester’s problem definition but are inspired by the setting in a specific
hospital. Thomas et al. developed a MIP based decision support system
that balances 13 objectives (T et al., 2013). Schäfer et al. disallow (non-
medically induced) patient transfers but include overflow and patient
preferences (Schäfer et al., 2019). They also model doctor preferences,
i.e., homogeneous routes, and then solve the model via a greedy look-
ahead heuristic. In a follow-up publication, they focus on emergency
patients and integrate them into the model (Schäfer, Walther, Grimm,
& Hübner, 2023). Brandt et al. propose a MIP based heuristic for
integrated planning of patient-to-room and nurse-to-patient assign-
ment (Br et al., 2023). More generally, Rachuba et al. introduce a
taxonomy for evaluating integration consisting of three stages: link-
age by constraints/restrictions, sequential and completely integrated
planning (Rachuba, Reuter-Oppermann, & Thielen, 2023). Here, our
work can contribute to multiple levels, with the combinatorial insights
facilitating easy linkage by constraints/restrictions and the IP based
approach being suitable for fully integrated planning.

Combinatorial insights about patient-to-room assignment and its
underlying structure are still rare. For the definition proposed by
Demeester et al. it was proven that it is -complete to decide whether
a feasible solution exists even if all rooms have capacity 2 (Ficker,
Spieksma, & Woeginger, 2021; Vancroonenburg, Croce, Goossens, &
Spieksma, 2014). However, for this result it is important that not every
patient can be assigned to every room. Therefore, in our case (without
patient-room restrictions), this result is not applicable. In fact, in our
problem setting, we can efficiently decide an instance’s feasibility if all
rooms have the same capacity while the decision remains -complete
for arbitrary room capacities (Brandt et al., 2024). We complement
these results by providing an efficient way to decide feasibility for
instances with single and double rooms, and for computing the max-
imum number of fulfillable single-room requests. Remark that deciding
whether a solution is feasible without transfers, however, -complete
even for instances with only double rooms if there are at least three
rooms (Brandt et al., 2024).

4. Combinatorial insights

In this section, we first present new combinatorial insights regarding
the feasibility of instances with single and double rooms which extend
the known results on feasibility from Brandt et al. (2024). Second, we
present a combinatorial formula to compute the maximum number of
private patients who can be feasibly assigned to single rooms. Both
questions can be decided independently for every single time period,
since we allow arbitrary many transfers. Therefore, in this section we
consider an arbitrary but fixed time period 𝑡 ∈  and abbreviate the
number of female patients who are in hospital in time period 𝑡 with
23
𝐹𝑡 ∶= | f (𝑡)|, and respectively the number of male patients, female
private patients, and male private patients needing a bed in time period
𝑡 with 𝑀𝑡 ∶= |m(𝑡)|, 𝐹 ∗

𝑡 ∶= | f (𝑡) ∩ ∗(𝑡)|, and 𝑀∗
𝑡 ∶= |m(𝑡) ∩ ∗(𝑡)|.

We further denote with 𝑅𝑐 ∶= |{𝑟 ∈  ∣ 𝑐𝑟 = 𝑐}| the number of rooms
with a specific capacity 𝑐 ∈ N.

4.1. Feasibility

Brandt et al. define the feasibility problem for an arbitrary but fixed
time period 𝑡 ∈  as follows Brandt et al. (2024).

Definition 1 (Feasibility Problem). Given the number of female and male
patients 𝐹𝑡,𝑀𝑡 ∈ N0, and room capacities 𝑐𝑟 ∈ N for 𝑟 ∈ , does there
exist a subset 𝑆 ⊆  of rooms such that it can host all female patients
while the male patients fit into the remaining rooms, i.e.,
∑

𝑟∈𝑆
𝑐𝑟 ≥ 𝐹𝑡 and

∑

𝑟∈⧵𝑆
𝑐𝑟 ≥ 𝑀𝑡? (1)

Brandt et al. prove that the feasibility problem is -complete in
general and solvable in polynomial time for constant room capacities
𝑐𝑟 = 𝑐 ∈ N (Brandt et al., 2024). Clearly, in the common case of rooms
with only double rooms an instance is feasible if and only if
⌈

𝐹𝑡
2

⌉

+
⌈

𝑀𝑡
2

⌉

≤ || (2)

holds true for every time period 𝑡 ∈  (Brandt et al., 2024). However,
this is no longer accurate for wards that have at least one single room
in addition to double rooms otherwise. For those, it suffices to check
whether enough beds are available in total.

Lemma 1. Consider a ward with room capacities 𝑐𝑟 ∈ {1, 𝑐} with 𝑐 ∈ N for
all rooms 𝑟 ∈ . Let the number of female and male patients 𝐹𝑡,𝑀𝑡 ∈ N0,
be given. If 𝑅1 ≥ 𝑐−1, then the instance is feasible if and only if the number
of patients does not exceed the ward’s total capacity, i.e., if and only if
𝐹𝑡 +𝑀𝑡 ≤

∑

𝑟∈
𝑐𝑟 (3)

holds true for every time period 𝑡 ∈  .

Proof. For 𝑐 = 1, the instance is obviously feasible if and only if Eq.
(3) holds true. Therefore, let 𝑐 ≥ 2. If the number of patients exceeds
ward’s capacity, i.e., Eq. (3) is violated, then the instance is infeasible as
at least one patient cannot be assigned to a room without violating the
capacity constraint. Hence, we assume Eq. (3) to hold true and show
that the instance is then feasible by constructing a set 𝑆 ⊆  which
satisfies Eq. (1).

We compute the maximum number 𝑘 of rooms with capacity 𝑐 we
could completely fill with female patients

𝑘 ∶= min
{⌊

𝐹𝑡
𝑐

⌋

, 𝑅𝑐

}

,

and, respectively, we compute the maximum the number 𝓁 of rooms
with capacity 𝑐 that we could completely fill with male patients

𝓁 ∶= min
{⌊

𝑀𝑡
𝑐

⌋

, 𝑅𝑐 − 𝑘
}

.

Remark that 𝑅𝑐 ≥ 𝑘+𝓁, 𝐹𝑡−𝑐𝑘 ≥ 0, and 𝑀𝑡−𝑐𝓁 ≥ 0 by construction. On
the one hand, if 𝑅1 ≥ 𝐹𝑡 − 𝑐𝑘+𝑀𝑡 − 𝑐𝓁, i.e., all remaining patients can
be assigned to single rooms, then we define 𝑆 ∶= 𝑆′∪𝑆′′ with arbitrary
sets 𝑆′ and 𝑆′′ that fulfil the following condition
𝑆′ ⊆ {𝑟 ∈  ∣ 𝑐𝑟 = 𝑐} with |𝑆′

| = 𝑘,

𝑆′′ ⊆ {𝑟 ∈  ∣ 𝑐𝑟 = 1} with |𝑆′′
| = 𝐹𝑡 − 𝑐𝑘.

Then,
∑

𝑐𝑟 =
∑

𝑐𝑟 +
∑

𝑐𝑟 = 𝑐𝑘 + 𝐹𝑡 − 𝑐𝑘 = 𝐹𝑡,

𝑟∈𝑆 𝑟∈𝑆′ 𝑟∈𝑆′′

T. Brandt et al. European Journal of Operational Research 325 (2025) 20–37
∑

𝑟∈⧵𝑆
𝑐𝑟 =

∑

𝑟∈
𝑐𝑟 −

∑

𝑟∈𝑆
𝑐𝑟

Eq. (3)
≥ 𝐹𝑡 +𝑀𝑡 − 𝐹𝑡 = 𝑀𝑡,

i.e., the feasibility condition Eq. (1) is satisfied and the instance is
feasible.

On the other hand, if 𝑅1 < 𝐹𝑡 − 𝑐𝑘 +𝑀𝑡 − 𝑐𝓁, then

𝑅𝑐
(1)
≥ 1

𝑐
(𝐹𝑡 +𝑀𝑡 − 𝑅1)

> 1
𝑐
(𝐹𝑡 +𝑀𝑡 − 𝐹𝑡 + 𝑐𝑘 −𝑀𝑡 + 𝑐𝓁) = 𝑘 + 𝓁.

Therefore, we also have 𝐹𝑡 − 𝑐𝑘 < 𝑐 and 𝑀𝑡 − 𝑐𝓁 < 𝑐 and we define
𝑆 ⊆ {𝑟 ∈  ∣ 𝑐𝑟 = 𝑐} arbitrary with |𝑆| = 𝑘 + 1. Then

∑

𝑟∈𝑆
𝑐𝑟 = 𝑐𝑘 + 𝑐 > 𝑐𝑘 + 𝐹𝑡 − 𝑐𝑘 = 𝐹𝑡,

∑

𝑟∈⧵𝑆
𝑐𝑟 = 𝑅1 + 𝑐(𝑅𝑐 − 𝑘 − 1)

𝑅𝑐≥𝑘+𝓁+1
≥ 𝑅1 + 𝑐(𝑘 + 𝓁 + 1 − 𝑘 − 1) = 𝑅1 + 𝑐𝓁

𝑅1≥𝑐−1
≥ 𝑐 − 1 + 𝑐𝓁

𝑐−1≥𝑀𝑡−𝑐𝓁
≥ 𝑀𝑡 − 𝑐𝓁 + 𝑐𝓁 ≥ 𝑀𝑡,

i.e., the feasibility condition Eq. (1) is satisfied and the instance is
feasible. □

Remark that the condition 𝑅1 ≥ 𝑐 − 1 in Lemma 1 is tight: let 𝑐 = 3
and 𝑅1 < 𝑐−1, i.e., let 𝑅1 = 𝑅3 = 1. Then an instance with 𝐹𝑡 = 𝑀𝑡 = 2
satisfies Eq. (3), however, there exists no feasible solution.

Lemma 1 covers especially the case of wards with single and double
rooms only. Additionally, we can use it to derive a similar result for
wards with rooms of even capacity.

Lemma 2. Consider a ward with room capacities 𝑐𝑟 ∈ {2, 2𝑐} with
𝑐 ∈ N≥2 for all rooms 𝑟 ∈ . Let the number of female and male patients
𝐹𝑡,𝑀𝑡 ∈ N0, be given. If 𝑅2 ≥ 𝑐−1, then the instance is feasible if and only
if for every time period 𝑡 ∈  one of the two following conditions holds true.

1. 𝐹𝑡 and 𝑀𝑡 are both even and the number of patients does not exceed
the ward’s total capacity, i.e., 𝐹𝑡 +𝑀𝑡 ≤

∑

𝑟∈ 𝑐𝑟
2. the number of patients is strictly smaller than the ward’s total
capacity, i.e., 𝐹𝑡 +𝑀𝑡 <

∑

𝑟∈ 𝑐𝑟

Proof. First, assume both conditions are violated, then we have
𝐹𝑡 + 𝑀𝑡 =

∑

𝑟∈ 𝑐𝑟, and both 𝐹𝑡 and 𝑀𝑡 are odd. Then, no feasible
assignment of patients to rooms exists. Second, assume Condition 1
holds true. Then, we construct an equivalent instance by dividing all
𝑐𝑟, 𝐹𝑡, and 𝑀𝑡 by 2. This instance is feasible according to Lemma 1 and
hence also the original one.

Third, assume Condition 2 holds true and Condition 1 does not.
Thus, we have 𝐹𝑡 + 𝑀𝑡 <

∑

𝑟∈ 𝑐𝑟 and either both 𝐹𝑡 and 𝑀𝑡 are odd
or exactly one of them. If both 𝐹𝑡 and 𝑀𝑡 are odd, it directly follows
that 𝐹𝑡 + 𝑀𝑡 ≤

∑

𝑟∈ 𝑐𝑟 − 2. We then construct an equivalent instance
by increasing the number of female and male patients each by one,
i.e., 𝐹 ′

𝑡 ∶= 𝐹𝑡+1 and 𝑀 ′
𝑡 ∶= 𝑀𝑡+1. Then 𝐹 ′

𝑡 and 𝑀 ′
𝑡 are both even with

𝐹 ′
𝑡 +𝑀 ′

𝑡 ≤
∑

𝑟∈ 𝑐𝑟. This new instance is feasible according to Condition
1 and hence also the original one. We proceed analogously if either 𝐹𝑡
or 𝑀𝑡 is odd. □

4.2. Maximum number of private patients in single rooms

We define the problem of computing the maximum number 𝑠max
𝑡 of

private patients who can get a room for themselves in time period 𝑡 as
follows.

Definition 2 (Private Patient Problem (PPP)). Let the total number of
female and male patients 𝐹𝑡,𝑀𝑡 ∈ N0, the number of female and male
private patients 𝐹 ∗

𝑡 ,𝑀
∗
𝑡 ∈ N0, and room capacities 𝑐𝑟 ∈ N for 𝑟 ∈  be

given. Do there exist four pairwise disjoint subsets 𝑆𝐹 ∪𝑆∗
𝐹 ∪𝑆𝑀 ∪𝑆∗

𝑀 ⊆
 such that
24
1. all female patients are assigned to rooms 𝑆𝐹 ∪𝑆∗
𝐹 , and all patients

assigned to rooms in 𝑆∗
𝐹 are private patients and alone in their

rooms, i.e.,
∑

𝑟∈𝑆𝐹

𝑐𝑟 + |𝑆∗
𝐹 | ≥ 𝐹𝑡 and |𝑆∗

𝐹 | ≤ 𝐹 ∗
𝑡 , (4)

2. all male patients are assigned to rooms 𝑆𝑀 ∪𝑆∗
𝑀 , and all patients

assigned to rooms in 𝑆∗
𝑀 are private patients and alone in their

rooms, i.e.,
∑

𝑟∈𝑆𝑀

𝑐𝑟 + |𝑆∗
𝑀 | ≥ 𝑀𝑡 and |𝑆∗

𝑀 | ≤ 𝑀∗
𝑡 , (5)

3. the number of private patients who have a room to themselves
is maximal, i.e.,
𝑠max
𝑡 ∶=|𝑆∗

𝐹 | + |𝑆∗
𝑀 | is maximal. (6)

We first take a look at the complexity of PPP.

Lemma 3. PPP is -hard and not approximable.

Proof. For 𝐹 ∗
𝑡 = 𝑀∗

𝑡 = 0, PPP is equivalent to the feasibility problem.
Hence, also PPP is -hard. Since the objective value 𝑠max

𝑡 is 0 in this
case, PPP is not approximable. □

However, PPP can be solved in polynomial time if the ward has only
single and double rooms.

Lemma 4. For feasible instances with 𝑐𝑟 ∈ {1, 2}, PPP can be solved in
polynomial time. Moreover, we can compute 𝑠max

𝑡 as follows. Let

𝛼𝑡 ∶= || −
⌈𝐹𝑡 − 𝐹 ∗

𝑡
2

⌉

−
⌈𝑀𝑡 −𝑀∗

𝑡
2

⌉

,

𝛽f𝑡 ∶= min
{(

𝐹𝑡 − 𝐹 ∗
𝑡
)

mod 2, 𝐹 ∗
𝑡
}

∈ {0, 1}, and
𝛽m𝑡 ∶= min

{(

𝑀𝑡 −𝑀∗
𝑡
)

mod 2, 𝑀∗
𝑡
}

∈ {0, 1}.

Then

𝑠max
𝑡 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

|∗(𝑡)| if 𝛼𝑡 ≥ |∗(𝑡)|,

|∗(𝑡)| − 1 if 𝛼𝑡 = |∗(𝑡)| − 1 and 𝛽f𝑡 = 𝛽m𝑡 = 1,

2𝛼𝑡 + 𝛽f𝑡 + 𝛽m𝑡 − |∗(𝑡)| otherwise.

Proof. For feasible instances with single and double rooms, we can
treat all single rooms as double rooms since this does not affect the
number of private patients who can get a room for themselves. There-
fore, let us consider a feasible instance of PPP with only double rooms,
i.e., Eq. (2) holds true. We now have to assign at least
⌈𝐹𝑡 − 𝐹 ∗

𝑡
2

⌉

+
⌈𝑀𝑡 −𝑀∗

𝑡
2

⌉

rooms to non-private patients. Since we aim to maximise the number
of private patients who are alone in a room, we assign exactly that
many rooms to non-private patients. If the number of free remaining
rooms 𝛼𝑡 is greater or equal to the number of unassigned private
patients, i.e., 𝛼𝑡 ≥ |∗(𝑡)|, then every private patient can get a room
for themselves, i.e.,
𝑠max
𝑡 = |∗

|.

Otherwise, after assigning all non-private patients, we have 𝛼𝑡
empty double rooms as well as potentially one (𝛽f𝑡) free bed in a double-
bed room where a non-private female patient is present which we can
assign to a private female patient (if at least one is present), respectively
for male patients (𝛽m𝑡). This results in a total of
𝛾 ∶= 2𝛼 + 𝛽f + 𝛽m
𝑡 𝑡 𝑡 𝑡

T. Brandt et al. European Journal of Operational Research 325 (2025) 20–37
available beds for private patients. If 𝛽f𝑡 = 0 or 𝛽m𝑡 = 0 or 𝛼𝑡 ≤ |∗(𝑡)|−2,
then the difference of 𝛽𝑡 and the total number of private patients gives
us the of number of empty beds. Then, all private patients who can get
a free room will do so, i.e.,

𝑠max
𝑡 = 𝛾𝑡 − |∗(𝑡)|.

However, if both 𝛽f𝑡 = 1 and 𝛽m𝑡 = 1 and exactly |∗(𝑡)| = 𝛼𝑡 + 1 private
patients need a room, then exactly one private patient will be placed
in a room together with a non-private patient, i.e.,

𝑠max
𝑡 = |∗(𝑡)| − 1.

Overall, we achieve the stated formula for computing 𝑠max
𝑡 . □

Knowing the maximum number 𝑠max
𝑡 of private patients who can get

a single room in time period 𝑡 allows us to assess the trade-off between
𝑓 priv and 𝑓 trans or other objectives that occur in practice, e.g., hosting
all patients who need immediate care. Using the exact computation of
𝑠max
𝑡 , we know that their sum over all time periods 𝑡 ∈  is a tight upper
bound on the total objective value for 𝑓 priv, i.e.,

𝑓 priv ≤ 𝑠max ∶=
∑

𝑡∈
𝑠max
𝑡 . (7)

This bound can always be achieved as long as arbitrary many transfers
may be used.

5. Comparison of different IP-formulations

In this section, we propose and compare different IP-formulations
for PRA. The most performant IP-formulations then constitute the basis
for the IP-based heuristic for PRA that we propose in Section 6. To re-
duce the total number of IP variants that we compare, we first evaluate
different formulations for minimising the total number of transfers only
in Section 5.1. Second, we use the best performing LP formulation for
minimising transfers and then compare different extensions for incorpo-
rating single-room requests of private patients in Section 5.2. Third, we
compare different IP-formulations for maximising 𝑓 priv without using
transfers in Section 5.3. Since we present multiple formulations for
some of the conditions, we explain every constraint individually and
then state for every IP which of the constraints are used.

Independently of our work, Liu et al. also worked on improvements
of IP-formulations for PRA as defined by Demeester et al. (under the
term patient admission scheduling) (Liu et al., 2024). However, there
are major differences between their work and ours. On the one hand,
their objective function differs as they use the one proposed by Ceschia
and Schaerf (2011), which balances 9 criteria for a good patient-
room assignment. In contrast, we focus on 2 objective functions and
optimise them both exclusively and in different hierarchical orders.
This allows us to visualise the objective’s influence on the runtime
and make justified decisions regarding the trade-off between runtime
and the objective’s real-world priority in the design of our algorithm,
cf. Section 6.

On the other hand, Liu et al. also use a slightly different set of
constraints as gender separation may be violated in their setting and
single-room requests only count as fulfilled if the patient is assigned to
a room that contains exactly one bed. In contrast, gender separation is
mandatory in our setting and we count a single-room request as fulfilled
if the patient is alone in a room regardless of the room’s capacity.
Hence, the results of Liu et al. do not directly translate to our setting.
Nevertheless, some of the constraint aggregations used by Liu et al.
are similar to the ones we use in Section 5.1. We therefore report the
similarities there in detail.
25
5.1. Minimise transfers only

As a first step, we propose and compare different IP-formulations for
PRA minimising transfers only. In the next section, we then extend the
best performing IP-formulation to incorporate single-room requests. To
model the assignment of patients to rooms as well as the minimisation
of transfers, we use the following binary variables:

𝑥𝑝𝑟𝑡 =

{

1, if patient 𝑝 is assigned to room 𝑟 in time period 𝑡,
0, otherwise,

(8)

𝛿𝑝𝑟𝑡 =

⎧

⎪

⎨

⎪

⎩

1, if patient 𝑝 is transferred from room 𝑟 to another room
after time period 𝑡

0, otherwise.
(9)

We then model the total number of transfers as the sum of all variables
𝛿 together with all altered pre-fixed assignments
𝑓 trans =

∑

𝑡∈

∑

𝑝∈(𝑡)

∑

𝑟∈
𝛿𝑝𝑟𝑡 + | | −

∑

(𝑟,𝑝)∈
𝑥𝑝𝑟1. (10)

Regarding the constraints, we first ensure that all patients are
assigned to rooms for every time period of their stay:
∑

𝑟∈
𝑥𝑝𝑟𝑡 = 1 ∀𝑡 ∈  , 𝑝 ∈ (𝑡). (11)

Second, we ensure that the room capacity is respected via
∑

𝑝∈(𝑡)
𝑥𝑝𝑟𝑡 ≤ 𝑐𝑟 ∀𝑡 ∈  , 𝑟 ∈ . (12)

Third, to model gender separation, we introduce two additional sets of
binary variables

𝑔𝑟𝑡 =

⎧

⎪

⎨

⎪

⎩

1, if there is a female patient assigned to room 𝑟 in time
period 𝑡,

0, otherwise,
(13)

𝑚𝑟𝑡 =

⎧

⎪

⎨

⎪

⎩

1, if there is a male patient assigned to room 𝑟 in time
period 𝑡,

0, otherwise.
(14)

We then ensure gender separation via
𝑥𝑝𝑟𝑡 ≤ 𝑔𝑟𝑡 ∀𝑡 ∈  , 𝑝 ∈  f (𝑡), 𝑟 ∈ , (15)

𝑥𝑝𝑟𝑡 ≤ 𝑚𝑟𝑡 ∀𝑡 ∈  , 𝑝 ∈ m(𝑡), 𝑟 ∈ , (16)

𝑔𝑟𝑡 + 𝑚𝑟𝑡 ≤ 1 ∀𝑡 ∈  , 𝑟 ∈ . (17)

Using 𝑚𝑟𝑡 ≤ 1 − 𝑔𝑟𝑡 we can remove variable 𝑚𝑟𝑡 and replace constraints
Eqs. (16) and (17) with
𝑥𝑝𝑟𝑡 ≤ 1 − 𝑔𝑟𝑡 ∀𝑡 ∈  , 𝑝 ∈ m(𝑡), 𝑟 ∈ . (18)

Instead of modelling capacity and gender separation constraints sepa-
rately, we can also combine them and use
∑

𝑝∈ f (𝑡)

𝑥𝑝𝑟𝑡 ≤ 𝑐𝑟𝑔𝑟𝑡 ∀𝑡 ∈  , 𝑟 ∈ , (19)

∑

𝑝∈m(𝑡)
𝑥𝑝𝑟𝑡 ≤ 𝑐𝑟𝑚𝑟𝑡 ∀𝑡 ∈  , 𝑟 ∈ , (20)

instead of Eqs. (12), (15) and (16). Or, if we omit variable 𝑚𝑟𝑡, we use
∑

𝑝∈m(𝑡)
𝑥𝑝𝑟𝑡 ≤ 𝑐𝑟(1 − 𝑔𝑟𝑡) ∀𝑡 ∈  , 𝑟 ∈ , (21)

instead of Eqs. (17) and (20). Fourth, we count the transfers via
𝑥𝑝𝑟𝑡 − 𝑥𝑝𝑟(𝑡+1) ≤ 𝛿𝑝𝑟𝑡 ∀𝑟 ∈ , 𝑝 ∈  , 𝑎𝑝 ≤ 𝑡 < 𝑑𝑝 − 1. (22)

We compare the performance of the following four IP-formulations to
investigate the usage of variables 𝑚𝑟𝑡, as well as the integration of
capacity and gender-separation constraints.

T. Brandt et al. European Journal of Operational Research 325 (2025) 20–37
Fig. 2. Comparison of IPs (A)–(D) using 62 real-life instances, 61 instances were solved
to optimality after 12 h by IPs (C) and (D) with objective value 0.

(A) min 𝑓 trans s.t. Eqs. (11) and (12), (15) to (17) and (22)
(B) min 𝑓 trans s.t. Eqs. (11), (12), (15), (18) and (22)
(C) min 𝑓 trans s.t. Eqs. (11), (17), (19), (20) and (22)
(D) min 𝑓 trans s.t. Eqs. (11), (19), (21) and (22)

Liu et al. use similar constraint aggregations and the constraint
set of our IP (A) resembles the constraint set of their IP APRAGC0&TC,
respectively for our IP (B) and their IP APRAGC1&TC, our IP (C) and their
IP APRAAGC0&TC, as well as for our IP (D) and their IP APRAAGC1&TC (Liu
et al., 2024). In their setting, the most aggregated IP APRAAGC1&TC
performs better than the others.

All our IPs were implemented in python 3.10.4 and solved us-
ing Gurobi 10.0.0. All simulations were done on the RWTH High
Performance Computing Cluster using CLAIX-2018-MPI with Intel Xeon
Platinum 8160 Processors ‘‘SkyLake’’ (2.1 GHz, 32 CPUs per task,
3.9 GB per CPU). The code is publicly available on GitHub (Brandt &
Engelhardt, 2024).

For testing, we used 62 real-world instances provided by the RWTH
Aachen University Hospital (UKA), each spanning a whole year, and a
time limit of 12 h. We performed consistency checks on the patient data
ensuring valid input data: patients with missing information on arrival
or discharge and patients with 𝑎𝑝 = 𝑑𝑝 were dropped from the data
and for patients whose registration was noted after their arrival, we
set the registration date to the arrival date. All instances together still
contain more than 53.000 patient stays. For every instance, the number
of rooms and their capacities are given as well as the patients’ arrival,
departure, and registration dates, their gender, unique Patient-ID and
information on the insurance status. Note that the real-world data is
subject to non-disclosure and as such is not provided together with the
code.

The results of comparing ‘‘transfers only’’ formulations are depicted
in Fig. 2. They show that the integration of capacity and gender-
separation constraints decreases computation time. Similarly, removing
the variable 𝑚𝑟𝑡 also decreases computation time, which is in line with
the results obtained by Liu et al. (2024). In general, instances were
either solved to optimality with objective value 0 or resulted in a
MIPGap of 100% after 12 h.

5.2. Integration of single-room constraints

In literature, single-room requests are often modelled as part of the
objective function counting the patients (with such requests) who are
assigned to rooms with capacity 𝑐𝑟 = 1, see for example Demeester
et al. (2010) and Liu et al. (2024). Schäfer et al. choose a different
26
approach by counting single-room requests also as fulfilled if patients
are alone in a room with higher capacity (Schäfer et al., 2019). This
is similar to our problem definition. In their setting, however, those
constraints are mandatory whereas, in our setting, we treat them as an
objective function. We are not aware of other published papers that
report IP-formulations fitting our setting.

In the last section, we identified IP (D) as the best performing IP
formulation for PRA with the only objective function of minimising
transfers. In this section, we extend IP (D) by integrating single-room
requests. Instead of combining both objectives into one objective via a
weighted sum approach, we optimise them hierarchically. This means
that first one objective is (exclusively) optimised and under all solutions
that are optimal w.r.t. this first objective, we search the solution that
obtains the best value for the second objective. With a total of two
objectives, this approach leads to two possible hierarchical orders. In
our computational study, we compare two different levels of constraint
aggregation and both hierarchical orders.

To incorporate single-room request into our IP (D), we define binary
variables encoding whether a private patient gets a single room via

𝑠𝑝𝑟𝑡 =

{

1, if 𝑝 is alone in room 𝑟 in time period 𝑡,
0, otherwise.

(23)

Thus, the total number of time periods that private patients are assigned
to single rooms is given by
𝑓 priv =

∑

𝑡∈

∑

𝑝∈∗(𝑡)

∑

𝑟∈
𝑠𝑝𝑟𝑡. (24)

Then, we can model the single-room constraints via
𝑠𝑝𝑟𝑡 ≤ 𝑥𝑝𝑟𝑡 ∀𝑡 ∈  , 𝑝 ∈ ∗(𝑡), 𝑟 ∈ , (25)

𝑐𝑟𝑠𝑝𝑟𝑡 +
∑

𝑞∈(𝑡)⧵{𝑝}
𝑥𝑞𝑟𝑡 ≤ 𝑐𝑟 ∀𝑡 ∈  , 𝑝 ∈ ∗(𝑡), 𝑟 ∈ . (26)

Alternatively to Eq. (26), we can also integrate the single-room con-
straints with the gender-separation and capacity constraints Eqs. (19)
and (20) via

∑

𝑝∈ f (𝑡)

𝑥𝑝𝑟𝑡 +
∑

𝑝∈ f∩∗(𝑡)

(𝑐𝑟 − 1)𝑠𝑝𝑟𝑡 ≤ 𝑐𝑟𝑔𝑟𝑡 ∀𝑡 ∈  , 𝑟 ∈  (27)

∑

𝑝∈m(𝑡)
𝑥𝑝𝑟𝑡 +

∑

𝑝∈m∩∗(𝑡)
(𝑐𝑟 − 1)𝑠𝑝𝑟𝑡 ≤ 𝑐𝑟(1 − 𝑔𝑟𝑡) ∀𝑡 ∈  , 𝑟 ∈ . (28)

We compare the performance of the following LP-formulations that
integrate single-room requests based on the previous results

(E) max (−𝑓 trans, 𝑓 priv) s.t. constraints of (D), Eqs. (25) and (26)
(F) max (𝑓 priv,−𝑓 trans) s.t. constraints of (D), Eqs. (25) and (26)
(H) max (−𝑓 trans, 𝑓 priv) s.t. Eqs. (11), (22), (25), (27) and (28)
(I) max (𝑓 priv,−𝑓 trans) s.t. Eqs. (11), (22), (25), (27) and (28).

The objectives’ order determines their priority in optimisation, i.e., max
(−𝑓 trans, 𝑓 priv) means that first 𝑓 trans is minimised and then 𝑓 priv is
maximised.

The formulations for IPs (E) to (I) were evaluated on the same
computational setup as in . The results are given in Fig. 3. We see that
the decisive factor is not the set of constraints but the objective func-
tion. Minimising the number of transfers first, i.e., max(−𝑓 trans, 𝑓 priv)
performs significantly better than maximising the fulfilled single-room
requests first. However, it is noticeable that the second set of constraints
performs overall better than the first set. We further observed that,
when optimising 𝑓 priv, the solver frequently finds an optimal solution
quickly but then requires extended time to prove optimality. Therefore,
we use our combinatorial insights to help the solver prove optimality
in this case.

If maximising 𝑓 priv has highest priority, we can use the combinato-
rial insights from Section 4 and fix the number of private patients in
single rooms for time period 𝑡 to 𝑠max

𝑡 , i.e.,
∑ ∑

𝑠𝑝𝑟𝑡 ≥ 𝑠max
𝑡 ∀𝑡 ∈  (29)
𝑝∈∗(𝑡) 𝑟∈

https://www.itc.rwth-aachen.de/cms/IT-Center/Services/Servicekatalog/Hochleistungsrechnen/~hisv/RWTH-Compute-Cluster/?lidx=1
https://www.itc.rwth-aachen.de/cms/IT-Center/Services/Servicekatalog/Hochleistungsrechnen/~hisv/RWTH-Compute-Cluster/?lidx=1
https://www.itc.rwth-aachen.de/cms/IT-Center/Services/Servicekatalog/Hochleistungsrechnen/~hisv/RWTH-Compute-Cluster/?lidx=1
https://www.itc.rwth-aachen.de/cms/IT-Center/Services/Servicekatalog/Hochleistungsrechnen/~hisv/RWTH-Compute-Cluster/?lidx=1
https://www.itc.rwth-aachen.de/cms/IT-Center/Services/Servicekatalog/Hochleistungsrechnen/~hisv/RWTH-Compute-Cluster/?lidx=1
https://www.itc.rwth-aachen.de/cms/IT-Center/Services/Servicekatalog/Hochleistungsrechnen/~hisv/RWTH-Compute-Cluster/?lidx=1
https://www.itc.rwth-aachen.de/cms/IT-Center/Services/Servicekatalog/Hochleistungsrechnen/~hisv/RWTH-Compute-Cluster/?lidx=1
https://www.itc.rwth-aachen.de/cms/IT-Center/Services/Servicekatalog/Hochleistungsrechnen/~hisv/RWTH-Compute-Cluster/?lidx=1
https://www.itc.rwth-aachen.de/cms/IT-Center/Services/Servicekatalog/Hochleistungsrechnen/~hisv/RWTH-Compute-Cluster/?lidx=1
https://www.itc.rwth-aachen.de/cms/IT-Center/Services/Servicekatalog/Hochleistungsrechnen/~hisv/RWTH-Compute-Cluster/?lidx=1
https://www.itc.rwth-aachen.de/cms/IT-Center/Services/Servicekatalog/Hochleistungsrechnen/~hisv/RWTH-Compute-Cluster/?lidx=1
https://www.itc.rwth-aachen.de/cms/IT-Center/Services/Servicekatalog/Hochleistungsrechnen/~hisv/RWTH-Compute-Cluster/?lidx=1
https://www.itc.rwth-aachen.de/cms/IT-Center/Services/Servicekatalog/Hochleistungsrechnen/~hisv/RWTH-Compute-Cluster/?lidx=1
https://www.itc.rwth-aachen.de/cms/IT-Center/Services/Servicekatalog/Hochleistungsrechnen/~hisv/RWTH-Compute-Cluster/?lidx=1
https://www.itc.rwth-aachen.de/cms/IT-Center/Services/Servicekatalog/Hochleistungsrechnen/~hisv/RWTH-Compute-Cluster/?lidx=1
https://www.itc.rwth-aachen.de/cms/IT-Center/Services/Servicekatalog/Hochleistungsrechnen/~hisv/RWTH-Compute-Cluster/?lidx=1
https://www.itc.rwth-aachen.de/cms/IT-Center/Services/Servicekatalog/Hochleistungsrechnen/~hisv/RWTH-Compute-Cluster/?lidx=1
https://www.itc.rwth-aachen.de/cms/IT-Center/Services/Servicekatalog/Hochleistungsrechnen/~hisv/RWTH-Compute-Cluster/?lidx=1
https://www.itc.rwth-aachen.de/cms/IT-Center/Services/Servicekatalog/Hochleistungsrechnen/~hisv/RWTH-Compute-Cluster/?lidx=1
https://www.itc.rwth-aachen.de/cms/IT-Center/Services/Servicekatalog/Hochleistungsrechnen/~hisv/RWTH-Compute-Cluster/?lidx=1
https://www.itc.rwth-aachen.de/cms/IT-Center/Services/Servicekatalog/Hochleistungsrechnen/~hisv/RWTH-Compute-Cluster/?lidx=1
https://www.itc.rwth-aachen.de/cms/IT-Center/Services/Servicekatalog/Hochleistungsrechnen/~hisv/RWTH-Compute-Cluster/?lidx=1
https://www.itc.rwth-aachen.de/cms/IT-Center/Services/Servicekatalog/Hochleistungsrechnen/~hisv/RWTH-Compute-Cluster/?lidx=1
https://www.itc.rwth-aachen.de/cms/IT-Center/Services/Servicekatalog/Hochleistungsrechnen/~hisv/RWTH-Compute-Cluster/?lidx=1
https://www.itc.rwth-aachen.de/cms/IT-Center/Services/Servicekatalog/Hochleistungsrechnen/~hisv/RWTH-Compute-Cluster/?lidx=1
https://www.itc.rwth-aachen.de/cms/IT-Center/Services/Servicekatalog/Hochleistungsrechnen/~hisv/RWTH-Compute-Cluster/?lidx=1
https://www.itc.rwth-aachen.de/cms/IT-Center/Services/Servicekatalog/Hochleistungsrechnen/~hisv/RWTH-Compute-Cluster/?lidx=1
https://www.itc.rwth-aachen.de/cms/IT-Center/Services/Servicekatalog/Hochleistungsrechnen/~hisv/RWTH-Compute-Cluster/?lidx=1
https://www.itc.rwth-aachen.de/cms/IT-Center/Services/Servicekatalog/Hochleistungsrechnen/~hisv/RWTH-Compute-Cluster/?lidx=1
https://www.itc.rwth-aachen.de/cms/IT-Center/Services/Servicekatalog/Hochleistungsrechnen/~hisv/RWTH-Compute-Cluster/?lidx=1
https://www.itc.rwth-aachen.de/cms/IT-Center/Services/Servicekatalog/Hochleistungsrechnen/~hisv/RWTH-Compute-Cluster/?lidx=1
https://www.itc.rwth-aachen.de/cms/IT-Center/Services/Servicekatalog/Hochleistungsrechnen/~hisv/RWTH-Compute-Cluster/?lidx=1
https://www.itc.rwth-aachen.de/cms/IT-Center/Services/Servicekatalog/Hochleistungsrechnen/~hisv/RWTH-Compute-Cluster/?lidx=1
https://www.itc.rwth-aachen.de/cms/IT-Center/Services/Servicekatalog/Hochleistungsrechnen/~hisv/RWTH-Compute-Cluster/?lidx=1
https://www.itc.rwth-aachen.de/cms/IT-Center/Services/Servicekatalog/Hochleistungsrechnen/~hisv/RWTH-Compute-Cluster/?lidx=1

T. Brandt et al. European Journal of Operational Research 325 (2025) 20–37
Fig. 3. Comparison of IPs E - H using 62 real-life instances, maximum runtime 12 h.

Fig. 4. Performance of IP K using 62 real-life instances, maximum runtime 12 h.

instead of using the bi-objective approach. Hence, we also evaluate the
resulting IP

(K) min 𝑓 trans s.t. constraints of (H). Eq. (29)

We compare the respective IP’s performance to the one of (H) and
(I). Fig. 4 shows that IP (K) clearly outperforms IP (I), however, its
performance is not as good as the one of IP (H). The implementation is
available on GitHub (Brandt & Engelhardt, 2024).

5.3. IP-formulation without transfers

The objective values computed in our computational experiments
in Sections 5.1 and 5.2 showed that in many instances no transfers are
necessary throughout the entire planning period of one year. Therefore,
we propose and compare in this section IP formulations where transfers
are prohibited by construction while 𝑓 priv is maximised.

Liu et al. also report on an IP-formulation without transfers and
argue it speeds up the computations by reducing the search scope (Liu
et al., 2024). In this setting, they evaluate the use of variable 𝑚𝑟𝑡 and
conclude that it is better to use the substitution with (1 − 𝑔𝑟𝑡). Based
on our observation of the significant performance advantage of IP-
formulations without variable 𝑚𝑟𝑡 that we observed in Section 5.1, we
omit the evaluation of the use of variable 𝑚𝑟𝑡 in this section which is
backed up by the result of Liu et al. Instead, we focus on three different
27
levels of constraint aggregation of capacity, gender-separation, and
single-room constraints under the objective of maximising fulfilment
of single-room requests. Furthermore, we evaluate whether it is faster
to solve the optimisation problem with objective function 𝑓 priv or the
feasibility problem where 𝑓 priv = 𝑠max is fixed.

We use binary variables

𝑥𝑝𝑟 =

{

1, if patient 𝑝 is assigned to room 𝑟 for their stay,
0, otherwise,

(30)

to model the assignment of patients to rooms together with the pre-
viously introduced variables 𝑠𝑝𝑟𝑡 as in (23), and variables 𝑔𝑟𝑡 as in
(13).

Regarding the constraints, we first ensure that all patients are
assigned to rooms in every time period of their stay:
∑

𝑟∈
𝑥𝑝𝑟 = 1 ∀𝑝 ∈  . (31)

Second, we ensure that the room capacity is respected via
∑

𝑝∈(𝑡)
𝑥𝑝𝑟 ≤ 𝑐𝑟 ∀𝑡 ∈  , 𝑟 ∈ . (32)

Third, we ensure gender separation via
𝑥𝑝𝑟 ≤ 𝑔𝑟𝑡 ∀𝑡 ∈  , 𝑝 ∈  f (𝑡), 𝑟 ∈ , (33)

𝑥𝑝𝑟 ≤ (1 − 𝑔𝑟𝑡) ∀𝑡 ∈  , 𝑝 ∈ m(𝑡), 𝑟 ∈ . (34)

Instead of modelling capacity and gender-separation constraints sepa-
rately, we can also combine them and use
∑

𝑝∈ f (𝑡)

𝑥𝑝𝑟 ≤ 𝑐𝑟𝑔𝑟𝑡 ∀𝑡 ∈  , 𝑟 ∈ , (35)

∑

𝑝∈m(𝑡)
𝑥𝑝𝑟 ≤ 𝑐𝑟(1 − 𝑔𝑟𝑡) ∀𝑡 ∈  , 𝑟 ∈ , (36)

instead of Eqs. (32) to (34). Fourth, we model the single room con-
straints via

𝑠𝑝𝑟𝑡 ≤ 𝑥𝑝𝑟 ∀𝑡 ∈  , 𝑝 ∈ ∗(𝑡), 𝑟 ∈ , (37)

𝑐𝑟𝑠𝑝𝑟𝑡 +
∑

𝑞∈(𝑡)⧵{𝑝}
𝑥𝑞𝑟 ≤ 𝑐𝑟 ∀𝑡 ∈  , 𝑝 ∈ ∗(𝑡), 𝑟 ∈ . (38)

Alternatively to Eq. (38), we can also integrate the single room con-
straints with the gender-separation and capacity constraints Eqs. (35)
and (36) via

∑

𝑝∈ f (𝑡)

𝑥𝑝𝑟 +
∑

𝑝∈ f∩∗(𝑡)

(𝑐𝑟 − 1)𝑠𝑝𝑟𝑡 ≤ 𝑐𝑟𝑔𝑟𝑡 ∀𝑡 ∈  , 𝑟 ∈ , (39)

∑

𝑝∈m(𝑡)
𝑥𝑝𝑟 +

∑

𝑝∈m∩∗(𝑡)
(𝑐𝑟 − 1)𝑠𝑝𝑟𝑡 ≤ 𝑐𝑟(1 − 𝑔𝑟𝑡) ∀𝑡 ∈  , 𝑟 ∈ . (40)

Last, we ensure that any pre-fixed assignments are respected:
𝑥𝑝𝑟 = 1 ∀(𝑝, 𝑟) ∈  . (41)

We then compare the following IP-formulations to find the best
performing constraint set.

(M) max 𝑓 priv s.t. Eqs. (31) to (34), (37), (38) and (41)
(N) max 𝑓 priv s.t. Eqs. (31), (35) to (38) and (41)
(O) max 𝑓 priv s.t. Eqs. (31), (37) and (39) to (41)
(P) max 0 s.t. constraints of (O), Eq. (29)

Apart from the additional constraints modelling the single-room
assignment resembles the constraint set of our IP (M) the constraint set
of Liu et al.’s IP APRAWTGC1&TC, and the constraints of our IP (N) resembles
the ones of their IP APRAWTAGC1&TC. Liu et al. (2024). In their setting, the
more aggregated IP APRAWTAGC1&TC performs better.

The formulations for IPs (M) to (P) were evaluated on the same com-
putational setup as in and the implementation is available on Brandt

T. Brandt et al. European Journal of Operational Research 325 (2025) 20–37
Fig. 5. Comparison of IPs (M)–(P) using 62 real-life instances.

Fig. 6. IP (P) solves 52 instances in <100 s.

and Engelhardt (2024). The results show the dominance of IP (P) over
the other IPs, cf. Fig. 5. However, it strongly depends on the use case
whether IP (P) is the best one to use as, naturally, it is feasible in fewer
instances than IP (O). With our real-life instances, (P) was feasible in
72.5% whereas (O) was feasible in 97.75%. However, due to the fast
runtime of IP (P), cf. Fig. 6, it may be worthwhile to check first whether
IP (P) is feasible before switching to (O).

6. Dynamic PRA

As Dynamic PRA, we understand PRA with a rolling time horizon
similar to the definition in Ouelhadj and Petrovic (2009). Here, for
every patient we are also given a registration time period so that the
set  of all (known) patients is updated each time period. For every
time period 𝑡 ∈  , all known patients, i.e., patients whose registration
dates are before or equal to 𝑡, have to be assigned to rooms. All room
assignments of the current time period are then stored in the set  . We
assume that  does not contain irrelevant data, i.e., discharged patients
are deleted immediately to ensure the correct computation of 𝑓 trans.
Hence,  is updated after every iteration just like the patient set  .

As rescheduling is frequently done in practice, this approach relates
more closely to the real-life problem than the static version, where
we assume total information regarding patient arrivals and departures.
In this section, we describe how we combine four IP models and
28
our combinatorial insights to efficiently solve the dynamic PRA by
exploiting the IPs’ different runtimes.

The key question is how to link  to the new model, since past as-
signments may be arbitrary bad in the here-and-now. Using heuristics,
this can be addressed by using neighbourhoods that allow for trans-
fers/reassignments, see Ceschia and Schaerf (2012). In comparison, we
solve every single iteration to optimality.3

Thus, we require a mechanism that allows for transfers of some
kind. Here, the iterative nature of the dynamic PRA allows us to
introduce a variant of IPs (P) and (O) where transfers are not en-
tirely forbidden, but only changes to the current room assignment are
allowed. We call this concept same-day transfers and formulate it as

(O*) max (𝑓 priv,
∑

(𝑟,𝑝)∈ 𝑥𝑝𝑟) s.t. Eqs. (31), (37), (39) and (40)
(P*) max

∑

(𝑟,𝑝)∈ 𝑥𝑝𝑟 s.t. constraints of (O*), Eq. (29).

For our algorithm, we combine the IPs (H), (O*), (P), and (P*)
and our combinatorial insights as follows. First, we check combina-
torially whether the instance is feasible since we observed that the
combinatorial feasibility check is significantly faster than building a
respective IP (using gurobipy), not to mention solving it. Second, we
use the no-transfers formulation IP (P). Note that we here make use
of our second combinatorial insight, i.e., the computation of 𝑠max. If
IP (P) is infeasible, we solve the instance again using the same-day
transfer formulation IP (P*). If IP (P*) is also infeasible, we use IP (O*)
maximising the number of private patients who get their own room
while minimising the number of transfers in the first time period. If
again, no feasible solution for (O*) is found within 20 s, we solve the
instance using IP (H), which allows arbitrary many transfers and is
therefore always feasible.

After successful computation, we fix all patient-room assignments
for patients that are in hospital in the current time period by adding
them to set  while removing outdated ones. We then update the
patient set and continue analogously with the next time period. A
visualisation of this algorithm is provided in Fig. 7.
Real-world instances. We evaluate our algorithm again on 62 real-world
instances spanning a whole year. As a result we get that all instances
use 365 iterations of the algorithm and all are solved within less
than 600 s per year, cf. Fig. 8. For application purposes however,
the runtime per iteration is more interesting than the total runtime
of 365 iterations. Therefore, we report in Fig. 9 the runtime of all
62 ⋅ 365 = 22630 iterations individually. The results show that all but
four iterations are solved within less than 15 s, cf. Fig. 9(a), and more
than 95% of all iterations are solved within less a second, cf. Fig. 9(b).

Although our dynamic algorithm is a heuristic and, thus, does not
guarantee a certain solution quality, we can assess a solution’s quality
using our combinatorial insights: For 44 instances the optimal value
𝑓 priv = 𝑠max was achieved. For 12 instances, we achieve 𝑓 priv ≥
0.9885𝑠max and for one 𝑓 priv = 0.946𝑠max. The remaining 5 instances
have no private patients. The high quality of our solutions w.r.t. 𝑓 priv

is especially remarkable since in 26 of them no transfers are needed, 28
use between 1 and 27 transfers, and 8 between 28 and 80 transfers. The
complete report of the total computation time of all instances and the
objective values found by our algorithm can be found in the Appendix
A.
Artificial instances. To allow independent variation and further bench-
marking on our results, we also report results on artificial instances,
which we generated based on randomised recreation of the structure
of our real-world data. The instances are publicly available alongside
the implementation of our dynamic algorithm at Brandt and Engelhardt

3 This is not equivalent to global optimality, since past decisions may
be suboptimal for a changed patient set, and changing those might incur
additional transfers.

T. Brandt et al. European Journal of Operational Research 325 (2025) 20–37
Fig. 7. Algorithm for dynamic PRA.
Fig. 8. Runtime of algorithm for dynamic PRA with 𝑇 = 365.

(2024). We considered four different occupancy levels (0.5, 0.65, 0.8,
0.95), and generated 80 instances for each level. The proposed algo-
rithm solves all instance within less than 1800 s per year, cf. Fig. 10.
Fig. 10 further suggests that our artificial instances are a similar mix of
easy and hard instances as our real-world instances.

Notably, with higher occupancy the algorithm’s performance de-
grades. However, even in the worst case, we require no more than half
an hour to simulate a full year. For application purposes, we again
report the runtime for each of the 80 ⋅ 365 = 29200 iterations in Fig.
9. The results show a single outlier of 91.3 s. Apart from that, >75%
of instances are solved in less than a second, and ≈95% of instances in
less than 10 s (see Fig. 11). Although our dynamic algorithm is
a heuristic and, thus, does not guarantee a certain solution quality, we
can assess a solution’s quality using our combinatorial insights: First
consider 𝑓 priv. For low occupancy (50%), the algorithm reaches global
optimality, i.e, 𝑓 priv = 𝑠max for 67∕80 instances. For the remaining
instances, we achieve 𝑓 priv ≥ 0.97𝑠max on average and 𝑓 priv ≥ 0.81𝑠max

in the worst case. As we increase occupancy, this pattern shifts. For
high occupancy (95%), 16∕80 instances are solved to global optimality.
For the remaining instances, we achieve 𝑓 priv ≥ 0.96𝑠max on average
and 𝑓 priv ≥ 0.82𝑠max in the worst case. For transfers, we also see a
directly link between occupancy and number of transfers. In the 50%
occupancy setting, 60∕80 solutions require no transfers, whereas 10∕80
require between 60 and 186 transfers. The overall mean of 𝑓 trans in this
setting is 21. As we increase occupancy, this distribution shifts. For the
29
95% occupancy setting, 10∕80 solutions require fewer than 60 transfers,
and 70∕80 require between 60 and 376. The overall mean of 𝑓 trans in
this high occupancy setting is 180, which is still less than one transfer
every other day. We report detailed tables with statistical information
about the artificial instances together with the computation time and
objective values found by our algorithm in Appendices A and B.

In summary, our results showcase that the given artificial dataset
captures important features of the real-world problem. This includes
both easier and harder instances with different patient set configura-
tions. Compared to real-world data it allows for more insights from
benchmarking, e.g., via assessing the effect of feature variations such
as occupancy levels on algorithm performance.

7. Future work

We close this paper by pointing out multiple not yet fully explored
aspects of PRA to inspire future research. We give an overview over
possible modelling extensions for our definition of PRA. Where possi-
ble, we provide first experimental computational results and point out
promising areas for further research.

7.1. Criteria for easy and hard instances

Both our real-world instances and the artificial instances contain
instances for which our algorithm needs significantly more time to
solve them than for others. We are currently not aware of any criteria
to characterise such instances other than size. However, our compu-
tational results show that size is not always the decisive factor. Our
algorithm solves for example instance load_50_27 with 1538 patients
in 123 s whereas it needs for load_50_54 with only 330 patients 571
s. Hence, further research is needed to identify criteria that lead to
instances that are hard (easy) to solve for IP solvers.

7.2. Scaling to multiple wards

Similar wards within the same speciality can be planned jointly.
Initial computational testing showed that, in this case, the runtime
scales linearly up to a 150 rooms over a planning horizon of 365 time
periods.

The proposed IP modelling approach can also be extended to man-
age multiple dissimilar wards. For this, new constraints must be added
to model which patient can be assigned to which ward. We evaluated
this both for single specialities with up to 9 normal and 2 intensive
care wards, and for the full RWTH Aachen University Hospital with
800 rooms and 53.000 patients (again over a planning horizon of 365
time periods). The runtime for the full hospital averages to about

T. Brandt et al. European Journal of Operational Research 325 (2025) 20–37
Fig. 9. Runtime per iteration of the algorithm for dynamic PRA on real-world instances.
Fig. 10. Runtime of algorithm for dynamic PRA with 𝑇 = 365 for multiple occupancy
levels.

Fig. 11. Runtime per iteration for artificial instances, logscaled axis.

2s per iteration, with a larger variation than for single wards, i.e,
some days requiring more than 10 s for an initial feasible solution.
However, in our modelling approach patient-assignment feasibility was
only based on past patient-stay data, without consulting with medical
professionals. Thus, further research first needs to identify suitable met-
rics for patient-ward suitability and then include these as an objective
component.
30
7.3. Patient conflicts

Due to medical or social reasons there may be pairs of patients who
cannot share a room, e.g., two patients with asthma or one woman
who just gave birth and one who lost the child. Such so-called patient
conflicts can easily be integrated into all our proposed IP-formulations
by adding conflict constraints. Since we do not have any real data about
patient conflicts, we experimented with a small number of randomly
generated conflicts. In our setting, this had neither an effect on the
runtime nor the objective value. However, in theory, a large number
of conflicts may render an instance infeasible. In the future, we will
further investigate what conflicts occur in reality and constitutes their
effect on runtime and solution quality.

7.4. Patient preferences

If more than one patient is assigned to a room, assigning suitable
room-mates also constitutes a further goal (Hantel & Benkenstein,
2019). Specifically, patient combinations exist that may be beneficial
both for patients and staff. For example, it is known that patients
recover faster if they feel comfortable, therefore, a room-mate to whom
they can relate may be beneficial (Chaudhury, Mahmood, & Valente,
2005; Hantel & Benkenstein, 2019). Or, if an international patient is
not fluent in the local language, then it is beneficial for both patient
and staff if the roommate can translate. First computational exper-
iments with IP-formulations showed that incorporating inter-patient
preferences into the IP models leads to a significant increase in run-
time. Developing an efficient way to integrate the choice of suitable
room-mates remains ongoing research.

7.5. Accompanying person

Some patients are entitled to bring an accompanying person with
them to the hospital. If the accompanying person occupies a normal
patient bed, this can easily be integrated into all our proposed IP-
formulations by adding weights to patients and/or not implementing
assignment variables for single rooms for the respective patients. If the
accompanying person sleeps on an additional roll-in bed and does not
occupy a patient bed, it depends on the hospital’s policy whether it is,
e.g., desirable to avoid assigning multiple patients with an accompany-
ing person to the same room or whether gender separation also needs
to be respected for the accompanying person. It is still ongoing research
to determine the decisive criteria currently in use for this task.

T. Brandt et al. European Journal of Operational Research 325 (2025) 20–37
Table A.1
Overview of artificial data. For lor and los the given values are the medians. For rooms,
the number of single/double rooms is given.
 Instance Patients Female Male Private Emergency lor los Beds Rooms
 load_50_1 898 367 531 142 285 3 6 28 0/14
 load_50_2 791 323 468 111 253 3 6 28 0/14
 load_50_3 851 365 486 140 268 3 6 28 0/14
 load_50_4 877 387 490 139 299 3 6 28 0/14
 load_50_5 782 336 446 115 248 3 5 28 0/14
 load_50_6 837 359 478 142 295 3 5 28 0/14
 load_50_7 839 368 471 150 259 3 6 28 0/14
 load_50_8 877 392 485 126 292 3 5 28 0/14
 load_50_9 1124 463 661 155 391 3 6 34 6/14
 load_50_10 1096 491 605 164 343 3 6 34 6/14
 load_50_11 1069 456 613 151 362 3 5 34 6/14
 load_50_12 1007 422 585 154 353 3 5 34 6/14
 load_50_13 1045 443 602 169 361 3 5 32 8/12
 load_50_14 1057 444 613 160 368 3 6 32 8/12
 load_50_15 953 407 546 144 305 3 5 32 8/12
 load_50_16 1054 450 604 174 325 3 6 32 8/12
 load_50_17 1014 431 583 162 319 3 6 32 8/12
 load_50_18 1045 444 601 167 379 2 5 32 8/12
 load_50_19 898 367 531 142 310 3 5 28 4/12
 load_50_20 791 323 468 111 253 3 6 28 4/12
 load_50_21 412 176 236 70 126 3 6 16 0/8
 load_50_22 589 256 333 92 185 2 6 16 0/8
 load_50_23 503 229 274 83 178 3 5 18 14/2
 load_50_24 568 260 308 94 206 3 5 18 14/2
 load_50_25 581 241 340 85 183 3 5 18 14/2
 load_50_26 545 239 306 78 169 3 6 18 14/2
 load_50_27 1538 666 872 261 457 3 6 48 0/24
 load_50_28 1414 591 823 250 444 3 6 48 0/24
 load_50_29 1021 408 613 187 322 3 6 32 8/12
 load_50_30 1000 423 577 179 306 3 6 32 8/12
 load_50_31 896 360 536 151 290 3 5 32 8/12
 load_50_32 935 420 515 172 292 3 6 32 8/12
 load_50_33 943 391 552 152 314 3 6 32 8/12
 load_50_34 928 426 502 152 303 3 6 32 8/12
 load_50_35 922 374 548 192 251 3 6 32 8/12
 load_50_36 979 404 575 147 313 3 5 32 8/12
 load_50_37 1038 419 619 180 332 3 5 32 8/12
 load_50_38 941 415 526 174 284 3 6 32 8/12
 load_50_39 1183 529 654 164 383 2 6 24 2/11
 load_50_40 1170 491 679 170 381 2 6 24 2/11
 load_50_41 1352 559 793 198 446 2 6 28 0/14
 load_50_42 1423 601 822 201 429 2 7 28 0/14
 load_50_43 1355 622 733 199 449 2 6 28 0/14
 load_50_44 1382 606 776 187 444 2 6 28 0/14
 load_50_45 1355 622 733 199 449 2 6 28 4/12
 load_50_46 1382 606 776 187 444 2 6 28 4/12
 load_50_47 1352 559 793 198 446 2 6 28 4/12
 load_50_48 1423 601 822 201 429 2 7 28 4/12
 load_50_49 791 361 430 118 270 2 5 16 0/8
 load_50_50 723 320 403 97 268 2 4 16 0/8
 load_50_51 783 345 438 140 267 2 5 16 0/8
 load_50_52 753 332 421 106 256 2 5 16 0/8
 load_50_53 316 136 180 47 109 7 6 30 2/14
 load_50_54 330 147 183 51 122 7 4 30 2/14
 load_50_55 853 378 475 137 299 2 5 16 0/8
 load_50_56 791 341 450 150 241 2 6 16 0/8
 load_50_57 747 322 425 130 236 2 7 16 0/8
 load_50_58 831 322 509 110 271 2 6 16 0/8
 load_50_59 803 359 444 125 236 2 6 16 0/8
 load_50_60 832 360 472 140 275 2 6 16 0/8
 load_50_61 836 355 481 131 273 2 6 16 0/8
 load_50_62 878 364 514 132 273 2 6 16 0/8
 load_50_63 863 391 472 112 292 2 5 16 0/8
 load_50_64 812 361 451 154 267 2 6 16 0/8
 load_50_65 1791 769 1022 273 547 2 6 34 6/14
 load_50_66 1653 666 987 243 529 2 6 34 6/14
 load_50_67 1032 428 604 165 352 2 6 20 8/6
 load_50_68 995 437 558 169 304 2 7 20 8/6
 load_50_69 984 387 597 182 299 2 6 20 8/6
 load_50_70 910 376 534 149 272 2 7 20 8/6
 (continued on next page)
31
Table A.1 (continued).
 load_50_71 988 396 592 155 299 2 6 20 8/6
 load_50_72 1065 443 622 181 344 2 6 20 8/6
 load_50_73 1095 460 635 179 373 2 5 20 8/6
 load_50_74 1046 454 592 171 315 2 7 20 8/6
 load_50_75 164 71 93 27 54 7 5 12 4/4
 load_50_76 115 45 70 14 38 6 5 12 4/4
 load_50_77 205 96 109 28 72 7 5 16 8/4
 load_50_78 157 76 81 21 46 8 6 16 8/4
 load_50_79 205 96 109 28 64 7 8 16 0/8
 load_50_80 157 76 81 21 46 8 7 16 0/8
 load_65_1 1042 446 596 149 321 3 6 28 0/14
 load_65_2 1098 477 621 150 367 2 6 28 0/14
 load_65_3 1258 565 693 198 408 3 6 28 0/14
 load_65_4 1083 472 611 166 358 3 5 28 0/14
 load_65_5 1094 478 616 158 363 3 5 28 0/14
 load_65_6 998 418 580 150 332 3 5 28 0/14
 load_65_7 1007 418 589 153 332 3 6 28 0/14
 load_65_8 1242 554 688 164 400 3 6 28 0/14
 load_65_9 1491 638 853 224 453 3 6 34 6/14
 load_65_10 1234 538 696 193 396 3 5 34 6/14
 load_65_11 1371 618 753 220 452 3 6 34 6/14
 load_65_12 1359 576 783 216 447 3 5 34 6/14
 load_65_13 566 247 319 86 189 3 5 16 0/8
 load_65_14 690 318 372 115 216 3 5 16 0/8
 load_65_15 633 280 353 86 200 3 6 18 14/2
 load_65_16 793 337 456 122 249 2 6 18 14/2
 load_65_17 646 280 366 89 196 3 6 18 14/2
 load_65_18 789 324 465 116 257 3 5 18 14/2
 load_65_19 1408 596 812 213 491 3 5 32 8/12
 load_65_20 1262 568 694 196 412 3 6 32 8/12
 load_65_21 1183 520 663 203 418 3 5 32 8/12
 load_65_22 1196 512 684 174 388 3 5 32 8/12
 load_65_23 1313 596 717 193 444 3 5 32 8/12
 load_65_24 1401 604 797 215 440 3 5 32 8/12
 load_65_25 1453 622 831 214 499 3 5 33 3/15
 load_65_26 1268 542 726 178 392 3 6 33 3/15
 load_65_27 1258 565 693 198 408 3 6 28 4/12
 load_65_28 1042 446 596 149 321 3 6 28 4/12
 load_65_29 1366 583 783 228 441 3 5 32 8/12
 load_65_30 1213 552 661 211 391 3 6 32 8/12
 load_65_31 1158 512 646 179 380 3 6 32 8/12
 load_65_32 1240 523 717 207 381 3 6 32 8/12
 load_65_33 1212 499 713 219 380 3 5 32 8/12
 load_65_34 1131 474 657 185 363 3 5 32 8/12
 load_65_35 1161 517 644 177 388 3 6 32 8/12
 load_65_36 1243 536 707 195 393 3 5 32 8/12
 load_65_37 1213 514 699 216 396 3 6 32 8/12
 load_65_38 1226 552 674 208 422 3 5 32 8/12
 load_65_39 1820 797 1023 320 581 3 7 48 0/24
 load_65_40 2229 1021 1208 384 721 3 6 48 0/24
 load_65_41 1509 675 834 216 520 2 5 24 2/11
 load_65_42 1480 648 832 209 492 2 6 24 2/11
 load_65_43 1749 822 927 238 596 2 6 28 0/14
 load_65_44 1781 765 1016 254 638 2 5 28 0/14
 load_65_45 1805 787 1018 271 603 2 5 28 0/14
 load_65_46 1798 778 1020 247 593 2 6 28 0/14
 load_65_47 1749 822 927 238 596 2 6 28 4/12
 load_65_48 1781 765 1016 254 638 2 5 28 4/12
 load_65_49 1805 787 1018 271 622 2 5 28 4/12
 load_65_50 1798 778 1020 247 593 2 6 28 4/12
 load_65_51 1053 481 572 170 360 2 6 16 0/8
 load_65_52 1039 427 612 143 355 2 5 16 0/8
 load_65_53 972 406 566 141 340 2 4 16 0/8
 load_65_54 1041 459 582 151 328 2 7 16 0/8
 load_65_55 1098 446 652 174 361 2 6 16 0/8
 load_65_56 954 389 565 175 306 2 6 16 0/8
 load_65_57 1047 491 556 153 319 2 7 16 0/8
 load_65_58 961 417 544 125 292 2 7 16 0/8
 load_65_59 1099 482 617 153 346 2 6 16 0/8
 load_65_60 1097 481 616 174 325 2 7 16 0/8
 load_65_61 1018 423 595 160 332 2 6 16 0/8
 load_65_62 1035 464 571 164 304 2 6 16 0/8
 load_65_63 927 374 553 175 306 2 5 16 0/8
 load_65_64 1021 434 587 162 327 2 6 16 0/8
 (continued on next page)

T. Brandt et al. European Journal of Operational Research 325 (2025) 20–37
Table A.1 (continued).
 load_65_65 2336 1005 1331 386 745 2 6 34 6/14
 load_65_66 2306 1031 1275 371 718 2 7 34 6/14
 load_65_67 1337 559 778 223 438 2 6 20 8/6
 load_65_68 1377 580 797 212 450 2 6 20 8/6
 load_65_69 1488 681 807 250 513 2 5 20 8/6
 load_65_70 1394 586 808 240 445 2 6 20 8/6
 load_65_71 1334 567 767 218 445 2 6 20 8/6
 load_65_72 1433 620 813 232 452 2 6 20 8/6
 load_65_73 1359 574 785 203 424 2 6 20 8/6
 load_65_74 1208 514 694 195 375 2 7 20 8/6
 load_65_75 206 87 119 33 69 7 5 12 4/4
 load_65_76 187 84 103 28 64 6 5 12 4/4
 load_65_77 245 102 143 36 96 7 4 16 8/4
 load_65_78 258 103 155 28 72 8 6 16 8/4
 load_65_79 245 102 143 36 86 7 5 16 0/8
 load_65_80 258 103 155 28 72 8 6 16 0/8
 load_80_1 1523 645 878 225 455 3 6 28 0/14
 load_80_2 1251 545 706 185 398 3 5 28 0/14
 load_80_3 1502 656 846 236 494 3 6 28 0/14
 load_80_4 1323 569 754 194 399 3 7 28 0/14
 load_80_5 1340 582 758 213 449 3 5 28 0/14
 load_80_6 1475 669 806 242 471 3 5 28 0/14
 load_80_7 1349 575 774 191 464 3 6 28 0/14
 load_80_8 1435 596 839 225 475 3 6 28 0/14
 load_80_9 1713 712 1001 268 538 3 6 34 6/14
 load_80_10 1694 724 970 245 571 3 5 34 6/14
 load_80_11 1618 712 906 247 544 2 5 34 6/14
 load_80_12 1697 747 950 228 591 3 5 34 6/14
 load_80_13 769 330 439 122 256 3 6 16 0/8
 load_80_14 704 303 401 92 233 3 6 16 0/8
 load_80_15 951 371 580 160 330 3 5 18 14/2
 load_80_16 896 392 504 146 274 3 6 18 14/2
 load_80_17 938 393 545 149 298 3 5 18 14/2
 load_80_18 900 410 490 128 302 3 5 18 14/2
 load_80_19 1652 713 939 261 526 3 6 32 8/12
 load_80_20 1438 658 780 210 469 3 6 32 8/12
 load_80_21 1524 668 856 220 486 3 6 32 8/12
 load_80_22 1540 693 847 224 485 3 6 32 8/12
 load_80_23 1557 687 870 238 513 3 6 32 8/12
 load_80_24 1751 739 1012 256 575 2 5 32 8/12
 load_80_25 1652 713 939 256 520 3 7 33 3/15
 load_80_26 1477 648 829 223 465 3 6 33 3/15
 load_80_27 1523 645 878 225 477 3 6 28 4/12
 load_80_28 1251 545 706 185 416 3 5 28 4/12
 load_80_29 2167 961 1206 345 685 3 6 48 0/24
 load_80_30 1735 744 991 266 579 3 6 48 0/24
 load_80_31 1615 711 904 279 482 3 7 32 8/12
 load_80_32 1403 582 821 227 434 3 5 32 8/12
 load_80_33 1436 599 837 211 459 3 5 32 8/12
 load_80_34 1561 676 885 262 515 3 6 32 8/12
 load_80_35 1555 652 903 270 494 3 6 32 8/12
 load_80_36 1632 727 905 251 513 3 6 32 8/12
 load_80_37 1477 632 845 238 478 3 6 32 8/12
 load_80_38 1373 575 798 218 450 3 6 32 8/12
 load_80_39 1589 658 931 260 495 3 7 32 8/12
 load_80_40 1560 649 911 267 501 3 6 32 8/12
 load_80_41 1858 829 1029 288 583 2 7 24 2/11
 load_80_42 1862 844 1018 267 634 2 5 24 2/11
 load_80_43 2137 947 1190 294 730 2 5 28 0/14
 load_80_44 2108 954 1154 287 696 2 5 28 0/14
 load_80_45 2125 938 1187 332 689 2 6 28 0/14
 load_80_46 2210 962 1248 313 748 2 6 28 0/14
 load_80_47 2137 947 1190 294 730 2 5 28 4/12
 load_80_48 2108 954 1154 287 696 2 5 28 4/12
 load_80_49 2130 941 1189 332 692 2 6 28 4/12
 load_80_50 2210 962 1248 313 765 2 5 28 4/12
 load_80_51 1269 603 666 206 418 2 6 16 0/8
 load_80_52 1324 592 732 174 448 2 6 16 0/8
 load_80_53 1074 494 580 147 341 2 7 16 0/8
 load_80_54 1301 569 732 206 428 2 6 16 0/8
 load_80_55 1333 550 783 229 437 2 6 16 0/8
 load_80_56 1384 613 771 221 433 2 6 16 0/8
 load_80_57 1294 579 715 210 448 2 5 16 0/8
 load_80_58 1361 570 791 225 411 2 6 16 0/8
 (continued on next page)
32
Table A.1 (continued).
 load_80_59 1438 605 833 228 439 2 6 16 0/8
 load_80_60 1369 535 834 232 419 2 6 16 0/8
 load_80_61 1339 562 777 210 421 2 7 16 0/8
 load_80_62 1361 601 760 216 437 2 6 16 0/8
 load_80_63 1287 565 722 196 413 2 7 16 0/8
 load_80_64 1450 592 858 204 456 2 7 16 0/8
 load_80_65 2780 1199 1581 425 921 2 5 34 6/14
 load_80_66 2427 1012 1415 365 784 2 6 30 2/14
 load_80_67 1599 724 875 275 516 2 6 20 8/6
 load_80_68 1593 696 897 235 503 2 6 20 8/6
 load_80_69 1591 679 912 279 504 2 6 20 8/6
 load_80_70 1734 791 943 270 536 2 6 20 8/6
 load_80_71 1739 768 971 268 580 2 6 20 8/6
 load_80_72 1795 774 1021 295 579 2 6 20 8/6
 load_80_73 1668 683 985 251 560 2 5 20 8/6
 load_80_74 1683 724 959 266 509 2 7 20 8/6
 load_80_75 235 98 137 39 86 7 5 12 4/4
 load_80_76 181 81 100 33 73 8 4 12 4/4
 load_80_77 272 115 157 43 88 6 5 16 8/4
 load_80_78 318 127 191 43 112 6 5 16 8/4
 load_80_79 272 115 157 43 88 6 7 16 0/8
 load_80_80 318 127 191 43 112 6 6 16 0/8
 load_95_1 1658 722 936 263 525 3 6 28 0/14
 load_95_2 1456 639 817 208 470 3 6 28 0/14
 load_95_3 1495 629 866 231 508 3 5 28 0/14
 load_95_4 1690 741 949 267 529 3 6 28 0/14
 load_95_5 1610 674 936 220 501 3 6 28 0/14
 load_95_6 1604 696 908 226 496 3 6 28 0/14
 load_95_7 1654 724 930 255 529 3 6 28 0/14
 load_95_8 1544 675 869 234 478 3 6 28 0/14
 load_95_9 2018 886 1132 291 658 3 6 34 6/14
 load_95_10 1986 865 1121 318 691 3 6 34 6/14
 load_95_11 1956 845 1111 306 641 3 6 34 6/14
 load_95_12 2001 842 1159 299 680 3 5 34 6/14
 load_95_13 926 389 537 160 292 3 5 16 0/8
 load_95_14 855 370 485 133 267 3 7 16 0/8
 load_95_15 1158 501 657 163 395 3 5 18 14/2
 load_95_16 1056 447 609 167 348 3 6 18 14/2
 load_95_17 1085 454 631 162 359 3 5 18 14/2
 load_95_18 1086 463 623 159 376 3 5 18 14/2
 load_95_19 1851 797 1054 285 617 3 6 32 8/12
 load_95_20 1889 835 1054 275 659 3 5 32 8/12
 load_95_21 1758 770 988 265 573 3 6 32 8/12
 load_95_22 1951 850 1101 297 676 3 5 32 8/12
 load_95_23 2014 876 1138 284 654 3 6 32 8/12
 load_95_24 1801 778 1023 278 633 3 5 32 8/12
 load_95_25 1658 722 936 263 525 3 6 28 4/12
 load_95_26 1479 645 834 211 497 3 5 28 4/12
 load_95_27 1495 629 866 231 522 3 5 28 4/12
 load_95_28 1693 743 950 268 544 3 6 28 4/12
 load_95_29 1720 721 999 277 563 3 6 32 8/12
 load_95_30 1768 755 1013 295 590 3 6 32 8/12
 load_95_31 1718 751 967 295 580 3 5 32 8/12
 load_95_32 1695 695 1000 314 537 3 6 32 8/12
 load_95_33 1713 730 983 269 589 3 5 32 8/12
 load_95_34 1756 754 1002 329 563 3 6 32 8/12
 load_95_35 1832 826 1006 317 596 3 6 32 8/12
 load_95_36 1879 785 1094 337 591 3 6 32 8/12
 load_95_37 1831 761 1070 314 608 3 6 32 8/12
 load_95_38 1891 781 1110 314 611 3 6 32 8/12
 load_95_39 2798 1145 1653 482 839 3 7 48 0/24
 load_95_40 2722 1129 1593 446 854 3 6 48 0/24
 load_95_41 2169 958 1211 296 725 2 5 24 2/11
 load_95_42 2199 952 1247 327 738 2 5 24 2/11
 load_95_43 2568 1135 1433 377 840 2 6 28 0/14
 load_95_44 2553 1127 1426 363 843 2 6 28 0/14
 load_95_45 2661 1181 1480 410 836 2 6 28 0/14
 load_95_46 2608 1133 1475 370 864 2 6 28 0/14
 load_95_47 2588 1145 1443 380 864 2 6 28 4/12
 load_95_48 2667 1170 1497 376 894 2 5 28 4/12
 load_95_49 2681 1194 1487 413 842 2 6 28 4/12
 load_95_50 2641 1150 1491 372 889 2 6 28 4/12
 load_95_51 1394 616 778 208 432 2 5 16 0/8
 load_95_52 1311 557 754 181 434 2 5 16 0/8
 (continued on next page)

T. Brandt et al. European Journal of Operational Research 325 (2025) 20–37
Table A.1 (continued).
 load_95_53 1433 655 778 216 452 2 6 16 0/8
 load_95_54 1501 658 843 216 507 2 5 16 0/8
 load_95_55 1469 692 777 259 463 2 6 16 0/8
 load_95_56 2912 1258 1654 467 898 2 6 30 2/14
 load_95_57 1398 578 820 223 444 2 6 16 0/8
 load_95_58 1589 677 912 245 505 2 5 16 0/8
 load_95_59 1526 643 883 229 472 2 6 16 0/8
 load_95_60 1664 692 972 273 514 2 6 16 0/8
 load_95_61 1449 614 835 241 463 2 6 16 0/8
 load_95_62 1545 653 892 259 482 2 6 16 0/8
 load_95_63 1497 674 823 238 475 2 6 16 0/8
 load_95_64 1569 659 910 271 509 2 5 16 0/8
 load_95_65 3471 1456 2015 564 1125 2 6 34 6/14
 load_95_66 2572 1087 1485 425 785 2 7 34 6/14
 load_95_67 1963 865 1098 317 614 2 6 20 8/6
 load_95_68 1869 803 1066 289 581 2 6 20 8/6
 load_95_69 1921 820 1101 290 646 2 6 20 8/6
 load_95_70 1942 812 1130 295 627 2 6 20 8/6
 load_95_71 1889 848 1041 300 590 2 6 20 8/6
 load_95_72 2178 952 1226 335 691 2 6 20 8/6
 load_95_73 1982 847 1135 313 658 2 5 20 8/6
 load_95_74 1952 849 1103 299 589 2 6 20 8/6
 load_95_75 267 117 150 31 84 7 5 12 4/4
 load_95_76 227 90 137 45 79 7 8 12 4/4
 load_95_77 309 122 187 55 122 7 3 16 8/4
 load_95_78 348 169 179 54 121 7 6 16 8/4
 load_95_79 266 101 165 48 96 6 5 16 0/8
 load_95_80 335 161 174 50 109 7 6 16 0/8

7.6. Uncertainty

Considering uncertainty is essential to ensure real-world applicabil-
ity and validity of results. By using a dynamic time horizon, we already
integrated the uncertain arrival of emergency patients. A second and
equally relevant factor, however, is the uncertainty in the length of
stay. It is easily possible to update a patient’s planned discharge date
in every iteration of our algorithm for dynamic PRA. If a patient’s
stay is prolonged, the feasibility check should then be repeated for
the affected time periods. It is still an open question to assess the
consequences of such updates on the solution quality. For wards with a
high uncertainty in patient length of stay, it also might be better to
integrate the uncertainty more directly in the algorithm to compute
robust solutions. It is however also yet undefined what a robust solu-
tion in this context means. One possible avenue for that was already
proposed by Ceschia and Schaerf, who encode an overcrowding risk
penalty term in their objective (Ceschia & Schaerf, 2012). Looking at
different ways of modelling this uncertainty, and their performance,
might also constitute a promising avenue for further research.

8. Conclusion

In this work, we presented new combinatorial insights for the
patient-to-room assignment problem with regard to feasibility and the
assignment of private patients to single rooms. We provided closed for-
mulas to check an instance’s feasibility and to compute the maximum
number of single-room requests that can be fulfilled. The computation
time of those formulas is only a fraction of the time needed to build
a corresponding IP. This is of special interest, e.g., in the context of
appointment scheduling in hospitals.

We further explored the performance of different IP-formulations.
One of our key insights here is the significant performance gap between
objectives 𝑓 trans and 𝑓 priv which needs to be taken into account when
designing IP-formulations. Using all our insights, we proposed a fast
IP-based solution approach that obtains high quality solutions which
showcases the benefits of combinatorial insights for developing solution
approaches. For an extensive and reproducible computational study, we
provide a large artificial data set that we generated based on our real-
world data. Our computational study showed that even though PRA
33
Table B.2
Results of dynamic algorithm (365 iterations). All runtimes are given in seconds.
 Instance Runtime per iteration Total Objective value 𝑠max 𝑓 priv

𝑠max
 Mean Max runtime 𝑓 trans 𝑓 priv (%)
 real_1 0.2 1.0 101 22 1154 1154 100
 real_2 1.2 11.1 473 48 1215 1230 98
 real_3 1.4 11.1 536 80 1211 1229 98
 real_4 0.2 2.3 80 78 483 488 98
 real_5 1.3 30.1 499 42 921 931 98
 real_6 0.2 0.6 83 2 851 851 100
 real_7 0.0 0.5 23 0 66 66 100
 real_8 0.1 0.6 52 0 546 546 100
 real_9 0.0 0.1 17 0 0 0 n.a.n.
 real_10 0.2 0.7 90 1 751 751 100
 real_11 0.1 0.2 56 0 376 376 100
 real_12 0.2 0.4 90 3 887 887 100
 real_13 0.2 0.6 81 3 556 556 100
 real_14 0.3 0.5 111 0 1468 1468 100
 real_15 0.2 0.6 77 0 432 432 100
 real_16 0.0 0.5 30 0 305 305 100
 real_17 0.2 0.7 79 0 794 794 100
 real_18 0.2 0.8 94 43 706 706 100
 real_19 0.1 1.7 67 16 892 893 99
 real_20 0.0 0.4 19 0 0 0 n.a.n.
 real_21 0.0 0.6 33 17 692 692 100
 real_22 0.1 0.6 47 3 372 372 100
 real_23 0.1 0.6 54 1 843 843 100
 real_24 0.1 0.6 69 0 181 181 100
 real_25 0.0 0.0 9 0 0 0 n.a.n.
 real_26 0.0 0.1 35 0 235 235 100
 real_27 0.1 0.2 50 0 271 271 100
 real_28 0.1 0.8 48 11 588 588 100
 real_29 0.1 1.6 72 19 879 881 99
 real_30 0.0 0.1 21 0 256 256 100
 real_31 0.0 0.5 35 9 364 365 99
 real_32 0.0 0.2 16 4 69 69 100
 real_33 0.2 0.7 84 0 303 305 99
 real_34 0.2 0.9 108 27 1687 1687 100
 real_35 0.3 1.3 119 11 1765 1765 100
 real_36 0.0 0.3 34 7 82 82 100
 real_37 0.3 11.2 119 37 1975 1977 99
 real_38 0.6 11.5 222 46 317 335 94
 real_39 0.1 0.3 59 0 391 391 100
 real_40 0.1 0.2 57 0 535 535 100
 real_41 0.1 0.2 43 0 465 465 100
 real_42 0.0 0.1 17 0 167 167 100
 real_43 0.1 0.3 67 0 526 526 100
 real_44 0.2 0.3 79 0 650 650 100
 real_45 0.2 0.3 73 0 1038 1038 100
 real_46 0.0 0.1 23 0 213 213 100
 real_47 0.1 0.2 48 1 634 634 100
 real_48 0.0 0.1 17 0 35 35 100
 real_49 0.3 1.0 113 6 1246 1246 100
 real_50 0.3 11.3 130 27 775 781 99
 real_51 0.0 0.1 26 0 451 451 100
 real_52 0.5 10.9 191 13 3282 3283 99
 real_53 0.0 0.3 35 9 52 52 100
 real_54 0.1 0.3 39 3 0 0 n.a.n.
 real_55 0.1 0.3 38 6 31 31 100
 real_56 0.0 0.0 5 0 0 0 n.a.n.
 real_57 0.0 0.2 31 13 134 134 100
 real_58 0.2 0.5 88 5 970 970 100
 real_59 0.1 0.2 51 1 947 947 100
 real_60 0.2 4.8 90 46 1622 1624 99
 real_61 0.4 1.3 148 16 1891 1891 100
 real_62 0.1 0.7 64 12 451 451 100
 load_50_1 0.1 0.2 39 0 591 591 100
 load_50_2 0.1 0.2 49 0 756 756 100
 load_50_3 0.1 0.2 42 0 803 803 100
 load_50_4 0.1 0.4 56 5 974 974 100
 load_50_5 0.1 0.2 40 0 859 859 100
 load_50_6 0.1 0.2 42 0 758 758 100
 load_50_7 0.1 0.3 44 1 896 896 100
 load_50_8 0.1 10.3 58 0 914 914 100
 (continued on next page)

T. Brandt et al. European Journal of Operational Research 325 (2025) 20–37
Table B.2 (continued).
 load_50_9 0.4 10.9 172 140 790 794 99
 load_50_10 0.1 0.3 61 0 755 755 100
 load_50_11 0.7 11.5 267 186 961 969 99
 load_50_12 0.8 11.5 299 164 1030 1041 98
 load_50_13 0.1 0.4 65 0 939 939 100
 load_50_14 0.1 0.3 60 0 794 794 100
 load_50_15 0.1 0.3 61 0 727 727 100
 load_50_16 0.3 11.2 119 106 868 868 100
 load_50_17 0.1 0.3 66 0 1079 1079 100
 load_50_18 0.3 3.3 121 119 929 929 100
 load_50_19 0.3 11.3 118 165 499 503 99
 load_50_20 0.1 0.2 50 0 756 756 100
 load_50_21 0.0 3.9 35 4 502 503 99
 load_50_22 0.0 0.2 22 2 543 543 100
 load_50_23 0.1 0.6 48 23 605 605 100
 load_50_24 0.1 0.5 48 21 732 732 100
 load_50_25 0.1 0.5 44 18 570 570 100
 load_50_26 0.1 0.4 45 16 446 446 100
 load_50_27 0.3 0.9 123 1 1601 1601 100
 load_50_28 0.3 0.6 126 1 1702 1702 100
 load_50_29 0.1 0.3 66 0 1010 1010 100
 load_50_30 0.1 0.3 63 0 1021 1021 100
 load_50_31 0.1 0.3 63 0 790 790 100
 load_50_32 0.3 5.1 128 135 1013 1020 99
 load_50_33 0.1 0.2 60 0 926 926 100
 load_50_34 0.2 0.4 75 0 1181 1181 100
 load_50_35 0.4 11.0 172 148 1166 1168 99
 load_50_36 0.1 0.5 67 1 991 991 100
 load_50_37 0.1 0.3 61 0 922 922 100
 load_50_38 0.1 0.3 62 0 959 959 100
 load_50_39 0.1 0.2 36 0 514 514 100
 load_50_40 0.1 0.6 41 2 615 615 100
 load_50_41 0.1 0.3 46 0 729 729 100
 load_50_42 0.1 0.2 48 2 895 895 100
 load_50_43 0.1 0.2 43 0 689 689 100
 load_50_44 0.1 0.2 44 0 739 739 100
 load_50_45 0.1 0.2 48 0 689 689 100
 load_50_46 0.1 0.2 50 0 739 739 100
 load_50_47 0.1 0.2 52 0 729 729 100
 load_50_48 0.1 0.3 53 4 903 903 100
 load_50_49 0.0 0.2 22 1 401 402 99
 load_50_50 0.0 0.4 22 3 361 361 100
 load_50_51 0.0 1.1 26 7 459 459 100
 load_50_52 0.0 0.2 22 3 402 402 100
 load_50_53 0.2 10.2 78 3 693 695 99
 load_50_54 1.5 91.2 571 174 318 391 81
 load_50_55 0.0 1.5 34 10 479 483 99
 load_50_56 0.0 0.5 26 13 672 672 100
 load_50_57 0.0 0.9 25 3 481 481 100
 load_50_58 0.0 0.1 23 4 379 379 100
 load_50_59 0.0 0.1 22 1 478 478 100
 load_50_60 0.0 0.4 24 3 578 578 100
 load_50_61 0.0 0.1 23 2 321 321 100
 load_50_62 0.0 1.3 27 2 396 396 100
 load_50_63 0.0 0.4 22 3 339 339 100
 load_50_64 0.0 0.3 23 4 500 500 100
 load_50_65 0.1 0.3 70 0 1036 1036 100
 load_50_66 0.1 0.3 67 0 927 927 100
 load_50_67 0.1 0.3 38 3 620 620 100
 load_50_68 0.1 0.2 41 2 629 629 100
 load_50_69 0.1 0.2 39 0 718 718 100
 load_50_70 0.1 0.5 43 31 457 457 100
 load_50_71 0.1 0.2 39 0 497 497 100
 load_50_72 0.1 0.2 40 0 541 541 100
 load_50_73 0.1 0.2 38 0 610 610 100
 load_50_74 0.1 0.2 38 0 586 586 100
 load_50_75 0.0 1.1 36 79 384 430 89
 load_50_76 0.0 0.2 22 32 131 131 100
 load_50_77 0.1 0.4 38 36 509 509 100
 load_50_78 0.1 0.3 37 43 520 520 100
 load_50_79 0.0 0.9 30 6 444 452 98
 load_50_80 0.0 0.5 22 1 341 341 100
 load_65_1 0.3 10.5 137 35 851 852 99
 load_65_2 0.2 10.5 102 22 755 759 99
 (continued on next page)
34
Table B.2 (continued).
 load_65_3 0.2 10.5 77 17 956 957 99
 load_65_4 0.7 11.8 276 42 1110 1113 99
 load_65_5 0.4 10.7 168 35 789 792 99
 load_65_6 0.2 11.0 81 9 779 779 100
 load_65_7 0.1 3.7 60 25 752 753 99
 load_65_8 0.4 10.7 151 38 1092 1096 99
 load_65_9 0.2 0.6 76 7 1171 1171 100
 load_65_10 0.4 11.1 164 184 1026 1029 99
 load_65_11 1.1 12.4 430 251 1427 1447 98
 load_65_12 0.7 11.5 272 193 1063 1072 99
 load_65_13 0.0 1.0 34 34 442 443 99
 load_65_14 0.1 3.3 64 39 577 588 98
 load_65_15 0.1 0.6 54 26 858 858 100
 load_65_16 0.1 0.2 45 1 830 830 100
 load_65_17 0.1 0.5 45 22 428 428 100
 load_65_18 0.1 0.4 48 21 705 705 100
 load_65_19 0.1 0.5 69 7 1115 1115 100
 load_65_20 0.2 0.6 73 17 1128 1128 100
 load_65_21 0.5 11.6 189 183 1407 1414 99
 load_65_22 0.2 0.8 74 12 941 941 100
 load_65_23 0.3 7.3 137 148 1025 1028 99
 load_65_24 0.4 12.0 162 141 1160 1167 99
 load_65_25 0.2 2.2 83 19 1232 1232 100
 load_65_26 0.2 0.9 79 11 1164 1164 100
 load_65_27 0.1 3.0 65 14 1004 1004 100
 load_65_28 0.1 0.8 70 18 931 931 100
 load_65_29 0.2 0.9 86 13 1407 1407 100
 load_65_30 0.2 0.6 73 12 1183 1183 100
 load_65_31 0.1 0.6 70 7 1171 1171 100
 load_65_32 0.2 0.6 74 10 1420 1420 100
 load_65_33 0.4 11.0 168 139 1204 1207 99
 load_65_34 0.3 3.2 116 126 996 997 99
 load_65_35 0.5 12.0 202 160 1405 1409 99
 load_65_36 0.3 5.4 129 135 1093 1095 99
 load_65_37 0.1 0.6 72 2 1098 1098 100
 load_65_38 0.2 0.6 77 11 1144 1144 100
 load_65_39 0.3 1.1 133 15 1771 1771 100
 load_65_40 1.7 12.5 638 116 2172 2186 99
 load_65_41 0.1 0.3 47 20 786 786 100
 load_65_42 0.7 15.7 282 209 393 411 95
 load_65_43 0.1 0.7 57 15 974 974 100
 load_65_44 0.1 3.7 59 17 940 940 100
 load_65_45 0.1 0.4 54 10 963 963 100
 load_65_46 0.2 10.7 105 17 996 996 100
 load_65_47 0.1 0.7 62 15 1014 1014 100
 load_65_48 0.1 0.7 67 17 991 991 100
 load_65_49 0.5 11.2 216 197 825 837 98
 load_65_50 0.1 1.6 65 22 1066 1068 99
 load_65_51 0.1 1.8 39 33 500 500 100
 load_65_52 0.0 0.6 29 17 483 485 99
 load_65_53 0.1 2.2 51 33 593 595 99
 load_65_54 0.1 2.5 43 27 467 471 99
 load_65_55 0.1 2.3 66 25 512 516 99
 load_65_56 0.1 10.1 60 32 659 668 98
 load_65_57 0.0 0.9 29 24 436 438 99
 load_65_58 0.1 1.4 37 20 443 448 98
 load_65_59 0.0 0.9 33 21 554 554 100
 load_65_60 0.0 1.0 35 22 424 428 99
 load_65_61 0.1 1.6 42 32 506 514 98
 load_65_62 0.1 2.8 39 19 587 589 99
 load_65_63 0.1 1.3 39 32 657 660 99
 load_65_64 0.1 1.9 39 13 489 495 98
 load_65_65 0.2 0.7 88 14 1375 1375 100
 load_65_66 0.2 0.7 83 14 1246 1246 100
 load_65_67 0.1 0.3 44 12 697 697 100
 load_65_68 0.1 0.5 58 83 769 769 100
 load_65_69 0.1 0.3 44 18 797 797 100
 load_65_70 0.1 0.6 62 71 808 808 100
 load_65_71 0.1 0.3 45 13 869 869 100
 load_65_72 0.1 0.6 55 57 672 672 100
 load_65_73 0.1 0.4 46 4 680 680 100
 load_65_74 0.1 0.4 48 11 642 642 100
 load_65_75 0.0 0.5 35 89 463 489 94
 (continued on next page)

T. Brandt et al. European Journal of Operational Research 325 (2025) 20–37
Table B.2 (continued).
 load_65_76 0.0 0.4 34 88 345 358 96
 load_65_77 0.1 0.4 38 61 523 523 100
 load_65_78 0.0 0.2 36 5 478 478 100
 load_65_79 0.2 6.4 80 10 437 455 96
 load_65_80 0.1 0.9 43 24 429 441 97
 load_80_1 1.1 11.0 420 99 886 894 99
 load_80_2 1.4 11.5 544 89 819 842 97
 load_80_3 0.9 12.2 342 97 915 924 99
 load_80_4 2.0 11.5 754 103 776 791 98
 load_80_5 0.8 10.9 299 85 740 750 98
 load_80_6 0.8 11.1 325 111 1005 1013 99
 load_80_7 1.2 10.7 456 119 717 733 97
 load_80_8 1.2 10.7 469 101 875 888 98
 load_80_9 0.2 0.9 98 54 1505 1505 100
 load_80_10 0.8 11.9 309 244 1316 1327 99
 load_80_11 1.3 13.3 487 288 1464 1479 98
 load_80_12 0.3 10.7 121 56 1317 1317 100
 load_80_13 0.8 10.5 300 87 450 519 86
 load_80_14 0.1 4.3 60 87 393 407 96
 load_80_15 0.1 0.5 60 39 1000 1000 100
 load_80_16 0.1 0.6 58 32 1038 1038 100
 load_80_17 0.1 0.5 53 35 741 741 100
 load_80_18 0.1 0.3 47 11 786 786 100
 load_80_19 0.4 11.0 174 149 1386 1390 99
 load_80_20 0.5 11.2 205 230 1583 1587 99
 load_80_21 0.2 0.9 102 65 1193 1193 100
 load_80_22 0.4 11.0 175 171 1234 1238 99
 load_80_23 0.5 10.9 201 221 1627 1636 99
 load_80_24 0.5 12.5 205 189 1460 1464 99
 load_80_25 0.5 11.4 191 76 1364 1369 99
 load_80_26 0.5 12.8 206 93 1173 1178 99
 load_80_27 1.0 13.3 373 333 999 1029 97
 load_80_28 1.1 11.3 412 294 912 958 95
 load_80_29 1.4 15.7 533 122 1688 1696 99
 load_80_30 0.3 6.1 142 18 1509 1509 100
 load_80_31 0.2 1.9 109 80 1562 1562 100
 load_80_32 0.3 11.2 132 147 1508 1510 99
 load_80_33 0.3 1.9 127 177 1183 1187 99
 load_80_34 0.4 7.7 147 190 1481 1484 99
 load_80_35 0.4 4.0 161 193 1529 1534 99
 load_80_36 0.4 6.7 146 190 1364 1365 99
 load_80_37 0.2 0.8 82 61 1310 1310 100
 load_80_38 0.3 3.1 132 183 1314 1316 99
 load_80_39 0.5 11.4 216 188 1571 1578 99
 load_80_40 0.5 9.5 188 201 1616 1624 99
 load_80_41 0.3 10.6 127 113 962 966 99
 load_80_42 0.7 12.8 276 315 464 492 94
 load_80_43 0.4 10.7 159 72 766 769 99
 load_80_44 0.4 10.6 174 56 753 757 99
 load_80_45 0.8 13.0 303 89 828 834 99
 load_80_46 0.4 10.8 174 58 939 942 99
 load_80_47 0.4 11.2 174 242 876 882 99
 load_80_48 0.2 5.0 74 73 984 984 100
 load_80_49 0.4 11.0 159 139 1090 1095 99
 load_80_50 0.5 11.0 185 227 972 980 99
 load_80_51 0.2 10.4 94 79 510 523 97
 load_80_52 0.1 4.6 54 62 377 393 95
 load_80_53 0.2 6.7 84 67 314 319 98
 load_80_54 0.1 5.3 64 55 471 477 98
 load_80_55 0.2 4.3 85 75 484 500 96
 load_80_56 0.2 4.7 99 61 463 472 98
 load_80_57 0.2 10.1 89 78 504 519 97
 load_80_58 0.2 8.1 93 66 472 476 99
 load_80_59 0.3 10.3 136 63 489 507 96
 load_80_60 0.2 7.7 109 57 435 457 95
 load_80_61 0.1 2.7 72 54 423 432 97
 load_80_62 0.1 3.0 68 61 444 455 97
 (continued on next page)

is -hard, the PRA problem can be solved to optimality or at least
close to optimality for realistically sized instances in reasonable time.
Hence, our solution approach is a good basis for future integration of
other objective functions that are needed for application in real-life.
Finally, we elaborated on numerous possibilities for future work.
35
Table B.2 (continued).
 load_80_63 0.3 10.3 110 71 392 405 96
 load_80_64 0.1 1.5 41 55 432 437 98
 load_80_65 0.5 11.4 197 162 1211 1214 99
 load_80_66 0.4 11.9 165 97 1196 1198 99
 load_80_67 0.1 0.5 62 98 938 938 100
 load_80_68 0.1 0.5 61 85 987 987 100
 load_80_69 0.1 0.8 69 85 769 769 100
 load_80_70 0.1 0.6 70 95 997 997 100
 load_80_71 0.1 0.5 59 58 886 886 100
 load_80_72 0.1 0.4 51 39 930 930 100
 load_80_73 0.1 0.5 63 87 867 867 100
 load_80_74 0.1 0.5 54 42 967 967 100
 load_80_75 0.1 4.6 58 104 804 845 95
 load_80_76 0.1 0.6 41 60 621 654 94
 load_80_77 0.1 0.5 46 57 730 730 100
 load_80_78 0.1 0.9 53 63 864 879 98
 load_80_79 0.2 3.4 97 46 445 474 93
 load_80_80 0.5 7.6 215 48 489 541 90
 load_95_1 3.1 14.7 1141 206 575 607 94
 load_95_2 2.3 11.0 864 178 530 566 93
 load_95_3 2.9 11.9 1089 162 570 599 95
 load_95_4 4.8 12.2 1757 229 602 653 92
 load_95_5 2.9 12.6 1059 181 603 633 95
 load_95_6 2.4 11.7 885 179 509 535 95
 load_95_7 2.0 11.4 746 148 498 520 95
 load_95_8 3.9 11.6 1428 175 514 543 94
 load_95_9 1.2 12.4 460 306 1618 1638 98
 load_95_10 0.9 12.1 340 313 1573 1584 99
 load_95_11 1.5 14.8 577 376 1819 1847 98
 load_95_12 0.9 12.7 363 359 1807 1841 98
 load_95_13 0.6 10.2 255 129 421 452 93
 load_95_14 0.9 10.5 329 113 357 398 89
 load_95_15 0.1 0.6 66 39 889 889 100
 load_95_16 0.1 0.7 70 36 1256 1256 100
 load_95_17 0.1 0.4 54 27 831 831 100
 load_95_18 0.1 0.4 52 45 815 815 100
 load_95_19 0.4 11.1 179 204 1602 1610 99
 load_95_20 0.4 3.9 169 217 1817 1821 99
 load_95_21 0.4 8.1 166 197 1632 1636 99
 load_95_22 0.3 3.2 144 202 1467 1470 99
 load_95_23 0.3 2.4 145 193 1519 1519 100
 load_95_24 0.4 4.0 180 218 1699 1706 99
 load_95_25 1.2 12.7 447 339 1039 1077 96
 load_95_26 0.7 11.0 277 318 957 981 97
 load_95_27 1.0 14.3 370 314 1040 1083 96
 load_95_28 1.8 16.2 688 371 1219 1296 94
 load_95_29 0.4 10.1 169 203 1646 1648 99
 load_95_30 0.4 4.4 174 200 1615 1626 99
 load_95_31 0.5 5.6 195 229 1803 1805 99
 load_95_32 0.5 11.2 204 217 1785 1794 99
 load_95_33 0.3 1.9 140 186 1400 1401 99
 load_95_34 0.7 11.4 277 254 1636 1646 99
 load_95_35 0.4 11.3 182 225 1877 1884 99
 load_95_36 0.5 11.0 202 223 1806 1817 99
 load_95_37 0.7 11.1 258 277 2123 2133 99
 load_95_38 0.6 13.5 240 213 1883 1888 99
 load_95_39 4.7 36.3 1722 325 940 958 98
 load_95_40 3.6 19.0 1345 312 896 915 97
 load_95_41 1.1 11.5 411 330 568 586 96
 load_95_42 0.5 10.6 202 334 595 610 97
 load_95_43 1.7 16.5 627 175 482 488 98
 load_95_44 1.1 15.5 432 161 509 515 98
 (continued on next page)

CRediT authorship contribution statement

Tabea Brandt: Writing – review & editing, Writing – original draft,
Visualization, Validation, Software, Resources, Methodology, Investi-
gation, Formal analysis, Data curation, Conceptualization. Christina
Büsing: Supervision, Project administration, Methodology, Funding
acquisition, Conceptualization. Felix Engelhardt: Writing – review &
editing, Writing – original draft, Visualization, Validation, Software,
Resources, Methodology, Investigation, Formal analysis, Data curation,
Conceptualization.

T. Brandt et al. European Journal of Operational Research 325 (2025) 20–37
Table B.2 (continued).
 load_95_45 1.7 12.5 622 155 526 536 98
 load_95_46 1.4 12.0 535 181 516 524 98
 load_95_47 0.7 10.9 276 266 1102 1112 99
 load_95_48 0.5 11.2 195 249 1008 1015 99
 load_95_49 0.5 11.0 201 193 1221 1227 99
 load_95_50 0.6 11.9 221 268 1120 1130 99
 load_95_51 0.6 10.1 249 114 378 419 90
 load_95_52 0.4 10.4 180 119 374 394 94
 load_95_53 0.6 10.3 250 126 385 404 95
 load_95_54 0.2 3.5 85 113 333 346 96
 load_95_55 0.3 10.1 140 109 373 393 94
 load_95_56 1.1 15.3 432 257 848 866 97
 load_95_57 0.4 10.2 150 112 374 391 95
 load_95_58 0.3 2.7 113 103 349 368 94
 load_95_59 0.5 11.1 198 100 312 341 91
 load_95_60 0.3 11.9 143 113 420 435 96
 load_95_61 0.5 10.6 184 93 430 463 92
 load_95_62 0.6 10.9 223 105 404 423 95
 load_95_63 0.9 10.4 361 119 461 491 93
 load_95_64 0.6 10.3 251 89 382 397 96
 load_95_65 0.5 6.7 202 207 1588 1592 99
 load_95_66 0.3 1.7 116 112 1703 1703 100
 load_95_67 0.1 0.6 70 107 1181 1181 100
 load_95_68 0.1 0.6 66 97 1043 1043 100
 load_95_69 0.1 0.5 65 103 938 938 100
 load_95_70 0.2 0.6 74 116 1309 1309 100
 load_95_71 0.1 0.6 71 127 1100 1100 100
 load_95_72 0.1 0.5 64 96 1070 1070 100
 load_95_73 0.1 0.7 63 107 1093 1093 100
 load_95_74 0.1 0.6 68 102 937 937 100
 load_95_75 0.1 0.8 56 160 745 824 90
 load_95_76 0.1 0.8 62 137 742 885 83
 load_95_77 0.1 0.4 45 65 1009 1009 100
 load_95_78 0.1 0.4 46 66 690 690 100
 load_95_79 0.4 3.0 151 56 456 503 90
 load_95_80 0.6 12.5 241 95 276 337 81

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

We thank the team at RWTH Aachen University hospital for their
support. We thank Jens Brandt for his input regarding efficient im-
plementation and coding. Simulations were performed with computing
resources granted by RWTH Aachen University.

Appendix A. Datasets

In this section, we report statistical information about our arti-
ficial instances. The corresponding information about the real-world
instances is subject to non-disclosure. In the following tables, there are
information for every instance about the total number of patients, as
well as the number of female, male, private, and emergency patients.
The average occupancy rate is specified in the instance’s name. We
further report the median of patients’ length-of-registration (lor) and
length-of-stay (los). Both lor and los are generated using a lognormal
distribution. We further report the total number of beds and the number
of single/double rooms of each instance (see Table A.1).

Appendix B. Full runtimes and results

In this section, we report statistical details on the solution found
by our algorithms both for the 62 real-world instances and artificial
instances. The solutions for the artificial instances themselves can be
found at Brandt and Engelhardt (2024). In each table we report the
mean and maximal computation time needed for one iteration as well
36
as the total runtime needed for all 365 iterations. We further report
the objective values found by our algorithm. For an assessment of the
solution’s quality we report the value 𝑠max for every instance as well as
the ratio of how many single-room requests could be fulfilled. Contrary
to the real-world instances, we did not check whether there exists a
feasible solution without transfers for the artificial instances. Hence,
we cannot assess the solution’s quality w.r.t. to the number of transfers
(see Table B.2).

References

Abdalkareem, Z., Amir, A., Ehkan, P., & Al-Betar, M. (2018). Patients’ admission
scheduling techniques and approaches. International Journal of Engineering and
Technology(UAE), 7, 3569–3573.

Bastos, L. S., Marchesi, J. F., Hamacher, S., & Fleck, J. L. (2019). A mixed integer
programming approach to the patient admission scheduling problem. European
Journal of Operational Research, 273(3), 831–840.

Blay, N., Roche, M. A., Duffield, C., & Gallagher, R. D. (2017). Intrahospital transfers
and the impact on nursing workload. Journal of Clinical Nursing, 26, 4822–4829.

Blay, N., Roche, M., Duffield, C., & Xu, X. (2017). Intra-hospital transfers and adverse
patient outcomes: An analysis of administrative health data. Journal of Clinical
Nursing, 26.

Brandt, T., Büsing, C., & Knust, S. (2024). Structural insights about avoiding transfers
in the patient-to-room assignment problem. Discrete Applied Mathematics, 347,
231–248.

Brandt, T., & Engelhardt, F. (2024). TabeaBrandt/patient-to-room_assignment: v2 - new
benchmark set and results.

Brandt, T., Klein, T. L., Reuter-Oppermann, M., Schäfer, F., Thielen, C., van de
Vrugt, M., et al. (2023). Integrated patient-to-room and nurse-to-patient assignment
in hospital wards.

Ceschia, S., & Schaerf, A. (2009). Multi-neighborhood local search for the patient
admission problem. In Hybrid metaheuristics.

Ceschia, S., & Schaerf, A. (2011). Local search and lower bounds for the patient
admission scheduling problem. Computers & Operations Research, 38, 1452–1463.

Ceschia, S., & Schaerf, A. (2012). Modeling and solving the dynamic patient admission
scheduling problem under uncertainty. Artificial Intelligence in Medicine, 56(3),
199–205.

Ceschia, S., & Schaerf, A. (2014). Dynamic patient admission scheduling with operating
room constraints, flexible horizons, and patient delays. Journal of Scheduling, 19(4),
377–389.

Chaudhury, H., Mahmood, A., & Valente, M. (2005). Advantages and disadvantages of
single-versus multiple-occupancy rooms in acute care environmentsa review and
analysis of the literature. Environment and Behavior, 37, 760–786.

Conforti, D., Guido, R., Mirabelli, G., & Solina, V. (2018a). A decision support service
for hospital bed assignment. (pp. 466–473).

Conforti, D., Guido, R., Mirabelli, G., & Solina, V. (2018b). A two-phase integrated
approach for elective surgery and bed management problems. (pp. 402–408).

Demeester, P., Souffriau, W., Causmaecker, P. D., & Berghe, G. V. (2010). A hybrid tabu
search algorithm for automatically assigning patients to beds. Artificial Intelligence
in Medicine, 48(1), 61–70.

Fekieta, R., Rosenberg, A., Hodshon, B., Feder, S., Chaudhry, S., & Emerson, B. (2020).
Organisational factors underpinning intra-hospital transfers: a guide for evaluating
context in quality improvement. Health Systems, 10, 1–10.

Ficker, A. M. C., Spieksma, F. C. R., & Woeginger, G. J. (2021). The transportation
problem with conflicts. Annals of Operations Research, 298(1), 207–227.

Guido, R., Groccia, M. C., & Conforti, D. (2018). An efficient matheuristic for offline
patient-to-bed assignment problems. European Journal of Operational Research,
268(2), 486–503.

Hantel, S., & Benkenstein, M. (2019). Roommates in hospitals - A new and relevant
dimension of health care quality models. Journal of Service Management Research,
3, 82–90.

He, J., Gallego, B., Stubbs, C., Scott, A., Dawson, S., Forrest, K., et al. (2018). Improving
patient flow and satisfaction: An evidence-based pre-admission clinic and transfer
of care pathway for elective surgery patients. Collegian, 25(2), 149–156.

Hendrich, A., & Lee, N. (2005). Intra-unit patient transports: time, motion, and cost
impact on hospital efficiency. Nursing Economics, 23 4, 157–64, 147.

Johnson, D., Schmidt, U., Bittner, E., Christensen, B., Levi, R., & Pino, R. (2013).
Delay of transfer from the intensive care unit: A prospective observational study of
incidence, causes, and financial impact. Critical Care (London, England), 17, R128.

Liu, H., Wang, Y., & Hao, J.-K. (2024). Solving the patient admission scheduling
problem using constraint aggregation. European Journal of Operational Research,
316(1), 85–99.

Noonan, F., O’Brien, J., Broderick, E., Richardson, I., & Walsh, J. (2019). Hospital
bed management practices: A review. In Proceedings of the 12th international joint
conference on biomedical engineering systems and technologies - HEALTHINF (pp.
326–331). SciTePress.

http://refhub.elsevier.com/S0377-2217(25)00138-9/sb1
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb1
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb1
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb1
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb1
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb2
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb2
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb2
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb2
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb2
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb3
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb3
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb3
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb4
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb4
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb4
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb4
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb4
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb5
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb5
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb5
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb5
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb5
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb6
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb6
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb6
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb7
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb7
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb7
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb7
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb7
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb8
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb8
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb8
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb9
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb9
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb9
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb10
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb10
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb10
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb10
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb10
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb11
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb11
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb11
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb11
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb11
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb12
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb12
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb12
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb12
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb12
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb13
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb13
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb13
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb14
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb14
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb14
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb15
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb15
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb15
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb15
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb15
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb16
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb16
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb16
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb16
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb16
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb17
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb17
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb17
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb18
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb18
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb18
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb18
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb18
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb19
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb19
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb19
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb19
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb19
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb20
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb20
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb20
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb20
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb20
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb21
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb21
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb21
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb22
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb22
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb22
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb22
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb22
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb23
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb23
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb23
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb23
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb23
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb24
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb24
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb24
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb24
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb24
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb24
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb24

T. Brandt et al. European Journal of Operational Research 325 (2025) 20–37
Ouelhadj, D., & Petrovic, S. (2009). A survey of dynamic scheduling in manufacturing
systems. Journal of Scheduling, 12, 417–431.

Papson, J. P., Russell, K. L., & Taylor, D. M. (2007). Unexpected events during the
intrahospital transport of critically ill patients. Academic Emergency Medicine, 14(6),
574–577.

Rachuba, S., Reuter-Oppermann, M., & Thielen, C. (2023). Integrated planning in
Hospitals: A review.

Range, T. M., Lusby, R. M., & Larsen, J. (2014). A column generation approach for
solving the patient admission scheduling problem. European Journal of Operational
Research, 235(1), 252–264.

Schäfer, F., Walther, M., Grimm, D., & Hübner, A. (2023). Combining machine learning
and optimization for the operational patient-bed assignment problem. Health Care
Management Science, 1–22.

Schäfer, F., Walther, M., Hübner, A., & Kuhn, H. (2019). Operational patient-bed
assignment problem in large hospital settings including overflow and uncertainty
management. Flexible Services and Manufacturing Journal, 31.

Schmidt, R., Geisler, S., & Spreckelsen, C. (2013). Decision support for hospital bed
management using adaptable individual length of stay estimations and shared
resources. BMC Medical Informatics and Decision Making, 13, 3.
37
Storfjell, J., Ohlson, S., Omoike, O., Fitzpatrick, T., & Wetasin, K. (2009). Non-
value-added time the million dollar nursing opportunity. The Journal of Nursing
Administration, 39, 38–45.

T, B., Bollapragada, S., Akbay, K., Toledano, D., Katlic, P., Dulgeroglu, O., et al. (2013).
Automated bed assignments in a complex and dynamic hospital environment.
Interfaces, 43, 435–448.

Turhan, A., & Bilgen, B. (2016). Mixed integer programming based heuristics for the
Patient Admission Scheduling problem. Computers & Operations Research, 80.

UKA Aachen (2021). Fees schedule for university hospital aachen. Accessed:
2023-11-29.

Vancroonenburg, W., Croce, F. D., Goossens, D., & Spieksma, F. C. R. (2014). The
Red–Blue transportation problem. European Journal of Operational Research, 237(3),
814–823.

Vancroonenburg, W., De Causmaecker, P., & Vanden Berghe, G. (2016). A study of
decision support models for online patient-to-room assignment planning. Annals of
Operations Research, 239(1), 253–271.

http://refhub.elsevier.com/S0377-2217(25)00138-9/sb25
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb25
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb25
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb26
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb26
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb26
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb26
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb26
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb27
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb27
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb27
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb28
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb28
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb28
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb28
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb28
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb29
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb29
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb29
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb29
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb29
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb30
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb30
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb30
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb30
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb30
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb31
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb31
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb31
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb31
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb31
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb32
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb32
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb32
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb32
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb32
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb33
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb33
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb33
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb33
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb33
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb34
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb34
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb34
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb35
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb35
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb35
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb36
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb36
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb36
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb36
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb36
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb37
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb37
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb37
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb37
http://refhub.elsevier.com/S0377-2217(25)00138-9/sb37

	Patient-to-room assignment with single-rooms entitlements: Combinatorial insights and integer programming formulations
	Introduction
	Problem definition
	Literature review
	Combinatorial insights
	Feasibility
	Maximum number of private patients in single rooms

	Comparison of different IP-formulations
	Minimise transfers only
	Integration of single-room constraints
	IP-formulation without transfers

	Dynamic PRA
	Future work
	Criteria for easy and hard instances
	Scaling to multiple wards
	Patient conflicts
	Patient preferences
	Accompanying person
	Uncertainty

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Datasets
	Appendix B. Full Runtimes and Results
	References

