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Patient-to-room assignment (PRA) is a scheduling problem in decision support for hospitals. It consists of
assigning patients to rooms during their stay at a hospital according to certain conditions and objectives,
e.g., ensuring gender separated rooms, avoiding transfers and respecting single-room requests. This work
presents combinatorial insights about the feasibility of PRA and about how (many) single-room requests can
be respected. We further compare different integer programming (IP) formulations for PRA as well as the
influence of different objectives on the runtime using real-world data. Based on these results, we develop a

fast IP-based solution approach, which obtains high quality solutions. In contrast to previous IP-formulations,
the results of our computational study indicate that large, real-world instances can be solved to a high degree
of optimality within (fractions of) seconds. We support this result by a computational study using a large set
of realistic but randomly generated instances with 50% to 95% capacity utilisation.

1. Introduction

Beds and rooms for patients are important resources in hospitals
and the decision which bed and room a patient occupies impacts not
only the staff’s workload (Blay, Roche, Duffield and Robyn, 2017),
but also patient satisfaction (He et al., 2018), and the provision of
surcharges (Hendrich & Lee, 2005). The assignment of patients to beds
and rooms is usually either performed by so-called case managers or
by experienced nurses. In literature, the terms patient-to-room assign-
ment problem (PRA), patient-to-bed assignment problem (PBA), and
patient-admission scheduling (PAS) have been used to describe this
task. In their original problem definition, Demeester et al. use the term
patient-admission scheduling for the decision to which bed a patient is
assigned (Demeester, Souffriau, Causmaecker, & Berghe, 2010). This
term, however, can easily be confused with the task of scheduling
the admission dates for planned inpatient treatment, which is a very
different challenge (Schafer, Walther, Hiibner, & Kuhn, 2019). Overall,
the term bed is used synonymously for bed space. In general, there are
different bed types, e.g., for small children or heavy weight patients
which are provided as rolling stock. A room’s bed spaces, however,
can be considered as equal. The task of finding a physical bed of

* Corresponding authors.

appropriate bed type for a patient is independent of assigning the
patient to a room/bed space and is not further considered in this paper.
We therefore use the term PRA to avoid confusion.

Typically, there are two types of case management systems in hos-
pitals: centralised and decentralised systems. In a centralised system,
all patient-to-room assignments are decided by the same person or
work group. Whereas in a decentralised system, the patient-to-room
assignments are decided on ward or speciality level (Schmidt, Geisler,
& Spreckelsen, 2013). In both cases, PRA is based on a previously fixed
admission scheduling decision. In the first formal definition of PRA
proposed by Demeester et al. in 2010 (Demeester et al., 2010), they
considered a centralised system with multiple wards and specialities.
Patients then need a room in a ward with appropriate speciality. This
definition is still often used in literature. However, we found that in
our local hospital a decentralised system is used. In this work, we
present combinatorial insights and a solution approach for a decen-
tralised system where patient-to-room assignments are decided on ward
level. Combinatorially, the decentralised system is a special case of the
centralised system.

Another characteristic of the definition proposed by Demeester et al.
is that some patients may only be assigned to specific rooms to account
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for, e.g., equipment requirements (Demeester et al., 2010). However,
we found that in our local hospital all rooms have the same default
equipment and the special equipment is rolling stock. Therefore, we
assume that a ward’s rooms are all equal and that every patient can be
assigned to every room. We experience this to be a common setting in
German hospitals.

Real-life optimisation problems often have to balance the, poten-
tially conflicting, interests of multiple stakeholders. For PRA, Schéfer
et al. identified patients, doctors and nurses as the main stakehold-
ers (Schifer et al., 2019). Based on literature and interviews with
members of each of the groups, they concluded that patients primar-
ily desire a pleasant stay, i.e., a bed in a suitable room, without
unnecessary transfers or waiting in an overflow area, and suitable
roommates. Doctors primarily look for visiting rounds that minimise
walking distances. In comparison to that, nursing staff emphasise the
relevance of a balanced workload (Schifer et al., 2019). A common
approach, also used by Schifer et al. is to combine the objectives of all
stakeholders into one objective function as a weighted sum. However,
the appropriate choice of weights is not obvious and depends strongly
on the hospital management’s values. On the contrary, we consider only
two objective functions and attempt a thorough investigation of their
combinatorial structure, their performance in binary integer programs
(BIPs) and their interoperability. For this, we consider the objectives
both separately and in different hierarchical orders that are motivated
by the different stakeholders’ points of view.

Our first objective is to avoid that patients have to change rooms
during their stay, so-called patient transfers. Patient transfers increase
the staff’s workload and reduce patient satisfaction while providing
no immediate health benefits for patients (Storfjell, Ohlson, Omoike,
Fitzpatrick, & Wetasin, 2009). A case study by Blay et al. reports
that transfers require on average betweenllmin (intra-ward transfer)
and 25min (inter-ward transfer) of direct nursing time (Blay, Roche,
Duffield, Robyn, 2017). Additionally, there are several ways (Fekieta
et al., 2020) in which these transfers can put patients health at risk,
e.g., by leading to delays in care (Johnson et al., 2013), interrup-
tions in treatment (Papson, Russell, & Taylor, 2007) and increased
infections (Blay, Roche, Duffield and Xu, 2017).

Our second objective is the assignment of single rooms to patients
who need isolation for medical reasons or who are entitled to one
because of a private health insurance (private patients). In practice,
medical reasons have priority, but the latter case is also of high interest
for the hospital management as such additional services provide income
opportunities, with, e.g., a single room surcharge numbering 175€
per day (UKA Aachen, 2021). Due to current German laws, hospitals
rely on these surcharges for income. In our computational study, we
only model the assignment of single rooms to private patients because
we lack data on which patients require isolation for medical reasons.
Therefore, we only consider single-room requests depending on the
patients’ insurance types for our computational evaluations. However,
all our results can easily be extended to incorporate medically nec-
essary isolation either as an additional objective (analogously as for
private patients but with higher priority), or as an additional feasibility
condition.

In this work, we present combinatorial insights about checking an
instance’s feasibility and about computing the maximum number of
fulfillable single-room requests. Additionally, we show that, in prac-
tice, the minimum total number of transfer can be computed efficiently
using integer programming, although minimising the number transfers
is N'P-hard in theory (Brandt, Biising, & Knust, 2024). We further
investigate the runtime of different BIP-formulations for solving PRA
as well as the influence of the two objectives on the runtime using
real-world data. We combine our insights into an efficient, IP-based
heuristic. Here, our combinatorial insights not only improve the heuris-
tic’s runtime but also allow an assessment of the solution’s quality. An
extensive evaluation of our heuristic using both real-world data as well
as a large set of artificial instances shows that the heuristic obtains high
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quality solution in most cases. The code of the implementation that
we used for the computational study and the artificial instances are
publicly available for further research (Brandt & Engelhardt, 2024).

This paper is organised as follows. In Section 2, we present a formal
definition of PRA. In Section 3, we give an overview of existing research
on integer programming in the context of PRA. In Section 4, we present
combinatorial insights into both feasibility and the maximum number
of private patients that can be assigned a single bed each day. Then,
in Section 5 we propose and compare multiple IP formulations for
PRA. The computational evaluation shows that in most our (real-life)
instances, no transfers are necessary. Building on that, we propose and
compare a second set of IP formulations that contain no transfers in
Section 5.3. In Section 6, we combine the best performing IP formula-
tions with our combinatorial insights from Section 4 to solve a dynamic
version of PRA with a rolling-time-horizon approach. Although PRA is
known to be N'P-hard (Brandt et al., 2024), we find solutions that
are optimal or close to optimality for both heterogeneous real world
data and artificial instances. Furthermore, on average, our algorithm
requires less than a second per day to find high quality solutions for
realistically sized artificial instances. Finally Section 7, we point out
multiple directions for further research.

2. Problem definition

Formally, we consider a ward with rooms R and ¢, € N beds in room
r € R, as well as a discrete planning horizon 7 = {I,...,T}. In our
computational study, we use 24h as length of one time period so that
T refers to the number of days in the planning horizon. However, all
concepts in this paper are easily transferable to half-day or even smaller
planning intervals. Further, let P denote the set of all patients. For
every patient p € P, we know their registration period and their arrival
period a, € Tj := T U {0}, where patients with a, = 0 are patients who
arrived in an earlier time period. Therefore, those patients already have
pre-assigned rooms which are given in the set 7 C {p € P | a, = 0} xR.
Commonly, patients whose arrival and registration periods are identical
are called emergency patients and otherwise elective patients (Noonan,
O’Brien, Broderick, Richardson, & Walsh, 2019). We further have every
patient’s discharge period d, € T satisfying a, < d,, their gender, and
whether they are entitled to a single room. We denote the set of female
patients with Pf C P, the set of male patients with 7™ C P, and the set
of patients entitled to a single room with P* C P. Note that we assume
PfAP™ =@ and P = Pf U P™ based on the data provided by our local
hospital.

The main task in PRA is to assign every patient p € P to a room
z(p,t) € R for every time period a, < t < d, of their stay. We
assume that all patients stay in hospital on consecutive periods from
admission to discharge period and that they are discharged at the
beginning of a time period. Thus, patients do not need a room in
their discharge period, which is a common assumption in literature,
cf. Vancroonenburg, De Causmaecker, and Vanden Berghe (2016). We
define the set of all patients who need a room in time period t € T
as P(1) = {p € P | a, <t <d,}. Further, we denote for any subset of
patients S C P the subset of patients in need for a bed in time period
teT by S@t) :=SnP@).

The assignment z of patients to rooms has to fulfil two conditions for
every room r € R and every time period ¢ € 7 in order to be feasible:

(C) room capacities ¢, are respected, i.e., |{p€ P | z(p,t) =r}| < ¢,,

(S) female and male patients are assigned to separate rooms, i.e.,

{z(p.0) | p € PT®O} n {z(p,) | p € PT(1)} = 0.

Theoretically, these constraints may lead to infeasibility, which is
unacceptable in practical application. However, we assume based on
practitioners demands that the case manager ensures respect of the
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Fig. 1. Example for 7 =3 with one private patient where a patient transfer is necessary for feasibility.

ward’s capacity under consideration of the gender-separation condition.
Therefore, all considered instances in this paper are feasible under both
conditions and . We discuss how feasibility under these constraints can
be checked combinatorially in Section 4.1.
As first objective function, we minimise the total number of patient
transfers
d,-2

D D2 1z 0, 2,1+ DY - 1

pEP \ t=a »
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Another possibility of addressing the topic of patient transfers is to
minimise the maximum number of transfers per patient. According to
Brandt et al. those two interpretations of avoiding transfers are not
conflicting but can be optimised simultaneously for the case of double
rooms (Brandt et al., 2024). More precisely, they showed that there al-
ways exists an optimal solution with regard to /""" where each patient
is transferred at most once. Therefore, we choose the minimisation of
the total number of transfers as objective function. Our computational
experiments with real life data showed that in an optimal solution
with respect to f no patient is transferred twice regardless of an
upper bound on the number of transfers per patient. Moreover, the
enforcement of an upper bound on the number of transfers per patient
did not affect the runtime. Therefore, we exclusively consider /'™ as
objective function for transfers.

As second objective, we maximise the total number of time periods
that private patients spend alone in a room, as, in Germany, the fees
for a single room are paid by the insurance companies for every day
individually. Thus, we maximise

Jr :=Z( > 1-min{l, |{qu(z)\{p}|z<p,t>=z<q,z)}|}>.
€T \peP*(t)

Fig. 1 illustrates the role of both objectives. Note that, in general,
transfers are necessary for feasibility in PRA. In the example, two rooms
and a time horizon of three time steps are given. In step one, both rooms
are assigned two male/female patients each. After the first step, the two
male patients leave and a third female patient arrives. Now, as two
more male patients arrive in the third step, a transfer is necessary to
ensure feasibility. The example also includes a private patient which is
marked by a *. Here, the private patient can be charged a single room
surcharge only for the second time step. Hence, for the assignment
depicted in the example we have fP'V = fans — | and this is optimal
for both objectives.

3. Literature review

In 2010, Demeester et al. provided the first formal definition of
a PRA problem and proposed a tabu-search algorithm for what they
called the “problem of automatically and dynamically assigning pa-
tients to beds in a general hospital setting” (Demeester et al., 2010).
According to their problem definition, patients have to be assigned
to suitable rooms respecting numerous equipment, specialism, and
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age constraints. However, limiting a patient’s room choices imme-
diately renders the task of assigning patients to beds/rooms N P-
complete (Brandt et al., 2024). Ceschia and Schaerf extended the
definition by Demeester et al. to include dynamic admission, operating
room constraints, time horizons, and patient delays (Ceschia & Schaerf,
2009, 2011, 2012, 2014). The dynamic setting they consider is sim-
ilar to our own, but the problem definition differs slightly, as their
formulation is directly based on Demeester et al. (2010).

Next, we give an overview of published integer linear programming
approaches in PRA. For a general literature overview of PRA we refer
to the recent work by Brandt et al. on integrated planning (Br et al.,
2023), and the review by Abdalkareem, Amir, Ehkan, and Al-Betar
(2018). A frequent pattern in literature on PRA is to use a integer
linear program (IP) to formalise the problem definition, but not to use
integer programming as a solution method. This may be due to the
fact that, in 2010, Demeester et al. considered integer programming as
solution approach. However, the authors dismissed this, as the given
formulation did not result in a feasible solution within an hour and
even after a week of computation, no optimal solution was obtained
using standard solver software (Demeester et al., 2010). Ceschia and
Schaerf also used an exact solver based on IPs as a reference for small
instances, while noting its inability to solve larger instances (Ceschia &
Schaerf, 2012).

Nonetheless there are several publications that specifically make
use of mixed-integer programming (MIP) based solution approaches:
Schmidt et al. define a binary integer program (BIP) based on patients’
length-of-stay (los) and use it to compare an exact approach, using the
MIP solver SCIP, with three heuristic strategies (Schmidt et al., 2013).
Range et al. reformulate Demeester et al.’s patient admission scheduling
problem via Dantzig—-Wolfe decomposition and apply a heuristic based
on column generation to solve it (Range, Lusby, & Larsen, 2014).
Turhan and Bilgen propose two MIP based heuristics which achieve
high quality solutions in fast runtimes compared to respective state
of the art studies (Turhan & Bilgen, 2016). Vancroonenburg et al.
extend the patient assignment problem formulation and develop two
corresponding online IP formulations. The first formulation focuses
on newly arrived patients, whereas the second also considers planned
future patients. They then study the effect of uncertainty in the patients’
los, as well as the effect of the percentage of emergency patients. In all
of the cases mentioned above, integer programming is used either as
a basis for the development of heuristic solutions or as a reference for
small instances, but no exact solving of larger real-world instances is
attempted.

Some recent publications also employ integer programming to
model both PRA and operating-room usage exactly (Conforti, Guido,
Mirabelli, & Solina, 2018a, 2018b). However, the models include
significant simplifications: fixed room-gender assignment, no transfers
and a limited time-horizon.

Guido, Groccia, and Conforti (2018) compare different IP formu-
lations for PRA. The authors propose iteratively extending the (PRA)
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search space, starting with small formulation and extending it if opti-
mality is not reached. The same idea underlies our sequential approach
for the dynamic PRA, which we improve using combinatorial insights.
Bastos, Marchesi, Hamacher, and Fleck (2019) present a MIP approach
to patient admission scheduling problem, which involves assigning
patients to beds over a given time horizon so as to maximise treatment
efficiency, patient comfort and hospital utilisation, while satisfying all
necessary medical constraints and taking into consideration patient
preferences as much as possible.

In a recent paper, Liu, Wang, and Hao (2024) revisited the original
MIP formulation by Ceschia and Schaerf (2011). The authors then
decompose room and bed assignment, and use constraint aggregation
to reduce the size of the IP formulation. This leads to improvements on
a range of reference instances. Their aggregation of patient transfers is
similar to the model used in this work, without a dynamic model and/or
same-day transfers. The gender aggregation they perform is similar
to the aggregations we perform, although we test multiple variants
thereof. Additionally, they extensively reviewed (heuristic) literature
on PRA/PBA.

There also exist solution approaches that are not based on De-
meester’s problem definition but are inspired by the setting in a specific
hospital. Thomas et al. developed a MIP based decision support system
that balances 13 objectives (T et al., 2013). Schéfer et al. disallow (non-
medically induced) patient transfers but include overflow and patient
preferences (Schéfer et al., 2019). They also model doctor preferences,
i.e., homogeneous routes, and then solve the model via a greedy look-
ahead heuristic. In a follow-up publication, they focus on emergency
patients and integrate them into the model (Schéafer, Walther, Grimm,
& Hiibner, 2023). Brandt et al. propose a MIP based heuristic for
integrated planning of patient-to-room and nurse-to-patient assign-
ment (Br et al,, 2023). More generally, Rachuba et al. introduce a
taxonomy for evaluating integration consisting of three stages: link-
age by constraints/restrictions, sequential and completely integrated
planning (Rachuba, Reuter-Oppermann, & Thielen, 2023). Here, our
work can contribute to multiple levels, with the combinatorial insights
facilitating easy linkage by constraints/restrictions and the IP based
approach being suitable for fully integrated planning.

Combinatorial insights about patient-to-room assignment and its
underlying structure are still rare. For the definition proposed by
Demeester et al. it was proven that it is N'P-complete to decide whether
a feasible solution exists even if all rooms have capacity 2 (Ficker,
Spieksma, & Woeginger, 2021; Vancroonenburg, Croce, Goossens, &
Spieksma, 2014). However, for this result it is important that not every
patient can be assigned to every room. Therefore, in our case (without
patient-room restrictions), this result is not applicable. In fact, in our
problem setting, we can efficiently decide an instance’s feasibility if all
rooms have the same capacity while the decision remains N P-complete
for arbitrary room capacities (Brandt et al., 2024). We complement
these results by providing an efficient way to decide feasibility for
instances with single and double rooms, and for computing the max-
imum number of fulfillable single-room requests. Remark that deciding
whether a solution is feasible without transfers, however, N P-complete
even for instances with only double rooms if there are at least three
rooms (Brandt et al., 2024).

4. Combinatorial insights

In this section, we first present new combinatorial insights regarding
the feasibility of instances with single and double rooms which extend
the known results on feasibility from Brandt et al. (2024). Second, we
present a combinatorial formula to compute the maximum number of
private patients who can be feasibly assigned to single rooms. Both
questions can be decided independently for every single time period,
since we allow arbitrary many transfers. Therefore, in this section we
consider an arbitrary but fixed time period + € 7 and abbreviate the
number of female patients who are in hospital in time period ¢ with
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F, := |Pf(t)|, and respectively the number of male patients, female
private patients, and male private patients needing a bed in time period
t with M, := [P"(0)|, F* = |P'()n P*()|, and M} := [P™(1) N P*(1)].
We further denote with R, := |{r € R | ¢, = ¢}| the number of rooms
with a specific capacity ¢ € N.

4.1. Feasibility

Brandt et al. define the feasibility problem for an arbitrary but fixed
time period ¢ € 7 as follows Brandt et al. (2024).

Definition 1 (Feasibility Problem). Given the number of female and male
patients F,, M, € N,,, and room capacities ¢, € N for r € R, does there
exist a subset S C R of rooms such that it can host all female patients
while the male patients fit into the remaining rooms, i.e.,

Y 2F and Y ¢ =M.

res rer\S

€8]

Brandt et al. prove that the feasibility problem is N P-complete in
general and solvable in polynomial time for constant room capacities
¢, = ¢ € N (Brandt et al., 2024). Clearly, in the common case of rooms
with only double rooms an instance is feasible if and only if

2] %]

holds true for every time period € 7 (Brandt et al., 2024). However,
this is no longer accurate for wards that have at least one single room
in addition to double rooms otherwise. For those, it suffices to check
whether enough beds are available in total.

(2)

Lemma 1. Consider a ward with room capacities ¢, € {1,c} withc € N for
all rooms r € R. Let the number of female and male patients F,, M, € N,
be given. If R| > ¢ —1, then the instance is feasible if and only if the number
of patients does not exceed the ward’s total capacity, i.e., if and only if

F+M, <)
rer

holds true for every time period t € T .

3

Proof. For ¢ = 1, the instance is obviously feasible if and only if Eq.
(3) holds true. Therefore, let ¢ > 2. If the number of patients exceeds
ward’s capacity, i.e., Eq. (3) is violated, then the instance is infeasible as
at least one patient cannot be assigned to a room without violating the
capacity constraint. Hence, we assume Eq. (3) to hold true and show
that the instance is then feasible by constructing a set .S € R which
satisfies Eq. (1).

We compute the maximum number k of rooms with capacity ¢ we
could completely fill with female patients

(]}

and, respectively, we compute the maximum the number ¢ of rooms
with capacity ¢ that we could completely fill with male patients

eon([ ] )

Remark that R, > k+¢, F,—ck >0, and M, —cZ > 0 by construction. On
the one hand, if R; > F, — ck + M, — ¢¢, i.e., all remaining patients can
be assigned to single rooms, then we define S := §'u.S” with arbitrary
sets .S’ and S” that fulfil the following condition

S'C{reR|c =c} with|S'|=k,
S"c{reR|c =1} with|S"|=F, —ck.

Then,
ZCV: Z ¢ + Z c¢,=ck+F,—ck=F,
res res’ res”
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S a=Yo-Teo

rer\S rer res

Eq. (3)
> F,+M,-F =M,

i.e., the feasibility condition Eq. (1) is satisfied and the instance is
feasible.
On the other hand, if R| < F, — ck + M, — ¢Z, then

™ q
R, > Z(F’+M’_Rl)
>1(F,+M,—F,+ck—M,+cf):k+f.
c

Therefore, we also have F, — ck < ¢ and M, — ¢Z < ¢ and we define
S C{reR|c, =c} arbitrary with |S| = k + 1. Then

Zc,=ck+c>ck+F,—ck=F,,

res
Y ¢ =R +c(R —k=1)
reR\S
R >k+£+1
> Ri+ck+¢+1—-k—-1)=R, +c?
Ry>c-1 c—1>M,—ct

> c—1+4c? > M, —ct +ct 2 M,

i.e., the feasibility condition Eq. (1) is satisfied and the instance is
feasible. [

Remark that the condition R; > ¢ — 1 in Lemma 1 is tight: let ¢ =3
and R; <c—1,1ie.,let R; = R; = 1. Then an instance with F, = M, =2
satisfies Eq. (3), however, there exists no feasible solution.

Lemma 1 covers especially the case of wards with single and double
rooms only. Additionally, we can use it to derive a similar result for
wards with rooms of even capacity.

Lemma 2. Consider a ward with room capacities ¢, € {2,2c¢} with
¢ € Ny, for all rooms r € R. Let the number of female and male patients
F,, M, € N, be given. If R, > c—1, then the instance is feasible if and only
if for every time period t € T one of the two following conditions holds true.

1. F, and M, are both even and the number of patients does not exceed
the ward’s total capacity, i.e., F,+ M, <Y .z c,

2. the number of patients is strictly smaller than the ward’s total
capacity, ie, F,+ M, <Y .p ¢,

Proof. First, assume both conditions are violated, then we have
F,+ M, = ¥, zc, and both F, and M, are odd. Then, no feasible
assignment of patients to rooms exists. Second, assume Condition 1
holds true. Then, we construct an equivalent instance by dividing all
¢,, F,, and M, by 2. This instance is feasible according to Lemma 1 and
hence also the original one.

Third, assume Condition 2 holds true and Condition 1 does not.
Thus, we have F, + M, < } . ¢, and either both F, and M, are odd
or exactly one of them. If both F, and M, are odd, it directly follows
that F, + M, < ) . ¢, — 2. We then construct an equivalent instance
by increasing the number of female and male patients each by one,
i.e, F/ := F,+1and M] := M, +1. Then F/ and M/ are both even with
F!+M] <Y 5 c,. This new instance is feasible according to Condition
1 and hence also the original one. We proceed analogously if either F,
or M, isodd. [

4.2. Maximum number of private patients in single rooms

We define the problem of computing the maximum number s;"** of
private patients who can get a room for themselves in time period ¢ as
follows.

Definition 2 (Private Patient Problem (PPP)). Let the total number of
female and male patients F,, M, € N, the number of female and male
private patients F;*, M;" € N, and room capacities ¢, € N for r € R be
given. Do there exist four pairwise disjoint subsets SpUS}US) US}, C
R such that
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1. all female patients are assigned to rooms SUS%, and all patients
assigned to rooms in S}, are private patients and alone in their
rooms, i.e.,

Zc,+|s;|zF, and |S%| < FF,
reSgp

4

2. all male patients are assigned to rooms S,,US* , and all patients
assigned to rooms in S, are private patients and alone in their
rooms, i.e.,

> ¢ #1832 M, and |Sy| <M,
reSy

)

3. the number of private patients who have a room to themselves
is maximal, i.e.,

s =] 8% | +1S%, | is maximal. ©)

t T
We first take a look at the complexity of PPP.
Lemma 3. PPP is N'P-hard and not approximable.

Proof. For F = M, =0, PPP is equivalent to the feasibility problem.
Hence, also PPP is A'P-hard. Since the objective value s™* is 0 in this
case, PPP is not approximable. []

However, PPP can be solved in polynomial time if the ward has only
single and double rooms.

Lemma 4. For feasible instances with ¢, € {1,2}, PPP can be solved in
polynomial time. Moreover, we can compute s;"** as follows. Let

= |R| F,—Ft* ~ M,—M’*
’ 2 2 ’

L
pfi=min {(F, - F*) mod?2, F'} €{0,1}, and
A" :=min{(M, - M) mod2, M;}€{0,1}.
Then
|P* ()] if a 2 |P*()],
s =Pl -1 ifo,=P*0)| -1 and fj =" =1,

2a,+ B + " — |P*(t)|  otherwise.

Proof. For feasible instances with single and double rooms, we can
treat all single rooms as double rooms since this does not affect the
number of private patients who can get a room for themselves. There-
fore, let us consider a feasible instance of PPP with only double rooms,
i.e., Eq. (2) holds true. We now have to assign at least

F,—F} M, - M}
e e
rooms to non-private patients. Since we aim to maximise the number
of private patients who are alone in a room, we assign exactly that
many rooms to non-private patients. If the number of free remaining
rooms «, is greater or equal to the number of unassigned private
patients, i.e., &, > |P*(t)|, then every private patient can get a room

for themselves, i.e.,

max _

*
s =P

Otherwise, after assigning all non-private patients, we have q,
empty double rooms as well as potentially one () free bed in a double-
bed room where a non-private female patient is present which we can
assign to a private female patient (if at least one is present), respectively
for male patients (). This results in a total of

2 ::2at+ﬂtf+ﬂtm
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available beds for private patients. If ﬁ,f =0or g =0orq < |P*()|-2,
then the difference of g, and the total number of private patients gives
us the of number of empty beds. Then, all private patients who can get
a free room will do so, i.e.,

s =y = PHO.

However, if both ﬁf =1and g = 1 and exactly |P*(1)| = a, + 1 private
patients need a room, then exactly one private patient will be placed
in a room together with a non-private patient, i.e.,

max _

S = [PH()] - 1.

O

Overall, we achieve the stated formula for computing sj"**.

Knowing the maximum number s]"** of private patients who can get
a single room in time period ¢ allows us to assess the trade-off between
fPV and fUrans or other objectives that occur in practice, e.g., hosting
all patients who need immediate care. Using the exact computation of
57, we know that their sum over all time periods ¢ € 7 is a tight upper
bound on the total objective value for [PV, i.e.,

fpnv < gmax . Z s:nax.

teT

)

This bound can always be achieved as long as arbitrary many transfers
may be used.

5. Comparison of different IP-formulations

In this section, we propose and compare different IP-formulations
for PRA. The most performant IP-formulations then constitute the basis
for the IP-based heuristic for PRA that we propose in Section 6. To re-
duce the total number of IP variants that we compare, we first evaluate
different formulations for minimising the total number of transfers only
in Section 5.1. Second, we use the best performing LP formulation for
minimising transfers and then compare different extensions for incorpo-
rating single-room requests of private patients in Section 5.2. Third, we
compare different IP-formulations for maximising fP™ without using
transfers in Section 5.3. Since we present multiple formulations for
some of the conditions, we explain every constraint individually and
then state for every IP which of the constraints are used.

Independently of our work, Liu et al. also worked on improvements
of IP-formulations for PRA as defined by Demeester et al. (under the
term patient admission scheduling) (Liu et al., 2024). However, there
are major differences between their work and ours. On the one hand,
their objective function differs as they use the one proposed by Ceschia
and Schaerf (2011), which balances 9 criteria for a good patient-
room assignment. In contrast, we focus on 2 objective functions and
optimise them both exclusively and in different hierarchical orders.
This allows us to visualise the objective’s influence on the runtime
and make justified decisions regarding the trade-off between runtime
and the objective’s real-world priority in the design of our algorithm,
cf. Section 6.

On the other hand, Liu et al. also use a slightly different set of
constraints as gender separation may be violated in their setting and
single-room requests only count as fulfilled if the patient is assigned to
a room that contains exactly one bed. In contrast, gender separation is
mandatory in our setting and we count a single-room request as fulfilled
if the patient is alone in a room regardless of the room’s capacity.
Hence, the results of Liu et al. do not directly translate to our setting.
Nevertheless, some of the constraint aggregations used by Liu et al.
are similar to the ones we use in Section 5.1. We therefore report the
similarities there in detail.
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5.1. Minimise transfers only

As a first step, we propose and compare different IP-formulations for
PRA minimising transfers only. In the next section, we then extend the
best performing IP-formulation to incorporate single-room requests. To
model the assignment of patients to rooms as well as the minimisation
of transfers, we use the following binary variables:

1, if patient p is assigned to room r in time period ¢,
ort = {0, otherwise, ®
1, if patient p is transferred from room r to another room
Oprt = after time period 7
0, otherwise.
(C)]

We then model the total number of transfers as the sum of all variables
5 together with all altered pre-fixed assignments

fmmS = Z Z Z 5prl +IF| - Z Xpr1-
1€T peEP() rER X (r.p)EF. .
Regarding the constraints, we first ensure that all patients are

assigned to rooms for every time period of their stay:

10)

Y x,=1 VteT.pePQ. a1
rer
Second, we ensure that the room capacity is respected via

Y Xpu<c VIET,reRr. a12)

PEP()

Third, to model gender separation, we introduce two additional sets of
binary variables

1, if there is a female patient assigned to room r in time

8 = period ¢,
0, otherwise,
13
1, if there is a male patient assigned to room r in time
m,, = period 1, 14)
0, otherwise.
We then ensure gender separation via
Xprt < 8t vieT, pe P, reRr, @s)
Xprr < My VieT, peP™@t), reR, (16)
g tm, <1 VieT, reR. a7)

Using m,, < 1 — g,, we can remove variable m,, and replace constraints
Egs. (16) and (17) with

Xpu <l-g, VIET, pe Pm@), reR. (18)

Instead of modelling capacity and gender separation constraints sepa-
rately, we can also combine them and use

2 Xyt < €8y VieT, reR, 19
pEPI(1)
2 Xppy < oMMy vieT, reRr, (20)
PEP™(1)
instead of Egs. (12), (15) and (16). Or, if we omit variable m,,, we use
Y xp<cl-g,) VIET, reRr, 21)
PEP™(1)
instead of Egs. (17) and (20). Fourth, we count the transfers via
Xprt = Xpr(1) S Opy Vr€R, pEP,a, <t <d,—1. (22)

We compare the performance of the following four IP-formulations to
investigate the usage of variables m,, as well as the integration of
capacity and gender-separation constraints.



T. Brandt et al.

60 1
> 504
£
£
=1
240
S
b
> 301
o
7]
%]
)
c 20 A
©
k7]
£
* 10+ S
— C
0 — D

20000 30000 40000

runtime (sec)

0 10000

Fig. 2. Comparison of IPs (A)—(D) using 62 real-life instances, 61 instances were solved
to optimality after 12 h by IPs (C) and (D) with objective value 0.

(A) min st
(B) min flrans
(C) min firans
(D) min flrans

s.t. Egs. (11) and (12), (15) to (17) and (22)
s.t. Egs. (11), (12), (15), (18) and (22)

s.t. Egs. (11), (17), (19), (20) and (22)

s.t. Egs. (11), (19), (21) and (22)

Liu et al. use similar constraint aggregations and the constraint
set of our IP (A) resembles the constraint set of their IP APRAgc g1cs
respectively for our IP (B) and their IP APRA L &TC> OUr IP (C) and their
IP APRA G, a1c @s well as for our IP (D) and their IP APRA ¢, g7 (Liu
et al., 2024). In their setting, the most aggregated IP APRA,gc gTC
performs better than the others.

All our IPs were implemented in python 3.10.4 and solved us-
ing Gurobi 10.0.0. All simulations were done on the RWTH High
Performance Computing Cluster using CLAIX-2018-MPI with Intel Xeon
Platinum 8160 Processors “SkyLake” (2.1 GHz, 32 CPUs per task,
3.9 GB per CPU). The code is publicly available on GitHub (Brandt &
Engelhardt, 2024).

For testing, we used 62 real-world instances provided by the RWTH
Aachen University Hospital (UKA), each spanning a whole year, and a
time limit of 12 h. We performed consistency checks on the patient data
ensuring valid input data: patients with missing information on arrival
or discharge and patients with a, = d, were dropped from the data
and for patients whose registration was noted after their arrival, we
set the registration date to the arrival date. All instances together still
contain more than 53.000 patient stays. For every instance, the number
of rooms and their capacities are given as well as the patients’ arrival,
departure, and registration dates, their gender, unique Patient-ID and
information on the insurance status. Note that the real-world data is
subject to non-disclosure and as such is not provided together with the
code.

The results of comparing “transfers only” formulations are depicted
in Fig. 2. They show that the integration of capacity and gender-
separation constraints decreases computation time. Similarly, removing
the variable m,, also decreases computation time, which is in line with
the results obtained by Liu et al. (2024). In general, instances were
either solved to optimality with objective value O or resulted in a
MIPGap of 100% after 12 h.

5.2. Integration of single-room constraints

In literature, single-room requests are often modelled as part of the
objective function counting the patients (with such requests) who are
assigned to rooms with capacity ¢, = 1, see for example Demeester
et al. (2010) and Liu et al. (2024). Schéfer et al. choose a different
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approach by counting single-room requests also as fulfilled if patients
are alone in a room with higher capacity (Schéfer et al., 2019). This
is similar to our problem definition. In their setting, however, those
constraints are mandatory whereas, in our setting, we treat them as an
objective function. We are not aware of other published papers that
report IP-formulations fitting our setting.

In the last section, we identified IP (D) as the best performing IP
formulation for PRA with the only objective function of minimising
transfers. In this section, we extend IP (D) by integrating single-room
requests. Instead of combining both objectives into one objective via a
weighted sum approach, we optimise them hierarchically. This means
that first one objective is (exclusively) optimised and under all solutions
that are optimal w.r.t. this first objective, we search the solution that
obtains the best value for the second objective. With a total of two
objectives, this approach leads to two possible hierarchical orders. In
our computational study, we compare two different levels of constraint
aggregation and both hierarchical orders.

To incorporate single-room request into our IP (D), we define binary
variables encoding whether a private patient gets a single room via

1, if p is alone in room r in time period 7,
Sprt = .
P 0, otherwise.

Thus, the total number of time periods that private patients are assigned
to single rooms is given by

(23)

fPriv = z 2 S prt- 24
t€T peP*(t) reR
Then, we can model the single-room constraints via
sprr S xprt Vt € T7 P € P*(t)7 re R7 (25)
St D X Se, VIET, pe PX(t), r € R. (26)

g€P(O\{p}
Alternatively to Eq. (26), we can also integrate the single-room con-

straints with the gender-separation and capacity constraints Eqgs. (19)
and (20) via

Z Xyt + z (e = Dspry < €81 VieT, reR 27)
pEPI () PEPINP* (1)

Y Xt D (q=Ds, <c(l-g,) VT, reR. (28
peEPM(f) pEPMAP (1)

We compare the performance of the following LP-formulations that
integrate single-room requests based on the previous results

(E) max (—fUrans, fPrivy g t. constraints of (D), Eqs. (25) and (26)
(F) max (fPrV, — fransy g t. constraints of (D), Egs. (25) and (26)
(H) max (—ftrans_ fPrivy gt Eqgs. (11), (22), (25), (27) and (28)
(1) max (fPrv, —firansy g ¢, Egs. (11), (22), (25), (27) and (28).

The objectives’ order determines their priority in optimisation, i.e., max
(—flrans_ £Privy means that first f'2" is minimised and then fPi is
maximised.

The formulations for IPs (E) to (I) were evaluated on the same
computational setup as in . The results are given in Fig. 3. We see that
the decisive factor is not the set of constraints but the objective func-
tion. Minimising the number of transfers first, i.e., max(—fa"s, fpPriv)
performs significantly better than maximising the fulfilled single-room
requests first. However, it is noticeable that the second set of constraints
performs overall better than the first set. We further observed that,
when optimising /'Y, the solver frequently finds an optimal solution
quickly but then requires extended time to prove optimality. Therefore,
we use our combinatorial insights to help the solver prove optimality
in this case.

If maximising fP"V has highest priority, we can use the combinato-
rial insights from Section 4 and fix the number of private patients in
single rooms for time period ¢ to sy, i.e.,

max
E Sprt 2 5] vieT
PEP*(t) reR
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Fig. 4. Performance of IP K using 62 real-life instances, maximum runtime 12 h.

instead of using the bi-objective approach. Hence, we also evaluate the
resulting IP

(K) min frans gt constraints of (H). Eq. (29)

We compare the respective IP’s performance to the one of (H) and
(I). Fig. 4 shows that IP (K) clearly outperforms IP (I), however, its
performance is not as good as the one of IP (H). The implementation is
available on GitHub (Brandt & Engelhardt, 2024).

5.3. IP-formulation without transfers

The objective values computed in our computational experiments
in Sections 5.1 and 5.2 showed that in many instances no transfers are
necessary throughout the entire planning period of one year. Therefore,
we propose and compare in this section IP formulations where transfers
are prohibited by construction while fP is maximised.

Liu et al. also report on an IP-formulation without transfers and
argue it speeds up the computations by reducing the search scope (Liu
et al.,, 2024). In this setting, they evaluate the use of variable m,, and
conclude that it is better to use the substitution with (1 — g,,). Based
on our observation of the significant performance advantage of IP-
formulations without variable m,, that we observed in Section 5.1, we
omit the evaluation of the use of variable m,, in this section which is
backed up by the result of Liu et al. Instead, we focus on three different
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levels of constraint aggregation of capacity, gender-separation, and
single-room constraints under the objective of maximising fulfilment
of single-room requests. Furthermore, we evaluate whether it is faster
to solve the optimisation problem with objective function fP'v or the
feasibility problem where fP'V = sm2% is fixed.

We use binary variables

1,
Xy = 0

to model the assignment of patients to rooms together with the pre-
viously introduced variables s, as in (23), and variables g, as in
(13).

Regarding the constraints, we first ensure that all patients are
assigned to rooms in every time period of their stay:

if patient p is assigned to room r for their stay, 30)
otherwise,

Z x,, =1 VpeP. (31)
rer
Second, we ensure that the room capacity is respected via

2 X, S VieT,reR. (32)
pEP()
Third, we ensure gender separation via
Xy < 8t vieT, pe P, reRr, (33)
Xpr < (1= gp) VieT, pe P™(), reR. (34

Instead of modelling capacity and gender-separation constraints sepa-
rately, we can also combine them and use

Z Xy €8y VieT, reR, (35)
pEPI(1)

Y x,<cll-g,) VieET, reRr, (36)
PEP™(1)

instead of Egs. (32) to (34). Fourth, we model the single room con-
straints via

37
(38)

Sprr < Xy VieT, peP (1), reR,
9€P(\{p}

Alternatively to Eq. (38), we can also integrate the single room con-
straints with the gender-separation and capacity constraints Egs. (35)
and (36) via

CrSpry Xgr €, VieT, pe P, reR.

Y Xyt D (= Ds,y <8y VieT,reR, (39
pePi(t) PEPENP*(1)
> xp+ (= Dsp<c(l-g,) VIeT,reR. (40)
PEPM() PEPIAP(1)
Last, we ensure that any pre-fixed assignments are respected:
x,=1 V(p,r)eF. (41)

pr

We then compare the following IP-formulations to find the best
performing constraint set.

(M) max fPiV s.t. Egs. (31) to (34), (37), (38) and (41)
(N) max fPV s.t. Egs. (31), (35) to (38) and (41)

(0) max fP'V s.t. Egs. (31), (37) and (39) to (41)

(P) maxO0 s.t. constraints of (0), Eq. (29)

Apart from the additional constraints modelling the single-room
assignment resembles the constraint set of our IP (M) the constraint set

of Liu et al.’s IP APR_A‘(SV(;r1 &TC? and the constraints of our IP (N) resembles

. WT
the ones of their IP APRAAGC] &TC"

more aggregated IP APRAXVJCI&TC

Liu et al. (2024). In their setting, the
performs better.

The formulations for IPs (M) to (P) were evaluated on the same com-
putational setup as in and the implementation is available on Brandt
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and Engelhardt (2024). The results show the dominance of IP (P) over
the other IPs, cf. Fig. 5. However, it strongly depends on the use case
whether IP (P) is the best one to use as, naturally, it is feasible in fewer
instances than IP (O). With our real-life instances, (P) was feasible in
72.5% whereas (O) was feasible in 97.75%. However, due to the fast
runtime of IP (P), cf. Fig. 6, it may be worthwhile to check first whether
IP (P) is feasible before switching to (O).

6. Dynamic PRA

As Dynamic PRA, we understand PRA with a rolling time horizon
similar to the definition in Ouelhadj and Petrovic (2009). Here, for
every patient we are also given a registration time period so that the
set P of all (known) patients is updated each time period. For every
time period ¢ € 7, all known patients, i.e., patients whose registration
dates are before or equal to ¢, have to be assigned to rooms. All room
assignments of the current time period are then stored in the set 7. We
assume that 7 does not contain irrelevant data, i.e., discharged patients
are deleted immediately to ensure the correct computation of ftrans,
Hence, F is updated after every iteration just like the patient set P.

As rescheduling is frequently done in practice, this approach relates
more closely to the real-life problem than the static version, where
we assume total information regarding patient arrivals and departures.
In this section, we describe how we combine four IP models and
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our combinatorial insights to efficiently solve the dynamic PRA by
exploiting the IPs’ different runtimes.

The key question is how to link 7 to the new model, since past as-
signments may be arbitrary bad in the here-and-now. Using heuristics,
this can be addressed by using neighbourhoods that allow for trans-
fers/reassignments, see Ceschia and Schaerf (2012). In comparison, we
solve every single iteration to optimality.®

Thus, we require a mechanism that allows for transfers of some
kind. Here, the iterative nature of the dynamic PRA allows us to
introduce a variant of IPs (P) and (O) where transfers are not en-
tirely forbidden, but only changes to the current room assignment are
allowed. We call this concept same-day transfers and formulate it as

(0*) max (fpriv,z(r’p)er x,.) s.t. Egs. (31), (37), (39) and (40)
(P*) max Z(r,p)e}, X, s.t. constraints of (0*), Eq. (29).

For our algorithm, we combine the IPs (H), (O*), (P), and (P*)
and our combinatorial insights as follows. First, we check combina-
torially whether the instance is feasible since we observed that the
combinatorial feasibility check is significantly faster than building a
respective IP (using gurobipy), not to mention solving it. Second, we
use the no-transfers formulation IP (P). Note that we here make use
of our second combinatorial insight, i.e., the computation of s™**. If
IP (P) is infeasible, we solve the instance again using the same-day
transfer formulation IP (P*). If IP (P*) is also infeasible, we use IP (O*)
maximising the number of private patients who get their own room
while minimising the number of transfers in the first time period. If
again, no feasible solution for (0*) is found within 20 s, we solve the
instance using IP (H), which allows arbitrary many transfers and is
therefore always feasible.

After successful computation, we fix all patient-room assignments
for patients that are in hospital in the current time period by adding
them to set 7 while removing outdated ones. We then update the
patient set and continue analogously with the next time period. A
visualisation of this algorithm is provided in Fig. 7.

Real-world instances. We evaluate our algorithm again on 62 real-world
instances spanning a whole year. As a result we get that all instances
use 365 iterations of the algorithm and all are solved within less
than 600 s per year, cf. Fig. 8. For application purposes however,
the runtime per iteration is more interesting than the total runtime
of 365 iterations. Therefore, we report in Fig. 9 the runtime of all
62 - 365 = 22630 iterations individually. The results show that all but
four iterations are solved within less than 15 s, cf. Fig. 9(a), and more
than 95% of all iterations are solved within less a second, cf. Fig. 9(b).

Although our dynamic algorithm is a heuristic and, thus, does not
guarantee a certain solution quality, we can assess a solution’s quality
using our combinatorial insights: For 44 instances the optimal value
fPiv. = ¢max was achieved. For 12 instances, we achieve fP'V >
0.9885s™ and for one fP'V = 0.946s™%%, The remaining 5 instances
have no private patients. The high quality of our solutions w.r.t. fP"i
is especially remarkable since in 26 of them no transfers are needed, 28
use between 1 and 27 transfers, and 8 between 28 and 80 transfers. The
complete report of the total computation time of all instances and the
objective values found by our algorithm can be found in the Appendix
A.

Artificial instances. To allow independent variation and further bench-
marking on our results, we also report results on artificial instances,
which we generated based on randomised recreation of the structure
of our real-world data. The instances are publicly available alongside
the implementation of our dynamic algorithm at Brandt and Engelhardt

3 This is not equivalent to global optimality, since past decisions may
be suboptimal for a changed patient set, and changing those might incur
additional transfers.
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Fig. 7. Algorithm for dynamic PRA.
95% occupancy setting, 10/80 solutions require fewer than 60 transfers,
B ,_l_’_ . .
60 and 70/80 require between 60 and 376. The overall mean of f* in
this high occupancy setting is 180, which is still less than one transfer
50 A every other day. We report detailed tables with statistical information
° about the artificial instances together with the computation time and
ﬁ 40 1 objective values found by our algorithm in Appendices A and B.
g In summary, our results showcase that the given artificial dataset
o . . .
% 304 captures important features of the real-world problem. This includes
§ both easier and harder instances with different patient set configura-
3 tions. Compared to real-world data it allows for more insights from
£ 201 . . . .
& benchmarking, e.g., via assessing the effect of feature variations such
as occupancy levels on algorithm performance.
10 -
7. Future work
0 B
0 100 200 300 200 500 600 We close this paper by pointing out multiple not yet fully explored

runtime (sec)

Fig. 8. Runtime of algorithm for dynamic PRA with T = 365.

(2024). We considered four different occupancy levels (0.5, 0.65, 0.8,
0.95), and generated 80 instances for each level. The proposed algo-
rithm solves all instance within less than 1800 s per year, cf. Fig. 10.
Fig. 10 further suggests that our artificial instances are a similar mix of
easy and hard instances as our real-world instances.

Notably, with higher occupancy the algorithm’s performance de-
grades. However, even in the worst case, we require no more than half
an hour to simulate a full year. For application purposes, we again
report the runtime for each of the 80 - 365 = 29200 iterations in Fig.
9. The results show a single outlier of 91.3 s. Apart from that, >75%
of instances are solved in less than a second, and ~95% of instances in
less than 10 s (see Fig. 11). Although our dynamic algorithm is
a heuristic and, thus, does not guarantee a certain solution quality, we
can assess a solution’s quality using our combinatorial insights: First
consider fP"V. For low occupancy (50%), the algorithm reaches global
optimality, i.e, fPV = s™* for 67/80 instances. For the remaining
instances, we achieve fP'V > 0.97s™% on average and fP"V > (0.81s™2%
in the worst case. As we increase occupancy, this pattern shifts. For
high occupancy (95%), 16/80 instances are solved to global optimality.
For the remaining instances, we achieve fPV > 0.96s™* on average
and fPV > 0.825™ in the worst case. For transfers, we also see a
directly link between occupancy and number of transfers. In the 50%
occupancy setting, 60/80 solutions require no transfers, whereas 10/80
require between 60 and 186 transfers. The overall mean of £ in this
setting is 21. As we increase occupancy, this distribution shifts. For the
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aspects of PRA to inspire future research. We give an overview over
possible modelling extensions for our definition of PRA. Where possi-
ble, we provide first experimental computational results and point out
promising areas for further research.

7.1. Criteria for easy and hard instances

Both our real-world instances and the artificial instances contain
instances for which our algorithm needs significantly more time to
solve them than for others. We are currently not aware of any criteria
to characterise such instances other than size. However, our compu-
tational results show that size is not always the decisive factor. Our
algorithm solves for example instance 1oad_50_27 with 1538 patients
in 123 s whereas it needs for 1load_50_54 with only 330 patients 571
s. Hence, further research is needed to identify criteria that lead to
instances that are hard (easy) to solve for IP solvers.

7.2. Scaling to multiple wards

Similar wards within the same speciality can be planned jointly.
Initial computational testing showed that, in this case, the runtime
scales linearly up to a 150 rooms over a planning horizon of 365 time
periods.

The proposed IP modelling approach can also be extended to man-
age multiple dissimilar wards. For this, new constraints must be added
to model which patient can be assigned to which ward. We evaluated
this both for single specialities with up to 9 normal and 2 intensive
care wards, and for the full RWTH Aachen University Hospital with
800 rooms and 53.000 patients (again over a planning horizon of 365
time periods). The runtime for the full hospital averages to about
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2s per iteration, with a larger variation than for single wards, i.e,
some days requiring more than 10 s for an initial feasible solution.
However, in our modelling approach patient-assignment feasibility was
only based on past patient-stay data, without consulting with medical
professionals. Thus, further research first needs to identify suitable met-
rics for patient-ward suitability and then include these as an objective
component.
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7.3. Patient conflicts

Due to medical or social reasons there may be pairs of patients who
cannot share a room, e.g., two patients with asthma or one woman
who just gave birth and one who lost the child. Such so-called patient
conflicts can easily be integrated into all our proposed IP-formulations
by adding conflict constraints. Since we do not have any real data about
patient conflicts, we experimented with a small number of randomly
generated conflicts. In our setting, this had neither an effect on the
runtime nor the objective value. However, in theory, a large number
of conflicts may render an instance infeasible. In the future, we will
further investigate what conflicts occur in reality and constitutes their
effect on runtime and solution quality.

7.4. Patient preferences

If more than one patient is assigned to a room, assigning suitable
room-mates also constitutes a further goal (Hantel & Benkenstein,
2019). Specifically, patient combinations exist that may be beneficial
both for patients and staff. For example, it is known that patients
recover faster if they feel comfortable, therefore, a room-mate to whom
they can relate may be beneficial (Chaudhury, Mahmood, & Valente,
2005; Hantel & Benkenstein, 2019). Or, if an international patient is
not fluent in the local language, then it is beneficial for both patient
and staff if the roommate can translate. First computational exper-
iments with IP-formulations showed that incorporating inter-patient
preferences into the IP models leads to a significant increase in run-
time. Developing an efficient way to integrate the choice of suitable
room-mates remains ongoing research.

7.5. Accompanying person

Some patients are entitled to bring an accompanying person with
them to the hospital. If the accompanying person occupies a normal
patient bed, this can easily be integrated into all our proposed IP-
formulations by adding weights to patients and/or not implementing
assignment variables for single rooms for the respective patients. If the
accompanying person sleeps on an additional roll-in bed and does not
occupy a patient bed, it depends on the hospital’s policy whether it is,
e.g., desirable to avoid assigning multiple patients with an accompany-
ing person to the same room or whether gender separation also needs
to be respected for the accompanying person. It is still ongoing research
to determine the decisive criteria currently in use for this task.
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Table A.1 Table A.1 (continued).
Overview of artificial data. For lor and los the given values are the medians. For rooms, load 50 71 088 396 592 155 299 2 6 20 8/6
the number of single/double rooms is given. load 5072 1065 443 622 181 344 2 6 20 8/6
Instance Patients Female Male Private Emergency lor los Beds Rooms load_50_73 1095 460 635 179 373 2 5 20 8/6
oals0l 898 %7  5al 12 255 3 6 2 ona load 5074 1046 454 592 171 315 2 7 20 8/6
load 502 791 323 468 111 253 3 6 28 0/14 load 5075 164 71 93 27 % 7 5 12 4/
load 503 851 365 486 140 268 3 6 28 0/14 load 5076 115 45 70 4 38 6 5 12 4/4
load 504 877 387 490 139 299 3 6 28 0/14 load 5077 205 96 o928 727 5 16 8/4
load 505 782 336 446 115 248 3 5 28 0/14 load 5078 157 76 81 21 46 8 6 16 8/4
load 50.6 837 359 478 142 295 3 5 28 0/14 load 5079 205 96 109 28 64 7 8 16 0/8
load 507 839 368 471 150 259 3 6 28 0/14 load 5080 157 76 81 2L 4 8 7 16  0/8
ladS08 877 %92 485 126 292 s 5 o8 ona load 651 1042 446 596 149 321 3 6 28 0/14
loads0o 1124 463 661 155 301 s o 34 64 load 652 1098 477 621 150 367 2 6 28 0/14
load 5010 1096 491 605 164 343 3 6 34 6/14 load653 1258 565 693 198 408 3 6 28 0/14
load 5011 1069 456 613 151 362 3 5 34 6/14 load 654 1083 472 611 166 358 3 5 28 0/14
load 5012 1007 422 585 154 353 3 5 34 6/14 load 655 1094 478 616 158 363 3 5 28 0/l4
load 5013 1045 443 602 169 361 3 5 32 8/12 load 656 ~ 998 418 580 150 332 3 5 28 0/14
load 5014 1057 444 613 160 368 3 6 32 8/12 load 657 1007 418 589 153 332 3 6 28 0/14
loadS015 953 407 546 144 305 s 5 3 8o load 658 1242 554 688 164 400 3 6 28 0/14
load 5016 1054 450 604 174 325 3 6 32 8/12 load 659 1491 638 853 224 453 3 6 34 6/14
load 5017 1014 431 583 162 319 3 6 32 8/12 load 6510 1234 538 69 193 39 3 5 34 614
ladS018 1045 444 601 167 79 s 5 3 o load 6511 1371 618 753 220 452 3 6 34  6/14
loads010 898 367 =31 142 310 3 5 28 ano load 6512 1359 576 783 216 447 3 5 34 6/14
load_50.20 791 323 468 111 253 3 6 28 4/12 load 6513 566 247 319 8 189 3 5 16 0/8
ladS021 412 176 236 70 196 5 6 16 o load 6514 690 318 372 115 216 3 5 16 0/8
loadS022 589 256 333 92 188 5 6 16 o load 6515 633 280 353 8 200 3 6 18 14/2
lowd 5023 503 220 274 83 178 3 5 18 1472 load 6516 793 337 456 122 249 2 6 18  14/2
load5024 568 260 308 94 206 5 5 18 14 load 6517 646 280 366 8 196 3 6 18  14/2
load 50.25 381 21 340 85 183 s 5 18 14 load 6518 789 324 465 116 257 3 5 18  14/2
load50.26 545 239 306 78 169 s o 18 14 load 65.19 1408 596 812 213 491 3 5 32  8/12
load 5027 1538 666 872 261 457 3 6 48 0/24 load 6520 1262 568 694 196 412 3 6 32 /12
load 5028 1414 591 823 250 444 s 6 48 o4 load 6521 1183 520 663 203 418 3 5 32  8/12
lads020 1021 408 613 187 322 5 e 32 sao load 6522 1196 512 684 174 388 3 5 32  8/12
load 5030 1000 423 577 179 306 s 6 32 8o load 6523 1313 596 717 193 444 3 5 32  8/12
load 5051 836 360 536 151 290 s 5 3 sno load 6524 1401 604 797 215 440 3 5 32  8/12
loadS032 933 420 515 172 292 s o 3 sno load 6525 1453 622 831 214 499 3 5 33  3/15
lowd 5033 943 301 552 152 314 s 6 32 sn2 load 6526 1268 542 726 178 392 3 6 33  3/15
load 5034 928 426 502 152 303 5 6 3 sno load 6527 1258 565 693 198 408 3 6 28  4/12
load 5095 922 374 548 102 251 s 6 3 8o load 6528 1042 446 596 149 321 3 6 28  4/12
load 5036 970 404 575 147 31 s 5 3 8o load 6529 1366 583 783 228 441 3 5 32  8/12
load 50,37 1038 419 619 180 332 3 5 32 8/12 load 6530 1213 552 661 211 391 3 6 32 8/12
load 50.98 941 a5 526 174 o84 s o 3 8no load 6531 1158 512 646 179 380 3 6 32  8/12
loads039 1183 529 654 164 383 s 6 24 21 load 6532 1240 523 717 207 381 3 6 32 8/12
load 5040 1170 491 679 170 381 P load 6533 1212 499 713 219 380 3 5 32  8/12
load 5041 1352 559 793 198 446 5 6 28 o4 load 6534 1131 474 657 185 363 3 5 32  8/12
loadS042 1423 601 822 201 429 5 7 28 ona load 6535 1161 517 644 177 388 3 6 32  8/12
lowd 5043 1355 622 733 199 449 > 6 28 o4 load 6536 1243 53 707 195 393 3 5 32  8/12
loadS044 1382 606 776 187 444 5 6 28 ona load 6537 1213 514 699 216 396 3 6 32  8/12
load 5045 1355 622 733 199 449 5 6 28 42 load 6538 1226 552 674 208 422 3 5 32  8/12
load 5046 1382 606 776 187 444 > 6 28 4o load 6539 1820 797 1023 320 581 3 7 48  0/24
load5047 1352 550 793 198 446 5 o 28 a2 load 6540 22290 1021 1208 384 721 3 6 48  0/24
loadS048 1423 601 822 201 429 5 7 28 4o load 6541 1509 675 834 216 520 2 5 24  2/11
load 50,49 791 361 430 118 270 5 5 16 o8 load 6542 1480 648 832 209 492 2 6 24  2/11
oyl b6 5 4 16 o load 6543 1749 822 927 238 596 2 6 28 0/14
load 5051 783 545 438 140 267 5 s 16 o load 6544 1781 765 1016 254 638 2 5 28  0/14
loadS052 753 332 421 106 256 5 5 16 o load 6545 1805 787 1018 271 603 2 5 28 0/14
lowd 5053 316 136 180 47 100 7 e 30 214 load 6546 1798 778 1020 247 593 2 6 28  0/14
loadS054 330 147 183 51 122 7 4 30 o4 load 6547 1749 822 927 238 596 2 6 28  4/12
loadS055 853 378 475 137 299 5 s 16 o load 6548 1781 765 1016 254 638 2 5 28  4/12
load 50.56 791 341 450 150 241 > o 16 o8 load 6549 1805 787 1018 271 622 2 5 28  4/12
loadS057 747 522 425 130 2% 5 7 16 o load 6550 1798 778 1020 247 593 2 6 28  4/12
load S0.58 831 32 505 110 291 5 6 16 o load 6551 1053 481 572 170 360 2 6 16 0/8
load 5050 803 359 444 125 236 > 6 16 o8 load 6552 1039 427 612 143 355 2 5 16 0/8
load 50.60 832 360 472 140 275 2 6 16 0/8 load6553 972 406 566 141 340 2 4 16 0/8
loadS061 835 555 481 131 273 5 6 16 o load 6554 1041 459 582 151 328 2 7 16 0/8
loadS062 578 364 514 132 273 5 6 16 o load 6555 1098 446 652 174 361 2 6 16 0/8
load 50.63 863 301 472 112 292 2 5 16 0/8 load 6556 954 389 565 175 306 2 6 16 0/8
loadS064 812 %61 451 154 267 5 o 16 o load 6557 1047 491 556 153 319 2 7 16 0/8
load 50.65 1791 769 1022 273 547 2 6 34 6/14 load 6558 961 417 544 125 202 2 7 16 0/8
load 5066 1653 666 987 243 529 2 6 34 6/14 load 6559 1099 482 617 153 346 2 6 16 0/8
load 5067 1032 428 604 165 352 > e 20 86 load 6560 1097 481 616 174 325 2 7 16 0/8
loadS068 995 437 558 169 304 5 7 % s load 6561 1018 423 595 160 332 2 6 16 0/8
loads0.60 984 387  soy 1s2 299 5 6 20 sk load 6562 1035 464 571 164 304 2 6 16 0/8
10ad 50_70 910 376 534 149 272 2 7 20 86 load6563 927 374 553 175 306 2 5 16 0/8
load 6564 1021 434 587 162 327 2 6 16 0/8

(continued on next page)
pag (continued on next page)
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Table A.1 (continued). Table A.1 (continued).
load_65_65 2336 1005 1331 386 745 2 6 34 6/14 load_80_59 1438 605 833 228 439 2 6 16 0/8
load_65_66 2306 1031 1275 371 718 2 7 34 6/14 load_80_60 1369 535 834 232 419 2 6 16 0/8
load_65_67 1337 559 778 223 438 2 6 20 8/6 load_80_61 1339 562 777 210 421 2 7 16 0/8
load_65_68 1377 580 797 212 450 2 6 20 8/6 load_80_62 1361 601 760 216 437 2 6 16 0/8
load_65_69 1488 681 807 250 513 2 5 20 8/6 load_80_63 1287 565 722 196 413 2 7 16 0/8
load_65_70 1394 586 808 240 445 2 6 20 8/6 load_80_64 1450 592 858 204 456 2 7 16 0/8
load_65_71 1334 567 767 218 445 2 6 20 8/6 load_80_65 2780 1199 1581 425 921 2 5 34 6/14
load_65_72 1433 620 813 232 452 2 6 20 8/6 load_80_66 2427 1012 1415 365 784 2 6 30 2/14
load_65_73 1359 574 785 203 424 2 6 20 8/6 load_80_67 1599 724 875 275 516 2 6 20 8/6
load_65_74 1208 514 694 195 375 2 7 20 8/6 load_80_68 1593 696 897 235 503 2 6 20 8/6
load_65_75 206 87 119 33 69 7 5 12 4/4 load_80_69 1591 679 912 279 504 2 6 20 8/6
load_65_76 187 84 103 28 64 6 5 12 4/4 load_80_70 1734 791 943 270 536 2 6 20 8/6
load_65_77 245 102 143 36 96 7 4 16 8/4 load_80_71 1739 768 971 268 580 2 6 20 8/6
load_65_78 258 103 155 28 72 8 6 16 8/4 load_80_72 1795 774 1021 295 579 2 6 20 8/6
load_65_79 245 102 143 36 86 7 5 16 0/8 load_80_73 1668 683 985 251 560 2 5 20 8/6
load_65_80 258 103 155 28 72 8 6 16 0/8 load_80_74 1683 724 959 266 509 2 7 20 8/6
load_80_1 1523 645 878 225 455 3 6 28 0/14 load_80_75 235 98 137 39 86 7 5 12 4/4
load _80_2 1251 545 706 185 398 3 5 28 0/14 load_80_76 181 81 100 33 73 8 4 12 4/4
load_80_3 1502 656 846 236 494 3 6 28 0/14 load_80_77 272 115 157 43 88 6 5 16 8/4
load_80_4 1323 569 754 194 399 3 7 28 0/14 load_80_78 318 127 191 43 112 6 5 16 8/4
load 80_5 1340 582 758 213 449 3 5 28 0/14 load_80_79 272 115 157 43 88 6 7 16 0/8
load_80_6 1475 669 806 242 471 3 5 28 0/14 load_80_80 318 127 191 43 112 6 6 16 0/8
load_80_7 1349 575 774 191 464 3 6 28 0/14 load 951 1658 722 936 263 525 3 6 28 0/14
load _80_8 1435 596 839 225 475 3 6 28 0/14 load 95_2 1456 639 817 208 470 3 6 28 0/14
load_80_9 1713 712 1001 268 538 3 6 34 6/14 load 95_3 1495 629 866 231 508 3 5 28 0/14
load_80_10 1694 724 970 245 571 3 5 34 6/14 load 95_4 1690 741 949 267 529 3 6 28 0/14
load_80_11 1618 712 906 247 544 2 5 34 6/14 load_95_5 1610 674 936 220 501 3 6 28 0/14
load_80_12 1697 747 950 228 591 3 5 34 6/14 load 95 6 1604 696 908 226 496 3 6 28 0/14
load_80_13 769 330 439 122 256 3 6 16 0/8 load 957 1654 724 930 255 529 3 6 28 0/14
load_80_14 704 303 401 92 233 3 6 16 0/8 load_95_8 1544 675 869 234 478 3 6 28 0/14
load_80_15 951 371 580 160 330 3 5 18 14/2 load 959 2018 886 1132 291 658 3 6 34 6/14
load_80_16 896 392 504 146 274 3 6 18 14/2 load 9510 1986 865 1121 318 691 3 6 34 6/14
load_80_17 938 393 545 149 298 3 5 18 14/2 load 9511 1956 845 1111 306 641 3 6 34 6/14
load_80_18 900 410 490 128 302 3 5 18 14/2 load 9512 2001 842 1159 299 680 3 5 34 6/14
load_80_19 1652 713 939 261 526 3 6 32 8/12 load 9513 926 389 537 160 292 3 5 16 0/8
load_80_20 1438 658 780 210 469 3 6 32 8/12 load_95_14 855 370 485 133 267 3 7 16 0/8
load_80_21 1524 668 856 220 486 3 6 32 8/12 load_95_15 1158 501 657 163 395 3 5 18 14/2
load_80_22 1540 693 847 224 485 3 6 32 8/12 load 95_16 1056 447 609 167 348 3 6 18 14/2
load_80_23 1557 687 870 238 513 3 6 32 8/12 load 9517 1085 454 631 162 359 3 5 18 14/2
load_80_24 1751 739 1012 256 575 2 5 32 8/12 load_95_18 1086 463 623 159 376 3 5 18 14/2
load_80_25 1652 713 939 256 520 3 7 33 3/15 load 9519 1851 797 1054 285 617 3 6 32 8/12
load_80_26 1477 648 829 223 465 3 6 33 3/15 load_95_20 1889 835 1054 275 659 3 5 32 8/12
load_80_27 1523 645 878 225 477 3 6 28 4/12 load_95_21 1758 770 988 265 573 3 6 32 8/12
load_80_28 1251 545 706 185 416 3 5 28 4/12 load_95_22 1951 850 1101 297 676 3 5 32 8/12
load_80_29 2167 961 1206 345 685 3 6 48 0/24 load 95_23 2014 876 1138 284 654 3 6 32 8/12
load_80_30 1735 744 991 266 579 3 6 48 0/24 load_95_24 1801 778 1023 278 633 3 5 32 8/12
load_80_31 1615 711 904 279 482 3 7 32 8/12 load_95_25 1658 722 936 263 525 3 6 28 4/12
load_80_32 1403 582 821 227 434 3 5 32 8/12 load_95_26 1479 645 834 211 497 3 5 28 4/12
load_80_33 1436 599 837 211 459 3 5 32 8/12 load_95_27 1495 629 866 231 522 3 5 28 4/12
load_80_34 1561 676 885 262 515 3 6 32 8/12 load_95_28 1693 743 950 268 544 3 6 28 4/12
load_80_35 1555 652 903 270 494 3 6 32 8/12 load_95_29 1720 721 999 277 563 3 6 32 8/12
load_80_36 1632 727 905 251 513 3 6 32 8/12 load_95_30 1768 755 1013 295 590 3 6 32 8/12
load_80_37 1477 632 845 238 478 3 6 32 8/12 load_95_31 1718 751 967 295 580 3 5 32 8/12
load_80_38 1373 575 798 218 450 3 6 32 8/12 load_95_32 1695 695 1000 314 537 3 6 32 8/12
load_80_39 1589 658 931 260 495 3 7 32 8/12 load 95_33 1713 730 983 269 589 3 5 32 8/12
load_80_40 1560 649 911 267 501 3 6 32 8/12 load_95_34 1756 754 1002 329 563 3 6 32 8/12
load_80_41 1858 829 1029 288 583 2 7 24 2/11 load_95_35 1832 826 1006 317 596 3 6 32 8/12
load_80_42 1862 844 1018 267 634 2 5 24 2/11 load_95_36 1879 785 1094 337 591 3 6 32 8/12
load_80_43 2137 947 1190 294 730 2 5 28 0/14 load_95_37 1831 761 1070 314 608 3 6 32 8/12
load_80_44 2108 954 1154 287 696 2 5 28 0/14 load_95_38 1891 781 1110 314 611 3 6 32 8/12
load_80_45 2125 938 1187 332 689 2 6 28 0/14 load_95_39 2798 1145 1653 482 839 3 7 48 0/24
load_80_46 2210 962 1248 313 748 2 6 28 0/14 load_95_40 2722 1129 1593 446 854 3 6 48 0/24
load_80_47 2137 947 1190 294 730 2 5 28 4/12 load_95_41 2169 958 1211 296 725 2 5 24 2/11
load_80_48 2108 954 1154 287 696 2 5 28 4/12 load_95_42 2199 952 1247 327 738 2 5 24 2/11
load_80_49 2130 941 1189 332 692 2 6 28 4/12 load_ 95_43 2568 1135 1433 377 840 2 6 28 0/14
load_80_50 2210 962 1248 313 765 2 5 28 4/12 load_95_44 2553 1127 1426 363 843 2 6 28 0/14
load_80_51 1269 603 666 206 418 2 6 16 0/8 load_95_45 2661 1181 1480 410 836 2 6 28 0/14
load_80_52 1324 592 732 174 448 2 6 16 0/8 load_95_46 2608 1133 1475 370 864 2 6 28 0/14
load_80_53 1074 494 580 147 341 2 7 16 0/8 load_95_47 2588 1145 1443 380 864 2 6 28 4/12
load_80_54 1301 569 732 206 428 2 6 16 0/8 load_95_48 2667 1170 1497 376 894 2 5 28 4/12
load_80_55 1333 550 783 229 437 2 6 16 0/8 load_95_49 2681 1194 1487 413 842 2 6 28 4/12
load_80_56 1384 613 771 221 433 2 6 16 0/8 load_95_50 2641 1150 1491 372 889 2 6 28 4/12
load_80_57 1294 579 715 210 448 2 5 16 0/8 load_95_51 1394 616 778 208 432 2 5 16 0/8
load_80_58 1361 570 791 225 411 2 6 16 0/8 load_95_52 1311 557 754 181 434 2 5 16 0/8
(continued on next page) (continued on next page)
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Table A.1 (continued). Table B.2
load_95 53 1433 655 778 216 452 2 6 16 0/8 Results of dynamic algorithm (365 iterations). All runtimes are given in seconds.
load_95_54 1501 658 843 216 507 2 5 16 0/8 Instance  Runtime per iteration Total Objective value gmax {P
load 9555 1469 692 777 259 463 2 6 16 0/8 S —— . T
load 9556 2912 1258 1654 467 898 2 6 30 2/14 Mean Max runtime ft /o 00
load 9557 1398 578 820 223 444 2 6 16 0/8 real_1 02 1.0 101 22 1154 1154 100
load 9558 1589 677 912 245 505 2 5 16 0/8 real 2 1.2 111 473 48 1215 1230 98
load 9559 1526 643 883 229 472 2 6 16 0/8 real 3 1.4 111 536 80 1211 1229 98
load 9560 1664 692 972 273 514 2 6 16 0/8 real 4 02 23 80 78 483 488 98
load 9561 1449 614 835 241 463 2 6 16 0/8 real 5 1.3 301 499 42 921 931 98
load 9562 1545 653 892 259 482 2 6 16 0/8 real 6 02 06 83 2 851 851 100
load 9563 1497 674 823 238 475 2 6 16 0/8 real 7 00 05 23 0 66 66 100
load 9564 1569 659 910 271 509 2 5 16 0/8 real 8 01 06 52 0 546 546 100
load 9565 3471 1456 2015 564 1125 2 6 34 6/14 real 9 00 01 17 0 0 0 n.an.
load 9566 2572 1087 1485 425 785 2 7 34 6/14 real 10 02 07 90 1 751 751 100
load 9567 1963 865 1098 317 614 2 6 20 86 real 11 01 02 56 0 376 376 100
load 9568 1869 803 1066 289 581 2 6 20 8/6 real 12 02 04 90 3 887 887 100
load 9569 1921 820 1101 290 646 2 6 2 86 real 13 02 06 81 3 556 556 100
load 9570 1942 812 1130 295 627 2 6 20 86 real 14 03 05 111 0 1468 1468 100
load 9571 1889 848 1041 300 590 2 6 20 8/6 real 15 02 06 77 0 432 432 100
load 9572 2178 952 1226 335 691 2 6 2 8/6 real 16 00 05 30 0 305 305 100
load 9573 1982 847 1135 313 658 2 5 20 86 real 17 02 07 79 0 794 794 100
load 9574 1952 849 1103 299 589 2 6 20 86 real 18 02 08 94 43 706 706 100
load 9575 267 117 150 31 84 7 5 12 4/4 real 19 0.1 1.7 67 16 892 893 99
load 9576 227 90 137 45 79 7 8 12 4/4 real 20 00 04 19 0 0 0 na.n.
load 9577 309 122 187 55 122 7 3 16 8/4 real 21 00 06 33 17 692 692 100
load 9578 348 169 179 54 121 7 6 16 8/4 real 22 01 06 47 3 372 372 100
load 9579 266 101 165 48 9% 6 5 16 0/8 real 23 01 06 54 1 843 843 100
load 9580 335 161 174 50 109 7 6 16 0/8 real 24 01 06 69 0 181 181 100
real 25 0.0 0.0 9 0 0 0 n.a.n.
real 26 00 01 35 0 235 235 100
real 27 01 02 50 0 271 271 100
7.6. Uncertainty real 28 01 08 48 11 588 588 100
real 29 0.1 1.6 72 19 879 881 99
real 30 00 01 21 0 256 256 100
Considering uncertainty is essential to ensure real-world applicabil- real 31 0.0 0.5 35 9 364 365 99
ity and validity of results. By using a dynamic time horizon, we already real 32 00 02 16 4 69 69 100
integrated the uncertain arrival of emergency patients. A second and real33 02 07 84 0 303 305 99
equally .relevaimt fact.or, however, is the.uncertainty in Fhe length of ZZE; g:i (1):2 1(1)2 ﬁ 1?2; 1‘752; igg
stay. It is easily possible to update a patient’s planned discharge date real 36 0.0 03 34 7 82 82 100
in every iteration of our algorithm for dynamic PRA. If a patient’s real 37 0.3 11.2 119 37 1975 1977 99
stay is prolonged, the feasibility check should then be repeated for real 38 06 115 222 46 317 335 94
the affected time periods. It is still an open question to assess the real 39 01 0.3 59 0 891 391 100
. . . real 40 01 02 57 0 535 535 100
consequences of such updates on the solution quality. For wards with a real 41 o1 02 43 0 465 465 100
high uncertainty in patient length of stay, it also might be better to real 42 0.0 0.1 17 0 167 167 100
integrate the uncertainty more directly in the algorithm to compute real43 01 03 67 0 526 526 100
robust solutions. It is however also yet undefined what a robust solu- real 44 02 03 79 0 650 650 100
tion in this context means. One possible avenue for that was already real 45 0.2 0.3 73 0 1038 1038 100
real 46 00 01 23 0 213 213 100
proposed by Ceschia and Schaerf, who encode an overcrowding risk real 47 0.1 0.2 48 1 634 634 100
penalty term in their objective (Ceschia & Schaerf, 2012). Looking at real 48 00 01 17 0 35 35 100
different ways of modelling this uncertainty, and their performance, real49 03 1.0 113 6 1246 1246 100
might also constitute a promising avenue for further research. real 50 0.3 11.3 130 27 775 781 99
real 51 00 01 26 0 451 451 100
real 52 05 109 191 13 3282 3283 99
8. Conclusion real 53 00 03 35 9 52 52 100
real 54 0.1 0.3 39 3 0 0 n.a.n.
In this work, we presented new combinatorial insights for the iz:i:g‘z 8:(1) g:g gs g 31 (3;1 111.(:):1.
patient-to-room assignment problem with regard to feasibility and the real 57 0.0 0.2 31 13 134 134 100
assignment of private patients to single rooms. We provided closed for- real 58 02 05 88 5 970 970 100
mulas to check an instance’s feasibility and to compute the maximum real 59 0.1 0.2 51 1 947 947 100
number of single-room requests that can be fulfilled. The computation real60 02 48 90 46 1622 1624 99
. . . . . real 61 04 1.3 148 16 1891 1891 100
time of those formulas is only a fraction of the time needed to build real 62 01 07 64 12 451 451 100
a corresponding IP. This is of special interest, e.g., in the context of load 501 0.1 0.2 39 0 591 501 100
appointment scheduling in hospitals. load 502 0.1 0.2 49 0 756 756 100
We further explored the performance of different IP-formulations. load 503 0.1 0.2 42 o 803 803 100
One of our key insights here is the significant performance gap between load 504 0.1 04 36 5 74 o74 100
o . . . load 505 0.1 0.2 40 0 859 859 100
objectives f'"#" and fP"V which needs to be taken into account when load 506 0.1 0.2 42 0 758 758 100
designing IP-formulations. Using all our insights, we proposed a fast load 507 0.1 0.3 44 1 896 896 100
IP-based solution approach that obtains high quality solutions which load 508 0.1  10.3 58 0 914 914 100
showcases the benefits of combinatorial insights for developing solution (continued on next page)

approaches. For an extensive and reproducible computational study, we
provide a large artificial data set that we generated based on our real-
world data. Our computational study showed that even though PRA

33



T. Brandt et al. European Journal of Operational Research 325 (2025) 20-37

Table B.2 (continued). Table B.2 (continued).

load 509 0.4 10.9 172 140 790 794 99 load 65_3 0.2 10.5 77 17 956 957 99
load_50_10 0.1 0.3 61 0 755 755 100 load_65_4 0.7 11.8 276 42 1110 1113 99
load 50_11 0.7 11.5 267 186 961 969 99 load_65_5 0.4 10.7 168 35 789 792 99
load_50_12 0.8 11.5 299 164 1030 1041 98 load_65_6 0.2 11.0 81 9 779 779 100
load_50_13 0.1 0.4 65 0 939 939 100 load 657 0.1 3.7 60 25 752 753 99
load_50_14 0.1 0.3 60 0 794 794 100 load_65_8 0.4 10.7 151 38 1092 1096 99
load_50_15 0.1 0.3 61 0 727 727 100 load_65_9 0.2 0.6 76 7 1171 1171 100
load_50_16 0.3 11.2 119 106 868 868 100 load 6510 0.4 11.1 164 184 1026 1029 99
load_50_17 0.1 0.3 66 0 1079 1079 100 load _65_11 1.1 12.4 430 251 1427 1447 98
load_50_18 0.3 3.3 121 119 929 929 100 load_65_12 0.7 11.5 272 193 1063 1072 99
load_50_19 0.3 11.3 118 165 499 503 99 load 6513 0.0 1.0 34 34 442 443 99
load_50_20 0.1 0.2 50 0 756 756 100 load_65_14 0.1 3.3 64 39 577 588 98
load_50_21 0.0 3.9 35 4 502 503 99 load_65_15 0.1 0.6 54 26 858 858 100
load_50_22 0.0 0.2 22 2 543 543 100 load_65_16 0.1 0.2 45 1 830 830 100
load_50_23 0.1 0.6 48 23 605 605 100 load_65_17 0.1 0.5 45 22 428 428 100
load_50_24 0.1 0.5 48 21 732 732 100 load_65_18 0.1 0.4 48 21 705 705 100
load_50_25 0.1 0.5 44 18 570 570 100 load_65_19 0.1 0.5 69 7 1115 1115 100
load_50_26 0.1 0.4 45 16 446 446 100 load_65_20 0.2 0.6 73 17 1128 1128 100
load_50_27 0.3 0.9 123 1 1601 1601 100 load_65_21 0.5 11.6 189 183 1407 1414 99
load_50_28 0.3 0.6 126 1 1702 1702 100 load_65_22 0.2 0.8 74 12 941 941 100
load_50_29 0.1 0.3 66 0 1010 1010 100 load_65_23 0.3 7.3 137 148 1025 1028 99
load_50_30 0.1 0.3 63 0 1021 1021 100 load_65_24 0.4 12.0 162 141 1160 1167 99
load_50_31 0.1 0.3 63 0 790 790 100 load_65_25 0.2 2.2 83 19 1232 1232 100
load_50_32 0.3 5.1 128 135 1013 1020 99 load_65_26 0.2 0.9 79 11 1164 1164 100
load_50_33 0.1 0.2 60 0 926 926 100 load_65_27 0.1 3.0 65 14 1004 1004 100
load_50_34 0.2 0.4 75 0 1181 1181 100 load_65_28 0.1 0.8 70 18 931 931 100
load_50_35 0.4 11.0 172 148 1166 1168 99 load_65_29 0.2 0.9 86 13 1407 1407 100
load_50_36 0.1 0.5 67 1 991 991 100 load_65_30 0.2 0.6 73 12 1183 1183 100
load_50_37 0.1 0.3 61 0 922 922 100 load_65_31 0.1 0.6 70 7 1171 1171 100
load_50_38 0.1 0.3 62 0 959 959 100 load_65_32 0.2 0.6 74 10 1420 1420 100
load_50_39 0.1 0.2 36 0 514 514 100 load_65_33 0.4 11.0 168 139 1204 1207 99
load_50_40 0.1 0.6 41 2 615 615 100 load_65_34 0.3 3.2 116 126 996 997 99
load_50_41 0.1 0.3 46 0 729 729 100 load_65_35 0.5 12.0 202 160 1405 1409 99
load_50_42 0.1 0.2 48 2 895 895 100 load_65_36 0.3 5.4 129 135 1093 1095 99
load_50_43 0.1 0.2 43 0 689 689 100 load_65_37 0.1 0.6 72 2 1098 1098 100
load_50_44 0.1 0.2 44 0 739 739 100 load_65_38 0.2 0.6 77 11 1144 1144 100
load_50_45 0.1 0.2 48 0 689 689 100 load_65_39 0.3 1.1 133 15 1771 1771 100
load_50_46 0.1 0.2 50 0 739 739 100 load_65_40 1.7 12.5 638 116 2172 2186 99
load_50_47 0.1 0.2 52 0 729 729 100 load_65_41 0.1 0.3 47 20 786 786 100
load_50_48 0.1 0.3 53 4 903 903 100 load_65_42 0.7 15.7 282 209 393 411 95
load_50_49 0.0 0.2 22 1 401 402 99 load_65_43 0.1 0.7 57 15 974 974 100
load_50_50 0.0 0.4 22 3 361 361 100 load_65_44 0.1 3.7 59 17 940 940 100
load_50_51 0.0 1.1 26 7 459 459 100 load_65_45 0.1 0.4 54 10 963 963 100
load_50_52 0.0 0.2 22 3 402 402 100 load_65_46 0.2 10.7 105 17 996 996 100
load_50_53 0.2 10.2 78 3 693 695 99 load_65_47 0.1 0.7 62 15 1014 1014 100
load_50_54 1.5 91.2 571 174 318 391 81 load_65_48 0.1 0.7 67 17 991 991 100
load_50_55 0.0 1.5 34 10 479 483 99 load_65_49 0.5 11.2 216 197 825 837 98
load_50_56 0.0 0.5 26 13 672 672 100 load_65_50 0.1 1.6 65 22 1066 1068 99
load_50_57 0.0 0.9 25 3 481 481 100 load_65_51 0.1 1.8 39 33 500 500 100
load_50_58 0.0 0.1 23 4 379 379 100 load_65_52 0.0 0.6 29 17 483 485 99
load_50_59 0.0 0.1 22 1 478 478 100 load_65_53 0.1 2.2 51 33 593 595 99
load_50_60 0.0 0.4 24 3 578 578 100 load_65_54 0.1 2.5 43 27 467 471 99
load_50_61 0.0 0.1 23 2 321 321 100 load_65_55 0.1 2.3 66 25 512 516 99
load_50_62 0.0 1.3 27 2 396 396 100 load_65_56 0.1 10.1 60 32 659 668 98
load_50_63 0.0 0.4 22 3 339 339 100 load_65_57 0.0 0.9 29 24 436 438 99
load_50_64 0.0 0.3 23 4 500 500 100 load_65_58 0.1 1.4 37 20 443 448 98
load_50_65 0.1 0.3 70 0 1036 1036 100 load_65_59 0.0 0.9 33 21 554 554 100
load_50_66 0.1 0.3 67 0 927 927 100 load_65_60 0.0 1.0 35 22 424 428 99
load_50_67 0.1 0.3 38 3 620 620 100 load_65_61 0.1 1.6 42 32 506 514 98
load_50_68 0.1 0.2 41 2 629 629 100 load_65_62 0.1 2.8 39 19 587 589 99
load_50_69 0.1 0.2 39 0 718 718 100 load_65_63 0.1 1.3 39 32 657 660 99
load_50_70 0.1 0.5 43 31 457 457 100 load_65_64 0.1 1.9 39 13 489 495 98
load_50_71 0.1 0.2 39 0 497 497 100 load_65_65 0.2 0.7 88 14 1375 1375 100
load_50_72 0.1 0.2 40 0 541 541 100 load_65_66 0.2 0.7 83 14 1246 1246 100
load_50_73 0.1 0.2 38 0 610 610 100 load_65_67 0.1 0.3 44 12 697 697 100
load_50_74 0.1 0.2 38 0 586 586 100 load_65_68 0.1 0.5 58 83 769 769 100
load_50_75 0.0 1.1 36 79 384 430 89 load_65_69 0.1 0.3 44 18 797 797 100
load_50_76 0.0 0.2 22 32 131 131 100 load_65_70 0.1 0.6 62 71 808 808 100
load_50_77 0.1 0.4 38 36 509 509 100 load_65_71 0.1 0.3 45 13 869 869 100
load_50_78 0.1 0.3 37 43 520 520 100 load_65_72 0.1 0.6 55 57 672 672 100
load_50_79 0.0 0.9 30 6 444 452 98 load_65_73 0.1 0.4 46 4 680 680 100
load_50_80 0.0 0.5 22 1 341 341 100 load_65_74 0.1 0.4 48 11 642 642 100
load_65_1 0.3 10.5 137 35 851 852 99 load_65_75 0.0 0.5 35 89 463 489 94
load _65_2 0.2 10.5 102 22 755 759 99

(continued on next page)
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Table B.2 (continued).

load_65_76
load_65_77
load_65_78
load_65_79
load_65_80
load_80_1

load_80_2

load_80_3

load_80_4

load_80_5

load_80_6

load_80_7

load_80_8

load_80_9

load_80_10
load_80_11
load_80_12
load_80_13
load_80_14
load_80_15
load_80_16
load_80_17
load_80_18
load_80_19
load_80_20
load_80_21
load_80_22
load_80_23
load_80_24
load_80_25
load_80_26
load_80_27
load_80_28
load_80_29
load_80_30
load_80_31
load_80_32
load_80_33
load_80_34
load_80_35
load_80_36
load_80_37
load_80_38
load_80_39
load_80_40
load_80_41
load_80_42
load_80_43
load_80_44
load_80_45
load_80_46
load_80_47
load_80_48
load_80_49
load_80_50
load_80_51
load_80_52
load_80_53
load_80_54
load_80_55
load_80_56
load_80_57
load_80_58
load_80_59
load_80_60
load_80_61
load_80_62

is N'P-hard, the PRA problem can be solved to optimality or at least
close to optimality for realistically sized instances in reasonable time.
Hence, our solution approach is a good basis for future integration of
other objective functions that are needed for application in real-life.
Finally, we elaborated on numerous possibilities for future work.
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0.2
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0.5
0.5
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0.2
0.3
0.3
0.4
0.4
0.4
0.2
0.3
0.5
0.5
0.3
0.7
0.4
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11.0
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34
38
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43
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754
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469
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121
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60
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47
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412
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127
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159
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94
54
84
64
85
99
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10
24
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89
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85
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39
32
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11
149
230
65
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221
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76
93
333
294
122
18
80
147
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190
193
190
61
183
188
201
113
315
72
56
89
58
242
73
139
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67
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61
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66
63
57
54
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345
523
478
437
429
886
819
915
776
740
1005
717
875
1505
1316
1464
1317
450
393
1000
1038
741
786
1386
1583
1193
1234
1627
1460
1364
1173
999
912
1688
1509
1562
1508
1183
1481
1529
1364
1310
1314
1571
1616
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358
523
478
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507
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97
98
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98
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96
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99
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97
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load_80_63 0.3 10.3 110 71 392 405 96
load_80_64 0.1 1.5 41 55 432 437 98
load_80_65 0.5 11.4 197 162 1211 1214 99
load_80_66 0.4 11.9 165 97 1196 1198 99
load_80_67 0.1 0.5 62 98 938 938 100
load_80_68 0.1 0.5 61 85 987 987 100
load_80_69 0.1 0.8 69 85 769 769 100
load_80_70 0.1 0.6 70 95 997 997 100
load_80_71 0.1 0.5 59 58 886 886 100
load_80_72 0.1 0.4 51 39 930 930 100
load_80_73 0.1 0.5 63 87 867 867 100
load_80_74 0.1 0.5 54 42 967 967 100
load_80_75 0.1 4.6 58 104 804 845 95
load_80_76 0.1 0.6 41 60 621 654 94
load_80_77 0.1 0.5 46 57 730 730 100
load_80_78 0.1 0.9 53 63 864 879 98
load_80_79 0.2 3.4 97 46 445 474 93
load_80_80 0.5 7.6 215 48 489 541 90
load 951 3.1 14.7 1141 206 575 607 94
load_95_2 2.3 11.0 864 178 530 566 93
load 95_3 2.9 11.9 1089 162 570 599 95
load_95_4 4.8 12.2 1757 229 602 653 92
load 955 29 12.6 1059 181 603 633 95
load_95_6 2.4 11.7 885 179 509 535 95
load 957 2.0 11.4 746 148 498 520 95
load 95_8 3.9 11.6 1428 175 514 543 94
load 959 1.2 12.4 460 306 1618 1638 98
load_95_10 0.9 12.1 340 313 1573 1584 99
load 95_11 1.5 14.8 577 376 1819 1847 98
load_95_12 0.9 12.7 363 359 1807 1841 98
load 9513 0.6 10.2 255 129 421 452 93
load_95_14 0.9 10.5 329 113 357 398 89
load_95_15 0.1 0.6 66 39 889 889 100
load_95_16 0.1 0.7 70 36 1256 1256 100
load 9517 0.1 0.4 54 27 831 831 100
load 95_18 0.1 0.4 52 45 815 815 100
load_95_19 0.4 11.1 179 204 1602 1610 99
load_95_20 0.4 3.9 169 217 1817 1821 99
load_95_21 0.4 8.1 166 197 1632 1636 99
load_95_22 0.3 3.2 144 202 1467 1470 99
load_95_23 0.3 2.4 145 193 1519 1519 100
load_95_24 0.4 4.0 180 218 1699 1706 99
load_95_25 1.2 12.7 447 339 1039 1077 96
load_95_26 0.7 11.0 277 318 957 981 97
load_95_27 1.0 14.3 370 314 1040 1083 96
load_95_28 1.8 16.2 688 371 1219 1296 94
load_95_29 0.4 10.1 169 203 1646 1648 99
load_95_30 0.4 4.4 174 200 1615 1626 99
load_95_31 0.5 5.6 195 229 1803 1805 99
load_95_32 0.5 11.2 204 217 1785 1794 99
load_95_33 0.3 1.9 140 186 1400 1401 99
load_95_34 0.7 11.4 277 254 1636 1646 99
load_95_35 0.4 11.3 182 225 1877 1884 99
load_95_36 0.5 11.0 202 223 1806 1817 99
load_95_37 0.7 11.1 258 277 2123 2133 99
load_95_38 0.6 13.5 240 213 1883 1888 99
load_95_39 4.7 36.3 1722 325 940 958 98
load_95_40 3.6 19.0 1345 312 896 915 97
load_95_41 1.1 11.5 411 330 568 586 96
load_95_42 0.5 10.6 202 334 595 610 97
load_95_43 1.7 16.5 627 175 482 488 98
load_95_44 11 15.5 432 161 509 515 98

(continued on next page)
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Table B.2 (continued).

load_95_45 1.7 12.5 622 155 526 536 98
load_95_46 1.4 12.0 535 181 516 524 98
load_95_47 0.7 10.9 276 266 1102 1112 99
load_95_48 0.5 11.2 195 249 1008 1015 99
load_95_49 0.5 11.0 201 193 1221 1227 99
load_95_50 0.6 11.9 221 268 1120 1130 99
load_95_51 0.6 10.1 249 114 378 419 90
load_95_52 0.4 10.4 180 119 374 394 94
load_95.53 0.6 10.3 250 126 385 404 95
load_95_54 0.2 3.5 85 113 333 346 96
load_95_55 0.3 10.1 140 109 373 393 94
load_95_56 1.1 15.3 432 257 848 866 97
load_ 9557 0.4 10.2 150 112 374 391 95
load_95_58 0.3 2.7 113 103 349 368 94
load_95_59 0.5 11.1 198 100 312 341 91
load_95_60 0.3 11.9 143 113 420 435 96
load_95_61 0.5 10.6 184 93 430 463 92
load_95_62 0.6 10.9 223 105 404 423 95
load_95_63 0.9 10.4 361 119 461 491 93
load_95_64 0.6 10.3 251 89 382 397 96
load_95_65 0.5 6.7 202 207 1588 1592 99
load_95_66 0.3 1.7 116 112 1703 1703 100
load_95_67 0.1 0.6 70 107 1181 1181 100
load_95_68 0.1 0.6 66 97 1043 1043 100
load_95_69 0.1 0.5 65 103 938 938 100
load_95.70 0.2 0.6 74 116 1309 1309 100
load_95_71 0.1 0.6 71 127 1100 1100 100
load_95.72 0.1 0.5 64 96 1070 1070 100
load 95.73 0.1 0.7 63 107 1093 1093 100
load_95_74 0.1 0.6 68 102 937 937 100
load_95_75 0.1 0.8 56 160 745 824 90
load_95.76 0.1 0.8 62 137 742 885 83
load_95_77 0.1 0.4 45 65 1009 1009 100
load_95_78 0.1 0.4 46 66 690 690 100
load_95.79 0.4 3.0 151 56 456 503 90
load_95_80 0.6 12.5 241 95 276 337 81
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Appendix A. Datasets

In this section, we report statistical information about our arti-
ficial instances. The corresponding information about the real-world
instances is subject to non-disclosure. In the following tables, there are
information for every instance about the total number of patients, as
well as the number of female, male, private, and emergency patients.
The average occupancy rate is specified in the instance’s name. We
further report the median of patients’ length-of-registration (lor) and
length-of-stay (los). Both lor and los are generated using a lognormal
distribution. We further report the total number of beds and the number
of single/double rooms of each instance (see Table A.1).

Appendix B. Full runtimes and results

In this section, we report statistical details on the solution found
by our algorithms both for the 62 real-world instances and artificial
instances. The solutions for the artificial instances themselves can be
found at Brandt and Engelhardt (2024). In each table we report the
mean and maximal computation time needed for one iteration as well
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as the total runtime needed for all 365 iterations. We further report
the objective values found by our algorithm. For an assessment of the
solution’s quality we report the value s™** for every instance as well as
the ratio of how many single-room requests could be fulfilled. Contrary
to the real-world instances, we did not check whether there exists a
feasible solution without transfers for the artificial instances. Hence,
we cannot assess the solution’s quality w.r.t. to the number of transfers
(see Table B.2).
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