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Abstract
Molded by evolutionary processes to cope with the statistical regularities in the world,

the symbiotic relation between the structure, dynamics and function of the neural ma-
chinery underlies all behavioral and cognitive processes. Established paradigms formu-
late these processes in terms that involve the manipulation of sequentially organized
time-discrete (symbolic) representations. This underscores two basic functional require-
ments that cortical circuits must fulfill: the ability to create suitable representations
from a highly volatile and noisy environment; and the capacity to process, and learn
from, their spatio-temporal structure.

While the precise mechanisms are largely unknown, these processes must be imple-
mented in the biophysical substrate of the brain, where the complex interactions of
neuronal populations can leverage a hierarchical and modular architecture in order to
process information on multiple spatial and temporal scales. From a modeler’s per-
spective, one can tackle these problems from two complementary angles: identify some
fundamental organizing principles, such as modularity, and try to elucidate their role
(bottom-up); or focus on a specific functionality, like sequence processing, and devise
possible, biophysically plausible models for it (top-down). Combining software tools,
simulation studies and theoretical analysis, this thesis touches upon both approaches
over the course of a series of research projects, with the shared goal of disentangling how
modular structures enable neural circuits to learn and process sequential information in
an efficient and reliable manner.

The first part analyses the characteristics of state representations in modular spiking
networks and the architectural and dynamical constraints that influence the system’s
ability to retain, transfer and integrate stimulus information in the presence of noise.
It explores the novel hypothesis that modular topographic maps, a pervasive anatom-
ical feature of the cortex, may provide a structural scaffold for sequential denoising
of stimulus representations. By combining modeling with network theory, this thesis
demonstrates that the sharpness of topographic projections acts as a bifurcation param-
eter, controlling the macroscopic dynamics and representational precision of the system.
In-depth theoretical analysis unravels the dynamical principles underlying the mecha-
nism, and suggests a robust and generic structural feature that enables a broad range of
behaviorally-relevant operating regimes.

The second part of this work is dedicated to investigating existing, biologically de-
tailed models of sequence processing. If we are to harvest the knowledge within these
models and arrive at a deeper mechanistic understanding of the involved phenomena,
it is critical that the models and their findings are accessible, reproducible, and quan-
titatively comparable. First, the importance of these aspects are illustrated through a
replication study. Building on this, the study lays the initial steps towards a conceptual
and practical, theoretically-grounded framework for benchmarking and comparison of
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sequence learning models. Through such a meta-analysis study, it aims not only to pro-
vide critical evaluation of current models, but also to synthesize their insights into a set
of functional and neurobiological features that could be corroborated with experimental
data and guide future studies.
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Kurzfassung
Durch evolutionäre Progresse geformt um mit den statistischen Regelmäßigkeiten der

Welt zurecht zu kommen, unterliegen alle Verhaltens- und Erkenntnisprozessen der sym-
biotischen Beziehung zwischen Struktur, Dynamik und Funktion.

Etablierte Paradigmen formulieren diese Prozesse in Begriffen, die die Manipula-
tion von sequentiell organisierten zeitdiskreten (symbolischen) Repräsentationen bein-
halten. Dies unterstreicht zwei grundlegende funktionelle Anforderungen, die kortikale
Schaltkreise erfüllen müssen: die Fähigkeit, geeignete Repräsentationen aus einer hochgradig
unbeständigen und verrauschten Umgebung zu erzeugen, und die Fähigkeit, ihre räumlich-
zeitliche Struktur zu verarbeiten und daraus zu lernen.

Während die genauen Mechanismen weitgehend unbekannt sind, müssen diese Prozesse
im biophysikalischen Substrat des Gehirns implementiert werden, wo die komplexen
Interaktionen von Neuronenpopulationen eine hierarchische und modulare Architektur
nutzen können, um Informationen auf mehreren räumlichen und zeitlichen Ebenen zu
verarbeiten. Aus der Sicht eines Modellierers kann man diese Probleme aus zwei komple-
mentären Blickwinkeln angehen: man kann einige grundlegende Organisationsprinzip-
ien, wie z. B. die Modularität, identifizieren und versuchen, ihre Rolle zu ergründen
(Bottom-up); oder man kann sich auf eine spezifische Funktionalität, wie z. B. die Se-
quenzverarbeitung, konzentrieren und mögliche, biophysikalisch plausible Modelle dafür
entwickeln (Top-down). Durch die Kombination von Software-Tools, Simulationsstudien
und theoretischen Analysen werden in dieser Arbeit beide Ansätze im Rahmen einer
Reihe von Forschungsprojekten verfolgt, mit dem gemeinsamen Ziel, zu entschlüsseln,
wie modulare Strukturen neuronale Schaltkreise in die Lage versetzen, sequenzielle In-
formationen effizient und zuverlässig zu lernen und zu verarbeiten.

Im ersten Teil werden die Eigenschaften von Zustandsrepräsentationen in modularen
Spiking-Netzwerken und die architektonischen und dynamischen Beschränkungen analysiert,
die die Fähigkeit des Systems beeinflussen, Reizinformationen im Beisein von Rauschen
zu behalten, zu übertragen und zu integrieren. Es wird die neuartige Hypothese unter-
sucht, dass modulare topografische Karten, ein weit verbreitetes anatomisches Merkmal
des Kortex, ein strukturelles Gerüst für die sequentielle Entrauschung von Stimulus-
repräsentationen bieten können. Durch die Kombination von Modellierung und Net-
zwerktheorie zeigt diese Arbeit, dass die Schärfe der topographischen Projektionen als
Bifurkationsparameter fungiert und die makroskopische Dynamik und Repräsentations-
genauigkeit des Systems kontrolliert. Eine eingehende theoretische Analyse entschlüsselt
die dynamischen Prinzipien, die dem Mechanismus zugrunde liegen, und legt ein robustes
und generisches Strukturmerkmal nahe, das eine breite Palette von verhaltensrelevanten
Betriebsregimen ermöglicht.

Der zweite Teil dieser Arbeit widmet sich der Untersuchung bestehender, biologisch
detaillierter Modelle der Sequenzverarbeitung. Wenn wir das in diesen Modellen enthal-
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tene Wissen nutzen und zu einem tieferen mechanistischen Verständnis der beteiligten
Phänomene gelangen wollen, ist es von entscheidender Bedeutung, dass die Modelle
und ihre Ergebnisse zugänglich, reproduzierbar und quantitativ vergleichbar sind. Wie
wichtig diese Aspekte sind, wird zunächst anhand einer Replikationsstudie veranschaulicht.
Darauf aufbauend legt die Studie die ersten Schritte zu einem konzeptionellen und prak-
tischen, theoretisch fundierten Rahmen für das Benchmarking und den Vergleich von
Sequenzlernmodellen fest. Durch eine solche Meta-Analyse-Studie soll nicht nur eine
kritische Bewertung aktueller Modelle vorgenommen werden, sondern auch eine Syn-
these ihrer Erkenntnisse in Form einer Reihe funktioneller und neurobiologischer Merk-
male, die mit experimentellen Daten untermauert werden können und als Leitfaden für
künftige Studien dienen.
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Chapter 1

Introduction

It is the pervading law of all things organic and inorganic, of all things physical
and metaphysical, of all things human and all things superhuman, of all true
manifestations of the head, of the heart, of the soul, that the life is recognizable
in its expression, that form ever follows function. This is the law.

– Louis H. Sullivan

1.1 Structure, function and the cerebral cortex
“Form follows function” — this adage, coined by Louis H. Sullivan at the turn of the
19th century, has profoundly shaped the following generations of architects and designers,
culminating in the Bauhaus movement and giving rise to the design principle that form
(structure) should be/is the expression of the purpose (function) (Charles Eames, 1972).
This view was challenged early on, with Frank Lloyd Wright suggesting a more holistic
perspective in that “form and function should be one, joined in a spiritual union” (1908).
Such debates about the intimate relationship between form and purpose, or structure and
function, have deep roots in philosophy and science, involving a multitude of disciplines
from physics to software engineering. The relevance of the issue is perhaps nowhere
more pertaining than in the context of biological systems: if we see a certain structure
or organizational principle, most will automatically wonder what function it may serve.

If the goal is to simply understand the functional principles of a particular biological
organism or its components (units), determining the causal relation between its structure
and its function may not even be necessary. Instead, taking a pragmatic approach in light
of available scientific evidence may be more fruitful. Structure, that is the arrangement
of elements in a unit, such as the folded structure of proteins or the network of neuronal
cells and synapses in the nervous system, mechanistically determines function insofar as
it constrains the possible processes within and activity of the unit. Such arrangements
permeate all levels of biological organization. In turn, the function, which arises as
a consequence of the physical characteristics of the structure and interactions of its
elements (Herman et al., 2021), shapes, to some extent, the underlying structure either
directly (Henry et al., 2013) or through slower evolutionary processes (Abbot, 1916).
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Such reciprocal influences between structure and function are well illustrated by various
sensory systems: for instance, the cochlea determines which sound frequencies we can
distinguish, but there is indication that in humans, the development of speech strongly
shaped the evolution of frequency selectivity patterns (Manley, 2016).

The tight coupling between the two concepts suggests that the complexity of function
correlates with the complexity of structure (Spencer, 1866). This relation is perhaps
best exemplified by the mammalian brain, where billions of neurons connect through
remarkably complex synaptic structures, forming intricate networks that generate be-
havior, and, ultimately, cognition. All mental processes, from simple motor primitives
to language and decision-making, arise from the mosaic of biophysical processes in the
brain (Searle, 1980). The concerted interactions of these processes, collectively referred
to as neural activity, have been theorized to represent a physical implementation of com-
putation (Searle, 1980; Piccinini and Bahar, 2012). While the exact nature of cognition
remains heavily disputed (Globus, 1992; Piccinini and Scarantino, 2011), the “symbi-
otic” relation between the structural organization and functional aspects of the neuronal
machinery is well established (Rubinov et al., 2009). This mutual influence occurs at
multiple spatial and temporal scales, not just during development but as a continuous,
ongoing process (Sporns, 2011; Pan and Monje, 2020). Neural activity is thus shaped
and constrained by the underlying (connectivity) structure (Honey et al., 2007), and in
turn, may mold the synaptic structure through activity-dependent mechanisms (Fauth
and Tetzlaff, 2016). And, as in all complex systems in the natural domain (Ball, 2009)
which “find their place in one or more of four intertwined hierarchic sequences” (Simon,
1977), the connectivity and activity of neural circuits also compose into diverse and
characteristic patterns.

One such overarching organization principle in the cerebral cortex is modular hierarchy,
both at an anatomical (structural) and a functional level (Felleman and Van Essen, 1991;
Bullmore and Sporns, 2009; Meunier et al., 2010; Markov and Kennedy, 2013; Park and
Friston, 2013). From a graph theory perspective, topological modularity (Newman, 2003)
in the cortex is expressed through stereotypical connection motifs between populations of
neurons, with neurons connecting densely within and more sparsely outside their module
(Sporns, 2011; Hilgetag and Goulas, 2015). While the definition of a module in the cortex
remains ambiguous, modularity permeates all scales of organization with a varying degree
of associated functionality. One (although contested, see Horton and Adams, 2005) such
unit is the cortical column (Mountcastle, 1997). Its ubiquity plays into the intriguing
idea that neural circuits are variations on a common “canonical microcircuit” (Harris
and Shepherd, 2015), and may use similar computation principles for very different
tasks despite their segregation into functionally specialized cortical areas. Zoom out
to this level of larger areas, and the hierarchical character of the neocortex begins to
crystalize, most evidently in the configuration of the sensory regions and their processing
(Hilgetag and Goulas, 2020). These are characterized by a (global) direction in the
laminar projection patterns at a structural level (Felleman and Van Essen, 1991), as
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well as a progression of spatial and temporal processing scales (Murray et al., 2014) and
gradient of feature representations (Sharpee et al., 2011) at a functional level.

This raises the question of what advantages, if any, modularity and hierarchy confer a
complex biological system. While both features may simply be a by-product of random
processes (Corominas-Murtra et al., 2013), modularity has been suggested to emerge
naturally in dynamical networks when driven by growth (Lorenz et al., 2011) or when
connections involve a cost (e.g., metabolic costs, see Mengistu et al., 2016). From an
evolutionary perspective, a modular composition may enable a more granular, selective
variation of individual components while avoiding interference with other, already opti-
mized subsystems (Hansen, 2003; Gerhart and Kirschner, 2007). Similarly, a hierarchical
organization of modules is thought to endow the system with greater robustness, adapt-
ability and evolvability (Meunier et al., 2009; Kaiser, 2010a). These general traits apply
to any complex system that evolves and learns through time, including neural networks.

1.2 Modularity and hierarchy for neural computation

Neural networks are the foundational blocks of connectionist and neurocomputational
theories of cognition. Early connectionist models (Rumelhart et al., 1986a; McLeod
et al., 1998) drew on the neuron doctrine of Santiago Ramón y Cajal (1888), and used
simplified neuron models, such as the binary neuron of (McCulloch and Pitts, 1943)
and the perceptron (Rosenblatt, 1958), to build functional networks that could perform
simple computations.

While these models are constrained only by behavioral data, some modern neurocom-
putational theories rely on networks that additionally include detailed neurophysiological
information, such as some models used in computational neuroscience. A third view is
represented by the classical theories of cognition (Newell and Simon, 1975; Fodor and
Pylyshyn, 1988), which draw strong parallels between cognition and digital computers
and formulate (artificial) intelligence and cognitive processes in terms of symbolic al-
gorithms that can be replicated by idealized computing devices like Turing machines
(Turing, 1937, 1952).

Unlike such abstract devices, recurrent neural networks are much better suited for
mechanistic models of cortical circuits, while preserving the full computational power of
a universal Turing machine (Garzon and Franklin, 1991; Siegelmann and Sontag, 1991).
Given that, to a first approximation, cortical circuits are recurrent networks of spiking
neurons (Lorente de Nó, 1933), insights into the representational and learning character-
istics of neural networks can drive and inform modeling studies that seek to understand
the behavioral and functional properties of biological circuits. For instance, works on
deep networks demonstrated how a hierarchy of concepts and representations can emerge
through a layered architecture, fostering generalization capacity (LeCun et al., 2015);
how recycling more compact representations from lower layers allows efficient use of lim-
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ited resources (Bengio and LeCun, 2007); or how, in practice, solving complex tasks is
close to impossible without some form of hierarchy (Bengio and LeCun, 2007).

The generality of these computational benefits means that, in principle, they also ap-
ply to similarly organized biological neural circuits. When sophisticated functionality
arises from simple building blocks (modules), unfavorable evolutionary changes or brief
perturbations can be limited to a small part of the network, thereby lowering the im-
pact on the overall system operation. Compartmentalization of (learned) functionality
through modularity helps cortical networks to avoid detrimental interferences between
specialized modules, which may lead to catastrophic forgetting of previously acquired
skills (Ellefsen et al., 2015).

At the very least, modularity and hierarchy in cortical circuits regulate how infor-
mation is distributed through the processing stages and constrain/shape the dynamics
of the neural activity in every module. Computational studies demonstrated that com-
pared to random networks, modular circuits facilitate a wider range of complex activity
patterns (Sporns and Betzel, 2016) characterized by long transients and high informa-
tion transfer (Rubinov et al., 2011). Additionally, a hierarchical arrangement increases
the range of stable dynamics in recurrent networks (Jarvis et al., 2010), is preferred
by evolutionary algorithms that seek to maximize information transmission (Yamaguti
and Tsuda, 2015), and represents an optimal structure for stable, but limited sustained
neural activity (Kaiser et al., 2007; Kaiser, 2010b). Modular hierarchy thus enables rich
patterns of communication and may be a natural way to balance network segregation and
integration to maximize functionally relevant interactions of individual modules (Tononi
et al., 1994).

1.3 Modular sensory pathways and topographic maps

Segregation and integration are key computational strategies enabling a hierarchical
aggregation of stimulus features. This implies a progression of scales along which in-
formation is processed, which in the cortex arises from the combination of local fea-
tures (Duarte et al., 2017a) and inputs from other modules and areas mediated through
structured pathways. The division of labor concerning specific features of the input is
particularly evident in the early sensory cortices and is determined by the projection of
signals from the peripheral nervous system.

Many sensory streams are mapped onto the neocortex in a highly non-random or to-
pographic manner, mostly reflecting the spatial layout of the sensory receptors. These
mappings determine the receptive field (Sherrington, 1906) properties of the cells in the
early cortical regions, roughly defined as the part of sensory space that evokes a neu-
ronal response when stimulated. Neighboring cells in the somatosensory cortex receive
input from and encode adjacent locations on the body surface (somatotopy, Kaas, 1997),
whereas tonotopic maps originating from the cochlea ensure that similar frequencies are
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processed in spatially proximal regions of the auditory cortex (Weisz et al., 2004). In
the early visual system, the receptive fields of the neurons can be traced back to partic-
ular positions on the retina and thus to specific portions of the visual field, with nearby
neurons “looking at” nearby points in the input (retinotopy; Holmes, 1918; McLaughlin
and O’Leary, 2005).

This organization is similar to the concept of receptive field in convolutional neural
networks (CNNs), which is defined as the region in the input (image) that yields the
feature (Araujo et al., 2019). Much like cortical cells tuned to parts of the sensory input
space, each unit in a convolutional layer processes data only from a restricted area,
inducing a segmentation (tiling) of the input. These projections are maintained, to a
variable degree, through many processing modules and layers. The effective receptive
field size then grows with network depth, allowing each module to learn features at
increasing scales and take full computational advantage of the hierarchical structure.
This is important for size-invariant object recognition, among other functions, because
it allows deeper modules to integrate stimuli over a greater spatial range.

In the mammalian brain, such projection patterns preserve the spatial relationship be-
tween neurons in different areas and collectively give rise to topographic maps (Hagler
and Sereno, 2006; Harris and Mrsic-Flogel, 2013). Although many studies demonstrated
their existence, there is considerable uncertainty regarding their formation and func-
tional role(s). They are often regarded as a consequence of some optimization during
developmental processes, in particular the optimization (reduction) of axonal wiring
length (Buzsáki et al., 2004). This theory underlies some models of orientation and mo-
tion tuning development based on self-organization (Swindale and Bauer, 1998), and in
non-biological networks it could explain the emergence of topographic connectivity that
mirrored realistic spatial organization Lee et al. (2020). Beyond representing an efficient
wiring pattern, the presence of topography in the associative and frontal areas suggests
an important role in higher cognitive processes (Thivierge and Marcus, 2007). These
range from facilitating rapid local computations (Hilgetag et al., 2000) and enabling
accurate maintenance of basic spatial information (Friston, 2002) to being involved in
object selectivity (Silver and Kastner, 2009) and multisensory attention (Anderson et al.,
2010), as well as working memory (Kastner et al., 2007).

Thus, the preservation of topographic organization through large portions of the cor-
tical hierarchy may facilitate a dynamic link between perception and more complex
processes (Mackey et al., 2017). Given the robustness of most sensory systems to vari-
ations in the input, we should perhaps not be surprised if certain stimulus features are
maintained, repeated or amplified across the cortex. Take for instance the aforemen-
tioned retinotopic maps, which conserve the spatial structure of an image. These maps
occur through most of the visual hierarchy, often arranged into multiple, spatially con-
tinuous clusters spanning different areas (Wandell et al., 2005). Although individual
maps within a cluster may implement distinct computations (e.g., related to color or
orientation), sharing a common visual field representation can facilitate their integra-
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tion in a spatially local manner. This suggests that the computations performed within a
cluster serve related perceptual functions, taking advantage of efficient resource sharing
(Wandell et al., 2007).

1.4 Robust state representations from noisy sensory inputs

It is intriguing to consider topographic maps as a ubiquitous structural feature, whereby
certain (sensory) input properties are maintained and transmitted across different corti-
cal areas efficiently. In principle, this information could then be integrated with various
local computations and serve as a basis for perception. In order to understand the func-
tional requirements involved, it is helpful to first take a step back and examine some
more fundamental aspects of sensory signals and their processing.

Our everyday experience of the chaotic, continuous flux of information from the world
seems to be divided into discrete events that exhibit some systematic relation (Zacks and
Tversky, 2001; Zacks, 2020). When we listen to music or learn a new dance, we naturally
partition the continuous streams into temporally extended events based on some shared
attributes. The boundaries, which may be spatially and temporally imprecise or even
discontinuous, are created through a process of segmentation that links stimuli, based on
similar context or spatiotemporal features, into “coherent and bounded sub-sequences”
(Schapiro et al., 2013). Often, such segmentations involve a higher level of abstraction
and association of inputs over prolonged time intervals (e.g., switching between differ-
ent types of dances). VanRullen and Koch (2003) considered this as a kind top-down
information integration, and contrasted it with the process of “discrete perception”. In
this view, continuous representations are created from individual snapshots of the sen-
sory input. When these occur within a perceptual timeframe that is determined by the
intrinsic timescales of neurophysiological processes (less than 100 ms), they are grouped
and interpreted as a single event. Importantly, this interpretation validates computa-
tional models that approximate sensory stimuli as discrete inputs with various degrees
of abstraction.

Irrespective of the nature and level of discretization of such perceptual events, their
representation must be extracted and constructed from a highly dynamic and noisy en-
vironment. Therefore, as a first step towards engaging with the world, cortical networks
must create reliable and meaningful representations from sensory inputs that are often
ambiguous, incomplete or corrupt (Renart and Machens, 2014). Sources of volatility
can be extrinsic (e.g., blurred image) or intrinsic to the system, such as imperfect sig-
nal transduction at the peripheral receptors or cellular and synaptic noise, which can
accumulate and lead to a deterioration of the input representation (Faisal et al., 2008).
From these noisy inputs, cortical circuits must then distill the relevant features to forge
a ground truth against which internally generated signals from inferential processes can
be evaluated (Młynarski and Hermundstad, 2018; Parr et al., 2019).
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For this, signals coming from the sensory periphery must be routed through the mod-
ules on the lower levels of the cortical circuitry, their information content represented
and integrated with ongoing processes (Macaluso, 2006; Keller et al., 2012) that depend
on both local and long-range interactions (Duarte, 2015). Since information that fails to
permeate the cortical hierarchy can not influence sensory perception, the encoding and
transmission process must minimize signal degradation. This is all the more important
considering that at each subsequent stage, information can only be lost and not gained
(see data-processing inequality theorem; Cover and Thomas, 1991).

The precise mechanisms through which neuronal circuits can overcome the detrimental
effects of noise are still actively debated. Previous studies have focused on single-neuron
behavior (Marrufo-Pérez et al., 2020), circuit-level plasticity mechanisms (Turrigiano,
2011), and optimal tuning (Seriès et al., 2004) and connectivity profiles (Renart and
van Rossum, 2012). However, it remains unclear whether the modular topographic
organization of the sensory pathways also contributes to alleviating this problem.

1.5 From discrete representations to sequence processing

As discussed above, discretization of the continuous information flow may be an integral
part of sensory processing, but at the same time, we can perceive, learn and generalize
from the temporal dependencies within the input stream. Perceiving causality, antici-
pating events, understanding language and generating movement — all facets of complex
behavior are anchored in time and rely on the ability to encode, recognize and express
temporally patterned sequences. Since (Lashley, 1951) noted an innate proclivity of
humans and other animals towards acquiring multi-item sequential structure in the in-
put, a long line of research, spanning a variety of disciplines, has been devoted toward
formalizing the problem and deciphering the underlying neural mechanisms (Chomsky,
1956; Reber, 1967; Dehaene et al., 2015). Although experimental and theoretical ap-
proaches vary significantly depending on the aspects they aim to capture, most of them
can be roughly aligned along the taxonomy of five mechanisms for sequence process-
ing formulated by Dehaene et al. (2015): transition and timing knowledge, chunking or
segmentation, knowledge of order, algebraic patterns, and nested tree structures.

Sensitivity to order and timing is reflected in the neural activity throughout the brain.
Responses to simple sequences of images or tones indicate the learning of both transition
probabilities and duration of stimuli, which can be faithfully recalled (replayed) upon a
cued input (Gavornik and Bear, 2014). Sequence elements are anticipated even if omit-
ted, whereas items that violate the learned structure generate detectable mismatch re-
sponses (Garrido et al., 2009). To a certain degree, these mechanisms are semi-automatic
and occur through mere exposure, even in the absence of attention. Representations are
item-specific and detailed, encoding both their duration and the time interval between
them. While there may be several neural processes underlying timing (Tsao et al., 2022),
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evidence indicates that it is (just) one dimension along which the brain computes. On
the one hand, elapsed time can be quantified and used for decision-making (Balci et al.,
2009), and sequences such as a song or movement can be learned at one speed and
replayed (rescaled) flexibly at different ones. On the other hand, time can also be ab-
stracted from during sequence recognition, most evidently during language processing
(Miller et al., 1984).

Language also illustrates the ability to segment a continuous input stream into dis-
tinct groups or “chunks” based on certain properties (e.g., phonemes into words). More
broadly, this process refers to recognizing frequently recurring elements (embedded into
longer sequences) as one chunk and concatenating them into single-item representations
for further manipulation as a whole (Gobet et al., 2001). In humans and some pri-
mates, this capability is very general and underlies a range of cognitive functions, from
visuomotor processing (Orbán et al., 2008) to episodic memory (Schapiro et al., 2013).

The remaining three mechanisms in the taxonomy are more complex and involve an
increasing degree of abstraction. Ordinal knowledge implies the ability to retain and
recall the order of elements in a sequence, independently of their timing. Abstracting
further away from the stimulus identities, representations of algebraic patterns refer to
the capacity to internalize motifs such as ABB, and recognize any sequence of that form
(Marcus, 2003). Lastly, in addition to the extraction of such abstract rules and gen-
eralizing them to new inputs, processing language requires the ability to also handle
nested tree structures generated by symbolic rules, possibly involving recursion (Chom-
sky, 1956). As we will see later on, Chomsky’s work on formal languages and symbolic
processing ties in deeply with the theory of computation, and can serve as a framework
for evaluating the computational power of neural networks.

Contingent on the architectural details, the power of artificial neural networks spans
the entire hierarchy of complexity, from recognizing very simple sequences like ABCD
to Turing-completeness (Delétang et al., 2022). In contrast, biologically more detailed
models, such as recurrent networks of spiking neurons in conjunction with non-supervised
learning rules, are limited to sequences of significantly lower complexity. Most models
obeying these feature restrictions focus on the transition and timing aspects (Murray
and Escola, 2017; Bouhadjar et al., 2022; Cone and Shouval, 2021), with few propositions
to solve chunking (Asabuki et al., 2022). These typically focus on individual features of
sequence processing (e.g., acquisition of order or temporal rescaling), and often employ
architectures and narrow sets of biophysical properties that can specifically support
the functionality in question. In many cases, they are intended as a proof-of-concept
that demonstrates the behavior of the system for a few prototypical sequences, without
examining its limitations in more detail. For instance, a model may learn and replay
sequences where elements are presented in direct succession, but fail as soon as small
gaps (e.g., 100 ms) are introduced.

A deeper understanding of the neural basis of sequence processing therefore requires
models that can not only account for more than single features but are also robust to
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variations in the input properties that characterize naturalistic signals. One difficulty
towards such general models of biological sequence processing is the lack of a unified
computational framework that allows systematic benchmarking and comparison on a
set of well-defined tasks.

1.6 Scope and structure of the thesis
The previous sections took the reader on an expansive journey, following an imaginary
gradient from structural features (modularity, hierarchy and topography) to basic func-
tional requirements (discrete representations of noisy stimuli) underlying more complex
cognitive processes (learning structured sequences). Along the way, two aspects stood
out as insufficiently explored, which also constitute two of the three main thematic
threads of this work: the possible role of topographic maps in supporting robust rep-
resentations from noisy inputs; and the limited scope and shortcomings of biologically
inspired models of sequence learning, including the absence of a rigorous framework for
their evaluation.

By attempting to bridge these gaps, the overall aim of this thesis is to advance our
understanding of how neural circuits can leverage modular structures to learn and process
sequential information efficiently and reliably. It follows the cognitive science paradigm
according to which all mental processes, from sensory perception to cognition, involve
the manipulation of sequentially organized time-discrete (symbolic) representations.

To investigate possible neural mechanisms underlying such processing in a functional
context, we first introduce a toolkit for benchmarking neuronal networks on sequence
learning tasks using the reservoir computing (RC) paradigm (Chapter 4). This touches
on the third thematic line of this thesis, which will become more relevant towards the
end: reproducibility in computational studies.

Equipped with this framework, we then embark on a series of studies that exhibit an in-
creasing gradient in both the complexity of network models and utilized tasks. Through-
out this journey, we strive to relate architectural features to functional properties, with
a strong emphasis on modular connectivity patterns and their possible computational
benefits.

The thesis is organized as follows:
Chapter 2 introduces some basics from neurobiology to the unfamiliar reader, and pro-
vides a brief overview of the modeling concepts and analytical methods used throughout
the thesis. Beginning with the properties of biological neurons and mathematical models
thereof, network-level phenomena are described along with statistical tools (mean-field)
for approximating the behavior of large neuronal populations. To set up a foundation
for the sequence learning models studied in the second part of this work, it additionally
describes the principle synaptic plasticity mechanisms and contrasts them to established
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machine learning algorithms and more non-traditional approaches such as reservoir com-
puting (RC).

Chapter 3 defines and formalizes the problem of sequence processing, along with the
artificial grammar learning paradigm and related complexity measures for quantitative
analysis. It then gives a brief survey of existing artificial and biologically-inspired models,
with a focus on their core properties and the nature of the tasks they are intended
to solve. This extended literature review, fundamental for the future meta-analysis
character of Chapter 8, is meant to help in positioning the models along the axis of
biological plausibility – computational capabilities – cognitive relevance.

Chapter 4 presents Functional Neural Architectures (FNA), a Python library for gener-
ating complex symbolic sequence processing tasks, flexible creation of (spiking) network
architectures and their benchmarking using the RC principle. This tool represents the
computational backbone in all subsequent chapters.

Chapter 5 addresses the question of how the (feedforward) connectivity profile be-
tween multiple, recurrently connected populations of spiking neurons impacts stimulus
representations, their integration and transmission across cortical circuits. In a first
step, we contrast networks with random and structured projections (inspired by corti-
cal topographic maps), and use the RC paradigm to assess their capability to produce
and maintain distinguishable representations of the input in each stage. The perfor-
mances and properties of the two network types are then further characterized in terms
of response variability, robustness to noise and memory capacity. Given that cortical
circuits typically handle information from multiple sources simultaneously, in a second
step, the model is extended to include two input streams. This allows us to study differ-
ent integration schemes and their influence on the networks’ strategy to solve nonlinear
tasks.

In Chapter 6 we build on the findings from Chapter 5 and investigate the hypothesis
that the modularity of topographic projections plays a key role in enabling accurate
stimulus representations and their reliable transmission across different processing mod-
ules. By taking a more systematic approach and combining network simulations with
theoretical analysis, we show that modularity acts as a bifurcation parameter and iden-
tify a critical level beyond which the signal-to-noise ratio improves during propagation.
Performance is evaluated by probing the network’s ability to reconstruct continuous sig-
nals of varying complexity, corresponding to stimuli presented sequentially but without
any temporal structure. We reproduce this novel denoising effect in multiple spiking and
continuous-time network models and demonstrate that it is purely a structural effect.
Finally, we argue that during an input integration task, modularity acts as a control
parameter for network dynamics, reproducing activity patterns that are associated with
a variety of behavioral effects.

Chapter 7 transitions from sequential, but independent stimuli to studying models
that learn and process sequences containing temporal regularities. We begin by re-
implementing a biologically plausible model recently published by Cone and Shouval
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(2021), using the NEST simulator and the FNA tool presented in Chapter 4. After
replicating the main results from the original study, the model’s robustness to param-
eter settings and underlying assumptions are evaluated, highlighting its strengths and
weaknesses. We demonstrate a limitation of the model consisting in the hard-wired se-
quence order in the connectivity patterns and suggest possible solutions. The chapter
closes with a discussion on reproducibility issues given that an important outcome of
this work, in addition to providing an open-source implementation of the model for the
computational neuroscience community, is the revised and corrected model description
in the original publication and accompanying source code.

Chapter 8 presents the first steps towards a conceptual and computational framework
for benchmarking and comparison of biologically-constrained models of sequence pro-
cessing. Expanding upon the formal methods outlined in Chapter 3, we propose a set
of concrete tasks aimed at assessing a diverse set of capabilities expected from a general
sequence processing model. Although the framework represents only a small step to-
wards elucidating the biological implementations of sequence processing, the presented
concepts and analysis tools, illustrated on a few selected models, are aimed at deriving
a set of functional and biophysical principles that can guide future studies on this topic.

We conclude with a short discussion of our contributions and potential future work in
Chapter 9.
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Chapter 2

Concepts and tools from computational
neuroscience

2.1 Mathematical models of biological neurons

When McCulloch and Pitts described the first computational model of a neuron in 1943,
the Threshold Logic Unit (TLU McCulloch and Pitts, 1943), they formalized an al-
ready long-standing view that considered neurons to be the structural and functional
units of the nervous system. In their model and subsequent connectionist approaches,
neurons were simple computational units that receive inputs, integrate information and
produce output. An LTU receives only binary input (excitatory and inhibitory), out-
puts 1 if the sum of all excitatory inputs exceeds a certain threshold and no inhibitory
inputs are active, and emits a 0 otherwise. This simple threshold operation limits the
LTU to computing boolean functions, LTU, rendering it essentially a logical operator.
Many of these properties were improved upon in the following decades beginning with
Rosenblatt’s perceptron (Figure 2.1A), which included weighted inputs and was later
generalized to continuous values. However, LTUs conceptually already resembled the
three major functional components of biological neurons: dendrites, as an input device;
the soma as a nonlinear integrator; and the axon, as an output device.

More specifically, neurons are excitable cells in which the lipid membrane acts as an
electrical insulator and diffusion barrier, creating a difference in electrical potential be-
tween the intra- and extracellular space called the membrane potential. At terminals
located on the dendrites, incoming signals (at chemical synapses through the release
of neurotransmitters) cause a positive (negative) deflection of the membrane potential
for excitatory (inhibitory) connections, which is propagated through the dendritic tree
towards the soma. By integrating many such events, the membrane may become suffi-
ciently depolarized such that, above some critical voltage threshold, the cell generates an
action potential or spike (Figure 2.1B) which is transmitted along the axon and delivered
to other neurons at synapses (points of contact). These electrical pulses, representing
the primary means of communication in the cortex, are brief events with stereotypical
waveforms (Fee et al., 1996). For this reason, one often assumes that information is con-
tained in the presence or absence of a spike rather than its shape, similar to the on/off
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Figure 2.1: Principles of artificial and biological neurons. (A): Schematic of a perceptron.
The inputs xi, multiplied by the corresponding weights wi, are summed and passed through
the threshold activation function to yield the binary output y. (B): Example for the input
integration and response of a biological (spiking) neuron. A neuron receives spikes from two
afferents, each spike evoking a positive deflection in its membrane potential ui(t) (excitatory
postsynaptic potential). If ui(t) crosses a certain threshold, an action potential is generated
whereby the neuron is depolarized rapidly after which the potential relaxes back to its resting
value. Adapted from Gerstner et al. (2014), with permission.

states of an LTU. Neuron models that abstract from the biophysics of spike generation
and describe spikes as discrete events are called leaky integrate-and-fire (LIF) models,
and trace their origin to the work of Lapicque (1907). The neuron is treated as an elec-
tric circuit composed of a parallel capacitor and resistor, representing the capacitance
and leakage resistance of the cell membrane.

In these models, the dynamics of the membrane potential is described by a linear
differential equation, and spikes are elicited when the potential crosses a threshold from
below. Following a spike, the membrane potential is reset and often remains clamped
to a fixed value below threshold (refractory period) to mimic the reduced neuronal
excitability during hyperpolarization, after which it relaxes back to the resting potential.
With these ingredients, the LIF model can capture the spatial and temporal integration
of synaptic inputs, spike generation, refractory period and passive membrane properties
of a real neuron. The input integration depends on the chosen synaptic model, typically
representing synaptic inputs as changes in currents or conductances (see Burkitt, 2006).
In the first case, synaptic currents are independent of the membrane potential, have a
fixed temporal kernel and are summed linearly, making this approach more convenient
for detailed analytical studies. In biologically more accurate conductance-based models
(Destexhe et al., 2003), the synaptic current does depend on the membrane potential,
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introducing a nonlinearity in the input integration.
Other neuron models have additional layers of complexity to better approximate the

nonlinearity of neuronal dynamics (see Izhikevich, 2004, for a review), either by includ-
ing biophysical detail via multiple (voltage-gated) ion channels (Hodgkin and Huxley,
1952), incorporating additional variables (e.g., describing adaptation) that can be fitted
to experimental data (eg., generalized linear models, see Mihalas and Niebur, 2010), or
taking into account the dendritic (spatial) morphology as done in compartmental mod-
els (Hay et al., 2011). While these features may allow capturing a more diverse spiking
behavior (but not always, see Gerstner and Naud, 2009), they reduce the analytical
tractability of the models and can increase the computational cost prohibitively, partic-
ularly for large-scale network simulations. In contrast, point-neuron models such as the
LIF are not only computationally more efficient and mathematically more accessible,
but they are also sufficiently complex to capture a wide range of dynamical states and
firing pattern statistics observed in cortical recordings, including at the network level
(Shadlen and Newsome, 1998; Renart et al., 2010; Gerstner et al., 2012; Brunel, 2013).

2.2 Network dynamics and mean-field approximations

In the context of cortical circuits, the description level of "networks" refers to populations
of coupled excitatory and inhibitory neurons, typically through recurrent connections.
Thus, individidual neurons, nonlinear dynamical systems themselves owing to their com-
plex dendritic structure and a variety of intrinsic adaptation mechanisms, organize into
recurrent networks that process information in a highly nonlinear, time-dependent man-
ner. This processing is state-dependent (Buonomano and Maass, 2009), meaning that
the dynamics of cortical networks and their responsiveness to external stimuli depends
on the behavioral context (Harris and Thiele, 2011) and the current internal state of
the system (molded by past inputs). Given that changes in the environment may re-
quire slow integration (e.g., during learning) or fast reactions (e.g., during flight), these
networks must maintain a ground state that allows rapid switching between different
operating regimes (Tsodyks and Sejnowski, 1995; McGinley et al., 2015). Depending on
whether the system is simply idling (e.g., during sleep or quiet wakefullness) or engaged
in active processing, these operating regimes may be characterized by globally synchro-
nized (oscillatory) spiking (Steriade et al., 2001) or by a state where individual neurons
fire asynchronously and irregularly at low rates (Matsumura et al., 1988; Softky and
Koch, 1993), often referred to as the asynchronous-irregular (AI) state (Brunel, 2000;
Renart et al., 2010).

Pioneering modeling work by van Vreeswijk and Sompolinsky (1996) predicted that
such AI activity emerges naturally in large, but sparsely connected networks of excitatory
and inhibitory neurons due to an approximate balance between excitation and inhibition
(E/I balance). Subsequent experiments in-vivo confirmed this dynamic balance (Haider
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et al., 2006; Dehghani et al., 2016), and the model became a popular/ an essential build-
ing block of later computational studies investigating computation in cortical networks
(Shadlen and Newsome, 1998; Brunel, 2000; Vogels et al., 2005; Destexhe, 2009). In
the balanced state, each neuron receives approximately the same amount of excitatory
and inhibitory input that cancel out on average, pushing the mean membrane potential
just below threshold. Spikes are caused by external stimuli or spontaneous fluctuations
in the activity, the timescale of which is influenced by the synaptic strength (Ostojic,
2014), homeostatic plasticity mechanisms (Vogels et al., 2011; Froemke, 2015) and con-
nectivity structure (Litwin-Kumar and Doiron, 2012). This dynamical state allows the
network to quickly respond to external perturbations through a transient adaptation of
the E/I balance and has been suggested to represent a stable regime for neural commu-
nication (Vogels and Abbott, 2009; Joglekar et al., 2018) and advantageous operating
point for complex computations (Buonomano and Maass, 2009; Duarte and Morrison,
2014; Denève and Machens, 2016), while its disruption is associated with a variety of
pathological conditions (Yizhar et al., 2011; Vecchia and Pietrobon, 2012).

The stereotypical balanced network model consists of two interacting populations of
excitatory and inhibitory neurons driven by external input, typically in a ratio of 4 : 1
that reflects the distribution of cells in local cortical circuits (Braitenberg and Schüz,
1991). Brunel (2000) demonstrated that this simple model can not only reproduce
asynchronous irregular dynamics but also diverse firing patterns of varying synchrony
and regularity, depending on the choice of parameters. For a broad range of these, the
balanced state emerges in a self-consistent (stable) manner (van Vreeswijk and Sompolin-
sky, 1996, 1998) if the network is sufficiently large and is inhibition-dominated. The first
condition is necessary to ensure that while each neuron receives enough input to evoke
spiking, the number of inputs it shares with other cells is relatively small such that their
firing patterns are only weakly correlated. The second condition, a hallmark feature
of the cortex (Sanzeni et al., 2020), is required to stabilize the dynamics and prevent
runaway excitatory activity. These network-level effects can be captured by a variety
of neuron models, including the LIF neuron described in the previous section. And for
analytically tractable models such as the LIF, in many cases it is possible to estimate
and predict the collective dynamics of the neurons through mean-field approximations
(Fourcaud and Brunel, 2002; Helias et al., 2013).

These mathematical tools offer a statistical description of the activity (e.g., firing rate
or pairwise correlations) at the level of (homogeneous) neuronal populations, where the
single-unit and population-averaged activity are taken to be equivalent. For spiking
neurons such as the LIF, the stochastic behavior of the subthreshold dynamics can
be described using the Fokker-Planck (or diffusion approximation) formalism (Risken,
1996), assuming that each neuron receives a large number of small amplitude inputs
in every timestep. If we further assume that these spike trains are independent and
can be described by uncorrelated Poisson processes whose mean represents the firing
rate — a good approximation in the AI state —, the total synaptic drive (summed
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Poissonian input) to a neuron can be replaced by a Gaussian process with mean µ(t)
and variance σ2(t). In the stationary state, these quantities, along with the firing rates
of each afferent, can be well approximated by their average value over time. This leads to
a self-consistent expression for the mean firing rate of a single neuron (and equivalently
of the population), that takes into account not only the mean but also the fluctuations
in the input (Amit and Brunel, 1997; Fourcaud and Brunel, 2002). Thus, we can obtain
a mean-field-like description of the macroscopic dynamics in a recurrently connected
network, in which the input and output statistics of a neuron are related through a
closed set of equations. Such descriptions can be extremely valuable for characterizing
the network behavior in a computationally efficient manner, for instance, to determine
whether the activity converges to a stable point over time.

2.3 Neuroplasticity and learning

Although mean-field approximations are often sufficient for describing the stationary
activity of populations, the interactions within and between cortical circuits involve
a variety of adaptation mechanisms at the microscopic level. Such experience-driven
changes, in particular at the neuronal and synaptic level, have long been associated with
learning and memory, and therefore ought to be taken into account by any computational
model seeking to go beyond simple dynamics. For instance, neurons can regulate their
excitability in an activity-dependent manner, altering their intrinsic firing properties and
thus potentially impacting circuit dynamics and computations (Turrigiano et al., 1994;
Destexhe and Marder, 2004). Although the functional implications of such intrinsic
plasticity are only slowly emerging, it appears to play an important and synergistic role
in memory formation, along with synaptic plasticity (Titley et al., 2017; Lisman et al.,
2018; Debanne et al., 2019).

2.3.1 Correlation-based (Hebbian) plasticity

Synaptic plasticity, on the other hand, has been considered the biological substrate
of learning since Donald Hebb’s seminal work in 1949. Colloquially, but imprecisely
summarized as “neurons that fire together, wire together” (Shatz, 1992), Hebb’s theory
postulated that the connection strength between two neurons increases if the presynaptic
neuron regularly takes part in the firing of the postsynaptic neuron, a mechanism that
does involve temporal causality. Hebbian learning, as it is known today, has since been
refined and generalized to modifications of the synaptic transmission efficacy that are
mediated by correlations in the firing activity of pre- and postsynaptic neurons. In a
very general formulation, the synaptic weight wij between the neurons i and j can be
written as
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d

dt
wij = F (Ai, Aj), (2.1)

where F is an arbitrary function (often product), and Ai and Aj are the activations of
the corresponding neurons. These predictions heavily influenced the first learning rules
in ANNs based on coincident activation (Rosenblatt, 1958), which mostly represented the
activity as continuous functions (rate-based Hebbian) and calculated the weight changes
proportionally to the product of pre- and postsynaptic activity, thereby ignoring any
causality. While this simplification allowed for elementary associative-learning of input
patterns (Hopfield, 1982) and self-organization (von der Malsburg, 1973; Kohonen, 1982),
experimental findings indicated that long-term potentiation (LTP) and depression (LTD)
of synapses (Bliss and Lomo, 1973; Levy and Steward, 1983) depended, among others,
on the precise timing of pre- and postsynaptic spikes (Markram et al., 1997; Sjöström
et al., 2001). Such long-lasting synaptic changes have been formalized as spike-timing
dependent plasticity (STDP) rules (Bi and Poo, 2001; Song et al., 2000). With STDP,
the synaptic weight is modified if the two neurons spike within a short interval called
the STDP window. The weight is potentiated if the presynaptic spike arrives shortly
before a postsynaptic action potential and depressed otherwise (although other STDP
variants also exist).

2.3.2 Neuromodulation, eligibility traces and three-factor learning rules

In its classic form, STDP is an asymmetric form of unsupervised Hebbian learning, but
over the years a variety of phenomenological models were developed to include additional
factors to address some of its limitations (e.g., different pairing schemes and windows,
voltage dependence; Morrison et al., 2008; Pfister and Gerstner, 2006; Clopath et al.,
2010). In particular, its relation to phenomena on behavioral timescales is unclear due
to its local nature, dependence on millisecond precision and the fact that it ignores, by
design, any high-level information about novelty, reward or punishment. Such signals
are thought to be mediated by (more global) modulatory processes involving dopamine,
acetylcholine and other neurotransmitters, which can strongly impact synaptic activity
including STDP (Marder, 2012; Brzosko et al., 2019). To account for these influences,
models of neuromodulated STDP (Frémaux and Gerstner, 2016) incorporate a third
factor in addition to the pre- and postsynaptic activity, which can be formally written
as

d

dt
wij = F (M, Ai, Aj), (2.2)

In such three-factor learning rules, M is an arbitrary (global) modulatory signal,
which can be available at all or only a subset of synapses given that neuromodulators
typically diffuse over larger cortical areas. For instance, M can be a time-dependent
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reward signal that gates (or scales) the Hebbian component, so that the weight is only
updated in specific instances (Cone and Shouval, 2021). Although this generalization
can partially link certain behavioral or environmental events to local plasticity processes,
there remains a large temporal gap between synaptic modifications on the scale of a few
tens of milliseconds and possible behavioral consequences of that change occurring after
minutes or hours.

To solve this issue, known as the temporal credit assignment problem, theoretical con-
siderations (Frémaux et al., 2010) proposed that there should be some signal at the
synapse, like a tag or a trace, that decays on a much slower timescale and would thus
allow bridging the temporal gap to the modulatory signal. While the concept of synaptic
tagging is not new (Frey and Morris, 1997), experimental support for such “eligibility
traces” and their involvement in LTP and LTD as formulated in three-factor learning
rules is rather recent (He et al., 2015; Gerstner et al., 2018). These traces are synapse-
specific markers that are activated through coincidental (Hebbian) pre- and postsynaptic
activity as in STDP. However, plasticity is only induced if the neuromodulatory signal
arrives at the tagged synapse before the eligibility trace has decayed. Formally, this
means that for neuromodulated STDP the activations Ai and Aj in Eq. 2.1 will denote
the eligibility traces instead of the spike times or firing rates. Such models of three-
factor learning rules, in combination with eligibility traces, can learn many supervised
(Zenke and Ganguli, 2018), reinforcement (Vasilaki et al., 2009; Huertas et al., 2016)
and sequence learning tasks (Cone and Shouval, 2021).

2.3.3 Short-term plasticity

In addition to STDP and other forms of more persistent modifications, synapses ex-
hibit multiple types of short-term plasticity (STP) which evolve on a scale of hundreds
of milliseconds to seconds and minutes (see e.g., Fioravante and Regehr, 2011, for a
review). In contrast to STDP, these depend almost exclusively on the history of the
presynaptic activity, with a common set of mechanisms able to cause both depression
and enhancement of the postsynaptic responses at different synapses. Short-term depres-
sion is linked to the depletion of neurotransmitter vesicles following presynaptic spiking,
whereas facilitation occurs as a result of calcium influx into the presynaptic axon, in-
creasing the subsequent release probability of neurotransmitters and thereby enhancing
synaptic efficacy.

These are also the features that are captured by many phenomenological models of
STP (Markram et al., 1998; Tsodyks et al., 1998; Mongillo et al., 2008), which typically
model short-term dynamics using two dynamics variables describing the fraction of re-
sources that remain available after neurotransmitter depletion, and available resources
which are ready for use (release probability), respectively. The interplay of these two
variables, controlled by the specific time constants, determines whether the synapse is
depressed or facilitated in response to repeated presynaptic spiking. Given that these
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rapid but transient dynamics operate on the timescale of stimulus processing, working
memory and behavior, STP can directly influence the computations performed by neural
circuits (Abbott and Regehr, 2004). Experimental and theoretical work demonstrated
that STP endows recurrent circuits with rich dynamics, implementing transient func-
tions such as gain control (Abbott et al., 1997) and network stabilization (Wu and Zenke,
2021), temporal filtering (Bourjaily and Miller, 2012), working memory (Mongillo et al.,
2008), but is also crucial for the consolidation of long-term memories (Zenke et al., 2015).

2.4 Functional benchmarking using reservoir computing

While the local and unsupervised plasticity mechanisms described above represent a
part of the processes underlying learning in cortical circuits, they raise an important
challenge for modelers: how to evaluate whether such systems can solve a given task?

2.4.1 End-to-end training

The classical supervised learning methods in current machine learning approaches involve
defining an objective (loss/cost) function that measures the error between the input and
some specified target mappings, and optimize the model parameters to minimize this
error (LeCun et al., 2015). In practice, the optimization procedure typically relies on a
variant of gradient descent, whereby the network weights are gradually adjusted in the
direction that reduces the error most rapidly. For multilayered, feedforward architectures
the gradients can be computed efficiently through the whole network via backpropagation
(Rumelhart et al., 1986b). This algorithm can also be adapted for training recurrent
networks by unfolding them in time — via backpropagation through time (BPTT, Werbos,
1990) —, but it nevertheless remains relatively difficult because the gradients tend to
vanish or explode over time (Bengio et al., 1994; Hochreiter, 1991). Although solutions
to overcome these problems exist, for instance through specific architectures such as
Long-Short Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997), BPTT and
other training approaches (e.g., Real-Time Recurrent Learning Williams and Zipser,
1989) remain computationally very expensive.

From a neurobiological perspective, backpropagation is generally considered to be
implausible (Crick, 1989) since many of its aspects are difficult to reconcile with learning
in cortical circuits (Bengio et al., 2015). These range from technical aspects (such
as weight symmetry and local computations) to more basic principles concerning the
very nature of learning (supervised or not, learning from a few examples). In recent
years, considerable effort was directed toward exploring how the brain may implement
backpropagation-like with some moderate success at tackling individual differences (see
Whittington and Bogacz, 2019; Lillicrap et al., 2020, for reviews), but fundamental
questions remain along with efficiency considerations.
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2.4 Functional benchmarking using reservoir computing

2.4.2 Transient dynamics and reservoir computing

Stimulus sequence Reservoir Readouts / Classifier

trained

Input

Figure 2.2: Reservoir Computing. In a typical experiment, a sequence of spatiotemporal
stimuli is encoded and used to drive a randomly connected network (reservoir). This is connected
to a set of readout units, which are trained to classify the high-dimensional state according to
the task specifications. Figure modified with permission from Singer (2013).

One can take a step back from training systems end-to-end, and instead examine the
computations performed by a single RNN. Recurrence allows such networks to represent
time explicitly and retain information from long context windows, endowing them with
a form of dynamic memory - sustained through transient reverberation of activity - that
gradually fades in time. Provided they are sufficiently high-dimensional, such systems
with fading memory can exhibit rich dynamics (Jaeger, 2001) where multiple signals
are maintained and mixed in a nonlinear fashion, making them a powerful substrate
for context- and state-dependent computations (Buonomano and Maass, 2009; Sussillo,
2014). Under the hood, the RNN performs a nonlinear temporal expansion of the (typ-
ically) low-dimensional input, projecting it to a higher-dimensional feature space where
representations are encoded in the transient response trajectories (Rabinovich et al.,
2008). In many cases, the transformation brings a practical computational advantage
because the complex representations in the input space may become linearly separable in
the feature space without actually training the recurrent weights, enabling, for instance,
to calculate simpler decision boundaries for classification.

These observations represent the core principle behind a computing paradigm collec-
tively known as reservoir computing (RC; Jaeger, 2001; Maass et al., 2002; Verstraeten
et al., 2007; Lukoševičius and Jaeger, 2009), which took a novel approach to training
RNNs. RC separates conceptually between the RNN, treated as an excitable reservoir or
liquid and harnessed in its role as a nonlinear temporal expansion function, and decod-
ing/extracting information from it through a “memory-less” readout mechanism (Maass
and Markram, 2004). Instead of adjusting the recurrent weights, the network responses
are combined (typically) linearly to approximate a target output (see Figure 2.2). By
modifying only the connections from the reservoir to the readout, RC bypasses the chal-
lenging training problem without curtailing, in theory, the computational power of the
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system. Under moderate conditions, reservoirs with linear readouts can approximate any
time-invariant function with fading memory (Maass and Markram, 2004). The princi-
ple is similar to kernel-based methods such as Support Vector Machines (Vapnik, 1998;
Schölkopf and Smola, 2002) since each node in the reservoir effectively computes a ran-
dom nonlinear function of the input, which can be weighted to learn any target function
in the limit of N → ∞. In practice, this ability depends on the internal properties driv-
ing the reservoir dynamics, with the nature of their fading memory often limiting their
ability to handle long-term dependencies (Enel et al., 2016; Inubushi and Yoshimura,
2017). Nevertheless, the conceptual separation between an input-driven dynamic reser-
voir and trained readout enables studying a variety of recurrent circuits, without placing
any constraints on the network architecture or its dynamics.

2.4.3 Benchmarking biological neural circuits
Here we leverage this flexibility and use RC to investigate the computational capabilities
of biologically plausible circuits of spiking neurons. Inspired by the structural similarities
between reservoirs and cortical networks (particularly recurrence), a number of studies
have drawn parallels at the functional level, including how information is integrated and
processed in the primary visual (Nikolic et al., 2009) and auditory (Klampfl et al., 2012)
cortex, cerebellum (Yamazaki and Tanaka, 2007) and prefrontal cortex (Enel et al.,
2016). While some underlying computational principles, such as mixed selectivity (Rig-
otti et al., 2013), transient dynamics and state-dependent processing are likely shared
(Singer, 2013; Hinaut and Dominey, 2013), one can also employ the RC paradigm to sim-
ply probe the ability of an arbitrarily complex system to solve particular tasks (Haeusler
and Maass, 2007; Duarte and Morrison, 2019).

Adopting this latter approach, we are interested not so much in designing / engineering
computationally powerful reservoirs, but whether specific computations are supported by
systems with biologically constrained architecture, dynamics and learning rules. In this
sense, the readout mechanism, often criticized due to the lack of an obvious biological
counterpart, becomes only a tool to evaluate if the circuits contain sufficient task-specific
information in a useful manner that is, at minimum, linearly separable. Although the
readouts are trained in a supervised fashion, the task-relevant computations are per-
formed entirely by the reservoir, the structure of which may be fixed or involve various
learning (plasticity) processes. There are two immediate advantages to this approach: it
allows investigating and comparing existing system models, with possibly very different
characteristics, through a unified metric; and it enables measuring their performance on
several tasks simultaneously (using multiple readouts), on tasks that may go well-beyond
the models’ original purpose. In particular, we will use this framework to evaluate and
compare different, biologically-inspired models of sequence learning.
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Chapter 3

Computational models of
sequence processing

“Sequence processing” is a generic term defined variably in the domains of cognitive
science, psycholinguistics and computer science, but it generally encompasses one or more
aspects of processing temporally structured information, including learning, recognition,
prediction and replay. The core problem can be formulated as to whether a system
(artificial or biological) can derive and learn a general rule - the underlying grammar -
from a finite set of specific input instances and use this rule to make predictions.

Although we have a fairly good theoretical and practical understanding of how differ-
ent neural network model classes perform on such tasks, a comprehensive overview of
existing models of biological (specifically spiking) networks that use biophysically real-
istic learning rules is still lacking. Given that this is the gap we aim to bridge in the
second half of the thesis, we begin this chapter by briefly formalizing relevant exper-
imental designs, after which we briefly review models of sequence processing in both
artificial and biological networks. Because our primary objective is to understand how
cortical circuits implement these tasks, we restrict our review to recurrent networks as
a minimal requirement for biological plausibility. We focus on the class of tasks and
sequence complexity they can master, both from a theoretical (where applicable) and
practical perspective and touch upon their defining properties.

3.1 Sequence complexity and experimental designs

To help formalize the task specifications and enable a theoretical investigation under
controlled complexity, models and experiments of sequence processing often consider
computations on a set of discrete symbols. Symbols can be considered abstract represen-
tations of any naturalistic or artificial stimuli, which allows investigating computations
and learning independently of the input properties. Symbolic processing is rooted in
seminal works on the theory of computation and sequential processing in the 1950s and
1960s (Turing, 1937; Lashley, 1951; Miller, 1967; Reber, 1967), and was formalized in
the context of cognitive linguistics as by Chomsky (1956, 1959).
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3.1.1 Formal language theory and the Chomsky hierarchy

In laying the groundwork of formal language theory (FLT), Chomsky sought to under-
stand the syntactic regularities of natural languages by analyzing the underlying genera-
tive rules or grammars. A formal language L can be defined as a set of words or strings,
each of which is a finite sequence of symbols drawn from a finite alphabet Σ. An example
of a language over the alphabet Σ = {A, B} could be L = {AnB | n > 0}, which contains
all the strings where A occurs n > 0 times and is followed by B, such as “AAAB”. The
method for constructing valid strings is typically defined by a grammar (formally defined
in the next section), which is a set of finite rules for creating strings of possibly infinite
cardinality in both length and number. This generative property, i.e., the ability to
generate infinite sequences from finite means, is a fundamental characteristic of natural
languages.

One of the simplest systems exhibiting such generative capabilities is the finite-state
automaton (FSA; Kleene, 1956; Hopcroft and Ullman, 1979). An FSA is an abstract
computational “machine” containing a set of finite states, including start and end states,
as well as labeled transitions between them that are realized by reading a symbol from an
input sequence drawn from a finite alphabet. Due to their tight link to formal grammars,
FSAs are often referred to as “acceptors” of a language - iff by reading a string from
the language, the automaton transitions from an initial to an end state (Keller, 2001).
Whether the FSA is able to recognize sequences from a specific grammar depends on
the language complexity, which Chomsky categorized into four classes: regular, context-
free, context-sensitive and recursively enumerable or Turing-complete (see Figure 3.1).
These can be arranged into a hierarchy of increasing complexity, capturing one or several
key grammar properties such as counting, repetition, long-distance dependencies, and
(nested) hierarchy (Chomsky, 1956). Although in their original formulation FSAs can
only recognize regular grammars, corresponding to the lowest complexity, augmenting
them with a form of additional memory such as a stack, linear tape or infinite tape can
extend their computational capacity to cover languages of all complexity (see equivalence
in Figure 3.3).

3.1.2 Artificial grammar learning

A formal (artificial) grammar (AG) consists of a finite set of terminal symbols, a finite set
of non-terminal symbols, a distinctive start symbol, and a finite set of production rules
that map from non-terminal symbols to other symbols. AGs are typically expressed
through state transition diagrams to visualize the (possibly probabilistic) sequential
string generation process, with multiple styles common in different fields (see Figure 3.2).
These diagrams can be easily transformed into more compact (probabilistic) transition
matrices, which capture all rules but also permit quantitative analysis using methods
developed for studying Markov processes. We elaborate on and employ these techniques
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Figure 3.1: The Chomsky hierarchy. Formal languages were initially categorized into four,
nested levels of complexity depending on the properties of the grammars that can generate
them (left). For each class, there is a corresponding formal machine or automata of equivalent
computational power (right). Figure reproduced with permission from Fitch et al. (2012).

in Chapter 8.
An experimental paradigm that builds on these is artificial grammar learning (AGL;

Reber, 1967; Pothos, 2007; Fitch et al., 2012), which allows to systematically study how
temporal regularities and the underlying rules can be learned by a system. Initially
conceived for investigating language processing by Reber, an AGL experiment involves
two phases: in the first stage, participants (or a model) are presented with a set of
sequences (typically letters) generated by a formal grammar. During a second test phase,
they must decide whether certain (new) sequences belong to the grammar, evaluating
their ability to have learned its rules.

AGL is a powerful paradigm because it bridges empirical rule learning across disci-
plines (neuroscience, psycholinguistics) and provides a formal link to theoretical frame-
works on computation through FLT (mathematics, computer science; see Uddén and
Männel (2018) and overview in Fitch and Friederici (2012)). It enables studying rule
learning both in a passive (implicit) way and testing explicit hypotheses. In addition,
it allows for a wide range of sequence complexity that can be used for studying pattern
and rule learning. More importantly for our purposes, AGL is an ideal methodology for
comparing the computational capabilities of different (arbitrary) systems in a rigorous
manner and through a unified protocol.

3.1.3 Measures of sequence complexity

In AGL, and more generally any sequence learning experiment, it is important to esti-
mate how simple or difficult each input sequence is to process. Although the Chomsky
hierarchy represents an abstract and rather coarse-grained method for this, sequences
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Figure 3.2: The Reber grammar, illustrated by its corresponding finite-state machine
(Reber, 1967). (A) The automaton starts in the initial state S0, and updates its state by
reading input letters sequentially and moving along the corresponding labeled, directed transi-
tions. A string is accepted if the machine is in the end state S0. after processing the complete
input. For instance, the language defined by this grammar includes strings of the form T2nS with
n > 0, but none that does not terminate with the S. This grammar contains ambiguities because
some labels like P or X appear multiple times in different contexts. Such representations are
more common in cognitive sciences. Figure modified with permission from Fitch et al. (2012).
(B) Equivalent Markov-style diagram, where labels are at the nodes and ambiguous states are
indexed. Note that the index is ignored for symbol (output) generation. This style is more fre-
quent in Markov modeling and mathematical analyses. Figure based on Warren and Schroeder
(2015). Although transition probabilities are assumed to be equal and are not depicted here,
generally they are specified along the edges.

and grammars on the same hierarchical level can still have vastly differing complexity.
Intuitively, a grammar with fewer symbols and restrictions on the transitions is easier to
learn than one with many symbols and rules. Straightforward measures of “grammatical
complexity” include simply counting the number of rules in it (Shanks and Johnstone,
1999) or patterns of substrings and the frequency of their occurrence (Perruchet and
Vinter, 1998). For a more fine-grained distinction between sequences within the same
complexity class (but not only), one can use information-theoretic and other string met-
rics, which ought to reflect the richness of the language the sequence belongs to.

A simple approach for this is based on the similarity of the strings the language
can generate. These can be roughly categorized into edit distance, token-based and
sequence-based metrics. Edit distance metrics, such as the Levenshtein or Hamming
measure, compute the minimum number of changes required to transform one string
into another. Averaged across all string pairs of a language, this is suggestive of its
mean complexity: more difficult ones will have a larger average distance. Token-based
algorithms such as the Jaccard index, where token refers to parts of a sequence like
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n-grams (not just one symbol), operate by evaluating the number of common tokens in
the strings of the language. Sequence-based metrics, such as complexity index (Janson
et al., 2004), look at the number of shared or distinct substrings within each or between
different sequences. Intuitively, the more repetitions a string contains, the lower its
complexity.

This is intimately related to the concept of sequence compressibility as a proxy for com-
plexity. Intuitively, one can better compress a sequence that contains some redundant
information (e.g., repetitive substrings) than one where each symbol is informative. This
is formalized by the Kolmogorov complexity (Kolmogorov, 1963), which in this context
can be informally described as the length of the shortest program (or description) that
produces a particular sequence. For instance, the string ABABAB can be compactly
described as “3∗AB”, while the string of the same length ABCBAD, which cannot be so
easily reduced, is considered more complex. In general, the Kolmogorov complexity can
be only approximated by measures such as the Lempel-Ziv, which serves as the basis
for the Lempel-Ziv-Welch (LZW; Welch, 1984) lossless compression algorithm. LZW
and similar algorithms work by encoding substrings into efficient codes that are stored
in a dictionary, and can be adapted to generate strings of a target compression rate
(Cahuantzi et al., 2021).

Instead of measuring the complexity of individual strings, a more comprehensive ap-
proach is to characterize the complexity of an entire grammar. Such global metrics can
be grounded in Shannon’s information entropy (Shannon, 1948; Jamieson and Mewhort,
2005, e.g., predictable sequences have low-entropy;), or based on the transition matrix
of the grammar. An example of the latter is topological entropy (TE), introduced as
a complexity measure for dynamical systems by Adler et al. (1965), and refined and
popularized in AGL by Bollt and Jones (2000). Applied to a formal grammar, TE mea-
sures the growth rate of distinct sequences the grammar can generate (which can be
therefore seen as a dynamical system). The method proposed by Bollt and Jones relies
on a “lifting technique”, which modifies the transition table to a first-order (memory-
less) Markov representation in a larger matrix, on which TE can be computed using the
eigenvalues (Robinson, 1998). However, performing the lifting is cumbersome and error-
prone, so instead we will use a method put forward by Warren and Schroeder (2015)
that circumvents the lifting and computes TE using a direct approach based on symbol
subscripts.

In Chapter 8, we will use the method by Warren and Schroeder to control for the
complexity of grammars and sequences in a systematic fashion. This is particularly
important as a meta-analysis by Schiff and Katan (2014) revealed that, in virtually all
experimental conditions, the subject performance in AGL tasks is strongly correlated
with the complexity of the underlying grammar.
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3.2 Recurrent neural networks and formal languages

Since Elman (1990) proposed RNNs as a natural system for discovering structure in tem-
poral sequences, for reasons previously discussed in Chapter 2, a long and productive line
of research sought to evaluate their computational (or expressive) power through formal
analysis and empirical testing in the context of FLT (see e.g., Elman, 1991; Siegelmann
and Sontag, 1991; Ackerman and Cybenko, 2020; Delétang et al., 2022). Theoretical re-
sults demonstrated early on that Elman-RNNs (or simple SRNNs) are Turing-complete
under the assumption of unbounded computation time and arbitrary precision (Siegel-
mann and Sontag, 1992). In addition, the proposed architecture stored the whole input
in its internal memory and performed the relevant computation (and produced output)
only after reading a terminal token. These results extend to modern RNN architectures
with hidden gating units, such as Gated Recurrent Units (GRU; Cho et al., 2014) and
Long Short-Term Memory (LSTM; Hochreiter and Schmidhuber, 1997) networks, which
are supersets of SRNNs. In practice, however, the computation steps and precision are
limited, and the input is typically only available sequentially. Depending on how many of
these practical constraints are taken into account, the complexity of languages RNNs can
express is gradually restricted (Korsky and Berwick, 2019; Merrill et al., 2020; Ackerman
and Cybenko, 2020).

If only linear computation steps and logarithmic precision are allowed, SRNNs and
GRUs become equivalent to FSAs and can theoretically recognize all regular languages
(Merrill et al., 2020), such as AB∗D (B occurs arbitrarily often) or AnBm. In addition,
they can learn some palindrome (Rodriguez and Wiles, 1997) or simple counting lan-
guages like AnBn where the system needs to first count the number of As to generate
a matching number of Bs (Wiles and Elman, 1995), which are context-free. LSTMs,
which are k-counter machines, can additionally learn well-balanced parenthesis (count-
ing) languages such as (shuffled) Dyck-1 using a dedicated counting mechanism (Suzgun
et al., 2019). Compared to GRUs, which perform better on low-complexity sequences,
LSTMs are better at predicting more difficult sequences (Cahuantzi et al., 2021). More-
over, LSTMs can handle some simple context-sensitive languages such as AnBnCn, but
struggle to generalize to large n (Weiss et al., 2018). These results highlight the impor-
tance of distinguishing between theoretical bounds that consider mathematical limits
and practical implementations and training algorithms of the model. Although a formal
upper bound on the expressiveness in the context of FLT means that the system can (in
theory) recognize all languages within and below that class, limitations of resources and
gradient-based training methods typically restrict the ability of these models to general-
ize to sequence lengths beyond those seen during training (Gers and Schmidhuber, 2001;
Weiss et al., 2018).

Learning more advanced languages requires exponential memory in terms of the input
length, as illustrated by the failure of LSTMs to learn the Dyck-2 language (equivalent
to all context-free languages; Sennhauser and Berwick, 2018; Suzgun et al., 2019). In
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Figure 3.3: RNNs and the Chomsky hierarchy. Under non-idealized conditions, simple
RNNs can process only regular languages, whereas supra-granular languages require additional
storage for memory. Figure reproduced from Delétang et al. (2022).

a thorough study that compared different network architectures on a battery of tasks
using the Chomsky hierarchy, Delétang et al. (2022) demonstrated that in order to gen-
eralize on sequences from context-free and more complex languages, dedicated (external)
memory structures are necessary (see Figure 3.3). Such memory-augmented networks
(Joulin and Mikolov, 2015) can copy and reverse strings, perform binary addition or
learn cross-serial dependencies. These empirical results are indicative of the systems’
theoretical computational power, and in practice, many of these achieve state-of-the-art
performance on a variety of sequential tasks, including language processing, time series
prediction and robotics (see e.g., Lipton et al., 2015, for a review).

From a neuroscientific perspective, perhaps more relevant than the actual performance
is the nature of representations these RNN-based models learn, as well as the biological
plausibility of the architectures and learning rules. Most models are trained with vari-
ants of backpropagation, which differs significantly from cortical mechanisms as discussed
in Section 2.3, and often incorporate engineered solutions for specific functionality (e.g.,
forget gates in LSTMs). More importantly, their remarkable performance on many com-
plex tasks may be attributed to efficiently sorting out irrelevant information and learning
approximations to statistical regularities from large datasets, without actually learning
the underlying (hierarchical) grammatical rules (Sennhauser and Berwick, 2018). This
paradox is further confirmed by the inability of non-recurrent transformer architectures
(Vaswani et al., 2017) to learn simple context-free languages (Delétang et al., 2022), de-
spite achieving impressive results on natural language tasks that in principle correspond
to mildly context-sensitive grammars (Joshi et al., 1990).
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3.3 Biologically-constrained models

The previous section highlighted the direct relation between memory and the ability
of a model to learn complex sequences. Given that achieving stable memories on long
timescales in biologically plausible (spiking networks) is a notoriously hard problem, most
of these models can only investigate relatively simple sequences from regular languages.
Instead, they generally focus on evaluating the impact of various biophysical details of
the neural circuitry on the computational capabilities of the system, as well as on their
ability to capture and reproduce certain observations from behavioral and neural data.
Typical tasks include learning a sequence and replaying it upon a cue, distinguishing
and predicting context-dependent sequences with shared elements, such as “ABCD”
and “EBCF”, or learning the duration (timing) of a sequence and possibly replaying it
at different speeds (generalization).

Here we attempt a brief survey of existing models, pointing out their strengths and
weaknesses with respect to computational abilities and biological faithfulness. These can
be categorized, albeit somewhat arbitrarily, into different classes of models depending
on their architectural properties and type of neural dynamics they rely on. As such, one
can differentiate between spiking and continuous firing rate networks, fully unsupervised
and some form of supervised or reward-based learning, and the dynamical principles
they leverage (e.g., transient dynamics). In addition, one ought to distinguish between
models focusing simply on the generation and replay of sequential activation patterns
observed in specific (sub-)cortical structures, and systems that consider more general
and complex symbolic processing tasks.

3.3.1 Reproducing sequential activation patterns

Stereotypical sequential activation of neural cells has been observed during a variety of
behaviors in many areas of the brain, including parts of the cortex (Pulvermüller and
Shtyrov, 2009; Ikegaya et al., 2004), the hippocampus (Nádasdy et al., 1999), basal gan-
glia (Barnes et al., 2005) or the HVC motor nucleus in songbirds (Hahnloser et al., 2002).
These manifest in strong but brief activations of some neurons, which propagate through
the network and sequentially engage distinct cell assemblies. To capture such dynamics,
many models assume that the connectivity contains a feedforward (asymmetric) struc-
ture along which activity flows (unidirectionally) from one group of neurons to another.
Depending on whether the activity relies on elevated firing rates or rather precise (syn-
chronous) spike timing, one typically distinguishes between rate-based propagation and
synfire chains (Abeles, 1991; Diesmann et al., 1999; Kumar et al., 2010a).

Such networks with specific feedforward projections, in particular synfire chains, were
suggested as a viable model for producing sequential activity in the specialized nucleus
HVC (Jun and Jin, 2007; Fiete et al., 2010; Long et al., 2010). The chain-like structural
scaffold can be hard-wired or learned via various forms of STDP and structural plasticity,
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and can additionally be embedded into a larger background network. Localized inhibition
may improve the chain stability (Cannon et al., 2015), while accounting for neuronal
specificities (in a model of hippocampal CA3 place cells) and a symmetric STDP rule
facilitates the emergence of a bidirectional pathway upon which sequential activity can
propagate in both directions (Ecker et al., 2022).

Given that most of these studies restricted the analysis to the generation of sequential
activity, they can be classified as works on activity propagation and are therefore of
limited expressive power with respect to learning multiple, structured sequences. Never-
theless, these models learn fully unsupervised and exhibit interesting properties such as
spontaneous or cued replay of acquired sequences (also in reverse), the ability to store
multiple (although a very limited number of) sequences, or reproduce experimental ob-
servations like sharp waves and ripple oscillations.

3.3.2 Static chains and dynamical trajectories for sequence processing

Before considering symbolic sequence processing per se, we ought to clarify a confus-
ing and somewhat misleading categorization into “chain-like” and RNN-based models,
prevalent in a number of studies on the topic (Cone and Shouval, 2021; Calderon et al.,
2022; Murray and Escola, 2017). At a conceptual level, sequence processing involves
representing elements (possibly also their patterned duration) and learning their order
by establishing transitions between them. In the brain, sequences can be expressed both
in a compressed manner and on a behavioral scale, depending on whether only the order
or also the duration is represented (Foster and Wilson, 2006; Gavornik and Bear, 2014).
As such, sequences can be replayed either on a circuit-specific, intrinsic timescale or
close to behavioral timespans. Underlying these abilities is neural activity that unfolds
in time, in some cases clearly sequentially (as discussed in the previous section) but also
in many different modes (Babloyantz et al., 1985; Singer, 2013; Hardy and Buonomano,
2016).

To leverage sequential responses for sequence processing, one can attribute meaning
to segments of the activity by associating them with particular symbols (stimuli). Re-
plays of the engrained activity can then be considered to recall the learned sequence. In
the case of synfire chains, which are among the simplest networks that could account
for sequential activity, an element can be mapped onto one or multiple subsequently
active groups, with the feedforward connectivity ensuring transitions between elements.
Time is then an explicit (spatial) dimension represented by a strict feedforward propaga-
tion of activity through the network, underscoring the chain-like characteristic both at
the architectural and dynamical levels. However, in the classical formulation of synfire
chains, features like precise and synchronous spike timing, purely feedforward connectiv-
ity, the absence of inhibition and each neuron participating in a single chain are major
limitations that make the rigid architecture biologically implausible.

Feedforward structures embedded in recurrent networks allow for neural variability

31



Chapter 3 Computational models of sequence processing

that is more consistent with experimental data, while also providing long-lasting activa-
tions that are suitable for sequential processing (Goldman, 2009; Buonomano and Laje,
2010). Such networks are often referred to as “recurrent in architecture, but feedfor-
ward in function”. Although chain-like connectivity patterns can be embedded a-priori
in the network, in many cases an “effectively feedforward functionality” emerges through
learning from initially unorganized recurrent projections (Rajan et al., 2016; Hardy and
Buonomano, 2018; Liu and Buonomano, 2009). While in some cases this translates to
actual feedforward connectivity emerging at the synaptic level (corresponding to synfire
chains as in Fiete et al., 2010), sequential (bump-like) activity may also arise dynam-
ically through shifts in the E/I balance, without the need for hard-wired projections
(Hardy and Buonomano, 2018).

Because the feedforward propagation of activity in some (Liu and Buonomano, 2009),
but certainly not all of these networks resembles synfire transmission - in the sense that
groups of neurons are active (once) sequentially and silent otherwise -, they are sometimes
included in the same class of chain-like models. However, the underlying dynamics and
emerging architecture are fundamentally different. In RNN-based models, each stimulus
elicits a specific transient trajectory in the state-space, which may sometimes involve
predominantly sequential but also significantly more complex activity.

In a key difference to synfire chains, such trajectories do not rely on strictly feedforward
pathways but arise from complex interactions between the input and recurrent dynamics
(Rajan et al., 2016; Goudar and Buonomano, 2018). Under realistic synaptic plasticity
rules and homeostatic mechanisms, recurrent networks tend to build small clusters that
exhibit slow dynamics through reverberating activity, where the stimulus-specific trajec-
tory involves dynamical switching between multiple clusters (Litwin-Kumar and Doiron,
2014). Such (cyclic) clusters may play an important role in generating complex yet sta-
ble neural trajectories, but, crucially, the overall activity is jointly shaped by the input,
recurrent structure and dynamical processes at single neuron/synapse (e.g., adaptation)
and network level (e.g., E/I balance) (Hardy and Buonomano, 2018; Rajan et al., 2016).

Moreover, each spatiotemporal trajectory may involve many or even all neurons in the
network, possibly activating them several times, whereas in synfire chains each neuron
is part of a single path. This is also more consistent with the mixed stimulus selectivity
displayed by many cortical neurons (Rigotti et al., 2013). Time is then represented
implicitly through the evolution of the trajectory, which can be flexibly warped while
maintaining encoding stability (Hardy and Buonomano, 2018). In addition, these may
depend on the current and previous inputs, thus endowing the system with a form of
natural dynamic memory through recurrence (see also Section 2.4). Computationally,
this is more powerful than low-dimensional synfire chains because the system can exploit
the available state-space dimensionality more efficiently.

Leveraging such transient dynamics, recurrent models prove particularly adept at
learning and producing multiple timed motor patterns, which may last up to several
seconds (Rajan et al., 2016; Mante et al., 2013; Laje and Buonomano, 2013). On the
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Figure 3.4: Static chains and dynamics trajectories. (A) Synfire-like sequential activations
patterns (top) and weight matrix (bottom) after learning in the hippocampal model of Ecker
et al. (2022). Learning induces a diagonal but bidirectional weight matrix that underlies feedfor-
ward and feedback replay. (B) Activity in a recurrent network that learned to encode multiple
feedforward trajectories involving overlapping sets of neurons (Hardy and Buonomano, 2018).
Which trajectory is replayed depends on the input stimulus.

downside, most of these are based on continuous rate networks, often disregard biology
by allowing both negative and positive firing rates, and typically employ some kind of
supervised (BPTT) or explicit feedback-based learning (FORCE; Sussillo and Abbott,
2009) to train the recurrent weights. Finally, these models typically aim at learning one
or several patterns in isolation, without considering temporal relations between them.
From this perspective, they can still be qualified as sequential activity generators, similar
to synfire chains, even if the underlying mechanism differs.

In light of these observations, it becomes less obvious which characteristics qualify a
model as “chain-like”. No matter how individual elements of a sequence are represented,
temporal links (transitions) between them must be established somehow. At an abstract
level, this requires a “chaining” ability from all sequence processors. For models like
synfire chains that rely mainly on feedforward connectivity, whether pre-wired or learned
or embedded in a larger network, one can argue that all aspects are chain-like: underlying
structure, resulting activity, representation of time, as well as any possible temporal and
contextual relations between elements must be carved in explicit synaptic pathways.
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Moving toward more dynamical representations, one can assume a system where in-
dividual stimuli are encoded in specific trajectories (e.g., in segregated populations with
graded response), and only the transitions between elements are learned through dedi-
cated projections. In this case, the chain property could refer only to these transitions,
irrespective of whether the trajectories rely on sequential activations (as long as they do
not require exclusively feedforward connectivity). A completely dynamical approach, on
the other hand, would involve representing both elements and the links in the transient
dynamics. This means that stimulus representations must be dynamic and context-
dependent, and all relevant history must be encoded along with the current represen-
tation. Although this is theoretically possible if the network possesses sufficiently long
memory, in practice such systems can only learn short and relatively simple sequences.
As we will see in the next section, this (memory) is also the reason why many models
either use a combination of asymmetric connectivity and transient dynamics or involve
external/dedicated components to handle contextual complexity.

3.3.3 Processing complex stimulus sequences

Illustrative examples of models based on sequential activity are two related studies by
Maes et al. 2020; 2021. These models start from an initially random network and first
learn a feedforward but circular pathway, through cyclical stimulation of cell assemblies
and STDP, to produce a “clock-like” sequential activity (akin to but strictly speaking
not synfire chains). A separate set of readout populations, each representing a specific
element, are then mapped onto the circular activity through Hebbian co-activation.
By decoupling the driving network from the readout layer, the model becomes very
flexible and can learn arbitrary inputs, even sequences of sequences when multiple clocks
on different timescales (hierarchical) are employed (Maes et al., 2021). However, this
approach ignores a significant problem of sequence learning by outsourcing the token
representations to some external dimension. In addition to the scarce experimental
evidence of such clock-like or pattern generator dynamics in the cortex (except the HVC
and possibly hippocampus), the ongoing activity also means that each and all sequences
are replayed continuously, and selecting between them requires an external inhibitory
input for suppressing all unwanted sequences. Moreover, the timing of sequences and
their elements are fixed to the clock speed and cannot be changed, and multiple sequences
cannot share the same element unless they are represented by distinct readouts.

In a model that can be considered a conceptual reversion of the above clock, Murray
and Escola (2017) demonstrate that a purely inhibitory network based on striatal circuits
can learn sequential activity patterns at one speed and replay them at variable rates.
The mechanism relies on first acquiring a feedforward, circular pathway (essentially a
clock) through the network along which the activity may propagate, with transitions be-
tween cell groups occurring due to short-term depression and winner-take-all dynamics.
Targeted excitatory inputs from the cortex (seen as a tutor/controller) to specific sub-
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populations can then select which (possibly overlapping) subsequences are expressed,
with the input intensity determining the replay speed. Although in principle this allows
flexible selection and combination of particular subsequences, the processes governing
these selections and their temporal relations, representing the core of the sequence learn-
ing problem, are assumed to happen in the cortex and are abstracted from. As such,
the striatal circuit can be considered simply as an output system or manifestation of
(symbolic) sequence processing in the cortex, with a more fluid mapping to and between
element representations.

Closing this pathway with a thalamic module, Calderon et al. (2022) proposed a cor-
tical - basal ganglia - thalamus loop in which token orders are encoded in a clustered
RNN (cortex), while the transitions between elements are mediated through active gat-
ing and ramping activity along the basal ganglia - thalamus projections. Although the
sequence order was essentially pre-wired, the model was able to learn the timing inter-
vals and could replay the full sequence or just specific elements at various speeds and
starting times. However, simplified and specific features of the rate-based model, such
as orthogonal input and thalamocortical projections, single-neuron representations of
the basal ganglia and thalamus, as well as ambiguity about how to store more than one
sequence raise questions about its (details on) biological plausibility and computational
effectiveness.

The above models achieved a particular type of flexibility through a conceptual sep-
aration between a controller and execution/representation. In other words, either the
order of the elements, their duration or the selection of the active subsequence required
input from an external, often abstracted system. However, both the duration and order
of a sequence can be learned within the same network with an appropriate modular
architecture (Cone and Shouval, 2021). Exploiting the columnar organization of special-
ized cell types, this model could learn and replay simple but long sequences. Stimulus
duration is encoded by ramping recurrent activity of token-specific “Timer” populations,
while chain-like projections through “Messenger” cells encoded the transitions. Despite
using a plausible, reward-modulated Hebbian plasticity rule based on synaptic eligibility
traces, the capacity of the network is determined in advance and there is no flexibil-
ity (temporal scaling) in the replayed durations. In a rate-based version, the addition
of an external reservoir for extended memory allowed the network to also learn simple
context-dependent sequences, but it remains unclear whether the approach would also
work in spiking networks due to the necessary long time constants.

Maintaining contextual information on longer timescales may be supported by neu-
ronal plasticity mechanisms such spike-rate adaptation Fitz et al. (2020). In this work,
the authors demonstrated that intrinsic adaptation, even without recurrent connectivity,
can yield sufficiently long memory (a few seconds) and sensitivity to serial order for a
semantic labeling task in sentence comprehension. Given the recognition nature of the
task, the model focused rather on the working memory aspect and was not designed
to replay learned (or generate any kind of) sequences. Similar reservoir computing ap-
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proaches for various language processing tasks were also investigated in discrete echo
state networks, which typically achieve better performance than spiking models on sig-
nificantly more complex grammatical sequences (see e.g. the work of Hinaut et al. 2013;
2015 or Dominey (2013) for a comprehensive review). Compared to static reservoirs, en-
dowing the system with local, homeostatic synaptic and neuronal plasticity mechanisms
significantly improves the performance on counting and occluder tasks, as demonstrated
by the Self-Organizing Recurrent Network (SORN; Lazar, 2009) model. History is en-
coded in the form of stable, dynamic trajectories that allow the system to learn and make
context-dependent predictions from simple artificial grammars (Duarte et al., 2014). An
adaptation of the model to LIF neurons was also evaluated on a simple sequence replay
task, with the principal goal and outcome being the reproduction of data from a visual
experiment (Klos et al., 2018). Thus, it is not obvious whether the power of the discrete
SORN can fully translate to spiking networks.

Past inputs can also be encoded in sparse, context-dependent neuronal activations
that are learned in conjunction with dedicated, history-dependent synaptic pathways
(Bouhadjar et al., 2022, 2023). Using structural Hebbian synaptic plasticity and rate-
based homeostatic control, the spiking temporal memory model leverages nonlinear den-
dritic processing for (probabilistic) sequence prediction, mismatch detection and cued
replay. Learning induces the maturation (growth) of an explicit, sequence-dependent
pathway in an initially random network, along which activity propagates similarly to
synfire chains. It can learn higher-order Markovian sequences with shared elements and
exhibits relevant features such as prediction of the upcoming element through dendritic
action potentials and generation of mismatch signals. On the downside, it also displays
some weaknesses typical to synfire chains, including the reliance on strongly correlated
input and activity, sensitivity to noise and little trial-to-trial variability, and inability to
represent duration or handle longer input signals.

More generally, dendritic processing may play an active role in detecting temporal
features (Leugering et al., 2023). Even simple models with two dendritic compartments
can perform chunking of sequences, i.e.,g segmentation (recognition) of distinct sequences
presented as a continuous stream (Asabuki and Fukai, 2020). Through a rather uncom-
mon learning rule, whereby the dendrites try to predict the activity of the soma and thus
attempt to minimize their response differences, chunk-specific cell assemblies emerged
that exhibited stereotypical, sequential activation as a response to the preferred sequence.
In the absence of recurrent connectivity, memory arose through history-dependent adap-
tation of the gain and threshold of the somatic transfer function. In a spiking version
of this model (Asabuki et al., 2022) that did include recurrent projections, these served
to gate the information flow from the dendrite to the soma in a context-dependent
manner, acting as a sequence-specific filter from redundant/overlapping token repre-
sentations learned by the dendrites. This yielded invariance to time-warped, as well
as time-reversed input patterns. However, as the chunks were presented with varying
gaps between them, it remains somewhat unclear whether the spiking model performs
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chunking or simply learns to represent higher-order sequences.
The emerging population activity in these networks is very similar to the model pro-

posed by Klampfl and Maass (2013), which consisted of a recurrently coupled network
of more abstract, winner-take-all circuits. Such competition-based dynamics allowed
the system to encode noisy spatiotemporal patterns through sequential activity that
is robust to temporal warping. Brief context windows led to distinct representations,
whereas concatenation of multiple patterns induced a (sequential) interlinking of the
individual representations, which could be replayed upon a cue or spontaneously. Given
that the model was not explicitly designed for sequence processing, this ability was only
demonstrated for two patterns. Despite plausible network activity and unsupervised
learning, the network relied on engineered features such as symbolic inhibition (through
firing rate normalization) and rigid WTA circuits with predefined mean activity. These
raise doubts about its capacity for processing multiple and longer sequences in a more
realistic setting, for instance with explicit inhibitory cells. Similar results were obtained
in a related model based on WTA circuits (Mostafa and Indiveri, 2014), but this work
relied heavily on a pre-wired feedforward architecture and exhibited highly implausible
spiking activity.

The above models represent only a small, but representative subset of recurrent net-
work models for sequence learning that are, at least to some degree, constrained by
biophysical features. From a computational perspective, there are certainly other rele-
vant models that provide insight into possible mechanisms of cortical processing. One
example is the hierarchical Lotka-Volterra model for chunking based on winnerless com-
petition dynamics proposed by Fonollosa et al. (2015). Leveraging a two-level network
and Hebbian plasticity, the first layer learned representations of single tokens while the
second one developed distinct, dynamical encodings for combinations of tokens (subse-
quences). At each level of the hierarchy, sequential memory was encoded as dynamic
trajectories along a chain of metastable fixed points (heteroclinic channel). Effectively,
the higher layer contained multiple metastable states, each associated with a heteroclinic
sequence in the lower layer that encoded multiple tokens. Such hierarchical dynamics
and representations are undoubtedly desirable traits of complex sequence processors, but
it is unclear how multiple stable heteroclinic channels can emerge in biologically more
detailed systems.

Moreover, these models are typically designed for and evaluated on only a few tasks,
making a comparison of their computational abilities difficult. To address this issue, the
second part of this thesis develops a benchmarking framework that enables such com-
parison systematically. As a proof-of-concept, we will demonstrate its features through
a detailed investigation of three models.
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Functional Neural Architectures:
A toolkit for functional neural network
benchmarking, analysis and comparison
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Many of the models discussed in the previous chapter were implemented in custom
Python or MATLAB code, or using dedicated neural simulators such as Brian (Stimberg
et al., 2019) or NEST (Diesmann and Gewaltig, 2002). More generally, spiking networks
can be simulated using a variety of tools, ranging from well-known machine learning
libraries to neural simulators and full-fledged integrated simulation environments. Each
of these tools has particular advantages, but, importantly, they cater to very different
needs. Libraries such as TensorFlow (Abadi et al., 2016) or PyTorch (Paszke et al., 2019)
are perfectly suited for training (simpler) networks using supervised learning algorithms,
and are therefore often used for neuromorphic applications or spiking versions of deep
learning models. However, they require manual specification of the model dynamics
(possibly affecting reproducibility) and are less flexible about the model and architecture
complexity. While dedicated spiking neural simulators overcome both of these limitations
and are widely used in the computational neuroscience community, they are only that:
simulators. All the functionality (e.g., task specification and analysis) must still be
implemented by the user. Although this is addressed by integrated tools focused on
functional networks (e.g., Nengo; Bekolay et al., 2013), these added features often come
at the price of efficiency or supported level of biological detail. In the following, we
introduce a toolkit that tackles all of the above aspects, providing a flexible tool for
creating, simulating and analyzing functional spiking networks.

4.1 Description of the toolkit

Functional Neural Architectures (FNA) is a Python library for neuronal network bench-
marking and analysis. It covers all components of a functional experiment involving
neuronal networks, which can be roughly grouped into three distinct parts: task defi-
nition and input generation; model specification, instantiation and simulation; perfor-
mance evaluation and a collection of detailed analysis scripts. FNA maintains a concep-
tual and practical separation between these parts, with interactions occurring through
well-defined interfaces. This design is intended to make FNA as simulator-agnostic as
possible, allowing it to leverage the vast repertoire of models and their efficient imple-
mentation available in existing tools. In other words, FNA provides standalone methods
for input management and results analysis, but it relies on third-party simulation en-
gines for handling the actual models. This also means that these simulators determine
the types and properties of architectures (neuron and synapse models, circuit topology
and connectivity) supported by FNA. Integration of such an engine requires only the
extension of an abstract, high-level network object (wrapper), which represents the com-
munication bridge between input and analysis. Currently, FNA includes wrappers for
PyNEST, TensorFlow and a custom implementation of continuous rate neurons. Here
we will focus more on the PyNEST interface, which was developed as part of and used
in all projects of this thesis.
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Figure 4.1: Conceptual overview of Functional Neural Architectures (FNA) and its
components. Function Models refers to the task constraints and their functional significance,
which are designed to probe the different systems’ ability to deal with complex temporally pat-
terned input sequences. FNA employs real-world computational tasks, common benchmark tasks
used in the domain of computer science and machine learning as well as explicit experimental
paradigms employed in the domain of cognitive science and psychology. System Models comprises
all architectural and biophysical constraints imposed on the system, from the input encoding to
the neuron model and optimization processes. Image adapted from Duarte (2021), with permis-
sion.

Intended not only as a benchmarking but also as a comparison tool, the modular ar-
chitecture of FNA allows users to specify numerical experiments and perform them on
a variety of networks. The experiments are typically formulated as computational tasks
involving a functional mapping between the input and output, described using a common
framework. It exploits the fact that critical features of many experiments, ranging from
standard benchmark tasks in computer science and machine learning (e.g., classifica-
tion) to experimental paradigms in cognitive sciences (e.g., working memory tasks), are
sufficiently universal such that the same type of measurements can be used to evaluate
performance. In particular, the tool includes all the ingredients of a RC framework (see
Section 2.4.2), in which the computational capacity of circuits is probed using arbitrarily
complex input stimuli and signals, and performance is measured independently of the
system’s specificities.

Making use of standardized routines and established simulation engines, FNA also
addresses a major issue in computational neuroscience: reproducibility. The workflow
ensures consistency of results across repeated runs and computing platforms (contingent
on the simulation core providing this feature). With FNA, the same experiment can be
executed just as easily on a local machine as on a compute cluster, taking advantage of
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all available resources.

4.2 Components
The schematic in Figure 4.1 illustrates the main components of the toolkit, which can be
functionally grouped into three parts, mirroring the logical flow of a typical experiment:
input and preprocessing, model setup and simulation, and postprocessing. Creating
an experiment begins by specifying the computational task, i.e., defining the expected
input/output mapping, and establishing how the input should be embedded, encoded
and delivered to the network. In a second step, the network model is created and the
input is processed. Finally, the network output can be used to evaluate the circuit’s
performance on the task. While each of these stages may depend strongly on the type of
input and model properties, FNA aims to overcome these differences through common
formalisms, specification and function interfaces in order to allow carrying out the same
set of measurements across different circuits. For instance, in traditional ML models,
there is no conceptual separation between the last two steps, running (training/testing)
the model and decoding its performance.

In addition, there are three auxiliary but essential components of the toolkit: param-
eter definition, analysis and visualization. These are integrated into the individual parts
of the main components to enable fine-grained control of and access to the elements of
the experiments. For maximum flexibility, the parameter file is a single Python script
containing separate dictionaries for each component. We will now go through each one
in more detail.

4.2.1 Task definitions as symbolic sequences
Given that most temporal and non-temporal computational tasks can be formulated as
operations on symbolic items or tokens, we specify the input/output relation as functions
of these elements. Note that in the remainder of this chapter, we will use token, symbol
or stimulus interchangeably. As we will see, this formulation leaves room for handling
functions defined in both discrete and continuous time. For the moment, let’s consider
the case where both the input and target output are defined in discrete time. We
borrow conventions from formal language theory as introduced in Chapter 2, and define
the input u as a sequence Su = σ1, . . . , σT containing T discrete tokens. This is simply
a layer of abstraction from the underlying data, the only constraint being that it can be
transformed into a form accepted by the system.

At the lowest level, SymbolicSequencer provides a base class for managing such
symbolic sequences. It maintains data structures for the alphabet and generated strings,
along with functions for basic string-level operations, computing simple metrics and
creating task-specific target outputs. Although this base class is meant to be derived
when implementing more complex tasks, it already provides a set of default, generic
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mappings that can be used to probe some interesting functional properties. These include
determining the token identity in the current step (classification), with the target output
defined as ẑ(t) = u(t), or k steps back (memorization task), formulated as ẑ(t) = u(t−k),
∀t ∈ T . More generally, for each input sequence u we can specify a set of task-relevant
outputs by defining multiple target functions

ẑi(t) = fi(u(t)) (4.1)

and use train individual linear readouts to learn these mappings using the RC approach
(more on this shortly, see Section 4.2.5). Table 4.1 includes a list of tasks currently
implemented in FNA, categorized based on the temporal relation of the tokens (random
vs structured), and whether the output signal is analog or discrete (symbolic). These
range from artificial grammar learning (AGL) to analog time series prediction. Analog
signals defined in continuous time can be either generated externally and loaded as
vector embeddings (see next section), or they can be represented as sequences of T
distinct tokens (with T depending on the signal sub-sampling and/or input resolution).

Available tasks in FNA

Task type Task name

Structured analog
Dynamical system emulation (Mackey-Glass)

Chaotic time series prediction*

Random analog

n-bit flip-flop

NARMA

Analog fading memory

Continuous integration*

Random symbolic
Symbolic fading memory

Temporal XOR*

Structured symbolic

Sequence recognition, memory, prediction, and chunking

Non-adjacent dependencies

Cross-modal generalization (real-world embeddings)

Natural language processing

Delayed-match to sample*

1-2-AX working memory task*

Deviant detection (odd-ball paradigm)*

Table 4.1: Analog and symbolic tasks available in FNA. The architecture and baseline
data structures allow for uncomplicated implementation of new tasks. Examples for these are
marked with * (currently not available as dedicated tasks).
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4.2.2 Embeddings

At this point, the input u(t) consists of a series of abstract symbols, with minimal
constraints on the type of underlying data. For the system to understand these inputs,
they must first be transformed into consistent numerical representations (typically in
vector space) through a process known as embedding. This is a common technique to
map discrete variables to (relatively low-dimensional) vectors of continuous numbers.
In machine learning applications, (learned) vector embeddings often involve taking into
account semantic (or categorical) meaning, such as in word embeddings, where words
with similar meanings are also expected to be mapped to points closer in vector space.

However, vector embeddings can be much more general, and FNA includes a variety
of methods such as one-hot, scalar or random mappings. These are implemented as
VectorEmbeddings objects. If the target network operates in continuous time, any
such vector embedding can be further converted into a continuous one by unfolding
it in time. Such DynamicEmbeddings are obtained either by applying a temporal
mask (kernel) to generate a continuous signal, or by converting them to spatiotemporal
spike patterns (frozen noise). In some cases, it may be useful to introduce variability
during the unfolding process, for instance in the stimulus duration and amplitude, or by
injecting temporal jitter (noise).

In addition, FNA provides an interface to use multimodal stimuli from real-world
data, such as image (MNIST and Cifar-10) or audio (Heidelberg digits; Cramer et al.,
2022) datasets. These sensory frontends can transform the data into the aforementioned
embeddings, allowing the user a simple way to create complex symbolic processing tasks
using naturalistic stimuli.

Embeddings can be visualized and analyzed using several standard plotting functions
and metrics. These include plotting the input space (or a projection of it using one of the
available dimensionality reduction methods) or evaluating the embedding quality using
any distance measure.

4.2.3 Encoding

For networks operating in discrete time, the embedded input (as described above) can
be delivered directly to the network. However, certain models, in particular spiking net-
works, require an additional encoding step that is often specific to the simulation engine
used. For spiking models implemented in NEST, the tool includes a NESTEncoder
object that converts the input to a form accepted by the simulator (current or spikes).
Under the hood, continuous signals (embeddings) are translated into Poisson spike train
using NEST generator devices, whereas spike patterns can be drawn according to specific
stochastic processes (e.g., Ornstein-Uhlenbeck) using functions from the NeuroTools1 li-
brary.

1https://github.com/NeuralEnsemble/NeuroTools
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4.2.4 Network models

Due to the considerable differences in circuit properties, abstraction levels and imple-
mentation specificities across the various simulation engines, FNA requires writing a
custom, high-level wrapper for each model type. This can be done by deriving the
Network abstract class, which exposes a common API for critical function calls such
as training and prediction. To bridge over conceptual differences between traditional
deep learning and other optimization approaches, we follow the batch-based training
and testing/predicting convention. Depending on the model, this stage involves learning
the recurrent (internal) weights or simply simulating (evolving) the network dynamics.
At the same time, the network state is sampled using predefined methods to train the
task-specific readouts composing the decoder (described in detail below). There are
three network models currently available: ANNs (via TensorFlow), continuous rate and
spiking networks.

The spiking SNN model, central to this thesis, required a more careful treatment to
obey the above convention. Biologically plausible models of spiking networks typically
involve large, modular circuit architectures and complex wiring schemes, consisting of
a variety of neuron types and synaptic connections. Moreover, it is often desirable to
compute activity statistics not only for single cells but also on a coarser, population
level. To this end, FNA provides Population objects to group individual neurons into
homogeneous populations, storing their parameters as well as various state variables
through recording devices. The SpikingNetwork object then acts as a wrapper for
the collection of populations, providing functionality for creation, connection and activity
management.

4.2.5 Decoder: state extraction and readouts

As the name suggests, the Decoder object is responsible for deciphering the ability
of the system to perform the specified tasks. Following the RC approach, decoding
requires two ingredients: a matrix with the (sampled) population responses and a set of
readouts, one for each task. Population responses are gathered by Extractor objects,
which can require model-specific implementations for extracting the activity from specific
state variables. For spiking networks, one can use various sampling strategies (e.g., at
specific time intervals or at stimulus offset) to record from continuous variables like the
membrane potential of filtered spike trains. Such sampling options offer a large degree of
flexibility, for instance, to evaluate how much information is retained about a stimulus at
particular times after its offset. From the sampled activity we construct a state matrix
X ∈ RN×T , with N representing the population size and T being the size of the input
sequence. For discrete-time systems, the state matrix can be created directly from the
unit outputs in each time step.

The state matrices are used to train multiple linear readouts in parallel, implemented
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Figure 4.2: Schematic overview of the decoding process. The Decoder contains a number
of task-specific but independent readouts, which are trained on the system’s responses.

as Readout objects within the decoder. This is done by linearly combining the popu-
lation responses using task-specific output weight matrices Wout

i :

zi = gi(Wout
i × X), (4.2)

where gi is a suitable nonlinear function that can, for example, normalize the outputs
(softmax) or take the maximum (hardmax or k-WTA). To optimize these weights ac-
cording to some loss function L(ẑi, zi), users can choose from a wide range of learning
algorithms, including regression methods and gradient-descent based approaches such
as ridge regression, SVM with RBF kernel, or linear classifiers with SGD training. The
(trained) readout coefficients are held in a separate OutputMapper class, which stores
the weights and also contains some analysis and plotting routines. Note that these target
outputs are all functions of the same input and the solutions use the same population
states, so what we are measuring is the ability of the network to create sufficiently rich
input-driven dynamical states that allow multiple tasks to be decoded simultaneously.

In standard RC studies, training is a one-step procedure and takes place after simula-
tion on the complete state matrix. However, for large networks with many (and densely)
recorded variables, this poses a serious challenge on the computational resources. To re-
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duce memory consumption, FNA supports batch processing in combination with an
online training algorithm (e.g., stochastic gradient descent).

4.2.6 Analysis and visualization

FNA ships with a comprehensive set of analysis and visualization methods. In addition to
routines included in the individual components as methods of the respective classes, there
are separate modules for handling more generic data. The analysis.metrics module
contains functions for, among others, characterizing the population activity, evaluating
the state space complexity and reducing dimensionality. Similarly, the visualization
package provides functions for visualizing results from the simulation and subsequent
analysis, including three-dimensional projections of the state space and trajectories and
plotting various performance metrics of readouts.

4.3 Example use case: simulation, analysis and visualization of
a spiking network model

To illustrate some of the built-in features of FNA, we will now go through a simple use-
case scenario. We test the ability of a spiking recurrent network to classify three digits
from the MNIST dataset, and simultaneously probe whether its recurrent dynamics can
retain the identity of the previous stimulus. Obviously, the scientific insight from such
an experiment is limited, but it will allow us to touch on many important aspects of the
tool.

To make things a bit more interesting, the stimuli are not presented in random order
but instead obey the transition rules of a simple grammar (Figure 4.3A). As such, the first
step is to create an ArtificialGrammar object encoding said transitions, from which
we can then draw valid sequences (strings) such as ABBBC. Using the image frontend
helper, FNA facilitates loading the dataset and automatically creates the mappings
between the symbols in the grammar’s vocabulary and the different image labels. In
this case, A, B and C correspond to 0, 2 and 7. Because the dataset is loaded into a
VectorEmbeddings object, we can already compute some metrics on it (e.g., distance
measures) or simply plot a low-dimensional projection for a quick peek at the data
(Figure 4.3B). At this point, each discrete stimulus is represented by a vector, so we need
to unfold these into continuous signals that can be fed into our spiking network. Vector
embeddings can be unfolded directly into spatiotemporal spike patterns of specific rate
and duration, but here we will convert them into analog signals using an alpha-shaped
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Figure 4.3: Generating input for a simple task. (A) Input sequences (strings) are drawn
from the depicted grammar, with a one-to-one mapping between symbols and some numbers
(labels) from the MNIST dataset. The images, presented in an ordered manner, will serve as
stimuli to the network after proper encoding. (B) Low-dimensional projection of 300 random
images of the 3 selected digits from the dataset. (C) Each image, embedded as 784-dimensional
vector, is unfolded into a 50 ms continuous signal of the same dimensionality using an alpha-
shaped kernel with an amplitude of 100 and a time constant of 12. This signal can be then
encoded into either spike trains or current and injected into the network.

kernel (Figure 4.3C) in just a few lines:

1 image_mnist = ImageFrontend(path=’../data/’, label=’mnist’, vocabulary=[’A’, ’B
’, ’C’])

2 signal_pars = {
3 ’duration’: 50.,
4 ’amplitude’: 100.,
5 ’kernel’: (’alpha’, {’tau’: 12})
6 ’dt’: 1.,
7 }
8 image_mnist.unfold(to_signal=True, **signal_pars)

The tool offers a lot of options here, including specifying distributions for the ampli-
tude and duration, different kernels, as well as adding noise (jitter) on top of the signal.
As a last step of the input preparation, we create a NEST specific encoder that generates
Poissonian spike trains with rate given by the signal amplitude.

Having specified the input, we can concentrate on the network itself and the tasks. For
simplicity, we will use one of the example networks included in FNA, a balanced random
network with LIF neurons. Setting up the decoding process involves two steps: specifying
a state extractor to sample the responses and linking it to a decoder that will hold the
readouts. Note that it is possible to create multiple extractors (with various sampling
strategies and from different variables), and connect each of these to several decoders
(using different training algorithms). Here we will sample the membrane potentials at
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stimulus offset. Next, we generate some sequences for training and testing (for brevity,
only one batch), and specify classification and 1-step memory from the set of default
tasks to generate the target labels. The network object’s member functions snn.train
and snn.test perform the simulation and also optimize the weights for each readout.
After this step, the network and decoder contain all the relevant information which
can be used for subsequent analysis and visualization. As shown in Figure 4.4, our
simple network can distinguish between the stimuli (classification ) but has no sufficient
memory. Interestingly, the structure of our sequence is reflected in the higher recall
accuracy for label B, which is seen more often during training.
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Figure 4.4: Evaluating a functional experiment using FNA. (A) Classification and 1-step
memory performance of a small Brunel network (N = 100) on the task described in Figure 4.3.
For each of the three MNIST digits, (the same) 5 images were used in both training and testing,
which consisted of 1000 and 200 presentations, respectively. For the state variables, we used
the low-pass filtered spike trains with τf = 20 ms. (B) Confusion matrix for the three classes.
(C) PCA projection of the 200 data points from the test phase. (D) Variance explained by
the individual PCs. Red, dashed vertical line denotes the effective dimensionality of the system
(see Mazzucato et al., 2015). (E) Raster plot and corresponding firing rates for the excitatory
population. (F) Example activity statistics, showing (from left to right) the distributions of the
mean firing rates, revised local variation of coefficient as a measure of irregularity (see Shinomoto
et al., 2009), and SPIKE-distance for measuring synchrony (see Kreuz et al., 2013).

By walking through the different stages of this simple functional experiment, we man-
aged to highlight only a small subset of the tool’s capabilities. The published package
includes detailed documentation and additional examples, while the next chapters of the
thesis provide more complex and concrete models that can be built and analyzed with
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FNA.

4.4 Conclusions and scope of the toolkit
In this chapter, we presented a modular and versatile toolkit for functional benchmark-
ing and comparing neuronal networks. We provided a thorough description of the tool’s
components and features, and demonstrated its functionality through an example clas-
sification task. While there are no explicit constraints on the system properties, the tool
is primarily meant to study the computational principles in recurrent networks. Decou-
pling the output from the system itself, it exploits the nonlinear and high-dimensional
dynamics of such networks to probe them on multiple tasks in parallel using the RC
paradigm, beyond what they were trained to solve. For certain tasks, this represents
an efficient method to compare the performance of very different systems. On both
these fronts, the currently implemented features reflect the origins of this project in
computational neuroscience, with a strong focus on symbolic processing and biologically
constrained network models.

Due to its modular architecture, the tool can be used in a variety of ways depending
on the research objectives and software needs of the users. The core components, input
generation and performance evaluation may be used individually and separately from
the rest of the tool. For instance, tasks can be defined and input (embeddings) generated
and plugged in into custom models and code. Similarly, one can take full advantage of
the decoder and analysis simply by providing an output (state matrix) from different
simulations.

The tool is part of a larger collaborative effort and is being continuously developed. It
builds on and extends the scope of a previously published codebase, Neural Microcircuit
Simulation and Analysis Toolkit (NMSAT; Duarte et al., 2017b), which I contributed to
during my Master’s thesis. The work undertaken as part of this dissertation focused on
overhauling and extending the spiking model implementation and related components,
updating to NEST 3.x, the decoding process, as well as practical aspects such as re-
producibility issues and continuous integration tests. Additional, substantial changes
include the modification of the code architecture to be used as a library, the creation of
abstraction layers to facilitate custom network models, and the extension of the analy-
sis methods. All subsequent chapters present modeling work that was performed using
different versions of the tool or its precursor, NMSAT. In the remainder of this section,
we compare FNA to other related tools and highlight some of its limitations.

4.4.1 Related work
As described above, the main advantage of FNA consists in the complete workflow that
covers most aspects of functional neuronal network experiments. However, there are a
number of tools that offer similar features as the individual components of FNA.
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Neural network simulators Although FNA currently includes TensorFlow and NEST
as simulation backends, in principle any other simulation engine could be integrated. For
modeling detailed multi-compartment neurons, NEURON (Hines and Carnevale, 1997)
or Arbor (Akar et al., 2019) are established and powerful options. However, these often
do not scale well for large networks and long simulations. As a step towards large-scale
models of single (but simpler) neurons, Brian2 (Stimberg et al., 2019) represents a flexible
choice for intermediate network sizes. It offers a simple and intuitive Python interface for
implementing new neuron and synapse models by specifying the differential equations,
as well as dynamic interaction during runtime through network operations. Similarly to
NEST, efforts are underway to provide GPU acceleration for Brian2 (Stimberg et al.,
2020). Auryn (Zenke and Gerstner, 2014) is another spiking network simulator that
is especially well-suited for investigating models with synaptic plasticity that require
extended simulation times.

Other tools aim at a more abstract, population-level description and analysis of the
network dynamics. The Brain Dynamics Toolbox (Heitmann et al., 2018) and DynaSim
(Sherfey et al., 2018), both dynamical systems simulators in MATLAB, come with a wide
range of functions (e.g., bifurcation analysis) and visualization routines (e.g., plotting
phase portraits), with DynaSim providing methods for simplifying batch simulations and
large parameter explorations. Going from population-level to whole-brain models, The
Virtual Brain (TVB, Sanz Leon et al., 2013) enables the investigation of the macroscopic
dynamics of the whole brain by considering each cortical region (node) as one neural
population with realistic, local response behavior. Models in TVB are built using a vast
array of structural (connectome) and neuroimaging information (EEG, fMRI), and the
included analysis methods allow a direct comparison with experimental observations. All
three tools also include graphical interfaces, making them more accessible to a broader
user base.

Functional tools The tools described above are able to numerically solve the dynam-
ical equations for concrete instances of various neural network models, but they rarely
include components necessary for the functional benchmarking of biological networks.
A tool that is specifically designed for investigating how cognitive functions can be im-
plemented in neural circuits, and thus more related to FNA in scope, is Nengo (Bekolay
et al., 2013). It builds on the Neural Engineering Framework (NEF, Eliasmith and
Anderson, 2003) and the Semantic Pointer Architecture (SPA, Eliasmith, 2013) as the-
oretical underpinnings, which serve as guiding principles (and constraints) for model
construction.

NEF requires defining tuning curves for each neuron and assumes that every pop-
ulation computes a user-specified target function through a linear combination of the
responses, which is optimized for (essentially a linear readout). These learned outputs
also represent the inputs to any connected target population. Clearly, these abstract
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assumptions constrain the biological plausibility of the models and may interfere with re-
search objectives investigating more detailed neural mechanisms and complex, emerging
dynamics. On the other hand, by relying on abstract symbol processing, SPA provides
an interesting approach to tackling cognitive functions and forms the basis of the largest
functional brain model, Spaun (Eliasmith et al., 2012).

From an application perspective, Nengo provides an ecosystem for creating functional
spiking and non-spiking models, a GUI for interactive analysis, and a number of simu-
lation backends that can be run on different physical hardware, including neuromorphic
chips. One major difference to FNA lies in the abstraction level of the model specifi-
cation: in Nengo, these are defined using a common formalism and the model object is
entirely decoupled from the simulator, whereas in many cases FNA expects simulation-
specific description while the network object, which exposes common function APIs, is
essentially a wrapper around the simulator itself.

Using Nengo as a framework for RC is straightforward, but there are also other ded-
icated libraries such as ReservoirPy (Trouvain et al., 2020) or EchoTorch (Schaetti,
2018), focusing on Echo State Networks, or PeleNet (Michaelis, 2020), which targets
neuromorphic devices. Rather a collection of different tools but with a more general
and far-reaching scope, Computation Through Dynamics2 is a valuable repository for
analyzing computation and dynamics in recurrent - but, as of yet not spiking - net-
works. In addition, there are a number of tools that build on deep learning frameworks
to implement spiking models and also include features to generate input signals, such as
Rockpool (Muir et al., 2022), but these often involve non-local learning algorithms and
are therefore less suitable from a neuroscientific perspective.

Tools for symbolic processing Given that the problem of symbolic sequence processing,
as formulated here and implemented in FNA, has deep roots in linguistics and the "Good,
Old-Fashioned AI (GOFAI)" prevalent up until the 1980s, it is perhaps not surprising
that most available software resources are variants of cognitive models or tools employed
in computational linguistics studies. Large cognitive architectures such as COGENT
(Cooper and Fox, 1998), SOAR (Laird, 2012) or MIIND (de Kamps et al., 2008) can
simulate cognitive phenomena and symbolic processing with various levels of biological
plausibility, but the high degree of abstraction often makes them unsuitable for studying
more detailed neural mechanisms. Focusing more on the input generation, artificial
grammar learning tools such as AGL StimSelect (Bailey and Pothos, 2008), AGSuite
(Cook et al., 2017) or pyagl (Beckers) can be used to create and analyze structured
sequences similarly to FNA, but these are either no longer maintained or difficult to
integrate with other systems. RNNExploration4SymbolicTS3, a more recent library
that allows the generation of sequences of tunable complexity, is offered as part of a

2https://github.com/google-research/computation-thru-dynamics
3https://github.com/robcah/RNNExploration4SymbolicTS
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study comparing artificial RNNs for learning symbolic sequences (Cahuantzi et al., 2021).
However, to the best of our knowledge, there are currently no tools that integrate such
a wide range of cognitive-inspired tasks as FNA.

4.4.2 Limitations
These comparisons illustrate the key similarities and differences between FNA and other
tools, which mostly capture only particular subsets of FNA’s capabilities. At the same
time, the flexibility offered by FNA is also one of its major flaws. The parameter specifi-
cation often requires writing a lot of code compared to other tools, with nested dictionary
structures that may be difficult for new users to get accustomed to. Moreover, some of
these structures are still model- and simulator specific and could be made more consis-
tent. Although FNA supports reproducible runs on both laptops and compute clusters
and includes some basic features for parameter space exploration, these could be im-
proved by facilitating the integration of established workflow management systems such
as Snakemake (Mölder et al., 2021).

From a software engineering perspective, a critical aspect is the relatively tight cou-
pling between different components, such as the sequence creation, task definition and
embedding/encoding, or the model creation and the underlying simulator. Although
the models are specified in a separate parameter file, the current design treats networks
and simulators as one object and only exposes some standard functions. An alternative
approach would be the decouple the network and model instance completely from the
simulator, each defined as separate objects as in Nengo, and simply pass a model in-
stance to the simulator object for training or running the network. Similarly, functional
encapsulation could be improved by moving many analysis and visualization functions
closer to the components they are related to. As a final note, future versions of FNA
will also include options for saving and reloading networks, which can be particularly
useful for large-scale simulations, as well as an extended set of tasks for benchmarking.
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5.1 Introduction

One of the advantages of the FNA toolkit presented in the previous chapter is the ease
of creation and manipulation of large populations of spiking neurons embedded in a
functional context. As discussed in Chapter 1, cortical information processing relies on
a distributed functional architecture comprising multiple, specialized modules of spiking
neurons that are arranged in complex, but stereotyped networks. Structural organiza-
tional principles are noticeable at different scales and impose strong constraints on the
systems’ functionality, while simultaneously suggest a certain degree of uniformity and
a close relation between structure and function. In Section 1.4, we argued that a pre-
requisite for processing across such large distributed systems is the ability to suitably
represent relevant features of spatiotemporal stimuli, and transfer these representations
in a reliable and efficient manner through various processing modules. The majority of
previous studies on spatiotemporal processing with spiking neural networks have either
focused on local information processing without considering the role of, or mechanisms
for, modular specialization (e.g. Maass et al. 2004), or on the properties of signal trans-
mission within one or across multiple neuronal populations regardless of their functional
context (Kumar et al. 2008a, 2010b; Diesmann et al. 1999; van Rossum et al. 2002;
Shadlen and Newsome 1998; Joglekar et al. 2018, but see, e.g. Vogels and Abbott 2005,
2009 for counter-examples).

In order to quantify transmission accuracy and, implicitly, information content, these
studies generally look either at the stable propagation of synchronous spiking activity
(Diesmann et al., 1999) or asynchronous firing rates (van Rossum et al., 2002). The
former involves the temporally precise transmission of pulse packets (or spike volleys)
aided by increasingly synchronous responses in multi-layered feed-forward networks (syn-
fire chains, see also Section 3.3.1); the latter refers to the propagation of asynchronous
activity and assumes that information is contained and forwarded in the fidelity of the
firing rates of individual neurons or certain sub-populations. An alternative approach
was recently taken by (Joglekar et al., 2018), in which signal propagation was analyzed
in a large-scale cortical model and elevated firing rates across areas were considered a
signature of successful information transmission. However, no transformations on the
input signals were carried out. Thus, a systematic analysis that considers both compu-
tation within a module and the transmission of computational results to downstream
modules remains to be established.

In this chapter, we hypothesize that biophysically-based architectural features (mod-
ularity and topography) impose critical functional constraints on the reliability of in-
formation transmission, aggregation and processing. To address some of the issues and
limitations highlighted above, we consider a system composed of multiple interconnected
modules, each of which is realized as a recurrently coupled network of spiking neurons,
acting as a state-dependent processing reservoir whose high-dimensional transient dy-
namics supports online computation with fading memory, allowing simple readouts such
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as linear classifiers to learn a large set of input-output relations (see Section 2.4.2 and
Maass et al., 2002). Through the effect of the nonlinear nodes and their recurrent in-
teractions, each module projects its inputs to a high dimensional feature space retaining
time course information in the transient network responses. By connecting such spiking
neural network modules, we uncover the architectural constraints necessary to enable a
reliable transfer of stimulus representations from one module to the next. Using this RC
approach (see Section 2.4.3 and Lukoševičius and Jaeger, 2009), the transmitted signals
are conferred functional meaning and the circuits’ information processing capabilities
can be probed in various computational contexts.

5.2 Network architecture and analysis methods

5.2.1 Network architecture

We model systems composed of multiple, sequentially connected modules or sub-networks,
abbreviated from here on as SSNs. Each SSN is a balanced random network (see,
e.g. Brunel 2000), i.e., a sparsely and randomly connected recurrent network contain-
ing N = 10000 leaky integrate-and-fire neurons (described below), sub-divided into
NE = 0.8N excitatory and N I = 0.2N inhibitory populations. Neurons make random re-
current connections within an SSN with a fixed probability common for all sub-networks,
ϵ = 0.1, such that on average each neuron in every SSN receives recurrent input from
KE = ϵNE excitatory and KI = ϵN I inhibitory local synapses.

For simplicity, all projections between the sub-networks are considered to be purely
feedforward and excitatory. Specifically, population Ei in SSNi connects, with probabil-
ity pff , to both populations Ei+1 and Ii+1 in subsequent sub-network SSNi+1. This way,
every neuron in SSNi+1 receives an additional source of excitatory input, mediated via
KSSNi+1 = pffNE synapses (see Figure 5.1).

To place the system in a responsive regime, all neurons in each SSN further receive
stochastic external input (background noise) from Kx = pxNx synapses. We set Nx =
NE, as it is commonly assumed that the number of background input synapses modeling
local and distant cortical input is in the same range as the number of recurrent excitatory
connections (Kumar et al., 2008a; Kremkow et al., 2010; Brunel, 2000).

In order to preserve the operating point of the different sub-networks, we scale the
total input from sources external to each SSN to ensure that all neurons (regardless of
their position in the network) receive, on average, the same amount of excitatory drive.
Whereas px = ϵ holds in the first (input) sub-network, SSN0, the connection densities for
deeper sub-networks are chosen such that pff + px = ϵ, with pff = 0.75ϵ and px = 0.25ϵ,
yielding a ratio of 3:1 between the number of feedforward and background synapses.

For a complete, tabular description of the models and model parameters used through-
out this study, see Supplementary Table A.1 and Supplementary Table A.2.
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Figure 5.1: Schematic overview of the sequential setup and input stimuli. Networks
are composed of four sub-networks with identical internal structure, with random (A) or topo-
graphically structured (B) feedforward projections. Structured stimuli drive specific, randomly
selected sub-populations in SSN0. For stimulus S1, the topographic projections (B, orange
arrows) between the sub-networks are represented explicitly in addition to the corresponding
stimulus-specific sub-populations (orange ellipses), whereas for S2 only the sub-populations are
depicted (blue ellipses). The black feed-forward arrows depict the remaining sparse random
connections from neurons that are not part of any stimulus-specific cluster. C: Input encoding
scheme illustration: a symbolic input sequence of length T (3 here), containing |S| different,
randomly ordered stimuli (S = {S1, S2}), is encoded into a |S|×T binary matrix. Each stimulus
is then converted into 800 Poissonian spike trains of fixed duration (200 ms) and rate νstim and
delivered to a subset of ϵNE excitatory and ϵN I inhibitory neurons.
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5.2.2 Structured feedforward connectivity
We explore the functional role of long-range connectivity profiles by investigating and
comparing networks with random (Figure 5.1A) and topographically structured feedfor-
ward projections (Figure 5.1B).

To build systems with topographic projections in a principled, but simple, manner, a
network with random recurrent and feedforward connectivity (as described in the pre-
vious section) is modified by systematically assigning sub-groups of stimulus-specific
neurons in each sub-network. Each of these then connects only to the corresponding
sub-group across the different SSNs. More specifically, each stimulus Sk projects onto a
randomly chosen subset of 800 excitatory and 200 inhibitory neurons in SSN0, denoted
Ek

0 and Ik
0 . The connections from Ek

0 to SSN1 are then rewired such that neurons in Ek
0

project, with probability pff , exclusively to similarly chosen stimulus-specific neurons Ek
1

and Ik
1 . These sub-populations in SSN1 thus extend the topographic map associated with

stimulus Sk. By repeating these steps throughout the system, we ensure that each stim-
ulus is propagated through a specific pathway while projections between sub-networks
from neurons not belonging to any topographic map remain unchanged (random). This
connectivity scheme is illustrated for stimulus S1 in Figure 5.1B.

It is worth noting that, as the stimulus-specific sub-populations are randomly cho-
sen, overlaps occur (depending on the total number of stimuli). By allowing multiple
feedforward synaptic connections between neurons that are part of different clusters,
the effective connection density along the topographic maps (pff) is slightly increased
compared with the random case (from 0.075 to 0.081). Any given neuron belongs to at
most three different maps, ensuring that information transmission is not heavily biased
by only a few strong connections. The average overlap between maps, measured as the
mean fraction of neurons shared between any two maps, was 0.61. These values are
representative for all sequential setups, unless stated otherwise.

5.2.3 Neuron and synapse model
The networks are composed of leaky integrate-and-fire (LIF) neurons, with fixed volt-
age threshold and conductance-based, static synapses. The dynamics of the membrane
potential Vi for neuron i follows:

Cm
dVi

dt
= gleak(Vrest − Vi(t)) + IE

i (t) + II
i (t) + Ix

i (t) (5.1)

where the leak-conductance is given by gleak, and IE
i and II

i represent the total excitatory
and inhibitory synaptic input currents, respectively. We assume the external background
input, denoted by Ix

i , to be excitatory (all parameters equal to recurrent excitatory
synapses), unspecific and stochastic, modeled as a homogeneous Poisson process with
constant intensity νx = 5 Hz. Spike-triggered synaptic conductances are modeled as
exponential functions, with fixed and equal conduction delays for all synapse types. The
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equations of the model dynamics, along with the numerical values for all parameters are
summarized in Supplementary Table A.1 and Supplementary Table A.2.

Following Duarte and Morrison (2014), the peak conductances were chosen such that
the populations operate in a balanced, low-rate asynchronous irregular regime when
driven solely by background input. For this purpose, we set ḡE = 1 nS and ḡI = 16 nS,
giving rise to average firing rates of ∼3 Hz, CVISI ∈ [1.0, 1.5] and CC ≤ 0.01 in the first
two sub-networks, as described in the previous sections.

5.2.4 Stimulus input and computational tasks

We evaluate the information processing capabilities of the different networks on simple
linear and nonlinear computational tasks. For this purpose, the systems are presented
with a sequence of stimuli {S1, S2, ...} ∈ S, of finite total length T and comprising |S|
different stimuli.

Each stimulus consists of a set of 800 Poisson processes at a fixed rate νstim = λ ∗ νx
and fixed duration of 200ms, mimicking sparse input from an external population of size
NE (Figure 5.1C). These input neurons are mapped to randomly chosen, but stimulus-
specific sub-populations of ϵNE excitatory and ϵN I inhibitory neurons in the first sub-
network SSN1, which we denote the input sub-network. Unless otherwise stated, we set
λ = 3, resulting in mean firing rates ranging between 2-8 spikes/s across the network.

To sample the population responses for each stimulus in the sequence, we collect the
responses of the excitatory population in each sub-network SSNi at fixed time points t∗,
relative to stimulus onset (with t∗ = 200 ms, unless otherwise stated). These activity
vectors are then gathered in a state matrix XSSNi ∈ RNE×T . In some cases, the measured
responses are quantified using the low-pass filtered spike trains of the individual neurons,
obtained by convolving them with an exponential kernel with τ = 20 ms and temporal
resolution equal to the simulation resolution, 0.1 ms. However, for most of the analyses,
we consider the membrane potential Vm as the primary state variable, as it is parameter-
free and constitutes a more natural choice (van den Broek et al., 2017; Duarte et al.,
2018).

Unless otherwise stated, all results are averaged over multiple trials. Each trial con-
sists of a single simulation of a particular network realization, driven by the relevant
input stream(s). For each trial, the input-driven network responses are used to evaluate
performance on a given task. In the case of the classification and XOR tasks described
below, the performances within a single trial are always averaged over all stimuli.

Classification of stimulus identity

In the simplest task, the population responses are used to decode the identity of the input
stimuli. The classification accuracy is determined by the capacity to linearly combine
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the input-driven population responses to approximate a target output (Lukoševičius and
Jaeger, 2009):

Ŷ = W ⊺
outX (5.2)

where Ŷ ∈ Rr×T and X ∈ RNE×T are the collection of all readout outputs and corre-
sponding states over all time steps T respectively, and Wout is the NE × r matrix of
output weights from the excitatory populations in each sub-network to their dedicated
readout units. We use 80% of the input data for training a set of r linear readouts to
correctly classify the sequence of stimulus patterns in each sub-network, where r = |S|
is the number of different stimuli to be classified. Training is performed using ridge re-
gression (L2 regularization), with the regularization parameter chosen by leave-one-out
cross-validation on the training dataset. In the test phase, we obtain the predicted stim-
ulus labels for the remaining 20% of the input sequence by applying the winner-takes-all
(WTA) operation on the readout outputs Ŷ . Average classification performance is then
measured as the fraction of correctly classified patterns.

Nonlinear exclusive-or (XOR)

We also investigate the more complex XOR task, involving two parallel stimulus sources
S and S′ injected into either the same or two separate input sub-networks. Given
stimulus sets S = {S0, S1} and S′ = {S′

0, S′
1}, the task is to compute the XOR on

the stimulus labels, i.e., the target output is 1 for input combinations {S0, S′
1} and

{S1, S′
0}, and 0 otherwise. In this case, computational performance is quantified using

the point-biserial correlation coefficient (PBCC), which is suitable for determining the
correlation between a binary and a continuous variable (Haeusler and Maass, 2007;
Klampfl and Maass, 2013; Duarte and Morrison, 2014). The coefficient is computed
between the binary target variable and the analog (raw) readout output Ŷ (t), taking
values in the [−1, 1] interval, with any significantly positive value reflecting a performance
above chance.

5.2.5 State space analysis
For a compact visualization and interpretation of the geometric arrangement of the
population response vectors in the network’s state-space, we analyze the characteris-
tics of a low-dimensional projection of the population state vectors (membrane poten-
tials) obtained through principal component analysis (PCA). More specifically, each
NE-dimensional state vector xi ∈ XSSNi is first mapped onto the sub-space spanned by
the first three principal components (PCs), yielding a cloud of data points i which we
label by their corresponding stimulus id.

In this lower-dimensional representation of the neuronal activity, we then evaluate how
similar each data point in one stimulus-specific cluster is to its own cluster compared to
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neighboring clusters. This is done by assigning a silhouette coefficient s(i) (Rousseeuw,
1987) to each sample i, computed during a single trial as:

s(i) = b(i) − a(i)
max{a(i), b(i)} . (5.3)

a(i) represents the average distance between i and all other data points in the same
cluster (same stimulus label), while b(i) is the mean distance of i to all points in the
nearest cluster, i.e., corresponding to a different stimulus label. The coefficients s(i) take
values between [−1, 1], with a value close to 1 indicating that the data point lies well
within its assigned cluster (correct stimulus label), whereas values close to -1 imply an
incorrect cluster assignment and therefore indicate overlapping stimulus representations
in the network activity.

To get a single value that is representative of the overall clustering quality in one
specific trial, we computed the silhouette score by averaging over all the silhouette co-
efficients s(i). Note that for the results presented in Figure 5.4B, the silhouette scores
were computed using projections onto the first ten PCs, and were further averaged across
ten different trials.

In addition to the cluster separation, we also quantify the dimensionality of the sub-
space where the neuronal activity predominantly lies, using the method introduced in
Abbott et al. (2011) and Mazzucato et al. (2016). After performing a standard Principal
Component Analysis on the firing rate vectors (average neuronal activity during a single
stimulus presentation), we calculated the effective dimensionality as:

d =
(

N∑
i=1

λ̃i
2
)−1

, (5.4)

where N is the real dimensionality of the network’s state-space, i.e., the total number of
neurons, and λ̃i represents the fraction of the variance explained by the corresponding
principal component, i.e., the normalized eigenvalues of the covariance matrix of the
firing rates. For the analysis in Figure 4C, D and Figure 8, the number of PCs considered
was limited to 500.

5.2.6 Numerical simulations and analysis

All numerical simulations were conducted using the Neural Microcircuit Simulation and
Analysis Toolkit (NMSAT) v0.2 (Duarte et al., 2017b), the precursor of FNA (see Chap-
ter 4). To ensure the reproduction of all the numerical experiments and figures presented
in this study, and abide by the recommendations proposed in (Pauli et al., 2018), we pro-
vide a complete code package at https://osf.io/nywc2/, based on NEST 2.12.0 (Kunkel
and Schenck, 2017), along with the complete set of parameters in Appendix A.
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5.3 Simulation results

Distributed information processing across multiple neural circuits requires, in a first in-
stance, an accurate representation of the stimulus identity and a reliable propagation of
this information throughout the network. In the following section, we assess these capa-
bilities using a linear classification task in a sequential setup (illustrated in Figure 5.1),
and analyze the characteristics of population responses in the different sub-networks.
Subsequently, we look at how different network setups handle information from two con-
current input streams by examining their ability to perform nonlinear transformations
on the inputs.

5.3.1 Sequential transmission of stimulus representation
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Figure 5.2: Stimulus classification in sequentially connected modular networks. A,
B: Mean classification accuracy over |S| = 10 stimuli and corresponding mean squared error
in each of the four sub-networks in the random (plain bars) and topographic (hatched bars)
conditions. C, D: Mean classification accuracy and corresponding mean squared error in SSN1
as a function of the number of direct projections (from neurons receiving direct stimulus input in
SSN0 to neurons in SSN1) when decoding stimulus information from the low-pass filtered spike
trains (stippled bars) and the membrane potential (plain bars). E: Classification accuracy in
SSN2 and SSN3 decoded from the membrane potential as a function of the input intensity. F:
Classification accuracy over |S| = 50 stimuli in SSN3 as a function of the connection density
within the topographic projections. All panels show the mean and standard deviations obtained
from ten simulations per condition.
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In networks with fully random projections (Figure 5.1A), stimulus information can
be accurately decoded up to a maximum depth of 3, i.e. the first three SSNs in the
sequential setup contain sufficient information to classify (significantly beyond chance
level) which of the ten stimuli had been presented to the input sub-network (see Section
5.2 for details of the stimulus generation and classification assessment). Whereas the
first two sub-networks, SSN0 and SSN1, achieve maximum classification performance
with virtually no variance across trials (Figure 5.2A, plain bars), the accuracy of ≈ 0.55
observed in SSN2 indicates that the stimulus representations have become degraded.
These results suggest that while random connectivity between the sub-networks allows
the input signal to reach SSN2, the population responses at this depth are already
insufficiently discernible to propagate further downstream, with SSN3 entirely unable to
distinctly represent the different stimuli.

Including structured projections in the system (Figure 5.1B) counteracts these effects,
allowing stimulus information to be accurately transferred to the deeper sub-networks
(Figure 5.2A, hatched bars). This indicates that stimulus-specific topographic maps,
whereby the neurons receiving direct stimulation at SSNi connect exclusively to another
set of stimulus-specific neurons in the subsequent SSN (see Section 5.2), play a critical
role in the successful propagation of signals across multiple interacting sub-networks.

As computing the accuracy scores involves a nonlinear post-processing step (winner-
takes-all, see Section 5.2), we additionally verify whether this operation significantly
biases the results by evaluating the mean squared error (MSE) between the raw readout
outputs Ŷ and the binary targets Y . These MSE values, depicted in Figure 5.2B, are
consistent: performance decays with depth for both network setups, with topography
leading to significant computational benefits for all sub-networks beyond the SSN0. In
the following two sections, we investigate the factors influencing stimulus propagation
and uncover the relationships between the underlying population dynamics and the
system’s task performance.

Modulating stimulus propagation

Since random networks provide no clearly structured feedforward pathways to facilitate
signal propagation, it is unclear how stimulus information can be read out as far as
SSN2 (Figure 5.2A), considering the nonlinear transformations at each processing stage.
However, by construction, some neurons in SSN0 that receive input stimulus directly
also project (randomly) to SSN1. To assess the importance of these directed projections
for information transmission, we gradually remove them and measure the impact on the
performance in SSN1 (Figure 5.2C, D). The system shows substantial robustness with
respect to the loss of such direct feedforward projections, as the onset of the decline in
performance only occurs after removing half of the direct synapses. Furthermore, this
decay is observed almost exclusively in the low-pass filtered responses, while the accuracy
of state representations at the level of membrane potentials remains maximal. This
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Figure 5.3: Network activity in three different scenarios: purely noise-driven (no stim-
ulus); stimulus-driven with random feed-forward connections and stimulus-driven
with structured, topographic projections. Top row (A) shows 2 seconds of spiking activity
and the corresponding firing rates of 500 randomly chosen excitatory neurons in SSN2. The
corresponding statistics across the excitatory populations are shown in the bottom row (B-E),
for every SNN: B — synchrony (Pearson’s correlation coefficient, computed pairwise over spikes
binned into 2 ms bins and averaged across 500 pairs); C — irregularity (measured as the revised
local variation, LvR; Shinomoto et al., 2009); D — mean firing rate across the excitatory popula-
tions; and E response variability as measured by the Fano factor (FF) on the population-averaged
firing rates (bin width 10 ms). All depicted statistics were averaged over ten simulations, each
lasting 10 seconds, with ten input stimuli.

suggests that the populations in SSN0 are not only able to create internal representations
of the stimuli through their recurrent connections, but also transfer these to the next SSN
in a suitable manner. The different results obtained when considering spiking activity
and sub-threshold dynamics indicate that the functional impact of recurrence is much
more evident in the population membrane potentials.

It is reasonable to assume that the transmission quality in the two networks, as pre-
sented above, is susceptible to variations in the input intensity. For random networks,
one might expect that increasing the stimulus intensity would enable its decoding in
all four sub-networks. Although stronger input does improve the classification perfor-
mance in SSN2 (Figure 5.2E), this improvement is not visible in the last sub-network.
When varying the input rates between 5 and 25 spks/sec, the accuracy increases linearly
with the stimulus intensity in SSN2. However, the signal does not propagate to the last
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sub-network in a decipherable manner (results remain at chance level), regardless of the
input rate and, surprisingly, regardless of the representational accuracy in SSN2.

Previous studies have shown that, when structured feedforward connections are intro-
duced, the spiking activity propagation generally depends on both the synaptic strength
and connection density along the structures, with higher values increasing the trans-
mission success (Vogels and Abbott, 2005; Kumar et al., 2010b). To evaluate this in
our model without altering the synaptic parameters, we increase the task difficulty and
test the ability of the last sub-network, SSN3, to discriminate 50 different stimuli. The
results, shown in Figure 5.2F, exhibit a significantly lower performance for the initial
topographic density of (7.5%), from ≈ 1 for ten stimuli (Figure 5.2A) to ≈ 0.3. This
drop can be likely attributed to overlapping projections between the sub-networks, since
more stimulus-specific pathways naturally lead to more overlap between these regions,
causing less discriminable responses. However, this seems to be compensated for by
increasing the projection density, with stronger connectivity significantly improving the
performance. Thus, our simulations corroborate these previous experiments: increasing
the connection density within topographic maps increases the network’s computational
capacity.

Population activity and state separability

To ensure a perfect linear decoding of the input, population responses elicited by different
stimuli must flow along well segregated, stimulus-specific regions in the network’s state-
space (separation property, see Maass et al. 2002). In this section, we evaluate the
quality of these input-state mappings as the representations are transferred progressively
through the sub-networks, and identify population activity features that influence the
networks’ computational capabilities in various scenarios.

When a random network is driven only by background noise, the activity in the first
two SSNs is asynchronous and irregular but evolves into a more synchronous regime in
SSN2 (see example activity in Figure 5.3A left, and noise condition in Figure 5.3B). In
the last sub-network, the system enters a synchronous regime, which has been previ-
ously shown to negatively impact information processing by increasing redundancy in
the population activity (Duarte and Morrison, 2014). This excessive synchronization ex-
plains the increased firing rates, reaching ≈ 10 spks/sec in SSN3 (Figure 5.3D). Previous
works have shown that even weak correlations within an input population can induce
correlations and fast oscillations in the network (Brunel, 2000). This phenomenon arises
in networks with sequentially connected populations and is primarily a consequence of
an increase in shared pre-synaptic inputs between successive populations (Shadlen and
Newsome, 1998; Tetzlaff et al., 2003; Kumar et al., 2008a). As the feedforward pro-
jections gradually increase the convergence of connections between sub-networks, the
corresponding magnitude of post-synaptic responses also increases towards the deeper
populations. Effectively stronger synapses then shift the network’s operating point away
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Figure 5.4: Spatial arrangement and cluster analysis of stimulus-specific state vec-
tors. A: Distribution of silhouette coefficients for the stimulus-specific clusters in SSN1 and
SSN2, computed in the space spanned by the first three principal components (PCs) of the state
vectors (membrane potentials). Here each stimulus was presented ∼50 times, resulting in clusters
containing 50 data points and associated coefficients, color-coded and sorted in descending order
for each of the ten stimuli used. The vertical lines in red represent the mean over all coefficients
(silhouette score) in a single trial. B: Trial-averaged silhouette score calculated using the first ten
PCs. C: Cumulative variance explained by the first ten PCs for random (top) and topographic
(bottom) projections. D: Effective dimensionality of the state matrix computed on the firing
rates (bin size 200 ms). All results are averaged over ten trials, each lasting 100 seconds (500
samples).

from the desired Poissonian statistics. This effect accumulates across the sub-networks
and gradually skews the population activity towards states of increased synchrony.

Compared to baseline activity, the presence of a patterned stimulus increases the
irregularity in all SSNs except the very first one. This is visualized in the example
activity plots in Figure 5.3A (center and right). Furthermore, active input substantially
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reduces the synchrony in the last two SSNs, allowing the system to globally maintain the
asynchronous irregular regime (see random and topographic conditions in Figure 5.3B,
C). Such alterations in the population response statistics during active processing have
also been confirmed experimentally: in vivo recordings show that neuronal activity in
awake, behaving animals is characterized by weak correlations and low firing rates in the
presence of external stimuli (Ecker et al., 2010; Vaadia et al., 1995).

Despite the beneficial influence of targeted stimulation, it appears that random pro-
jections are not sufficient to entirely overcome the effects of shared input and excessive
synchronization in the deeper sub-networks (e.g. in SSN3, CC ≈ 0.12, with a corre-
spondingly high firing rate). The existence of structured connectivity, through conserved
topographic maps, on the other hand, allows the system to retain an asynchronous fir-
ing profile throughout the network. Whereas the more synchronous activity in random
networks, coupled with larger variability in the population responses (Figure 5.3E), con-
tributes to their inability to represent the input in the deeper SSNs, topographic projec-
tions lead to more stable and reliable neuronal responses that enable the maintenance
of distinguishable stimulus mappings, in line with the performance results observed in
Figure 5.2A.

Furthermore, networks with structured connectivity are also more resource-efficient,
achieving better performance with lower overall activity (Figure 5.3D). This can be
explained by the fact that neurons receiving direct stimulus input in SSN0, firing at
higher rates, project only to a restricted sub-population in the subsequent SSNs, thereby
having a smaller impact on the average population activity downstream.

The above observations are also reflected in the geometric arrangement of the popu-
lation response vectors, as visualized by the silhouette coefficients of a low-dimensional
projection of their firing rates in Figure 5.4A (see Section 5.2). As stimulus responses
become less distinguishable with network depth, the coefficients decrease, indicating
more overlapping representations. This demonstrates a reduction in the compactness
of stimulus-dependent state vector clusters, which, although not uniformly reflected for
all stimuli, is consistent across sub-networks (only SSN1 and SSN2 shown). However,
these coefficients are computed using only the first three principal components (PCs)
of the firing rate vectors and are trial-specific. We can obtain a more representative
result by repeating the analysis over multiple trials and taking into account the first ten
PCs (Figure 5.4B). The silhouette scores computed in this way reveal a clear disparity
between random and topographic networks for the spatial segregation of the clusters,
beginning with SSN1, in accordance with the classification performances (Figure 5.2A).

We can further assess the effectiveness with which the networks utilize their high-
dimensional state-space by evaluating how many PCs are required to capture the major-
ity of the variance in the data (Figure 5.4C). In the input SSN, where the stimulus impact
is strongest, the variance captured by each subsequent PC is fairly constant (≈ 10%),
reaching around 75% by the ninth PC. This indicates that population activity can rep-
resent the input in a very low-dimensional sub-space through narrow, stimulus-specific
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trajectories. In random networks, however, this trend is not reflected in the subsequent
SSNs, where the first ten PCs account for less than 10% of the total variance.

There is thus a significant increase in the effective dimensionality (see Section 5.2)
in the deeper sub-networks (Figure 5.4D), a pattern which is also exhibited, to a lesser
extent, in the topographic case. As the population activity becomes less entrained by
the input, the deeper SSNs explore a larger region of the state-space. Whereas this
tendency is consistent and more gradual for topographic networks, it is considerably
faster in networks with unstructured projections, suggesting a quicker dispersion of the
stimulus representations. Since in these networks, the stimulus does not effectively reach
the last SSN (Figure 5.2A), there is no de-correlation of the responses, and the elevated
synchrony (Figure 5.3B) leads to a reduced effective dimensionality.

Overall, these results demonstrate that patterned stimuli push the population ac-
tivity towards an asynchronous-irregular regime across the network, but purely random
systems cannot sustain this state in the deeper SNNs. Networks with structured connec-
tivity, on the other hand, display a more stable activity profile throughout the system, al-
lowing the stimuli to propagate more efficiently and more accurately to all sub-networks.
Accordingly, the state representations are more compact and distinguishable, and these
decay significantly slower with depth than in random networks, in line with the observed
classification results (Figure 5.2A).

5.3.2 Memory capacity and stimulus sensitivity
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Figure 5.5: Stimulus sensitivity and temporal evolution of state representations, as
indicated by the classification accuracy for 10 stimuli. (A) and (B) show the time
course of the readout accuracy for the preceding and the current stimulus respectively, with
t = 0 representing the offset of the previous and onset of the new stimulus. Curves depict
the mean accuracy score over 5 trials, with linear interpolation of sampling offsets tsamp =
1, 5, 10, 15, ..., 100 ms. Solid and dashed curves represent networks with random connectivity
and topography respectively, color-coding according to SSNs (key in (C)). The first population
SSN0 was omitted from panels (A) and (B) to avoid cluttering, as they are identical across the
network conditions. (C): The stimulus sensitivity is defined as the area below the intersection
of corresponding curves from (A) and (B), normalized with respect to maximum performance.
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As demonstrated above, both random and topographic networks are able to create
unique representations of single stimuli in their internal dynamics and transfer these
across multiple recurrent sub-networks. To better understand the nature of distributed
processing in these systems, it is critical to investigate how they retain information over
time and whether representations of multiple, sequentially presented, stimuli can coexist
in a superimposed manner, a property exhibited by cortical circuits as demonstrated by
in vivo recordings (Nikolic et al., 2009).

To quantify these properties, we use the classification accuracy to evaluate how, for
consecutive stimuli, the first stimulus decays and the second stimulus builds up (Figure
5.5A, B). For a given network configuration, the degree of overlap between the two
curves indicates how long the system is able to retain useful information about both
the previous and the present stimuli (Figure 5.5C). This analysis allows us to measure
three important properties of the system: how long stimulus information is retained
in each sub-network through reverberations of the current state; how long the network
requires to accumulate sufficient evidence to classify the present input; and what are the
potential interference effects between multiple stimuli. Note that the procedure used in
the following experiments is virtually identical to that in Section 3.1, the only difference
being the time at which the network’s responses are sampled. In Figure 5.5A, the readout
is trained to classify the stimulus identity at increasing time lags after its

offset, whereas in panel B, the classification accuracy is evaluated at various time
points after the stimulus onset.

The decay in performance measured at increasing delays after stimulus offset (Figure
5.5A) shows how input representations gradually disappear over time (the fading memory
property, see Maass et al. 2004). For computational reasons, only the first 100 ms are
plotted, but the decreasing trend in the accuracy continues and invariably reaches chance
level within the first 150 ms. This demonstrates that the networks have a rather short
memory capacity which is unable to span multiple input elements, and that the ability
to memorize stimulus information decays with network depth. Adding to the functional
benefits of topographic maps, the memory curves reflect the higher overall accuracy
achieved by these networks.

We further observe that the networks require exposure time to acquire discernible
stimulus representations (Figure 5.5B). The time for classification accuracy to reach its
maximum increases with depth, resulting in an unsurprising cumulative delay. Notably,
topography enables a faster information build-up beginning with SSN2.

To determine the stimulus sensitivity of a population, we consider the extent of time
where useful non-interfering representations are retained in each sub-network. This can
be calculated as the area below the intersection of its memory and build-up curves.
Following a similar trend to performance and memory, sensitivity to stimulus decreases
with network depth and the existence of structured propagation pathways leads to clear
benefits, particularly pronounced in the deeper SNNs (Figure 5.5C).

Overall, SNNs located deeper in the network forget faster and take longer (than the
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inter-SNN delays) to build up stimulus representations. No population can represent
two sequential stimuli accurately for a significant amount of time (longer than 100 ms),
although topographic maps improve memory capacity and stimulus sensitivity.

5.3.3 Integrating multiple input streams
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Figure 5.6: Schematic overview of information integration from two input streams (S
and S′), and their performance on the stimulus classification task. A, local integra-
tion: sequential set-up composed of four sub-networks, with two input streams injected into
the first population, SSN0, where they are combined and transferred downstream. B, down-
stream integration: as in A, but with SSN0 divided into two separate sub-populations SSN0
and SSN′

0, each receiving one stream as input and projecting to SSN1. Integration occurs in
SSN1. Connection probabilities, weights and other parameters are identical to those in previous
scenarios (see Figure 5.2A, B), with the exception of downstream integration (B): to keep the
overall excitatory input to SSN1 consistent with local integration, projection densities to SSN1
from the input sub-networks SSN0 and SSN′

0 are scaled to pff/2, while the remaining connec-
tions are left unchanged. (C): classification accuracy of ten stimuli from one input stream, in
SSN1 − SSN3. (D): Relative performance gain in topographic networks, measured as the ratio
of accuracy scores in the single and multiple stream (local integration) scenarios. Results are
averaged over ten trials, with dark and light colors coding for local and downstream integration,
respectively. The red dashed line represents chance level.

The previous section focuses on a single input stream, injected into a network with
sequentially connected sub-networks. Here, we examine the microcircuit’s capability to
integrate information from two different input streams, in two different scenarios with
respect to the location of the integration. The set-up and results are illustrated in Figure
5.6.

In a first step, the set-up from Figure 5.1A is extended with an additional input
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stream S′, without further alterations at population or connectivity level. The two
stimulus sets, S and S′, are in principle identical, each containing the same number
of unique stimuli and connected to specific sub-populations in the networks. Since the
inputs are combined locally in the first SSN and the mixed information transferred
downstream, we refer to this setup, visualized in Figure 5.6A, as local integration. In a
second scenario (Figure 5.6B), each input stream is injected into a separate sub-network
(SSN0 and SSN′

0), jointly forming the input module of the system. Here, computation
on the combined input happens downstream from this first module, with the aim of
simulating the integration of information that originated from more distant areas and
had already been processed by two independent microcircuits.

Adding a second input stream significantly affects the network activity and the stim-
ulus representations therein, which now must produce distinguishable responses for two
stimuli concurrently. Compared to the same setup with a single input source (Figure
5.2A), the performance degrades in both random and topographic networks starting
with SSN2 (Figure 5.6C, D). This suggests that the mixture of two stimuli results in less
separable responses as the two representations interfere with each other, with structured
connectivity again proving to be markedly beneficial. These benefits become clearer in
the deeper sub-networks, as demonstrated in Figure 5.6D where the effects of topography
can lead to an 8-fold gain in task accuracy in SSN3.

As the spatiotemporal structure of the stimuli from both sources are essentially identi-
cal, it is to be expected that the mixed responses contain the same amount of information
about both inputs. This is indeed the case, as reflected by comparable performance re-
sults when decoding from the second input stream (Figure S1).

Interestingly, the location of the integration appears to play no major role in random
networks. In networks with topographic maps, however, local integration improves the
classification accuracy by around 25% in the last sub-network compared to the down-
stream case. In the next section, we investigate whether this phenomenon is setup- and
task-specific, or reflects a more generic computational principle.

Local integration improves nonlinear computation

In addition to the linear classification task discussed above, we analyze the ability of the
circuit to extract and combine information from the two concurrent streams in a more
complex, nonlinear fashion. For this, we trained the readouts on the commonly used
nonlinear XOR task described in Section 5.2.

We observe that the networks’ computational capacity is considerably reduced com-
pared to the simpler classification task, most noticeably in the deeper sub-networks
(Figure 5.7A). Although information about multiple stimuli from two input streams
could be reasonably represented and transferred across the network, as shown in Figure
5.6C, it is substantially more difficult to perform complex transformations on even a
small number of stimuli. This is best illustrated in the last population of topographic
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performance on the XOR task measured using the point-biserial correlation coefficient (PBCC)
between the XOR on the labels from the two input streams (target) and the raw readout values
computed from the membrane potentials. (B): Corresponding mean squared error. Results
are averaged over 10 trials, with 2000 training samples and 500 testing samples in each trial.
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in all panels. Colors code the target value, i.e., XOR on the stimulus labels from the two
input streams. Random (top) and topographic (bottom) connectivity with local (C,D) and
downstream (E,F) integration.

networks, where the stimulus identity can still be decoded with an accuracy of 70%
(Figure 5.6C), but the XOR operation yields performance values close to chance level
(PBCC of 0).

In contrast to the identity recognition, for XOR it is clearly more advantageous
to fuse the two input streams locally in SSN0, rather than integrating only in SSN1
(Figure 5.7A,B). The differences in performance are statistically significant (two-sided
Kolmogorov-Smirnov (KS) test 1.0, p-value < 0.01 for SSN1 and SSN2, and KS-test 0.9
with p-value < 0.01 for SSN3 in topographic networks) and consistent in every scenario
and all sub-networks from SSN1 onwards, excepting SSN3 in random networks.

One can gain a more intuitive understanding of the networks’ internal dynamics by
looking at the state-space partitioning (Figure 5.7C-F), which reveals four discernible
clusters corresponding to the four possible label combinations. These low-dimensional
projections illustrate two key computational aspects: the narrower spread of the clusters
in topographic networks (Figure 5.7D, F) is an indication of their greater represen-
tational precision, while the significance of the integration location is reflected in the
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collapse along the third PC in the downstream scenario (Figure 5.7F). To a lesser ex-
tent, these differences are also visible for random networks (Figure 5.7C, E). A more
compact representation of the clustering quality using silhouette scores, consistent with
these observations, is depicted in Figure S2.

Altogether, these results suggest that it is computationally beneficial to perform non-
linear transformations locally, as close to the input source as possible, and then propagate
the result of the computation downstream instead of the other way around. The results
were qualitatively similar for both the low-pass filtered spike trains and the membrane
potential (see Figure S3). To rule out any possible bias arising from re-scaling the feed-
forward projections to SSN1 in the downstream scenario, we also ensured that these
results still hold when each of the input sub-populations SSN0 and SSN′

0 projected to
SSN1 with the same unscaled probability pff as in Figure 5.1B (see Figure S4).

Effective dimensionality depends on the architecture of stimulus integration

Previous studies have suggested that nonlinear integration of multiple input streams is
associated with high response dimensionality compared to areas in which little or only
linear interactions occur (Rigotti and Fusi, 2016; Barak et al., 2013). To assess if these
predictions hold in our model, we consider different stimulus integration schemes and
investigate whether the effective response dimensionality correlates with XOR accuracy,
which is used to quantify the nonlinear transformations performed by the system.

For simplicity, we focus only on random networks. To allow a better comparison
between the integration schemes introduced in Figure 5.6, we explore two approaches
to gradually interpolate the downstream scenario towards the local one in an attempt
to approximate its properties. First, we distribute each input stream across the two
segregated input sub-populations SSN0 and SSN′

0, referred to as mixed input (Figure
5.8A). Second, we maintain the input stream separation but progressively merge the
two sub-populations into a single larger one by redistributing the recurrent connections
(Figure 5.8B). We call this scenario mixed connectivity.

Relating these two scenarios is the mixing factor (m), which controls the input map-
ping or the connectivity between the sub-populations, respectively. A factor of 0 rep-
resents separated input sources and disconnected sub-populations as in Figure 5.6B; a
value of m = 1 indicates that the input sub-populations mix contributions from both
sources equally (for mixed input), or that the connectivity between and within SSN0
and SSN′

0 are identical (for mixed connectivity). In both cases, care was taken to keep
the overall input to the network unchanged, as well as the average in- and out-degree of
the neurons.

Combining information from both input streams already in the first sub-populations
(m > 0), either via mixed input or mixed connectivity, significantly increases the task
performance after convergence in the deeper sub-networks.
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connections kept constant. (C): XOR performance as a function of m for mixed input; (D):
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This is illustrated in Figure 5.8C, F, with m > 0.5 yielding similar values. Despite
comparable gains in the nonlinear computational performance, the underlying mecha-
nisms appear to differ in the two mixing approaches, as detailed in the following.

In SSN0 and SSN′
0, the effective dimensionality of the neural responses increases mono-

tonically with the amount of information shared between the two sub-populations (Fig-
ure 5.8D, G). This is expected, since the sub-populations are completely independent
initially (m = 0) and can therefore use more compact state representations for single
stimuli. However, diverging patterns emerge after convergence in SSN1. While the di-
mensionality does increase with the coefficient m in the mixed connectivity scenario
(Figure 5.8H), it remains fairly constant in the mixed input case (Figure 5.8E), despite
comparable task performance. Thus, complex nonlinear transformations do not neces-
sarily involve the exploration of larger regions of state-space, but can also be achieved
through more efficient representations.

These results also demonstrate the difficulty in defining a clear relation between the
ability of the system to perform nonlinear transformations on the input and its response
dimensionality. Particularly in the case of larger networks involving transmission across
multiple modules, the effective dimensionality can depend on the system’s architecture,
such as the input mapping and connectivity structure in the initial stages.

5.4 Discussion
This chapter examined the temporal dynamics of the information transferred between
sequentially connected modules and explored how different network characteristics en-
able information integration from two independent sources in a computationally useful
manner. Structural differences in the network were proven to greatly influence the dy-
namics and the downstream computation when combining inputs from two independent
sources. In addition to the feedforward connectivity, the ability of the downstream sub-
networks to nonlinearly combine the inputs was shown to depend on the location where
the input converges, as well as on the extent to which the different input streams are
mixed in the initial sub-networks. We therefore anticipate that the degree of mixed
selectivity in early sensory stages is predictive of the computational outcome in deeper
levels, particularly for nonlinear processing tasks, as we describe in greater detail below.

5.4.1 Representation transfer in sequential hierarchies
The proficiency of randomly coupled spiking networks (see e.g., Maass et al. 2002; Sus-
sillo 2014; Duarte and Morrison 2014) demonstrates that random connectivity can be
sufficient for local information processing. Successful signal propagation over multiple
modules, however, appears to require some form of structured pathways for accurate
and reliable transmission. Our results suggest that these requirements can be achieved
by embedding simple topographic projections in the connectivity between the modules.
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Such mechanisms might be employed across the brain for fast and robust communica-
tion, particularly (but not exclusively) in the early sensory systems, where real-time
computation is crucial and where the existence of topographic maps is well supported
by anatomical studies (Kaas, 1997; Bednar and Wilson, 2016).

Purely random feedforward connectivity allowed stimulus information to be decoded
only up to the third module, whereas incorporating topographic projections ensured
almost perfect accuracy in all modules (Figure 5.2A, B). These differences could be at-
tributed to a decrease in the specificity of stimulus tuning with network depth, which is
much more prominent for random networks (Figure 5.4). This result suggests that accu-
rate information transmission over longer distances is not possible without topographic
precision, thus uncovering an important functional role of this common anatomical fea-
ture.

Moreover, topography was shown to counteract the shared-input effect which leads
to the development of synchronous regimes in the deeper modules. By doing so, stimu-
lus information is allowed to propagate not only more robustly, but also more resource
efficiently, in that the average spike emission is much lower (Figure 5.3D, E). Neverthe-
less, as the stimulus intensity invariably fades with network depth, the deeper modules
capture fewer spatiotemporal features of the input and their response dimensionality in-
creases. This process is clearer in random networks (Figure 5.4C, D), a further indication
that topography enforces more stereotypical, lower-dimensional and stimulus-specific re-
sponse trajectories. The input-state mappings are also retained longer and built up more
rapidly in topographic networks (Figure 5.5).

5.4.2 Network architecture and input integration

In biological microcircuits, local connections are complemented by long-range projections
which either stem from other cortical regions (cortico-cortical), or different sub-cortical
nuclei (e.g., thalamocortical). These different projections carry different information
content and thus require the processing circuits to integrate multiple input streams
during online processing. The ability of local modules to process information from
multiple sources simultaneously and effectively is thus a fundamental building block of
cortical processing.

Including a second input source into our sequential networks leads to less discrim-
inable responses, as reflected in a decreased classification performance (Figure 5.6C).
Integrating information from the two sources as early as possible in the system (i.e., in
the modules closest to the input) was found to be clearly more advantageous for nonlin-
ear computations (Figure 5.6C) and, to a lesser extent, also to linear computations. For
both tasks, however, topographic networks achieved better overall performance.
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5.4.3 Degree of mixed selectivity predicts computational performance

We have further shown that the effective dimensionality of the neural responses does
not correlate with the nonlinear computational capabilities, except in the very first
modules (Figure 5.8). These insights are in agreement with previous studies based on
fMRI data (Rigotti and Fusi, 2016; Barak et al., 2013), which predicted a high response
dimensionality in areas involved in nonlinear multi-stream integration, and lower in areas
where inputs from independent sources do not interact at all or solely overlap linearly.
These studies considered single circuits driven by input from two independent sources,
focusing on the role of mixed selectivity neurons in the convergent population. Mixed
selectivity refers to neurons being tuned to mixtures of multiple task-related aspects
(Rigotti et al., 2013; Warden and Miller, 2010), which we approximated as a differential
driving of the neurons with a variable degree of input from both sources.

Although we did not specifically examine mixed selectivity at a single neuron level,
one can consider both the mixed input and mixed connectivity scenarios (Figure 5.8A
and B, respectively) to approximate this behavior at a population level. This is particu-
larly the case for the input sub-modules SSN0 and SSN′

0, where the network’s response
dimensionality, as expected, increases with the mixing ratio (Figure 5.8D, G). However,
the different results we obtained for the deeper modules (Figure 5.8E, H), suggest that
the effective dimensionality measured at the neuronal level is not reliable evidence for
nonlinear processing in downstream convergence areas (despite similar performance),
but instead depends on how information is mixed in the early stages of the system. Fur-
ther research in this direction, possibly resorting to multimodal imaging data, is needed
to determine a clear relation between functional performance, integration schemes and
response dimensionality.

In our models, the task performance improved (and plateaued) with increased mixing
factors, suggesting no obvious computational disadvantages for large factor values. While
this holds for the discrimination capability of the networks, we did not address their
ability to generalize. Since the sparsity of mixed selectivity neurons has been previously
shown to control the discrimination-generalization trade-off, along with the existence of
an optimal sparsity for neural representations (Barak et al., 2013), it would be interesting
to analyze the effect of this parameter more thoroughly in the context of hierarchical
processing.

Despite the limitations of our models, we have highlighted the importance of bio-
logically plausible structural patterning for information processing in modular spiking
networks. Even simple forms of topography were shown to significantly enhance com-
putational performance in the deeper modules. Additionally, architectural constraints
have a considerable impact on the effectiveness with which different inputs are integrated,
with early mixing being clearly advantageous and highlighting a possibly relevant feature
of hierarchical processing. Taken together, these results provide useful constraints for
building modular systems composed of spiking balanced networks that enable accurate
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information transmission.

5.4.4 Limitations and future work
Our analysis consisted of a relatively simple implementation both in terms of the mi-
crocircuit composition and the characteristics of topographic maps. Even though ab-
stractions are required in any modeling study, it is important to highlight the inherent
limitations and drawbacks.

The network we referred to as random in this study (Figure 5.1A) was considered to
be the most appropriate to serve as a baseline for the unstructured architecture, due to
its simplicity. However, there are many other classes of non-modular networks, such as
small-world or scale-free networks, which are likely to display similar or even superior
computational characteristics than our baseline. Investigating the behavior and impact
of such alternative network structures could be an interesting topic for future research,
as they constitute intermediate steps between fully random and modular architectures.

We have employed a simple process to embed topographic maps in unstructured net-
works (see Section 5.2), whereby the map size (i.e., size of a population involved in a
specific pathway) was kept constant in all modules. Cortical maps, however, exhibit more
structured and complex spatial organization (Bednar and Wilson, 2016), characterized
by a decrease in topographic specificity with hierarchical depth. This, in turn, is likely
a consequence of increasingly overlapping projections and increasing map sizes and is
considered to have significant functional implications (see e.g., Rigotti et al. 2013), which
we did not explore in more detail here. Nevertheless, our results (Figure 5.2F) suggest
that, at least for the relatively simple and low-dimensional (considering the network size)
tasks employed in this study, overlapping projections have a detrimental effect on the net-
work’s discrimination ability. More complex tasks involving high-dimensional mappings
would therefore negatively impact the performance of our modular networks. Assuming
a one-to-one mapping between input dimensions and stimulus-specific neuronal clusters,
a larger task dimensionality would require either fewer neurons per cluster or some com-
pensation mechanism (e.g., stronger or denser projections between the clusters), possibly
limiting the task complexity that smaller local circuits can handle. Alternatively, cor-
tical circuits might solve this dimensionality problem by combining multiple modules
dynamically, in a task-dependent manner (Yang et al., 2019). We discuss additional
neurobiological limitations of our models in Chapter 9.
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Chapter 6

Denoising through topographic modularity

6.1 Introduction
In the previous chapter, we established that structured projections can create feature-
specific pathways that allow the external inputs to be faithfully represented and prop-
agated through multiple processing modules. Topographic maps were embedded in un-
structured networks via a simplified process, by randomly choosing subsets of neurons
in the different sub-networks and connecting them with a fixed probability. While this
method proved sufficient to determine the functional improvements of structured pro-
jections over random networks, it does not allow controlling for the specificity of these
maps. In particular, it is difficult to disentangle which connectivity properties (e.g., pre-
cision of projections, map size) are critical for improved performance, and the underlying
mechanism remains unclear. Moreover, we considered an idealized scenario where the
input signal was not corrupted by noise and evaluated the networks’ ability to represent
and classify the stimulus identity at a single point in time (stimulus offset). These sim-
plifications were useful from a modeling perspective, but they ignored two key aspects
of naturalistic stimuli and sensory perception: they are time-continuous and typically
noisy (see Section 1.4).

In this chapter, we take into account these aspects and pursue a more systematic
approach to investigate the role of topographic projections in processing noisy, dynamic
input signals. We manipulate key structural parameters such as modularity, map size
and degree of overlap, and evaluate their impact on the network dynamics and compu-
tational performance during a continuous signal reconstruction task from noisy inputs.
We demonstrate that, by modulating effective connectivity and regional E/I balance,
topographic projections additionally serve a denoising function, not merely allowing the
faithful propagation of input signals, but systematically improving the system’s internal
representations and increasing signal-to-noise ratio. We identify a critical threshold in
the degree of modularity in topographic projections, beyond which the system behaves
effectively as a denoising autoencoder1. Additionally, we demonstrate that this phe-

1Note that the parallel is established here on conceptual, not formal, grounds as the system is capable
of retrieving the original, uncorrupted input from a noisy source, but bears no formal similarity to
denoising autoencoder algorithms.
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nomenon is robust, with the qualitative behavior persisting across very different models.
Theoretical considerations and network simulations show that it hinges solely on the
modularity of topographic projections and the presence of recurrent inhibition, with the
external input and single-neuron properties influencing where/when, but not if, denoising
occurs.

Our results suggest that modular structure in feedforward projection pathways can
have a significant effect on the system’s qualitative behavior, enabling a wide range
of behaviorally relevant and empirically supported dynamic regimes. This allows the
system to: (i) maintain stable representations of multiple stimulus features (Andersen
et al., 2008); (ii) amplify features of interest while suppressing others through winner-
takes-all mechanisms (Douglas and Martin, 2004; Carandini and Heeger, 2012); and (iii)
dynamically represent different stimulus features as stable and metastable states and
stochastically switch among active representations through a winnerless competition
effect (McCormick, 2005; Rabinovich et al., 2008; Rost et al., 2018).

6.2 Numerical simulations and theoretical analysis
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Figure 6.1: Sequential denoising spiking architecture. A continuous step signal is used to
drive the network. The input is spatially encoded in the first sub-network (SSN0), whereby each
input channel is mapped exclusively onto a sub-population of stimulus-specific excitatory and
inhibitory neurons (schematically illustrated by the colors; see also inset, top left). This exclusive
encoding is retained to variable degrees across the network, through topographically structured
feedforward projections (inset, top right) controlled by the modularity parameter m (see Section
6.3). This is illustrated explicitly for both topographic maps (purple and cyan arrows). Projec-
tions between SSNs are purely excitatory and target both excitatory and inhibitory neurons.

To investigate the role of structured pathways between processing modules in mod-
ulating the fidelity of stimulus representations, we study a network similar to the one
described in Chapter 5, Figure 5.1, comprising up to six (not four) sequentially con-
nected sub-networks (SSNs, see Section 6.3 and Figure 6.1). As in the previous chapter,
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each SSN is a balanced random network composed of leaky integrate-and-fire neurons,
but here we simplify to current-based synapses for analytical tractability. In each SSN,
neurons are assigned to sub-populations associated with a particular stimulus, which we
denote, along with the structured feedforward projections among them, as a topographic
map. The main difference to model in Chapter 5 consists in the creation of these maps:
whereas the stimulus-specific sub-populations were chosen randomly and feedforward
projections were restricted within similarly tuned neurons, here these sub-populations
are chosen systematically and project to the subsequent SSN with a varying degree of
specificity. The specificity of the map is determined by the degree of modularity of the
corresponding projections matrices (see, e.g. Figure 6.1). Note that in this chapter m
denotes modularity, which is independent of the mixing factor represented by the same
variable in Section 5.3.3. Modularity is thus defined as the relative density of connections
within a stimulus-specific pathway (i.e., connecting sub-populations associated with the
same stimulus; see Section 6.3). In the following, we study the role of topographic
specificity in modulating the system’s functional and representational dynamics and its
ability to cope with noise-corrupted input signals.

6.2.1 Sequential denoising through structured projections

By systematically varying the degree of modular specialization in the feedforward pro-
jections (modularity parameter, m, see Section 6.3 and Figure 6.1), we can control
the segregation of stimulus-specific pathways across the network and investigate how
it influences the characteristics of neural representations as the signal propagates. If
the feedforward projections are unstructured or moderately structured (m ≲ 0.8), in-
formation about the input fails to permeate the network, resulting in a chance-level
reconstruction accuracy in the last sub-network, SSN5, even in the absence of noise (see
Figure 6.2A-C). However, as m approaches a switching value mswitch ≈ 0.83, there is a
qualitative transition in the system’s behavior, leading to a consistently higher recon-
struction accuracy across the sub-networks (Figure 6.2B,C), regardless of the amount of
noise added to the signal (Figure 6.2E,F).

Beyond this transition point, reconstruction accuracy improves with depth, i.e. the
signal is more accurately represented in SSN5 than in the initial sub-network, SSN0, with
an effective accuracy gain of over 40% (Figure 6.2C, F). While the addition of noise does
impair the absolute reconstruction accuracy in all cases (see Supplementary Figure B.1),
the denoising effect persists even if the input is severely corrupted (σξ = 3, see Figure
6.2E, F). This is a counter-intuitive result, suggesting that topographic modularity is
not only necessary for reliable communication across multiple populations (see Chapter
5 and Zajzon et al., 2019), but also supports an effective denoising effect, whereby
representational precision increases with depth, even if the signal is profoundly distorted
by noise.
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Figure 6.2: Reconstruction of a continuous step signal. (A): Signal reconstruction across
the network. Single-trial illustration of target signal (black step function) and readout output
(red curves) in 3 different SSNs, for m = 0.75 and no added noise (σξ = 0). For simplicity, only
two out of ten input channels are shown. (B): Signal reconstruction error in the different SSNs
for the no-noise scenario shown in (A). Color shade denotes network depth, from SSN0 (lightest)
to SSN5 (darkest). The horizontal red line represents chance level, while the grey vertical line
marks the transition (switching) point mswitch ≈ 0.83 (see main text). Supplementary Figure B.1
shows the task performance for a broader range of parameters. (C): Performance gain across the
network, relative to SSN0, for the setup illustrated in (A). (D): As in (A) but for m = 0.9. (E):
Reconstruction error in SSN5 for the different noise intensities. Horizontal and vertical dashed
lines as in (B). (F): Performance gain in SSN5, relative to SSN0.

6.2.2 Noise suppression and response amplification

The sequential denoising effect observed beyond the transition point mswitch ≈ 0.83
results in an increasingly accurate input encoding through progressively more precise in-
ternal representations. In general, such a phenomenon could be achieved either through
noise suppression, stimulus-specific response amplification or both. In this section, we
examine these possibilities by analyzing and comparing the input-driven dynamics of
the different sub-networks. The strict segregation of stimulus-specific sub-populations
in SSN0 is only fully preserved across the system if m = 1, in which case signal encod-
ing and transmission primarily rely on this spatial segregation. Spiking activity across
the different SSNs (Figure 6.3A) demonstrates that the system gradually sharpens the
segregation of stimulus-specific sub-populations; indeed, in systems with fully modular
feedforward projections, activity in the last sub-network is concentrated predominantly
in the stimulated sub-populations. This effect can be observed in both excitatory (E)
and inhibitory (I) populations, as both are equally targeted by the feedforward excita-
tory projections. The sharpening effect consists of both noise suppression and response
amplification (Figure 6.3B), measured as the relative firing rates of the non-stimulated
νNS

5 /νNS
0 and stimulated sub-populations νS

5 /νS
0 , respectively. For m < mswitch, noise
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Figure 6.3: Activity modulation and representational precision. (A): 1 second of spiking
activity observed across 1000 randomly chosen excitatory (blue) and inhibitory (red) neurons
in SSN0, SSN2 and SSN5, for σξ = 3 and m = 0.75 (top) and m = 1 (bottom). (B): Mean
quotient of firing rates in SSN5 and SSN0 (ν5/ν0) for stimulated (S, left) and non-stimulated
(NS, right) sub-populations for different input noise levels, describing response amplification
and noise suppression, respectively. (C): Mean firing rates of the stimulated (top) and non-
stimulated (bottom) excitatory sub-populations in the different SSNs (color shade as in Figure
6.2), for σξ = 0. For modularity values facilitating an asynchronous irregular regime across the
network, the firing rates predicted by mean-field theory (left) closely match the simulation data
(right). (D): Mean-field predictions for the stationary firing rates of the stimulated (top) and
non-stimulated (bottom) sub-populations, in a system with 50 sub-networks and σξ = 0. Note
that all reported simulation data corresponds to the mean firing rates acquired over a period
of 10 seconds and averaged across 5 trials per condition. Supplementary Figure B.2 shows the
firing rates as a function of the input intensity λ.

suppression is only marginal and responses within the stimulated pathways are not am-
plified (νS

5 /νS
0 < 1).

Mean-field analysis of the stationary network activity (see Section 6.3 and Appendix B)
predicts that the firing rates of the stimulus-specific sub-populations increase system-
atically with modularity, whereas the untuned neurons are gradually silenced (Figure
6.3C, left). At the transition point mswitch ≈ 0.83, mean firing rates across the different
sub-networks converge, which translates into a globally uniform signal encoding capac-
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ity, corresponding to the zero-gain convergence point in Figure 6.2C, F. As the degree
of modularity increases beyond this point, the self-consistent state is lost again as the
functional dynamics across the network shifts towards a gradual response sharpening,
whereby the activity of stimulus-tuned neurons becomes increasingly dominant (Figure
6.3A-C). The effect is more pronounced for the deeper sub-networks. Note that the
analytical results match well with those obtained by numerical simulation (Figure 6.3C,
right).

In the limit of very deep networks (up to 50 SSNs, Figure 6.3D) the system becomes
bistable, with rates converging to either a high-activity state associated with signal
amplification or a low-activity state driven by the background input. The transition
point is observed at a modularity value of m = 0.83, matching the results reported
so far. Below this value, elevated activity in the stimulated sub-populations can be
maintained across the initial sub-networks (< 10), but eventually dies out; the rate of
all neurons decays and information about the input cannot reach the deeper populations.
Importantly, for m = 0.83, the transition towards the high-activity state is slower. This
allows the input signal to faithfully propagate across a large number of sub-networks
(≈ 15), without being driven into implausible activity states.

6.2.3 E/I balance and asymmetric effective couplings

The departure from the balanced activity in the initial sub-networks can be better un-
derstood by zooming in at the synaptic level and analyzing how topography influences
the synaptic input currents. The segregation of feedforward projections into stimulus-
specific pathways breaks the symmetry between excitation and inhibition (see Figure
6.4A) that characterizes the balanced state (Haider et al., 2006; Shadlen and Newsome,
1994), for which the first two sub-networks were tuned (see Section 6.3). E/I balance is
thus systematically shifted towards excitation in the stimulated populations and inhibi-
tion in the non-stimulated ones. Neurons belonging to sub-populations associated with
the active stimulus receive significantly more net overall excitation, whereas the other
neurons become gradually more inhibited. This disparity grows not only with modular-
ity but also with network depth. Overall, across the whole system, increasing modularity
results in an increasingly inhibition-dominated dynamical regime (inset in Figure 6.4A),
whereby stronger effective inhibition silences non-stimulated populations, thus sharpen-
ing stimulus / feature representations by concentrating activity in the stimulus-driven
sub-populations.

To gain an intuitive understanding of these effects from a dynamical systems perspec-
tive, we linearize the network dynamics around the stationary working points of the
individual populations (Tetzlaff et al., 2012) in order to obtain the effective connectivity
W of the system (see Section 6.3 and Appendix B). The effective impact of a single spike
from a presynaptic neuron j on the firing rate of a postsynaptic neuron i (the effective
weight wij ∈ W ) is determined not only by the synaptic efficacies Jij , but also by the
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Figure 6.4: Asymmetric effective couplings modulate the E/I balance and support
sequential denoising. (A): Mean synaptic input currents for neurons in the stimulated (solid
curves) and non-stimulated (dashed curves) excitatory sub-populations in the different SSNs.
To avoid clutter, data for SSN0 is only shown by markers (independent of m). Inset shows the
currents (in pA) averaged over all excitatory neurons in the different sub-networks; increasing
modularity leads to a dominance of inhibition in the deeper sub-networks. Color shade repre-
sents depth, from SSN1 (light) to SSN5 (dark). (B): Mean-field approximation of the effective
recurrent weights in SSN5. Curve shade and style as in (A). (C): Spectral radius of the effective
connectivity matrices ρ(W ) as a function of modularity. (D): Eigenvalue spectra for the effec-
tive coupling matrices in SSN5, for m = 0.8 (top) and m = 0.9 (bottom). The largest negative
eigenvalue (outlier, see Section 6.3), characteristic of inhibition-dominated networks, is omitted
for clarity.

statistics of the synaptic input fluctuations to the target cell i that determine its ex-
citability (see Section 6.3, Eq. 6.6). This analysis reveals that there is an increase in the
effective synaptic input onto neurons in the stimulated sub-populations as a function of
modularity (Figure 6.4B). Conversely, non-stimulated neurons effectively receive weaker
excitatory (and stronger inhibitory) drive and become increasingly less responsive (see
Figure 6.4A, B). The role of topographic modularity in denoising can thus be understood
as a transient, stimulus-specific change in effective connectivity.

For low and moderate topographic precision (m ≲ 0.83), denoising does not occur as
the effective weights are sufficiently similar to maintain a stable E/I balance across all
populations and sub-networks (Figure 6.4A, B), resulting in a relatively uniform global
dynamical state (indicated in Figure 6.4C by a constant spectral radius for m ≲ 0.83,
see also Section 6.3) and stable linearized dynamics (ρ(W ) < 1).

However, as the feedforward projections become more structured, the system under-
goes qualitative changes: after a weak transient (0.83 ≲ m ≲ 0.85) the spectral radius
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ρ in the deep SSNs expands due to the increased effective coupling to the stimulated
sub-population (Figure 6.4B); the spectral radius eventually (m ≳ 0.85) contracts with
increasing modularity (Figure 6.4C, D). Given that ρ is determined by the variance of
W , i.e. heterogeneity across connections (Rajan and Abbott, 2006), this behavior is
expected: most weights are in the non-stimulated pathways, which decrease with larger
m and network depth (Figure 6.4B). Strong inhibitory currents (Figure 6.4A) suppress
the majority of neurons, thereby reducing noise, as demonstrated by the collapse of the
bulk of the eigenvalues towards the center for larger m (Figure 6.4D). Indicative of a
more constrained state-space, this contractive effect suggests that population activity
becomes gradually entrained by the spatially encoded input along the stimulated path-
way, whereas the responses of the non-stimulated neurons have a diminishing influence
on the overall behavior.

By biasing the effective connectivity of the system, precise topography can thus modu-
late the balance of excitation and inhibition in the different sub-networks, concentrating
the activity along specific pathways. This results in both a systematic amplification
of stimulus-specific responses and a systematic suppression of noise (Figure 6.3B). The
sharpness/precision of topographic specificity along these pathways thus acts as a criti-
cal control parameter that largely determines the qualitative behavior of the system and
can dramatically alter its responsiveness to external inputs.

6.2.4 Modulating inhibition

How can the system generate and maintain the elevated inhibition underlying such a
noise-suppressing regime? On the one hand, feedforward excitatory input may increase
the activity of certain excitatory neurons in Ei of sub-network SSNi, which, in turn,
can lead to increased mean inhibition through local recurrent connections. On the
other hand, denoising could depend strongly on the concerted topographic projections
onto Ii. Such structured feedforward inhibition is known to play important functional
roles in, e.g., sharpening the spatial contrast of somatosensory stimuli (Mountcastle and
Powell, 1959) or enhancing coding precision throughout the ascending auditory pathways
(Roberts et al., 2013).

To investigate whether recurrent activity alone can generate sufficiently strong in-
hibition for signal transmission and denoising, we maintained the modular structure
between the excitatory populations and randomized the feedforward projections onto
the inhibitory ones (m = 0 for Ei → Ii+1, compare top panels of Figure 6.5A and B).
This leads to unstable firing patterns in the downstream sub-networks, characterized by
significant accumulation of synchrony and increased firing rates (see bottom panels of
Figure 6.5A and B and Supplementary Figure B.3a, b). These effects, known to result
from shared pre-synaptic excitatory inputs (see, e.g. (Shadlen and Newsome, 1998; Tet-
zlaff et al., 2003; Kumar et al., 2008a)), are more pronounced for larger m and network
depth (see Supplementary Figure B.3). Compared with the baseline network, whose
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Figure 6.5: Modular projections to inhibitory populations stabilize network dynamics.
Raster plots show 1 second of spiking activity of 1000 randomly chosen neurons in SSN5, for
different network configurations. (A): Baseline network with m = 0.88. (B): Unstructured
feedforward projections to the inhibitory sub-populations lead to highly synchronized network
activity, hindering signal representation. (C): Same as the baseline network in (A), but with
random projections for E4 → I5 and additional but unspecific (Poissonian) excitatory input to
I5 controlled via ν+

X . Without such input (ν+
X = 0, left), the activity is strongly synchronous,

but this is compensated for by the additional excitation, reducing synchrony and restoring the
denoising property (ν+

X = 10 spks/sec, right). Supplementary Figure B.3 depicts the activity
statistics in the last two modules, for the different scenarios.

activity shows clear spatially encoded stimuli (sequential activation of stimulus-specific
sub-populations (Figure 6.5A, bottom)), removing structure from the projections onto
inhibitory neurons abolishes the effect and prevents accurate signal transmission.

These effects of unstructured inhibitory projections are so marked that they can be
observed even if a single set of projections is modified: this can be seen in Figure 6.5C,
where only the E4 → I5 connections are randomized. It is worth noting, however,
that the excessive synchronization that results from unstructured inhibitory projections
(Figure 6.5C bottom left, no additional input condition) can be easily counteracted
by driving I5 (the inhibitory population that receives only unstructured projections)
with additional uncorrelated external input. If strong enough (ν+

X ≈ 10 spks/sec), this
additional external drive pushes the inhibitory population into an asynchronous regime
that restores the sharp, stimulus-specific responses in the excitatory population of the
corresponding sub-network (see Figure 6.5C bottom right, and Supplementary Figure
B.3c).

These results emphasize the control of inhibitory neurons’ responsiveness as the main
causal mechanism behind the effects reported. Elevated local inhibition is strictly re-
quired, but whether this is achieved by tailored, stimulus-specific activation of inhibitory
sub-populations, or by uncorrelated excitatory drive onto all inhibitory neurons appears
to be irrelevant and both conditions result in sharp, stimulus-tuned responses in the
excitatory populations.
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6.2.5 A generalizable structural effect

We have demonstrated that, by controlling the different sub-networks’ operating points,
the sharpness of feedforward projections allows the architecture to systematically im-
prove the quality of internal representations and retrieve the input structure, even if
profoundly corrupted by noise. In this section, we investigate the robustness of the phe-
nomenon in order to determine whether it can be entirely ascribed to the topographic
projections (a structural/architectural feature) or if the particular choices of models and
model parameters for neuronal and synaptic dynamics contribute to the effect.

To do so, we study two alternative model systems on the signal denoising task. These
are structured similarly to the baseline system explored so far, comprising separate se-
quential sub-networks with modular feedforward projections among them (see Figure
6.1 and Section 6.3), but vary in total size, neuronal and synaptic dynamics. In the
first test case, only the models of synaptic transmission and corresponding parameters
are altered. To increase biological verisimilitude and following (Zajzon et al., 2019),
synaptic transmission is modeled as a conductance-based process, with different kinetics
for excitatory and inhibitory transmission, corresponding to the responses of AMPA and
GABAa receptors, respectively. This is the model used in Chapter 5, see corresponding
Section 5.2 and supplementary materials for details on the parameters. The results, illus-
trated in Figure 6.6A, demonstrate that task performance and population activity across
the network follow a similar trend to the baseline model (Figure 6.2 and Figure 6.3A,
B). Despite severe noise corruption, the system is able to generate a clear, discernible
representation of the input as early as SSN2 and can accurately reconstruct the signal.
Importantly, the relative improvement with increasing modularity and network depth is
retained. In comparison to the baseline model, the transition occurs for a slightly differ-
ent topographic configuration, m ≈ 0.85, at which point the network dynamics converge
towards a low-rate, stable asynchronous irregular regime across all populations, facilitat-
ing a linear firing rate propagation along the topographic maps (Supplementary Figure
B.4).

The second test case is a smaller and simpler network of nonlinear rate neuron models
(see Figure 6.6B and Section 6.3) which interact via continuous signals (rates) rather than
discontinuities (spikes). Despite these profound differences in the neuronal and synaptic
dynamics, the same behavior is observed, demonstrating that sequential denoising is
a structural effect, dependent on the population firing rates and thus less sensitive to
fluctuations in the precise spike times. Moreover, the robustness with respect to the
network size suggests that denoising could also be performed in smaller, localized circuits,
possibly operating in parallel on different features of the input stimuli.
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Figure 6.6: Denoising through modular topography is a robust structural effect. (A):
Signal reconstruction (top) and corresponding network activity (bottom) for a network with
LIF neurons and conductance-based synapses (see Section 6.3). Single-trial illustration of target
signal (black step function) and readout output (red curves) in three different SSNs, for m = 0.9
and strong noise corruption (σξ = 3). For simplicity, only two out of ten input channels are
shown. Supplementary Figure B.4 shows additional activity statistics. (B): As in (A) for a
rate-based model with m = 1 and σξ = 1 (see Section 6.3 for details).

6.2.6 Variable map sizes

Despite their ubiquity throughout the neocortex, the characteristics of structured pro-
jection pathways are far from uniform (Bednar and Wilson, 2016), exhibiting marked
differences in spatial precision and specificity, aligned with macroscopic gradients of
cortical organization. This non-uniformity may play an important functional role in
supporting feature aggregation (Hagler and Sereno, 2006) and the development of mixed
representations (Patel et al., 2014) in higher (more anterior) cortical areas. Here, we
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Figure 6.7: Variation in the map sizes. (A): Difference in the firing rates of the stimulated
sub-populations in the first and last sub-networks, νS

5 − νS
0 , as a function of modularity and map

size (parameterized by d and constant throughout the network, i.e. δ = 0, see Section 6.3).
Depicted values correspond to stationary firing rates predicted by mean-field theory, smoothed
using a Lanczos filter. Note that, in order to ensure that every neuron was uniquely tuned, i.e.
there is no overlap between stimulus-specific sub-populations, the number of sub-populations
was chosen to be proportional to the map size (NC = 1/d). (B-C): Performance gain in SSN5
relative to SSN0 (ten stimuli, as in Figure 6.2C, F), for varying properties of structural mappings:
(B) fixed map size (δ = 0) with color shade denoting map size, and (C) linearly increasing map
size (δ > 0) and a smaller initial map size d0 = 0.04. The results depict the average performance
gains measured across five trials, using the current-based model illustrated in Figure 6.2 (ten
stimuli) and no input noise (σξ = 0). Supplementary Figure B.5 further illustrates how the
activity varies across the modules as a function of the map size.

consider two scenarios in the baseline (current-based) model to examine the robustness
of our findings to more complex topographic configurations.

First, we varied the size of stimulus-tuned sub-populations (parametrized by di, see
Section 6.3) but kept them fixed across the network. For small sub-populations and
intermediate degrees of topographic modularity, the activity along the stimulated path-
way decays with network depth, suggesting that input information does not reach the
deeper SSNs (see Figure 6.7A and Supplementary Figure B.5). These results place a
lower bound on the size of stimulus-tuned sub-populations below which no signal prop-
agation can occur, as reflected by the negative gain in performance for d = 0.01 (Figure
6.7B). Whereas denoising is robust to variation around the baseline value of d = 0.1 that
yielded perfect partitioning of the feedforward projections (see Supplementary Materi-
als), an upper bound may emerge due to increasing overlap between the maps (d = 0.2 in
Figure 6.7B). In this case, the activity may “spill over” to other pathways than the stimu-
lated one, corrupting the input representations and hindering accurate transmission and
decoding. This can be alleviated by reduced or no overlap (as in Figure 6.7A), in which
case signal propagation and denoising is successful for larger map sizes (νS

5 /νS
0 > 1 also

for d > 0.1). We thus observe a trade-off between map size, overlap and the degree of
topographic precision that is required to accurately propagate stimulus representations
(see Section 6.4).
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Second, we took into account the fact that these structural features are known to
vary with hierarchical depth resulting in increasingly larger sub-populations and, con-
sequently, increasingly overlapping stimulus selectivity (Smith et al., 2001; Patel et al.,
2014; Bednar and Wilson, 2016). To capture this effect, we introduce a linear scaling of
map size with depth (di+1 = δ + di for i ≥ 1, see Section 6.3). The ability of the circuit
to gradually clean the signal’s representation is fully preserved, as illustrated in Figure
6.7C. In fact, for intermediate modularity (m < 0.9) broadening the projections can
further sharpen the reconstruction precision (compare curves for δ = 0.02 and δ = 0).

Taken together, these observations demonstrate that a gradual denoising of stimulus
inputs can occur entirely as a consequence of the modular wiring between the subse-
quent processing circuits. Importantly, this effect generalizes well across diverse neuron
and synapse models, as well as key system properties, making modular topography a
potentially universal circuit feature for handling noisy data streams.

6.2.7 Modularity as a bifurcation parameter

The results so far indicate that the modular topographic projections, more so than the
individual characteristics of neurons and synapses, lead to a sequential denoising effect
through a joint process of signal amplification and noise suppression. To better under-
stand how the system transitions to such an operating regime, it is helpful to examine
its macroscopic dynamics in the limit of many sub-networks (Toyoizumi, 2012; Gajic
and Shea-Brown, 2012; Kadmon and Sompolinsky, 2016). We apply standard mean-
field techniques (Fourcaud and Brunel, 2002; Helias et al., 2013; Schuecker et al., 2015)
to find the asymptotic firing rates (fixed points across sub-networks) of the stimulated
and non-stimulated sub-populations as a function of topography (Figure 6.3D). For this,
we can approximate the input µ to a group of neurons as a linear function of its firing
rate ν with a slope κ that is determined by the coupling within the group and an offset
given by inputs from other groups of neurons (orange line in Figure 6.8A). With an
approximately sigmoidal rate transfer function, the self-consistent solutions are at the
intersections marked in Figure 6.8A.

Formally, all neurons in the deep sub-networks of one topographic map form such
a group as they share the same firing rate (asymptotic value). The coupling κ within
this group comprises not only recurrent connections of one sub-network but also mod-
ular feedforward projections across sub-networks. For small modularity, the group is
in an inhibition-dominated regime (κ < 0) and we obtain only one fixed point at low
activity (Figure 6.8A, left). Importantly, the firing rate of this fixed point is the same
for stimulated and non-stimulated topographic maps. Any influence of input signals
applied to SSN0 therefore vanishes in the deeper sub-networks and the signal cannot
be reconstructed (fading regime). As topographic projections become more concen-
trated (larger m), κ changes sign and gradually leads to two additional fixed points
(as conceptually illustrated in Figure 6.8A and quantified in Figure 6.8B by numerically
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Figure 6.8: Modularity changes the fixed point structure of the system. (A): Sketch
for self-consistent solution (for the full derivation see Appendix B.4) for the firing rate of the
stimulated sub-population (blue curves) and the linear relation κν = µ − I (orange lines), in
the limit of infinitely deep networks. Squares denote stable (black) and unstable (red) fixed
points where input and output rates are the same. (B): Bifurcation diagram obtained from the
numerical evaluation of the mean-field self-consistency equations Eq. 6.9 and Eq. 6.10 showing a
single stable fixed point in the fading regime, and multiple stable (black) and unstable (red) fixed
points in the active regime where denoising occurs. (C): Potential energy of the mean activity
(see Methods and Eq. B.11 in Appendix B) for increasing topographic modularity. A stable
state, corresponding to a local minimum in the potential, exists at a low non-zero rate in every
case, including for m ≤ 0.75 (grey dashed curves, inset). For m ≥ 0.76 (colored solid curves),
a second fixed point appears at progressively larger firing rates. Note that panels (B-C) show
theoretical predictions obtained from the numerical evaluation of the mean-field self-consistency
equations.

solving the self-consistent mean-field equations, see also Appendix B.4): an unstable one
(red) that eventually vanishes with increasing m and a stable high-activity fixed point
(black). The bistability opens the possibility to distinguish between stimulated and non-
stimulated topographic maps and thereby reconstruct the signal in deep sub-networks:
in the active regime beyond the critical modularity threshold (here m ≥ mcrit = 0.76),
a sufficiently strong input signal can drive the activity along the stimulated map to the
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high-activity fixed point, such that it can permeate the system, while the non-stimulated
sub-populations still converge to the low-activity fixed point. Note that this critical
modularity represents the minimum modularity value for which bistability emerges. It
typically differs from the actual switching point mswitch, which additionally depends on
the input intensity.

In the potential energy landscape U (see Methods), where stable fixed points cor-
respond to minima, the bistability that emerges for more structured topography m ≥
mcrit = 0.76 can be understood as a transition from a single minimum at low rates
(Figure 6.8C, inset) to a second minimum associated with the high-activity state (Fig-
ure 6.8C). Even though the full dynamics of the spiking network away from the fixed
point cannot be entirely understood in this simplified potential picture (see Appendix
B), qualitatively, more strongly modular networks cause deeper potential wells, corre-
sponding to more attractive dynamical states and higher firing rates (see Supplementary
Figure B.10).

Because the intensity of the input signal dictates the rate of different populations in
the initial sub-network SSN0 (Figure 6.9A), it also determines, for any given modularity,
whether the rate of the stimulated sub-population is in the basin of attraction of the high-
activity (see Figure 6.9B, solid markers and arrows) or low-activity (dashed, blue marker
and arrow) fixed point. Denoising, and therefore increasing signal reconstruction, is thus
achieved by successively (across sub-networks) pushing the population states down along
the different potential gradients.

As reported above, for the baseline network and (standard) input (λ = 0.05) used
in Figure 6.2 and Figure 6.3, the switching point between low and high activity is at
m = 0.83 (blue markers in Figure 6.9A, C). Stronger input signals move the switching
point towards the minimal modularity m = 0.76 of the active regime (black markers in
Figure 6.9A, C), while weaker inputs only induce a switch at larger modularities (grey
markers in Figure 6.9A, C).

Noise in the input simply shifts the transition point to the high-activity state in a sim-
ilar manner, with more modular connectivity required to compensate for stronger jitter
(Figure 6.9D). However, as long as the mean firing rate of the stimulated sub-population
in SSN0 is slightly higher than that of the non-stimulated ones (up to 0.5 spks/sec), it
is sufficient to position the system in the attracting basin of the high rate fixed point
and the system is able to clean the signal representation. This indicates a remarkably
robust denoising mechanism.

6.2.8 Critical modularity for denoising

In addition to properties of the input, the critical modularity marking the onset of
the active regime is also influenced by neuronal and connectivity features. To build
some intuition, it is helpful to consider the sigmoidal activation function of spiking
neurons (Figure 6.10A). The nonlinearity of this function prohibits us from obtaining
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A B

C D

Figure 6.9: Modularity changes the fixed point structure of the system. (A): Theoretical
predictions for the stationary firing rates of the stimulated and non-stimulated sub-populations
in SSN0, as a function of stimulus intensity (λ, see Section 6.3). Low, standard and high denote
λ values of 0.01, 0.05 (baseline value used in Figure 6.2) and 0.25, respectively. (B): Sketch of
attractor basins in the potential for different values of m. Markers correspond to the highlighted
initial states in (A), with solid and dashed arrows indicating attraction towards the high- and
low-activity state, respectively. (C): Firing rates of the stimulated sub-population as a function
of modularity in the limit of infinite sub-networks, for the three different λ marked in (A). (D):
Modularity threshold for the active regime shifts with increasing noise in the input, modeled
as additional input to the non-stimulated sub-populations in SSN0. Supplementary Figure B.6
shows the dependency of the effective feedforward couplings on different parameters. Note that
all panels show theoretical predictions obtained from the numerical evaluation of the mean-field
self-consistency equations.

quantitative, closed-form analytical expressions for the critical modularity and requires
a numerical solution of the self-consistency equations (Figure 6.8B). However, since the
continuous rate model shows qualitatively similar behavior to the spiking baseline model
(see Section 6.2.5), we can study a fully analytically tractable model with piecewise linear
activation function (Figure 6.10A, B) to expose the dependence of the critical modularity
on both neuron and network properties (see detailed derivations in Appendix B).

In this simple model, the output is zero for inputs below µmin = 15 and at maximum
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rate νmax = 150 for inputs above µmax = 400. In between these two bounds, the output is
linearly interpolated ν(µ) = νmax(µ−µmin)/(µmax−µmin). As discussed before, successful
denoising is achieved if the non-stimulated sub-populations are silent, νNS = 0, and the
stimulated sub-populations are active, νS > 0. Note that in the following we focus on
this ideal scenario representing perfect denoising, but, in principle, intermediate solutions
with νS ≫ νNS > 0 may also occur and could still be considered as successful denoising.
Analyzing for which neuron, network and input properties this scenario is achieved, we
obtain multiple conditions for the modularity that need to be fulfilled.

The first condition illustrates the dependence of the critical modularity on the neuron
model (Figure 6.10C, purple horizontal line)

m ≥ (µmax − µmin)NC
(1 − α)J νmax + (µmax − µmin)(NC − 1) , (6.1)

where NC is the number of stimulus-specific sub-populations and α ≤ 1 (typically with
a value of 0.25) represents the (reduced) noise ratio in the deeper sub-networks, with α
scaling the noise and 1 − α scaling the feedforward connections (see Section 6.3). This is
necessary to ensure that the total excitatory input to each neuron is consistent across the
network. In particular, the critical modularity depends on the dynamic range of input
µmax −µmin and output νmax. The condition represents a lower bound on the modularity
required for denoising. Importantly, while it depends on the effective coupling strength
J , the noise ratio α and the number of maps NC (see Section 6.3), it does not depend
on the nature of the recurrent interactions (E/I ratio) and the strength of the external
background input. In addition, we find two additional critical values of the modularity
(cyan and green curves in Figure 6.10C-E), both of which do depend on the strength of
the external background input νX and the recurrent connectivity (E/I ratio γg):

m = NC
NC − 1 − 1

NC − 1
(1 − α)J νmax

µmax − αJ νX − J
NC

(1 + γg) νmax
(6.2)

m = 1 −

(
µmin − αJ νX − J

NC
(1 + γg) νmax

)
J (1 − α)νmax − (NC − 1)

(
µmin − αJ νX − J

NC
(1 + γg) νmax

) (6.3)

Depending on the external input strength νX, these are either upper or lower bounds.
In the denominator of these expressions, the total input (recurrent and external) is com-
pared to the limits of the dynamic range of the neuron model. The cancellation between
recurrent and external inputs in the inhibition-dominated baseline model typically yields
a total input within the dynamic range of the neuron, such that modularity in feedfor-
ward connections can decrease the input of the non-stimulated sub-populations to silence
them, and increase the input of the stimulated sub-populations to support their activity.
The competition between the excitatory and inhibitory contributions ensures that the

97



Chapter 6 Denoising through topographic modularity

non-stimulated

stimulated

non-stimulated

stimulated

No recurrence Excitatory recurrence
Inhibitory 
recurrence

No recurrence Excitatory recurrence

Theory TheorySimulation Simulation

A B

C D E

F H IG

Figure 6.10: Dependence of critical modularity on neuron and connectivity features.
(A): Activation function ν(µ, σ) for LIF model as a function of the mean input µ for σ = 1, 10, 50
(black to gray) and piecewise linear qualitative approximation (red). (B): Bifurcation diagram
as in Figure 6.8B, but for piecewise linear activation function. Low-activity fixed points at ν = 0
are not shown, which is always the case for the non-stimulated sub-populations. This panel
corresponds to the cross-section marked by the gray dashed lines in (C), at νX = 12. Vertical
cyan bar corresponds to the lower bound on modularity depicted by the cyan curve in (C) for
νX = 12. (C): Analytically derived bounds on modularity (purple line corresponds to Eq. 6.1,
cyan curve to Eq. 6.2) as a function of external input for the baseline model with inhibition-
dominated recurrent connectivity (g = −12). Shaded regions denote positions of stable (black)
and unstable (red) fixed points with 0 < νS < νmax and νNS = 0. Hatched area represents
region with stable fixed points at saturated rates. Denoising occurs in all areas with stable
fixed points (hatched and black shaded regions). νx < 0 corresponds to inhibitory external
background input with rate |νx|. (D): Same as (C) for networks with no recurrent connectivity
within SSNs (green curve defined by Eq. 6.3). (E): Same as (C), for networks with excitation-
dominated connectivity within SSNs (g = −3). (F): Same as Figure 6.8B, obtained through
numerical evaluation of the mean-field self-consistent equations for the spiking model. All non-
zero fixed points are stable, with points representing stimulated (circle) and non-stimulated
(cross) populations overlapping. (G): Mean firing rates across SSNs in the current-based model
with no recurrent connections (5 seconds of activity, averaged over 5 trials). (H, I) Same as (F,
G), for networks with excitation-dominated connectivity.

98



6.2 Numerical simulations and theoretical analysis

total input does not lead to a saturating output activity. Thus, for inhibitory recur-
rence, denoising can be achieved at a moderate level of modularity over a large range of
external background inputs (shaded black and hatched regions in Figure 6.10C), which
demonstrates a robust denoising mechanism even in the presence of changes in the input
environment.

In contrast, if recurrent connections are absent, strong inhibitory external background
input is required to counteract the excitatory feedforward input and achieve a denoising
scenario (Figure 6.10D). Fixed points at non-saturated activity νS > 0 are also present
for low excitatory external input, but unstable due to the positive recurrent feedback.
This is because in networks without recurrence, there is no competition between the
recurrent input and the external and feedforward inputs. As a result, the input to both
the stimulated and non-stimulated sub-populations is typically high, such that modula-
tion of the feedforward input via topography cannot lead to a strong distinction between
the pathways as required for denoising. In these networks, one typically observes high
activity in all populations. A similar behavior can be observed in excitation-dominated
networks (Figure 6.10E), where the inhibitory external background input must be even
stronger to compensate for the excitatory feedforward and recurrent connectivity and
reach a stable denoising regime.

Note that inhibitory external input is not in line with the excitatory nature of external
inputs to local circuits in the brain and is therefore biologically implausible. One way
to achieve denoising in excitation-dominated networks for excitatory background inputs
would be to shift the dynamic range of the activation function (see Supplementary Figure
B.7), which is, however, not consistent with the biophysical properties of real neurons
(distance between threshold and rest as compared to typical strengths of postsynaptic
potentials). In summary, we find that recurrent inhibition is crucial to achieve denoising
in biologically plausible settings.

These results on the role of recurrence and external input can be transferred to the
behavior of the spiking model. While details of the fixed point behavior depend on the
specific choice of the activation function, Figure 6.10F and Figure 6.10H show that there
is also no denoising regime for the spiking model in the case of no or excitation-dominated
recurrence and a biologically plausible level of external input. Instead, one finds high
activity in both stimulated and non-stimulated sub-populations, as confirmed by network
simulations (Figure 6.10G and Figure 6.10I). Supplementary Figure B.8 further confirms
that even reducing the external input to zero does not avoid this high-activity state in
both stimulated and non-stimulated sub-populations for m < 1.

6.2.9 Input integration and multi-stability

The analysis considered in the sections above is restricted to a system driven with a
single external stimulus. However, to adequately understand the system’s dynamics, we
need to account for the fact that it can be concurrently driven by multiple input streams.
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Figure 6.11: For multiple input streams, topography may elicit a wide range of dy-
namical regimes. (A): Two active input channels with corresponding stimulus intensities
λ1 and λ2, mapped onto non-overlapping sub-populations, drive the network simultaneously.
Throughout this section, λ1 = 0.05 is fixed to the previous baseline value. (B): Mean firing
rates of the two stimulated sub-populations (purple and cyan), as well as the non-stimulated
sub-populations (black) for three different combinations of m and ratios λ2/λ1 (as marked in
(C)).(C): Correlation-based similarity score shows three distinct dynamical regimes in SSN5
when considering the firing rates of two, simultaneously stimulated sub-populations associated
with S1 and S2, respectively: coexisting (Co-Ex, red area), winner-takes-all (WTA, grey) and
winnerless competition (WLC, blue). Curves mark the boundaries between the different regimes
(see Section 6.3). Activity for marked parameter combinations shown in (B). (D): Evolution of
the similarity score with increasing network depth, for m = 0.83 and input ratio of 0.86. For
deep networks, the Co-Ex region vanishes and the system converges to either WLC or WTA dy-
namics. (E): Schematic showing the influence of modularity and input intensity on the system’s
potential energy landscape (see Section 6.3): (1) in the fading regime there is a single low-activity
fixed point (minimum in the potential); (2) increasing modularity creates two high-activity fixed
points associated with S1 and S2, with the dynamics always converging to the same minimum
due to λ1 >> λ2; (3) strengthening S2 balances the initial conditions, resulting in frequent,
fluctuation-driven switching between the two states. (4) for larger m values, switching speed
decreases as the wells become deeper and the barrier between the wells wider. (F): Switching
frequency between the dominating sub-populations in SSN5 decays with increasing modularity.
Data computed over 10 sec, for λ2/λ1 = 0.9. Supplementary Figure B.9 and Supplementary Fig-
ure B.10 show the evolution of the Co-Ex region over 12 modules and the potential landscape,
respectively.

If two simultaneously active stimuli drive the system (see illustration in Figure 6.11A),
the qualitative behavior where the responses along the stimulated (non-stimulated) maps
are enhanced (silenced) is retained if the strength of the two input channels is sufficiently
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different (Figure 6.11B, top panel). In this case, the weaker stimulus is not strong enough
to drive the sub-population it stimulates towards the basin of attraction of the high-
activity fixed point. Consequently, the sub-population driven by this second stimulus
behaves as a non-stimulated sub-population and the system remains responsive to only
one of the two inputs, acting as a winner-takes-all (WTA) circuit. If, however, the ratio
of stimulus intensities varies, two active sub-populations may co-exist (Figure 6.11B,
center) and/or compete (bottom panel), depending also on the degree of topographic
modularity.

To quantify these variations in macroscopic behavior, we focus on the dynamics of
SSN5 and measure the similarity (correlation coefficient) between the firing rates of the
two stimulus-specific sub-populations as a function of modularity and ratio of input
intensities λ2/λ1 (see Section 6.3 and Figure 6.11C). In the case that both inputs have
similar intensities but the feedforward projections are not sufficiently modular, both
sub-populations are activated simultaneously (Co-Ex, red area in Figure 6.11C). This
is the dynamical regime that dominates the earlier sub-networks. However, this is a
transient state, and the Co-Ex region gradually shrinks with network depth until it
vanishes completely after approximately 9-10 SSNs (see Figure 6.11D).

For low modularity, the system settles in the single stable state associated with near-
zero firing rates, as illustrated schematically in the energy landscape in Figure 6.11E (1)
(see Section 6.3, Appendix B and Supplementary Materials for derivations and numerical
simulations). Above the critical modularity value, the system enters one of two different
regimes. For m > 0.84 and an input ratio below 0.7 (Figure 6.11C, grey area), one
stimulus dominates (WTA) and the responses in the two populations are uncorrelated
(Figure 6.11B, top panel). Although the potential landscape contains two minima corre-
sponding to either population being active, the system always settles in the high-activity
attractor state corresponding to the dominating input (Figure 6.11E, (2)).

If, however, the two inputs have comparable intensities and the topographic projec-
tions are sharp enough (m > 0.84), the system transitions into a different dynamical
state where neither stimulus-specific sub-population can maintain an elevated firing rate
for extended periods. In the extreme case of nearly identical intensities (λ2/λ1 ≥ 0.9)
and high modularity, the responses become anti-correlated (Figure 6.11B, bottom panel),
i.e. the activation of the two stimulus-specific sub-populations switches, as they engage
in a dynamic behavior reminiscent of winnerless competition (WLC) between multiple
neuronal groups (Lagzi and Rotter, 2015; Rost et al., 2018). The switching between the
two states is driven by stochastic fluctuations (Figure 6.11E, (3)). The depth of the
wells and width of the barrier (distance between fixed points) increase with modularity
(see Figure 6.11E, (4) and Supplementary Figure B.10), suggesting a greater difficulty
in moving between the two attractors and consequently fewer state changes. Numerical
simulations confirm this slowdown in switching (Figure 6.11F).

We wish to emphasize that the different dynamical states arise primarily from the
feedforward connectivity profile. Nevertheless, even though the synaptic weights are not
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directly modified, varying the topographic modularity does translate to a modification
of the effective connectivity weights (Figure 6.4B). The ratio of stimulus intensities also
plays a role in determining the dynamics, but there is a (narrow) range (approximately
between 0.75 and 0.8) for which all 3 regions can be reached through sole modification of
the modularity. Together, these results demonstrate that topography can not only lead
to spatial denoising but also enable various, functionally important network operating
points.

6.2.10 Reconstruction and denoising of dynamical inputs

Until now, we have considered continuous but piecewise constant, step signals, with each
step lasting for a relatively long and fixed period of 200 ms. This may give the impres-
sion that the denoising effects we report only work for static or slowly changing inputs,
whereas naturalistic stimuli are continuously varying. Nevertheless, sensory perception
across modalities relies on varying degrees of temporal and spatial discretization (Van-
Rullen and Koch, 2003), with individual (sub-)features of the input encoded by specific
(sub-)populations of neurons in the early stages of the sensory hierarchy. In this section,
we will demonstrate that denoising is robust to the temporal properties of the input and
its encoding, even as we relax many of the assumptions made in previous sections.

We consider a sinusoidal input signal x(t) = sin(3t) + cos(t), which we discretize and
map onto the network according to the depiction in Figure 6.12A. This approach is
similar to previous works, for instance, it can mimic the movement of a light spot across
the retina (Klos et al., 2018). By varying the sampling interval dt and the number
of channels k, we can change the coarseness of the discretization from step-like signals
to more continuous approximations of the input. If we choose a high sampling rate
(dt = 1 ms) and sufficient channels (k = 40), we can accurately encode even fast-changing
signals (Figure 6.12B). Given that each SSN is inhibition-dominated and therefore close
to the balanced state, the network exhibits a fast-tracking property (van Vreeswijk and
Sompolinsky, 1996) and can accurately represent and denoise the underlying continuous
signal in the spiking activity (Figure 6.12C, top). This is also captured by the readout,
with the tracking precision increasing with network depth (Figure 6.12C, bottom). In
this condition, there is a performance gain of up to 50% in the noiseless case (Figure
6.12F, left) and similar values for varying levels of noise (Figure 6.12F, right).

Note that due to the increased number of input channels (40 compared to 10) pro-
jecting to the same number of neurons in SSN0 as before (800), the effective amount of
noise each neuron for the same σξ receives is, on average, four times larger than in the
baseline network. Moreover, the task was made more difficult by the significant overlap
between the maps (NC = 20) as well as the resulting decrease in neuronal input selec-
tivity. Nevertheless, similar results were obtained for slower and more coarsely sampled
signals (Figure 6.12D,E,G).

We found comparable denoising dynamics for a large range of parameter combinations
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Figure 6.12: Reconstruction of a dynamic, continuous input signal. (A): Sketch of the
encoding and mapping of a sinusoidal input x(t) onto the current-based network model. The
signal is sampled at regular time intervals dt, with each sample binned into one of k channels
(active for a duration of dt). This yields a temporally and spatially discretized k-dimensional
binary signal u(t) from which the final noisy input z(t) is obtained (see Figure 6.1 and Section
6.3). Unlike the one-to-one mapping in Figure 6.1, here we decouple the number of channels
k = 40 from that of topographic maps, NC = 20 (map size is unchanged, Ci = 800). Because
NC < k, the channels project to evenly spaced but overlapping sub-populations in SSN0, while
the maps themselves overlap significantly. (B): Discretized signal z(t) and rate encoding for
input x(t) = sin(10t) + cos(3t), with dt = 1 ms and no noise (σξ = 0). (C): Top panel shows the
spiking activity of 500 randomly chosen excitatory (blue) and inhibitory (red) neurons in SSN0,
SSN2 and SSN5, for m = 0.9. Corresponding target signal x(t) (black) and readout output (red)
are shown in the bottom panel. (D-E): Same as (B-C), but for a slowly varying signal (sampled
at dt = 20 ms), σξ = 0.5νin and m = 1. (F): Relative gain in performance in SSN2 and SSN5
compared to SSN0, for σξ = 0 (left). Color shade denotes network depth. Right panel shows
relative gain in SSN5 for different levels of noise σξ ∈ {0, 0.5, 1.}. (G): Same as (F), but for the
slowly changing signal shown in (D-E). Performance results are averaged across five trials. We
used 20 seconds of data for training and 10 seconds for testing (activity sampled every 1 ms).
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involving the map size, number of maps, number of channels and signal complexity. Al-
though there are limits on the frequencies (and noise intensity) the network can track
(see Supplementary Figure B.11), these findings indicate a very robust and flexible phe-
nomenon for denoising spatially encoded sensory stimuli.

6.3 Methods

6.3.1 Network architecture

We consider a feedforward network architecture where each sub-network (SSN) is a
balanced random network (Brunel, 2000) composed of N = 10000 homogeneous leaky
integrate-and-fire neurons, grouped into a population of NE = 0.8N excitatory and N I =
0.2N inhibitory units. Within each sub-network, neurons are connected randomly and
sparsely, with a fixed number of KE = ϵNE local excitatory and KI = ϵN I local inhibitory
inputs per neuron. The sub-networks are arranged sequentially, i.e. the excitatory
neurons Ei in SSNi project to both Ei+1 and Ii+1 populations in the subsequent sub-
network SSNi+1 (for an illustrative example, see Figure 6.1a). There are no inhibitory
feedforward projections. Although projections between sub-networks have a specific,
non-uniform structure (see next section), each neuron in SSNi+1 receives the same total
number of synapses from the previous SSN, KFF.

In addition, all neurons receive KX inputs from an external source representing stochas-
tic background noise. For the first sub-network, we set KX = KE, as it is commonly
assumed that the number of background input synapses modeling local and distant cor-
tical input is in the same range as the number of recurrent excitatory connections (see
e.g., Brunel, 2000; Kumar et al., 2008b; Duarte and Morrison, 2014). To ensure that the
total excitatory input to each neuron is consistent across the network, we scale KX by a
factor of α = 0.25 for the deeper SSNs and set KFF = (1 − α)KE, resulting in a ratio of
3:1 between the number of feedforward and background synapses.

6.3.2 Modular feedforward projections

Within each SSN, each neuron is assigned to one or more of NC sub-populations SP
associated with a specific stimulus (NC = 10 unless otherwise stated). This is illustrated
in Figure 6.1a for NC = 2. We choose these sub-populations to minimize their overlap
within each SSNi, and control their effective size Cβ

i = diN
β, β ∈ [E, I], through the

scaling parameter di ∈ [0, 1]. Depending on the size and number of sub-populations, it is
possible that some neurons are not part of any or that some neurons belong to multiple
such sub-populations (overlap).

Map size. In what follows, a topographic map refers to the sequence of sub-populations
in the different sub-networks associated with the same stimulus. To enable a flexible ma-
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nipulation of the map sizes, we constrain the scaling factor di by introducing a step-wise
linear increment δ, such that di = d0 + iδ, i ≥ 1. Unless otherwise stated, we set d0 = 0.1
and δ = 0. Note that all SPs within a given SSN have the same size. In this study, we
will only explore values in the range 0 ≤ δ ≤ 0.02 to ensure consistent map sizes across
the system, i.e., 0 ≤ di ≤ 1 for all SSNi (see constraints in Appendix B.3).

Modularity. To systematically modify the degree of modular segregation in the to-
pographic projections, we define a modularity parameter that determines the relative
probability for feedforward connections from a given SP in SSNi to target the corre-
sponding SP in SSNi+1. Specifically, we follow (Newman, 2009; Pradhan et al., 2011)
and define m = 1 − p0

pc
∈ [0, 1] as the ratio of the feedforward projection probabilities

between neurons belonging to different SPs (p0) and between neurons on the same to-
pographic map (pc). According to the above definition, the feedforward connectivity
matrix is random and homogeneous (Erdős-Rényi graph) if m = 0 or di = 1 (see Figure
6.1a). For m = 1 it is a block-diagonal matrix, where the individual SPs overlap only
when di > 1/NC. In order to isolate the effects on the network dynamics and compu-
tational performance attributable exclusively to the topographic structure, the overall
density of the feedforward connectivity matrix is kept constant at (1 − α) ∗ ϵ = 0.075
(see also previous section). We note that, while providing the flexibility to implement
the variations studied in this manuscript, this formalism has limitations (see Appendix
B.3).

6.3.3 Neuron and synapse model

We study networks composed of leaky integrate-and-fire (LIF) neurons with fixed volt-
age threshold and static synapses with exponentially decaying postsynaptic currents or
conductances. The sub-threshold membrane potential dynamics of such a neuron evolves
according to:

τm
dV (t)

dt
= (Vrest − V (t)) + R

(
IE(t) + II(t) + IX(t)

)
(6.4)

where τm is the membrane time constant, and RIβ is the total synaptic input from
population β ∈ [E, I]. The background input IX is assumed to be excitatory and stochas-
tic, modeled as a homogeneous Poisson process with constant rate νX. Synaptic weights
Jij, representing the efficacy of interaction from presynaptic neuron j to postsynaptic
neuron i, are equal for all realized connections of a given type, i.e., JEE = JIE = J for
excitatory and JEI = JII = gJ for inhibitory synapses. All synaptic delays and time
constants are equal in this setup. For a complete, tabular description of the models and
model parameters used throughout this study, see Appendix B.2.

Following previous works (Zajzon et al., 2019; Duarte and Morrison, 2014), we choose
the intensity of the stochastic input νX and the E-I ratio g such that the first two sub-
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networks operate in a balanced, asynchronous irregular regime when driven solely by
background input. This is achieved with νX = 12 spks/sec and g = −12, resulting
in average firing rates of ∼ 3 spks/sec, coefficient of variation (CVISI) in the interval
[1.0, 1.5] and Pearson cross-correlation (CC) ≤ 0.01 in SSN0 and SSN1.

In Section 6.2.5 we consider two additional systems, a network of LIF neurons with
conductance-based synapses and a continuous firing rate model. The LIF network is
described in detail in Section 5.2 of the previous chapter. Spike-triggered synaptic con-
ductances are modeled as exponential functions, with fixed and equal conduction delays
for all synapses. Key differences to the current-based model include, in addition to the
biologically more plausible synapse model, longer synaptic time constants and stronger
input (see also Zajzon et al. (2019) and Supplementary Table B.3 for the numerical
values of all parameters).

The continuous rate model contains N = 3000 nonlinear units, the dynamics of which
are governed by:

τx
dx

dt = −x + Jr + J inu − brec +
√

2τxσXξ

r = 0.5(1 + tanh (x))
(6.5)

where x represents the activation and r the output of all units, commonly interpreted
as the synaptic current variable and the firing rate estimate, respectively. The rates
ri are obtained by applying the nonlinear transfer function tanh(xi), modified here to
constrain the rates to the interval [0, 1]. τx = 10 ms is the neuronal time constant,
brec is a vector of individual neuronal bias terms (i.e. a baseline activation), and J and
J in are the recurrent (including feedforward) and input weight matrices, respectively.
These are constructed in the same manner as for the spiking networks, such that the
overall connectivity, including the input mapping onto SSN0, is identical for all three
models. Input weights are drawn from a uniform distribution, while the rest follow a
normal distribution. Finally, ξ is a vector of N independent realizations of Gaussian
white noise with zero mean and variance scaled by σX. The differential equations are
integrated numerically, using the Euler–Maruyama method with step δt = 1 ms, with
specific parameter values given in Supplementary Table B.5.

6.3.4 Signal reconstruction task
We evaluate the system’s ability to recover a simple, continuous step signal from a noisy
variation using linear combinations of the population responses in the different SSNs
(Maass et al., 2002). This is equivalent to probing the network’s ability to function as a
denoising autoencoder (Bengio et al., 2013).

To generate the NC-dimensional input signal u(t), we randomly draw stimuli from a
predefined set S = {S1, S2, ..., SNC} and set the corresponding channel to active for a
fixed duration of 200 ms (Figure 6.1, left). This binary step signal u(t) is also the target
signal to be reconstructed. The effective input is obtained by scaling u(t) with the input
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rate νin, and adding a Gaussian white noise process with zero mean and variance σ2
ξ .

Rectifying the resulting signal leads to the final form of the continuous input signal
z(t) = (νinu(t) + ξ(t))+. This allows us to control the amount of noise in the input, and
thus the task difficulty, through a single parameter σξ.

To deliver the input to the circuit, the analog signal z(t) is converted into spike trains,
with its amplitude serving as the rate of an inhomogeneous Poisson process generating
independent spike trains. We set the scaling amplitude to νin = KEλνX, modelling
stochastic input with fixed rate λνX from KE = 800 neurons. If not otherwise specified,
λ = 0.05 holds, resulting in a mean firing rate below 8 spks/sec in SSN0 (see Figure
6.3C).

Each input channel k is mapped onto one of the NC stimulus-specific sub-populations
of excitatory and inhibitory neurons in the first (input) sub-network SSN0, chosen ac-
cording to the procedure described above (see also Figure 6.1). This way, each stimulus
Sk is mapped onto a specific set of sub-populations in the different sub-networks, i.e.,
the topographic map associated with Sk.

For each stimulus in the sequence, we sample the responses of the excitatory population
in each SSNi at fixed time points (once every ms) relative to stimulus onset. We record
from the membrane potentials Vm as they represent a parameter-free and direct measure
of the population state (Duarte et al., 2018; van den Broek et al., 2017). The activity
vectors are then gathered in a state matrix XSSNi ∈ RNE×T , which is then used to
train a linear readout to approximate the target output of the task (Lukoševičius and
Jaeger, 2009). We divide the input data, containing a total of 100 stimulus presentations
(yielding T = 20000 samples), into a training and a testing set (80/20 %), and perform
the training using ridge regression (L2 regularization), with the regularization parameter
chosen by leave-one-out cross-validation on the training dataset.

Reconstruction performance is measured using the normalized root mean squared error
(NRMSE). For this particular task, the effective delay in the build-up of optimal stimulus
representations varies greatly across the sub-networks. To close in on the optimal delay
for each SSNi, we train the state matrix XSSNi on a larger interval of delays and choose
the one that minimizes the error, averaged across multiple trials.

6.3.5 Effective connectivity and stability analysis

To better understand the role of structural variations on the network’s dynamics, we
determine the network’s effective connectivity matrix W analytically by linear stability
analysis around the system’s stationary working points (see Appendix B for the complete
derivations). The elements wij ∈ W represent the integrated linear response of a target
neuron i, with stationary rate νi, to a small perturbation in the input rate νj caused by
a spike from presynaptic neuron j. In other words, wij measures the average number of
additional spikes emitted by a target neuron i in response to a spike from the presynaptic
neuron j, and its relation to the synaptic weights is defined by (Tetzlaff et al., 2012; Helias
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et al., 2013):

wij = ∂νi

∂νj
= α̃Jij + β̃J2

ij

with α̃ =
√

π (τmνi)2 1
σi

(f(yθ) − f(yr))

and β̃ =
√

π (τmνi)2 1
2σ2

i

(f(yθ)yθ − f(yr)yr) .

(6.6)

Note that in Figure 6.3 we ignore the contribution β̃ resulting from the modulation in
the input variance σ2

j which is significantly smaller due to the additional factor 1/σi ∼
O(1/

√
N). Importantly, the effective connectivity matrix W allows us to gain insights

into the stability of the system by eigenvalue decomposition. For large random coupling
matrices, the effective weight matrix has a spectral radius ρ = maxk (Re{λk}) which is
determined by the variances of W (Rajan and Abbott, 2006). For inhibition-dominated
systems, such as those we consider, there is a single negative outlier representing the
mean effective weight, given the eigenvalue λ∗

k associated with the unit vector. The
stability of the system is thus uniquely determined by the spectral radius ρ: values
smaller than unity indicate stable dynamics, whereas ρ > 1 leads to unstable linearized
dynamics.

6.3.6 Fixed point analysis

For the mean-field analysis, the NC sub-populations in each sub-network can be reduced
to only two groups of neurons, the first one comprising all neurons of the stimulated SPs
and the second one comprising all neurons in all non-stimulated SPs. This is possible
because 1) the firing rates of the excitatory and inhibitory neurons within one SP are
identical, owing to homogeneous neuron parameters and matching incoming connection
statistics, and 2) all neurons in non-stimulated SPs have the same rate νNS that is in
general different from the rate of the stimulated SP νS. Here we only sketch the main
steps, with a detailed derivation given in Appendix B.4.

The mean inputs to the first sub-network can be obtained via

µS = (1 + λ)J νx + 1
NC

J (1 + γg) νS + NC − 1
NC

J (1 + γg) νNS ,

µNS = J νx + 1
NC

J (1 + γg) νS + NC − 1
NC

J (1 + γg) νNS
(6.7)

where γ = KI/KE and J = τmKEJ . Both equations are of the form

κν = µ − I (6.8)
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where κ is the effective self-coupling of a group of neurons with rate ν and input µ,
and I denotes the external inputs from other groups. Equation (6.8) describes a linear
relationship between the rate ν and the input µ. To find a self-consistent solution for the
rates νS and νNS, the above equations need to be solved numerically, taking into account
in addition the f-I curve ν(µ) of the neurons that in the case of leaky integrate-and-fire
model neurons also depends on the variance σ2 of inputs. The latter can be obtained
analogous to the mean input µ (see Appendix B). Note that for general nonlinearity
ν(µ) there is no analytical closed-form solution for the fixed points.

Starting from SSN1, networks are connected in a fixed pattern such that the rate νi in
SSNi also depends on the excitatory input from the previous sub-network SSNi−1 with
rate νi−1. For a fixed point, we have νi = νi−1 (Toyoizumi, 2012). In this case, we can
effectively group together stimulated/non-stimulated neurons in successive sub-networks
and re-group equations for the mean input in the limit of many sub-networks, obtaining
the simplified description (details see Appendix B.4)

µS = αJ νx + κS,S νS + κS,NS νNS (6.9)
µNS = αJ νx + κNS,S νS + κNS,NS νNS (6.10)

The scaling terms of the firing rates incorporate the recurrent and feedforward con-
tributions from the stimulated and non-stimulated groups of neurons. They depend
solely on some fixed parameters of the system, including modularity m (see Appendix
B). Importantly, Eq. 6.9 and Eq. 6.10 have the same linear form as Eq. 6.8 and can
be solved numerically as described above. Again, for general nonlinear ν(µ) there is no
closed-form analytical solution, but see below for a piecewise linear activation function
ν(µ). The numerical solutions for fixed points are obtained using the root finding algo-
rithm root of the scipy.optimize package (Virtanen et al., 2020). The stability of
the fixed points is obtained by inserting the corresponding firing rates into the effective
connectivity Eq. 6.6 on the level of stimulated and non-stimulated sub-populations κS,S(m)α̃(νS) κS,NS(m)α̃(νNS)

κNS,S(m)α̃(νS) κNS,NS(m)α̃(νNS)

 (6.11)

and evaluating its eigenvalues.
The structure of fixed points for the stimulated sub-population (see discussion in

Section 6.2.7) can furthermore be intuitively understood by studying the potential land-
scape of the system. The potential U is thereby defined via the conservative force
F = − dU

dνS = −νS + ν(µ, σ2) that drives the system towards its fixed points via the
equation of motion dνS

dt = F (Wong, 2006; Litwin-Kumar and Doiron, 2012; Schuecker
et al., 2017). Note that µ and σ2 are again functions of νS and νNS, where the latter
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is the self-consistent rate of the non-stimulated sub-populations for given rate νS of the
stimulated sub-population, νNS = νNS(νS) (details see Appendix B.4).

6.3.7 Critical modularity and relation to recurrent connectivity, background
input and single-neuron activation function

While the self-consistent equations for the fixed points cannot be solved analytically
for the nonlinear activation function of spiking models, we here turn to an analytically
simpler but qualitatively similar piecewise linear activation function (Figure 6.10A). The
latter yields linear self-consistency equations that can be solved analytically to obtain
conditions on the modularity for denoising (details see Appendix B.4.3). Successful
denoising thereby requires the non-stimulated sub-populations to be silent, νNS = 0,
and the stimulated sub-populations to be active νS > 0. The analysis yields multiple
conditions for denoising. The first condition

m ≥ (µmax − µmin)NC
(1 − α)J νmax + (µmax − µmin)(NC − 1) (6.12)

mainly depends on parameters of the activation function, namely the dynamic range
of input µmax − µmin and output νmax. In particular, it does not depend on the nature
of the recurrent interactions and the external background input. In addition, we find
further critical values of the modularity for denoising (Figure 6.10C)

m = NC
NC − 1 − 1

NC − 1
(1 − α)J νmax

µmax − αJ νx − J
NC

(1 + γg) νmax
(6.13)

m = 1 −

(
µmin − αJ νx − J

NC
(1 + γg) νmax

)
J (1 − α)νmax − (NC − 1)

(
µmin − αJ νx − J

NC
(1 + γg) νmax

) (6.14)

that are either upper or lower bounds depending on the strength of the external input. In
the denominator of these expressions the total input, recurrent and external, is compared
against the limits of the dynamic range of the neuron model. The cancellation between
recurrent and external inputs in the inhibition-dominated baseline model typically yields
a total input within the dynamic range of the neuron such that modularity in feedforward
connections can decrease the input of the non-stimulated sub-populations to silence them
and increase the input of the stimulated sub-populations to support their activity. In
networks without recurrent connections or excitation-dominated connectivity, the total
input is typically large as the external input is excitatory in biologically plausible settings.
This leads to strong activity in both stimulated and non-stimulated populations that
cannot be modulated sufficiently by topographic feedforward connections. While the
analysis yields fixed points for excitatory external input also in this scenario, these fixed
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points are unstable due to the positive recurrent feedback in the system (see Appendix
B.4.3)

6.3.8 Multiple inputs and correlation-based similarity score

In Figure 6.11 we consider two stimuli S1 and S2 to be active simultaneously for 10 s.
Let SP1 and SP2 be the two corresponding SPs in each sub-network. The firing rate
of each SP is estimated from spike counts in time bins of 10 ms and smoothed with a
Savitzky-Golay filter (length 21 and polynomial order 4). We compute a similarity score
based on the correlation between these rates, scaled by the ratio of the input intensities
λ2/λ1 (with λ1 fixed). This scaling is meant to introduce a gradient in the similarity
score based on the firing rate differences, ensuring that high (absolute) scores require
comparable activity levels in addition to strong correlations. To ensure that both stimuli
are decodable where appropriate, we set the score to 0 when the difference between the
rate of SP2 and the non-stimulated SPs was < 1 spks/sec (SP1 had significantly higher
rates). The curves in Figure 6.11C mark the regime boundaries: coexisting (Co-Ex)
where score is > 0.1 (red curve); winnerless competition (WLC) where score is < −0.1
(blue); winner-takes-all (WTA, grey) and where the score is in the interval (−0.1, 0.1),
and either λ2/λ1 < 0.5 holds or the score is 0. While the Co-Ex region is a dynamical
regime that only occurs in the initial sub-networks (Figure 6.11D), the WTA and WLC
regimes persist and can be understood again with the help of a potential U , which in
this case is a function of the rates of the two SPs (details see Appendix B).

6.3.9 Numerical simulations and analysis

The numerical simulations for the spiking networks were conducted using NMSAT v0.2
(Duarte et al., 2017b) and NEST 2.18.0 (Jordan et al., 2019), while FNA was used for
the continuous rate network (see Chapter 4). The code package to reproduce all figures
is available as supplementary data of the publication (Zajzon et al., 2023), with the
full code package to reproduce the simulation results available on Zenodo Zajzon et al.
(2022). The complete set of parameters can be found in Appendix B.

6.4 Discussion

The presence of stimulus- or feature-tuned sub-populations of neurons in primary sen-
sory cortices (as well as in downstream areas) provides an efficient spatial encoding
strategy (Pouget et al., 1999; Seriès et al., 2004; Tkačik et al., 2010) that ensures the
relevant computable features are accurately represented. Here, we propose that beyond
primary sensory areas, modular topographic projections play a key role in preserving
accurate representations of sensory inputs across many processing modules. Acting as a
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structural scaffold for a sequential denoising mechanism, we show how they simultane-
ously enhance relevant stimulus features and remove noisy interference. We demonstrate
this phenomenon in a variety of network models and provide a theoretical analysis that
indicates its robustness and generality.

When reconstructing a spatially encoded input signal corrupted by noise in a net-
work of sequentially connected populations, we find that a convergent structure in the
feedforward projections is not only critical for successfully solving the task, but that
the performance increases significantly with network depth beyond a certain modularity
(Figure 6.2). Through this mechanism, the response selectivity of the stimulated sub-
populations is sharpened within each subsequent sub-network, while others are silenced
(Figure 6.3). Such wiring may support efficient and robust information transmission
from the thalamus to deeper cortical centers, retaining faithful representations even in
the presence of strong noise. We demonstrate that this holds for a variety of signals,
from approximately static (stepwise) to smoothly and rapidly changing dynamic inputs
(Figure 6.12). Thanks to the balance of excitation and inhibition, the network can track
spatially encoded signals on very short timescales and is flexible with respect to the level
of spatial and temporal discretization.

More generally, topographic modularity, in conjunction with other top-down processes
(Kok et al., 2012), could provide the anatomical substrate for the implementation of
a number of behaviorally relevant processes. For example, feedforward topographic
projections on the visual pathway could contribute, together with various attentional
control processes, to the widely observed pop-out effect in the later stages of the visual
hierarchy (Brefczynski-Lewis et al., 2009; Itti et al., 1998). The pop-out effect, at its
core, assumes that in a given context some neurons exhibit sharper selectivity to their
preferred stimulus feature than the neighboring regions, which can be achieved through
a winner-take-all (WTA) mechanism (see Figure 6.11 and (Himberger et al., 2018)).

The WTA behavior underlying the denoising is caused by a re-shaping of the E/I
balance across the network (see Figure 6.4). As the excitatory feedforward projections
become more focused, they modulate the system’s effective connectivity and thereby
the gain on the stimulus-specific pathways, gating or allowing (and even enhancing)
signal propagation. This change renders the stimulated pathway excitatory in the ac-
tive regime (see Figure 6.8), leading to multiple fixed points such as those observed in
networks with local recurrent excitation (Renart et al., 2007; Litwin-Kumar and Do-
iron, 2012). While the high-activity fixed point of such clustered networks is reached
over time, in our model it unfolds progressively in space, across multiple populations.
Importantly, in the range of biologically plausible numbers of cortical areas relevant for
signal transmission (up to ten for some visual stimuli, see Felleman and Van Essen, 1991;
Hegdé and Felleman, 2007) and intermediate modularity, the firing rates remain within
experimentally observed limits and do not saturate. The basic principle is similar to
other approaches that alter the gain on specific pathways to facilitate stimulus propaga-
tion, for example through stronger synaptic weights (Vogels and Abbott, 2005), stronger
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nonlinearity (Toyoizumi, 2012), tuning of connectivity strength and neuronal thresholds
(Gajic and Shea-Brown, 2012), via detailed balance of local excitation and inhibition
(amplitude gating (Vogels and Abbott, 2009)) or with additional sub-cortical structures
(Cortes and van Vreeswijk, 2015). Additionally, our model also displays some activity
characteristics reported previously, such as the response sharpening observed for synfire
chains (Diesmann et al., 1999) or (almost) linear firing rate propagation (Kumar et al.,
2010a) (for intermediate modularity).

While our findings build on the above results, we here show that the experimentally
observed topographic maps may serve as a structural denoising mechanism for sensory
stimuli. In contrast to most works on signal propagation where noise mainly serves to
stabilize the dynamics and is typically avoided in the input, here the system is driven
by a continuous signal severely corrupted by noise. Taking a more functional approach,
this input is reconstructed using linear combinations of the full network responses, rather
than evaluating the correlation structure of the activity or relying on precise firing rates.
Focusing on the modularity of such maps in recurrent spiking networks, our model
also differs from previous studies exploring optimal connectivity profiles for minimizing
information loss in purely feedforward networks (Renart and van Rossum, 2012; Zyl-
berberg, 2017), also in the context of sequential denoising autoencoders (Kadmon and
Sompolinsky, 2016) and stimulus classification (Babadi and Sompolinsky, 2014), which
used simplified neuron models or shallow networks, made no distinction between excita-
tory and inhibitory connections, or relied on specific, trained connection patterns (e.g.,
chosen by the pseudo-inverse model). Although the bistability underlying denoising can,
in principle, also be achieved in such feedforward or networks without inhibition, our
theoretical predictions and network simulations indicate that for biologically constrained
circuits (i.e., where the background and feedforward / long-range input is excitatory),
inhibitory recurrence is indispensable for the spatial denoising studied here (see Section
6.2.8). Recurrent inhibition compensates for the feedforward and external excitation,
generating competition between the topographic pathways and allowing the populations
to track their input rapidly.

Moreover, our findings provide an explanation for how low-intensity stimuli (1 −
2spks/sec above background activity, see Figure 6.3 and Supplementary Materials) could
be amplified across the cortex despite significant noise corruption, and relies on a generic
principle that persists across different network models (Figure 6.6) while also being ro-
bust to variations in the map size (Figure 6.7). We demonstrated both the existence of
a lower and upper (due to increased overlap) bound on their spatial extent for signal
transmission, as well as an optimal region for which denoising was most pronounced.
These results indicate a trade-off between modularity and map size, with larger maps
sustaining stimulus propagation at lower modularity values, whereas smaller maps must
compensate through increased topographic density (see Figure 6.7A and Supplementary
Materials). In the case of smaller maps, progressively enlarging the receptive fields en-
hanced the denoising effect and improved task performance (Figure 6.7C), suggesting a
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functional benefit for the anatomically observed decrease in topographic specificity with
hierarchical depth (Bednar and Wilson, 2016; Smith et al., 2001). One advantage of
such a wiring could be spatial efficiency in the initial stages of the sensory hierarchy
due to anatomical constraints, for instance the retina or the lateral geniculate nucleus.
While we get a good qualitative description of how the spatial variation of topographic
maps influences the system’s computational properties, the numerical values in general
are not necessarily representative. Cortical maps are highly dynamic and exhibit more
complex patterning, making (currently scarce) precise anatomical data a prerequisite for
more detailed investigations.

Finally, our model relates topographic connectivity to competition-based network dy-
namics. For two input signals of comparable intensities, moderately structured projec-
tions allow both representations to coexist in a decodable manner up to a certain network
depth, whereas strongly modular connections elicit winnerless competition (WLC) like
behavior characterized by stochastic switching between the two stimuli (see Figure 6.11).

Importantly, all these different dynamical regimes emerge progressively through the
hierarchy and are not discernable in the initial modules. Previous studies reporting on
similar dynamical states have usually considered either the synaptic weights as the main
control parameter (Lagzi and Rotter, 2015; Lagzi et al., 2019; Vogels and Abbott, 2005)
or studied specific architectures with clustered connectivity (Schaub* et al., 2015; Litwin-
Kumar and Doiron, 2012; Rost et al., 2018). Our findings suggest that in a hierarchical
circuit a similar palette of behaviors can be also obtained given appropriate effective
connectivity patterns modulated exclusively through modular topography. Although we
used fixed projections throughout this study, these could also be learned and shaped
continuously through various forms of synaptic plasticity (see e.g., Tomasello et al.,
2018). To achieve such a variety of dynamics, cortical circuits most likely rely on a
combination of all these mechanisms, i.e., pre-wired modular connections (within and
between distant modules) and heterogeneous gain adaptation through plasticity, along
with more complex processes such as targeted inhibitory gating.

Overall, our results highlight a novel functional role for topographically structured
projection pathways in constructing reliable representations from noisy sensory signals,
and accurately routing them across the cortical circuitry despite the plethora of noise
sources along each processing stage.
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Chapter 7

Overcoming temporal compression during
sequence learning

7.1 Introduction

The previous chapters investigated how a modular connectivity can support accurate
representations of discrete stimuli and continuous signals and their transmission across
a series of simple cortical circuits, without accounting for temporal structure in the input.
Such representations are a prerequisite for any further processing, but navigation in a
dynamic environment requires actions and decisions that are precisely coordinated in
time and space, matching the spatio-temporally structured stimuli upon which they are
based. As discussed in Section 1.5, the ability to learn, process and predict sequential
patterns is therefore a critical component of cognition, with recent experimental findings
showing a multitude of brain regions to be involved in sequence processing (Dehaene
et al., 2015; Wilson et al., 2018; Henin et al., 2021). Recordings in the primary visual
cortex indicate that even early sensory areas are capable of learning and recalling not
just the order of a series of stimulus patterns, but also the duration of the individual
elements (Xu et al., 2012; Gavornik and Bear, 2014). In fact, the ability to represent both
the ordinal and temporal components of a sequence are two of the most fundamental
requirements for any system processing sequential information.

However, as reviewed in Section 3.3.3, most existing models of unsupervised biological
sequence learning address only the first of these two criteria, focusing on acquiring
the order of elements and typically failing to account for their duration. They either
cannot intrinsically represent the time intervals (Klos et al., 2018; Bouhadjar et al.,
2022), or they assume a fixed and identical duration for each element that is limited
by the architecture (Maes et al., 2020), or they produce longer sequences that arise
spontaneously even in the absence of structured input (and hence are not related to it,
Fiete et al., 2010).

Seeking to unify these computational features, Cone and Shouval (2021) recently pro-
posed a novel, biophysically realistic spiking network model that avoids the problem of
temporal compression while maintaining the precise order of elements during sequence
replay. Relying on a laminar structure, as well as experimentally observed cell properties,
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the system uses a local, eligibility-based plasticity rule (3-factor learning rule, see Section
2.3) to learn the order of elements by mapping out a physical path between stimulus-
tuned columns, with the duration of each item being encoded in the recurrent activations
within the corresponding column. The learning rule, based on the competition between
two eligibility traces and a globally available reward signal, is grounded in recent ex-
perimental findings (He et al., 2015; Huertas et al., 2016). This modular architecture
allows the network to flexibly learn and recall sequences of up to eight elements with
variable length, but only with simple transitions between items (first-order Markovian).
More intricate sequences with history dependence (i.e., higher-order Markovian) can be
learned, but require additional structures for memory. Given the increased complexity,
this ability is only demonstrated in a continuous rate-based model.

The code for the model is available in MATLAB. As this is a proprietary, closed-
source software, models expressed in this manner have accessibility issues (not every
scientist can afford a license) and bear a greater risk of becoming non-executable legacy
code, if the code is not regularly maintained (for an example, see to Brinke et al.,
2022). Additionally, as MATLAB is a general purpose numeric computing platform, the
researcher must develop all neuroscientific models and simulation algorithms de novo,
which presents a higher risk for implementation errors and poorly-suited numerics (Pauli
et al., 2018).

In this chapter we therefore present a replication of the original study, which serves the
twin purpose of testing the original findings and providing a more accessible version of
the model to the computational neuroscience community. Specifically, we re-implement
their model in NEST using FNA (see Chapter 4), thus ensuring an open source, reusable
and maintainable code base.

Here, we use the term replication in the R5 sense described by Benureau and Rougier
(2018), i.e. striving to obtain the same results using an independent code base, whereas
a reproduction (R3) of the model would have been achieved if we had obtained the results
of the original study using the original code. However, others have argued these terms
should be used the other way around: see Plesser (2018) for an overview and analysis.

7.2 Methods
The model analyzed in this chapter is described in full detail in the original work of
Cone and Shouval (2021). Nevertheless, given that we found numerous discrepancies
between the model description and implementation, we present all the key properties
and parameters that are necessary for a successful replication of the results.

7.2.1 Network architecture
The central characteristic of the network architecture is the modular columnar structure
(see Figure 7.1A, B), where each of the NC columns is associated with a unique sequence
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Figure 7.1: Sequence learning task and network architecture. (A) A sequence of three
intervals (elements) is learned by a network with as many dedicated populations (columns).
The individual populations are stimulated sequentially, with a global reward signal given at the
beginning and the end of each element. After training, the recurrent and feedforward weights
are strengthened, and the sequence is successfully recalled following a cue. The fullness of the
colored sections on the right illustrates the duration of the activity (firing rates) above a certain
threshold. (B) Each stimulus-specific column is composed of two excitatory, Timers (T ) and
Messengers (M), and two corresponding inhibitory populations, IT and IM. Solid (dashed)
arrows represent fixed static (plastic) connections. Cross-columnar inhibition always targets the
excitatory population in the corresponding layer (L5 or L2/3).

element (stimulus). Each column contains two excitatory (Timer and Messenger) and
two associated inhibitory populations ITand IM, roughly corresponding to L5 and L2/3
in the cortex. In the following, we will refer to these cell populations as T i, M i, Ii

T and
Ii

M, respectively, where the superscript i denotes the column Ci.
Each of the above populations is composed of N = 100 leaky integrate-and-fire neu-

rons, with the exception of the network simulated in Section 7.3.4, where N = 400. The
wiring diagram of the baseline network used in Cone and Shouval (2021) is schematically
illustrated in Figure 7.1B. Within a column Ci, T i cells connect to Ii

T and M i, in ad-
dition to recurrent connections to other T i cells. M i neurons excite the local inhibitory
population Ii

M, and are inhibited by Ii
T. Inhibition onto the excitatory cells also exists

between the columns in a layer-specific manner, i.e., Ii
T → T j and Ii

M → M j , with i ̸= j.
Lastly, M i cells in Ci connect in a feedforward manner to T i+1 cells in the subsequent
column Ci+1. All connections within the same and between different populations have
a density of φ = 0.26. Note that only the feedforward projections M i → T i+1 and the
recurrent T i → T i connections are subject to plasticity (see below); all other connec-
tions are static. The plastic weights are initialized close to 0 and the static weights are
normally distributed around their mean values with a standard deviation of 1.

The complete set of parameters for the architecture proposed in the original study, as
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well as the variants described below are specified in the Appendix C.

Scaled model

For the scaled network model described in Section 7.3.4, the number of neurons in each
populations was increased to N ′ = 400 from N = 100. To keep the input variance con-
stant, in the standard scaling scenario (Figure 7.6A) we followed the common approach
for balanced random networks (van Vreeswijk and Sompolinsky, 1998; Litwin-Kumar
and Doiron, 2012) and reduced all non-plastic synaptic weights by multiplying them
with 1/

√
N ′/N . In addition, we halved the standard deviation σξ of the background

noise such that the firing rates were in the same range as for the baseline network. To
restore the functional aspects of the network, additional tuning was required for most of
the projections, see Table C.4.

All-to-all cross-columnar connectivity

In Section 7.3.5, the baseline network is modified by instantiating plastic excitatory
connections between all columns M i → T j , (i ̸= j) rather than solely between the
columns representing consecutive elements of the stimuli (see Figure 7.7A). All other
parameters are unchanged.

Alternative wiring with local inhibition

The functionally equivalent network analyzed in Section 7.3.6 required multiple modi-
fications (see Figure 7.8A). Inhibitory connections are local to the corresponding layer,
with connections Ii

T → T i and Ii
M → M i. Timer cells T i project to both M i and Ii

M, as
well as to Ij

T in other columns Cj . In layer L2/3, M i cells project to T i+1 and Ij
M, i ̸= j.

7.2.2 Neuron model

The networks are composed of leaky integrate-and-fire (LIF) neurons, with fixed voltage
threshold and conductance-based synapses. The dynamics of the membrane potential
Vi for neuron i follows:

Cm
dVi

dt
= gL (Vrest − Vi(t)) + IE

i (t) + II
i (t) + ξ(t) (7.1)

where the leak-conductance is given by gL, IE
i and II

i represent the total excitatory
and inhibitory synaptic input currents, and ξ is a noise term modeled as Gaussian white
noise with standard deviation σξ = 100, unless otherwise stated. This noise term is
sufficient to cause a low baseline activity of around 1 − 2spks/sec. Upon reaching a
threshold Vth = −55 mV (−50 mV for inhibitory neurons), the voltage is reset to Vreset
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for a refractory period of tref = 3 ms . Note that the higher threshold for inhibitory
neurons is critical for the faster decay of their activity compared to Timer cells.

The dynamics of the synaptic conductances are modeled as exponential functions with
an adaptation term, with fixed and equal conduction delays for all synapse types. The
equations of the model dynamics, along with the numerical values for all parameters are
summarized in Appendix C.

In all figures depicting firing rates, these are estimated from the spike trains using an
exponential filter with time constant τr = 40 ms.

7.2.3 Eligibility-based learning rule

The main assumption of the learning rule is the availability of two synaptic eligibility
traces at every synapse T p

ij and T d
ij , representing long-term potentiation (LTP) and

depression (LTD), which can be simultaneously activated through the Hebbian firing
patterns.

For a ∈ {p, d}, the dynamics of the traces follows:

τa
dT a

ij(t)
dt

= −T a
ij(t) + ηaHij(t)

(
T a

max − T a
ij(t)

)
, (7.2)

where τa is the time constant, ηa is a scaling factor, and T a
max is the saturation level

of the trace. Hij(t) is the Hebbian term defined as the product of firing rates of the pre-
and postsynaptic neurons:

Hij(t) =
{

ri(t)rj(t) if ri(t)rj(t) > rth

0 otherwise
, (7.3)

with rth (rff
th ) representing different threshold values for recurrent T to T (feedforward

M to T ) connections. Note that while this equation is used in both the original MAT-
LAB implementation and in our re-implementation in NEST, the Hebbian terms in the
equations in Cone and Shouval (2021) are further normalized by T a

max. For a detailed
analysis of the learning convergence, see the original study.

These activity-generated eligibility traces are silent and transient synaptic tags that
can be converted into long-term changes in synaptic strength by a third factor, R(t)
which is modeled here as a global signal using a delta function, R(t) = δ(t − treward −
dreward), and is assumed to be released at each stimulus onset/offset. Although typically
signals of this sort are used to encode a reward, they can also, as is the case here, be
framed as a novelty signal indicating a new stimulus. Hence, the synaptic weights wij

are updated through

dwij

dt
= ηR(t)

(
T p

ij − T d
ij

)
(7.4)
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where η (ηff for feedforward) is the learning rate. Following the reward signal, which
has a duration of 25ms, the eligibility traces are “consumed” and reset to zero, and their
activation is set into a short refractory period of 25 ms. In practice, although the weight
updates are tracked and evolve during each reward period according to Eq. 7.4, they
are only updated at the end of the trial. However, this does not affect the results in any
significant manner (data not shown).

7.2.4 Stimulation protocol

Stimulus input is modeled as a 50 ms step signal, encoded as Poisson spike trains with
a rate νin = 30 spks/sec. In the baseline and the extended network discussed in Section
7.3.5, this input is injected into both T i and Ii

T cells, with synaptic weights win. In the
network discussed in Section 7.3.6, the input is restricted to T i.

The training process of a network instance consists of 100 trials (unless otherwise
stated), and in each trial the corresponding columns are stimulated at certain time
points according to the input sequence, with the interval between elements representing
the duration of the stimulus. At the beginning of each trial, the state of the neurons
(membrane potential) and the eligibility traces are reset to their initial values. The test
phase consists of multiple trials (usually 50), where the sequence is replayed upon a cued
stimulation of the first column.

7.2.5 Numerical simulations and analysis

All numerical simulations were conducted using the Functional Neural Architectures
(FNA) toolkit v0.2.1 (Duarte et al., 2021), described in Chapter 4. To ensure the
reproduction of all the numerical experiments and figures presented in this study, and
abide by the recommendations proposed in Pauli et al. (2018), we provide a complete
code package that implements project-specific functionality within FNA (see Appendix
C) using NEST 2.20.0 (Fardet et al., 2020). For consistency checks with the reference
implementation, we used MATLAB version R2020b.

7.3 Simulation results and reproducibility analysis

To investigate how temporal sequences of variable durations can be acquired by corti-
cal circuits, Cone and Shouval (2021) propose a chain-like modular architecture where
each population (module) is tuned to a specific element in the sequence, and learning
translates to modifications of the synaptic weights within and between modules, based
on reward signals. The model is schematically illustrated in Figure 7.1A. Following a
training period where the modules are stimulated in a particular order over multiple tri-
als, the network should be able to recall/replay the complete sequence from a single cue.

120



7.3 Simulation results and reproducibility analysis

If learning was successful, both the order and duration of the elements can be recalled
faithfully.

Initially, each module exhibits only a transient activity in response to a brief stimulus
(50ms, see Section 7.2), as the connections are relatively weak. The duration of each
sequence element is marked by a globally available reward signal, forming the central
component of a local reinforcement learning rule based on two competing, Hebbian-
modulated eligibility traces (Huertas et al., 2016). This synapse-specific rule is used to
update the weights of both recurrent and feedforward connections, responsible for the
duration of and transition between elements, respectively. After learning, these weights
are differentially strengthened, such that during a cued recall the recurrent activity
encodes the current element’s extent, while the feedforward projections stimulate the
module associated with the next sequence element.

The modules correspond to a simplified columnar structure roughly mapping to L2/3
and L5 in the cortex. The columns are composed of two excitatory populations, Timer
(T ) and Messenger (M), and two associated inhibitory populations IT and IM (Figure
7.1B). Timer cells learn to represent the duration through plastic recurrent connections,
while Messenger cells learn the transitions to the column associated with the next se-
quence element. Note that, unless otherwise mentioned, feedforward projections exist
only between columns corresponding to consecutive items in the input sequence. In
other words, the sequence transitions are physically traced out from the onset, only the
weights are learned (see also Section 7.4). Cross-inhibition between the columns gives
rise to a soft winner-take-all (WTA) behavior, ensuring that only one column dominates
the activity.

7.3.1 Sequence learning and recall

This modular architecture allows the system to robustly learn and recall input sequences
with variable temporal spans. Figure 7.2A depicts the population responses before and
after the network has learned four time intervals, 500, 1000, 700 and 1800ms (see also
Figure 3 in Cone and Shouval, 2021). At first, stimulation of one column produces a
brief response, with initial transients in the stimulated Timer and L5 inhibitory cells IT
(see Figure 7.2A, top panel and inset). With the inhibitory firing rate decaying faster
than the Timers’ due to a higher threshold and lack of recurrence (see Section 7.2), there
is a short window when the net excitation from the Timer cells elicit stronger responses
from the Messenger cells.

During training, when each column is stimulated sequentially, the recurrent Timer
projections are strengthened such that their responses extend up to the respective re-
ward signal (green vertical bars). At the same time, the feedforward projections from the
Messenger cells on to the next column are also enhanced, such that upon recall (stimula-
tion of first column), they are sufficient to trigger a strong response in the corresponding
Timer cells. This chain reaction allows a complete replay of the original sequence, pre-
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Figure 7.2: Learning to replay a simple sequence without temporal compression. (A):
Firing rates of the excitatory populations during learning (top three plots) and recall (bottom
plot) of four time intervals (500, 1000, 700, 1800ms). Light (dark) colors represent T (M) cells.
Dashed light blue curve in top panel inset shows the inhibitory population IT in L5. Green
(grey) vertical bars show the 25ms reward (trace refractory) period, 25ms after stimulus offset
(see inset). (B): Spiking activity of excitatory cells (top) and corresponding ISI distributions
(bottom), during recall, for the network in (C). In the raster plot, neurons are sorted by popu-
lation (T , M) and sequentially by column (see color coding on the right).

serving both the order and intervals. The activity propagation during recall is illustrated
in Figure 7.2B (see Figure 3S4 in Cone and Shouval, 2021). The network displays real-
istic spiking statistics (coefficient of variation of 1.35 and 0.95 for Timer and Messenger
cells), with Messenger cells having lower firing rates than Timer cells, roughly consistent
with the experimentally observed values (Liu et al., 2015).

7.3.2 Learning and recall precision

The model exhibits fluctuations in the learning process and recall accuracy of sequences
as a consequence of noise and the stochastic nature of spiking networks. For sequences of
intermediate length, the recall times typically vary within ±10-15% of the target duration
(see Figure 7.3A, left). However, this range depends on several parameters and generally
increases with duration or sequence length (see Figure C.1). Nevertheless, averaged over
multiple network instances, these effects are attenuated and learning becomes more
precise (Figure 7.3A, right).

These fluctuations can also be observed at the level of synaptic weights. Whereas
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C

A B

Figure 7.3: Accuracy of recall and evolution of learning. Results shown for a sequence
of four intervals of 700ms. (A): Fluctuations in learning and sequence recall. We define recall
time as the time at which the rate of the Timer population drops below 10 spks/s. Left: recall
times for 30 trials after learning, for one network instance. Right: distribution of the median
recall times over 10 network instances, with the median in each network calculated over 30 replay
trials. (B): Mean synaptic weights for feedforward (Messenger to Timer in subsequent columns,
top) and recurrent (Timer to Timer in the same column, bottom) connections for one network
instance. (C): Mean LTP and LTD traces for the recurrent (top) and feedforward (bottom)
connections, for learning trials T= 3, T= 15 and T= 35 and one network instance.

the recurrent weights in the Timer populations converge to a relatively stable value
after about 70 trials (see Figure 7.3B, bottom panel, and Figure 3S2 in Cone and Shou-
val, 2021), the feedforward weights display a larger variability throughout training (top
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panel). For the recurrent connections, convergence to a fixed point in learning can be
formally demonstrated (see proof in Cone and Shouval, 2021). As a Hebbian learning
rule (see Section 7.2), the two competing LTP and LTD eligibility traces are activated
upon recurrent activity in the Timer population. Assuming that both traces saturate
quickly, with a slightly higher LTD peak, and given a larger time constant for the LTP
trace, the LTD trace will decay sooner, resulting in the facilitation of recurrent synapses
during the reward period (Figure 7.3C, top panel). Learning converges when the net
difference between the two traces is zero at the time of reward.

For the feedforward weights, an analytical solution is more difficult to derive. Due
to Hebbian co-activation of Messenger cells and Timer cells in the subsequent module,
the traces are activated (non-zero) shortly before the reward period, temporarily reset
following reward, and reactivated during the next trial (Figure 7.3C, bottom panel).
The net weight change is thus the sum of trace differences over two subsequent reward
periods. Empirically, learning nevertheless tends to converge to some relatively stable
value if feedforward projections only exist between columns coding for subsequent input
elements. However, because the reward signal is globally available at each synapse,
all projections from a Messenger population to any other module could, in theory, be
facilitated, as long as there is some temporal co-activation. We elaborate on this aspect
in Section 7.3.5.

7.3.3 Model robustness

Although formally learning convergence is only guaranteed for the recurrent Timer con-
nections, Cone and Shouval (2021) report that in practice the model behaves robustly
to variation of some connectivity and learning parameters. However, the range of pa-
rameter values and sequence lengths they analyzed (see their Figure 5 and supplements)
does not give a complete account of the parameters’ influence and the model’s limits.
To test model robustness more thoroughly, we varied a number of the synaptic weights
and learning parameters beyond those considered in the original work and measured the
consistency in the recall times of a sequence composed of four 700ms intervals.

First, we varied the excitatory and inhibitory projections onto Messenger cells within
a column, in an interval of ±20% of their baseline value. This is the range explored
in Cone and Shouval (2021, see their Figure 5), but only qualitative results of the
population activities were reported and only for a subset of all possible combinations.
In the baseline network, on average 17 out of 50 reported recall times were off by ±140
ms (or 20% of correct interval) when measured relative to their expected onset time,
whereas these values varied between 15 and 22 for the tested parameter configurations
(see Figure 7.4A, top left). Averaged across all four columns, the outliers decreased to
a range between 11-15 (Figure 7.4A, bottom left). Next, we used a modified z-score
based on the median absolute deviation (Iglewicz and Hoaglin, 1993) to evaluate the
distribution of the absolute recall times (not relative to their expected onset).
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Figure 7.4: Robustness to variation in synaptic weights and learning parameters.
Model trained on a sequence of four elements, each with a duration of 700ms. For the Timer
cells, we define relative recall time as the recall time relative to stimulation onset, i.e., the time
from the expected onset time (0, 700, 1400, 2100) in the sequence until the rate drops below a
threshold of 10spks/s. Conversely, absolute recall time is simply the time when the rate drops
below threshold (relative to 0). (A): Number of outlier intervals reported during 50 recall trials,
as a function of the percentage change of two synaptic weights within a column: excitatory Timer
to Messenger, and inhibitory ITto Messenger. Top row shows the number of outliers, defined as a
deviation of ±140 ms from the correct interval relative to expected onset (left), and the number
of outliers detected using a modified z-score (threshold > 3, right panel) based on the median
absolute deviation in column C4 (see main text). Bottom row shows the respective outliers aver-
aged over all four columns. (B): Deviation of the median recall time from the expected 700ms, as
a function of the excitatory and inhibitory synaptic weights onto the Messenger cells in a column
(left), and as a function of the cross-columnar (Ci ̸= Cj) inhibitory synaptic weights within the
same layers (right). Top and bottom row as in (A). All data in (A) and (B) is averaged over
20 network instances. (C): Mean recall time of a four-element sequence of 700ms intervals, over
50 recall trials of a single network instance. Left: baseline network. Center: during each training
trial, the learning parameters (see main text) are drawn randomly and independently from a
distribution of ±20% around their baseline value. Error bars represent the standard deviation.
Right: the set of learning parameters is drawn randomly once for each network instance, with
data shown averaged over 10 instances.
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These were centered closely around the mean recall time in each column, with the number
of outliers decreasing significantly to below 1.5 (3% of recall trials, Figure 7.4A, right).
These results suggest that the recall times are relatively consistent for each column
(narrowly distributed), but the absolute deviations from the expected values increase
with the element’s position in the sequence.

In other words, the errors and variability accumulate with sequence length, with the
network being particularly sensitive to the weaker excitatory connections from Timer
onto Messenger cells (see ∆w = −20% for T → M). In fact, these errors manifest in
recalling increasingly shorter intervals (Figure 7.4B, left), with the last column reporting
on average close to 600 ms instead of 700 ms. Averaged across all columns, the median
recall time is more accurate. Similar results are obtained for variations in the inhibitory
projections between columns (Figure 7.4B, right).

The model displays similar robustness to variations in the eligibility trace time con-
stants (τp, τd, τp

ff , τd
ff) and the variables scaling the Hebbian contribution to the trace

dynamics (ηp, ηd, ηp
ff , ηd

ff , see Section 7.2). Whereas in the original work, this analysis
was performed with a sequence of two elements of 500ms each (see Figure 5 - supplement
1 in Cone and Shouval, 2021), here we use a sequence of four 700ms elements. Compared
to the baseline network (Figure 7.4C, left), where the median recall time decays only
slightly with sequence length, randomizing the learning parameters in each learning trial
not only increases the median recall time across all columns, but it also leads to greater
variability in the replayed sequences (Figure 7.4C, center). Randomizing the learning
parameters once per network instance does, on average, lead to results closer to the
baseline case, but further increases the recall variability in the last column (Figure 7.4C,
right - analysis not performed in Cone and Shouval, 2021).

These results demonstrate that the system copes well with intermediate perturba-
tions to the baseline parameters with respect to the afferent weights for the Messenger
population, the cross-columnar inhibition and the learning rule variables.

While the Timer and Messenger cells are responsible for maintaining a sequence el-
ement in the activity and signaling the onset of subsequent ones, the dynamics of the
inhibitory populations orchestrate the timing of the individual components. For exam-
ple, through their characteristic activity curve, the inhibitory cells in L5 simultaneously
control the activity of the Messenger cells in their own column and the onset of the
Timer populations in the next column. By modifying the synaptic weight from the
Timer cells to the inhibitory population in their column (wT →IT), and thus controlling
direct excitation, we sought to understand how these inhibitory cells impact learning.

For values significantly lower than baseline (< −25%, grey area in Figure 7.5A),
the network fails to recall sequences in a reliable manner (Figure 7.5B), in particular
sequences containing more than two elements. In addition, the recall times vary signif-
icantly across the columns in the case of reduced weights. As the weights increase, the
stronger net excitation causes longer-lasting inhibition by IL5 , delaying the activation
of the Messenger cells (Figure 7.5C). This leads to an over-estimation of the elements’
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Figure 7.5: Activity of L5 inhibitory population is critical for accurate learning. (A):
Deviation of the median recall time of three intervals of 700ms, as a function of the change in
synaptic weights T → IT relative to baseline (∆w = 0). Grey area (< −25%) marks the region
where learning is unstable (not all elements can be recalled robustly). Data is averaged over 5
network instances. (B-D): Characteristic firing rates during recall for values deviations of −25,
0 and 40% relative to baseline. Solid curves represent the excitatory populations as in Figure
7.2, while dashed curves indicate the respective inhibitory populations ITin Ci.

duration, which increases with the element’s position in the sequence (up to +200ms for
∆wT →IT = 40%, Figure 7.5D).

Although these observations suggest a robust learning mechanism, they also indicate
an intrinsic and consistent bias of the model for reporting increasingly shorter intervals
and larger variability in the recall times of longer sequences.

7.3.4 Model scaling

In the previous section, we investigated the sensitivity of the model to the choice of
synaptic weights, but a broader definition of robustness also encompasses invariance to
the size of the different populations. Ideally, the model should retain its dynamical and
learning properties also for larger network sizes, without the need for manual recalibra-
tion of the system parameters. In balanced random networks, increasing the network
size by a factor of m and decreasing the synaptic weights by a factor of

√
m should main-

tain the activity characteristics (van Vreeswijk and Sompolinsky, 1998; Litwin-Kumar
and Doiron, 2012; van Albada et al., 2015). The model studied here differs significantly
from these systems with respect to features such as the ratio of excitation and inhibition
(1:1, not 4:1), or strong recurrent connectivity in the small N regime, which results in
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A BStandard scaling Manual tuning

Figure 7.6: Scaling the model requires manual retuning of parameters. (A): Charac-
teristic firing rates during training (top) and recall (bottom) of a sequence composed of three
700ms intervals, in a larger network where each population is composed of N ′ = 400 cells. All
static weights have been scaled down by 1/

√
N ′/N (see Section 7.2). Solid curves show Timer

(light) and Messenger (dark) cells, dashed curves ITcells. (B): As in (A), with further manual
tuning of specific weights. For details, see Section 7.2 and Table C.4.

significant fluctuations driven by noise. Furthermore, the stereotypical activation pat-
terns underlying sequence learning and replay are significantly more complex. These
considerations suggest that successful scaling may require additional modifications of
the connectivity.

In the original formulation of the model, each population (Messenger, Timer, in-
hibitory) consists of 100 neurons. To study how well the model scales for N ′ = 400,
we kept all parameters unchanged and scaled all non-plastic weights by 1/

√
N ′/N (see

Table C.4). Under such standard scaling, the system fails to learn and recall sequences
(Figure 7.6A), primarily due to the high firing rates of IT cells. These decay slower
than the corresponding Timer cells, inhibiting the Timer population in the subsequent
column and thus prohibiting a correct sequential activation during training.

Nevertheless, it is possible to find a set of parameters (see Section 7.2 and Table C.4)
for which learning unfolds as expected; this is illustrated in Figure 7.6B. The critical
component here is the activity of IT (see also Figure 7.5). This must fulfill three criteria:
first, it must decay slightly faster than the rate of the Timer population in the same
column; second, it must sufficiently inhibit the Timer populations in all other columns to
enable a WTA dynamics; third, the WTA inhibition of the Timer populations must be
weak enough that they can still be activated upon stimulation. One way to achieve this
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is by further decreasing the local weights wT →ITwithin a column and the cross-columnar
inhibition wIi

T→T j . This indicates that, given the right set of parameters, the dynamics
underlying the learning process are independent of the network size. Although it is
outside the scope of this work, scaling can be likely achieved for a wider range of model
sizes, as long as the core properties described above are retained.

7.3.5 Projections between all columns

In the original implementation of Cone and Shouval (2021), and in contrast to the
description in the paper, excitatory projections between columns were only allowed in a
feedforward manner, thus hard-wiring the order of the sequence elements. Since such a
predetermined and stimulus-dependent connection pattern weakens the model’s claims
of biological plausibility, we probed the model’s ability to learn when this constraint was
relaxed.

To this end, we extended the baseline network with additional projections from Mes-
senger cells in column Ci to Timer cells in all other columns Cj , (i ̸= j) as depicted
in Figure 7.7A. As the weights of these projections are initialized close to 0, no further
measures were necessary to maintain the same activity level as the baseline network.
Although learning initially proceeded as before, the activity soon lost its stereotypical
temporal structure and the learning process is corrupted (Figure 7.7B). After only a few
dozen trials, the activation order of the columns did not match the stimulation, with
multiple populations responding simultaneously. Such random, competitive population
responses also continued throughout the recall trials.

This behavior arises because projections from the Messenger cells to all columns are
incorrectly strengthened, not just between subsequent ones reflecting the order of the
input sequence. Figure 7.7C illustrates such an example, with synaptic weights from
Messenger cells in C2 to all other columns Cj being equally strengthened, instead of
only to C3. Naturally, this effect is detrimental because Messenger cells can activate
multiple Timer populations at once, introducing a stochasticity in the network that
abolishes the unique sequential activation required for accurate learning and recall. In
other words, the physical pathway encoding the transitions between sequence elements
can not be uniquely traced out as in the baseline network.

According to the Hebbian-based plasticity rule (see Section 7.2), synaptic weights are
modified during the reward period only if there is a co-activation of the pre- and post-
synaptic neurons. This means that connections from M cells in a column Ci to T cells
in any Cj may be strengthened if there is temporal co-activation of the two populations.
While this is the intended behavior for subsequent columns Ci and Ci+1, Timer cells
in other columns may also spike due to the background noise, thereby enhancing the
corresponding connections. Obviously, in the pre-wired (baseline) network this is not an
issue, as only subsequent columns are connected.
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Figure 7.7: All-to-all cross-columnar excitation prohibits learning. (A): Extending the
original architecture described in Figure 7.1B, M → T connections exist between all columns
Ci → Cj (i ̸= j) and are subject to the same plasticity. (B): Firing rates of the excitatory
populations during learning and recall of four time intervals (each 700 ms). Initially, learning
evolves as in Figure 7.2A, but the activity becomes degenerated and the sequence can not be
recalled correctly (lower panels). (C): Evolution of the cross-columnar (from C2, top panel) and
recurrent Timer synaptic weights (bottom panel). The transition to the next sequence cannot be
uniquely encoded as the weights to all columns are strengthened. (D): Sequence recall after 100
training trials in a network with a low background noise (50% of the baseline value, 1/2σξ). (E):
Sequence recall after 100 training trials in a network with a higher Hebbian activation threshold
for the cross-columnar projections rff

th = 30 spks/sec (instead of the baseline 20 spks/sec).
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7.3 Simulation results and reproducibility analysis

One straightforward solution to overcome this problem is to reduce the background
noise below the spiking threshold, thereby ensuring that only the stimulated populations
are active and no “cross-talk” occurs through spurious spiking. Doing so allows the net-
work to regain its functional properties (Figure 7.7D), pending some minor additional
parameter tuning (see Section 7.2). However, from the point of view of biological plau-
sibility, this has the disadvantage that neurons spike exclusively during their preferred
stimulus.

Alternatively, it is possible to compensate for the low-rate spontaneous spiking by
raising the activation threshold for the Hebbian term, rff

th (see Section 7.2). For instance,
increasing from the baseline value of 20 to 30 spks/sec is sufficient to ensure that only
the stimulated populations reach these rates. Thus, only synapses between stimulated
populations are modified, and the learning process is not affected (Figure 7.7E). The
role and plausibility of such thresholds is detailed in the Discussion.

7.3.6 Alternative wiring with local inhibition
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Figure 7.8: Alternative wiring with local inhibition and only excitatory cross-columnar
projections. (A): Architecture with local inhibition functionally equivalent to Figure 7.1B.
Inhibitory projections are now local to the column, and feedforward inhibition is achieved via
cross-columnar excitatory projections onto the I populations. (B): Recall of a sequence composed
of two 700ms intervals. Inset (bottom panel) zooms in on the activity at lower rates. As before,
color codes for columns. Color shade represents populations in L5 (light) and L2/3 (dark), with
solid curves denoting excitatory populations. Dashed (dotted) curves represent the inhibitory
cells IT (IM).
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Unlike cortical circuits, where inhibition is assumed to be local (Douglas and Martin,
2004; Fino and Yuste, 2011; Tremblay et al., 2016), the original architecture described
in Figure 7.1B relies on (long-range) inhibitory projections between columns to ensure
a soft WTA mechanism in the presence of background activity. This aspect is briefly
discussed in Cone and Shouval (2021), and the authors also propose an alternative,
biologically more plausible and functionally equivalent network architecture (see their
Figure 9). As schematically illustrated in Figure 7.8A, cross-columnar inhibition can be
replaced by local inhibition and corresponding excitatory projections onto these circuits.
In contrast to the baseline network, where both Timer and inhibitory cells in L5 were
stimulated, here only Timer cells received input. Otherwise, excitation onto IT would
soon silence the Timer cells, prohibiting the longer timescales required for encoding the
input duration.

As a proof-of-concept, we empirically derived a set of parameters (see Table C.5)
for such a circuit and found that the core network dynamics and learning process can,
in principle, be retained (Figure 7.8B). However, a significant discrepancy from the
baseline behavior concerns the initial transient of the Messenger cells in the first column
C1 (solid, dark blue curve in Figure 7.8B, bottom panel). This occurs because inhibition
onto the Messenger cells from IM (dotted, dark blue curves) is slower (due to higher
firing threshold) than the excitation from the Timer cells. This results in a brief period
of higher Messenger activity before inhibition takes over and silences it. Although this
behavior is different from the baseline model, it does not appear to impact learning, and
it is in fact consistent with the experimental data from the primary visual cortex (Liu
et al., 2015).

7.4 Discussion

Given that the ability to learn and recall temporal sequences may be a universal func-
tional building block of cortical circuits, it is paramount that we understand how such
computational capacities can be implemented in the neural substrate. While there have
been numerous approaches to model sequence processing in spiking networks, many of
these are either unable to capture important functional aspects (e.g., order and dura-
tion of sequences), or rely on biophysically unrealistic assumptions in their structure
or learning rules. In this work, we investigated a recent model proposed by Cone and
Shouval (2021), which attempts to overcome these weaknesses.

Since here we focused particularly on the reproducibility and replicability aspects,
our work provides only limited improvements over the original model. Thus, major
modifications such as changes to the learning rule or the evaluation of more complex
sequence learning tasks are beyond the scope of our study. However, by re-implementing
the model in the NEST simulator, we were able to qualitatively replicate the main
findings of the original work, find some of the critical components and assumptions of

132



7.4 Discussion

the model, and highlight its strengths and limitations. More importantly, we provide a
complete set of parameters and implementation details for a full replication of the model.
As computational studies are becoming increasingly significant across many scientific
disciplines, ease of reproduction and replication becomes an ever more important factor,
not just to allow efficient scientific progress, but also to ensure a high quality of the
work. These points are well illustrated by a notable outcome of this study: as a result
of our findings, the authors of the original study have corrected their article (Cone
and Shouval, 2023) and modified their published code to enable full replication and
correct the inconsistencies and errors discovered in their work (see updated repository
on ModelDB), as listed below.

Critical parameters

Name Value Description

V I
th −50 mV Spiking threshold for inhibitory neurons ⊘

rth 10 Hz Hebbian activation threshold (recurrent connections) ⊘

rff
th 20 Hz Hebbian activation threshold (feedforward connections) ⊘

T p
max 0.0033 Saturation level of LTP trace (recurrent connections) ⊛

T d
max 0.00345 Saturation level of LTD trace (recurrent connections) ⊛

T p,ff
max 0.0034 Saturation level of LTP trace (feedforward connections) ⊛

T d,ff
max 0.00345 Saturation level of LTD trace (feedforward connections) ⊛

ηp 45 × 3500 ms−1 Activation rate of LTP trace (recurrent connections) ⊛

ηd 25 × 3500 ms−1 Activation rate of LTD trace (recurrent connections) ⊛

ηp
ff 20 × 3500 ms−1 Activation rate of LTP trace (feedforward connections) ⊛

ηd
ff 15 × 3500 ms−1 Activation rate of LTD trace (feedforward connections) ⊛

τ exc,inp
syn 10 ms Excitatory synaptic time constant of the input connections ⊘

Table 7.1: Critical parameters necessary for accurate learning. Symbols denote different
discrepancy types: ⊘ represents parameters not mentioned in the study, and ⊛ parameters with
only relative but no exact values given.

7.4.1 Reproducibility

The original model is described in Cone and Shouval (2021), with most parameters pro-
vided as Supplementary Information, along with a publicly available MATLAB imple-
mentation on ModelDB1. However, while the results are reproducible using the provided
implementation in the R3 sense described by Benureau and Rougier (2018), a successful

1http://modeldb.yale.edu/266774
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Parameter values required for numerical reproducibility

win 100 nS Weights of input connections ⊙

σξ N (0, 100) Gaussian white noise in the neuron model ⊙

dreward 25 ms Delay of reward signal relative to the onset of the next sequence element
⊘

τ exc
syn 80 ms Excitatory synaptic time constant (EE and IE) within the network ⋄

τ inh
syn 10 ms Inhibitory synaptic time constant (EI) ⋄

τref 3 ms Refractory period ⋄

φ 0.26 Connection density for all connections (including recurrent) ⋄

νin 30 Hz Rate of the Poisson input ⋄

η 0.16 Learning rate for recurrent connections ⋄

ηff 20 Learning rate for feedforward connections ⋄

Table 7.2: Parameter values needed for obtaining numerically similar results to those
reported in Cone and Shouval (2021). Symbols ⊘ and ⊛ as in Table 7.1. Additionally,
⊙ denotes parameters with no specific values given, while ⋄ denotes a mismatch between the
values reported in the paper and the ones used in the reference implementation.

replication in the R5 sense would not have been possible based solely on the information
in the manuscript and Supplementary Tables, given that a number of parameters are
either under-specified or omitted entirely. Table 7.1 and Table 7.2 give an overview of
the more important discrepancies between the description and original implementation,
categorized by their relevance and type of mismatch.

Table 1 lists omitted (or inaccurately stated) critical parameters, i.e. those that are
necessary for the model to carry out the computational tasks that are central to the
original study. Such oversights are particularly problematic, as they not only make
replication more challenging but also make implicit model assumptions opaque. An
illustrative example of an omitted critical parameter is the spiking threshold for the
inhibitory neurons, Vth, which is 5 mV higher than the threshold for the excitatory
neurons. This is important, as it results in the inhibitory rates decaying slightly faster
than the Timer cells, thus activating the Messenger cells at the appropriate time. In the
absence of this dynamical feature, learning fails (see for example Figure 7.6A). While
there is some experimental evidence for such a difference in the spiking threshold, it
varies significantly across different cell types and recording locations (Tripathy et al.,
2015). Similarly, the activation thresholds for the Hebbian learning, rth , are necessary
to ensure that spontaneous spiking resulting from the neuronal noise does not lead to
potentiation of unwanted synapses, in particular if connections between all columns are
allowed (see Figure 7.7). Without such thresholds, learning still converges in the baseline

134



7.4 Discussion

network, but the fixed point of the feedforward weights is shifted, stabilizing at a lower
value than in the baseline system (see Figure C.2). Therefore, the role and optimal value
for the thresholds likely depend on the amount of noise and spontaneous activity in the
network.

A further example is the parameterization of the eligibility traces. Whereas the time
constants of the eligibility traces determine their rise and decay behavior, the saturation
levels T α

max can profoundly impact learning. For the Timer cells, although their exact
values (not provided in the original work) are not essential, the order of magnitude is
still critical; they must be carefully chosen to ensure that the traces saturate soon af-
ter stimulus onset, and the falling phase begins before the next reward period (see also
Huertas et al., 2015). In other words, even though the parameter space is undercon-
strained and multiple values can lead to accurate learning (Huertas et al., 2016), these
nevertheless lie within a restricted interval which is difficult to determine given only the
relative values as in the original work: for instance, a value of T d

max = 1 and T d
max = 0.95

will lead to an abrupt increase in the recurrent Timer weights and learning fails. If
the traces do not saturate, learning becomes more sensitive to the trace time constants
and the range of time intervals that can be learned with one set of parameters shrinks
significantly. Moreover, the excitatory input synapses have a shorter time constant of 10
ms than in the rest of the network, which is required for the fast initial ramp-up phase
of the Timer cell activity.

Table 7.2 summarizes other, less critical parameters, which are nonetheless necessary
to achieve qualitatively similar activity levels to those presented in the original work.
These include input related parameters (input weights, input rate), as well as the neu-
ronal noise. Whereas some of these discrepancies are due to omission (e.g., noise) or
mismatch between the reported and used values (e.g., learning rate), others arise from
tool- and implementation particularities. For instance, for N = 100 the random number
generation in MATLAB results in an effective connectivity φ =∼ 0.26 instead of the 0.3
reported in Cone and Shouval (2021), while the effective refractory period is 3 instead
of 2 ms, as threshold crossings are registered with a delay of one simulation step. Al-
though these parameters influence the activity level in the network, they do not directly
impact the learning process; the key computational features claimed for the model are
maintained.

7.4.2 Learning cross-columnar projections

One of the key properties of the model is the ability to learn the order of temporal
sequences, achieved by learning the transitions between stimulus-specific populations
encoding the sequence elements. However, Cone and Shouval (2021) state that "Messen-
ger cells can only learn to connect to (any) Timer cells outside of their column", which
we interpret as an assertion that Timer cells make connections to Messenger cells in
all other columns. In practice, the authors’ reference implementation restricts these to
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subsequent columns only. This means that the order of the sequence is hardwired into
the connectivity, and the system is only learning the duration of the elements. As we
demonstrated in Section 7.3.5, with the baseline parameters the network fails to learn
if this restriction is relaxed and feedforward projections are indeed allowed between any
columns.

A simple way to circumvent this problem is to ensure that neurons outside the pop-
ulations coding for the current stimulus remain completely (or sufficiently) silent, to
avoid the co-activation necessary for Hebbian synaptic potentiation (see Figure 7.7D).
Although such an idealized behavior may be an appropriate solution from a modeling
perspective, neurons in the cortex are rarely tuned exclusively to particular stimuli. In-
stead, most cells spike irregularly (typically at a low rate) even in the absence of input
(ongoing activity, see e.g., Arieli et al., 1996), and many respond to multiple different
inputs (Walker et al., 2011; Rigotti et al., 2013; de Vries et al., 2020).

A biologically more plausible alternative is to increase the Hebbian activation thresh-
old rth , such that noise-induced spontaneous activity does not lead to a modification of
the synaptic strength. However, this introduces an additional, critical parameter in the
model. Furthermore, such hard thresholds are coupled to the intensity of background
activity and spontaneous spiking, with occasional higher rates possibly destabilizing the
learning process.

7.4.3 Functional and neurophysiological considerations

As argued in Section 1.5 and Chapter 3, a generic model of sequence processing should
not only replay simple sequences, but also be able to perform chunking and handle non-
adjacent dependencies in the input (Fitch and Martins, 2014; Wilson et al., 2018; Hupkes
et al., 2019). Although Cone and Shouval (2021) discuss and provide an extension of the
baseline network for higher-order Markovian sequences, the computational capacity of
the model is fundamentally limited by the requirement of a unique stimulus-column (or
stimulus-population) mapping. This characteristic means that for certain tasks, such as
learning (hierarchical) compositional sequences (i.e., sequences of sequences), the model
size would increase prohibitively with the number of sequences, as one would require
a dedicated column associated with each possible sequence combination. In addition,
it would be interesting to evaluate the model’s ability to recognize and distinguish sta-
tistical regularities in the input in tasks such as chunking, which involve one or more
sequences interleaved with random elements.

In their study, Cone and Shouval (2021) demonstrate that the extended, rate-based
network can learn multiple, higher-order Markovian sequences when these are presented
successively. For first-order Markovian sequences, this should also hold for the base-
line spiking network model, contingent on preserving the unique stimulus-to-column
mapping. However, it is also important to understand how the model behaves when
two sequences are presented simultaneously. This depends on the interpretation and
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expected behavior, and to the best of our knowledge there is little experimental and
modeling work on this (but see, e.g., Murray and Escola, 2017). Nevertheless, if the
two sequences are considered to be independent, we speculate that the networks will not
be able to learn and treat them as such for multiple reasons. Assuming that projections
between all columns are allowed (with the appropriate measures, see Section 7.3.5), in
the spiking model the connections between the columns associated with the different
sequences would also be strengthened upon temporal co-activation: for two simultane-
ously initiated sequences S1 and S2, the cross-columnar projections between a column
CS1

i associated with S1 and another column CS2
i+1 coding for an element at position i + 1

in S2 would be (incorrectly) strengthened. In the case of the extended rate network, the
context representations may mix and interfere in the external reservoir, and the issue of
temporal co-activation discussed above is also likely to occur.

Moreover, convergence of learning in the cross-columnar synapses depends on the
existence of two consecutive reward periods. As described in Section 7.3.2 and illustrated
in Figure 7.3C, during the first reward (associated with the current sequence element)
the weights are potentiated, even after the weights have reached a fixed point. However,
a second reward, during which the weights are depressed, is necessary to achieve a net
zero difference in the LTP and LTD traces at lower weight values. Although learning
would converge even without a second reward, the fixed point will be different (higher),
and thus convergence would occur for larger weights (possibly too large for stable firing
rates). Given that the reward (novelty) signal is globally released both before and after
each sequence element in the interpretation of Cone and Shouval (2021), the existence
of a reward after the final element is guaranteed and therefore this is not an issue for
the stimulation protocol used in the original and our study. If, on the other hand, we
interpret the reward as a novelty signal indicating the next stimulus, we would not expect
it to be present in this form after the last element of the sequence. In this case, the
cross-columnar projections marking the transition from the penultimate to the ultimate
element may not be learned accurately (weights would still converge, but likely to larger
values than appropriate).

While a solution to the above issues is beyond the scope of this work, we speculate
that a more granular architecture, in which multiple stimulus-specific sub-populations
could form different cell assemblies within a single column, would be more in line with
experimental evidence from the neocortex. Some functional specialization of single corti-
cal columns has been hypothesized (Mountcastle, 1997; Harris and Shepherd, 2015), but
such columns are typically composed of a number of cell groups responsive to a wider
range of stimuli. We assume that mapping the model to such an extended columnar
architecture would require a more complex, spatially-dependent connectivity to ensure
similar WTA dynamics.

As we demonstrated in Section 7.3.6, the model is relatively flexible with respect to
the precise wiring patterns, as long as certain core, inhibition-related properties are
preserved. Given that long-range projections in the neocortex are typically excitatory
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(Brown and Hestrin, 2009; Douglas and Martin, 2004), the original architecture (see
Figure 7.1B) was implausible due to its reliance on cross-columnar inhibition. The
relative ease in adapting the wiring to have only local inhibition is indicative of simple
yet powerful and modular computational mechanisms, suggesting that these may be used
as building blocks in more complex sequence learning architectures.

Despite these limitations and sensitivity to some parameters, the model presented by
Cone and Shouval (2021) is an important step towards a better understanding of how
cortical circuits process temporal information. While its modular structure enabling
spatially segregated representations may be more characteristic for earlier sensory re-
gions, the proposed local learning rule based on rewards, partially solving the credit
assignment problem, is a more universal mechanism likely to occur across the cortex.
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Chapter 8

Benchmarking and critical evaluation of
biologically-plausible models of sequence
learning

8.1 Introduction

In the original study by Cone and Shouval (2021) that we replicated in the previous
chapter, the authors investigated only one sequence with the spiking version, as well
as two more complex, context-dependent inputs using the simplified rate-based model.
While this may be sufficient to illustrate the ability of a model to learn specific sequences
or individual rules, it does not say much about its limitations and capacity to learn
multiple interlinked rules that are part of a generative process. As argued in Chapter
3, models of sequence processing should be evaluated and benchmarked within a formal
framework that bridges theoretical and experimental findings, such as AGL.

This chapter, focusing on the acquisition, representation and use of sequential depen-
dencies in biologically-inspired models, aims to provide the initial steps towards such a
benchmarking framework. From a computational perspective, it is imperative that the
ability of models to represent structural regularities in complex symbolic sequences is
assessed in a systematic and quantifiable manner. More importantly, such a framework
can facilitate the comparison of existing and future models, with the potential to shed
light on the underlying mechanisms (architecture and learning algorithms) that can then
be corroborated with experimental findings.

Building on Chapter 3, here we introduce the theoretical concepts and tools constitut-
ing the framework, as well as some of the computational aspects and tasks that should
be considered by any general sequence processor. As a proof-of-concept, we then use
the framework to compare some of the more prominent biologically-compatible mod-
els of sequence learning proposed in the last decade. The tools and results presented
in this chapter will form an integral part of a larger meta-modeling study where we
re-implement and re-test a variety of existing models.
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8.2 Model selection

We consider sequence learning models that are not only derived from clear neurobiolog-
ical inspiration but also preserve a certain degree of biophysical faithfulness. From the
zoo of spiking models reviewed in Section 3.3, we select three for which an implementa-
tion in NEST exists or has been completed as part of this work: the (CS) model be Cone
and Shouval (2021) analyzed in Chapter 7; a model (KM) based on dynamic assemblies
and WTA circuits proposed by Klampfl and Maass (2013); and the spiking Hierarchical
Temporal Memory (spkTM) with dendritic processing introduced by Bouhadjar et al.
(2022).

Although a detailed description of these models is outside the scope of this chap-
ter, Table 8.1 and Table 8.2 succinctly summarize their key architectural and learning
properties. These cover a wide range of biological features, including columnar and
WTA networks, dendritic processing and sequentially activated cell assemblies, as well
as unsupervised and reward-modulated plasticity rules. As such, they employ different
stimulus encoding mechanisms and are designed to perform only partially overlapping
sets of tasks. Common to all three models are learning the order of varyingly complex
sequences and replaying them upon a cued signal. Although we will only focus on the
former one here, these represent only a small subset of tasks that more general sequence
processing systems should, ideally, be able to perform (see Chapter 9 for a more detailed
discussion).

Note that the spiking version of the CS model was designed for deterministic sequences
obeying the Markov property, as explicitly stated in the original study. To handle
context dependence, the model requires additional structures for memory which are not
straightforward to achieve in spiking networks. Nevertheless, we include the spiking
model here because of its numerous biophysically plausible features while taking into
account this limitation in our discussions.

8.2.1 Implementation considerations

An important technical aspect of the larger meta-modeling study is the availability of all
models in a common, established neural simulator such as NEST. While spkTM was orig-
inally developed and implemented in NEST, the other models had to be re-implemented.
Although this is often a painful and time-consuming process, there are several advantages
to this approach. It enables a shared code-base for running and evaluating all models,
efficient simulations for complex and longer tasks, and, as demonstrated in Chapter 7, it
may help uncover any hidden assumptions or implementation peculiarities in the original
codebase.

The re-implementation of CS has been thoroughly tested and the results published (see
Chapter 7). Given that no publicly available implementation of the KM model exists,
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Model Architecture Neuron types Synaptic transmission

CS

• Modular network comprising a
number of stimulus-selective,
laminar microcircuits ("core
neural architecture", CNA)

• Sparse, specific within- and be-
tween columnar connectivity

• Noisy LIF

• Excitatory and inhibitory
"Timer" and "Messenger"
cell sub-populations in each
CNA

• Conductance-based with expo-
nential decay

• Depressing (self-limiting)
synapses

KM

• Reservoir of WTA circuits, com-
posed of unconnected excitatory
neurons

• Sparse, distance-dependent con-
nectivity between circuits

• Excitatory LIF with
stochastic (Poissonian)
firing

• Symbolic (divisive) inhibi-
tion

• Alpha-shaped postsynaptic po-
tentials (EPSP)

spkTM

• Sparse random connectivity be-
tween excitatory neurons (plas-
tic)

• Local recurrent connectivity be-
tween excitatory and inhibitory
neurons (static)

• Excitatory neurons: LIF
with nonlinear input inte-
gration (dendritic action po-
tentials)

• Inhibitory neurons: LIF

• Exponential or alpha-shaped
postsynaptic currents (PSCs)

Table 8.1: Summary of architectural, neuronal and synaptic features of the selected models.

we achieved only a qualitative replication of the original results based on the source
code provided in private correspondence with the authors. While this was crucial even
for the partial replication, it has also uncovered some inconsistencies between the model
parameters and equations provided in the publication and the actual implementation.
These include higher firing rates in the spike patterns (5 instead of 3Hz), different STDP
equations, and spatially-dependent connectivity at the level of WTA circuits and not
single neurons (see Michau, 2022). Due to the higher number of patterns used here, we
also increased the upper limit of the WTA size from 10 to 25, a value that appeared to be
used to the multi-stimuli tasks in the provided implementation. Additional inconsistency
in the model parameters for the different tasks, together with the absence of plotting
routines for the figures, meant that while we could qualitatively reproduce the stimulus-
specific sequential activation patterns for individual patterns, the results for context-
dependent representations (e.g., Figure 9 in Klampfl and Maass, 2013) are inconclusive.
Because of this, our findings with respect to this model should be interpreted with the
appropriate caution.

Furthermore, the homeostatic plasticity in spkTM is disabled in all tasks. This mech-
anism relies on a time constant that depends on the sequence length, which was fixed in
the original study (Bouhadjar et al., 2022). Choosing an optimal value for the sequences
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Model Learning rules Input encoding Functional Goal

CS

• Reward-gated, multiplicative
Hebbian learning active on
recurrent and feedforward
connections

• Same rule but different param-
eters for timing (recurrent) and
transition (feedforward)

• 50 ms pulsed Poissonian
spike train with fixed rate

• Spatial mapping on unique,
stimulus-specific sub-
populations

• Learning and cued replay of
first-order deterministic Marko-
vian sequences (higher-order se-
quences with the rate-based ver-
sion)

• Token duration, serial order and
cued replay

KM

• Short-term plasticity on recur-
rent synapses

• Truncated STDP on all
synapses

• Spatio-temporal spike pat-
terns overlaid on top of
background noise

• Patterns are presented to all
neurons (all-to-all)

• Emergence of stimulus-specific,
dynamic / sequential activation
patterns

• Context-dependent interlinking
of activation patterns

• Spontaneous and cued replay

spkTM

• Homeostatic spike-timing de-
pendent structural plasticity in
excitatory-to-excitatory connec-
tions

• Presentation of sequence el-
ement modeled by single
spike

• Spatial mapping on unique,
stimulus-specific sub-
populations (columns)

• Sequence prediction and replay
in a context dependent manner

Table 8.2: Summary of learning rules, input encoding and functional goal of the tested models.

of varying lengths considered here requires careful consideration and is beyond the scope
of this work. We therefore bypass the problem with the remark that future iterations
should devote more time to it, given its possible role for the stability of learning.

8.3 Model evaluation and benchmarking

As described in Chapter 3, sequence learning, and in particular symbolic sequence pro-
cessing, has a rich history in the fields of cognitive science, psycholinguistics, and theo-
retical computer science due to its significant role in cognition.

We adopt the same convention as throughout this thesis and focus on finite symbolic
sequences of length T denoted as ST = σ1, σ2, . . . , σT , where the sequences consist of |Σ|
distinct symbols (tokens) selected from a finite alphabet Σ. To gauge the effectiveness of
different model systems as general and versatile sequence processors, we examine several
relevant properties.
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8.3.1 Pattern perception

The first requirement that a sequence learner must possess is the ability to perceive,
represent and recognize the (often variable and noisy) spatiotemporal regularities and
patterns that constitute the tokens or elements of a sequence. This needs to be done
robustly and flexibly, as the system ought to generalize beyond the token identity.

The initial set of tasks aims to quantify the ability of the different models to perceive
patterns in dynamic input signals with different spatiotemporal properties. Given that
the different models are equipped with different signal encoding mechanisms, the quality
and robustness of internal representations can drastically vary among different systems.

Note that, since these measurements refer to token-level properties, it is indifferent if
there is an internal structure to the sequence, or if we are just looking at a completely
random sequence of elements. However, because the structure of the sequence (or lack
of it) may affect the learning process and implicitly the internal token representations,
for these tasks we compare the results for random and ordered sequences.

Stimulus Encoding: Individual tokens σi are abstract entities, which can represent any
static or time-varying input (see also Section 4.2.1 and Section 5.2.4). Ideally, the manner
in which individual stimuli are encoded in the system’s dynamics (i.e. the accuracy of
internal representations) ought to be robust to variations in the encoding properties.
However, the characteristics of this initial mapping largely determine how accurately
can the system perceive the stimuli as unique, identifiable tokens. Generically, a discrete
symbolic sequence can be unfolded in time as:

u(t) = ρk
u (ûn × δ(t − n∆)) ∗ g (8.1)

where ρk
u determines the amplitude or intensity of stimulus k, ûn is a stimulus feature

vector (most frequently a one-hot encoded representation), ∆ is the token period and g
is a fixed kernel.

Stimulus timing: ∆ specifies the temporal regularity of the sequence unfolding and
comprises the stimulus duration ∆stim and the inter-stimulus-interval ∆ISI defined in
ms. In periodic sequences, these are fixed parameters, whereas aperiodicity can be
introduced by varying ∆stim and/or ∆ISI. Our first set of tasks sets out to evaluate the
ability of the systems to recognize sequence elements (classification accuracy) depending
on their duration and intervals. Unless otherwise specified, we set ∆stim and ∆ISI to their
default (original) values, which are 50 and 450 ms for CS , 300 and 0 ms for KM , and
1 (amounting to a single spike) and 40 ms for spkTM . Note that real-world sequences
have a lot of variability in the distribution of element durations.
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Tasks: We consider the following token-level tasks:

Token representation The first and simplest task is to classify the identity of each
token at the end of its presentation. Input sequences are drawn from the alphabet Σ =
{A,B,C,D}, and are presented in batches of four either in a random order (e.g., ACBC
or BDCA) or as one ordered sequence ABCD. To quantify the influence of stimulus
timing on the representations, we vary ∆stim and ∆ISI during both learning (training)
and testing phases. To evaluate spkTM on this task, we modify its input encoding from
a single spike to Poisson spike trains with constant rate νspkTM = 50 Hz and duration
∆stim .

Passive memorization To probe how long a token can be recognized after it was
presented, the same alphabet Σ is used with the input sequences consisting of four
randomly chosen tokens. Recognition performance is then evaluated at increasing time
delays tsamp after the stimulus offset ∆stim , which is selected fairly for each model. ∆ISI is
varied between 0 − 500 ms to additionally quantify any possible effects it may have on
the model behavior.

Time-warp invariance If a model learns to represent the elements of a sequence,
ideally it should recognize these even if their temporal properties ∆ are slightly altered.
We measure such time-warp invariance by multiplying the respective ∆stim or ∆ISI with
a fixed factor during the test phase. For CS and spkTM (note the rate-based encoding
here), this involves modifying the extent of the Poisson input (but not its amplitude),
whereas for the KM each spike in the input pattern is simply shifted by the warping
factor. Similarly to the token representation task, both random and ordered inputs are
used.

Token capacity The last token level task aims to measure how many different tokens
can the model accurately distinguish. Given that this is strictly determined by the
architecture for CS and spkTM , the task is only evaluated for KM on both random and
ordered sequences for an increasing number of distinct tokens.

8.3.2 Rule learning

In addition to simple representation of tokens, a sequence learner must acquire the rules
according to which the observed sequences are generated. To quantify this, we probe
each model’s ability to memorize, distinguish and predict the elements of a large number
of sequences that have varying but systematic complexity.

We consider a string (sequence) Si as an element of (a potentially infinite) formal
language, generated by a (finite-state) grammar G as introduced in Section 3.1.
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Figure 8.1: Generating complex grammars in a controlled manner. Grammar alphabet
contains three non-terminal symbols (letters) and one terminal symbol (#). (A): Transition
diagram of a grammar with no ambiguities and one initial state (C). (B): Transition diagram
(left) and probability transition matrix (right) of a grammar with one initial state (B), one
ambiguous symbol (A, a = 1) and an ambiguity depth of two (d = 2). Ambiguous states A0
and A1 have an additional index that is not part of the symbol. All outgoing transitions from a
state have equal probability. Note that the state corresponding to the terminal is an absorbing
one, and all grammatical strings are required to end there. The transitions from this state only
denote the initial states, but are required in the transition matrix for computing the grammar
complexity (Warren and Schroeder, 2015).

To create grammars with a desired complexity in a controlled manner, we introduce
two additional ambiguity variables that regulate the memory (of previous states) required
for valid transitions (to subsequent states): the number of ambiguous states a and the
ambiguity depth d. The first specifies how many states can occur in different contexts,
or equivalently, how many symbols from the alphabet are repeatable. The ambiguity
depth represents the number of distinct instances of an ambiguous state, each of which
can appear in its own context.

Figure 8.1 illustrates two example grammars without and with ambiguity. Following
the Markovian-style notational convention used in Warren and Schroeder (2015), the
symbols are depicted in the nodes (states). The ambiguous states have an additional
subscript denoting their unique index (ambiguity depth), and transition probabilites
are written on the edges. Note that the subscripts are necessary to disambiguate the
grammar, but they are not part of the symbol. The language defined by the grammar
with no ambiguity contains only one word CAB, whereas the one with ambiguity has an
infinite cardinality and can be defined as L = {(BCA)nBA | n ≥ 0}, and includes words
like BA and BCABA.

Topological entropy: As a measure for grammar complexity, we use the information-
theoretic Topological Entropy (TE) introduced by Robinson (1998) and applied to AGs
by Bollt and Jones (2000). In these works, an AG is treated as a dynamical system that
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can generate an infinite number of sequences from a finite set of symbols, with the TE
metric calculated using Markov chain analysis methods. For a grammar G that has sn

unique strings of length n, the TE is defined as

h(G) = lim
n→∞

loge sn

n
. (8.2)

Because sn tends to increase exponentially as a function of the string length n, taking
the logarithm yields an approximately linear dependence of n (Warren and Schroeder,
2015). As such, TE measures the “[exponential] growth rate of the number of [unique]
words of length n as n goes to infinity” (Robinson, 1998), quantifying the intuitive
premise that the complexity of an AG increases with the number of unique grammatical
strings it can produce.

The TE of a grammar G can be computed from its topological (boolean) transition
matrix M , obtainable through binarization of the probability transition matrix (see e.g.
Figure 8.1B). If N is the number of unique (indexed) states in G, then M is an N × N
matrix satisfying the Markov property, with its TE defined as

h(G) = loge(λ1), (8.3)

where λ1 is the largest real eigenvalue of M (always positive). In this study we use
the subscript approach for handling ambiguities (Warren and Schroeder, 2015), but in
principle one can avoid indexed states and build the transition matrix using a “lifting
technique” as proposed by Bollt and Jones (2000). This method involves starting with
the single-symbol transition matrix, and finding the shortest n-gram length l (the lift) for
which the transition matrix between all unique l-grams captures all possible transitions
in G. Not only does this method yield a much larger matrix N l × N l for a l-lift, but it
is also very difficult to accurately calculate it in practice (Warren and Schroeder, 2015).

In order to accurately calculate the TE, the topological matrix should satisfy a number
of conditions. Formulated concisely, all states must be reachable from at least one initial
state s ∈ Sin , and there should be a path of finite length from each state to (one of)
the terminal state(s). Adding a loop from the terminal to all initial states ensures that
these constraints are obeyed, and additionally guarantees that the loop cycles indefinitely
generating infinitely many sequences. Note that while we use # as the terminal state
(symbol) in this study and add these loops for the complexity computation, this serves
only as a string separator when generating and processing input sequences for the models.

Compared to other complexity measures such as TE computed using the lift method,
Shannon entropy or compressibility of strings generated by the grammar, the TE method
with subscripts used here is the most sensitive and consistent with the grammar com-
plexity as a function of ambiguity (Figure 8.2).

Of the factors influencing the value of TE, the density and size of the topological
matrix are perhaps the most important. As TE typically grows with the number of
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Figure 8.2: Comparison of grammar complexity measures as a function of ambiguity.
(A): Topological entropy computed using the subscript method (Warren and Schroeder, 2015).
(B): Topological entropy computed using the lift method (Bollt and Jones, 2000). (C): Shannon
entropy of a sequence of grammatical strings. (D): Compressibility ratio of grammatical strings,
computed using the DEFLATE algorithm (Deutsch, 1996). Higher value means less compressible.
The metrics in (B)-(D) were computed on 10000 strings drawn randomly from the respective
grammars. Note that the depth parameter is ignored for no ambiguities.

states and transitions in the matrix, increasing the alphabet size, the number of initial
states, and the ambiguities (determining the unique states) all lead to higher TE values.

Ambiguous adjacent dependencies: Using the grammar and complexity definitions
above, here we restrict the analysis to a single task of learning sequences with ambiguous
adjacent dependencies. To evaluate this, we randomly generate grammars of increasing
complexity by controlling the level of ambiguity as described above. We tested for up
to three ambiguous states and ambiguity depth of four, and either one or two initial
states. For each of these parameter combinations, we randomly generate 5 transition
matrices (corresponding to 5 grammars) with density ≈ 0.25 and equal outgoing transi-
tion probabilites. If any of the constraints are violated, the grammar is discarded and
the process is resumed until a valid one is found. We tested alphabet sizes of four and
six tokens, with the length of each string truncated to 2|Σ| to reduce the computational
load. Combinations with a > 0 and d = 0 are considered to be invalid and ignored.

8.3.3 Task evaluation

Task performance is measured using the reservoir computing (RC) approach (see Chapter
2) and the FNA framework described in Chapter 4 and used in the studies presented
in Chapter 5 and Chapter 6. Given the vastly different characteristics of the studied
models, the method used for constructing the appropriate state matrices was tailored
for each model individually in order to ensure a fair comparison and best performance.

147



Chapter 8 Benchmarking and critical evaluation of
biologically-plausible models of sequence learning

Sampling the population responses: For CS , the state matrix X is typically (except
for passive memorization) built by sampling the instantaneous firing rates of the Timer
populations in all columns at the offset of each token (∆stim ). One could in principle
consider the full network instead of only Timer cells, but in practice these are sufficient to
decode any stimulus-related information. The rates are estimated using an exponential
kernel with time constant τw = 40 ms, unless otherwise stated.

For the KM model, the state variables are the low-pass filtered spike trains of all the
neurons, using a time constant of 20 ms as in the original study.

In the case of spkTM , we consider the somatic spikes of a neuron j, emmitted within
a fixed window w relative to the onset tσi of a stimulus σi, as well as the dendritic action
potentials (dAPs) sampled at a fixed delay relative to tσi :

pσi
som,j =

tσi +w∑
t=tσi

∑
k

δ(t + tsamp − tk
som,j)

pσi
dAP,j =

∑
k

δ(tσi + tsamp + w − tk
dAP,j)

(8.4)

where tk
som,j and tk

dAP,j are the somatic and dendritic spikes, w = ∆stim+min(ddAP, ∆ISI)
is the window size, and ddAP = 14 a small delay aimed ensuring that any dAP occurring
after stimulus offset is captured. tsamp is a sampling offset that is non-zero only for
the passive memory task, in which case it shifts the sampling window to the right. The
sampled state variable for neuron j is then the binarized variable xσi

j :

xσi
j = H(pσi

som,j + pσi
dAP,j − 1), (8.5)

where H is the Heaviside step function, leading to xσi
j = 1 if at least one somatic spike

occurs within the considered window, or if there is a dAP soon afterwards.
This approach takes into account both the sparse, context-dependent stimulus repre-

sentations through somatic spikes, as well as the prediction of next tokens encoded in
the dendritic activity.

Training and testing procedure: All token-level tasks involve training the readout
to classify the currently active token using the matrix X. The training phase consists of
200 strings whereby each token is presented 200 times on average. Generally all models
are able to learn such a simple sequence after around 100 presentations, so we discard the
first half of the training data and only use the second half to train the linear readouts.
This ensures that the readouts are trained on valid activity, i.e., only after the model
has completed learning. Test data consists of 25 input sequences, yielding an 80/20 ratio
for the effective data.

Rule learning in grammars with ambiguous adjacent dependencies comprises three
(sub-)tasks: token classification, n-step memory and n-step prediction. In addition to
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recognizing the current identity, for each token we ask which element was presented n
tokens before (memory) and which one would occur n steps ahead (prediction). Note
that because n is limited by the length of each string and thus varies, we use # EOS
symbol to demarcate the strings and ensure that memory and prediction does not involve
distinct strings.

For these tasks we draw up to 100 strings for each grammar with |Σ| = 4 (|Σ| = 6
in Figure 8.12), which are then randomly concatenated (repetitions are allowed) in each
batch until a fixed but model-dependent batch size is reached. This is chosen such that
the concatenated sequence length approximately matches the number of model parame-
ters (sampled neurons). On average, this gives a batch size of 400 for CS , 675 for KM and
750 for spkTM . We use 10 batches for both training and testing. Such large datasets are
meant to ensure sufficient training data and test accuracy even for very complex gram-
mars. Note that this procedure differs from typical machine learning studies, where the
model is evaluated on previously unseen data during the test phase. However, given
the limited computational power of the models considered here, measuring recognition
instead of generalization will still yield valuable insights into their capabilities.

As a performance measure we typically use the standard accuracy metric, which works
well for the token-level tasks because each token occurs with the same probability. How-
ever, this assumption often does not hold for complex grammars. The imbalance in
the token frequency can bias the accuracy and make it difficult to estimate a random
baseline. In such cases, we instead use the Cohen’s kappa statistic (Cohen, 1960). It is
defined as

κ = p0 − pe

1 − pe
, (8.6)

where, in the current classification context, p0 is the empirical accuracy of the model
and pe is the expected agreement between the model predictions and the actual labels
as if happening by chance. κ takes values between −1 and 1, 0 being chance level and
values towards 1 representing good performance.

In all cases, readouts are trained with ridge regression (see previous chapters).

8.4 Results

We begin with a series of token-level tasks that are intended to shed light on the internal
representations and robustness of models to variations in the input. In the second part,
we focus on the models’ ability to acquire the rules underlying temporally-structured se-
quences, as well as autonomously replaying learned sequences. In cases where the task is
simply unsuitable for a given model or its behavior is straightforward, we exclude it from
the corresponding experiment. The arguments for such exclusions and the implications
for the model’s capabilities are then discussed in-depth.
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8.4.1 Pattern perception

Irrespective of whether the input sequence is structured or simply random, perception
requires that the individual elements (tokens) of the sequence are represented in a dis-
tinguishable manner. The ability to handle and recognize spatiotemporal patterns in a
robust manner is therefore a fundamental requirement of any sequence learning model.
In a first set of tasks, we evaluate this ability for both ordered and random sequences, and
discuss the strengths and weaknesses of the models’ properties, including the encoding
mechanisms and the characteristics of the patterns they can process.

Token representation
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Figure 8.3: Classification accuracy as a function of stimulus duration and inter-
stimulus interval. Performance is shown for randomly ordered sequences (results are qual-
itatively similar to ordered sequences). For CS, we consider entries with ∆stim + ∆ISI < 75 ms
to be undefined, which corresponds to the sum of reward delay, reward and trace refractory
windows that follow each stimulus. For each model, the population responses were sampled at
the stimulus offset (not including ∆ISI ).

To measure the accuracy of token representations, we used randomly ordered sequences
of four elements and trained a linear classifier to predict the token identity from the
population responses obtained at stimulus offset (see details on sampling in Section 8.3).
By varying the stimulus duration ∆stim as well as the interval between tokens ∆ISI , we
probed the range of temporal properties that enables accurate representations (Figure
8.3). For good performance, CS and KM require stimuli that are longer than 10 ms and
20 − 30 ms, respectively. Although ∆ISI does not have a significant impact, for CS we
observe a range of values with reduced performance, which we discuss in a moment.

For such unstructured sequences, the CS results are somewhat misleading because
the model learns an all-to-all connectivity between the token-specific columns when an
element can be followed by any other one with equal probability. The current token
is only decodable due to the active column inhibiting the other populations, so that
when we sample at stimulus offset there is a single token being represented. As soon
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as the rate of the stimulated Timer population decays, any other element can become
activated. This may also explain the low performance in certain cases, which appears
to depend jointly on ∆stim and ∆ISI . For some parameter combinations, multiple over-
lapping representations may arise as a consequence of the Timer population responses,
weak cross-columnar inhibition towards the end of each token, as well as the short ∆ISI .
This effect is only observable in a small parameter range because shorter ∆stim avoid
“spillover” Timer responses between tokens while longer ones ensure a sustained and
effective cross-columnar inhibition.

The spkTM , on the other hand, is insensitive to any temporal variation in the input.
This is expected given that we are interested only in the stimulus identity, which should
be distinguishable towards the offset if there is at least one input spike to the corre-
sponding population causing sufficient somatic spiking (condition satisfied here). At
first glance, these results contradict the original study (Bouhadjar et al., 2022), which
found a working range for ∆ISI between 10 and 75 ms and expected degraded perfor-
mance for extended somatic activity. While we do not observe these detrimental effects
here, they would likely occur for more complex sequence prediction tasks.

Passive memorization

A prerequisite for any complex sequence processing, which invariably involves context-
dependent computations, is the ability to maintain information about past elements.
While this is evaluated for structured sequences later on, here we use random input
to measure how long the representation of a token is preserved after stimulus offset
(see Section 8.3.1). Randomness enables investigating the system’s passive memory at
the token level, eliminating the possibility that an ordered sequence is learned (and
memorized) as a whole.

Despite learning an all-to-all connectivity as in the previous task, the CS model ex-
hibits a passive memory that approximately matches ∆stim +∆ISI (Figure 8.4A). Because
the active stimulus inhibits the populations associated with the other tokens, its rep-
resentation is distinguishable as long as the rates are sufficiently elevated to maintain
the cross-columnar suppression. Soon after the presentation of the next token, this
representation is overwritten entirely and performance drops towards chance level, also
illustrated by the lack of memory beyond a single token (Figure 8.4B). The slightly
better performance for ∆ISI = 100 ms and sampling delays of around 100 ms are likely
caused by the interplay of these parameters and the stimulus duration that lead to low
cross-columnar inhibition and competition between multiple Timer populations during
a short time window. The passive memory of the model thus cannot be significantly
longer than ∆ISI when the tokens are presented sequentially, which is in line with the
model’s design to learn the time interval until the next token or reward period.

On the other hand, the passive memory of the KM model is between 80 and 300 ms
for a fixed ∆stim = 300 ms. It increased to more than 200 ms when the interval between
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Figure 8.4: Passive memory of randomly ordered tokens. Performance is measured using
the κ-score, as a function of the ∆ISI and the sampling delay tsamp relative to stimulus offset.
(A) Delayed classification of a stimulus at increasing time lag after its offset. (B) Same as (A),
but for delayed 1-step memory. Results are averaged over 5 network instances for each ∆ISI .

tokens was approximately in the range of 50 − 250 ms, with the peak memory found for
∆ISI = 200 − 250 ms. Given that this optimal range decreases with ∆ISI beyond these
values, the timely presentation of the subsequent token appears to extend the memory
of the system. An alternative explanation may be that the token representation is longer
or simply shifted in time by approximately 250ms. If this was the case, one would expect
similar performance for larger ∆ISI as well. One reason why this does not occur could
be that longer noisy intervals are detrimental to the learning process.

The spkTM model exhibits more complicated dynamics. In this scenario, the input
consists of a single spike (∆stim = 1, see Section 8.3.3) and the potentiation rate λ+ was
scaled by a factor of 10 to allow the characteristic behavior to emerge despite the small
training set. The stimulus can always be decoded accurately when sampling directly after
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the stimulus, but the information fades soon thereafter (Figure 8.4A). There is a notable
exception for ∆stim ≈= 40 − 50 ms, which corresponds roughly to the ∆ISI = 40 ms.
This compact range for the intervals allows the emergence of context-encoding dendritic
APs, which prolongs the system’s memory across multiple stimuli (Figure 8.4B) and
highlights its dependence on the decay time constant of the dAPs (set to 40 ms for this
task). Outside this range, the interval is either too short or too long for such dAPs
to develop accurately. In addition, there is a slightly above-chance performance when
sampling at offsets multiple of the ISI. The reason for this is not straightforward and
requires a more in-depth analysis.
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Figure 8.5: Robustness to time-warped inputs. (A): Classification accuracy for a single
ordered sequence composed of 4 tokens, as a function of the warping factor applied to the
stimulus duration (left) and inter-stimulus intervals (right). During training, the ∆stim was
fixed to 50ms for CS , 300ms for KM , and 1ms (single spike) for spkTM . ∆ISI was set to 250ms
for all models. Results are averaged across 5 network instances and are qualitatively similar for
different baseline ∆ISI values. (B): Firing rates of Timer populations in the CS model during the
test phase, for a Markovian sequence and warp factor of 2 applied to the ∆ISI .
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Once a sequence is learned, humans and other animals can recognize it even if there
are slight variations in the durations of the individual elements or the time interval
between their presentations. To measure whether the models are also invariant to time-
warped sequences, we trained them using the regular procedure and warped the stimulus
durations or the inter-stimulus intervals during the test phase. Although we only show
results for ordered sequences, they are qualitatively similar to random ones.

When considering the responses at stimulus offset, CS is mostly invariant to warping
of stimulus durations, with a slight drop in performance for shorter inputs (see Figure
8.5A). This is due to the stimulated Timer cells being the only active population for the
duration of the input thanks to cross-columnar inhibition. Furthermore, time-warping
does not destroy the order learned Markovian sequence during recall but it may alter
the durations of replayed tokens. When the ∆ISI is warped, the performance degrades
because the model tries to replay the sequence at the learned pace and warping induces
a shift in the stimulation that leads to inconsistent activity (typically the third token is
misclassified, see Figure 8.5B).

The KM model behaves in a somewhat opposite manner. Although it is invariant to
changes in the ISI, it is more sensitive to warping of stimulus duration and is largely
unable to encode the input to beyond a warp factor of 4 (Figure 8.5A). Considering that
the number of spikes in the input pattern is unchanged but their timing simply shifted,
the high accuracy up to a shift of 900ms (factor or 3) is nevertheless suggestive of strong
robustness.

In contrast, the spkTM model achieves perfect accuracy across the board. As demon-
strated previously in Figure 8.3, the model is insensitive to longer stimuli and intervals
when evaluated on a simple token classification task as the spatially-encoded input in-
duces sufficiently distinct representations. However, this may not be the case when
processing longer sequences.

Token capacity

Another relevant characteristic is the capacity of the model, i.e., the number of different
tokens it can encode and process. For the CS and spkTM models, this is fixed and
predetermined, and corresponds to the number of columns. As such, scaling the model
requires adapting the network for every scenario. The capacity of the KM , on the
other hand, is not predefined. As illustrated in Figure 8.6, the model can encode up to
150 tokens if they are presented randomly, and more than 200 tokens if they compose
an ordered sequence. Although the capacity decreases with the alphabet size in both
cases, the slower decay for ordered sequences indicates that temporal structure in the
input enables more robust and distinguishable representations. The actual number likely
depends on the network size, but it is also possible that the stimulus representations are
dynamic, with a higher number of tokens leading to increasingly fewer neurons coding
each one.
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Figure 8.6: KM performance as a function of the alphabet size. Classification accuracy
is shown for sequences with random elements and a single, ordered sequence. In both cases,
sequence length matched the alphabet size (number of tokens). Mean results across 5 network
instances are shown for ∆stim = 300 ms and ∆ISI = 0 (as in the original model), with shaded
area representing the standard deviation. On average, each token was presented 150 times during
training and 30 times during testing.

8.4.2 Rule learning
Real-life sequences deviate significantly from randomness, and messages that convey
meaningful information consist of strings composed of a limited set of symbols. The
patterns we observe in these sequences are a result of intricate generative models, such
as environmental dynamics or the thought processes of a conversational partner. To be
regarded as a true sequence learner, an entity or a model must possess the capability to
comprehend the underlying rules governing the generation of the observed sequences.

Acquisition and internalisation of generative rule systems

Adopting conventions from symbolic processing and AGL studies, we consider sequences
generated by artificial grammars that encode transition rules and probabilities that ought
to be learned by the models. Typically visualized using a transition diagram (see Figure
8.7A), the complexity of the grammar and the sequences it can generate can be estimated
using various measures, including topological entropy (TE) that we employ here (see
Section 8.3). We focus on three aspects of sequence processing: memory, classification
and prediction.

Figure 8.7C illustrates the performance of the three models for the non-deterministic
grammar shown on the left, which can generate relatively complex sequences with only
one ambiguous state (TE = 0.46). For this particular grammar, spkTM outperforms
CS and KM on some memory tasks, particularly for one and two steps, while the mem-
ory and prediction accuracy decreases with larger n at a similar rate for both models.
Although the magnitude of the κ coefficient is difficult to interpret (McHugh, 2012), all
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Figure 8.7: Example grammar and model performance for the rule learning task. (A):
Transition diagram depicting a grammar with 4 tokens, one ambiguous state (B) and ambiguity
depth of two (B0, B1). The grammar has a complexity of TE = 0.46, with all strings starting
with D (initial state). (B): Example strings drawn from the grammar. These are truncated at
length 2|Σ| (see Section 8.4.2, terminal symbol # not shown). (C): Model performance for the
grammar in (A) for classification, n-step memory and n-step prediction tasks (n = 7).

models appear to remember the previous 2-3 and the upcoming token reasonably well.
For these and following results, it is important to note that the κ coefficient is unde-

fined for a single true and predicted label (single class). Assuming perfect accuracy, this
means that the maximum memory (and prediction) performance is bounded from above,
in addition to the length l of the longest string(s) of the grammar, also by the largest n
for which there are at least two substrings of length n + 1 that differ in their first (last,
for prediction) token. For example, 3-step memory and prediction are undefined for the
grammar G1 with LG1 = {AACD, AABD}, but 3-step prediction is defined for G2 with
LG2 = {AACD, AABB}. In the next section, we analyze representative grammars and
discuss to what extent are these results biased by the readout mechanism.

Readout and model bias

Task performance is often biased by the choice of state variables used to extract informa-
tion from the system (van den Broek et al., 2017). For instance, the common approach
of using the filtered spike trains may artificially increase the system’s memory if a kernel
with a long time constant is used. This appears to be the case for the CS model, where
the performance of a readout trained on the low-pass filtered input spikes was higher
than that of a readout trained directly on the (embedded) input labels (compare dashed
red and yellow curves in Figure 8.8B). Reducing the filtering time constant from 40ms to
4ms removes this bias (dotted curve in Figure 8.8B), and the result on the encoded input
matches the expected, memoryless baseline. The actual performance of the CS model
indicates that it is able to maintain a representation of the previous stimulus (in line
with Figure 8.4A), but not beyond that. In contrast, the KM model does not possess
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Figure 8.8: Readout and model bias. (A): Grammar with no ambiguities and |LG| = 2.
(B): Performance of the spkTM and CS models for the grammar in (A) (circles). Yellow curve
denotes the baseline performance of a readout trained on the (one-hot) embedded input labels,
while the dashed (dotted) red curves represent a readout trained on the instantaneous firing rates
estimated from the input (Poisson) spike trains, using a filtering time constant of τw = 40 ms
(4 ms). This estimation (with τw = 40 ms) corresponds to the population rates used as the
state variable for the model results (circles, see Section 8.3.3 for details). (C): Performance of
the spkTM and KM models (circles). Dashed blue curve denotes the performance of a readout
trained on the input spike trains (pattern and noise) of the KM model, low-pass filtered using
τ = 20 ms as done for the population state variables (blue circles). (D): Grammar with two
ambiguous states C0 and C1, which can generate only one string. (E-F): Same as (B-C), but
for the grammar in (C).

any memory and also degrades the input representations (Figure 8.8C).

Importantly, estimating the performance directly on the input labels allows us to
establish an unbiased, model-agnostic baseline that captures the deterministic (static)
parts of the input sequences. This becomes more relevant when considering the ability
to predict upcoming elements, as illustrated through a grammar with one ambiguity
(Figure 8.8C). With the exception of spkTM , none of the models performs significantly
better than baseline (Figure 8.8E,F). These results on relatively simple tasks suggest that
CS and KM are not equipped with context-dependent processing capabilities, whereas
spkTM achieves close to perfect score. In the following sections, we extend this analysis
to grammars of various complexities.
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Figure 8.9: Model performance on a variety of complex sequences. (A): Grammar
complexity and corresponding performance (κ-score) for n-step memory, classification, and n-
step prediction tasks. For the memory and prediction tasks, each data point represents the sum
of performances over all valid n-steps, which may differ for individual grammars but cannot be
greater than 2|Σ| − 1 = 7. Data contains 85 grammars with |Σ| = 4 and a single initial state (see
Section 8.3.3 for more details). Note that due to the randomized generation process, there can
be multiple instances of the same grammar or with the same complexity. (B): Histogram of the
mean performances from (A), with bin size of 0.25. Each bin represents the summed κ-scores,
averaged by the bin count (number of grammars in that complexity range).

The ability to memorize and predict elements also drops with increasing grammar
complexity (Figure 8.9). Despite some variability in the performance distribution of
CS and KM for similarly complex grammars (Figure 8.9A), the trend holds for all models.
As explained above, even in ideal conditions, the maximum performance on the memory
and prediction task is constrained by the length, structure and number of the generated
strings. These may be smaller for low-complexity grammars containing fewer and shorter
strings, as illustrated by the grammar with TE = 0 in Figure 8.9A, which generated only
the string CDCBA.
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In general, spkTM performs significantly better than the other two models on all tasks.
For low-complexity grammars (TE <≈ 0.3), spkTM can accurately remember up to 5
tokens on average. This number decreases to around 3 for intermediate complexity
(TE <≈ 0.75) and to 1 for more complex ones. Prediction follows a similar trend but is
somewhat lower, which for the low-complexity grammars can be partially attributed to
the sequence structures and the upper bound of the κ-score as discussed above. Note that
these results represent memory and prediction performance summed over all n-steps, so
a value of 1 is not equivalent to perfect decoding for one single n-step.

The other two models perform similarly across all tasks, with KM achieving somewhat
better classification performance for larger TEs. At the same time, in some instances
KM fails completely (classification close to 0), indicating that for such complex sequences
and long learning phases, the model is unstable with the chosen parameters. For TE >≈
0.7, neither CS nor KM achieves a significantly above-chance accuracy on the memory
and prediction tasks. The mean performances reinforce the observation (see Figure 8.8)
that, in most cases, both models struggle with contextual information beyond a single
step. However, these results are somewhat difficult to interpret because the data points
do not capture how the performance changes with n.

To get a better sense for the performance distribution across the different n-steps, we
pool the data in Figure 8.9 over all low-, intermediate and high-complexity grammars,
and plot the performance as a function of n in Figure 8.10. Although the thresholds are
somewhat arbitrary, this categorization is useful to clearly illustrate how performance
varies with complexity. Except for 1-step memory where CS and spkTM are comparable
for simple grammars (Figure 8.10A), spkTM performs statistically the best on all tasks
while KM is typically the worst. For TE < 0.5, the relatively high performances on
the memory and prediction tasks even for n = 6 is suggestive of little variation in the
structure of the sequences, and possibly reflect the bias of our evaluation method for
such simple grammars (see also Figure 8.8).

However, any bias should become negligible with increasing complexity, as illustrated
in Figure 8.10B,C. In these cases, we observe the expected, more stereotypical perfor-
mance decay for larger n. Beyond n = 2 for intermediate and n = 1 for highly complex
grammars, the performance of CS and KM is hardly above chance level. spkTM fares
better on the memory tasks for intermediate difficulty, with good performance even for 6-
steps, but prediction also degrades significantly beyond 3-steps. For very complex rules,
even spkTM is limited to 2-step memory and 1-step prediction. To further disentangle
these results, we next take a closer look at examples of characteristic grammars.
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Figure 8.10: Average model performance for the memory, classification and predic-
tion tasks. Results are pooled over all grammars within a specified complexity range from
the full distribution illustrated in Figure 8.9. These are [0, 0.5) in (A), [0.5, 1.0) in (B) and
[1.0, 1.5) in (C). Significance was estimated with the Mann-Whitney double-sided test using the
statannotations package (Charlier et al., 2022).
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Figure 8.11: Representative grammars and corresponding task performance. For each
grammar, only a maximum of 10 strings are shown (center panels). Parameters such as the
number of initial states (states with transitions from ’#’) and ambiguities (indexed states) can
be read out directly from the transition diagrams. Thick, gold curve (typically behind the blue
one) denotes the baseline performance of a readout trained on the input labels (see also Figure
8.8).

An examination of performances on individual grammars allows us to identify the
strengths and weaknesses of each model, along with possible limitations of the evaluation
approaches and metrics. Figure 8.8 already prefaced these on simple yet illustrative
examples. Here we analyze three additional representative grammars in Figure 8.8 to
further explore the relation between measured capacity and rule structure. To get a
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baseline estimate for comparison, we again compute the performance of a readout trained
directly on the input labels.

Given that the spiking CS model investigated here should not be able, by design, to
handle contextual information beyond a single step, its results are mostly in line with
the expectations. For moderate complexity, the model can retain some information from
the previous step, but in almost all other cases it performs on par with or worse than
the baseline. A notable exception is the prediction in Figure 8.8A, the cause of which
requires further investigation. Due to the frequent underperformance, the CS cannot be
considered as a baseline that reflects the static mappings within the language defined by
the grammar. This is in contrast to KM , the results of which are surprisingly consistent
with the baseline. Unfortunately, this also means that in our implementation the model
does not really learn anything beyond simple classification.

Building on the previous findings, spkTM demonstrates high memory capacity also
for more complex grammars containing two ambiguous elements (Figure 8.11B). For one
ambiguous token which can nevertheless appear in four independent contexts (ambiguity
of 1 with depth 4, Figure 8.11C), the performance decays close to chance level for n ≥ 2.
However, the model does impressively well to disambiguate the previous token (n = 1)
even for such complex rules.

The examples further highlight the need for clear reference points that account for
the static, recurring patterns in the generated sequences. This is particularly important
for low and moderate complexity, whereas higher TE values imply more heterogeneous
sequences for which the bias of the readout mechanism is averaged out statistically and
measures such as the κ-score yield more accurate scores.

Influence of grammar properties

Until now, we have primarily investigated grammars with an alphabet containing four
tokens and a single initial state (with the exception of some examples in Figure 8.11).
These parameters, along with other properties such as the density of state transitions,
directly influence the grammar complexity and can strongly impact model performance.
In particular, different sets of properties may lead to similar complexities as measured us-
ing the topological entropy, even if there are core distinctions in the generated sequences.
To assess this, we evaluated the spkTM model on four grammar classes containing up to
two initial states and alphabet sizes of four and six (see Figure 8.12).

In general, TE increases both with the number of initial states and alphabet size, which
control the number of distinct strings. Increasing these parameters shifted the minimum
complexity as illustrated by the missing data points in Figure 8.12. The classification
accuracy was comparable in all cases. For |Σ| = 4, the model performed slightly better
on grammars with two initial states, except for very simple ones. As the average string
length was not controlled for, this large discrepancy may be caused by shorter sequences
for |Sin | = 2.
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Figure 8.12: Performance of the spkTM model for grammars containing different num-
ber of tokens and initial states. Data is computed and binned as the histograms in Figure
8.9B, but illustrated as a line plot for readability. Colors code the alphabet size, with solid
(dashed) curves representing grammars with one (two) initial states. Minimum string length was
two while the maximum was truncated at 2 ∗ |Σ| − 1.

More interestingly, despite longer average strings for |Σ| = 6, the absolute n-step
memory and prediction performance did not improve significantly (compare solid mem-
ory curves in Figure 8.12). This is suggestive of a peak contextual memory of around
5-6 items for relatively simple but not trivial grammars. Similarly, peak average perfor-
mance for prediction was below 4, with slightly better scores for |Sin | = 2 on moderately
complex grammars (TE < 0.75). However, the performance for larger alphabets is con-
sistently and significantly better for the same range of complexities. Whether this is a
consequence of the string lengths (and thus an artifact) or the model indeed benefits
from more varied sequences should be evaluated more closely.

Taken together, these results indicate a stronger impact of the alphabet size rather
than the number of initial states, but more careful consideration of the role of string
lengths is necessary.

8.5 Conclusion

In this chapter, we presented a framework for benchmarking and systematic evaluation
of biophysical sequence learning models and applied it to critically review and compare
three existing models as a proof-of-concept. Given that this work is still in the early
stages, here we focused primarily on the task methodology, topological entropy as a
complexity measure, and the challenges for creating a unified framework to handle very
different systems. Despite a rather small number of tasks, we nevertheless gained relevant
insights into the strengths and weaknesses of the models.

In a first step, we investigated how the temporal properties of the input, such as stim-
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ulus duration, inter-stimulus interval and time-warping, affect the ability of the models
to represent spatiotemporal patterns that constitute the sequence elements. We identi-
fied lower but no upper bounds on the stimulus duration for both CS and KM , while
spkTM exhibited consistent robustness. However, these results reflect the classification
accuracy of individual tokens, and thus only tell a partial story.

For correctly learning structured sequences, the ISI must be below ≈ 75 ms for the
spkTM model (Bouhadjar et al., 2022), while Cone and Shouval (2021) found a maximum
element duration of about 1800 ms (which includes the ISI as discussed here) for CS .
An upper limit should also exist for KM , as transitions between tokens can only be
learned through STDP and therefore through temporal co-activation. To capture these
effects, the same task could be performed on structured sequences. This also holds for
time-warped inputs, to which only KM was found sensitive when warping the stimulus
duration. Moreover, warping the ISIs beyond 75 ms and extended stimulus durations
are both likely to negatively impact the performance of spkTM on complex sequences,
which is not captured here.

By studying the passive memory properties of the models, we demonstrated that only
spkTM can maintain information about past inputs beyond a single element (see Figure
8.4). This capacity depends strongly on the dendritic APs and their properties. In all
models considered here, contextual representations do not arise dynamically in the net-
work activity, such as for some recurrent circuits in RC studies, but are learned through
prolonged exposure to structured input and engraved in the synaptic connectivity.

This ability to learn rule-based sequences was evaluated and demonstrated on inputs
of increasing complexity. Our results indicate that only spkTM can cope with contex-
tual dependencies (see e.g., Figure 8.8), while the other two models are mostly limited
to distinguishing individual stimuli. Note that our implementation of KM may be in-
complete and more reliable results require further testing. As expected, the complexity
measure and the ambiguity parameters chosen for the grammar generation successfully
reflect and control the task difficulty, with performance decaying with complexity for all
models. This is particularly clear for moderate and high complexity sequences, whereas
more simple ones suffer from the readout bias discussed before (see Figure 8.10).

There are multiple ways to counteract such biases. In Figure 8.8 we computed a
baseline performance by training a readout directly on the input (see e.g., Klampfl
and Maass, 2013), which allowed a clearer distinction between models that are limited
to classification and ones that do more sophisticated context-dependent processing. In
addition, the sequence length should be carefully accounted for as it impacts the absolute
memory and prediction performance, at least as measured in this study. Lazar (2009)
overcame this issue by concatenating multiple strings with a delimiter, which worked
for predicting the next input thanks to particular sequence structures. However, for
sequences with little restriction on where and how often individual tokens appear in it,
n-step memory and prediction for n > 1 would be affected by cross-sequence references.

Additional issues are posed by model specificities, which make certain tasks difficult
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to apply or evaluate fairly — for instance, time-warping of the stimulus duration can
induce substantial sparsity in the input pattern for KM , whereas the spkTM currently
simply cannot handle more than a few input spikes. Moreover, homeostasis plays a
central role in the spkTM ’s learning process, but we disabled it here for two reasons: it
is unclear how the corresponding parameters ought to be chosen given the dependence
on the (fixed) sequence length, and any attempt would require extensive testing and
possibly substantial modifications to the learning rule.

Even if these difficulties are solved, a deeper understanding of each model’s behavior
requires additional analysis at the level of single grammars and individual sequences. For
example, state-space analysis could help uncover sensitivity to associative chunks and
other frequency effects (Meulemans and der Linden, 1997; Robinson, 2005). These should
additionally be combined with scrutinization of robustness, such as training stability and
effect of dataset sizes. Our goal is to implement these functionalities, alongside several
further tasks discussed in the next chapter, and make it available to the community
as a software library that enables, through intuitive APIs, to easily benchmark future
models.
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Chapter 9

Discussion and outlook

As argued in Chapter 1, structure and function are indissociable aspects of neurobiolog-
ical circuits and should therefore be jointly taken into account, as much as possible, by
any mathematical model claiming biological plausibility and aiming to understand the
brain. The present thesis is a modest contribution towards this goal, throughout which
we sought to investigate and relate architectural and functional characteristics of neural
circuits during the processing of noisy information and temporally structured sequences.
We pursued these objectives through a combination of software tools, simulation studies
and theoretical analysis, as well as a conceptual and computational framework for meta-
analysis of biological sequence processing models. The following sections summarize the
main findings of each chapter, and place them in a broader context by considering their
limitations, potential extensions and scientific implications.

9.1 On the role of structured projections and topographic
modularity

Real-time interactions between a dynamic environment and a modular, hierarchical sys-
tem like the mammalian neocortex strictly require efficient and reliable mechanisms
supporting the acquisition and propagation of adequate internal representations. Stable
and reliable representations of relevant stimulus features must permeate the system in or-
der to allow it to perform both local and distributed computations online. In Chapters 5
and 6, we have considered models of local microcircuits as state-dependent processing
reservoirs whose computations are performed by the systems’ high-dimensional transient
dynamics (Mante et al., 2013; Sussillo, 2014), acting as a temporal expansion operator,
and investigated how the features of long-range connectivity in a modular architecture
influence the system’s overall computational properties. By treating the network as a
large modular reservoir of spiking neurons, composed of multiple, sequentially connected
sub-systems, we have explored the role played by biologically-inspired connectivity fea-
tures (conserved topographic projections) in the reliable information propagation across
the network, as well as the underlying dynamics that support the development and
maintenance of such internal representations.
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9.1.1 Signal representation and denoising

In Chapter 5, we found that random feedforward projections are insufficient for trans-
mitting information about the input beyond the third sub-network, irrespective of the
stimulus intensity. While such random connectivity can be powerful for local compu-
tations (Buonomano and Maass, 2009), some form of structured projections between
processing circuits seems necessary for long-range communication. Although these can
also emerge through learning, as in the case of multilayered artificial networks, we demon-
strated that even simple topographic projections akin to cortical maps are sufficient to
ensure accurate decoding in deeper modules. Such stimulus-specific projections addi-
tionally reduce response variability, increase robustness against interference effects, and
boost memory capacity.

Expanding on these results, Chapter 6 investigated the dependence of this phenomenon
on the modularity — or precision, as a central feature — of topographic projections. Sim-
ulation results indicated that not only is some degree of precision required for successfully
reconstructing a noisy input signal in very deep networks, but that the performance in-
creases significantly with network depth beyond a critical modularity. This denoising
process involves sharpening the spatially encoded input along the topographic map by
modulating the E/I balance across the network. Using mean-field approximations, we
showed that modularity acts as a bifurcation parameter and derived an analytical ex-
pression for its critical value in a simplified model. Further analysis revealed a robust
and generic structural property dependent only on the modularity and the presence of
recurrent inhibition. The mechanism allows the system to accurately track and denoise
rapidly changing signals, requiring that the encoding is locally static/semi-stationary for
only a few tens of milliseconds, which is roughly in line with psychophysics studies on
the limits of sensory perception (Borghuis et al., 2019).

More generally, topographic modularity, in conjunction with other top-down processes
(Kok et al., 2012), could provide the anatomical substrate for the implementation of
a number of behaviorally relevant processes. For example, feedforward topographic
projections on the visual pathway could contribute, together with various attentional
control processes, to the widely observed pop-out effect in the later stages of the visual
hierarchy (Brefczynski-Lewis et al., 2009; Itti et al., 1998). The pop-out effect, at its
core, assumes that in a given context some neurons exhibit sharper selectivity to their
preferred stimulus feature than the neighboring regions, which can be achieved through
a winner-take-all (WTA) mechanism (Himberger et al., 2018).

However, due to the reliance on increasing inhibitory activity at every stage, we spec-
ulate that denoising, as studied here, would not occur in such a system containing a
single, shared inhibitory pool with homogeneous connectivity. In this case, inhibition
would affect all excitatory populations uniformly, with stronger activity potentially pre-
venting accurate stimulus transmission from the initial sub-networks. Nevertheless, this
problem could be alleviated using a more realistic, localized spatial connectivity profile
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as in (Kumar et al., 2008a), or by adding shadow pools (groups of inhibitory neurons) for
each layer of the network, carefully wired in a recurrent or feedforward manner (Aviel
et al., 2003, 2005; Vogels and Abbott, 2009). In such networks with non-random or
spatially-dependent connectivity, structured (modular) topographic projections onto the
inhibitory populations will likely be necessary to maintain stable dynamics and attain
the appropriate inhibition-dominated regimes. Alternatively, these could be achieved
through additional, targeted inputs from other areas, with feedforward inhibition known
to provide a possible mechanism for context-dependent gating or selective enhancement
of certain stimulus features (Ferrante et al., 2009; Roberts et al., 2013).

9.1.2 Integrating multiple information streams

The omnipresence of such long-range projections from cortical and sub-cortical areas im-
plies that local circuits are engaged in a continuous integration of distinct information
sources. We modeled this scenario by including a second input stream and found that
topographic modularity gave rise to different behaviorally-relevant dynamical regimes
depending on the relative stimulus intensities (Chapter 6). Whereas asymmetric values
led to WTA dynamics and denoising process as observed for single streams, compara-
ble intensities allowed the system to distinguish both inputs for moderately structured
projections. Further increasing the topographic precision induced multi-stability (uncer-
tainty) in representations, alternating between two stable fixed points corresponding to
the two input signals as found in competition-based winnerless dynamics.

Computation by switching is a functionally relevant principle (McCormick, 2005;
Schittler Neves and Timme, 2012), which relies on fluctuation- or input-driven com-
petition between different metastable (unstable) or stable attractor states. Structured
projections may thus partially explain the experimentally observed competition between
multiple stimulus representations across the visual pathway (Li et al., 2016), and is
conceptually similar to an attractor-based model of perceptual bistability (Moreno-Bote
et al., 2007). Moreover, this multi-stability across sub-networks can be “exploited” at
any stage by control signals, i.e. additional (inhibitory) modulation could suppress one
and amplify or bias another.

The nature of these interactions and their impact on the downstream circuitry de-
pends strongly on the clarity of state representations available at the site of aggregation.
One of our main results in Chapter 5 suggests that computing locally, within a module,
and transmitting the outcome of such computation (local integration scenario) is more
effective than transmitting partial information and computing downstream. Accord-
ingly, even a single step of nonlinear transformation on individual inputs (downstream
integration scenario) hinders the ability of subsequent modules to exploit non-trivial de-
pendencies and features in the data, which was evaluated on the XOR task. In partial
disagreement with previous studies (Rigotti and Fusi, 2016; Barak et al., 2013), which
reported higher response dimensionality in populations during nonlinear processing, we
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found only a negligible correlation between the effective dimensionality and the XOR
performance beyond the first modules. The degree of mixed selectivity in early pro-
cessing stages — rather than dimensionality — proved a better predictor of the task
performance in the deeper levels, particularly for nonlinear tasks.

Therefore, it might be more efficient to integrate information and extract relevant
features within local microcircuits that can act as individual computational units (e.g.
cortical columns, Mountcastle, 1997). Combining the inputs locally may lead to more
stable representations, which can then be robustly transferred across multiple modules.
We speculate that in hierarchical cortical microcircuits, contextual information (simply
modeled as a second input stream) must be present in the early processing stages to
enable more accurate computations in the deeper modules. This could, in part, explain
the role of feedback connections from higher to lower processing centers. As discussed
below, exploring these questions and, ultimately, understanding the core principles of
cortical computation, requires bridging cognitively relevant tasks with neuroanatomy
and physiology at a level of complexity far beyond the models studied in this thesis.

9.1.3 Beyond simplified models of cortical processing

The classification and XOR problems we have employed here provided a convenient
method to investigate information transfer across multiple spiking modules, and allowed
us to shed light on the functional implications of the wiring architecture. Our key
finding, that the modulation of information processing dynamics and the fidelity of
stimulus/feature representations results from the structure of topographic feedforward
projections, provides new meaning and functional relevance to the pervasiveness of these
projection maps throughout the mammalian neocortex.

Beyond routing feature-specific information from sensory transducers through brain-
stem, thalamus and into primary sensory cortices (notably tonotopic, retinotopic and
somatotopic maps), their maintenance within the neocortex (Patel et al., 2014) ensures
that even cortical regions that are not directly engaged with the sensory input (higher-
order cortex), can receive faithful representations of it. Moreover, these internal signals,
emanating from lower-order cortical areas, can dramatically skew and modulate the cir-
cuit’s E/I balance and local functional connectivity, resulting in fundamental differences
in the systems’ responsiveness.

As evidenced by the projected implications of these findings, the simplicity of the
model stands in stark contrast with the anatomical and computational intricacies of the
brain we drew the reader’s attention to in the opening of this thesis. In light of this sheer
complexity, finding the right level of description for neuroscientific models is a massive
challenge. With the risk of abstracting away crucial aspects, there are many reasons to
favor simpler models: they allow building intuition more easily, simplify causal claims
about the relation between network properties and their function, are more efficient to
simulate, and are inevitable when analytical tractability is desired. Considering that
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“a computational model should be as simple as possible, but no simpler” (Wilson and
Collins, 2019), our results should be interpreted in the context of some critical structural
features that were not included.

The denoising phenomenon, as studied here, relies on direct projections between simi-
larly tuned populations in distinct circuits. While such connectivity is a good approxima-
tion for the sensory pathways arriving at the primary cortices, information propagation
beyond this stage involves stereotypical flows within and between cortical columns. Al-
though this complicates signal transmission, denoising could in principle still occur as
long as some form of effective topography is maintained throughout the layers and ar-
eas. Despite abundant information on the size of receptive fields (Smith et al., 2001;
Liu et al., 2016; Keliris et al., 2019), there is relatively little data on the laminar po-
sition and specific connectivity between neurons tuned to related or different stimulus
features across distinct circuits. Should such experiments become feasible in the future,
our model provides a testable prediction: the projections must be denser (or stronger)
between smaller maps to allow robust communication, whereas for larger maps fewer
connections may be sufficient (see Chapter 6).

Cortical systems also display an abundance of feedback loops that exhibit, similarly
to the feedforward cortico-cortical connections, a high degree of specificity and spatial
segregation (Markov et al., 2014a; Markov and Kennedy, 2013). Such feedback con-
nections from more anterior cortical regions (typically associated with more abstract or
‘higher’ cognitive functions) have been shown to play a central role in top-down control
and modulation of sensory processing by providing contextual information and facilitat-
ing multisensory integration (see e.g., Markopoulos et al., 2012; Clavagnier et al., 2004;
Revina et al., 2018). Important theoretical frameworks of cortical processing, known as
predictive coding theories (Friston and Kiebel, 2009; Bastos et al., 2012) place a funda-
mental importance in the role of such top-down feedback as a pathway through which
internal predictions from higher cortical regions are propagated downstream and used
as an explicit error signal, guiding and structuring the nature of internal representa-
tion in the hierarchically lower cortical modules. Their functional role is not entirely
unambiguous and depends on specific functional interpretations, with evidence for both
destabilizing (Joglekar et al., 2018) and facilitating (Rezaei et al., 2020) effects on long-
range signal propagation. Failure to account for feedback projections may therefore limit
the scope and generalizability of our models.

Similarly, we did not consider long-range projections, which directly link distant corti-
cal modules (commonly referred to as skip, or “jump” connections Knösche and Tittge-
meyer, 2011). Such projections between non-adjacent areas were found to significantly
improve the short-term memory capacity of a biologically realistic spiking network model
(Schomers et al., 2017), suggesting that a similar effect could be expected in our model.
In the domain of artificial neural networks, an entire class of architectures exploit this
principle (residual networks) and demonstrate their functional significance as a way to
eliminate singularities during training and ameliorate the problem of vanishing gradients
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(Orhan and Pitkow, 2018), as well as improving performance in image standard recog-
nition tasks (He et al., 2016). Even though these aspects were not explicitly explored in
this thesis as they would greatly extend its scope, these studies support the crucial role
of network architecture and the nature of inter-modular connections in determining the
system’s computational characteristics.

Finally, mounting experimental evidence suggests that direct cortico-cortical projec-
tions are complemented by parallel pathways through higher-order thalamic nuclei (Sher-
man and Guillery, 2013; Mo and Sherman, 2019). In a brief essay (Zajzon and Morales-
Gregorio, 2019), we reviewed recent progress on mapping such trans-thalamic pathways
between somatosensory and motor centers and speculated about their possible functional
role in cognition. The presence of such projections beyond functionally related areas
contradicts previous assumptions (Theyel et al., 2010; Sherman and Guillery, 2013),
and suggests that they are a general organizing principle and integral link in cortical
communication. These routes may support dynamically constructing task-relevant func-
tional circuits (Nakajima and Halassa, 2017), as well as change the effective connectivity
between cortical regions through targeted gain modulation (Jaramillo et al., 2019). Us-
ing a simplified spiking network resembling our model, Cortes and van Vreeswijk (2015)
demonstrated that such parallel trans-thalamic pathways can help stabilize asynchronous
spike propagation over multiple layers, by modulating the feedforward gain to maintain
similar rates and dynamical regimes across the network.

Along with our findings, these observations highlight the necessity for incorporating
more detailed connectivity patterns and sub-cortical structures in future large-scale, bio-
physical models of cortical processing. Random (non-specific) projections between dif-
ferent regions, as currently assumed by many multi-area models (Markov et al., 2014b;
Schmidt et al., 2018; Joglekar et al., 2018), is unlikely to support the rich dynamics
required for challenging tasks. Data-driven approaches that explicitly model thalamic
inputs (Billeh et al., 2020; Dura-Bernal et al., 2022) are more promising, particularly if
they use naturalistic stimuli and plausible sensory mapping onto the cortex. Integrating
these essential ingredients into large-scale models may represent a fertile direction for
future exploration of modular topographic maps and the denoising phenomenon inves-
tigated here.

9.2 On biologically-plausible models for sequence processing

Irrespective of their size and level of biological detail, computational models of cortical
circuits ought to be embedded in a functional context that ideally goes beyond “sim-
ple” stimulus representations such as image classification. Although scientific progress
has a strong incremental component (which co-exists with the Kuhnian perspective of
paradigm shifts; Kuhn, 2012) and there is undeniable value in studying neurobiological
phenomena in isolation from higher-level cognitive tasks, ambitious steps are necessary
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to close the division between low-level or circuit mechanisms and behaviorally relevant
functions. Whenever possible, computational models should draw on knowledge from
multiple domains and take advantage of existing or contribute to new bridges between
these. This certainly applies to models of sequence processing that seek to capture the
natural predisposition of the neocortex for detecting temporal regularities, which could,
in theory, rely on an incredibly vast literature from cognitive sciences, linguistics or
computer science.

Unfortunately, the considered task complexity and interdisciplinary nature of the stud-
ies tend to decrease with the degree of biological faithfulness (see Chapter 3). Whereas
ANNs tackle problems on all levels of the Chomsky hierarchy and are rigorously tied to
formal systems, as recently illustrated in a meta-study by (Delétang et al., 2022), bio-
physical models are significantly more restricted in their scope and theoretical grounding.
The limited capabilities of such models obviously play an important role here, but most
studies are nevertheless insufficiently systematic in their evaluation and focus perhaps
too narrowly on specific aspects of sequence processing. To bridge this gap, in Chapter
8 we proposed a framework whose objective is twofold: it provides a set of cognitively-
inspired tasks and a unified method for evaluating and comparing such models; and by
doing so, it creates the scaffold of a meta-analysis of existing models with the larger goal
to identify the dynamics, connectivity and learning rules that can support the process.
As discussed below, the work undertaken here marks only the initial steps towards both
of these objectives due to the multitude of functional aspects, neurobiological implica-
tions, and reproducibility challenges that must be taken into account.

9.2.1 Functional considerations

In Chapters 1 and 3, we briefly touched upon the range of tasks that fall under the
umbrella of sequence processing. An obstacle to simply applying this battery of tasks
consists in the nature of many biologically-plausible models, which are tailored for par-
ticular tasks or to illustrate specific mechanisms. Of the three models considered here,
one could argue that CS (Cone and Shouval, 2021) was designed to learn and replay the
order and duration of simple sequences, KM (Klampfl and Maass, 2013) to reproduce
experimentally observed sequential activity, and spkTM (Bouhadjar et al., 2022) to han-
dle context-dependence and prediction while relying on sparse activations and dendritic
signals. The limitations posed by spiking networks, for which achieving high memory
capacity is still an open issue, is also highlighted by the original SORN model with bi-
nary neurons (Lazar, 2009) and its spiking counterpart LIF-SORN (Klos et al., 2018):
the original model could solve counting and occluder tasks, while the spiking version
modeled a visual experiment involving one simple sequence.
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Figure 9.1: Classes of tasks and paradigms for evaluating different aspects and com-
ponents of sequence processing. The Pattern Perception tasks (center) target core func-
tionalities that should be displayed by any sequence processor, which can be evaluated both
in isolation and as secondary features within the other, more complex tasks. This collection
is certainly not exhaustive (e.g., working memory is typically probed using variants of delayed
match-to-sample), nor are the individual categories completely independent of each other. Tasks
under Compositionality were suggested by Hupkes et al. (2019) and graphics (illustrating the
tasks marked with *) were adapted, with permission, from Dehaene et al. (2015); de Vries et al.
(2012); Hupkes et al. (2019).

Our framework abstracts from model-specific goals and instead treats them as generic
sequence processors that are to be evaluated on a variety of established tasks in rele-
vant domains (see Figure 9.1). Currently, we only implemented a subset of the pattern
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perception and rule learning tasks, but aim to include more in the near future. Decom-
posing the problem of sequence learning is essential to understand its different aspects:
for example, studying the representations of discrete sequence elements (pattern percep-
tion) allowed us to identify which temporal features the models are sensitive to, without
worrying about the actual input structure (see below).

To investigate the internalization of generative rules, we took inspiration from the
artificial grammar learning (AGL) paradigm and developed a simple method for gener-
ating sequences of controlled complexity. The abstract nature of such rules means that
they do not require existing semantic or syntactic knowledge, making them an ideal tool
for studying the neurobiological underpinnings of abstract rule learning independently
of the sensory modality (Petersson et al., 2012). Choosing the right level of complexity
is key, though, to fully grasp a model’s capabilities and not just its limitations. The
topological entropy (TE) measure, previously applied to AGs in experimental settings
(Schiff and Katan, 2014) but not modeling studies, enabled a fine-grained control over
the task difficulty that was also reflected by the model performances. These indicated
that only spkTM is equipped for non-trivial processing (Chapter 8).

Decisions about task complexity should be informed by experimental findings and
also consider the models’ expressive power. Although we explored a wider range of
TE values here, the AGs reviewed by Schiff and Katan (2014) were roughly between
0.5 and 0.9. This range not only captured the limits of human capabilities but also
exposed strong variations in the results for similar complexities. In these experiments the
subjects are typically required to perform binary classification, i.e., decide if a sequence
is grammatical or not, which differs from our prediction tests. A more comprehensive
and accurate measurement of prediction would require computing the true probability
distributions of the tokens and comparing it to the output estimates provided by the
readout (Duarte et al., 2014). Nevertheless, while TE may be a good general measure
that captures overall trends, task performance depends on a multitude of additional,
grammar-specific factors that are beyond the scope of our study (Robinson, 2005; van den
Bos and Poletiek, 2008). Considering these aspects, it may be unreasonable to expect
better results from models operating within biological constraints.

Striking the right balance between “fairness” to individual models and cognitively
relevant functions is therefore challenging. While it may seem unproductive to assess
models of sequence learning in the primary sensory areas (e.g., Cone and Shouval, 2021)
on psycholinguistic tasks, the computational principles and core neurobiological pro-
cesses, which underlie widespread sensitivity to temporal structure (Wilson et al., 2018;
Henin et al., 2021), are similar across the cortex (Harris and Shepherd, 2015). In this
sense, our framework should be understood as a practical and conceptual toolbox that
can guide the development and evaluation of future models. Applying it to existing
ones and studying their capabilities beyond their original scope can help broaden the
understanding of their strengths and shortcomings, both from a functional perspective
and at the level of the neurobiological mechanisms they rely on, as we elaborate in the
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next section.
From a practical perspective, the diversity of these mechanisms, along with the pecu-

liarities of each model, complicates the realization of a unified yet unbiased evaluation
method. While the RC approach we adopted here is system-agnostic, it still involves
certain choices regarding stimulus encoding, dataset sizes or the sampled state variables,
which need careful consideration of the model specificities. Even when these choices are
made as fairly as possible, as strived for in our study, there will be certain tasks that are
incompatible with a model’s characteristics and assumptions or the result can be deter-
mined a priori (e.g., token capacity). For instance, thanks to its (questionable) design,
the model proposed by Maes et al. (2020) can in principle learn arbitrary sequences (see
also Chapter 3) and would thus achieve perfect accuracy on many of the tasks considered
here. Does it also elucidate how animals process sequences? Evidently not, which is why
in such cases, particularly, a meticulous look at the underlying assumptions and their
biological plausibility is warranted.

9.2.2 Neurophysiological implications

In contrast to machine learning or AI models whose primary goal is performance with
virtually no restrictions on the architecture or learning algorithms, biophysical models
of the brain (should) concentrate on behavioral phenomena whilst adhering to strong
constraints imposed by the underlying circuitry. Our model selection criteria ensured
that these mostly complied with the latter aspect, even if the constraint on the spik-
ing nature may appear too restrictive. If the information is encoded primarily in the
continuous-time firing rates and does not rely on the temporal precision of the spikes,
which is the case for the CS model, then perhaps rate models should be treated as equally
plausible and included in our evaluations in order not to involuntarily take a stand in the
longstanding debate about rate and spike coding (Brette, 2015). Even though systems
relying on such dynamics are more flexible, analytically manageable and can support
more complex processing (see e.g., the rate version of CS ), we argue that their results
do not trivially translate to spiking networks. Reasons for this include an incomplete
understanding of key mechanisms, particularly memory and learning, as well as the
difficulty of maintaining realistic activity statistics using parameters within biological
boundaries.

Analyzing the fidelity and identifying contradictions to experimental observations,
both at the activity and behavioral level, is in fact a central goal of our framework.
Although direct comparisons can be challenging for vastly differing levels of description,
there are some general characteristics of sequence processing that plausible models should
exhibit. As Figure 9.1 shows, a dedicated set of tasks related to pattern perception
(center) could also be applied to more complex processing. For example, real sequences
have substantial variability in the distribution of element durations, such as the length
or utterance speed of words, which are reflected by various linguistic laws (Torre et al.,
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2019). Clearly, we are able not only to abstract from these properties (during learning
or comprehension), but also manipulate them flexibly (during language production).

Thus, it is tempting to dismiss a model as implausible if it is overly sensitive and
rigid to the temporal properties of the input or cannot cope with realistic amounts of
noise. Although only partially explored in Chapter 8, this seems to be the case for
most systems we considered. However, such conclusions may be imprudent given that
sequence learning appears to be temporally specific, at least in some early sensory areas
(Gavornik and Bear, 2014). Lacking a behavioral component, such studies are unable
to answer a more pertinent question: when does the sequence manipulation transition
from only changing the neural representation at a local level to influencing perception
and affecting behavior? Finding an answer to this can be hindered by the inability of
many species, from which detailed recordings are possible (e.g., mice), to process more
complex sequences. Still, the question is relevant to our expectations of the models
and their fair assessment. If low-level sequence representations are indeed very fragile,
we must continue the search for the right level of complexity that enables robustness,
abstraction and generalization.

In certain cases, it can also be unclear what the correct or expected behavior of
the model is. Randomized sequences represent a trivial but powerful example of this
dilemma. Given the lack of structure in the input, should the model ignore or try
to learn each sequence? The models considered here will attempt the latter and will
likely fail for any reasonable number of stimuli and training time. More importantly, the
strengthening of synapses between all stimulus-specific populations, such as the all-to-all
connectivity emerging in the CS model, may not be biologically plausible.

Another obvious deficiency of current biophysical models is the lack of hierarchical
structure (see Chapter 1), which naturally limits their capabilities as generic sequence
processors. For instance, none of the models reviewed in Chapter 3 can operate on
multiple timescales, a key signature of complex temporal processing. We must then ask
whether these models can be extended towards a hierarchical architecture, or if they rely
on more fundamentally incompatible assumptions.

All three of the investigated models incorporate some form of modularity at the net-
work level, which is central to their operation. Although some display flexibility towards
more realistic wiring patterns as demonstrated in Chapter 7, the requirement of com-
pletely segregated populations tuned to unique stimuli, a core property of the CS and
spkTM models, is difficult to reconcile with experimental data. In addition to evidence of
mixed selectivity across the cortex including the earliest sensory regions (see Chapters 1
and 5, and de Vries et al., 2020), complex tasks requiring a mixture of representa-
tions can not be easily conceptualized in the context of the proposed architectures —
a criticism that also applies to the networks considered in Chapters 5 and 6. With
one-to-one mappings, compositionality would require exponentially many populations
for representing all possible token combinations. Since this obviously cannot be how
the cortex operates, future models should focus on mechanisms supporting dynamical
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feature representations (such as in KM or the model proposed by Asabuki et al., 2022)
that can be shared and recycled in new contexts or during new tasks in a flexible manner
(Yang et al., 2019; Weidel et al., 2021).

9.3 On software tools and reproducibility

On a final note, the software tools developed and models analyzed and replicated as part
of this thesis deserve a brief reflection. In Chapter 4, we presented Functional Neural
Architectures (FNA), a toolkit meant to facilitate the creation and evaluation of neural
networks using the RC approach. It has a particular focus on symbolic processing and
(recurrent) spiking models, but is not limited to these and can be used in virtually any
scenario involving an input-driven system. Although there are a number of tools with
a similar scope and new ones continue to be developed (see, e.g., Suárez et al., 2023),
to the best of our knowledge none of them combine the aspects of symbolic processing,
efficient simulation (NEST is used as simulation engine), and the breadth of analysis
routines included in FNA. By offering a wide array of methods for input generation
and encoding, as well as network activity and performance analysis, FNA also addresses
some of the most time-consuming and error-prone parts of developing research software.

As the tool (or parts of it) was used and grew throughout the studies presented here,
it became a sort of “all-in-one” codebase where the different components tended towards
unnecessarily tight coupling. Minimizing such dependencies is key to increasing flexi-
bility, reducing the time-to-result, as well as reaching a wider user base who may only
require some features. These could be achieved by clearer conceptual separation and
improved APIs between input generation, network models, and postprocessing. From
a software engineering perspective, this means moving from a framework (which FNA
technically is not but can “feel” like one) that dictates the flow of a simulation experi-
ment, towards a library where the user can access (call) different components as required
(see also “inversion of control”; Fowler, 2005).

Whereas these aspects are more of a cosmetic nature, reproducibility is critical. This
is not only guaranteed by FNA, but its usage of an established neural simulator (NEST)
also ensures model correctness. The reproducibility and public availability of our models
(except Chapter 8, which is ongoing) means that they comply, at least partially, with
the FAIR (findable, accessible, interoperable and reusable) principles in the context of
reproducible computational workflows (Goble et al., 2020; Eriksson et al., 2022). Steps
towards better compliance include model specification in a standardized format (e.g.,
PyNN; Davison et al., 2008) and integration of a workflow manager such as Snakemake
(Köster and Rahmann, 2012).

If the metaphor “standing on the shoulders of giants” - an allusion to scientific ad-
vancements building on previous knowledge - is to apply for computational studies, then
these must go beyond reproducibility and also be replicable through a comprehensive
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description and documentation of model properties and parameters (Pauli et al., 2018).
Typically, only certain aspects of a model live on to serve as building blocks in future
works. Without a full reproduction and in-depth analysis, which is infeasible in most
scenarios, this process relies on the accuracy of the original description. The fact that
these are often not granted, as demonstrated in Chapter 7, underscores the usefulness
and necessity for replication studies even when the code is made available (Simons, 2014;
Nosek and Errington, 2020). Besides verifying and consolidating knowledge, there are
some errors, inconsistencies or hidden assumptions which can only be discovered during
a replication attempt. In more fortunate circumstances like ours, relevant findings can
lead to a correction of the original study and codebase (see Chapter 7 and Cone and
Shouval, 2023). Is this - skeptical, rigorous and self-correcting - not how all science
should be (Pulverer, 2015; Bordignon, 2020; Besançon et al., 2022)?

Despite initiatives like ReScience (Rougier et al., 2017) promoting them and a loom-
ing confidence crisis surrounding computational neuroscience (Miłkowski et al., 2018),
replication studies remain rare due to the significant effort involved and comparatively
meager rewards in the current academic system. Considering these aspects, our approach
to re-implement all sequence processing models reviewed in Chapter 8 is certainly non-
standard. However, our past and current experiences (Pauli et al., 2018; to Brinke et al.,
2022; Oberländer et al., 2022) indicate clear benefits, including a profound understand-
ing of each model and providing an open-source and often faster implementation to the
community. As a bonus, such undertakings can also help identify weaknesses or missing
features in widely-used tools like NEST, driving future development to better serve the
needs of researchers.

9.4 On the role and value of computational studies

As data-driven research gains ground on traditional hypothesis- and theory-driven stud-
ies and threatens to make them obsolete (Mazzocchi, 2015), it is worth pausing for a
moment and reconsider the purpose of computational models, particularly in the con-
text of an interdisciplinary field such as neuroscience. Among the undisputed reasons for
brain simulations (Einevoll et al., 2019) - despite this being a highly contentious topic -,
is that they enable virtual experiments that would not be possible or ethical on animals.
Scanning over vast ranges of biophysical parameters or modifying circuit properties (e.g.,
to reflect pathological conditions) suddenly become feasible, leading to new predictions
and generating testable hypotheses. However, prediction (of neural activity) is by no
means the sole or even the most important purpose of a model (Humphries, 2019).
Rather, models should be used to better understand and explain observed phenomena,
test ideas and theories, and synthesize findings.

We have touched upon several of these aspects throughout this thesis. Initially, Chap-
ter 5 sought to explore the impact of random and structured connectivity on signal
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propagation, but ended up predicting a deeper functional role for topography. We ex-
amined this further in Chapter 6, first crystalizing the potential for denoising through
modularity, then validating it through simulations and gradually simplifying the model
until the available theoretical tools could help us elucidate the underlying mechanisms.
The final two chapters focused on synthesizing insights from models of sequence pro-
cessing and opening bridges towards disciplines that can provide a scrupulous functional
and theoretical framework to assess the capabilities and relevance of such models.

Synthesizing and aggregating knowledge from different fields - across the spectrum
“from molecules to culture” - is crucial because there is likely no single best level of
explanation for cognitive phenomena (Colombo and Knauff, 2020). Given that this
endeavor requires a collaborative effort from many communities, we advocate more
cross-pollination between approaches focusing on different biological or functional scales.
While there is little doubt that computational models are integral to achieving this, try-
ing to build a model of a cortical circuit is a humbling experience in itself. Two of many
challenges stand out: the constant need to balance between missing out on potentially
critical details (Rubin, 2017) and the desire to capture relevant behavioral functions; and
the uncertainty whether a bottom-up (knowing modular topography and questioning its
function) or a top-down approach (starting from sequence processing and aiming to work
out its implementation) is the most effective way forward. Combining these aspects will
likely be essential for any substantial progress, even if the ultimate but perhaps elusive
goal of a universal theory for how the brain operates appears rather distant for now.
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Supplementary materials for Chapter 5

A.1 Supplementary figures
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Supplementary Figure A.1: Classification accuracy and MSE computed using 10 stimuli from
the second input stream, S′. There are no significant differences between local and downstream
integration.
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Supplementary Figure A.2: Silhouette score quantifying cluster separability in the XOR task.
Scores are calculated in the space spanned by the first ten PCs, using the low-pass filtered spike
trains.
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Supplementary Figure A.3: XOR performance computed on the low-pass filtered spike trains.
The differences in performance are statistically significant, with local integration proving to be
consistently more beneficial. These results are in agreement with the values computed using the
membrane potentials as state variables.
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Supplementary Figure A.4: XOR performance for networks with non-scaled feed-forward projec-
tions between SSN0 → SSN1 and SSN′

0 → SSN1 in the downstream integration scenario (Figure
5.6B). The denser connectivity (pff instead of pff/2 as in Figure 5.7A) does not significantly alter
the relative differences between local and downstream integration.
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A.2 Supplementary tables

A: Model Summary

Populations Multiple modules, each composed of 1 excitatory and 1 inhibitory sub-
population

Connectivity Sparse, random recurrent connectivity with random or topographically struc-
tured feed-forward projections

Neuron Model Leaky integrate-and-fire, fixed voltage threshold, fixed absolute refractory
time, no adaptation

Synapse Model Conductance-based, exponential, no plasticity

Input Stochastic background spikes and inhomogeneous Poisson spikes onto 10% E
and 10% I neurons

B: Populations

Name Elements Size

Ei, E′
0 iaf_cond_exp 8000

Ii, I′
0 iaf_cond_exp 2000

C: Neuron Models

Name Leaky integrate-and-fire neuron (iaf_cond_exp)

Subthreshold Dynamics if (t > t∗ + τref)

Cm
dVi
dt

= gleak(Vrest − Vi(t)) + IE
i (t) + II

i (t) + Ix
i (t)

else
V (t) = Vreset

Synaptic Transmission I syn
ij (t) = g syn

ij (V syn − Vi(t))

Spiking If V (t−) < Vth OR V (t+) ≥ Vth
1. set t∗ = t 2. emit spike with time stamp t∗

D: Synapse Models

Synaptic Conductance dgij(t)
dt

= − gij(t)
τβ

+ ḡβ
∑

tj
δ(t − tj − d)

E: Input

Type Target Description

poisson_generator E0, I0 Total rate νX · KX

poisson_generator Ei, Ii for i > 0 Total rate 0.25 · νX · KX

Inhomogeneous
Poisson generator

E(k)
0 , I(k)

0 for Sk ∈ S Inhomogeneous Poisson process
with rate νstim, changing every 200 ms

E
′(j)
0 , I

′(j)
0 for S′

j ∈ S′

Supplementary Table A.1: Tabular description of network model after Nordlie et al. (2009).
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A: Populations

Name Value Description

NE 8000 Excitatory population size in each module

N I 2000 Excitatory population size in each module

B: Connectivity

Name Value Description

d 1.5 ms Synaptic transmission delay

gE 1 nS Excitatory synaptic conductance

gI γgE nS Inhibitory synaptic conductance

γ 16 Scaling factor for the inhibitory synapses

ϵ 0.1 Baseline connection probability

px
ϵ Connection probability for background noise input in SSN0

0.25ϵ Scaled connection probability for background input in SSNi, i > 0

pff 0.75ϵ Feed-forward connection probability within topographic maps

B: Neuron Model

Name Value Description

Cm 250 pF Membrane capacitance

EL −70 mV Resting membrane potential

τm 15 ms Membrane time constant

Vth −50 mV Membrane potential threshold for action-potential firing

Vreset −60 mV Reset potential

τref 2 ms Absolute refractory period

gL 16.7 nS Leak conductance

C: Synapse Model

τE 5 ms Synaptic decay time constant for excitatory synapses

τI 10 ms Synaptic decay time constant for inhibitory synapses

VE 0 mV Excitatory reversal potential

VI −80 mV Inhibitory reversal potential

Supplementary Table A.2: Summary of all the numerical experiments that can be run using the
provided source code.
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B.1 Supplementary figures

a b
SSN0 SSN2 SSN5

Supplementary Figure B.1: Sequential denoising effect. (a) Reconstruction error (NRMSE)
in 3 different sub-networks as a function of modularity (m) and noise amplitude (σϵ). The points
marked in the rightmost panel correspond to chance-level reconstruction accuracy. (b) Relative
reconstruction performance gain in SSN5 compared to SSN0, expressed as percentage of error
decrease.
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a b

Supplementary Figure B.2: Mean-field predictions for the gain in the firing rates of stimulated
sub-populations ((a) νS

3 −νS
2 and (b) νS

5 −νS
4 ), as a function of modularity m and input intensity,

scaled by λ (see Section 6.3). Dashed lines demarcate the transition to positive gain.

Baseline Fully random Ei - Ii+1 Random E4 - I5
a b c

Supplementary Figure B.3: Spiking statistics for different feedforward wiring to in-
hibitory neurons. (a) Mean firing rates (top panel) and synchrony (Pearson’s correlation
coefficient, computed pairwise over spikes binned into 2 ms bins and averaged across 500 pairs,
lower panel) in SSN4 and SSN5, as a function of modularity. (b) Same as (a), except with
random feedforward projections to the inhibitory pools, i.e., m = 0 for all Ei → Ii+1 connections,
i = {0..4}. (c) Same as the baseline network in (a), with m = 0 only for E4 → I5. In addition,
each neuron in I5 receives further excitatory background input with intensity ν′

X = νX + ν+
X .

Statistics are computed as a function of the additional rate ν+
X .
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Synchrony Irregularity Mean firing rate
b a c 

Supplementary Figure B.4: Spiking statistics for the conductance-based model: (a) syn-
chrony (Pearson’s correlation coefficient, computed pairwise over spikes binned into 2 ms bins
and averaged across 500 pairs); (b) irregularity measured as the coefficient of variation (CV);
(c) mean firing rate across the excitatory populations. All depicted statistics were averaged over
five simulations, each lasting 5 s, with 10 input stimuli.
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b 

Stimulated sub-population (SSN5) Non-stimulated sub-population (SSN5)
a 

d = 0.05 d = 0.2

Supplementary Figure B.5: Transition point in modularity decreases with larger map
sizes. (a) Mean-field predictions for the stationary firing rates of the stimulated (left) and
non-stimulated sub-populations (right) in SSN5, as a function of modularity (m) and fixed map
size (parametrized by d, see Section 6.3) across the modules (δ = 0). To limit the impact
of additional parameters when varying the map sizes (e.g., overlap), the number of stimulus-
specific sub-populations and d where chosen such that every neuron in each population belonged
to exactly one stimulus-specific sub-population (see main text for more details). (b) Predicted
firing rates in the stimulated sub-populations of the different sub-networks, for d = 0.05 (left)
and d = 0.2 (right), with δ = 0.
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b a 

Supplementary Figure B.6: Effective couplings. (a) The effective coupling between stimulated
sub-populations, κS,S increases with modularity, with κ∗ marking the critical transition point
between the fading and active regime. Dashed red line represents this κ∗ value. (b) κS,S
(top left panel), κS,NS (top right), κNS,S (bottom left), κNS,NS (bottom right), as a function
of modularity for different values of α and E/I weight ratio g. The parameters used in this
study (blue) yield κS,S > 0 only for large modularity, with the other couplings being negative
for all m. Increasing the signal-to-noise ratio to SSN≥1 (red), i.e., increasing the background
external input while reducing the feedforward connection density (directly coupled, see Section
6.3), destroys bistability (all couplings are negative for all values of m) and leads to extinction of
activity in all sub-populations in the limit of very deep networks. Decreasing inhibition (green)
also creates possible bistability for non-stimulated sub-populations (κNS,NS > 0) such that their
activity might approach a high-activity fixed point, leading to destruction of task performance.
Note that in all panels, the values κ are scaled by 1/J to highlight the transitions around zero
(see Eq. B.7 in Appendix B)
.
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a b cExtended Shifted

Supplementary Figure B.7: Influence of the activation function’s dynamic range on the
bifurcation behavior in excitation-dominated networks (g = −3, see also Figure 6.8E).
(a) The baseline dynamic range [15, 150] is extended to [15, 210] or shifted to [75, 210]. (b) Given
that µmax does not enter the lower bound on the modularity determined by Eq. 6.3 (green curve),
extending the dynamic range (see panel (a)) does not affect the region of stable fixed points in the
parameter space. For positive background input, there are no stable fixed points, only unstable
ones at non-saturated rates for low values of νX, due to excitatory recurrent fluctuations in the
activity. For stronger background input, no fixed points exist where νS > νNS. In this case,
the activity of the non-stimulated populations (non-zero) dominates the recurrent dynamics and
denoising can not be achieved. (c) Shifting the dynamic range altogether (see panel (a)) leads
to the emergence of stable fixed points at saturated rates also for positive external input, but
the region in which denoising occurs is still significantly smaller than for networks with recurrent
inhibition (see Figure 6.8c). For these values, νNS = 0 is ensured because the total input to
the non-stimulated populations remains below the shifted dynamical range, in contrast to just
extending the dynamic range where even low inputs can lead to non-zero activity. Moreover, the
shifted activation function requires a biologically implausible strength of input for activation.
The firing threshold of biological neurons is typically 15 − 20mV above the resting membrane
potential, which is much less than the shifted µmin. Note that similarly to Figure 6.8, here we
plot only the fixed points for νS > 0 and νNS = 0.
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b a 

non-stimulated

stimulated

Supplementary Figure B.8: Firing rates in SSN5 in the absence of external background
noise (νX = 0). (a) Firing rates of stimulated (top) and non-stimulated (bottom) populations
obtained from simulations of a network without any recurrent connections, for different input
intensities λ. Successful denoising only occurs for the extreme case of m = 1, in which case the
pathways are completely segregated. Note that the input rate was unchanged, νin = 12λKE.
(b) Same as (a), but for excitatory recurrence (g = −3). Recurrent excitation spreads the input
from the stimulated pathway to non-stimulated neurons. Results shown only for λ = 0.05, with
larger values leading to similar results.

SSN5 SSN11 SSN8 SSN2 SSN0 

Supplementary Figure B.9: Evolution of similarity score for 12 sub-networks. Correlation-
based similarity score illustrates the three dynamical regimes observed across the different sub-
networks, for two input streams: coexisting (CoEx, red area and positive score), winner-take-all
behavior (grey, score near 0) and winnerless competition (WLC, blue and negative score). As
predicted by the mean-field analysis, the CoEx region vanishes with increasing network depth.
The calculation of the similarity score is detailed in Section 6.3. If either stimuli could not be
decoded, we set the score to 0. In SSN11, ’X’ indicates parameter combinations where none of
the stimuli could be decoded.

233



Appendix B Supplementary materials for Chapter 6

m = 0.85 m = 0.9 m = 1.0

Supplementary Figure B.10: Potential landscape for two input streams. For intermediate
modularity (m = 0.85, left and m = 0.9, right), there are two high-activity fixed points (circled
cross markers) in addition to the low-activity one near zero (marker added manually here, as it
is not observable due to the larger integration step of 5 spks/sec used here). If the projections
are almost fully modular (m ≈ 1), an additional high-activity fixed point can be observed for
identical νS1 and νS2. In this case, the two stimulated sub-populations can be considered as one
larger population, for which the common κS,S becomes positive, as in the case of a single input
stream (see Supplementary Figure B.6), just for larger m. Grey, anti-diagonal lines represent
the one-dimensional sections illustrated in Figure 6.9e.

b a 
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Supplementary Figure B.11: Limits of denoising for rapidly changing and noisy dynami-
cal inputs. (a) A fast changing input signal x(t) = sin(24t)+cos(12t) sampled at dt = 1ms, with
no additional noise (σξ = 0). (b) While portions of the signal can be successfully transmitted
and denoised in SSN5, there are significant periods (steep slopes) where the signal representation
is lost. (c) Slower signal x(t) = sin(10t) + cos(3t) with significant noise corruption (σξ = 2νin).
Continuous red curve denotes the input signal u(t). (d) Strong noise in the input leads to heavy
fluctuations in the activity of the deeper populations, corrupting the signal representations.
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B.2 Supplementary tables

A: Model Summary

Populations Multiple modules, each composed of 1 excitatory and 1 inhibitory sub-population

Connectivity Sparse, random recurrent connectivity with random or topographically structured
feed-forward projections (fixed in-degrees)

Neuron Model Leaky integrate-and-fire, fixed voltage threshold, no adaptation

Synapse Model Exponentially decaying postsynaptic currents, static synaptic weights, fixed delays

Input Stochastic background spikes and inhomogeneous Poisson spikes onto d0NE exci-
tatory and d0NE inhibitory neurons in SSN0

B: Populations

Name Elements Size

Ei / Ii iaf_psc_exp 8000 / 2000

C: Neuron Models

Name Leaky integrate-and-fire (LIF) neuron (iaf_psc_exp)

Subthreshold Dynamics if (t > t∗ + τref)
τm

dVi(t)
dt

= (Vrest − Vi(t)) + Rm
(
IE

i (t) + II
i (t) + IX

i (t)
)

else
V (t) = Vreset

Spiking If V (t−) < Vth OR V (t+) ≥ Vth
1. set t∗ = t 2. emit spike with time stamp t∗

D: Synapse Models

Synaptic

Transmission
τβ

dI
β
i

(t)
dt

= −Ii(t) + τβ Îβ

∑
j

∑
k

δ(t − tk
j )

with postsynaptic potential PSPij(t) = Îβ
Rmτβ

τβ−τm

(
e−t/τβ − e−t/τm

)
Θ(t)

and Heaviside function Θ(t).
The synaptic efficacy (weight) corresponds to the PSP amplitude:

Jβ = ÎβRm
τβ

τβ−τm

([
τm
τβ

] −τm
τm−τβ −

[
τm
τβ

] −τβ
τm−τβ

)

E: Input

Type Target Description

poisson_generator E0, I0 Total rate νX · KX

poisson_generator Ei, Ii for i > 0 Total rate 0.25 · νX · KX

Inhomogeneous Poisson
generator

E(k)
0 , I(k)

0 for Sk ∈ S Inhomogeneous Poisson process
with rate νstim, changing every 200 ms

E
′(j)
0 , I

′(j)
0 for S′

j ∈ S′

Supplementary Table B.1: Tabular description of current-based (baseline) network model after
Nordlie et al. (2009).
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A: Populations

Name Value Description

NE 8000 Excitatory population size in each module

N I 2000 Inhibitory population size in each module

B: Connectivity

Name Value Description

ϵ 0.1 Baseline connection probability

α 0.25 Connection scaling factor for SSNi>0

px
ϵ Connection probability for background noise input in SSN0

αϵ
Scaled connection probability for background input in SSNi, i >
0

σi (1 − α) ∗ ϵ Fixed density of feed-forward projection matrices

pc (1 − m) ∗ p0 Feed-forward connection probability within topographic maps

p0 (1 − m) ∗ pc
Feed-forward connection probability between SPs on different
topographic maps

B: Neuron Model

Name Value Description

Cm 250 pF Membrane capacitance

EL −70 mV Resting membrane potential

τm 20 ms Membrane time constant

Vth −55 mV Membrane potential threshold for action-potential firing

Vreset −60 mV Reset potential

τref 2 ms Absolute refractory period

C: Synapse Model

τE 2 ms Synaptic decay time constant for excitatory synapses

τI 2 ms Synaptic decay time constant for inhibitory synapses

d 1.5 ms Synaptic transmission delay

ÎE 32.78 pA Peak excitatory current

ÎI g32.78 pA Peak inhibitory current

JE 0.2 mV EPSP amplitude

JI g0.2 mV IPSP amplitude

g −12 Scaling factor for the inhibitory synapses

Supplementary Table B.2: Summary of all the model parameters for the current-based network.
For more details, see Zajzon et al. (2019).
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A: Populations

Name Value Description

NE 8000 Excitatory population size in each module

N I 2000 Excitatory population size in each module

B: Connectivity

Name Value Description

d 1.5 ms Synaptic transmission delay

gE 1nS Excitatory synaptic conductance

gI ggEnS Inhibitory synaptic conductance

g −16 Scaling factor for the inhibitory synapses

ϵ 0.1 Baseline connection probability

α 0.25 Connection scaling factor for SSNi>0

px
ϵ

Connection probability for background noise input in
SSN0

αϵ
Scaled connection probability for background input in
SSNi, i > 0

σi (1 − α) ∗ ϵ Fixed density of feed-forward projection matrices

pc (1 − m) ∗ p0
Feed-forward connection probability within topographic
maps

p0 (1 − m) ∗ pc
Feed-forward connection probability between SPs on dif-
ferent topographic maps

B: Neuron Model

Name Value Description

Cm 250 pF Membrane capacitance

EL −70 mV Resting membrane potential

τm 15 ms Membrane time constant

Vth −50 mV Membrane potential threshold for action-potential firing

Vreset −60 mV Reset potential

τref 2 ms Absolute refractory period

gL 16.7nS Leak conductance

C: Synapse Model

τE 5 ms Synaptic decay time constant for excitatory synapses

τI 10 ms Synaptic decay time constant for inhibitory synapses

VE 0 mV Excitatory reversal potential

VI −80 mV Inhibitory reversal potential

Supplementary Table B.3: Parameter values for the conductance-based model.238



B.2 Supplementary tables

A: Model Summary

Populations Multiple modules, each one composed of 1 excitatory and 1 inhibitory
sub-population

Topology None

Connectivity Sparse, random recurrent connectivity with modular topographic feed-
forward projections (fixed in-degrees)

Neuron Model Rate neuron with shifted tanh gain function

Synapse Model Delayed rate connection

Plasticity None

Input Uniformly distributed input onto d0NE excitatory and d0NE inhibitory
neurons in SSN0

Measurements Unit output (rate)

B: Populations

Name Elements Size

Ei rate neuron 2400

Ii rate neuron 600

C: Neuron Models

Name Rate neuron

Differential equation
τx

dx
dt = −x + W r + W inu − brec +

√
2τxσXξ

r = 0.5(1 + tanh (x))

D: Input

Type Target Description

random uniform distribution E0, I0 Step signal input to SSN0, changing
every 200 ms, with amplitude 0.8

Gaussian white noise Ei, Ii for i ∈ {0..5} Intrinsic unit noise

Supplementary Table B.4: Description of the rate model.
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A: Populations

Name Value Description

NE 2400 Number of excitatory units in each module

N I 600 Number of inhibitory units in each module

B: Connectivity

Name Value Description

d 1 ms Synaptic transmission delay

ϵ 0.2 Baseline connection probability

win ∼ U(0.9, 1.0) Input weights

win ∼ Ntr(0, 1/
√

ϵN) > 0 Recurrent and feed-forward weights drawn from a normal
distribution truncated to positive values

g −6 Scaling factor for the inhibitory synapses

B: Neuron Model

Name Value Description

τ 10 ms Unit time constant

b 1 Bias term

σX 1.5 Scaling term for unit noise

Supplementary Table B.5: Rate model parameters.
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B.3 Constraints on feedforward connectivity

This section expands on the limitations arising from the definitions of topographic mod-
ularity and map sizes used in this study. By imposing a fixed connection density on the
feed-forward connection matrices, the projection probabilities between neurons tuned to
the same (pc) and different (p0) stimuli are uniquely determined by the modularity m
and the parameter d0 and δ, which control the size of stimulus-specific sub-populations
(see Methods). For notational simplicity, here we consider the merged excitatory and
inhibitory sub-populations tuned to a particular stimulus in a given sub-network SSNi,
with a total size Ci = CE

i + CI
i .

Under the constraints applied in this work, the total density of a feed-forward adja-
cency matrix between SSNi and SSNi+1 can be computed as:

σi = pcU
i
c + p0U i

0
N2 (B.1)

where U i
0 and U i

c are the number of realizable connections between similarly and dif-
ferently tuned sub-populations, respectively. Since U i

c = N2 − U i
0, we can simplify the

notation and focus only on U i
0. We distinguish between the cases of non-overlapping and

overlapping stimulus-specific sub-populations:

U i
0 =

{
N2 − NCCiCi+1 if di < 1

NC
NC

NC−1(N − Ci)(N − Ci+1) if di ≥ 1
NC

,

where each potential synapse is counted only once, regardless of whether the involved
neurons belong to any or multiple overlapping sub-populations. This ensures consistency
with the definitions of the probabilities pc and p0. Alternatively, we can express U i

0 as:

U i
0 = N2Nstim

Nstim − 1(1 − iδ − d0)(1 − (i − 1)δ − d0)

For the case with no overlap, we can derive an additional constraint on the minimum
sub-populations size Ci for the required density σi to be satisfied, which we define in
relation to the total number of sub-populations NC:

di ≥
√

σi
NC

(B.2)

The equality holds in the case of m = 1 and all-to-all feed-forward connectivity be-
tween similarly tuned sub-populations, i.e., pc = 1.
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B.4 Mean-field analysis of network dynamics

For an analytical investigation of the role of topographic modularity on the network
dynamics, we used mean field theory (Fourcaud and Brunel, 2002; Helias et al., 2013;
Schuecker et al., 2015). Under the assumptions that each neuron receives a large number
of small amplitude inputs at every time step, the synaptic time constants τs are small
compared to the membrane time constant τm, and that the network activity is sufficiently
asynchronous and irregular, we can make use of theoretical results obtained from the
diffusion approximation of the LIF neuron model to determine the stationary population
dynamics. The equations in this section were partially solved using a modified version
of the LIF Meanfield Tools library (Layer et al., 2020).

B.4.1 Stationary firing rates and fixed points

In the circumstances described above, the total synaptic input to each neuron can be
replaced by a Gaussian white noise process (independent across neurons) with mean
µ(t) and variance σ2(t). In the stationary state, these quantities, along with the firing
rates of each afferent, can be well approximated by their constant time average. The
stationary firing rate of the LIF neuron in response to such input is:

ν =
(

τref +
√

πτeff

∫ yθ

yr
exp(u2) [1 + erf (u)] du

)−1
(B.3)

where erf is the error function and the integration limits are defined as yr = (Vreset −
µ)/σ + q

2
√

τs/τeff and yθ = (θ−µ)/σ + q
2
√

τs/τeff , with q =
√

2|ζ(1/2)| and Riemann zeta
function ζ (see Fourcaud and Brunel (2002), eq. 4.33). As we will see below, the mean
µ and variance σ2 of the input also depend on the stationary firing rate ν, rendering
Eq. B.3 an implicit equation that needs to be solved self-consistently using fixed-point
iteration.

For simplicity, throughout the mean-field analyses we consider perfectly partitioned
networks where each neuron belongs to exactly one topographic map, that is, to one of
the NC stimulus-specific, identically sized sub-populations SP (no overlap condition).
We denote the firing rate of a neuron in the currently stimulated SP (receiving stimulus
input in SSN0) in sub-network SSNi by νS

i , and by νNS
i that of neurons not associated

with the stimulated pathway. Since the firing rates of excitatory and inhibitory neurons
are equal (due to identical synaptic time constants and input statistics), we can write
the constant mean synaptic input to neurons in the input sub-network as
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µS
0 =


noise︷ ︸︸ ︷

KXJXνX +

rec. stimulated︷ ︸︸ ︷
( 1
NC

KEJE + 1
NC

KIJI)νS
0 +

rec. non-stimulated︷ ︸︸ ︷
(NC − 1)( 1

NC
KEJE + 1

NC
KIJI)νNS

0

 τm

+
stimulus︷ ︸︸ ︷
JXνin τm

µNS
0 =


noise︷ ︸︸ ︷

KXJXνX +

rec. stimulated︷ ︸︸ ︷
( 1
NC

KEJE + 1
NC

KIJI)νS
0 +

rec. non-stimulated︷ ︸︸ ︷
(NC − 1)( 1

NC
KEJE + 1

NC
KIJI)νNS

0

 τm,

(B.4)

The variances (σS
0 )2 and (σNS

0 )2 can be obtained by squaring each weight J in the above
equation. To derive these equations for the deeper sub-networks SSNi>0, it is helpful to
include auxiliary variables KS and KNS, representing the number of feed-forward inputs
to a neuron in SSNi from its own SP in SSNi−1, and from one different SP (there are
NC − 1 such sub-populations), respectively. Both KS and KNS are uniquely defined by
the modularity m and projection density d, and KNS = (1 − m)KS = (1 − m)(1 − α)KE
holds as well. The mean synaptic inputs to the neurons in the deeper sub-networks can
thus be written as:
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µS
i =


noise︷ ︸︸ ︷

αKXJXνX +

rec. stimulated︷ ︸︸ ︷
( 1
NC

KEJE + 1
NC

KIJI)νS
i

+

rec. non-stimulated︷ ︸︸ ︷
(NC − 1)( 1

NC
KEJE + 1

NC
KIJI)νNS

i

+
stimulated FF︷ ︸︸ ︷
KSJEνS

i−1 +
non-stimulated FF︷ ︸︸ ︷

(NC − 1)KNSJEνNS
i−1

 τm

µNS
i =


noise︷ ︸︸ ︷

αKXJXνX +

rec. stimulated︷ ︸︸ ︷
( 1
NC

KEJE + 1
NC

KIJI)νS
i

+

rec. non-stimulated︷ ︸︸ ︷
(NC − 1)( 1

NC
KEJE + 1

NC
KIJI)νNS

i

+KNSJEνS
1 + ((NC − 2)KNS + KS)JEνNS

i−1

)
τm

(B.5)

Again, one can obtain the variances by squaring each weight J . The stationary firing
rates for the stimulated and non-stimulated sub-populations in all sub-networks are then
found by first solving Eq. B.4 and Eq. B.3 for the first sub-network and then Eq. B.5
and Eq. B.3 successively for deeper sub-networks.

For very deep networks, one can ask the question, whether firing rates approach fixed
points across sub-networks. If there are multiple fixed points, the initial condition, that
is the externally stimulated activity of sub-populations in the first sub-network, decides
in which of the fixed points the rates evolve, in a similar spirit as in recurrent networks
after a start-up transient. For a fixed point, we have νi−1 = νi. In effect, we can re-group
terms in Eq. B.5 that have the same rates such that formally we obtain an effective new
group of neurons from the excitatory and inhibitory SPs of the current sub-network and
the corresponding excitatory SPs of the previous sub-network, as indicated by the square
brackets in the following formulas:

244



B.4 Mean-field analysis of network dynamics

µS = αβJ νx + J
[ 1

NC
(1 + γg) + (1 − α) 1

(NC − 1)(1 − m) + 1

]
︸ ︷︷ ︸

κS,S

νS (B.6)

+ J
[

NC − 1
NC

(1 + γg) + (1 − α) (NC − 1)(1 − m)
(NC − 1)(1 − m) + 1

]
︸ ︷︷ ︸

κS,NS

νNS

µNS = αβJ νx + J
[ 1

NC
(1 + γg) + (1 − α) (1 − m)

(NC − 1)(1 − m) + 1

]
︸ ︷︷ ︸

κNS,S

νS (B.7)

+ J
[

NC − 1
NC

(1 + γg) + (1 − α)1 + (NC − 2)(1 − m)
(NC − 1)(1 − m) + 1

]
︸ ︷︷ ︸

κNS,NS

νNS

with β = KX/KE, γ = KI/KE and J = τKEJ .
For the parameters g and γ chosen here, κS,NS, κNS,S and κNS,NS in Eq. B.6 and

Eq. B.7 are always negative for any modularity m due to the large recurrent inhibition.
Therefore, for the non-stimulated group, κ < 0 in Eq. 5 (see main text), such that one
always finds a single fixed point, which, as desired, is at a low rate. Interestingly, the
excitatory feed-forward connections can switch the sign of κS,S from negative to positive
for large values of m, thereby rendering the active group effectively excitatory, leading
to a saddle-node bifurcation and the emergence of a stable high-activity fixed point (see
Fig. 7b in the main text).

The structure of fixed points can also be understood by studying the potential land-
scape of the system: Eq. B.3 can be regarded as the fixed-point solution of the following
evolution equations for the stimulated and non-stimulated sub-populations (Wong, 2006;
Schuecker et al., 2017)

τS
dνS

dt
= −νS + ΦS(νS, νNS) , (B.8)

τNS
dνNS

dt
= −νNS + ΦNS(νS, νNS) , (B.9)

where ΦS and ΦNS are defined via the right-hand side of Eq. B.3 with µS and µNS

inserted as defined in Eq. B.6 and Eq. B.7 (and likewise for σS and σNS). Due to the
asymmetry in connections between stimulated and non-stimulated sub-populations, the
right-hand side of Eq. B.8 and Eq. B.9 cannot be interpreted as a conservative force.
Following the idea of effective response functions (Mascaro and Amit, 1999), a potential
U(νS) for the stimulated sub-population alone can, however, be defined by inserting the
solution νNS = f(νS) of Eq. B.9 into Eq. B.8
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τS
dνS

dt
= −νS + ΦS(νS, f(νS)) (B.10)

and interpreting the right-hand side as a conservative force F = − dU
dνS (Litwin-Kumar

and Doiron, 2012). The potential then follows from integration as

U(νS) − U(0) = 1
2(νS)2 −

∫ νS

0
ΦS(ν, f(ν))dν , (B.11)

where U(0) is an inconsequential constant. We solved the latter integral numerically
using the scipy.integrate.trapz function of SciPy (Virtanen et al., 2020). The
minima and maxima of the resulting potential correspond to locally stable and unstable
fixed points, respectively. Note that while this single-population potential is useful to
study the structure of fixed points, the full dynamics of all populations and global
stability cannot be straight-forwardly infered from this reduced picture (Mascaro and
Amit, 1999; Rost et al., 2018), here for two reasons : 1. For spiking networks, Eq. B.8
and Eq. B.9 do not describe the real dynamics of the mean activity. Their right hand
side only defines the stationary state solution. 2. The global stability of fixed points also
depends on the time constants of all sub-populations’ mean activities (here τS and τNS),
but the temporal dynamics of the non-stimulated sub-populations is neglected here.

B.4.2 Mean-field analysis for two input streams
In the case of two simultaneously active stimuli (see Section "Input integration and
multi-stability"), if the stimulated group 1 is in the high-activity state with rate νS1, the
second stimulated group 2 will receive an additional non-vanishing input of the form[ 1

NC
(1 + γg) + (1 − α) (1 − m)

(NC − 1) (1 − m) + 1

]
νS1 < 0, (B.12)

which is negative for all values of m and can therefore lead to the silencing of group
2. If the stimuli are similarly strong, network fluctuations can dynamically switch the
roles of the stimulated groups 1 and 2.

The dynamics and fixed-point structure in deep sub-networks can be studied using a
two-dimensional potential landscape that is defined via the following evolution equations

dνS1

dt
= −νS1 + ΦS1(νS1, νS2, f(νS1, νS2)) , (B.13)

dνS2

dt
= −νS2 + ΦS2(νS1, νS2, f(νS1, νS2)) , (B.14)

where f(νS1, νS2) = νNS is the fixed-point of the non-stimulated sub-populations for
given rates νS1, νS2 of the two stimulated sub-populations, respectively. The functions
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ΦS1 and ΦS2 are again defined via the right-hand side of Eq. B.3 with inserted µS1, µS2

and µNS that are defined as follows (derivation analogous to the single-input case):

µS1 = αJ νx + J
[ 1

NC
(1 + γg) + (1 − α) 1

(NC − 1)(1 − m) + 1

]
︸ ︷︷ ︸

κS1,S1

νS1 (B.15)

+ J
[ 1

NC
(1 + γg) + (1 − α) 1 − m

(NC − 1)(1 − m) + 1

]
︸ ︷︷ ︸

κS1,S2

νS2

+ J
[

NC − 2
NC

(1 + γg) + (1 − α) (NC − 2)(1 − m)
(NC − 1)(1 − m) + 1

]
︸ ︷︷ ︸

κS1,NS

νNS

µS2 = αJ νx + J
[ 1

NC
(1 + γg) + (1 − α) 1 − m

(NC − 1)(1 − m) + 1

]
︸ ︷︷ ︸

κS2,S1

νS1 (B.16)

+ J
[ 1

NC
(1 + γg) + (1 − α) 1

(NC − 1)(1 − m) + 1

]
︸ ︷︷ ︸

κS2,S2

νS2

+ J
[

NC − 2
NC

(1 + γg) + (1 − α) (NC − 2)(1 − m)
(NC − 1)(1 − m) + 1

]
︸ ︷︷ ︸

κS1,NS

νNS

µNS = αJ νx + J
[ 1

NC
(1 + γg) + (1 − α) (1 − m)

(NC − 1)(1 − m) + 1

]
︸ ︷︷ ︸

κNS,S1

νS1 (B.17)

+ J
[ 1

NC
(1 + γg) + (1 − α) (1 − m)

(NC − 1)(1 − m) + 1

]
︸ ︷︷ ︸

κNS,S2

νS2 (B.18)

+ J
[

NC − 2
NC

(1 + γg) + (1 − α)1 + (NC − 3)(1 − m)
(NC − 1)(1 − m) + 1

]
︸ ︷︷ ︸

κNS,NS

νNS

Due to the symmetry between the two stimulated sub-populations, the right-hand
side of Eq. B.13 and Eq. B.14 can be viewed as a conservative force F of the potential
U(νS1, νS2) = −

∫
C F ds, where we parameterized the line integral along the path ν :

[0, 1] → C, t 7→ t · (νS1, νS2), which yields
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U(νS1, νS2) = 1
2(νS1)2 + 1

2(νS2)2

−
∫ νS1

0
ΦS1

(
ν, ν

νS2

νS1 , f(ν, ν
νS2

νS1 )
)

−
∫ νS2

0
ΦS2

(
ν

νS1

νS2 , ν, f(ν νS1

νS2 , ν)
)

. (B.19)

The numerical evaluation of this two-dimensional potential is shown in Supplementary
Figure B.10, whereas sketches in Figure 6.11E show a one-dimensional section (grey
lines in Supplementary Figure B.10) that goes anti-diagonal through the two minima
corresponding to one population being in the high-activity state and the other one being
in the low-activity state.

B.4.3 Critical modularity for piecewise linear activation function

To obtain a closed-form analytic solution for the critical modularity, we in the following
consider a neuron model with piecewise linear activation function

ν(µ) = νmax
µ − µmin

µmax − µmin
(B.20)

for µ ∈ [µmin, µmax], ν(µ) = 0 for µ < µmin and ν(µ) = νmax for µ > µmax (Figure
6.8a). Successful denoising requires the non-stimulated sub-populations to be silent,
νNS = 0, and the stimulated sub-populations to be active, νS > 0. We first study
solutions where 0 < νS < νmax and afterwards the case where νS = νmax. Inserting Eq.
B.20 into Eq. 6.9 and Eq. 6.10, we obtain

µS = αJ νx + κS,S(m) νmax
µS − µmin

µmax − µmin
,

µNS = αJ νx + κNS,S(m) νmax
µS − µmin

µmax − µmin
.

The first equation can be solved for µS

µS

µmin
= 1 + αJ νx − µmin

µmin − κS,S(m) νmax
µmin

µmax−µmin

, (B.21)

which holds for
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µmin ≤ µS ≤ µmax , (B.22)
µNS ≤ µmin . (B.23)

Requirement (Eq. B.22) is equivalent to an inequality for m

0 ≤ αJ νx − µmin

µmax − J
NC

(1 + γg) νmax − (1−α)J νmax
(NC−1)(1−m)+1 − µmin

≤ 1

that, depending on the dynamic range of the neuron, the strength of the external
background input and the recurrence, yields

m = NC
NC − 1 − 1

NC − 1
(1 − α)J νmax

µmax − αJ νx − J
NC

(1 + γg) νmax
(B.24)

as an upper or lower bound for the modularity (Figure 6.8). Requirement (Eq. B.23)
with the solution (Eq. B.21) for µS inserted yields a further lower bound

m ≥ (µmax − µmin)NC
(1 − α)J νmax + (µmax − µmin)(NC − 1) (B.25)

for the modularity that is required for denoising. This criterion is independent of the
external background input and the recurrence of the SSN.

Now we turn to the saturated scenario νS = νmax and νNS = 0 and obtain

µS = αJ νx + κS,S(m) νmax ,

µNS = αJ νx + κNS,S(m) νmax ,

with the criteria

µS ≥ µmax , (B.26)
µNS ≤ µmin . (B.27)

The first criterion (Eq. B.26) yields the same critical value (Eq. B.24) that for
µmax − αJ νx − J

NC
(1 + γg) νmax ≥ 0 is a lower bound and otherwise an upper bound.

The second criterion (Eq. B.27) yields an additional lower bound for J (1 − α)νmax −
(NC − 1)

(
µmin − αJ νx − J

NC
(1 + γg) νmax

)
≥ 0 (Figure 6.8):
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m ≥ 1 −

(
µmin − αJ νx − J

NC
(1 + γg) νmax

)
J (1 − α)νmax − (NC − 1)

(
µmin − αJ νx − J

NC
(1 + γg) νmax

) . (B.28)

The above criteria yield necessary conditions for the existence of a fixed point with
νS > 0 and νNS = 0. Next, we study the stability of such solutions. This works
analogously to the stability in the spiking models discussed in Section 6.3.5 by studying
the spectrum of the effective connectivity matrix. For the model Eq. B.20, the effective
connectivity is given by

wij = ∂νi

∂νj
= ν ′(µi)

∂µi

∂νj
= ν ′(µi)Jij (B.29)

with ν ′(µ) = dν
dµ(µ) and Jij = τxJij . On the level of stimulated and non-stimulated

sub-populations across layers, the effective connectivity becomes

W =

 κS,S(m)ν ′(µS) κS,NS(m)ν ′(µNS)

κNS,S(m)ν ′(µS) κNS,NS(m)ν ′(µNS)

 (B.30)

with eigenvalues

λ± = κS,S(m)ν ′(µS) + κNS,NS(m)ν ′(µNS)
2

±

√√√√(κS,S(m)ν ′(µS) + κNS,NS(m)ν ′(µNS)
2

)2

− X , (B.31)

where X is

X =
(
κS,S(m)ν ′(µS)κNS,NS(m)ν ′(µNS) − κS,NS(m)ν ′(µNS)κNS,S(m)ν ′(µS)

)
. (B.32)

The saturated fixed point νS = νmax and νNS = 0 has ν ′(µS) = ν ′(µNS) = 0, leading
to λ± = 0. This fixed point is always stable. The non-saturated fixed point also has
ν ′(µNS) = 0. Consequently, Eq. B.31 simplifies to λ− = 0 and

λ+ = νmax
µmax − µmin

κS,S(m) . (B.33)

For λ > 1 fluctuations in the stimulated sub-population are being amplified. These
fluctuations also drive fluctuations of the non-stimulated sub-population via the recur-
rent coupling. The fixed point thus becomes unstable and the necessary distinction
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between the stimulated and non-stimulated sub-populations vanishes. For inhibition-
dominated recurrence, κS,S(m) is small enough to obtain stable fixed points at non-
saturated rates (Figure 6.8c). In the case of no recurrence or excitation-dominated
recurrence, κS,S(m) is much larger, typically driving λ+ across the line of instability and
preventing non-saturated fixed points to be stable. In such networks, only the saturated
fixed point at νS = νmax is stable and reachable (Figure 6.9A,B).
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C.1 Supplementary figures

A B

Supplementary Figure C.1: Fluctuations in learning and recall increase with sequence
complexity and number of elements. (A) The network was trained on a sequence of four
elements: 500, 1000, 700, 1800 ms. Left: recall times for 30 trials after learning, for one network
instance. Right: distribution of the median recall times over 10 network instances, with the
median in each network calculated over 30 replay trials. (B) Same as (A), for a sequence of six
elements with a duration of 1200 ms each.
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Supplementary Figure C.2: Hebbian threshold impacts learning convergence of cross-
columnar connections. In the baseline network, learning succeeds even in the absence of
a Hebbian threshold rff

th. While a non-zero threshold leads to larger synaptic weights after
convergence, it also increases the variability between trials.
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C.2 Parameters of the baseline model

A: Model Summary

Populations Multiple columns, each one composed of an excitatory Timer (layer L5) and
Messenger (L2/3) population, with one inhibitory population in each layer

Connectivity Sparse, random recurrent connectivity

Neuron Model Leaky integrate-and-fire, fixed voltage threshold, fixed absolute refractory
time, no adaptation

Synapse Model Conductance-based, exponentially decaying PSCs, static and plastic synaptic
weights, fixed delays

Plasticity Reward-based plasticity, short-term adaptation

Input Stochastic background current and inhomogeneous Poisson spikes onto
stimulus-specific T and IT

B: Populations

Name Elements Size

T i, Ii
T, M i, Ii

M in column Ci LIF neuron 100

C: Neuron Models

Subthreshold Dynamics if (t > t∗ + τref)
Cm

dVi
dt

= gL (Vrest − Vi(t)) + IE
i (t) + II

i (t) + ξ(t)
else

V (t) = Vreset

I syn
ij (t) = g syn

ij (E syn − Vi(t))

Spiking If V (t−) < Vth OR V (t+) ≥ Vth
1. set t∗ = t 2. emit spike with time stamp t∗

D: Synapse Models

Synaptic trace dsi
dt

= − si
τs

+ ρ (1 − si)
∑

k δ
(
t − ti

k
)

Name Reward-based, with separate LTP and LTD eligibility traces

Trace update rule τa dT a
ij (t)
dt

= −T a
ij(t) + ηa

(ff)Hij(t)
(
T a

max − T a
ij(t)

)
, a ∈ {p, d}

Hij(t) =
{

ri(t)rj(t) if ri(t)rj(t) > r
(ff)
th

0 otherwise

Online update rule dwij

dt
= η(ff)R(t)

(
T p

ij − T d
ij

)
R(t) = δ(t − treward − dreward)

E: Input

Type Target Description

poisson_generator T i and Ii
T in Ci Total rate νin for a duration of 50 ms

Supplementary Table C.1: Tabular description of network model after Nordlie et al. (2009).
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Appendix C Supplementary materials for Chapter 7

A: Populations

Name Value Source Description

N 100 paper Population size of every population, excitatory and inhibitory

B: Connectivity

Name Value Source Description

d 1 ms code Synaptic transmission delay

φ 0.26 code* Connection probability for all populations

win 100 nS code Synaptic strength of input connections

wT →M 0.2 nS code* Intracolumnar T to M excitatory synaptic strength

wIT→M 70 nS ⋆ code* Inhibitory synaptic strength from IT in L5 to M

wIi
T→T j 100 nS ⋆ code* Inhibitory synaptic strength from Ii

T in Ci to T j in Cj

wIi
M→Mj 100 nS ⋆ code* Inhibitory synaptic strength from Ii

M in Ci to M j in Cj

wT →IT 0.2 nS ⋆ code* Intracolumnar T to IT excitatory synaptic strength

wM→IM 1 nS ⋆ code* Intracolumnar M to IM excitatory synaptic strength

B: Neuron Model

Name Value Source Description

Cm 200 pF paper Membrane capacitance

τm 10 ms paper Membrane time constant

gL 10 nS paper Leak conductance

EL −60 mV paper Resting membrane potential

V E
th −55 mV paper Spiking threshold for excitatory neurons

V I
th −50 mV code* Spiking threshold for inhibitory neurons

Vreset −60 mV code* Reset potential

τref 3 ms code* Absolute refractory period

σξ 100 code* Standard deviation of Gaussian white noise

νin 30 Hz code* Rate of Poisson stimulus input

C: Synapse Model
Name Value Source Description

EE 0 mV paper Excitatory reversal potential

EI −70 mV paper Inhibitory reversal potential

τ exc,inp
syn 10 ms code* Excitatory synaptic time constant of the input connections

τ exc
syn 80 ms paper Excitatory synaptic time constant

τ inh
syn 10 ms paper Inhibitory synaptic time constant

ρ 1/7 paper Fractional change of synaptic activation

Supplementary Table C.2: Tabular description of the neuron, synapse and connectivity param-
eters. Parameters marked with ⋆ were additionally jittered with a randomly drawn value from
N (0, 0.1). Parameters marked with * had different values in the code than reported in the paper.
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C.2 Parameters of the baseline model

A: Learning Parameters
Name Value Source Description

τp 2000 ms paper LTP eligibility trace time constant (intracolumnar
connections)

τd 1000 ms paper LTD eligibility trace time constant (intracolumnar
connections)

τp
ff 200 ms paper LTP eligibility trace time constant (cross-columnar

connections)

τd
ff 800 ms paper LTD eligibility trace time constant (cross-columnar

connections)

T p
max 0.0033 code* Saturation level of LTP trace (intracolumnar connec-

tions)

T d
max 0.00345 code* Saturation level of LTD trace (intracolumnar connec-

tions)

T p,ff
max 0.0034 code* Saturation level of LTP trace (cross-columnar connec-

tions)

T d,ff
max 0.00345 code* Saturation level of LTD trace (cross-columnar connec-

tions)

ηp 45 × 3500 ms−1 code* Activation rate of LTP trace (intracolumnar connec-
tions)

ηd 25 × 3500 ms−1 code* Activation rate of LTD trace (intracolumnar connec-
tions)

ηp
ff 20 × 3500 ms−1 code* Activation rate of LTP trace (cross-columnar connec-

tions)

ηd
ff 15 × 3500 ms−1 code* Activation rate of LTD trace (cross-columnar connec-

tions)

rth 10 Hz code* Hebbian activation threshold (recurrent connections)

rff
th 20 Hz code* Hebbian activation threshold (feedforward connec-

tions)

η 0.16 ms−1 code* Learning rate T → T connections

η 20 ms−1 code* Learning rate M → T connections

Treward 25 ms paper Duration of neuromodulator presentation upon
change in stimulus

Ttr 25 ms paper Duration of refractory period for traces following neu-
romodulator presentation

dreward 25 ms paper Reward delay

Supplementary Table C.3: Tabular description of learning parameters. Parameters marked with
* had different values in the code than reported in the paper.
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Appendix C Supplementary materials for Chapter 7

C.3 Parameters of the scaled model

A: Parameters for standard scaling

Name Value Description

N ′ 400 Number of neurons in each population (scaled)

w′
T →M wT →M /2 Intracolumnar T to M excitatory synaptic strength

w′
IT→M wIT→M /2 ⋆ Inhibitory synaptic strength from IT in L5 to M

w′
Ii

T→T j wIi
T→T j /2 ⋆ Inhibitory synaptic strength from Ii

T in Ci to T j in Cj

w′
Ii

M→Mj wIi
M→Mj /2 ⋆ Inhibitory synaptic strength from Ii

M in Ci to M j in Cj

w′
T →IT wT →IT /2 ⋆ Intracolumnar T to IT excitatory synaptic strength

w′
M→IM wM→IM /2 ⋆ Intracolumnar M to IM excitatory synaptic strength

B: Parameters for manually tuned scaling

Name Value Description

N ′′ 400 Number of neurons in each population (scaled)

w′′
T →M w′

T →M · 1.2 Intracolumnar T to M excitatory synaptic strength

w′′
IT→M w′

IT→M · 2 ⋆ Inhibitory synaptic strength from IT in L5 to M

w′′
Ii

T→T j w′
Ii

T→T j · 0.02 ⋆ Inhibitory synaptic strength from Ii
T in Ci to T j in Cj

w′′
Ii

M→Mj w′
Ii

M→Mj · 2 ⋆ Inhibitory synaptic strength from Ii
M in Ci to M j in Cj

w′′
T →IT w′

T →IT · 0.02 ⋆ Intracolumnar T to IT excitatory synaptic strength

w′′
M→IM w′

M→IM · 2 ⋆ Intracolumnar M to IM excitatory synaptic strength

σ′′
ξ σξ/2 Standard deviation of Gaussian white noise

Supplementary Table C.4: Tabular description of the modified parameters in the scaled net-
work models. For the standard scaling, the values are obtained by applying a scaling factor of
1/
√

N ′/N to the original values (see Section 7.2). Parameters marked with ⋆ were additionally
jittered with a randomly drawn value from N (0, 0.1).
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C.3 Parameters of the scaled model

C.3.1 Parameters of the alternative model with local inhibition

A: Parameters for Network with Local Inhibition

Name Value Description

N 100 Number of neurons in each population (as in baseline model)

wT →M 0.2 nS Intracolumnar T to M excitatory synaptic strength

wIT→T 70 nS⋆ Inhibitory synaptic strength from IT in L5 to T

wIM→M 70 nS⋆ Inhibitory synaptic strength from IM in L2/3 to M

wT →IM 0.2 nS⋆ Excitatory synaptic strength from T to IM

w
T i→I

j
T

0.2 nS⋆ Excitatory synaptic strength from T in column Ci to IT in Cj , i ̸= j

w
Mi→I

j
M

0.5 nS⋆ Excitatory synaptic strength from M in column Ci to IM in Cj , i ̸= j

Supplementary Table C.5: Tabular description of the modified parameters in the model with
rewired local inhibition. Parameters marked with ⋆ were additionally jittered with a randomly
drawn value from N (0, 0.1).
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