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Zusammenfassung

Kritische Rohstoffe (KR) sind essenziell für eine moderne Gesellschaft. In dieser Arbeit wurden
Graphit und Wolfram als repräsentative Beispiele für KR näher untersucht. Beide Rohstoffe wer-
den hauptsächlich aus komplexen Erzen gewonnen, die sorgfältig charakterisiert werdenmüssen,
um Lagerstätten umfassend bewerten und die Rohstoffgewinnung maximieren zu können. Kon-
ventionelle Charakterisierungsmethoden liefern zwarwertvolle Informationen überMineralogie
und Geochemie, erfordern jedoch eine aufwändige, destruktive Probenvorbereitung und sind auf
zweidimensionale (2D) Informationen beschränkt. Darüber hinaus kann die Übertragung dieser
2D-Informationen in dreidimensionale (3D) Informationen zu stereologischen Fehlern führen.

Die Röntgen-Computertomographie (CT) ermöglicht eine zerstörungsfreie 3D-Analyse von Ob-
jekten auf Basis ihrer Röntgenabschwächung bei einer Auflösung von bis zu 1 µm. In den ver-
gangenen zwei Jahrzehnten hat CT in der Untersuchung von Erzen zunehmend an Bedeutung
gewonnen, da sie beispielsweise die räumliche Darstellung von Mineralverteilungen sowie die
Quantifizierung von Korngrößen, -formen und -volumen ermöglicht. Die Anwendung von CT
zur mineralogischen Charakterisierung von Erzen kann jedoch eine Herausforderung insbeson-
dere aufgrund der unterschiedlichen Röntgenabschwächungseigenschaften verschiedener Mine-
rale und des Fehlens spektraler Informationen darstellen. Deshalb wurden verschiedene
Bildaufnahme- und Bildverarbeitungsmethoden entwickelt und eingesetzt, um die Bildqualität zu
verbessern und dieMenge der extrahierbaren Informationen zu erhöhen. CTwurde vor allem zur
Analyse von Gold- und PGE-Erzen verwendet; die Anwendung von CT zur Analyse von Graphit-
und Wolframerzen ist bislang unzureichend erforscht. Um eine hinreichende Charakterisierung
dieser Erzemit CT zu ermöglichen, ist die Entwicklung geeigneter Analysestrategien unerlässlich.

Die Hauptforschungsfrage dieser Dissertation lautete: „Wie kann CT optimiert werden, um zu-
verlässige qualitative und quantitative mineralogische Informationen über die kritischen Roh-
stoffe Graphit und Wolfram in Erzen zu gewinnen?“ Das Hauptforschungsziel bestand in der
Untersuchung des Potenzials von CT für die mineralogische Charakterisierung von Graphit-
und Wolframerzen. Die Hauptforschungsfrage und das Hauptforschungsziel wurden durch drei
begutachtete wissenschaftliche Studien adressiert, die den experimentellen Kern dieser Arbeit
bilden. Als Methoden wurden CT mit entsprechender Rekonstruktions- und Verarbeitungssoft-
ware, Röntgendiffraktometrie (XRD), optischeMikroskopie (OM), ultraviolettes (UV) Licht, opti-
sche Emissionsspektrometrie mit induktiv gekoppeltem Plasma (ICP-OES), Rasterelektronenmi-
kroskopie gekoppelt mit energiedispersiver Röntgenspektroskopie (SEM-EDS) sowie eine SEM-
basierte automatisierte Mineralogie-Software eingesetzt.

Studie 1 untersuchte die Eignung von CT zur Charakterisierung von Flockengraphiterz. Dabei
lag der Schwerpunkt auf der Entwicklung eines CT-Analyseprotokolls, um wichtige mineralo-
gische Eigenschaften von Graphit zu bestimmen. Unter Berücksichtigung der mineralogischen
Zusammensetzung des Erzes und der heterogenen Abschwächungseigenschaften, die mit her-
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kömmlichen mineralogischen Methoden identifiziert wurden, konnten hochwertige CT-Daten
aufgenommen werden. Die Anwendung von Deep Learning (DL)-basierten Segmentierungsstra-
tegien führte zu einer Reduktion der inhärenten Einschränkungen von CT-Bilddaten, die sich aus
der ähnlichen Röntgenabschwächung vonGraphit und Silikatmineralen ergaben. Das entwickelte
Analyseprotokoll ermöglichte eine genaue quantitative Analyse der Graphitflockengrößenvertei-
lung, -form, -verunreinigungen und des Gesamtgraphitgehalts. Die Validierung mit herkömmli-
chen Methoden bestätigte die Genauigkeit der Daten und zeigte den Mehrwert der CT für die
mineralogische Charakterisierung von Flockengraphiterz auf.

Da dieRöntgenabschwächung der Phasenmit der eingestelltenRöntgenenergie variiert und damit
den Bildkontrast bestimmt, wurde in der zweiten Studie die Effektivität der Dual-Energy-CT
(DECT) zur Verbesserung der Bildqualität untersucht. Dazu wurde ein sequentieller Fusions-
ansatz bei einer Graphiterzprobe angewendet, um CT-Daten aus verschiedenen Single-Energy-
CT (SECT) Scans mit hoher räumlicher Auflösung vor der Rekonstruktion zu kombinieren und
DECT-Daten zu erzeugen. Zusätzlich wurden unterschiedliche Gewichtungsfaktoren angewen-
det, um den optimalen Beitrag der verwendeten Energiespektren zu ermitteln. Die Ergebnisse
zeigten, dass alle DECT-Datensätze im Vergleich zu den SECT-Datensätzen einen signifikant
verbesserten Bildkontrast aufwiesen. Darüber hinaus erwies sich die entwickelte Methode zur
Messung der Bildqualität als effektiv für den quantitativen Vergleich von Datensätzen mit hete-
rogenen Grauwertinformationen.

Während in den Studien 1 und 2 der Schwerpunkt auf der Methodenentwicklung lag, handelte
es sich bei Studie 3 um eine Fallstudie, bei der zwei Scheeliterzproben aus der australischen
Fe-W-Lagerstätte Kara mittels CT untersucht wurden. Ziel der Studie war die Bestimmung der
modalenMineralogie und desWolframgehalts sowie dieUntersuchung des Erzgefüges. Zu diesem
Zweck wurde das in Studie 1 entwickelte CT-Analyseprotokoll angewendet und unter Berück-
sichtigung der spezifischen mineralogischen Eigenschaften der Erzproben optimiert. Zusätzlich
wurde das in Studie 2 entwickelte CT-Fusionsverfahren auf eine Probe angewendet. Die Unter-
suchung ergab, dass Scheelit hauptsächlich mit wasserhaltigen Phasen vergesellschaftet war und
überwiegend als massive oder disseminierte Aderfüllung in geringer Konzentration beziehungs-
weise in Spuren vorkam. Die Studie zeigte, dass CT eine genaue 3D-Visualisierung der Textur
von Scheeliterz ermöglichte und valide quantitative Daten zur modalen Mineralogie sowie zum
WO3-Gehalt der untersuchten Proben lieferte. Die gewonnenen Informationen tragen somit zum
Verständnis der Erzgenese und zur Entwicklung geeigneter Aufbereitungsstrategien von Scheelit
aus der Fe-W-Lagerstätte Kara bei.

Die Synthese der Forschungsergebnisse zeigte, dass durch die Entwicklung spezieller Analyse-
protokolle gültige und genaue mineralogische 3D-Informationen von Graphit- und Wolframerz
gewonnen werden konnten, die den Mehrwert der CT bei der Anwendung auf diese Erze ver-
deutlichen. Die Fähigkeit, graustufenkontrastbedingte Analyseeinschränkungen zu verringern,
insbesondere durch den Einsatz der DL-basierten Segmentierung, stellt einen bedeutenden Fort-
schritt in der CT-Erzanalyse dar. Obwohl CT für Graphit- und Wolframerze optimiert wurde,
bieten die entwickelten Strategien dieMöglichkeit, auch auf andere komplexe Erze mit ähnlichen
mineralogischen Eigenschaften erfolgreich angewendet zu werden. Somit trägt diese Arbeit zur
methodischen Entwicklung und einer breiteren Anwendung von CT in der Erzanalyse bei. Al-
lerdings bestehen nach wie vor inhärente methodische Schwächen, die in Verbindung mit langen
Analysezeiten, Probenkomplexität, begrenzter Standardisierung und hohenAnalysekosten erheb-
liche Einschränkungen für die breite Nutzung von CT im Bergbausektor darstellen. Aktuelle
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und zukünftige Forschung, die sich auf die Integration von künstlicher Intelligenz entlang der
CT-Analysekette und Automatisierung konzentriert, könnte diese Einschränkungen erheblich
verringern.
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Abstract

Critical rawmaterials (CRMs) are essential to modern society, with graphite and tungsten serving
as two examples in this work. Graphite and tungsten are primarily sourced from complex ores
requiring rigorous characterisation for evaluating ore deposit quality and maximising recovery.
Conventional characterisation methods, while providing essential insights into the mineralogy
and geochemistry of ores, involve destructive sample preparation, require careful sectioning and
are limited to two-dimensional (2D) information. Moreover, translating this 2D information into
three-dimensional (3D) information can introduce stereological bias.

X-ray computed tomography (CT) allows for non-destructive 3D analysis of both bulk volume and
spatially resolvedmicrostructures of scanned objects, based on the X-ray attenuation information
of their constituents, with a resolution down to 1 µm. Over the past two decades, CT has gained
increasing attention in the study of ores, enabling, for example, the spatial visualisation ofmineral
distributions and quantification of grain sizes, shapes and volumes. However, applying CT in ore
characterisation presents challenges, particularly due to the varying X-ray attenuation properties
of different minerals and the lack of spectral information. To address these challenges, several
acquisition and image processing methods have been developed and applied to enhance image
quality and the amount of extractable mineralogical information, optimising CT for specific ores.
Against this background, CT has been particularly successful in analysing gold and PGE ores. In
contrast, the comprehensivemineralogical characterisation of graphite and tungsten ores remains
relatively underexplored, highlighting the need for proper CT analysis protocols.

This thesis addressed these gaps and aimed to answer the main research question: ‘How can CT
be optimised for the characterisation of the critical raw materials graphite and tungsten ores, to
obtain reliable qualitative and quantitative mineralogical information?’ The main research aim
was to investigate the potential of CT for the characterisation of graphite and tungsten ores. The
main research question and the main research aim were addressed through three peer-reviewed
scientific studies, forming the experimental work of this thesis. The methods employed included
CT with corresponding reconstruction and processing software, X-ray diffraction (XRD), optical
microscopy (OM), ultraviolet (UV) light, inductively coupled plasma optical emission spectro-
scopy (ICP-OES), scanning electron microscopy coupled with energy-dispersive X-ray spectro-
scopy (SEM-EDS) as well as SEM-based automated mineralogy software.

Study 1 evaluated the potential of CT for characterising flake graphite ore, focusing on the devel-
opment of a CT analysis protocol in order to establish critical mineralogical aspects. By consid-
ering the ore’s mineralogical composition, accounting for the heterogeneous attenuation char-
acteristics identified using conventional mineralogical methods, high-quality CT data were ac-
quired. The application of deep learning (DL)-based segmentation strategies successfully reduced
inherent limitations associated with CT image data, resulting from the similar X-ray attenuation
properties of graphite and silicate minerals. The protocol developed enabled accurate quantit-
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ative analysis of graphite flake size distribution, shape, impurities, and overall graphite content.
Validation against conventional methods confirmed the accuracy of the data, demonstrating the
added value of CT for the mineralogical characterisation of flake graphite ore.

Study 2 addressed the constraints related to the limited grey value contrast of similar X-ray atten-
uating materials such as graphite and silicates. Considering that the X-ray attenuation properties
of the phases vary with the X-ray energy applied, this study investigated the effectiveness of
dual-energy CT for improving image contrast. A sequential fusion approach was employed on a
graphite ore sample to combine CT data obtained from different single-energy CT (SECT) scans
at high spatial resolution prior to reconstruction, establishing dual-energy CT (DECT) data. In
addition, varying weighting factors were applied to determine the optimal contribution of each
energy level and spectrum. To evaluate the image quality obtained, a method was developed for
quantitatively measuring the image contrast between individual phases. The findings demon-
strated that all DECT datasets showed significantly improved image contrast compared to SECT
datasets. Furthermore, the image quality measure method developed proved to be an effective
tool for comparing image quality betweenmulti-material datasets comprising heterogeneous grey
value information.

While studies 1 and 2 primarily focused on method development, study 3 formed a case study.
Two scheelite ore samples from the Australian Kara Fe-W deposit were examined using CT to
establish modal mineralogy, mineral textures, scheelite distribution and tungsten grade. The CT
analysis workflow developed in study 1 was applied and optimised to the ores’ specific mineralo-
gical properties. In addition, the fusion approach developed in study 2 was applied to increase
the image quality, mitigating acquisition issues. The results showed that scheelite was primarily
associated with hydrous phases and occurred predominantly as massive or disseminated vein-fill
mineralisation at minor and trace concentrations. The study demonstrated that CT of scheelite
ore enabled accurate 3D texture visualisation and yielded valid quantitative data on modal min-
eralogy andWO3 grade of the samples investigated, ultimately providing relevant information on
ore formation and for comminution strategies of scheelite at the Kara Fe-W deposit.

The synthesis of the research findings showed that by developing dedicated analysis protocols,
reliable mineralogical 3D information of graphite and tungsten ore was generated, showcas-
ing the added value of CT applied to these ores. The ability to reduce greyscale contrast-based
analysis constraints, particularly through the use of DL-based segmentation, marks a significant
advancement in CT ore analysis. While CT was optimised for graphite and tungsten ores, the
strategies developed hold potential for application to other complex ores with similar mineralo-
gical characteristics, contributing to broader applications of CT. However, inherent methodolo-
gical constraints persist, which, in conjunction with extended analysis time, sample complexity
and limited standardisation, present a significant barrier to adoption in the raw materials sector,
particularly for operators. Future research focusing on integrating AI along the CT analysis chain
and automatisation could significantly lower this barrier.
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Chapter 1

General introduction

This chapter contextualises this cumulative thesis by outlining themotivation, providing essential
background information, and reviewing the development of computed tomography (CT) in the
light of ore characterisation to identify research gaps. The main research question and aim are
subsequently derived, with the thesis structure and significance detailed in the final two sections
of the chapter. Further information on selected terms used in this manuscript is compiled in a
Glossary at the end of this thesis (p. 107ff).

1.1 Motivation
From ancient stone tools to complex electronics powering modern society, raw materials have
always been the foundation for technological advancements [1–3]. Today, confronting the climate
crisis, the transition to green technologies as outlined in the European green deal depends on a
specific group of raw materials: Critical Raw Materials (CRMs) [4]. CRMs, as defined by the
EU, encompass a range of elements, metals, minerals, or substances that possess high economic
value coupled with a significant supply risk [5–7] and are mainly derived from complex ores (cf.
Glossary, p. 107ff) [8–11]. Two prominent CRMs are graphite, a major component in lithium-ion
batteries [12], and tungsten, essential for high-performance alloys [13], serving as two examples
in this work.

Efficient and responsible sourcing of graphite and tungsten requires a sound understanding of
the geological, mineralogical, and geochemical characteristics of their ore deposits [14–16]. This
knowledge is fundamental formaking informed decisions throughout themining lifecycle—from
exploration to mine closure. Therefore, a comprehensive characterisation of these ores is crucial
to develop efficient and sustainable strategies that optimise extraction and mineral processing,
maximising resource utilisation and minimising waste [14–16].

Traditional characterisation of graphite and tungsten ores typically involves various well-esta-
blished techniques, such as optical microscopy (OM), X-ray diffraction (XRD), scanning electron
microscopy with energy dispersive spectrometry (SEM-EDS), inductively coupled plasma mass
spectrometry (ICP-MS), and X-ray fluorescence analysis (XRF). While ICP-MS and XRF provide
valuable bulk chemical information, XRDoffers insights into themainmineralogical composition.
Imaging techniques like OM, SEM-EDS, and SEM-based automated mineralogy systems such as
Advanced Mineral Identification and Characterisation System (AMICS) offer critical mineralo-
gical data on composition and ore texture (cf. Glossary, p. 107ff) including mineral size, habit,
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spatial distribution, and associations, yielding two-dimensional (2D) information [17, 18]. How-
ever, these methods are time-consuming, destructive, and rely on careful sectioning of samples
to obtain representative material information. Furthermore, translating 2D analysis results into
the third dimension (3D) can introduce stereological bias, as the selected cross-section may not
reflect the actual distribution, sizes and spatial relationships of the constituents within the ore
[19, 20], potentially leading to inaccuracies in the analysis.

Since graphite and tungsten ores and their derived products are inherently 3D structures, a com-
prehensive understanding of their mineralogy and texture requires tools capable of capturing
this information in 3D. Computed tomography (CT) is a X-ray computerised imaging method
for studying multicomponent materials and constructions in a 3D regime. It is currently the
only non-destructive method that allows the observation and analysis of internal and external
microstructures of objects without exhaustive sample preparation and without strong limitations
on the size, typically up to 5 cm for CT applications in the geosciences [21], and the shape of the
objects studied [21].

While being well established in fields such as medicine, dimensional metrology and additive man-
ufacturing [e.g., 22–25], CT has gained increasing attention in the geosciences and the rawmateri-
als sector in the past two decades, including the study of ores [21, 26]. CT enables the identification
and visualisation of minerals within ore samples based on their X-ray attenuation properties,
allowing 3D analysis of mineral distributions and spatial relationships [21]. It has been used to
examine mineral textures, providing information on grain size, shape and orientation [21, 27].
However, effective CT analysis is not without challenges. Since CT does not provide spectral
information for direct phase identification, the quality and success of the analysis depends on
various factors, including the inherent properties of the ore (e.g., mineral density and effective
atomic number (Z𝑒𝑓 𝑓 ) (cf. Glossary, p. 107ff) and the developed analysis protocol (e.g., image
acquisition and processing strategies). For example, low-density minerals like graphite require
different scanning parameters than high-density phases such as tungsten containing scheelite.
Moreover, mineral differentiation becomes more challenging when ores contain minerals with
similar X-ray absorption properties [28].

Historically, CT has been successfully applied to ores like gold and platinum group elements
(PGEs), where target minerals (cf. Glossary, p. 107ff) exhibit sufficient X-ray attenuation contrast
relative to the gangue [e.g., 26, 29–32]. However, its application to CRMs like graphite and tung-
sten ores—characterised by heterogeneous mineralogy and textures—remains underexplored.
Notably, only a few studies have focused on using CT for graphite ores [33, 34] and tungsten ores
[35, 36], with no research dedicated to a comprehensive mineralogical characterisation of these
ores.

This thesis addresses these gaps and investigates the potential of CT for the mineralogical char-
acterisation of graphite and tungsten ores. By developing proper acquisition protocols and image
processing strategies CT workflows are established optimised to these ores’ properties to obtain
high-quality CT data. The findings of this thesis will be of significance for the optimal utilisation
of CT in the context of graphite and tungsten ores. In addition, this thesis will contribute to the
existing body of knowledge, aiding in the development of CT for ore characterisation. Finally,
the results presented in this work will serve as a foundation for future research that may result
in a better understanding of other types of CRM ores and thus contribute to more sustainable
mining practices.
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1.2 Background - computed tomography
CT scanners consist of an X-ray source, a detector, and a rotary sample stage positioned between
them (Fig. 1.1A), on which the sample to be scanned is mounted. During a CT measurement
procedure, a conical X-ray beam is emitted from the source and traveses the specimen which
rotates through a range of angles, typically spanning up to 360°. As the X-rays interact with the
material, their intensity is attenuated based on the materials density, 𝑍𝑒𝑓 𝑓 , thickness and the X-ray
energy applied [37, 38]. The detector captures the intensity of the transmitted X-rays and converts
it into a raw image projection, or projection (cf. Glossary, p. 107ff). This process is repeated as
the stage rotates, thereby generating a series of projections from different angular positions. The
resulting projection data is then computationally reconstructed to generate 2D image slices and a
3D volumetric representation of the specimen, which can be further processed for segmentation
tasks and feature extraction [28, 39].

The following subsections will delve into the principles of CT analysis (Fig. 1.1B), including X-ray
generation, X-ray attenuation, raw data collection, reconstruction and image processing. The
technical specifications of the CT scanner employed for the experimental work performed can be
found in Appendix A.

X-ray 
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of X-rays
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Figure 1.1: CT analysis: A) Schematic representation of a CT scan and the subsequent
computerised processes. B) CT analysis principles and general processing steps.

1.2.1 X-ray generation
X-rays, a form of electromagnetic radiation, are usually generated within an X-ray tube [40].
In this process, a high voltage (cf. Glossary, p. 107ff) is applied to accelerate electrons emitted
by a heated filament. These electrons are then directed towards a positively charged anode,
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typically composed of tungsten. As electrons collide with the anode, they produce X-rays through
bremsstrahlung, where deceleration results in energy emission. This process generates a broad
spectrum of energies, forming a polychromatic X-ray beam [40].

A further type of X-rays produced by the X-ray tube is characteristic X-ray emission. Such X-rays
occur when the high-energy electrons collide with inner shell electrons of the anode material,
causing the removal of these electrons from their orbits. Subsequent filling of these vacancies by
outer-shell electrons releases energy in the form of characteristic X-rays, which possess discrete
energies characteristic of the anode material [40]. The proportion of bremsstrahlung and char-
acteristic X-rays in the emitted polychromatic X-ray beam depends on various factors, including
the accelerating voltage applied to the X-ray tube and the atomic composition of the anode ma-
terial. While the exact proportions can vary, a typical estimation is that bremsstrahlung radiation
accounts for ≥75% of the X-ray intensity, while characteristic X-rays contribute to ≤25% [41].

1.2.2 X-ray attenuation
When X-rays interact with matter, one can measure the attenuation of the initial intensity. Thus,
X-ray attenuation describes the reduction in energy of an X-ray beam as it passes through an
object. This attenuation results from interactions between the X-ray photons and the object’s
material properties mentioned earlier (density, Z𝑒𝑓 𝑓 , and thickness) [37, 38]. The extend of the
attenuation is proportional to the increase in these parameters. For example, high-density phases
attenuate more X-rays than low-density phases [28].

In general, four mechanisms contribute to X-ray attenuation, namely, (1) photoelectric absorp-
tion, (2) Compton scattering, (3) pair production, and (4) coherent scattering. The relative signi-
ficance of each mechanism varies with the X-ray energy applied. For instance, pair production
predominates at X-ray energies greater than 1.02 MeV [42], while coherent scattering is notable
at very low X-ray energies, typically below 10 keV [42]. However, in the context of this thesis,
pair production and coherent scattering can be disregarded as the X-ray energies employed in
this study ranged between 60 kV and 190 kV. Consequently, the photoelectric absorption and
Compton scattering are the major prevailing mechanisms.

1. Photoelectric Absorption: This process occurs when an X-ray photon interacts with an inner
shell electron of an atom, transferring its entire energy to eject the electron from its orbit
[42]. The energy difference between the initial and final states of the atom is then emitted
as a characteristic X-ray photon. The probability of photoelectric absorption is strongly
influenced by the atomic number (Z) of the material and the X-ray energy. It dominates at
lower energies (approximately 50-100 keV) and is proportional to Z4−5.

2. Compton Scattering: This becomes the dominant process at higher X-ray energies (>5MeV).
It involves the interaction between an X-ray photon and a loosely bound outer-shell elec-
tron, where the photon imparts only part of its energy to the electron, causing it to recoil
and the scattered photon to change direction [43]. Compton scattering is more dependent
on the material’s electron density than its atomic number and is less sensitive to material
composition, especially at lower energies. The probability of Compton scattering depends
more on the overall electron density of the material than its atomic number. This makes
Compton scattering less sensitive to the specific material composition compared to the
photoelectric effect, especially at lower energies.
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The X-ray attenuation is quantified by the Beer-Lambert law [44]. The law states that the intensity
of theX-ray beam I(x) after passing through a homogenousmaterialwith the thickness x is related
to the initial intensity 𝐼0 and the linear attenuation coefficient 𝜇 of the material according to the
equation:

𝐼 (𝑥) = 𝐼0 · 𝑒−𝜇𝑥 (1.1)

whereby 𝜇 represents the probability of X-ray interaction (absorption or scattering) within the
material per unit length. It is a constant that describes the fraction of attenuated incident photons
and is influenced by the material’s Z𝑒𝑓 𝑓 and density. Materials with higher 𝜇 values have a greater
likelihood of interacting with X-rays, leading to a higher rate of intensity reduction in the beam
[45].

1.2.3 Raw data collection
ConvertingX-ray attenuation information to rawdata is the actual computerisation process inCT
[24]. Eq. (1.1) assumes a uniform material (𝜇 = constant). For inhomogeneous materials, such as
ores, typically comprising various minerals with different attenuation properties, Eq. (1.1) needs
to be modified as a single 𝜇 is inadequate. Hence, it must be supplemented with a line integral
(cf. Glossary, p. 107ff) that considers different materials with varying 𝜇(𝑥) along the X-ray beam’s
travel path d:

𝐼 (𝑑) = 𝐼0 · 𝑒−
∫ 𝑑

0 𝜇(𝑥)𝑑𝑥 (1.2)

where I(d) is the intesity of the X-ray beam after traveling a distance d through the object, ac-
counting for the cumulative effect of the varying 𝜇(x) along the path. To adapt the relation to a
polychromatic X-ray beam spectrum, Eq. (1.2) must be further modified to to account for varying
photon energies:

𝐼 (𝑑) =
∫ 𝐸𝑚𝑎𝑥

0
𝐼0(𝐸) · 𝑒−

∫ 𝑑

0 𝜇(𝐸,𝑥)𝑑𝑥𝑑𝐸 (1.3)

whereby 𝐼0(𝐸) represents the initial intensity at each energy level E, and 𝜇(E, x) represents the
attenuation coefficient as a function of both energy and position along the beam path (d).

However, as the spectral data is irretrievably lost during the acquisition process in conventional
CT, the spectral component in Eq. (1.3) must be disregarded. Therefore, mathematical algorithms
for CT reconstructions extracting the attenuation information are usually based on Eq. (1.2)
assuming amonochromatic X-ray beam. In addition, considering the rotation of the object during
a CT scan, the beam angle 𝜃 must be included to the formula resulting in:

𝑝(𝑑𝜃) = −𝑙𝑛 𝐼 (𝑑𝜃)
𝐼0

=

∫ 𝑑𝜃

0
𝜇(𝑥)𝑑𝑥. (1.4)

Eq. (1.4) represents the projection image 𝑝(𝑑𝜃), acquired at given d and 𝜃, which is proportional
to the integrated attenuation coefficient of a sample from a certain beam direction.

Acquisition parameters
To acquire CT projection data, a set of scanning parameters including voltage, beam current,
exposure time, frame averaging, number of projections, pre-filtering, and focal spot size (cf. Gloss-
ary, p. 107ff) must be applied affecting the X-ray beam properties and attenuation by the material
and consequently the image quality [46]. General information on scanning parameters can be
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found in [47]. The overall image quality is influenced by signal-to-noise ratio (SNR), spatial resol-
ution (cf. Glossary, p. 107ff), and image contrast [44]. Selecting the optimal scanning parameters
requires careful consideration of the sample’s properties (e.g., size, mineralogical composition) to
obtain high image quality. Striking the right balance between these factors can be challenging, yet
essential for establishing CT data suitable for effective ore analysis.

1.2.4 Reconstruction
Reconstruction in CT bridges the gap between the acquired X-ray projection data and the 3D
representation of the scanned object. This computational process involves mathematically trans-
forming a series of one-dimensional (1D) X-ray intensity measurements (line integrals, Eq. (1.4)),
acquired at various angles around the object, into a 2D image. The most widely used reconstruc-
tion method is filtered back projection (FBP) (cf. Glossary, p. 107ff), which applies the Fourier
transform to process the projection data. This transformation is carried out by a reconstruction
software, which, following the completion of the reconstruction operation, renders the 2D images
into a 3D volume. This volume is represented as a cubical matrix of greyscale voxels (3D pixels),
each voxel assigned a grey value based on the calculated X-ray attenuation coefficient for the cor-
responding region in the scanned object, thereby reflecting the local density and effective atomic
number of the material. The reconstruction process is computationally demanding, and while a
detailed mathematical explanation of FBP is beyond the scope of this thesis, further information
is available in the literature [24, 48]. The reconstruction software used in this work was VGStudio
Max 3.5 [49].

Scanning artefacts
Neglecting the spectral information in Eq. (1.4) used to generate a CT projection can lead to
inconsistencies and scanning artefacts (cf. Glossary, p. 107ff) in the reconstructed CT data. These
appear as structures in the reconstructed image that do not correspond to real features within the
scanned object. Artefacts arise from discrepancies between the actual attenuation properties of
the object and the values used during image reconstruction. The most prominent artefact is beam
hardening (cf. Glossary, p. 107ff). A detailed summary on scanning artefacts can be found in [50].

1.2.5 Image processing
Image filtering
The reconstructed CT data can be affected by image noise, scanning artefacts or low contrast. In
this case, digital image filters can be applied to enhance the image quality by smoothing the image
or increasing image sharpness [28, 39]. Despite being a useful and effective step, it is important
to note that filtering alters the original CT dataset, impacting the accuracy and reliability of
subsequent analyses and data interpretation [51].

Segmentation
Segmentation refers to the process of digitally partitioning the 3D image data into distinct regions
within the object [52], facilitating their visualisation and analysis. It involves identifying and isol-
ating voxels with similar features (e.g., grey values, textures) into discrete group of voxels (classes).
In the context of ore analysis, segmentation classifies voxels into different mineral phases or
mineral groups within the reconstructed data, providing insights into mineralogical composition
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and textural information such as grain size, volume, and shape. There are various segmentation
techniques applied in literature [e.g., 27, 53, 54]. However, given the scope of this work, only
thresholding and watershed segmentation, representing conventional segmentation techniques,
as well as artificial intelligence (AI)-based methods (cf. Glossary, p. 107ff), representing advanced
segmentation techniques [55, 56], will be described in the following.

Conventional segmentation Thresholding is a common segmentation technique where clas-
ses are identified based on their grey value differences. It divides the grey value histogram of
reconstructed CT data into classes with each class representing the grey value range of a specific
mineral or mineral group. This process involves selecting a threshold value that separates the
greyscale intensities of different mineral phases. Pixels with intensities above the threshold are
typically assigned to one class, while those below are assigned to another [57]. It is either used
as a pre-processing segmentation step to generate a binary image for an additional segmentation
algorithm, or as a primary step. The accuracy of this method depends upon the choice of the
threshold value and the degree to which the greyscale values uniquely represent each mineral
class [57].

In watershed segmentation, the image is treated as a topographic map, with grey values rep-
resenting elevation [27]. The algorithm identifies catchment basins and their boundaries. By
simulating flooding frommarker points within these basins, the algorithm is particularly effective
for separating touching or overlapping objects [27]. Similar to the manually chosen threshold
value in threshold segmentation, the accuracy of watershed segmentation depends on the correct
placement of marker points.

Advanced segmentation AI-based segmentation methods consider both greyscale informa-
tion and textural features for mineral identification [58]. In this thesis, deep learning (DL)-based
segmentation (cf. Glossary, p 107ff) was employed. Deep learning is a subset of machine learning
in which artificial neural networks are trained on large datasets to learn patterns and features
directly from the data [59]. This approach leverages interconnected processors (neurons) organ-
ised in layers, emulating the human brain’s ability to recognise complex patterns through train-
ing. These processors are primarily built on a convolutional neural network (CNN) architecture.
While a full elaboration on CNNs is beyond the scope of this thesis, a concise explanation of their
operational principles follows. For a comprehensive understanding of deep learning and CNNs,
please refer to [59, 60].

The foundation ofCNNs lies in their convolutional layers, comprising learnable filters, also known
as kernels. These kernels are small matrices that systematically slide across the CT image, per-
forming a mathematical operation known as convolution on each local region. This convolution
operation allows the network to detect local features, such as edges, grain boundaries, and shapes,
based on the greyscale gradients present in the image. Following each convolutional layer, activa-
tion functions attribute significance to the information extracted by the kernels (kernel weights),
thereby determining the proportion of information passed to the next layer. This mechanism
allows the network to focus on the distinct features (grey values and textures) characteristic of
specific mineral classes. Through the stacking of multiple convolutional layers, CNNs progress-
ively build upon these identified local patterns, enabling the extraction of increasingly complex
information, including textural variations like grain boundaries and shapes, enabling the recog-
nition of mineral phases.
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The ability ofCNNs to recognisemineral phases hinges on the processes of training and validation
allowing for adjusting the kernel weights. The training process involves presenting the CNNwith
a set of manually labelled representative regions of different CT image slices, where each pixel is
assigned to a class corresponding to a specific mineral. This labelled dataset serves as ground
truth data (Glossary, p. 107ff), guiding the network’s learning process. Through an iterative
process known as backpropagation, the network adjusts its internal parameters (kernel weights)
to minimise the discrepancy between its predicted segmentation after a training step and the
ground truth labels. This iterative refinement usually requires several manual segmented CT
image regions, ultimately enhancing the network’s capacity to discern patterns that differentiate
mineral phases.

In the present work, the image processing software ORS Dragonfly 2022.1 [61] was used to apply
DL-based segmentation. The software features pre-built CNN architectures that can be fine-
tuned (e.g., number of kernels, filter sizes) according to the sample’s complexity for optimal seg-
mentation performance. The accuracy of themodel can bemonitored using theDice score (Gloss-
ary p. 107ff) that overlap the discrepancy between the predicted segmentation data and the ground
truth data. However, it is important to note that while a high Dice score suggests high accuracy, it
does not automatically guarantee correctness of the segmentation result. Once sufficient training
has been employed, the model can be applied to the remaining unseen CT image slices to generate
a segmented 3D volume.

Feature extraction
Feature extraction, performed using ORS Dragonfly 2022.1, bridges the gap between the visual
representation of the segmented sample volume and the quantitative data needed for further ana-
lysis and interpretation. By isolating specific visual or spatial characteristics from the segmented
CT data, it generates a set of numerical descriptors, or measurements [62] (e.g., grain size, mineral
distributions), enabling quantitative analysis of ore characteristics.

1.3 Background - Materials selection
Both graphite and tungsten are designated as CRMs. Graphite is indispensable for the produc-
tion of lithium-ion batteries, which are essential components of the rapidly growing sectors of
electric vehicles and energy storage systems [63]. The mineralogical characteristics of graphite—
specifically flake size, shape, and purity—are key determinants of its quality and its suitability for
these applications and as such directly related to product price [14]. The flake size is deposit spe-
cific and decisive for the economic viability of a deposit, necessitating proper analysis. Tungsten,
on the other hand, is typically found in nature in scheelite andwolframite [64], with scheelite being
examined in this work. Within the ore, the mineral is often present in very low concentrations,
requiring precise mineralogical assessment, for example to determine the degree of recovery
achievable during processing, as grain size and distribution significantly impact extraction ef-
ficiency [65]. Consequently, advancing the understanding of the mineralogical characteristics of
both graphite and tungsten ores is essential to support a secure and sustainable supply of these
materials.

From a CT analysis standpoint, graphite and scheelite were selected due to their specific as well as
contrasting physical properties, implying different usage of this method. Graphite has a density
of 2.26 g/cm³ and an 𝑍𝑒𝑓 𝑓 of 6 (Appendix B), whereas scheelite exhibits a much higher density of
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6.1 g/cm³ and a 𝑍𝑒𝑓 𝑓 of ∼67 (Appendix B). These differences indicate that the two materials have
distinct X-ray attenuation characteristics which may be further influenced by the mineralogical
composition and texture of their ores. Therefore it is considered that both graphite and scheelite
ores require individual analysis protocols for proper characterisation. For example, in terms of
data acquisition, graphite is anticipated to exhibit weak X-ray attenuation owing to its physical
properties compared to many ore minerals, and potentially similar X-ray absorption properties
compared to common gangueminerals (e.g., quartz, feldspar). In contrast, scheelite has a very high
density and large 𝑍𝑒𝑓 𝑓 , which leads to very high X-ray attenuation, suggesting different acquisition
settings.

1.4 Review - CT ore analysis
X-rayCT imagingwas developed in the early 1970s [66, 67] and revolutionised the field ofmedical
diagnostics by enabling non-invasive visualisation of the human body and brain [68]. Recog-
nising its potential beyond medicine, researchers quickly adapted medical CT (mCT) to other
fields including geosciences. From the early 1980s onwards, a surge of publications explored
mCT’s application in various geoscientific areas, including soil science [69, 70], meteoritics [71],
petroleum geology [72, 73], palaeontology [74], and sedimentology [75]. In the 1980s, micro-CT,
or industrial CT (hereafter referred to ‘CT’) emerged [76–78] further expanding the technologies’
capabilities. Unlike mCT scanners, CT systems are not constrained by limitations on radiation
dose and vivid sample objectives, allowing for the use of higher X-ray energies and longer expos-
ure times, flat-panel detectors, and more precise positioning [79]. Moreover, the smaller sample
size (typically between 1 mm and 5 cm in geosciences [80]), allowed the use of a smaller focal
spot that enabled significantly improved spatial resolution, reaching down to 1 µm [80]. These
developments provided key advances that greatly enhanced the potential for applications of CT
to geological investigations (in particular rock analysis) that commenced in the middle of the
1990s [81].

Comprehensive reviews on the history and development of CT are provided by [23, 44, 45].
Various reviews in the context of geosciences [21, 80, 82–84], including ore analysis [21, 26,
27, 54, 85] using CT have been published. These reviews elaborate on the CT fundamentals
discussing different scanning techniques and how to acquire and process CT data in general as
well as highlighting applications, developments and challenges in the field of ore geology and
mineral processing. CT has also been explored for structural, textural characterisation, libera-
tion of ore concentrates [27, 54]. In the following and with regard to the scope of this study, a
condensed review is given that provides an overview of the state-of-the-art of CT in ore analysis,
focussing onmethods developed for data acquisition and processing, specifically formineralogical
characterisation, and the ore types studied. The research gaps are documented in the following
Section 1.5.

1.4.1 Ore types studied
CT has been predominantly applied to the study of gold and PGE ores [29–32, 85–96]. These
metals are among the highest value mineral commodities, requiring usually only trace concentra-
tions to achieve commercial viability [97, 98]. TheirX-ray attenuation properties, significantly dif-
ferent from common gangue minerals (e.g., quartz, feldspar, olivine), enable clear differentiation
in CT images. This allowed for effective visualisation of their 3D in situ distribution within the
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ores, providing valuable genetic information [32, 85, 87]. In addition, CT has been used to study
zinc and iron ores [99, 100]. In terms of CRMs others than PGE’s, few studies have investigated
copper, chromite and tungsten ores [35, 36, 101–103].

1.4.2 Method development in ore characterisation
Acquisition
Beyond the visualisation and differentiation of ore minerals from gangue, CT has also been em-
ployed to differentiate between individual ore minerals that typically exhibit similar X-ray at-
tenuation properties. In this regard, several tools have been developed to aid in optimising CT
data acquisition and for maximising mineral differentiation in CT imaging. For example, Mote
et al. [95]; Kyle et al. [32] explored to which extent metallic minerals representative of typical
assemblages can be distinguished from one another. In addition, the development of a compre-
hensive X-ray attenuation database [104] has permitted researchers to identify the potential of
differentiating between selected ore minerals. On this basis, researchers have developed specific
linear attenuation coefficient databases to predict mineral discrimination in high-density ores
using CT prior to scanning and analysis, providing valuable guidance for CT experimental design
and data interpretation [83, 105–107]. Using their method, Bam et al. [106] found that discrimin-
ating between minerals with attenuation coefficient differences of less than 6% is problematic.

In addition, research was carried out to evaluate the impact of different scanning parameters
on CT image data of ores with high-density target minerals [100]. Furthermore, synchrotron
CT (Glossary, p. 107ff) has been explored to enhance mineral identification [34, 108]. Moreover,
researchers have combined spectral information from energy-discriminating detectors with CT
to further enhancemineral discrimination. By identifying specific elements based on their unique
K-edge absorption energies [109, 110], this approach has provided an additional layer of inform-
ation beyond conventional X-ray attenuation. Similarly, Ghorbani et al. [99]; Martini et al. [111]
combined two energy spectra using dual-energy CT (DECT) to calculate the electron density
of minerals and their Z𝑒𝑓 𝑓 comprising the sample, allowing for their identification. Notably,
while DECT has been successfully used for contrast enhancement in medical imaging [112], its
application for this purpose in ore analysis remains unexplored.

Image processing
Similar to optimising CT data acquisition, researchers have explored a number of segmentation
techniques, varying in complexity and computational intensity [27, 54] to isolate individual min-
eral phases in CT images, enabling the quantification of their mineralogical and textural proper-
ties (e.g., grain size, and volume). Thresholding has been successfully used for segmenting between
high X-ray absorbing grains and the usually low X-ray absorbing mineral matrix. This method
has been effective in determining particles in crushed ores or in quantifying between the high
X-ray absorbing minerals and gangue [35, 36, 93, 113, 114]. Similarly, watershed segmentation
was used to segment ores, thereby establishingmineralogical and textural information [115]. This
technique proved to be more resistant to image noise in CT datasets compared to thresholding
[27]. Furthermore, this technique proved effective in separating between touching grains of ore
particles [e.g., 101, 116, 117].

When aiming for multi-mineral segmentation, researchers have used complementary imaging
techniques to retrieve quantitative mineral information of ores using CT [115]. Combining CT
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with conventional analytical techniques like SEM-EDS has allowed for the correlation of 2D
compositional information with 3D CT data. This correlation has then been used to identify
minerals and guide the labelling process [93, 103, 115], to calibrate the 2D data with CT data [118]
or to train machine learning algorithms with 2D image data [119] throughout the segmentation
process. Using this combined approach, Warlo et al. [115] applied watershed segmentation for
multi-mineral quantification in complex ores, finding it effective for phases with distinct X-ray at-
tenuation but inaccurate for small or similarly absorbing phases. In response to these constraints,
several machine learning-based segmentation techniques have been explored in enhancing min-
eralogical characterisation using CT [58, 105, 119–122]. Recent advancements in this field have
introduced DL-based segmentation [88]. Although initial results are promising, the number of
studies is still very limited and the accuracy of these methods require further validation.

1.5 Research gaps
The review revealed several research gaps in the context of ore analysis. In the following, these
gaps are further elaborated and shall be addressed throughout this thesis:

1. Limited studies aiming to enhance CT image quality prior to reconstruction:
While a lot of research has focused on enhancing themineral differentiation through a) ded-
icated scanning protocols for high X-ray absorbing ores [30, 100, 105–107], b) combining
spectral information [109, 110], or c) using synchrotron CT [34, 108], it appears that no
study has been devoted to enhance image quality through the CT acquisition process and
also to quantify this improvement. While DECT is successfully used in medical scanning,
its effectiveness for contrast enhancement in geomaterials has not yet been explored.

2. Limited studies exploring the utility of DL-based segmentation of complex ores:
With recent advances in DL-based segmentation for mineral quantification [88], further
studies are needed to assess its potential, particularly for segmenting complex ores with
similarly X-ray absorbing minerals and for establishing multi-mineral segmentation for
modal mineralogical analysis. This includes the need to validate the results to be obtained
with conventional mineralogical techniques.

3. Limited studies on CRMs:
While the majority of researchers focused on the study of gold and PGE-bearing ores [29–
32, 85–96], with minor contributions of copper [102, 103], chromite [101], and tungsten
[35, 36] ores, studies focusing on examining CRMs bearing ores using CT are still scarce.
Consequently, developing appropriate CT protocols for the acquisition and processing of
these geomaterials is essential to establish valid and reliable CT data for this class of mater-
ials.

Regarding graphite ore: Research on graphite ores in the context of CT is very limited
with one study examining minor graphite-bearing drill cores to distinguish between
high and low X-ray attenuating minerals [33] and another exploring the use of syn-
chrotronCTon a graphite-bearingmica schist [34]. Consequently, studies focusing on
developing proper CT analysis protocols for graphite ores, enabling their mineralo-
gical characterisation are lacking. Notably, knowledge of CT analysis of low-density
ore minerals and their associated gangue minerals is limited, with most CT studies
being devoted to high-density ore minerals (e.g., magnetite). This limitation under-
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scores the need for developing CT analysis protocols to characterise ores comprising
low X-ray absorbing ore minerals properly, such as graphite.

Regarding tungsten ore: Previous studies applying CT to tungsten ores, focused on
developingmethods to establish tungsten content [35] or to examine tungsten concen-
trates [36]. However, comprehensive case studies on tungsten ores are lacking, par-
ticularly those optimising CT for establishing morphological information and modal
mineralogy, crucial aspects for discussions on ore formation and mineral processing.

1.6 Research question, aims and objectives
On the basis of the previous sections, the main research question and the main research aim can
be deduced. As the research gaps revealed, it is essential to study CT for its application to graphite
and tungsten ore. Dedicated methods must be developed to establish proper CT analysis of these
ores, allowing for their comprehensive CT-based analysis. Therefore, themain research question
is as follows:

How can CT be optimised for the characterisation of the critical raw materials graphite and
tungsten in ores to obtain reliable qualitative and quantitative mineralogical information?

Optimising CT in this perspective will allow to pursue themain research aim:

To investigate the potential of CT for the mineralogical characterisation of graphite and
tungsten ore.

The experimental work of this thesis addresses the main research question through three dedic-
ated studies. Each study is guided by a key objective and reported in a peer-reviewed research
article. The experimental work focuses on optimising the key factors of the CT analysis chain
including developing effective analysis workflows, generating high-quality CT datasets, and ap-
plying advanced image processing strategies, suited to the characteristics of graphite and tungsten
(scheelite) ore. This shall ultimately allow assessment of the potential identification of mineralo-
gical and textural properties with CT.

Key objectives
Article 1 - CT of graphite ore: developing an analysis protocol for mineralogical characterisation

Considering complex ores, comprising low-density target minerals such as graphite, are under-
explored, the first logical step for optimising CT is to investigate the factors required to generate
proper CT data on graphite ores. Consequently, the key objective of study 1 is:

To develop a CT analysis protocol for the mineralogical characerisation of graphite ore.

Article 2 - DECT of graphite ore: enhancing image contrast

Anticipating the heterogeneous attenuation properties of graphite ore, which suggest limited grey
value contrast between individual phases present in the ore, methods are needed to optimise
image contrast in CT image data of graphite ores. Consequently, the key objective of study 2
is:

To investigate the effectiveness of high-resolution DECT for enhancing image contrast on a graphite
ore.
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Article 3 - CT of tungsten ore: case study on morphological characterisation and modal miner-
alogy

It is important to validate the previously developed methods by applying them to different ore
types. In addition to investigating the use of CT for graphite ores, this work also aims to optimise
CT for tungsten ores. Consequently, the key objective of study 3 is:

To examine the mineral texture, modal mineralogy and WO3 grade of scheelite ores from Kara Fe-We
deposit using CT.

1.7 Methodology and structure
Chapter 1 – General introduction: The first chapter contains the introduction presenting the
motivation, background information, research gaps, scope, and significance of this thesis. Fig. 1.2
shows the general structure of this work.

Chapters 2 - 4 – Experimental studies: Chapters 2-4 present the three experimental peer-
reviewed studies, addressing the main research aim and question through the key objectives and
sub-questions developed for each study. In Chapters 2 and 3, the CRM investigated was graphite
ore, with a focus on method development, while in Chapter 4, which presents a case study, the
CRM investigated was scheelite ore. The 3D data generated by CT is mainly presented in 2D
figures; a video produced in the first study, visualising the 3D information, is also included in the
Supplementary material. It should be noted that the research articles presented in the following
Chapters have been includedwithminor adjustments regarding content and formatting, resulting
in some, inevitable repetitions of content between the individual chapters of this thesis.

Chapter 2 – CT of graphite ore: developing an analysis protocol for mineralogical
characterisation: Chapter 2 explored whether CT provided valuable mineralogical in-
formation for the characterisation of flake graphite ore. Given that the limited data on
CT analysis of graphite ore, the chapter focused on developing an appropriate CT analysis
protocol to generate high-quality CT data, aiming to establish qualitative and quantitative
mineralogical information. The results were then cross-validated using conventional min-
eralogicalmethods. Additionally, the chapter addressed challenges associatedwith selecting
suitable acquisition parameters for graphite ore. The findings of this study laid the ground-
work for the subsequent chapters, informing the optimisation of image contrast (Chapter
3) and contributing to both practical and theoretical knowledge in CT analysis (Chapter 4).

Chapter 3 – DECT of graphite ore: enhancing image contrast: Chapter 3 investig-
ated the effectiveness of dual-energy CT in enhancing image contrast of a graphite ore
sample, thereby addressing challenges associated with differentiating phases with similar
grey values in single-energy CT scans. The chapter detailed the development of a DECT
scanning approach fusing data from single-energy CT scans acquired at low and high X-ray
energies prior to reconstruction. To evaluate the significance of the outcomes, amethodwas
developed for quantitatively measuring image contrast between individual phases within
the ore, allowing for a robust comparison of image quality between multi-material datasets
comprising heterogeneous grey value information.

Chapter 4 – CT of tungsten ore: case study on morphological characterisation and
modalmineralogyChapter 4 showcased the practical application of CT by examining the
mineral texture, modal mineralogy, and WO3 grade of two scheelite ore samples from the
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Figure 1.2: Flow sheet of the structure of this cumulative PhD thesis.

Kara Fe-W deposit in Tasmania, Australia. The CT analysis protocol developed in Chapter
2 was adapted and optimised for scheelite ore, including applying data fusion (Chapter
3) for one sample to mitigate acquisition constraints. This approach enabled examining
ore textures in 3D, and establishing quantitative information on grain size distribution,
scheelite volume, WO3 grade, and modal mineralogy.

Chapter 5 – General discussion: Chapter 5 presents the general discussion, reviewing the
research findings, answering the main research question and reflecting on the main research aim.
Moreover, a critical assessment on the advancesmade inCT analysis of tungsten and graphite ores
is conducted. Additionally, this chapter provides implications and recommendations for future
work, followed by a SWOT analysis of using CT for ore analysis and concluding remarks.

1.8 Significance
Sustainable and efficient extraction of CRMs requires a comprehensive understanding of the
mineralogical characteristics of their host material (ore). Traditional imaging techniques used
for mineralogical analysis techniques are limited to 2D and subject to stereological bias when
translating into 3D.While CT enables 3Dmineralogical analysis, establishing accurate and reliable
CT data can be challenging, particularly when applied to complex ores like graphite and tungsten
ores. Given the limited knowledge on the application of CT to such ores, this study investigates
the potential of CT for their characterisation, presenting the following significant contributions:

• Enhancing the understanding of ore properties: By generating high-quality 3D data, this thesis
will contribute to improving the understanding of themineralogical characteristics of graph-
ite and tungsten ores studied.

• Advancing method development: By establishing dedicated acquisition and image processing
workflows, this research will aid the methodological advancement of CT for the study of
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graphite and tungsten ores. The results will support future research and characterisation
for these materials.

• Expanding the knowledge base of CT applications: This research will ultimately provide valu-
able insights into the potential and limitations of CT for CRMs like graphite and tungsten
ores. These findings will enrich the growing body of knowledge on CT applications in ore
characterisation, fostering the ongoing development of CT as an advanced tool in miner-
alogical analysis.

• Developing model systems: As highlighted in Section 1.3, graphite and scheelite exhibit signi-
ficantly contrasting physical properties, determining their specific X-ray attenuation char-
acteristics. The findings from these studies can inform the development of CT protocols ap-
plicable to other CRMs with similar characteristics. For example, the protocols developed
can potentially be adapted for low-density minerals like lithium-bearing spodumene and
high-density minerals such as rare earth element-bearing fluorocarbonates (e.g., bastnäsite)
andmonazite. Consequently, this workwill extend the application of CT to a broader range
of CRMs.
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Chapter 2. CT of graphite ore: developing an analysis protocol for mineralogical characterisation

2.1 Introduction
Natural graphite is an allotrope of carbon consisting of layers of graphene, i.e., one-atom thick,
hexagonal lattice layer of carbon with carbon atoms connected to each other by covalent bonds
[123]. The individual graphene layers are held together by van derWaals forces. These weak inter-
planar interactions endow themineral graphitewith exceptional properties such as refractoriness,
high heat and electrical conductivity, greasiness and high thermal resistance [124]. Graphite is
applied in a variety of technological applications including lithium-ion batteries (LIB), fuel cells,
two-dimensional graphene electronics and fibre optics [124, 125]. Consequently, natural graphite
has been recognised as a critical rawmaterial bymega economies such as theUnited States and the
European Union because of its high economic importance and supply risk [5, 126]. Today, China
accounts for almost 75% of the global natural graphite production, followed byMozambique and
Brazil. Together, the three countries represent around 90% of the world’s production [127]

Natural graphite is found in the Earth’s crust in a variety of geological settings and results from
the conversion of carbonaceous matter through metamorphic processes into graphite (graphit-
isation) or by deposition from carbon-bearing fluids [128, 129]. There are various classification
schemes, one of which subdivides graphite deposits according to their formation conditions into
(1) lump (vein), (2) flake and (3) amorphous (microcrystalline) graphite [128]. In market terms,
graphite is classified according to the particle (flake) size (Table 2.1). In contrast to many other
mineral resources, the quality of graphite ore is not solely determined by grade, but rather on its
mineralogical properties such as grain (flake) size, distribution, shape and purity. These properties
will informmarket applications and product price [14, 130]. Graphite deposits that contain a high
proportion of large graphite flakes tend to have higher purities and carbon content. The flake size
distribution is deposit-specific and decisive for the economic viability of a deposit as well as the
ultimate use of the concentrates produced [131]. To date, only graphite with high purity and large
flake sizes can be used for LIB [132]. Recent developments allow the use of smaller flakes for LIB
manufacturing. Regardless, rigorous characterisation of the raw material is key to assessing ore
quality and achieving the best possible beneficiation product.

Graphite raw materials are conventionally characterised using X-ray powder diffraction (XRD),
differential thermal analysis/thermogravimetry (DTA/TG), inductively coupled plasmamass spec-
trometry (ICP-MS), scanning electron microscopy coupled with an energy dispersive detector
(SEM-EDS), Raman spectroscopy and optical microscopy (OM) as well as SEM-based automated
mineralogy systems such as QEMSCAN (quantitative evaluation ofminerals by scanning electron
microscopy) and MLA (mineral liberation analyser) [e.g., 133–136]. Results of these techniques
provide vital information on the presence and properties of graphite ores. In some cases, the
acquired information cannot be related to any dimensional geometries of the analysed samples
(e.g., XRD). By contrast, OM, SEM-EDS, QEMSCAN and MLA allow for 2D visualisation of
graphite ores. However, these techniques are time-consuming, and their sample preparation
is destructive and requires careful sectioning of the original sample (e.g., drill hole) to select
representative sample material. Moreover, results of the above-mentioned methods must be
translated into the third dimension and are therefore subject to stereological bias [20]. For ores
of complex mineralogy and microstructure such as graphite ores, where grain size distribution is
an important assessment feature, this can be challenging. While graphite ores and their products
represent 3D arrays of mineral assemblages, there is a need to acquire information on the 3D
distribution of the quality-determining properties (i.e., flake size, intergrowth) of graphite in ores
to achieve optimal processing and target use of graphite ores.
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Table 2.1: Market terminology of natural graphite and general properties (modified after [14,
137]).

Classification Size (µm) Carbon content of concentrates (%)

Amorphous <75 75-90
Small flake 75-150 90-97
Medium flake 150-180 90-97
Large flake 180-300 90-97
Jumbo 300-500 90-97
Super Jumbo >500 90-97

A novel tool to display the 3D distribution ofmineral phases is X-raymicrofocus computed tomo-
graphy (CT). For example, several scientific studies have demonstrated the use of CT to define the
in situ location of gold grains and their distribution within gold ores [31, 32, 90, 93]. Ghorbani
et al. [99] successfully used CT for the 3D characterisation of crack and mineral dissemination
in sphalerite ore particles. Godel et al. [30]; Godel et al. [85]; Sittner et al. [88] studied the 3D
distribution of platin group metals (PGMs) to understand ore-forming processes. Le Roux et al.
[35] quantified tungsten ore mineral content and ore grade using CT to assess the quality of the
tungsten ore. Similarly, Rozendaal et al. (2017) demonstrated the ability to quantify the final
product quality grain size distribution, perform grain shape definition and identify external and
internal mineral textures of a Ti-Zr placer deposit [113].

To date, however, the use of CT has not been comprehensively tested to characterise graphite
raw materials. This study explores the application of CT for the characterisation of graphite
ores. An acquisition protocol was developed to acquire appropriate CT data. Furthermore, an
advanced image processing strategy was established that was based on deep learning algorithms
to extract quantitative information on key microstructural features of the flake graphite ore in
3D. This study demonstrates that CT imaging of graphite ores requires careful development of
image protocols and processing strategies, which can then produce new insights into graphite ore
properties.

2.2 Materials and methods
2.2.1 Materials, preparation and conventional techniques
A flake graphite ore sample was provided by the German-based company NGS Trading & Con-
sulting GmbH (Leinburg, Germany) from the Yanxin graphite mine (Shangdong province, China).
XRD was carried out on a ∼2.5 g aliquot of the sample, which was ground in 100% ethanol in
a McCrone micronising mill using synthetic agate pellets for 5 min. Micronised aliquots were
air-dried and subsequently analysed on a Rigaku Ultima IV powder X-ray diffractometer (De-
partment of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Canada). The
Rigaku Ultima IV XRD is equipped with a Co source that was operated at 38 kV and 38 mA. XRD
patterns were collected from 5 to 80° 2𝜃 using a step size of 0.02° 2𝜃 at a rate of 1.2° 2𝜃/minute.
Qualitative phase identification was performed using the JADE (Rigaku, Tokyo, Japan) and EVA
(Bruker, Billerica, MA, USA) software packages. Mineral phases were identified with reference to
the International Center for Diffraction Data Powder Diffraction File 4+ database (ICDD PDF4+).
For petrographic analysis, a thin section and cylindrical-shaped polished block were prepared
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by MK Factory (Stahnsdorf, Germany). Both samples were examined using a LEICA DM 2700P
polarization microscope (Institute of Mineral Resource Engineering, RWTH Aachen University,
Aachen, Germany). Microphotographs were taken with a LEICA FLEXCAMC1 camera to estab-
lish an image mosaic of the polished section using the LEICA LAS software. Scanning electron
microscopy combined with an electron dispersive spectrometer (SEM-EDS) was used to provide
further insights on the mineralogy and microstructure of the graphite ore specimen, using a FEI
650F scanning electron microscope equipped with two Bruker XFlash 5030 detectors (Institute
of Mineralogy and Economic Geology, RWTH Aachen University, Aachen, Germany) (15 kV, 10
nA).

2.2.2 Computed tomography
In this study, a ProCon Alpha micro-CT system was used, which is equipped with a five-axes-
manipulation system between an XWT-240-TCHE plus X-ray tube with a maximum voltage of
240 kV and an XRD 1611 AP3 detector system with 4064 x 4064 pixels (100 mm2) (Institute of
Mineral Resources Engineering, RWTH Aachen University, Aachen, Germany). For the scanning
procedure, a cylindrically shaped, polished graphite sample (14 mm diameter, 11.5 mm thickness)
was investigated. CT measures the attenuation of an X-ray that passes through sample object.
The X-ray attenuation depends on the material density and atomic number as well as the X-ray
energy applied [84, 138]. A CT measurement is the collection of 2D sample projections (radio-
graphs), which are taken as the sample rotates 360° around the vertical axis between the X-ray
tube and the detector. The detector collects the number and intensity of transmitted X-rays of
each projection and thus provides X-ray attenuation information. Based on this information, an
X-ray attenuation coefficient is calculated for each pixel of the acquired sample projection. This
coefficient is displayed as a distinct grey-scale value in the projection image [26]. The collection
of radiographs is then stacked to create a 3D volume, comprising a cubical matrix of grey-scale
voxels (3D pixels). Thus, CT allows for the 3D analysis of multicomponent materials such as ore
and rocks, providing nondestructive internal microstructural information on mineral volume,
mineral size, mineral distribution, association, orientation and porosity [21, 139–141].

Data acquisition
Scan parameters were determined in the course of several test measurements and iteratively op-
timised to obtain low-noise, high-contrast images with as few artefacts as possible in the shortest
possible time. Attenuation curves were calculated based on the samples’ mineralogy, as determ-
ined by XRD, OM and SEM-EDS (Fig. 2.1). Attenuation curves were calculated by multiplying
themass coefficient bymass density. The nature of X-ray attenuation is predominantly a function
of photoelectric absorption and Compton scattering. Photoelectric absorption occurs when the
total energy of an incoming X-ray photon is transferred to an inner electron, causing the electron
to be ejected. The probability of this effect is heavily dependent on the atomic number (Z) of
the absorbing material and the X-ray energy; photoelectric absorption is proportional to Z4−5

[42, 104]. In Compton scattering, the probability of X-ray absorption is proportional to only Z, as
the incomingX-ray photon interactswith a free or outer electron, ejecting the electron. Hence, the
probability of this effect ismore dependent on the electron density of thematerial [43]. The photo-
electric effect prevails in low energies (approximately 50 - 100 keV), whereas Compton scattering
dominates in energies >5 MeV [82]. Thus, to increase the attenuation contrast between graphite
and similar attenuating gangue phases as well as the epoxy resin, the application of lower voltages
is recommended. However, using lower voltages results in decreasing penetration capability and
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Figure 2.1: Linear attenuation coefficients as a function of X-ray energy for the major minerals
occurring in the scanned sample. The values displayed in the graph calculated based on end
member compositions, and densities andwere calculated using theXCOMPhotonCross-Sections
Database NIST [104].

the production of more artefacts, especially when high absorbing phases are present. To achieve
a good signal-to-noise ratio, a longer exposure time is required in this case, as this is proportional
to the number of photons recorded per projection. Thus, given that the sample contains highly
absorbing phases, voltage and exposure timewere adjusted accordingly to achieveminimumbeam
hardening on one hand andmaximum contrast on the other. To further reduce noise, the number
of averages per projection was adjusted accordingly. Lastly, to maintain optimal focal spot size,
which determines the X-ray flux and resolution capability of the XCT system, the applied power
of the X-ray beam was set slightly higher than the scan resolution. The final scanning conditions
are summarised in (Table 2.2). Reconstruction of the scanned sample was performed with the

Table 2.2: Scanning conditions of the scanned flake graphite ore sample.

Acquisition parameters

Voltage (kV) 100
Current (µA) 110
Exposure time (s) 1.35
No. of averages () 4
Binning (-) 1 x 1
No. of projections () 2500
Scanning time (h:m) 9:05

21



Chapter 2. CT of graphite ore: developing an analysis protocol for mineralogical characterisation

VGStudio Max 3.5. software [49] based on filtered back-projection (FBP) and a beam hardening
correction to address cupping artefacts and streak artefacts generated due to the polychromatic
nature of the beam.

Image filtering
When the attenuation coefficient values are converted intoCTnumbers, a certain amount of noise
is always present in the CT images due to random variations. Therefore, digital image filters were
applied prior to segmentation to enhance the quality of the scan by reducing noise and increasing
grey value contrast. The actual operation is applied on a 2D CT slice image. The software used,
ORS Dragonfly (Version 2022.1) [61], offers a broad range of filtering operations, which can be
applied iteratively. A three-filter combination produced the best results (Fig. 2.2). First, a median
filter was applied to denoise the image. This was followed by the unsharp filter, using an unsharp
factor of 3 to increase the edge contrast of grains. Since the unsharp filter produces noise, the
median filter was applied again to denoise the image.

Figure 2.2: CT volume slice A) before and B) after image filtering. Phases are represented by
grey values, ranging from darkest to lightest: graphite; combined quartz, albite and clay minerals;
combined microcline, biotite and clinochlore; and combined pyrite and pyrrhotite.

Segmentation
Image processing was carried out using ORS Dragonfly. The software possesses different ma-
chine learning and deep learning algorithms that can be used for segmenting different phases
simultaneously. Machine learning (ML) refers to a class ofmodel-based computational techniques
for processing data [142]. Deep learning (DL) is a subset of ML, featuring many interconnected
processors (neurons) that work in parallel. These processors are predominately built on a convo-
lutional neural network (CNN) architecture, which is particularly efficient for image processing
[60]. To achieve accurate segmentation, the network must be trained to identify structures and
learn how tomake predictions (inference stage) for subsequent calculations [60]. Therefore, single
or multiple regions of interest on different 2D image slices are created and used to manually
select groups of voxels which belong to different segmentation classes. These slices are considered
ground truth data, onwhich basis the algorithm is trained and validated (supervised classification).
Consequently, the network allows for automatic segmentation of the entire data set.

The segmentation procedure was performed on a digitally cut cylindrical subvolume (10.53 mm
diameter, 8.21 mm thickness) so that (a) the epoxy mount, in which the section was embedded,
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was excluded aswell as the cone-beameffect (depth-related greyscale gradients); (b) operation time
was accelerated by reducing the data size; (c) each horizontal slice was of equal area; and (d) the
topmost slice had the same surface as that of the polished section to enable subsequent comparison
with mineralogical and petrographic OM and SEM-EDS data. Regarding the model architecture,
Random Forest [143], U-Net [144] and sensor3D [145] models were tested and trained. The min-
eralogical and petrographic information obtained using XRD, SEM-EDS and OM was essential
to interpret the CT radiographs and to identify the phases according to their grey-scale values.
Three classes were determined, comprising graphite, high X-ray attenuating phases (i.e., pyrite,
pyrrhotite, rutile, zircon) and the remaining gangue minerals. These were labelled manually on
a randomly selected area (frame) of a 2D slice to establish a first training data set. The model
was then tested on a new slice, and wrongly classified voxels were corrected and attributed to the
training data. The accuracy of a model and thus the segmentation result depends on the network
parameters, which need to be selected properly in accordance with the properties of the data
information to be segmented. After several trial runs with different combinations of parameters
and training slices, the sensor3D network was identified to perform best, and therefore, it was
used for subsequent segmentation operations until no further improvement could be achieved
(Fig. 2.3). The final model architecture is summarised in Table 2.3.

Figure 2.3: CT volume slice of the scanned specimen A) before, and B) after segmentation.
The colours represent the segmented classes: graphite (dark grey), high X-ray absorbing phases
(pyrrhotite, pyrite and accessories of zircon and rutile) (yellow) and the silicate matrix (pink).

Table 2.3:Model architecture of the DL network chosen. All listed parameters are dimensionless.

Model parameter Value Explanation

Patch size 64 Size of the areas (patches) into which the input image
is divided

Batch size 32 Input layer, defines number of patches being evaluated
Epochs per frame 20 One training operation
Stride-to-input ratio 0.1 Defines the position of the neighbouring patches
Dice score 0.9971 Measurement of the accuracy of a deep learningmodel

based on the similarity of prediction and ground truth
data
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In total, 6 frames were created, and the training time was 216 min. A total of 80% of the labelled
data were selected by default for training the model and the remaining 20% for validating the
model. Furthermore, the sensor3D model was trained for 20 epochs with early stopping enabled
to avoid overfitting, whereby themodel stopped automatically if the validation loss increased. The
model applied reached a dice coefficient of 0.9971, which is an indicator of the model’s accuracy
(Glossary p. 107ff).

2.3 Results
2.3.1 Mineralogy and 2D petrography
The flake graphite ore samples consist of a quartz-dominated matrix with plagioclase (anorthite
and albite), microcline, biotite, pyrite and pyrrhotite as well as small quantities of rutile, clino-
chlore and clayminerals. Zircon is present as an accessory. Foliation structure is present primarily
due to graphite and biotite ± clinochlore arrangement. Graphite occurs as deformed euhed-
ral–subhedral, platy-shaped crystals, varying in grain size from ∼15 to 1900 µm, with most of
the flakes >100 µm. The graphite particles are mostly disseminated in the matrix with some large
particles attached to each other. Some flakes are deformed and broken apart along the cleavage
plains. The grain boundaries of the flakes are of straight or polygonal structure. Quantities of
rutile as well as pyrrhotite and pyrite are present as subhedral to euhedral crystals in the matrix.
Both pyrite and pyrrhotite are occasionally attached to graphite flakes, where they may occur as
elongated crystals along basal cleavage planes of graphite Fig. 2.4. Biotite is occasionally moder-
ately replaced by clinochlore andmostly associatedwith graphite. Clayminerals are present along
cracks, cleavages of feldspar and grain boundaries. Given the high quartz content, secondary
minerals and foliation texture, the ore can be considered an altered graphite gneiss.

2.3.2 Computed tomography
Fig. 2.5 shows a CT volume slice from the scanned flake graphite ore sample. The assignment
of grey values to their corresponding phases was based on the XRD, SEM-EDS and OM ex-
aminations. Graphite appears dark grey and can be recognised by its typical flaky shape. The
phases with the brightest grey values are pyrite and pyrrhotite. In addition, two grey value ranges
can be identified: (1) combined quartz, albite and clay minerals, as well as (2) combined biotite,
clinochlore, anorthite andmicrocline. The differentiation between the individual minerals within
the respective grey value ranges is not possible, as their grey values are too similar.

For the quantitative analysis of the CT data, the volume, aspect ratio and voxel count were cal-
culated from the segmented classes. Based on these parameters, the graphite volume was refined
so that particles wrongly labelled as graphite could be removed from the segmented data. To
ensure that realistic grain shapes could be imaged, only particles >4.64 × 4.64 × 4.64 µm (100
voxels) were considered for the analysis. A total of 1877 graphite particles were identified. The
segmented volume comprises 533.99mm3 and the graphite volume 19.77mm3. This corresponds
to a volumetric proportion of 3.7% graphite (Table 2.4).

Fig. 2.6 shows the individual graphite particles (Fig. 2.6A) comprising the sample as well as their
volumetric distribution (Fig. 2.6B) in 3D. Graphite flakes are aligned and occur mostly dissemin-
ated in the ore matrix. The flakes exhibit a subhedral to euhedral shape and vary in grain size. A
few, and particularly larger, flakes are subparallel to parallel attached together.
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Figure 2.4: A, and B) OM, C, and D) SEM images as well as (E) XRD patterns of the flake
graphite ore sample. A) Parallel aligned graphite flakes intergrown with biotite. Graphite flakes
are embedded in a silicate matrix comprising quartz, plagioclase (anorthite and albite), biotite
and alkali feldspar (microcline). Secondary clay minerals occasionally replace plagioclase and
appear along grain boundaries (transmitted light, PPL). B) Disseminated super jumbo flake with
intergrowth of pyrite and pyrrhotite along basal cleavage planes embedded in silicate matrix.
Pyrite, pyrrhotite and rutile are also present as subhedral crystals (reflected light, PPL). C)
Disseminated parallel to subparallel oriented graphite flakes, partly deformed and broken apart
along basal cleavage planes. D) Graphite flake intergrown with a subhedral crystal of pyrrhotite.
Note the colloform nodule of pyrite in the pyrrhotite grain. Abbreviations: Po = pyrrhotite, Py
= pyrite, Qtz = quartz, Bt = biotite, Kfs = alkali feldspar, Plg = plagioclase, Rt = rutile, Cm = clay
minerals, PPL = plane-polarised light.
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1 mm

Py

Graphite

Rt Po

Qtz, Cm, Plg

Kfs, Bt, Clc

Figure 2.5: CT volume slice of the cylindrical subvolume of the scanned graphite sample. Note
the imaging artefacts in the yellow framed box (bright streaks above a graphite flake and dark
areas between and around two Po crystals) due to the highly X-ray absorbing iron phases present
in the sample. Abbreviations: Qtz = quartz, Bt = biotite, Kfs = alkali feldspar, Plg = plagioclase,
Clc = clinochlore, Cm = clay minerals, Po = pyrrhotite, Py = pyrite.

Table 2.4: Segmentation and analysis result of the sample.

Properties of the subvolume

Length 8
Diameter 10.53 mm
Volume cylinder 533.99 mm³
Volume-% graphite 19.77 mm³
Number of graphite particles 1877

To assess the quality of the sample based on the grain size distribution, the equivalent spherical
diameter was calculated using the volume of each particle (Eq. (2.1)):

𝐸𝑆𝐷 =
3

√︂
6 · 𝑣𝑜𝑙𝑢𝑚𝑒

𝜋
(2.1)

Fig. 2.7A shows the cumulative in situ particle size distribution of graphite as determined byCT. In
terms of particle numbers, small flakes represent the largest proportion of all particles, followed by
amorphous and large flake particles (Fig. 2.7B). In relation to the volume of all graphite particles,
super jumbo flakes account for the highest proportion of all classes (Fig. 2.7C). Properties of each
class are summarised in Table 2.5. The volumetric distribution of the classes is further illustrated
in Fig. 2.8. Highlighting the individual graphite classes (Fig. 2.8B-E) shows that the super jumbo
and jumbo fractions are occasionally parallel to subparallel attached to each other, forming a
clustered arrangement. The other classes are predominantly disseminated throughout the ore
matrix, suggesting variable formation conditions.

Since graphite deposits can be very heterogeneous in terms of flake size and graphite content dis-
tribution, it is important to measure a large and representative sample volume. Fig. 2.9 illustrates
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Figure 2.6: Three-dimensional CT images of the cylindrical subvolume after segmentation: A)
colour-coded graphite particles, andB) volumetric distribution of the graphite flakes. The gangue
minerals comprising the ore matrix are semi-transparent. The cylinder has a diameter of 10.53
mm and a thickness of 8.21 mm.
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Figure 2.7: Distribution of graphite classes according to CT measurements. A) Cumulative
particle analysis, B) number of particles corresponding to each class, and C) volumetric
proportion of each class in the sample. While the majority of flakes fall into categories smaller
than jumbo and super jumbo, the latter two classes account for 83.6% of the total graphite volume.
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Figure 2.8: Three-dimensional CT images of the segmented subvolume. A) Volumetric
distribution of the graphite flakes in terms of market-related classes comprising super jumbo size
(red), jumbo (orange), large flake (yellow), medium flake (green), small flake (blue) and amorphous
(violet). The gangue matrix is set to be fully transparent. A corresponding video is provided
in Supplementary Materials. B-E) individual classes highlighted: B) super jumbo size flakes, C)
jumbo flake graphite, D) large flake graphite, and E) combined medium flake (green), small flake
(blue) and amorphous graphite (violet).
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Table 2.5: Properties of the graphite classes determined.

Amor-
phous

Small
flake

Medium
flake

Large
flake

Jumbo Super
jumbo

Particles (n) 387 770 180 333 146 61
Particles (%) 20.62 41.02 9.59 17.74 7.78 3.25
Volume (mm²) 0.05 0.55 0.42 2.23 4.4 12.13
Volume (%) 0.23 2.78 2.11 11.28 22.23 61.36
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Figure 2.9: Graphite content per slice of the cylindrical subvolume. The dashed horizontal line
represents the average graphite concentration of 3.7%.

Figure 2.10: Jumbo flake after thickness measurement. The ESD of the flake is 421 µm.

the distribution of graphite concentration from top to bottom in the cylindrical subvolume. The
graphite concentration for each slice was measured by subtracting the segmented graphite area
per slice from the area of the cylinder. In total, 1600 slices were measured, with a thickness of 5.3
µm per slice. The graphite concentration varies significantly throughout the volume, from 2.46 to
6.97%. Particularly in the upper range of the subsample (slice 0 to 60), the graphite concentration
is higher than in the rest of the sample, where the concentration varies from 2.46 to 4.66%.

In addition to particle size distribution and graphite content, textural properties such as flake
thickness or impurities also play an important role in the evaluation of a graphite ore. Fig. 2.10
shows the analytical result of a single particle, exemplified by grain thickness. A jumbo flake
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with an ESD of 421 µm and a volume of 0.04 mm3 was extracted from the segmented graphite
volume, and for the thickness measurement, the particle volume was extracted to a surface mesh.
The differences in the colour markings indicate the differences in thickness along the flake. The
average thickness is 56 µm. Further textural properties are listed in Table 2.6. The minimum
Feret diameter exceeds the ESD due to the large planar area and small thickness of the flake.
Fig. 2.11 features a subhedral graphite flake associated with an iron sulfide grain. In contrast to
the 2D image, the 3D image exhibits that the flake is not only attached to the iron sulfide but also
intergrown with it.

Table 2.6: Selected textural properties of an individual graphite flake.

Flake properties

Volume 0.04 mm³
ESD 421 µm
Thickness (mean) 56 µm
Feret diameter (max.) 1196 µm
Feret diameter (min.) 497 µm
Surface area 2.3 mm²

Figure 2.11: Jumbo-sized flake associated with an iron sulfide mineral in A) 2D, and 3D B). A)
The CT volume slice shows that the graphite flake is attached to the sulfide mineral. By contrast,
B) the rendered 3D image reveals that the sulfide mineral is intergrown with the graphite flake.
The longest axis of the flake is 1690 µm.

2.3.3 Comparison of 2D petrographic data with 3D CT data
To evaluate the validity of the CT results, a modal mineralogy analysis obtained from optical
microscopy analyses was compared with the topmost slice of the CT sample volume (Fig. 2.12).
This slice was not part of the segmented cylinder due to abundant imaging artefacts. The topmost
slice was trained using the same DL strategies as described above. A set of microphotographs
was stitched together to reveal the total surface of the polished section. The stitched image was
processed using ORS Dragonfly, applying a global threshold operation. Thereby, the graphite
contentwasmeasured by subtracting the area of segmented flakes from the total area (86.92mm2).
According to the OM analysis, the graphite content is 3.3%. The graphite content of the topmost
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CT volume slice is 2.99%.

Details of graphite analyses as performed by OM and CT are given in Table 2.7 and Table 2.8. A
total amount of 169 graphite flakes were identified using OM (Table 2.7), whereas 156 flakes were
identified in the topmost slice using CT imaging (Table 2.8). In particular, more amorphous and
small flake grains were found with OM compared to CT. On the other hand, more jumbo flakes
were identified in the topmost slice by CT. Overall, the relative proportion of graphite in each
class is similar for both OM and CT, with the exception of the jumbo and amorphous classes.

Figure 2.12: Segmentation results A) of the stitched OM image, B) and the CT volume topmost
slice. The rainbow-coloured scale shows the distribution of the longest axis of the individual
flakes.

Table 2.7: Physical properties of graphite as determined by OM in a polished section.

Amorphous Small
flake

Medium
flake

Large
flake Jumbo Super

jumbo Total

Particles (n) 26 20 11 31 25 56 169
Particles (%) 15.38 11.83 6.51 18.34 14.79 33.14 100
Area (mm²) 0.02 0.04 0.04 0.09 0.24 2.44 2.87
Area (%) 0.63 1.44 1.27 3.07 8.50 85.09 100

Table 2.8: Physical properties of graphite as determined by CT in the topmost slice after
segmentation.

Amorphous Small
flake

Medium
flake

Large
flake Jumbo Super

jumbo Total

Particles (n) 22 20 10 20 35 49 156
Particles (%) 14.10 12.82 6.41 12.82 22.44 31.41 100
Area (mm²) 0.02 0.06 0.05 0.15 0.44 1.87 2.6
Area (%) 0.77 2.43 1.78 5.96 16.90 72.16 100

31



Chapter 2. CT of graphite ore: developing an analysis protocol for mineralogical characterisation

2.4 Discussion
2.4.1 Graphite characterisation
In recent years, an increasing number of scientific studies have recognised the utility of CT for
ore characterisation [30–32, 35, 85, 88, 90, 93, 99]. Despite this, the application of CT to char-
acterise graphite raw materials is limited, with prior studies having only provided rudimentary
descriptions of graphite through the use of CT. Ren et al. [33] examined drill cores of graphite
ore using CT to distinguish minerals with high and low X-ray attenuation, while Fatima et al. [34]
analysed the spatial distribution of various ore minerals, including graphite, with CT.

Traditionally, information on graphite ore mineral properties is obtained by XRD, sieve ana-
lysis, SEM-EDS or OM examination, [e.g., 14, 135, 146]. These methods provide liberation sizes
with accuracies of <120–150 µm [147]. SEM-based automated mineralogy has been recently
introduced to establish more precise liberation information [135]. Furthermore, the method
provides quantitative information on impurities, grain size distribution and modal mineralogy.
MLA thereby extracts information onmodalmineralogy on 2D surfaces andmineral associations,
which are based on linear contacts and phases exposed at the samples’ section surface. For ores
with a heterogeneous grain size distribution, this may lead to erroneous information (Fig. 2.9).
Moreover, graphite is a very soft mineral and may be affected by mechanical abrasion during
sample preparation [135]. This can result in misinterpretations of key textural features. CT,
in contrast, as demonstrated in this study, can assess a more representative volume and modal
mineralogy nondestructively without stereological bias.

Information on graphite impurities is vital. During graphite ore genesis, other minerals may
be deposited between graphite layers, stacks or clusters. Such impurities are attached to flake
surfaces or are trapped between flakes (intercalated) [148]. Impurities adhering to the surface can
be detached from the flake surface by attrition, without significantly influencing flake size. Those
impurities between the layers can only be removed by additional thermal or chemical processes,
and such ore treatment methods are costly. Characterising impurities appropriately is therefore
crucial to effectively remove this material. Such information on impurities (Fig. 2.11), as provided
by 3D CT imaging, allows the appropriate design of flow sheets for the beneficiation of graphite
ores.

While OM exhibits better resolutions and information on the gangue mineralogy, it does not
present information about the real spatial distribution and volume fraction of graphite within ore
samples. CTprovides exceptional 3Dmicrostructural data of graphite ore and amore representat-
ive characterisation of the quality demanding properties of graphite particles such as in situ grain
size, grain size distribution, shape and impurities. In addition, the CT method enables precise
measurement of individual flake thickness (as shown in Fig. 2.10 andTable 2.6), which is important
for predicting flake breakage during liberation. Thin flakes are more prone to breaking during
comminution, making it more difficult to maximize their size. Knowledge on particle thickness
therefore aids in selecting the appropriate comminution technique (crushing, grinding, milling).
Lastly, it is also possible to generate 3D information on individual grains and their impurities
(Fig. 2.11).
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2.4.2 Data acquistion
In order to acquire valid CT images and data on geological materials, the mineralogy of the
samples needs to be known. Thus, CT cannot be used as a stand-alone technique. Mineralogical
methods such as XRD and OM are required to acquire and interpret CT data. Moreover, CT
operation requires an experienced operator to achieve appropriate results, particularly for the
resolution of minerals with similar attenuation coefficients. The contrast of the grey-scale image
in the CT depends on different factors such as X-ray energy applied, as well as the atomic number
and density of the phases comprising the sample measured [26]. The choice of the optimal beam
intensity to resolve all minerals is infinite. As the investigated ore is rich in heavy minerals
such as pyrite and pyrrhotite, it would have required high beam intensities for adequate X-ray
penetration to prevent artefacts. This, however, decreases the X-ray absorption capacity of the
lower absorbing minerals such as graphite, and silicates, because the attenuation using X-ray
energies >100 kV is more sensitive to the mineral’s density [43]. Choosing lower X-ray energies
would have increased the attenuation differences between lower absorbing fraction (Fig. 2.1) as
it is more sensitive to the atomic number [82], but it would have also increased beam hardening,
particularly due to the presence of the iron sulfides. A possible solution to achieve high contrasts
of the low X-ray attenuating minerals and to minimise beam hardening would be to combine
multiple scans with different X-ray intensities. However, as the primary goal was to differentiate
graphite from the gangue material, the acquisition parameter selected to image the graphite ore
showed a good balance between contrast and beam hardening prior to the high absorbing phases.
Thus, it was possible to differentiate between graphite, pyrite, pyrrhotite, rutile and silicatematrix
based on the grey-scale contrast of the CT image.

Even though good scan quality was achieved, minerals may exhibit a large range of grey-scale
values due to the polychromatic nature of X-rays and the co-occurrence of minerals with differ-
ent X-ray attenuation. Reliable mineral segmentation of CT data, particularly of complex rock
samples such as the specimen used for this study, is therefore challenging. However, using the deep
learning algorithms for segmentation implemented in ORS Dragonfly, segmentation of minerals
does not solely rely on grey value contrast, as it also considers textural features such as grain
shape. By providing the DLmodel sufficient training data, it was possible to differentiate between
areas exhibiting the same grey values. Such areas also contained imaging artefacts, produced by
high-absorbing sulfide minerals (Fig. 2.5).

The accuracy of segmentation, however, may be limited due to certain factors. The first factor
is the partial volume effect (PVE) (Glossary p. 107ff) [26]. If a single voxel consists of more than
one phase, the CT number represents the average of the X-ray attenuation of all phases present.
Consequently, all particles belowvoxel size are affected by the PVE and cannot be imaged. Directly
related to the PVE is the blurring of the CT data, particularly in samples with phases of large
attenuation differences, as in the investigated specimen [83]. Blurring complicates the interpret-
ation of CT data, particularly at grain boundaries and for small particles, as it causes each voxel
to contain portions of the surrounding voxels. Consequently, phases approaching the spatial
resolution of the CT data also contain voxels that reflect the surrounding material. Segmentation
will therefore lead to an over- or underestimation of the labelled volume [149]. One way to
minimise the effect is to increase the image resolution, but this comes at the cost of sample
size. Another method is to refine the segmentation result by eroding or dilating the segmented
volume. However, it is not possible to fully eliminate these artefacts as they originated from the
voxelised data themselves. In addition to imaging artefacts, another source of error is derived
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from the manual segmentation process that must be conducted to provide the training data and
at the inference stage (Glossary p. 107ff). These are the most time-consuming steps, and there
will inevitably be some inadvertent errors in labelling among the large number of pixels (4064 ×
4064) comprising each slice. Consequently, there will be some judgement errors for pixels located
at grain boundaries and those reflecting small particles, due to the above mentioned PVE and
blur artefacts but also regardless of them. Therefore, to minimise this bias, only graphite flakes
comprising >100 voxels (ca. 25 µm ESD) were considered for the analysis.

A comparison of the topmost CT sample slice with the stacked OM image shows good agreement
in terms of graphite content, number of particles and grain size distribution. However, several
factorsmust be considered that hinder a direct comparison. Due to blurring, a complete overlap of
the two cut surfaces was not possible. Further, the slight difference in the size of individual flakes
(Fig. 2.12) and number of jumbo flakes, large flakes and super jumboflakes (Table 2.7 andTable 2.8)
may be explained by the fact that some flakes were not yet connected to the 2D radiograph and/or
were incorrectly identified as two separate or one entire grain, respectively, because of the PVE.
The PVE also affects the calculation of the total graphite content, as it results in an under- or
overestimation of the segmented surface, as mentioned above. The lower number of identified
amorphous flakes in the CT image can be attributed to both the scanning resolution and the PVE.
Lastly, the slice was not part of the segmented volume as it represents the topmost slice of the
cylinder. As mentioned above, the topmost slice is more affected by artefacts than inner slices.
Surfaces that are parallel to the X-ray beam at the top and bottom of the sample will not penetrate
properly, which will lead to image artefacts and thus a lack of detail in the data. Consequently, to
be able to include the topmost slice in the volume, the scanning geometry should be mounted at
a slight angle to avoid parallel alignment of the circular base and top surfaces of the cylinder to
the X-ray beam. This reduces artefacts and thus enables a better comparison.

2.5 Conclusion
This study explored the use of CT for establishing the physical properties of graphite in geological
ores. The results reveal that CT is a valid and innovative technique that can be effectively used to
characterise graphite. It enables nondestructive, in situ 3D visualisation and provides quantitative
information on critical mineralogical aspects such as flake size, flake size distribution, shape and
impurities that cannot be determined with other currently available analytical tools.

Given that graphite raw materials should be assessed by their mineralogical properties [14, 130,
131, 137], the additional information provided by CT should allow improved resource recovery
and beneficiation processes. By obtaining in situ information on flake size, flake size distribution
and flake thickness before and after comminution, the yield of the process may be quantified.
Thus, CT can provide information on ore characteristics and impurities in 3D, which may help
to further improve the process design.

Prior knowledge on the samples’ mineralogy is required to appropriately acquire quantitative CT
data and allow the possibility of differentiating between similar attenuating phases. Furthermore,
the resolution of CT is not as high as, for example, OM or SEM-EDS. Against this background,
CT cannot be used as a stand-alone technology. Hence, in combination with traditional methods,
CT allows for an improved understanding of graphite ores and products.
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3.1 Introduction
An accurate assessment of ore deposits and the development of efficient extraction of oreminerals
rely on a solid understanding of theirmineralogy aswell as their physical and chemical properties.
To obtain this information, various analytical methods are employed, such as optical microscopy
(OM), scanning electron microscopy equipped with an energy or wavelength dispersive X-ray
analyser (SEM/E-WDX), electronmicroprobe analyser (EMPA), secondary ionmass spectrometry
(SIMS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), and X-ray
diffraction (XRD) [150–153]. In recent decades, computed tomography (CT) has proven its added
value in studying the mineralogical aspects of geological materials, with an increasing number of
studies recognising its advantages for investigating rocks and ores [21, 32, 35, 84, 85, 94, 103, 139,
154]. Unlike conventional methods, CT offers quantitative and nondestructive 3D analysis with
minimal sample preparation, eliminating the stereological bias [20, 155, 156]. This includes the
ability to provide direct and more representative information on the shape, orientation, and size
of phases without the need for time-consuming sectioning.

TheCTprinciple is based on theX-ray attenuation behaviour of the phases comprising the sample,
which is displayed by the contrast produced in the resulting greyscale image. The X-ray atten-
uation varies as a function of the material density, the Z𝑒𝑓 𝑓 , and the thickness of the scanned
object, as well as the X-ray energy applied [44, 47]. This difference in X-ray linear attenuation
provides a contrast which can be used for mineral differentiation. The effective utilisation of
CT depends on the X-ray beam’s capability to penetrate the sample, enabling the visualisation of
internal geometry [23, 47]. However, CT struggles to accentuate or distinguish between features
that exhibit similar densities and effective atomic numbers. In this regard, ores often comprise
complex polyphase geomaterials with a wide range of X-ray attenuation properties owing to their
constituents’ differences and/or similarities in density, atomic number, and particle sizes. This can
make it challenging to acquire high-quality CT data of these materials, as it can lead to scanning
artefacts and mixed attenuation coefficients that result in a partial overlap of grey values in the
reconstructed CT greyscale image stack that hamper the interpretation and processing of CT data
[46, 54, 118].

To obtain high-quality CT data, the proper X-ray energy must be selected, to optimise data qual-
ity, which is not always straightforward [157]. Higher X-ray energy is required to penetrate
high-density materials or thicker sections, but it may cause a loss of contrast and unresolvable
features. Conversely, using lower X-ray energy to obtain good quality imaging of light materials
may not penetrate denser materials, resulting in loss of information [46, 158]. Thus, the choice of
the advantageous beam intensity must be a trade-off between high and low-absorbing materials
within the specimen to be examined.

Current and past research focused on the acquisition of high CT data primarily through the
development of scanning protocols for the optimal scanning parameters to extract mineralogical
and textural information in ore samples [26, 85, 100] and the development of an attenuation
coefficient data bank in order to predict phase discrimination in ores [106, 107]. Another method
that may contribute to the generation of high-quality CT scans of complex ores is dual-energy
computed tomography (DECT). DECT has been widely established in medical imaging, sorting,
and security applications [7, 159–161]. Notably, in the medical field, DECT has become a routine
method for detecting anatomic structures and conducting contrast-enhanced studies to improve
image quality [162–166]. In the context of analysing geomaterials, DECT has primarily been used
for material decomposition [99, 111, 167, 168]. By utilising two different X-ray energies, DECT
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enables the tracking of attenuation changes according to the X-ray spectra. This information can
be harnessed to identify minerals in the samples and retrieve their density and effective atomic
number 𝑍𝑒𝑓 𝑓 information. However, studies applying DECT to a polyphase ore and quantifying
the improvement in image quality are sparse.

This study aimed to investigate the potential of high-resolution DECT for enhancing image con-
trast in a heterogeneous polyphase graphitic ore. The study utilised a sequential fusion approach
to combine data obtained from different X-ray energy scans at high spatial resolution. Various
X-ray energy spectra were combined with varying weighting factors to determine the favourable
contribution of each energy level and spectrum, thereby aiming to provide the best possible atten-
uation of each phase. The findings of this study provided valuable insights into the establishment
of DECT data and demonstrated the effectiveness of DECT in improving image quality in the
context of complex geomaterials.

3.2 Materials and methods
3.2.1 Conventional analysis
Apolymineralic flake graphite orewas provided byWestwater Resources, Inc. (Centennial, Color-
ado, USA). The specimen originates from the Bama Graphite Mine (Chilton Co., Alabama, USA),
and consists of variable amounts of graphite as well as gangue phases (i.e., quartz, clay, muscov-
ite, hydrated iron(III) oxide-hydroxides (HFO)). Mineralogical and petrographic investigations,
including XRD, OM and SEM-EDS, were carried out prior to the CT measurements. XRD was
used to determine the bulk mineralogy of the graphite ore sample. These steps are necessary to
correctly interpret the CT data. For XRD analysis, a 2.5 g sample was ground in 100 % ethanol
for 5 min using a McCrone micronising mill with synthetic agate pellets. After air-drying, the
micronised aliquots underwent qualitative phase identification using the JADE (Rigaku, Tokyo,
Japan) and EVA (Bruker, Billerica, MA, USA) software packages on a Rigaku Ultima IV powder
X-ray diffractometer (Department of Earth and Atmospheric Sciences, University of Alberta, Ed-
monton, Canada). Mineral phases were identified by referencing the ICDD PDF4 + database. For
petrographic analysis, a thin section, and a cylindrical-shaped polished block (12 mm in diameter,
5 mm in height) were prepared byMK Factory (Stahnsdorf, Germany). Both, the thin section, and
the polished block were examined using a LEICA DM 2700 P polarisation microscope (Institute
of Mineral Resources Engineering, RWTH Aachen University, Germany), and microphotographs
were taken using a LEICA FLEXCAM C1 camera and the LEICA LAS software. The polished
block was subject to SEM-EDS analysis to further investigate the mineralogy and microstructure
of the graphite ore specimen, using a FEI 650 F scanning electron microscope equipped with two
Bruker XFlash 5030 detectors (Institute of Mineralogy and Economic Geology, RWTH Aachen
University, Germany) at 15 kV and 10 nA.

3.2.2 Computed tomography
A CT-ALPHA micro-CT system (ProCon X-ray GmbH, Sarstedt, Germany) was used, which is
equippedwith a five-axes-manipulation systembetween anXWT-240-TCHEplusX-ray tubewith
a maximum voltage of 240 kV and an XRD 1611 AP3 detector system with 4096 × 4096 pixels
(100 mm2) (Institute of Mineral Resources Engineering, RWTH Aachen University, Germany).
The CT investigation was executed on the cylindrically shaped, polished block mentioned before.
The specimen was placed between the X-ray source and the detector on the rotating table. The
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resulting CT measurement is the collection of 2D sample projections (radiographs), taken as the
sample rotates 360◦ around the vertical axis between theX-ray tube and the detector. The detector
collects the intensity of transmitted X-ray photons of each projection and thus provides X-ray
attenuation information. Based on this information, an X-ray attenuation coefficient is calculated
for each pixel of the sample projection. This coefficient is displayed as a distinct grey-scale value
in the projection image [169]. The acquired radiographs are subsequently processed using a
reconstruction algorithm to produce a 3D volume represented by a cubic matrix of grayscale
voxels (3D pixels).

3.2.3 Fundamentals of dual-energy computed tomography
Selecting appropriate acquisition parameters (e.g., voltage, current, integration time) for a poly-
phase sample like the one used in this study (i.e., a graphitic ore), comprising both, high and
low X-ray attenuating minerals, is a crucial step that has to ensure that the radiation will also
pass through the thickest and highest absorbing phase of the sample. Insufficient intensity can
compromise the quality of the reconstructed image, complicating subsequent image processing.
In theory, lower energy will increase the grayscale contrast of the reconstructed volume,while
measuring with higher energy decreases any imaging artefacts but at the same time may reduce
the contrast between low-absorbing phases with similar densities and different compositions.
The main principle of dual-energy computed tomography (DECT) is to combine attenuation in-
formation from two conventional or single energy CT (SECT) scans performed at different X-ray
energy levels to obtain a high-quality, single dataset. SECT scans can be fused before, after, or
simultaneously with CT volume reconstruction. The CT scans fusion in this workwas performed
before the reconstruction and is based on aweighted linear combination of the respective low and
high-voltage SECT projection stacks:

𝑓𝐹𝐼,𝛼 = 𝛼 · 𝑓𝐻𝑉 + ((1 − 𝛼) · 𝑓𝐿𝑉 ) (3.1)

where 𝑓𝐹𝐼,𝛼 represents the fused projection image obtained through aweighted linear combination
of the respective high-voltage 𝑓𝐻𝑉 and low-voltage projection 𝑓𝐿𝑉 . The weighting factor, 𝛼, is
chosen from the range of [0,1].

3.2.4 CT data acquisition procedure
The cylindrical-shaped polished block was sequentially measured using five different voltage set-
tings with 60 kV, and 80 kV reflecting the low voltage range (LV scans) as well as 170 kV, 180 kV
and 190 kV comprising the high voltage range (HV scans). It is worth noting that maintaining
an appropriate distance between the energy of the X-ray spectra of the two measurements is
essential for obtaining appropriate DECT data [112]. Since the desired resolutionwas at the lower
micron-scale, the block was positioned close to the X-ray source (SOD=24.5 mm). The focal spot
size was set to microfocus beam mode to further increase spatial resolution. The beam current
was adjusted accordingly for each scan to operate with 8 W, and the number of projections and
averaging were kept constant. The exposure time was set to 1.6 s for all LV scans. To avoid
saturating the detector, the exposure time in the HV range had to be adjusted to 0.8 s. The
CT set-up parameters are summarised in Table 3.1. A Python script was used to generate the
corresponding DECT raw data. Here, the weighting factors 𝛼 were set to 0.3, 0.5, and 0.7 (Eq.1).
A weight factor, of 0.3 for example results in 30 % of the high voltage projection, and 70 % of the
low voltage projection image. All raw data collected were reconstructed using Volume Graphics
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Table 3.1: Set-up parameters for the acquisition of low-voltage (LV) and high-voltage (HV) CT-
scans.

Energy range LV HV

Voltage [kV] 60 80 170 180 190
Power [W] 8 8
Bining [#×#] 2 x 2 2 x 2
Exposure time [s] 1.6 0.8
Number of projections [#] 1600 1600
Resolution [µm×µm×µm] 6.8 6.8
Prefilter [-] none Al 0.4
Part orientation [°,°] 0 0
Averaging [#] 14 15

VGStudio Max 3.5.0 [49]. Subsequently, 18 fused DECT datasets were generated, comprising six
HV x LV combinations combined with three different weighting factors each.

3.2.5 Quality factors and statistical analysis
Grey value information for all reconstructed SECT and fused DECT datasets were obtained by
placing regions of interest (ROI) in the following material areas (MA) (Fig. 3.1):

– Graphite attached to combined quartz and clay, hereafter referred to as MA1(Fig. 3.1A)
– Graphite in the vicinity of a void/crack (air), hereafter referred to as MA2 (Fig. 3.1B)
– Muscovite associated with HFO, hereafter referred to as MA3 (Fig. 3.1C)
– Muscovite associated with quartz and clay, hereafter referred to as MA4. (Fig. 3.1D)

The definition of the MAs was primarily based on the ore mineralogy’s representativeness, target
minerals focus, and grayscale intensity profiles. Thematerial areas encompass five out of the seven
identified phases and structures, with hematite and HFO excluded due to high mean grey value
differences, facilitating straightforward segmentation. Every dataset contained 80 ROIs (10 ROIs
for each phase and structure, or 20 ROIs per MA, respectively). After each ROI was created on
the first analysed dataset, it was copied to the subsequent datasets to ensure they were identical
in size, shape, and location. This resulted in 1840 ROIs considering all 23 datasets (five SECT
acquisitions and 18DECTdatasets). Each individual ROI spannedmultiple slices, with the specific
three-dimensional extension determined by the attributes of the respective phases. Furthermore,
care was taken to ensure that, to the greatest extent possible, each ROI exclusively contained a
single material.

To simplify data extraction, two ROIs were placed adjacent to each other in each material area
considered. This enabled the direct measurement of mean attenuation and standard deviation
using the grey value analysis tool in VGStudio Max software, saving time, and streamlining the
analysis process. Consequently, this approach allowed the generation of a dense amount of at-
tenuation information. To quantitatively evaluate and compare the quality of each dataset, the
contrast-to-noise ratio (CNR) was used to measure image quality in CT data. The CNR quantifies
the ability to distinguish features in the scanned sample [170]. A higher CNR indicates higher grey
value contrast and thus a better phase discrimination. Eq. (3.2) shows the calculation of the CNR,
which measures the contrast as the difference between the mean grey values of the material and
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Figure 3.1: ROI pairs of the different material areas (MAs) evaluated: A) graphite associated with
quartz combined clay (MA1), B) graphite in the vicinity of a void or crack (MA2), C) muscovite
associated with HFO (MA3), and D) muscovite associated with quartz combined clay (MA4). An
individual ROI consists of multiple slices and relies on the 3D shape of the respective constituent.

the background (𝜇𝑚 and 𝜇𝑏) divided by the background noise (𝜎𝑏):

𝐶𝑁𝑅 =
𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡

𝑛𝑜𝑖𝑠𝑒
=

|𝜇𝑚 − 𝜇𝑏 |
𝜎𝑏

(3.2)

Here, graphite andmuscovite were the targetedminerals of the fourmaterial areas as listed above,
and quartz combined with clay, HFO and void/air are background materials. However, in some
other applications, bothmaterials in the pair are equally relevant. To avoid the possible discussion
of the backgrounddefinition, theQ factors [158, 171, 172], which describe thematerials separation
degree, were additionally analysed:

𝑄 =
|𝜇𝑚 − 𝜇𝑏 |
√
𝜎2
𝑚1+𝜎2𝑚2

(3.3)

The results below focued on the CNR-based analysis. However, Q-factor-based analysis delivered
the same trend (Table C.1, Table C.2). In both cases, the quality factors were calculated for each
ROI of eachmaterial area and dataset (local quality factors). The local CNR/Q-factors are the qual-
ity factor values for a single ROI pair in the same material area (Fig. 3.1). The mean values and the
standard deviations were calculated based on ten local quality factors of the same material area.
The global CNR/Q-factor was calculated once permaterial area and parameter combination, so it
has no standard deviation. The global mean and standard deviation for each constituent in anMA
were calculated using the grey values for each ROI. Therefore, the global CNR/Q-factors show the
trends but cannot verify the significance of the absolute differences. Thus, local CNR/Q-factors,
their means and standard deviations were used to quantify the results. To prove the significance
of the differences in image quality and material attenuation among the various SECT and DECT
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measurements, a statistical analysis was performed. The multiple comparisons t-Test or paired
t-tests with unequal variance, also known as the Fisher LSD test, was employed to compare the
quality characteristics between the SECT and DECT datasets with different weighting factors.
The Fisher LSD test starts from the hypothesis that the pair of given variances is similar and
allocates them to two significantly distinguishable groups, if the probability of their similarity is
less than a significance level. The significance level was set at 5 %. Each parameter combination
was statistically analysed to define the significance of the mean value differences since calculated
standard deviations were related to the mean values, not the global ones. Based on the test results,
several significance groupswere identified, and they aremarked through letters fromA to J (Group
A reflects the highest CNR and Q factor values, and Group J (CNR) and Group G (Q factor) reflect
the lowest). Parameter combinations in one significance group have no significant differences.
Each parameter combinationwere compared to all other combinations of the sameROIs pairwise.
Therefore, the parameter combination could belong to more than one group.

3.3 Results
3.3.1 Pre CT analysis
The sample comprised a heavily altered graphitic ore with a quartz-dominant matrix together
with muscovite, clay, HFO, and hematite (Fig. 3.2). Graphite occured as euhedral to subhedral
flakes ranging from large (up to 1000 µm in length), usually subparallel elongated clusters, to
small, disseminated flakes (100 - 200 µm in length), which were occasionally bended or broken
apart along basal cleavage (Fig. 3.2A-B). Some large clusters containedminor intergrowth of HFO.
Quartzwas present as primary subhedral (up to 600 µm in length) (Fig. 3.2A) or small recrystallised
crystals (50 - 250 µm in lengths) showing triple junction texture. The ore were interspersed with
cracks and features numerous cavities (Fig. 3.2B). Muscovite occured as euhedral to subhedral
crystals (500 µm - 6 mm in length) showing different degrees of alteration with HFO occasionally
occured along the basal cleavage planes (Fig. 3.2A). HFO were also present as veinlet and cracks
infills as well as along grain boundaries (Fig. 3.2A), and Fig. 3.2C). Moreover, it appeared pseudo-
morph after muscovite and hematite (Fig. 3.2A).

3.3.2 Evaluation of CT image quality
Qualitative analysis
The volume slices depicted in Fig. 3.3 represent SECT scans conducted at different energy levels:
a LV scan (80 kV ), an HV scan (190 kV ), and their corresponding fused DECT volume slices,
generated using varyingweighting factors of 0.3, 0.5, and 0.7. Seven different grey value intensities
could be identified in both the SECT volume slices and DECT slices. These corresponded to (see
numbers from 1 to 7 in (Fig. 3.3A):

1. air in voids and cracks (from dark grey to black),
2. graphite (dark grey),
3. combined quartz and clay (grey),
4. muscovite (from grey to light grey),
5. HFO after muscovite (light grey),
6. HFO vein-fill (from light grey to whitish), and
7. hematite (white).

41



Chapter 3. DECT of graphite ore: enhancing image contrast

Figure 3.2: A) SEM image,B) reflected lightmicroscopymicrophotograph, andC) plane polarised
light microscopy microphotograph of different areas of the graphite ore sample. A) Disseminated
and subparallel orientated graphite flakes embedded in a silicate matrix of muscovite and quartz.
HFO were present along cleavage planes of muscovite, pseudomorph after hematite (subhedral
crystals) and occured along grain boundaries and in veins. B) Microphotograph showing two
voids and two anhedral hematite grains. Graphite flakes were present. A network of cracks
occured in the gangue matrix. C) Brown coloured microcrystalline clay were present throughout
the specimen area. Note the thick vein fill of HFO. Abbreviations: Gr = graphite, Hem = hematite,
HFO = hydrated iron(III) oxide-hydroxides, Ms = muscovite, Qz = quartz.

The SECTandDECTvolume slices exhibited notable differences in noise, contrast, and sharpness.
The SECT images generally appeared noisier compared to the DECT images (Fig. 3.3A-B). The
DECT images with weighting factors of 0.3 and 0.5 showed similar noise, with the latter being
slightly less noisy (Fig. 3.3C-D). In contrast, the DECT image with a weighting factor of 0.7
exhibited the highest noise level (Fig. 3.3E). Considering image contrast, the SECT volume slice
obtained at 190 kV and the DECT with a weighting factor of 0.7 showed lower contrast than the
other images. The other volume slices had similar contrast, with the data set reconstructed with
a weighting factor of 0.3 appearing to have less contrast.

Regarding image sharpness, the SECT images exhibited partial blurring and occasionally showed
double edges (see yellow box in Fig. 3.3A and Fig. 3.3F). These issues were alleviated in all the
DECT images, with the one at 0.5 weighting factor appearing the sharpest among them (see red
box in Fig. 3.3D and Fig. 3.3G). The histogram in Fig. 3.4 displays the grey value distribution of
the 80 kV scan (Fig. 3.4A), the 190 kV scan (Fig. 3.4B), and the corresponding fused DECT data
sets with a weighting factor of 0.5 (Fig. 3.4C). Each peak in the histogram corresponded to specific
phases within the scanned sample. The better defined the peaks were, the less overlapping grey
values existed, indicating a more definite phase assignment. The distinctness of the peaks and the
degree of overlapping grey values differed significantly between the SECT and DECT histograms
(Fig. 3.4D). The grey value material areas of materials like cavities and quartz were more com-
pressed in theDECThistogram, indicating amore improved image contrast and a reduced overlap
of grey values. Furthermore, the DECT histogram revealed an additional shoulder (Fig. 3.4C-D)
that corresponded to graphite which is not visible in the other histograms (Fig. 3.4A-B).

Quantitative analysis
The quantitative analysis were based on the detailed CNR analysis of the established ROIs. Four
different material areas (MA1,MA2,MA3, andMA4) were defined (Section 3.2.5), and the analysis
was individually performed for each material area. The mean CNR values obtained for ten ROIs
from all SECT and DECT volumes are shown in Table 3.2, and Table C.2. The mean CNR values
for the SECT data within the ROIs range from 2.863 (MA2) to 5.745 (MA3), and global CNR
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Figure 3.3: 2D volume slice of SECT and DECT volumes: A) 80 kV, B) 190 kV, fused dual energy
scans with weighting factors of C) 0.3, D) 0.5, and E) 0.7. Numbering of phases: 1 = Air trapped
in voids and cracks, 2 = graphite, 3 = combined quartz and clay, 4 = muscovite, 5 = HFO after
muscovite, 6 = HFO vein-fill, and 7 = hematite. The F) yellow and G) red boxes, respectively,
show a section of a graphite flake (centre of image) andN-S extending cracks and a small hematite
crystal (lower centre). The graphite flake appears sharper, and the cracks are less blurred in the
fused DECT scan with a weighting factor 0.5 (G). Note the small flake in the lower right of the
slice, which is barely visible in the SECT volume slices compared to the DECT scan, and the
reduced beam hardening introduced by a small hematite crystal. Window levelling was set to
Smart Contrast for each slice to maximise contrast between each phase.

values – from 2.80 to 5.66 (Table 3.2). In contrast, mean CNR values for the DECT data ranged
from 3.779 (MA2) to 7.646 (MA3), and global CNR values – from 3.73 to 7.44. Notably, in every
ROI, most of the CNR values of the DECT datasets consistently surpassed those of the SECT
datasets regardless of the weighting factor. Except for MA3, most CNR values of the fused DECT
datasets differed significantly from those of the SECT scans. The DECT combination 80 kV x
180 kV x 0.5 showed the highest mean and global CNR values for the MA2, MA3, and MA4.
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Figure 3.4: Histogram of grey value distribution (range from 0 to 12000) of SECT scans – A)
80 kV, and B) 190 kV – and C) the corresponding fused 80 kV x 190 kV x 0.5 dataset. A peak
in the histogram indicated a phase contained in the scanned object. A) Histogram of the 80 kV
scan showing the mean grey values of the phases comprising the samples apart from hematite
which is out of the histogram range. Note that air refered to the air trapped within voids and
cracks. D) Grey value distribution of 80 kV, 190 kV, and the 80 kV x 190 kV x 0.5 DECT, note the
evolved shoulder indicating graphite in the fused DECT dataset. Abbreviations: Gr = graphite,
Qtz = quartz, Ms = muscovite, HFO = hydrated iron(III) oxide-hydroxides.

These combinations always belonged to group A. In MA1, the combination 80 kV x 190 kV x 0.5
exhibited the highest global and mean CNR value. In all ROIs, the mean CNR values of these two
settings were significantly different compared to the vast majority of the DECT combinations.
The 80 kV x 180 kV x 0.5 was in the same significance group (group A) as 80 kV x 190 kV x 0.5 (all
MAs), 60 kV x 170 kV x 0.7 (MA1, MA2, and MA3), 80 kV x 190 kV x 0.3 (MA1, MA3, and MA4).
The 80 kV x 190 kV x 0.5 was in the same significance group (group A) as 80 kV x 180 kV x 0.5 (all
MAs), 60 kV x 170 kV x 0.7 (all MAs), 80 kV x 190 kV x 0.3 (MA1, MA3, and MA4). In contrast,
the 80 kV x 170 kV DECTs exhibit statistically lowest CNR values compared to the other DECT
combinations.

The weighting factor 0.5 exhibited, in most cases, the highest absolute CNR values and was signi-
ficantly better for some DECT combinations than other weighting factors on theMA1, MA2, and
MA4. In contrast, apart from the 80 kV x 190 kV DECT combination, factor 0.3 often showed
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Table 3.2: Mean CNR values and results of Fisher LSD test for each material area and parameter
combination from 10 ROIs for each phase and structure. Group A is the highest (marked dark
green), and Group J is the lowest (marked dark orange) CNR group. Members of the same group
have no significant differences. Themean CNR values which belong only to the best or only to the
worst group of the considered material area, are marked in bold. The highest mean CNR value in
each material area is marked bright green, and the lowest is bright orange. All mean CNR values
belonging to the best group are highlighted in green, those belonging to the worst in orange.

significantly lower CNR values. Especially on MA2, datasets calculated with the weighting factor
0.3 are significantly worse compared to the factors 0.5 and 0.7 of all DECT combinations apart
from 80 kV x 170 kV (same significance among all weighting factors). In MA3, there was no stat-
istical difference compared to the fused datasets of the same combination and different weighting
factors.

Regarding the CNR values of the SECT datasets, 80 kV showed the highest global and mean
CNR values than 60 kV SECT (Table 3.2). In MA4, this difference was statistically significant.
Furthermore, the HV datasets exhibited the lowest CNR values in MA1 and MA4. In contrast,
concerningMA2, the CNR calculations of the LV datasets showed significantly worse values than
the HV datasets. Within MA3, no general trend could be determined.

3.4 Discussion
DECT has primarily been utilised in geoscientific research formaterial decomposition, extracting
density, and 𝑍𝑒𝑓 𝑓 ) information on the basis of the raw projection data to differentiate minerals in
rocks and ores [99, 111, 167, 168]. However, the quantification of improved image quality using
DECT has not been elaborately discussed. Addressing this research gap, a comprehensive evalu-
ation of image quality enhancement using DECT on a polyphase graphite ore was conducted by
analysing the contrast-to-noise ratio (CNR) and Q factors of SECT and fused DECT scans. SECT
scans were acquired at different tube energies and combined with varying weighting factors,
further allowing to explore the impact of different proportions of the fused energy spectra on
image quality.
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3.4.1 DECT data acquisition
The findings revealed that fused DECT datasets have a positive and statistically significant effect
on image quality in terms of CNR and Q factors regardless of the weighting factor applied com-
pared to the SECT scans. Two mechanisms account for the improved contrast.

First, mathematically, the improved CNR and Q factors exhibited by DECT compared to SECT is
attributed to the determined standard deviations of the reconstructed DECT data (denominator
in both formulas). During CT data acquisition, the detector captures the material dependent
attenuation of X-ray radiation from the exposed sample, converting it into different photon in-
tensity that are then converted into CT numbers and stored in the form of projection data. The
linear combination of SECT datasets in DECT involves mathematically merging the pixel values
of corresponding projection pictures from each dataset. Through fusion, the projection data is
averaged based on the weighting factor, leading to higher information density. Consequently,
outliers become less significant, resulting in a lower standard deviation in the DECT data. This
reduction in standard deviation contributes to the enhanced CNR and Q factors observed in
DECT compared to SECT. This is a purely statistical effect, however, and a similar degree of noise
reduction might be expected from combining two SECT datasets acquired at the same energy.

Second, the specimens’ materials constituents (e.g., graphite, quartz, hematite, HFO, air) exhibit
a different attenuation behaviour at different X-ray energies. At lower X-ray energies, the pho-
toelectric effect dominates, which is more sensitive to the material’s atomic number (Z) (pro-
portional to Z4−5) [42, 173]. This effect is particularly effective for phases with higher Z values.
On the other hand, at higher X-ray energies, Compton scattering becomes more prevalent, and
the attenuation is more dependent on the material’s electron density [173]. For low-absorbing
phases and those comprising similar densities (e.g., graphite, quartz), lower X-ray energies are
better to avoid underexposure, as the photoelectric effect provides better contrast in these cases.
Conversely, higher X-ray energies should be applied for high-absorbing phases (e.g., hematite,
HFO), typically with higher Z values, to ensure sufficient penetration of the material and avoid
overexposure. With DECT, two X-ray spectra are acquired at different energy levels. These
energy-specific datasets contain complementary information about the attenuation characterist-
ics of the scanned materials. Combining these datasets through DECT leverages the advantages
of both lower and higher X-ray energies, resulting in improved contrast and more accurate dif-
ferentiation of materials with a broad range of attenuation behaviours. The varying contrasts
observed in the SECT and DECT datasets directly result from the different absorption properties
of the minerals present in the sample at different X-ray energies. When comparing the LV scans
andDECT combinations with equal energy fractions (weighting factor 0.5), it was generally noted
that datasets acquired at 60 kV provide slightly worse CNR values compared to combinations at
80 kV, although not always significantly. Considering the target material is tungsten, the effi-
ciency of producing characteristic X-rays decreases notably at energies below 80 kV. As a result,
bremsstrahlung becomes a greater proportion of theX-ray spectrum and the average energy of the
X-ray beam decreases [174]. This, in turn, results in a higher degree of attenuation of lower energy
X-rays and introduces noise. These effects may be amplified through the polymineralic nature of
the sample. An exception is the 80 kV x 170 kV DECT combination, whose CNR (and Q factor)
values belong to the same significance group as the 60 kV SECT combinations. However, this
combination is the one with the most negligible difference in the fused energy spectra. According
to [112], an appropriate distance between the energy of theX-ray spectra of the twomeasurements
is essential for obtaining proper DECT data. The results of the CNR (and Q factor) values of the
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80 kV x 170 kV, independent from the weighting factor and ROI, indicate that this difference was
too small, thus underlining this finding.

DECT combinations utilising higher LV x HV energies consistently demonstrate significantly
higher CNR (and Q factor) values with a weighting factor of 0.5 compared to the other DECT
reconstructions. This observation is likely influenced by the specific mineralogy and microstruc-
ture of the sample, which tends to require higher X-ray energy levels from both spectra. This
may also explain why the 60 kV x 170 kV combination, with a weighting factor of 0.7, exhibits
significantly higher CNR values than the same combination of 0.3 and 0.5. Otherwise, 21/24 of
the fused reconstructed datasets exhibit the highest CNR values compared to weighting factors
0.3 and 0.7.

Grey value distribution in the evaluated material areas
Notably, all HV SECT settings exhibited statistically higher CNR values for MA2 compared to
those obtained with the LV spectra. The underlying reason for this disparity lies again in the
energy-dependent components of Compton scattering and photoelectric absorption of X-rays.
Generally, scans at lower energies tend to provide better contrast due to the photoelectric effect,
which is highly sensitive to Z and particularly effective for phases with high Z [43, 169]. However,
graphite (Z = 6) and the main gases of air (nitrogen (Z = 7) and oxygen (Z = 8)) have very similar
Z. On the other hand, there exists sufficient difference in their densities (graphite = 2.1 g/cm3,
air = 1.2e-3 g/cm3 at 20°C). This density discrepancy becomes the dominant factor influencing
X-ray attenuation at higher voltages, where the Compton effect prevails. As a result, scans with
higher voltages demonstrate improved contrasts between graphite and air, as the Compton ef-
fect is more sensitive to the density of a material, compensating for the minor atomic number
difference between graphite, and the major constituents of air. This is also reflected in the fused
DECT datasets, where the weighting factor of 0.7 provided higher CNR values for three of the six
combinations. Thus, the results show that the significant changes in the contrasts of the DECT
datasets depend on both the combined voltages and the weighting factor.

A comparable trend is observed regarding the global CNR values of the various DECT combin-
ations (Table 3.2). However, it is noteworthy that the CNR values within MA3 do not exhibit as
significant differences as those observed in othermaterial areas (e.g., MA2,MA1). Statistically, this
can be attributed to the partly substantial variation inmean attenuation and standard deviation of
the individual regions of interest (ROIs) within the HFO. From a mineralogical perspective, this
could be influenced by varying Fe contents or different stadiums of pseudomorphismofHFOafter
muscovite at the locations where the ROIs were placed. This interpretation is supported by the
varying brightness levels observed in the grey-scale images (Fig. 3.3), which suggest heterogeneity
in themineral compositionwithinMA3. These compositional variations in the HFOmay account
for the observed similarity in CNR (and Q factor) values across different DECT combinations
within this specific material area.

3.4.2 Limitations and future studies
The recommendations regarding the energy spectra and theweighting factor for theDECT fusion
to be applied are based on one specific sample. Although the sample was extensively evaluated
with 18 parameter combinations that were based on the establishment of 1840 grey value analysis,
more empirical data on these types of geomaterials needs to be collected to further validate the
findings. Additionally, like SECT, DECT also faces limitations in distinguishing between phases
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with rather similar or identical attenuation properties such as quartz and clay. This constraint
is inherent to all CT techniques and impacts on DECT as well [166]. Also, mineralogical data is
necessary prior to any DECT analysis so that CT scans can be interpreted correctly [46, 54, 105].
Time is a further limiting factor when it comes to DECT, as it requires acquiring two SECT
scans to generate the DECT datasets. This process at least doubles time and costs compared to
obtaining SECT data alone. The contrast variations observed in the DECT datasets indicate that
the combination of different X-ray energies significantly affects the image superior image quality,
future studies should compare DECT scans with SECT scans having double the acquisition time.
Regarding the preferential choice of the image quality metrics used, it was observed that CNRs
are more responsive to noise in the background material. At the same time, Q factors are less
susceptible to the same noisewithin amaterial area (Table C.2). This behaviour could be attributed
to the denominator in the Q factor calculation, which considers the noise of both ROIs in the
material area. Regardless, as the scope of this study did not encompass an in-depth comparison
of these metrics, further research is needed to validate this observation. Lastly, future studies
could consider the effect of other scanning parameters (e.g., exposure time and current) on the
image quality of the fused DECT data.

The variation in contrast values observed in this study emphasise the critical role of selecting
the appropriate X-ray energy level to optimise image quality and contrast, particularly in the
context of heterogeneous geomaterials like the ones studied here. One of the central challenges
in CT scanning, however, is finding the optimal scan settings for a given material due to the
polychromatic nature of theX-ray beam. A common approach is calculating the linear attenuation
coefficient for each phase in the sample [26, 118]. However, a polychromatic X-ray source is
used in most CT applications, and the linear attenuation coefficient’s energy dependency must be
considered. Simulation software can be an effective tool for determining these optimal settings,
especially in cases where the material’s composition and internal structure are known in advance
(e.g., workpieces) [158, 175]. However, the situation becomes more complex when dealing with
geological materials. Buyse et al. successfully calculated reconstructed attenuation coefficients to
differentiate between minerals in a heterogeneous geological sample for a given CT setup using
simulation software [105]. The simulations assumed a monomineralic sample while considering
factors such as sample geometry, chemical composition, and size. In practice, the ability to identify
the appropriate scanning conditions for geological samples through simulation remains challen-
ging due to the uncertainty surrounding the spatial arrangement and grain size distribution of the
phases within the sample. Regardless, DECT proves to be significantly superior to SECT in terms
of achieving high-quality data, making it particularly valuable for less experienced operators
seeking to enhance image quality and data accuracy.

3.4.3 Implications for mineral characterisation
The accurate extraction of quantitative mineralogical data from ores and their constituents, such
as volume, shape, grain size, and distribution, relies on the segmentation of CT datasets after
volume reconstruction to isolate and classify the phases of interest. CT images are commonly
segmented based on their greyscale intensities [169]. More advanced machine learning segment-
ation techniques also utilize object shape and pixel texture for feature classification [58, 60]. High
image-quality CT datasets are essential for precise quantitative analysis, particularly for hetero-
geneous ores with a broad range of X-ray attenuation among their constituents, which may also
exhibit similar grayscale intensities. To enhance image quality, datasets are often processed after
reconstruction using various filtering methods. However, filtering techniques usually present a
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trade-off: filters that decrease noise also blur the image (e.g. median filter, gaussian filter, and aver-
aging filter), while those that increase image sharpness introduce noise into the image, leading to
a potential data loss [176, 177]. In contrast, DECT effectively improves the image quality without
compromising data quality. This advantagemakesDECTparticularly beneficial formore accurate
segmentation, resulting in more precise and reliable identification of mineral phases and features.
The enhanced image quality achieved for the investigated ore with the DECT-based approach
provides a robust foundation for subsequent segmentation processes, ultimately enhancing the
accuracy and reliability of quantitative mineralogical analysis.

The object studied in this research is a graphite ore. Previous studies have demonstrated the added
value of CT for characterising graphite ores and enhancing resource efficiency [28, 33]. Building
upon these findings, the present study offers additional insights into acquiring high-quality data
on graphite ores. DECT, capable of addressing varying attenuation demands, shows great po-
tential for the characterisation of such ores, which typically consist of high-absorbing materials
like pyrite and hematite, along with air, while graphite exhibits low attenuation. By effectively
managing these different attenuation properties, DECT enables the acquisition of appropriate
contrasts for each phase, thereby enhancing the analysis of graphite ores and contributing tomore
accurate and detailed assessments of graphite ores.

3.5 Conclusion
This study explored the use of DECT for enhancing grayscale contrast of a heterogenous poly-
phase graphitic ore. A sequential fusion approach was applied to combine data obtained from
different X-ray energy scans at high spatial resolution. Various X-ray energy spectra were com-
bined with varying weighting factors to determine the favourable contribution of each energy
level applied, thereby aiming to provide the best possible attenuation of each phase.

The results reveal that DECT provides complementary information on the material’s attenuation
characteristics that significantly improves the image grayscale contrast between individual phases
comprising the investigated specimen compared to SECT. Considering the specimen investigated,
higher energy DECT combinations and the weighting factor of 0.5 tend to provide the best image
contrast regarding CNR and Q factor.

Given the complex microstructure and mineralogical composition of ores and the fact that the
results are based on one particular sample, more research is needed to validate the findings of
this study on a wider range of ore samples. Nevertheless, the findings suggest that DECT can
be a valuable tool for improving 3D characterisation of polyphase graphitic ores. The additional
greyscale contrast and image sharpness provided byDECTmay allow formore accurate segment-
ation and thus quantitative mineralogical analysis. This could help to improve the understanding
of graphite deposits and the development of more efficient extraction processes.
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4.1 Introduction
Tungsten, a brittle steel-grey metal, is primarily found in nature in wolframite and scheelite, with
the latter contributing over 65% to known tungsten deposits [64]. Widely used in various techno-
logical applications, such as X-ray tubes, nuclear reactors, and high-performance magnets, tung-
sten is deemed aCRMbymany advanced economies, exhibiting the highest economic importance
according to the EU’s CRM evaluation [5]. China is responsible for 85% of the global supply,
holding 47% of the world’s tungsten resources. Australia ranks second at 11%, with significant
deposits found in various regions scattered across the country, such as Queensland, New South
Wales, the Northern Territory, and Tasmania [178, 179]. Despite this, Australia contributes to
only 1% of the global tungsten supply with three operating mines: Kara mine, King Island (both
Tasmania), and Mount Carbine (Queensland) [180]. In fact, until late 2023, the Kara mine was the
sole production site [180].

To efficiently extract mineral resources, ores must be accurately characterised in order to assess
ore deposit quality and to maximising recovery [181]. Methods for analysing tungsten ores en-
compass a range of conventional techniques includingX-ray powder diffraction (XRD), ultraviolet
light, electron probe micro-analysis (EPMA), scanning electron microscopy with energy dispers-
ive spectroscopy (SEM-EDS), cathodoluminescence (CL), inductively coupled plasma mass spec-
trometry (ICP-MS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS),
and optical microscopy (OM) [e.g., 15, 182, 183]. These methods yield essential insights into the
mineralogy, mineral chemistry, and geochemistry of tungsten ores. However, some techniques,
like XRD, may not provide dimensional geometries of the analysed samples. Contrastingly, OM,
SEM-EDS, andEPMAoffer 2Dvisualisation of tungsten ores. Yet, thesemethods are timeconsum-
ing, involve destructive sample preparation, and necessitate careful sectioning of original samples
to select representative sample material. Furthermore, translating results from these methods
into the third dimension can introduce stereological bias, which can be particularly challenging
for low-grade ores with complex mineralogy and microstructure.

X-ray computed tomography (CT) enables the analysis of both bulk and spatially resolved micro-
structures of scanned objects based on the X-ray attenuation information of its components [44].
It allows for the non-destructive 3D visualisation and quantitative analysis of microstructural
features in situ [44]. Over the past two decades, the technique has been successfully employed in
numerous geological investigations [21, 28, 84, 184, 185]. CT has also proven its added value to the
study of various ore types, particularly those comprising target minerals that exhibit significant
attenuation contrast between ore and gangue minerals [26, 87, 93, 94]. To date, CT has been
applied for measuring the tungsten content of a scheelite ore [35, 115] and its concentrate [36].

This study presents the first 3D reconstruction and quantitative analysis of scheelite ores from
the Kara Fe-W deposit, Australia, using high-resolution CT. To date, there have been few studies,
including technical reports on this deposit, that focussed on mapping, resource and reserve es-
timation, and formation history [186–190]. This research provides original insights into the volu-
metric and microstructural features of its tungsten ore minerals. Furthermore, it also introduces
the application of a deep learning-based segmentation workflow for scheelite ore analysis that
may be adapted to tungsten ores of similar composition. The ore grades (WO3) calculated using
CT were validated using inductively coupled plasma optical emission spectrometer (ICP-OES)
analysis. Consequently, results of this study extend our existing knowledge of scheelite deposits
and contribute to the development of advanced analytical protocols for the characterisation of
metals ores.
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4.2 Geological background
4.2.1 Regional geology
TheKara area’s regional geology is characterised by Late Precambrian to recent volcano-sedimen-
tary sequences and Devonian granitoids [191]. Precambrian rocks, forming the basement, consist
of quartzose lithic wacke, phyllite, and minor dolomite. Cambrian to Lower Devonian units
unconformably overlie the Precambrian rock and include the Success Creek Group (siliceous
sandstone, mudstone, dolomite, and breccia) and the Criemson Creek Formation (mafic volcanic
and volcano-sedimentary rocks) [189]. Overlying Ordovician to Lower Devonian rocks comprise
the Mathinna Beds and the Wurawina Supergroup, further divided into the Denison, Gordon,
and Tiger Groups [192]. The Denison Group features conglomerate, sandstone, siltstone, and
argillite; the GordonGroup consists of carbonates; and the Tiger Group comprises quartzite with
limestone fragments. Tertiary basalt and recent sand and gravel cover the area, concealing older
units and mineralisation [192]. The Housetop Granite is an important Devonian granitoid loc-
ated in northwestern Tasmania [189]. It intrudes volcano-sedimentary successions ranging from
Precambrian to Lower Devonian. The granite is associated with many carbonate replacement
deposits, including scheelite skarns and others. The deposits are located within 1 to 1.5 km from
the intrusion [193], suggesting a spatial association with structurally weak zones [194].

4.2.2 Deposit geology
TheKara Fe-Wdeposit is located in northwesternTasmina, Australia (41°18’ S, 145°48’ E) ( Fig. 4.1).
The Kara deposit area’s geology features Cambrian rocks to the northwest, comprising laminated
cherty mudstone with carbonates, locally transformed to hornfels or marble and, in places, to
metamorphic skarn assemblages [189]. Ordovician units comprise massive and poorly bedded
Owen Conglomerate and massive to weakly bedded and argillaceous Moina Sandstone, as well
as impure limestone (Gordon Subgroup equivalent). Devonian granite is exposed in open cuts
and often occurs in contact with skarns and showing alteration toward its margin. The granite
consists of K-feldspar, quartz, and plagioclase, as well as accessory minerals like biotite, mus-
covite, epidote, hornblende, and magnetite. Amphibole appears to replace biotite. The granite
generally shows an increasing intensity of alteration towards its margin, with feldspars altered
to sericite or epidote. Calcite and fluorite are also present as veins in the altered zone. The
Kara magnetite-scheelite deposit comprises several NNE-SSW trending skarn bodies (Fig. 4.1A),
primarily developed within carbonates, sandstone, impure limestone, or transitional beds in the
lower part of the Gordon Limestone. The skarns are in direct contact with the granite but may
be separated from it by a thin layer of Owen Conglomerate or Moina Sandstone away from the
contact (Fig. 4.1B). The Cambrian and Ordovician sequences were folded during Mid-Palaeozoic
deformation, and these fold structures have been intruded by Devonian granite. Post-granite
emplacement faulting includes dextral and thrust faults with small displacements [195].

Mining at Kara is by open cut and operated by Tasmania Mine Pty Ltd., with magnetite primarily
mined and scheelite being extracted as a by-product (of magnetite processing operations). Mining
has been focused on the Kara No. 1 orebody since extraction began in 1977. Estimates from a
company report from 2016 show the total remaining mineable reserves of 9.9 Mt ore, averaging
>30% of Fe, and averaging 378 ppm of WO3 [187]. In 2018, the tungsten reserves were 3.66 kt
WO3 and a production of 0.025 kt WO3 [179].
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Figure 4.1: A) Geological map, and B) geological cross-section of the Kara Fe-W deposit area.
Kara No. 1 is the sole orebody being mined. Modified after [189].

4.2.3 Deposit mineralogy
The primary skarn minerals at Kara include magnetite, garnet, vesuvianite, clinopyroxene, epi-
dote, and amphibole, alongwith subordinate or accessoryminerals such as fluorite, calcite, quartz,
scheelite, hematite, chlorite, wollastonite, sphene, pyrite, chalcopyrite, and apatite [189, 190].
At least four stages of Skarn formation have been recognised at Kara (Table 4.1; [190]). Early
skarn mineral facies, like garnet and pyroxene, underwent complete or partial replacement by
later minerals, such as amphibole, epidote, and chlorite. According to [189], later minerals have
developed by pervasive and diffusive replacement of earlier minerals, with a minor contribution
from filling vugs, veins, and fissures. Early mineral facies are largely anhydrous, while later ones
are predominantly hydrous. A detailed description of macroscopic and microscopic textural
features of all mineral assemblages can be found in [187]. In the following, the major and minor
occurringminerals of the stage III skarn formation are briefly summarised, asmost of the scheelite
deposition occurred during that stage [189]. In stage III, scheelite forms very coarse grains locally
in excess of 5 cm and shows mutual grain boundaries with other stage III minerals. Magnetite is
themost abundantmineral in stage III and shows grain sizes fromfine (0.2mm) to coarse (15mm);
occurs with amphibole; replaces earlier mineral assemblages; and forms as massive aggregates,
fractures, or veins. Amphibole is primarily associated with scheelite and magnetite and occurs in
hand specimens as fine to coarse grained (up to 5mm) aggregates. Anhedral epidote showsmutual
existence with other stage III minerals and exhibits variable grain sizes (0.2–10 mm). Fluorite is
primarily associated with amphibole, epidote, and chlorite. Its grain size ranges from 0.1 to 5mm.

54



4.3. Materials and methods

Table 4.1: Mineral assemblages of the identified skarn formation stages after [190]. Note that
minor chalcopyrite and bornite may also occur in the mineral paragenesis of skarn formation
stage III.

Skarn formation stage Paragenesis

Stage I Clinopyroxene ± garnet ± vesuvianite ± wollastonite ± quartz ±
scheelite

Stage II Garnet-vesuvianite-magnetite ± scheelite ± apatite ± quartz
Stage III Magnetite-amphibole-epidote-fluorite-quartz ± chlorite ± gar-

net ± vesuvianite± scheelite ±carbonate ± pyrite± clinopyroxene
Stage IV Hematite ± fluorite ± calcite ± quartz

4.3 Materials and methods
4.3.1 Conventional analysis
Two ore samples from the Kara mine were collected on site from the run-of-mine (ROM) stock-
pile, reflecting two types of mineralisations: (1) a scheelite-bearing feldspar-rich host rock, and
(2) scheelite-bearing magnetite ore. UV light was utilised during sample collection to confirm
the presence of scheelite. Two polished mounts were prepared for automated mineralogy using
the FEI MLA 650 scanning electron microscope (FEI Company, Hillsboro, OR, USA) equipped
with two Bruker XFlash 5030 detectors operating at 20 kV and 7 nA. For quantitative min-
eralogical analysis, the Advanced Mineral Identification and Characterization System (AMICS)
software (v3.1) package was used (Central Science Laboratory, University of Tasmania, Hobart,
Australia). As the original sample mounts of the collected ROM material showed none to very
minor scheelite on the polished surface (Fig. C.1), a third polished mount (ROM1) of the collected
scheelite-bearing feldspar-rich host rock sample material was prepared as well as the selection
of another sample of the collected magnetite ore material (ROM4) for CT analysis (Fig. 4.2). The
ROM1 sample was subject to further petrographic analysis using a LEICA DM 2700P polarisa-
tion microscope (Institute of Mineral Resources Engineering, RWTH Aachen University, Aachen,
Germany) as well as a FEI 650F scanning electron microscope equipped with two Bruker XFlash
5030 detectors operating at 15 kV and 25 kV and 10 nA (Institute of Mineralogy and Economic
Geology, RWTH Aachen University, Germany). The final ROM4 sample was directly processed
to CT analysis without additional preparation and petrographic analysis.

After the initial CT analysis, the samples were subject to XRD and ICP-OES analysis. For XRD
analysis, 1.3 g of each sample was ground for 1 min using the TS 250 vibratory disk mill (Sieb-
technik GmbH, Mülheim a.d.R., Germany). The micronised specimens underwent quantitative
phase identification using the HighScore Plus software (v. 5.2, Malvern Panalytical, Almelo, The
Netherlands) on a Malvern Panalytical Aeris benchtop powder X-ray diffractometer equipped
with a Co source that operated at 40 kV and 8 mA (QXRD, Institute of Mineral Resources Engin-
eering, RWTH Aachen University, Germany). XRD patterns were collected from 5 to 80° 2𝜃 with
an acquisition time of 60 min. Mineral phases were identified by referencing the ICDD PDF4
+ database. For ICP-OES analysis, the same homogenised samples were subjected to microwave
digestion using the MLS TurboWave (MLS Mikrowellen-Labor-Systeme GmbH, Leutkirch, Ger-
many). The acid mixture consisted of 8 mL of inverted aqua regia (3 parts HNO3, 1 part HCl)
and 2 mL of HBF4 (a hydrofluoric acid substituent). The W standards used had concentrations of
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Figure 4.2: Samples used for CT analysis. A), and B) polished section of the ROM1 sample
(scheelite bearing feldspar rich rock); B) under UV light. The purple and blue fluorescence colours
can be attributed to K-feldspar and fluorite, respectively. C), and D) ROM4 sample (magnetite
ore); D) under UV light. In both samples, scheelite is white under UV light, indicating a low
concentration of Mo, as reported in [189].

1 g/L and 10 g/L, which were subsequently diluted according to the sample requirements. The
calibrated range was 0.1 - 10 mg/L. The W content of both samples was then measured using
the SEPCTRO ARCOS ICP-OES (SPECTRO Analytical Instruments GmbH, Kleve, Germany;
Institute IME Process Metallurgy and Metal Recycling, RWTH Aachen University, Germany).

4.3.2 Computed tomography
A CT-ALPHA micro-CT system (ProCon X-ray GmbH, Sarstedt, Germany) was utilised, com-
prising a five-axes-manipulation system between an XWT-240-TCHE plus X-ray tube with a
maximum voltage of 240 kV and an XRD 1611 AP3 detector system with 4064 × 4064 pixels
(100 mm2) (Institute of Mineral Resources Engineering, RWTH Aachen University, Germany). A
specimen is placed between the X-ray source and the detector on the rotating table. During the
measurement, 2D projections are collected as the specimen rotates 360° around the vertical axis.
The detector collects the intensity of transmitted X-ray photons of each projection, providing X-
ray attenuation information. From this information, an X-ray attenuation coefficient is calculated
for each pixel of the sample projection. This coefficient is displayed as a distinct greyscale value
in the projection image [21]. The acquired radiographs are then processed using a reconstruction
algorithm to produce a 3D volume represented by a cubic matrix of greyscale voxels (3D pixels).
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Table 4.2: CT scanning acquisition settings applied in this study. CT acquisition of ROM1
involved the fusion of two test measurements acquired at 150 kV due to acquisition issues.

Parameter ROM1 ROM4

Voltage (kV) 150 150 180
Power (W) 8 8 8
Bining (#×#) 2x2 2x2 2x2
Exposure time (s) 1.6 0.8 1.9
Number of projections (x) 1600 1600 1600
Resolution (µm×µm×µm) 7.8 7.8 8.4
Prefilter (-) Cu0.4 - Cu0.4
Averaging (#) 4 4 12

Data acquisition
The successful application of CT relies on the X-ray beam’s ability to penetrate the sample. X-ray
attenuation is primarily governed by photoelectric absorption and Compton scattering, and it
is influenced by material density, 𝑍𝑒𝑓 𝑓 , and applied X-ray energy [169]. The photoelectric effect
prevails in low energies (approximately 50–100 keV), whereas Compton scattering dominates in
energies > 5 MeV [42]. The likelihood of photoelectric absorption is highly dependent on the
atomic number (Z), with absorption being proportional to Z4−5 [42]. In Compton scattering, the
probability of X-ray absorption is proportional to Z, as the incoming X-ray photon interacts with
a free or outer electron, ejecting it. Thus, the likelihood of this effect ismore reliant on the electron
density of the material [42]. Therefore, higher X-ray energies increase the penetration capacity
of the X-ray and reduce beam hardening but may reduce image contrast of less dense and lower
Z phases. Given that scheelite, the target mineral, possesses both high 𝑍𝑒𝑓 𝑓 and high density, high
X-ray energies were applied to both samples (Table 4.2) to reduce beam hardening caused by the
mineral.

Due to acquisition issues for ROM1, an image fusion approach of two test measurements was
applied. Image fusion can be used to acquire dual-energy CT (DECT) data by the means of
combining attenuation information from single-energy CT scans performed at different energy
levels to enhance image contrast [39]. The datasets available in the present study were acquired at
the same X-ray energy. However, the linear combination of SECT datasets also involves mathem-
atically merging the pixel values of corresponding projection pictures from each dataset, resulting
in higher information density. This reduces the significance of outliers, which in turn reduces the
standard deviation and noise in the fused dataset. The scans were fused before reconstruction
using

𝑓𝐹𝐼,𝛼 = 𝛼 · 𝑓𝑉𝐴 + ((1 − 𝛼) · 𝑓𝑉𝐵) , (4.1)

where 𝑓𝐹𝐼,𝛼 represents the fused projection image obtained through aweighted linear combination
of the respective scan A (𝑓𝑉𝐴) and scan B projection (𝑓𝑉𝐵). The weighting factor, 𝛼, was set to 0.5 to
maximise the information density [51]. All raw data collected were reconstructed using Volume
Graphics VGStudio Max 3.5.1 [49] applying a beam hardening correction.
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Image processing
To enhance image quality, digital image filters were applied prior to segmentation using ORS
Dragonfly (Version 2022.1, [61]). For ROM1, a median filter with a kernel size of 3 was applied
to denoise the image. For ROM4, a three-filter combination was used. First, a median filter was
applied, followed by the unsharp filter, using an unsharp factor of 3 to increase the edge contrast
of grains. Since the unsharp filter produces noise, the median filter was applied again to denoise
the image. Segmentation was carried out using ORS Dragonfly.

The software possesses deep learning algorithms that can be used for segmenting different phases
simultaneously. Deep learning, a subset of machine learning, employs interconnected processors
(neurons) predominantly built on a convolutional neural network (CNN) architecture (Glossary
p. 107ff), known for its efficiency in image processing [145]. For accurate segmentation results,
the network must be sufficiently trained to identify structures and learn how to make predictions
(inference stage). Multiple regions of interest on various 2D image slices were manually selected
to create ground truth data for training and validating the algorithm through supervised classi-
fication. Consequently, the network allows for automatic segmentation of the entire dataset. To
accelerate the operating time of the segmentation procedure, the size of the volumes was reduced
by excluding as much air as possible. For both datasets, a sensor3D model architecture [60] was
chosen and trained. The accuracy of a model and thus the segmentation result depends on the
network parameters, which need to be selected properly in accordance with the properties of
the data information to be segmented. For each dataset, five classes were determined based on
visual differentiating ability and paragenesis. Linear attenuation coefficients (𝜇) of the phases
identified, using AMICS, OM, and SEM-EDS, were calculated (Table 4.3) to assist the manual
labelling process. Initially, each class was labelled using an Otsu-threshold on a representative
selected area (frame) of a 2D slice, followed by manual refinement. The model was then tested on
a new slice, and any wrongly classified voxels were corrected and attributed to the training data
until no further improvement was achieved.

4.4 Results
Results for scheelite-bearing feldspar-rich (ROM1) andmagnetite-rich (ROM4) ores are presented
below. First, a petrographic description using CT is given; note that the grey value assignment to
the corresponding phases was guided by AMICS data (Fig. C.1), 𝜇 (Table 4.3), as well as OM and
SEM-EDS (ROM1, (Fig. C.2). Second, the modal mineralogy and quantitative microstructural
information of scheelite (volume, grain size distribution) are presented. Finally, the tungsten
content from each sample is compared with ICP-OES analysis.

4.4.1 Petrographic description and modal mineralogy
The ROM1 sample comprises a quartz and K-feldspar dominated matrix, together with epidote,
chlorite, minor fluorite, and biotite, as well as accessories of titanite, scheelite, ilmenite, zircon,
and monazite. The applied acquisition parameters allowed for the visual differentiation between
five minerals or mineral groups: (1) quartz; (2) K-feldspar; (3) combined chlorite, epidote, fluorite,
biotite, and titanite; (4) combined zircon, monazite, and ilmenite; and (5) scheelite (Fig. 4.3A).
In the process of segmentation, a background class (necessary for extracting the volume of the
sample) and four mineral or mineral group classes were defined based on attenuation properties
and genetic association, including class (1) = combined quartz and K-feldspar (hereafter referred
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Table 4.3: Linear attenuation coefficients (µ) as a function of X-ray energy of all minerals
identified by AMICS, XRD, UV light, OM, and SEM-EDS. The coefficients were calculated using
the XCOM Photon Cross-Sections Database NIST [104].

Mineral 150 kV 180 kV

K-feldspar 0.36 0.34
Albite 0.36 0.34
Kaolinite 0.37 0.35
Quartz 0.37 0.35
Muscovite 0.40 0.37
Fluorite 0.47 0.43
Apatite 0.48 0.44
Actinolite 0.48 0.43
Ferro-edenite 0.48 0.43
Biotite 0.48 0.44
Diopside 0.49 0.45
Epidote 0.51 0.46
Chamosite 0.51 0.45
Ferro-kaersutite 0.52 0.46
Titanite 0.52 0.48
Andradrite 0.61 0.54
Chalcopyrite 0.79 0.66
Ilmenite 0.80 0.69
Pyrite 0.86 0.74
Magnetite 0.93 0.79
Bornite 1.02 0.83
Zircon 1.54 1.09
Monazite 2.96 2.00
Scheelite 6.48 4.23

to as kfs-qz); class (2) = combined epidote, chlorite, fluorite, biotite and titanite (hereafter re-
ferred to as ep-chl); class (3) = scheelite; and class (4) = combined zircon, monazite, and ilmenite
(hereafter referred to as zr-mnz-ilm). Although the latter exhibits sufficient attenuation contrast
(Table 4.3) to reflect a range of grey values, it was not always possible to clearly distinguish between
these phases due to the fact the grey value intensity was influenced by the size of the grains, thus
resulting in overlapping grey values.

Class (1) shows varying grain sizes (100 µm–2mm) and exhibitsmineralswith anhedral to subhed-
ral shapes. In some areas, K-feldspar is overprinted by chlorite (Fig. C.1). SEM-EDS data indicated
that class (2) predominately consists of epidote and chloritewithminor fluorite and trace amounts
of titanite. Although chlorite was not identified using XRD, potentially due to its detection limit
and the fact that XRD struggles to identify sheet silicates, SEM-EDS data suggest that subhedral
epidote (≤400 µm) and mostly anhedral chlorite (≤700 µm) occur in similar proportions with
epidote, partially overprinting chlorite (Fig. C.2). In the CT data, a pervasive texture was ob-
served with fuzzy grain boundaries (Fig. 4.3A-C). CT further showed that class (2) is spatially
heterogeneously distributed (Fig. 4.4A) as well as in a up to 2 mm thick vein. Euhedral shaped
zircon (≤50 µm) and anhedral monazite (≤40 µm) occur randomly in the ore matrix (Fig. 4.4B),
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Figure 4.3: CT volume slice of ROM1 A) before and B) after segmentation. C) The rendered
volume of ROM1 sample with the position of the CT volume slice, as indicated by the red square
and the insert image. The thickness of the volume slice in the insert image is 10 µm. Abbreviations:
bt = biotite, chl = chlorite, ep = epidote, fl = fluorite, ilm = ilmenite, kfs = K-feldspar, mnz =
monazite, qz = quartz, sch = scheelite, ttn = titanite, zr = zircon.

showing mutual grain boundaries with the other minerals (Fig. 4.3A-B). Anhedral ilmenite is
pseudomorphically replacing titanite.

Scheelite occurs disseminated in the silicate matrix (Fig. 4.4C), with grain size ranging from 10.48
to 360.88 µm in ESD (Eq. (2.1)), Table 4.4). Notably, most of the grains are spatially associated
with ep-chl, with the majority of the volume embedded in the vein comprising ep-chl (Fig. 4.4A,
(Fig. 4.4D). Apart from its association with chlorite and epidote, some scheelite grains show mu-
tual grain boundaries with quartz and K-feldspar. The scheelite grains are orientated with their
length axis parallel with the vein indicating a structurally controlled mineralisation (Fig. 4.4E).
Larger scheelite grains show a subhedral to euhedral shape. The shape and the orientation of the
smaller particles are not clearly identifiable due to the scanning resolution.

For the quantitative analysis of the CT data, the volume and voxel count were calculated from
the segmented classes. The segmented volume of the ROM1 sample is 458.38 mm3, with silicates
making up the largest amount (411.77mm3) of the whole volume followed by ep-chl (46.34mm3).
Scheelite and zr-mnz-ilm occur as accessories with 0.15 mm3 and 0.12 mm3, respectively. The
volumetric proportion of the classes defined of ROM1 is summarised in Fig. 4.5A. Scheelite ranges
in grain size from 10.48 to 360.88 µm ESD (Fig. 4.5B, Table 4.4) with an average size of 57.51 µm
and a median of 48.71 µm ESD. The smallest particle has a volume smaller than 0.00001 mm3.
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Figure 4.4: Spatial occurrence of the classes defined for ROM1: A) Epidote and chlorite with
minor fluorite and titanite mainly exhibiting a fuzzy texture. B) Distribution of accessories
comprising combined zircon monazite and ilmenite occurring randomly in the matrix. C)
Disseminated scheelite particles. D) All classes combined including grey-coloured class consisting
of quartz and K-feldspar with minor biotite that is partially clipped. Note that the majority of the
scheelite particles are spatially associated with a vein comprising epidote, chlorite with minor
fluorite and titanite. All other classes are set semi-transparent (A-C). E) Volumetric distribution
of scheelite particles. Note the spatial association with the ep-chl class (coloured green and set
semi-transparent), with most of the scheelite being embedded in a vein, as indicated by the black
square.
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Table 4.4: Textural properties of scheelite (P (n) = particle number, P (%) = percentage of particles,
ESD = equivalent sphere diameter, vol. = volume). The particle volumewasmanually scaled using
the volume classes defined.

Vol. (mm³) ESD (µm) P (n) P (%) Vol. (mm³) Vol. (%)

ROM1
>0.00001 10.13-26.56 36 8.28 0.0002 0.12
<0.00001-0.0001 27.51-57.64 251 57.7 0.01 7.25
<0.0001-0.001 57.75-122.41 134 30.8 0.04 26.16
<0.001-0.01 129.66-265.96 10 2.3 0.03 20.64
<0.01-0.1 282.74-360.88 4 0.92 0.07 45.82
Total 435 100 0.15 100

ROM4
>0.00001 10.48-26.42 238 26.65 0.001 0.04
<0.00001-0.0001 26.96-57.5 388 43.45 0.01 0.59
<0.0001-0.001 57.62-126.38 212 23.74 0.06 2.64
<0.001-0.01 126.31-265.69 46 5.15 0.15 6.68
<0.01-0.1 278.67.473.35 5 0.56 0.14 6.08
<0.1-1 698.62-1238.93 4 0.45 1.94 83.96
Total 893 100 2.31 100

Figure 4.5: A) Modal mineralogy, and B) scheelite particle size distribution of the samples
investigated as determined by CT. Abbreviations: chl = chlorite, ep = epidote, ilm = ilmenite,
kfs = K-feldspar, mnz = monazite, qz = quartz, zr = zircon.

Themajority of particles (57.7%) exhibit a volume ranging from<0.00001 to 0.0001mm3 (Table 4.4).
However, the largest four particles constitute 46% of the total scheelite volume, with the largest
particle exhibiting a volume of 0.025 mm3.
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Figure 4.6: A) CT volume slice of ROM4 before, and B) after segmentation. C) The rendered
volume of the ROM4 sample with the position of the CT volume slice as indicated by the
semi-transparent square and the insert image. The thickness of the volume slice is 10 µm.
Abbreviations: Bn = bornite, cpy = chalcopyrite, mt = magnetite, py = pyrite, sch = scheelite.

The ROM4 sample comprises magnetite together with silicates and minor scheelite. According
to AMICS and QXRD data (Fig. C.1, Fig. C.3), the silicates mainly comprise amphibole with
minor chlorite, andradite, quartz, and epidote, while some quantities of pyrite, chalcopyrite and
bornite are also present. In the CT data, five visually distinguishable minerals or mineral groups
were identified: magnetite, scheelite, pyrite/chalcopyrite, bornite, and silicates (Fig. 4.6A). The
latter was unable to be further distinguished due to the X-ray setting applied. In the process of
segmentation, five classes were able to be defined: background, scheelite, magnetite, silicates, and
Fe-sulfides (pyrite, chalcopyrite, and bornite) (Fig. 4.6B). The Fe-sulfides were grouped as a single
class due to challenges in clear discrimination by the naked eye, particularlywith grains exhibiting
replacement textures and smaller sizes (pyrite and chalcopyrite).

Magnetite exhibits two texture types. It occurs as massive agglomerates with euhedral grains
(50 µm - 2 mm in length) showing triple-junction grain boundaries and as subhedral elongated,
and partially aligned crystals embedded in a silicate matrix (up two 5 mm in length) (Fig. 4.6C).
Between the agglomerates of magnetite, silicates are present with minor Fe-sulfides that are sep-
arated by a NW-SE trending vein (relative to the top surface of the sample) comprising silicates,
Fe-sulfides, and scheelite 4.7A-D). In the vein, scheelite exhibits euhedral to subhedral grains
that are elongated parallel to the vein (Fig. 4.7D-E). Within the vein structure, scheelite particles
are often attached to each other thereby forming massive aggregates. The segmented 3D image
of scheelite revealed that the majority of the scheelite volume is made of a few agglomerates
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Figure 4.7: Spatial 3D distribution of the classes defined for the sample ROM4. A) Heterogenous
scheelite mineralisation mainly occurring as vein-fill and a few disseminated particles in the
vicinity of the vein. B) Fe-sulfides are mostly present in the silicate matrix. C) Magnetite
comprising massive aggregates (left) and elongated grains parallel oriented to the dipping
direction of the vein. D) Rendered volume of ROM4 with all segmented classes. Note that
scheelite is not visible because it does not occur on the surface in this view. E) Volumetric
distribution of scheelite mineralisation with fractured and subhedral-euhedral grains. The
majority of the scheelite volume forms part of the vein. The ore matrix is set to transparent.
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of scheelite grains attached to each other (Fig. 4.7E). A few medium to smaller grains, which
are present in different areas than the vein, occur disseminated and predominately associated
with silicates that is most likely actinolite and kaersutite according to XRD and AMICS data
(Fig. C.1 and Fig. C.3). Some particles also share grain boundaries with Fe-sulfides and magnetite.
However, it is important to note that most of these particles is in the vicinity of the scheelite vein
(Fig. 4.7A).

Pyrite/chalcopyrite could be recognised by their texture (Fig. 4.6A-B) and lower X-attenuation
compared to magnetite (Table 4.3). They occur as small anhedral fissures, occasionally displaying
replacement textures with silicates. Bornite was able to be distinguished by its higher X-ray
attenuation compared to magnetite as well as pyrite and chalcopyrite (4.3). It is present as small
anhedral grains (≤150 µm) in the silicate matrix that are occasionally attached to magnetite. The
ROM4 sample volume is 879.1 mm3. The sample volume is primarily composed of magnetite
(462.92 mm3) and silicates (409.93 mm3) (Fig. 4.5A). The volume of Fe-sulfides is 3.92 mm3 and
the volume of scheelite is 2.31 mm3. Scheelite ranges in grain size from 10.13 - 1238.38 µm ESD
(Fig. 4.5B, Table 4.4) with an average size of 55.77 µm and a median of 38.36 µm ESD. The sample
contains 893 particles. Notably, 84% of the scheelite volume is made of four particles of which
two of them contribute to 66.31% of the total scheelite volume. These are agglomerates attached
to each other and or intergrown particles of scheelite grains attached to each other that form the
majority of the scheelite vein-fill (Fig. 4.7E).

4.4.2 Validation
The ICP analyses resulted inWO3 contents of 0.059wt% (ROM1) and 0.32wt% (ROM4) (Table 4.5).
The magnetite content is 60.3% according to CT analysis. This is a difference of 4.3% compared
to QXRD (Fig. C.3). Since the other classes comprise multiple minerals, a comparison was not
possible.

Table 4.5: WO3 content of the samples investigated as determined using CT and ICP-OES (sch =
scheelite)

Sample weight (g) CT ICP-OES ΔWO3
grade (%)sch vol.

(mm³)
sch wt. (g) WO3 grade

(wt.%)
WO3 grade
(wt.%)

ROM1 1.367 0.154 0.000939 0.055 0.059 6.85
ROM4 3.941 2.311 0.0141 0.29 0.32 9.12

4.5 Discussion
To date, there have been few mineralogical studies of the Kara Fe-W skarn deposit, with one
primarily focusing on mineral identification [186], while others explored the development of
skarn formation [189, 190], in general using predominantly geochemical methods and petro-
graphic data obtained from optical microscopy. This study contributes additional mineralogical
insights and introduces CT as a novel approach for investigating ore textures and modal miner-
alogy in selected samples of the Kara Fe-W deposit with a primary focus on scheelite. Key findings
include: (1) scheelite is predominately spatially associated with hydrous silicates; (2) scheelite
occurs as massive and fractured or disseminated, with vein-fill mineralisation controlling the
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majority of the scheelite volume; (3) CT can be successfully applied to study scheelite ore textures
in 2D and 3D; (4) CT of scheelite ore allows quantification of its modal mineralogy; and (5) CT
analyses permit the quantification of the W grade (WO3) of ore samples.

4.5.1 CT data acquisition
Previous studies utilisingCT for the analysis of scheelite ores relied on conventional segmentation
methods. For instance, Le Roux et al. [35] employed a local thresholding method, successfully
differentiating scheelite from gangue and allowing for the quantification of ore grade. Warlo
et al. [115], on the other hand, (qualitatively) determined modal mineralogy using watershed
segmentation. While effective for phases with large attenuation differences, these methods yiel-
ded unsatisfactory results for phases with similar grey values, exacerbated by acquisition issues
such as image noise, beam hardening, and the cupping effect (Fig. 4.3A) [115]. In this study, a
deep-learning-based segmentation method was applied, representing the first documented use of
application in the context of scheelite ore analysis. Unlike histogram-based segmentation, deep
learning algorithms used and trained for segmentation consider additional feature information,
such as grain shape and grain boundaries [60]. This consideration minimises the impact of scan-
ning artefacts (Fig. 4.3), sample geometry (ROM4), and overlapping grey values, resulting in a
more accurate quantitative analysis, particularly of similar attenuating phases.

The segmentationmethod employed in this study quantified the entire sample, with the resolution
capacity being constrained by the sample size or the system’s field of view. The chosen acquisition
parameters resulted in voxel sizes of 7.8 µm (ROM1) and 8.4 µm (ROM4) (close to resolution
limit of the scanner). Despite this relatively high scanning resolution, certain challenges arise,
particularly for the smallest segmented particles which are affected by the partial volume effect
(PVE). Considering that a voxel represents the average value of the attenuation coefficients over
its volume, the PVE occurs where multiple particles contribute to a single voxel, resulting in
blurring intensities of phases and structures. This phenomenon compromises the accuracy of
the calculated grain sizes, as well as the representation of real shapes and grain boundaries, and
can lead to over- or underestimation of the labelled volume [32]. Even with modern DL-based
segmentation models, the PVE cannot be eliminated, as it is inherent to the voxelised data. In the
case of ROM1, scheelite is disseminated in the ore and exhibits small grain sizes. At the same time,
other dense phases, such as zircon and monazite, are present. As a result, small scheelite grains
inevitably suffer from the partial volume effect, showingmixed attenuation coefficients and lower
grey values that may overlap with larger zircon and monazite grains. Mixed attenuation coeffi-
cients also complicate manual segmentation for establishing training data for the deep learning
model, introducing the potential for labelling errors by the operator.

The image noise in the CT data from ROM1 was improved through the fusion of two single CT
scans at the same X-ray energy. When aiming to differentiate between as many phases as possible,
DECT can also be considered, as it may improve the grayscale contrast between individual phases
[39]. This, for example, could potentially reveal if scheelite is preferably attached to a specific
hydrous phase as the high-voltage setting applied does decrease image contrast of lower X-ray
absorbing phases. Furthermore, to enhance the representation of smaller grains, higher scanning
resolution and longer acquisition time should be considered.

Additionally, nano-focused CT sources with resolutions down to hundreds of nanometers can
be utilised, but this comes at the cost of scanning smaller sample sizes due to a reduced field of
view and thus sample representativity (smaller sample volume). However, in the present study, the
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proportion of small grains contributing to the total scheelite volume is negligible. The accuracy
of the segmentation results was validated by comparing the calculated WO3 grades of the two
samples to conventional ICP-OES analysis (Table 4.5), showing a strong correlation between
CT and ICP data. Furthermore, the magnetite content in ROM4 calculated using CT closely
matched the results obtained fromQXRDmeasurements (see Fig. 4.5 and Fig. C.3). This validation
underscores the reliability of CT in scheelite ore characterisation.

4.5.2 Implications of CT analysis
Scheelite ore genesis
The mineral assemblages and the textures observed in the samples studied indicate that they
are likely part of stage III skarn formation (as defined by Zaw and Singoyi [189]). In addition
to scheelite, both samples contain hydrous minerals such as amphibole, epidote, and chlorite,
while ROM4 also features massive magnetite, Fe-sulfides (e.g., pyrite, chalcopyrite and bornite).
The pervasive texture of hydrous minerals in ROM1 suggests the replacement of earlier phases,
indicative of retrograde hydrous skarn conditions. Previous studies further reported that earlier
minerals were replaced through pervasive and diffusive replacement, with a minor contribution
from filling veins and fissures [189, 190]. However, the rendered and segmented volume of ROM1
shows both an ep-chl vein exhibiting a pervasive texture with fuzzy grain boundaries (Fig. 4.4).
Similarly, the 3D texture of ROM4 reveals a vein predominately composed of silicates and scheel-
ite (Fig. 4.6). In addition, in both samples, scheelite is distributed within a vein where most of it
is aligned parallel to the vein’s dipping direction (Fig. 4.4 and Fig. 4.6). This suggests that a larger
proportion of mineralisation occurred as vein fills, particularly scheelite mineralisation, than
previously reported [189, 190]. It is noteworthy that the recognition of coexisting textures was
more easily achieved with 3D information than with 2D. Regardless, it is important to consider
that the observations were based on two specimens, and further data are needed to confirm this.

Although both samples show similarities (e.g., presence of hydrous minerals and spatial associ-
ation), they differ significantly in terms of scheelite content. In ROM1, scheelite is present as
a trace mineral (550 ppm WO3). Therefore, although scheelite mineralisation mainly occurred
during stage III, it does not necessarilymeanmineral assemblages reflecting this stage contain high
scheelite concentrations. Given the high amount of magnetite in ROM4, compared to 378 ppm
WO3, the average WO3 content of the Kara Fe-W deposit, the results indicate that more scheelite
is present when associated with magnetite. This observation aligns with previous observations of
Zaw and Singoyi [189], who state that the majority of scheelite deposition occurred cogenetically
with magnetite mineralisation during the late stages of skarn formation. Considering the distri-
bution of scheelite in ROM4, the higher concentration of W could additionally be attributed to a
structural controlled vein fill of W-rich fluids. Regardless, additional data are needed to further
discuss on the formation model of the Kara Fe-W deposit.

Even though a high scanning resolution was applied, it falls short of offering detailed insights into
mineral reactions and grain boundaries, especially notable in the case of ROM1 with fine grained
scheelite particles (mixed attenuation coefficients). As a result, a comprehensive examination and
discussion of mineral textures, reflecting mineral reactions and intricate replacement processes,
is only achievable through additional 2D petrographic methods. On the other hand, however, CT
clearly allows the recognition of grain shapes and major mineral textures (e.g., chlorite-epidote).
Moreover, the capability for 3D visualisation distinctly highlights the presence of veins containing
chlorite, epidote, scheelite, and fluorite, elucidating their spatial association. In fact, the 3D visu-
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alisation offers a real benefit to petrographic studies of this type of ore with a preferred textural
occurrence (e.g., vein). Additionally, CT can be used to guide subsequent sectioning, when aiming
for a higher resolution and obtaining complex petrographic information, e.g., to study the specific
chlorite or epidote texture (ROM1), or to study the mineral chemistry of scheelite that may occur
as a trace mineral. Consequently, CT enables a more accurate interpretation of mineralogy,
enhancing the understanding of scheelite ore genesis.

Mineral processing
Pre-concentration of tungsten ores typically involves the use of X-ray sorting, gravitational sort-
ing, optical sorting, or hand-picking methods [196]. At Kara, scheelite is currently extracted as a
by-product of magnetite, with scheelite being screened using handheld UV light devices. These
conventional (mainly 2D) processing techniques rely on exposing scheelite to the ore surfaces for
proper pre-concentration, potentially overlooking scheelite grains buried within the rock mass
hindering complete recovery. In the CT data, scheelite exhibits the highest X-ray attenuation
compared to otherminerals in the ore. The application of CT for qualitative analysis to determine
scheelite occurrence enables rapid data acquisition without the need for subsequent segmenta-
tion. In particular, CT could be employed for scheelite screening during comminution for process
control and monitoring. Consequently, CT may contribute to a more efficient screening of ore
and waste material at the Kara Fe-W mine.

Understanding the spatial distribution of ore and gangue minerals is also useful to achieve more
efficient mineral processing of themined ores. By obtaining information on particle size distribu-
tion,morphology, and occurrence before and after comminution usingCT, the yield of the process
could be quantified based on these properties analysed in situ. As scheelite is a brittle mineral,
and particles smaller 20 µm (very fine as defined by Sivamohan et al. [197]) are difficult to recover
[65], the spatial arrangement of scheelite should be considered in the choice of the comminution
steps to preserve grain size and thus maximise recovery. Understanding the natural grain size of
scheelite is crucial for anticipating potential losses during processing. For instance, if scheelite
naturally occurs in sizes all under 20 µm, recovery becomes exceedingly difficult. Grain size
information obtained with CT allows for the estimation of the proportion of scheelite of natural
size likely to be lost to very fines. If scheelite is predominantly large in size, its size reduction
during comminution (crushing and grinding steps) can be optimised to minimise losses in the
processing circuit. This comprehensive understanding of recovery potential aids in optimising
mineral recovery and achieving resource efficiency.

4.6 Conclusion
This study has provided novel mineralogical insights of the Kara Fe-W ore, Tasmania, Australia.
The results indicate that scheelite is predominately spatially associated with hydrous silicates and
occursmassive or disseminatedwith vein-fillmineralisation controlling a significant portion of its
volume. CT proves effective in analysing the texture of scheelite ore in both 2D and 3D, further
allowing for the examination of major, minor, and trace mineral phases with given grey value
contrasts and particle sizes. CT falls short of offering detailed insights into mineral reactions
and grain boundaries, especially of fine-grained particles and the quantification of similar X-ray
attenuating phases (e.g., chlorite and epidote). A comparison with ICP-OES and XRD showed
that CT is reliable for quantifying modal mineralogy and assessing WO3 grade in individual
ore samples. Integrating CT with conventional 2D techniques holds promise for enhancing our

68



4.6. Conclusion

understanding of the formation and mineralisation processes of Fe-W deposits. Furthermore,
the insights provided by CT may inform the optimisation of scheelite extraction and separation
techniques, thereby fostering more efficient resource recovery practices at the Kara mine.
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Chapter 5

General discussion

This discussion chapter begins by briefly outlining the rationale for optimising CT analysis for
graphite and tungsten ore analysis. Subsequently, the thesis findings are reviewed and synthes-
ised to address the main research question and evaluate the achievement of the main research
aim. This is followed by a critical assessment of the advancements achieved in CT analysis of
graphite and tungsten ores. Building upon these insights, implications for using CT in the raw
materials sector and recommendations for future work are provided. A SWOT analysis of CT in
ore characterisation is then presented. Finally, concluding remarks are presented.

5.1 Rationale for optimising CT analysis of graphite and
tungsten ores

Over the past decades, extensive research has demonstrated the use of CT for ore characterisation,
enabling non-destructive 3D analysis of mineral distributions and textures [e.g., 21, 30, 93]. How-
ever, CT’s effectiveness is limited by several challenges, such as the dependence on grey value
contrast for phase recognition [44], which is problematic for complex ores with varying X-ray
attenuation properties [54]. Much research has been put into the process of CT data genera-
tion, aiming to optimise data acquisition and segmentation [26, 32, 35, 58, 95, 100, 106, 107].
Significant progress has been made for applying CT particularly to ores with very high-density
target minerals such as gold and PGEs; in these ores, high X-ray attenuation contrast between
target minerals and gangue allows for clear mineral differentiation and accurate quantitative
analysis [26, 31, 32, 85, 89–91, 93]. This progress has established CT as an effective tool for such
applications.

Despite these advances, the use of CT for CRM ores such as graphite and tungsten ores is still
limited. To date, no research has been dedicated to a comprehensive CT-based mineralogical
characterisation applied to these ores. Therefore, the full potential of CT analyses for graphite and
tungsten ores has yet to be realised. Addressing these gaps requires optimising CT for tungsten
and graphite ores. This optimisation involves the development of tailored acquisition and image
processing protocols, demanding methods to enhance image quality and enable segmentation
between minerals with similar X-ray attenuation properties. Such protocols could provide ac-
curate qualitative and quantitative 3D data on these ores, ultimately expanding CT’s capabilities
and applications in ore analysis.
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5.2 Review of research conducted
The main research question of this thesis was: ‘How can CT be optimised for the characterisation of
the critical raw materials graphite and tungsten in ores to obtain reliable qualitative and quantitative
mineralogical information?’ The main research aim was: ‘To investigate the potential of CT for the
mineralogical characterisation of graphite and tungsten ores.’ This section first reflects on the main
findings of the experimental work and evaluates the achievement of the key objective for each
study. Subsequently, the study findings are synthesised to answer the main research question and
to evaluate the achievement of the main research aim.

5.2.1 Article 1 - CT of graphite ore: developing an analysis protocol for
mineralogical analysis

The key objective of Article 1 was to develop a CT analysis protocol for the mineralogical char-
acterisation of graphite ore, representing a CRM ore with a low X-ray absorbting target mineral.
The protocol developed included acquisition and image processing strategies, structured into ten
iterative steps: 1) performing an a priori analysis (cf. Glossary, p. 107ff) for mineral identification
and 2) calculating the theoretical attenuation coefficients (𝜇) of each mineral to facilitate 3) the
selection of scan parameters. Following 4) the acquisition of projection data and 5) reconstruction,
6) grey value assignment was conducted using the information from steps one and two. The
CT data then underwent 7) digital image filtering as a preparation for 8) segmentation, where a
deep-learning algorithm provided by the image software was applied and further refined. Finally,
9) feature extraction was performed to establish quantitative information on flake size, flake size
distribution, graphite content, and impurities, followed by 10) the validation of the generated data
using OM.

Considering scanning parameter selection, it was found that a trade-off in kV settings (100 kV)
was necessary to mitigate the varying X-ray attenuation properties of the phases present in the
sample and maximising the contrast of graphite compared to the gangue minerals. While high
spatial resolutionwas generally achieved, it was reduced at the sample’s surface and bottom image
slices due to the parallel alignment of the sample surfaces in relation to the X-ray beam, resulting
in image blur. As expected, graphite showed partial grey value overlaps with adjacent silicates
in the reconstructed CT data, rendering segmentation complex. However, it was found that the
DL-based segmentation strategy applied successfully overcame this limitation, providing reliable
quantitative data on flake size distribution, flake thickness and volume, along with the volumet-
ric proportions of graphite, silicates and Fe-sulfides. Cross-validation using OM confirmed the
accuracy of the quantitative data, demonstrating CT’s added value. It is therefore concluded that
the key objective has been achieved.

5.2.2 Article 2 - DECT of graphite ore: enhancing image contrast
InArticle 2, the limited grey value contrast between graphite and adjacent silicate phases identified
in Article 1 was addressed, together with the necessary trade-off in the choice of X-ray energy.
Aiming to optimise the acquisition process, the key objective of the study was to investigate
the effectiveness of high-resolution DECT for enhancing image contrast. By acquiring various
low- and high-energy single energy CT (SECT) scans at high spatial resolution and fusing them
with varying weighting factors using a python script, the optimum contribution of each energy
level and spectrum were examined. This examination was achieved by collecting grey value
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information from pre-defined material areas, identical in size and 3D coordinations on each
reconstructed dataset. This grey value information was then used to quantify the image contrast
in each MA using the CNR and Q-factor. Finally, the significance of the results was assessed
performing a Least Significance Difference (LSD) Fisher test.

The results demonstrated that DECT significantly enhanced image contrast on graphite ore, sug-
gesting that a proper distance between low and high kV settings as well as a certain X-ray energy
level in the low energy range and must be applied to obtain the best results. However, similar
to SECT, DECT relies on polychromatic X-ray radiation, meaning phases with almost identical
attenuation properties (e.g., quartz and clay) remained impossible to distinguish as they shared
the same grey values. Nevertheless, when a certain differences in grey values was available, DECT
showed significantly enhanced contrast for each MA examined. While more data is needed for
further validation, the outcome suggests that using DECT eliminates the need to select a trade-off
in kVwhen analysing graphite ores further proving its effectiveness. It is therefore concluded that
the key objective has been achieved.

5.2.3 Article 3 - CT of tungsten ore: case study on morphological char-
acterisation and modal mineralogy

The key objective of this study was to use CT to examine the mineral texture, modal mineralogy,
and WO3 grade of scheelite ore from the Kara Fe-W deposit, representing a CRM ore with a
highly X-ray attenuating targetmineral and providing the first 3D characterisation of the scheelite
ore from this deposit. The analytical protocol was based on the workflow developed in Article
1, with modifications made to account for the sample specific a priori analysis and scanning
configuration. To mitigate scanning issues caused during data acquisition of sample ROM1, the
image fusion method established in Article 2 was applied to reduce image noise. Additionally,
to eliminate image blur on the CT slices at the top and bottom slices the sample surfaces as
encountered in Article 1, the cylindrical shaped sample (ROM1) was mounted at a slight angle.

The results showed a significant improvement in spatial resolution on the sample surfaces of
ROM1. In terms of image contrast, while the application of high kV successfully mitigated scan-
ning artefacts caused by scheelite, the overall image contrast was limited, making it difficult to
clearly discriminate between similarly attenuating minerals. This issue was particularly pro-
nounced in phases with small grain sizes or lacking distinct shapes (e.g., pyrite and chalcopyrite,
ROM4). While some of these minerals could be visually differentiated in the reconstructed CT
dataset (e.g., bornite, pyrite and chalcopyrite, ROM4), segmentation of minerals within a specific
paragenesis (anhydrous silicates, hydrous silicates, and sulfides) was not possible due to limited
grey value contrast. This is an important finding, indicating that for successful DL-based seg-
mentation a certain level of contrast is necessary to properly identify and ensure accurate manual
labelling during ground-truth data generation. Regardless, the contrast obtained and DL-based
segmentation still allowed for labelling minerals (scheelite, magnetite) and mineral groups (an-
hydrous silicates, hydrous silicates, and sulfides), even in the presence of grey value overlaps and
the presence of artefacts introduced by beam hardening and irregular sample geometries (ROM4).
Addressing these limitations proved significant, enabling the extraction of quantitative mineralo-
gical information (e.g., modal mineralogy, scheelite grain size distribution, and WO3 content) for
the segmented phases, down to the ppm range. Furthermore, the analysis revealed critical textural
relationships (e.g., structural features, spatial distribution of minerals and mineral associations).
While some minerals could not be differentiated as well as the spatial resolution obtained did
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not allow for detailed textural analysis (e.g., revealing replacement structures), the information
obtained yielded new mineralogical insights on scheelite ore (3D textures, compositions and
WO3 grade) from the Kara Fe-W deposit, thereby informing ore formation processes and mineral
processing aspects. Thus, it is concluded that the key objective has been achieved.

5.2.4 Answering themain research question and evaluating the achieve-
ment of the main research aim

Answering the main research question
Synthesising the research findings reviewed finally allows answering the main research question.
The CT analysis protocol developed in Article 1 successfully generated high-quality CT data
on graphite ore. A critical aspect this protocol involved identifying the phases comprising the
sample and their individual X-ray attenuation properties. This step highlighted the need for
conducting proper a priori analysis as CT cannot be used effectively without prior knowledge of
the sample’s properties. By calculating 𝜇 of the phases present in the samples, parameter selection
and mineral identification in the CT datasets were facilitated. In terms of image processing, the
DL-based segmentation strategies applied effectively managed image quality constraints related
to artefacts and grey value overlaps between graphite and silicates, enabling the generation of
accurate quantitative 3D mineralogical data.

The SECT data fusion method developed in Article 2 successfully addressed the image contrast
limitations identified in Article 1, significantly improving the contrast in a graphite ore sample
and thereby optimising the overall image quality of the data. This approach did not require any
specialised hardware, suggesting ready integration into established protocols. In Article 3, the
CT analysis protocol (Article 1) and the fusion method (Article 2) were used in a case study to
characterise scheelite ore, demonstrating their applicability to another ore type. By considering
the specific attenuation properties and necessary a priori analysis for scheelite ore, the protocol
was successfully adapted. Furthermore, the image quality was optimised by (1) tilting the sample
on the sample stage enhancing spatial resolution at the sample surfaces as well as by (2) applying
the fusion method for the ROM1 sample, decreasing image noise.

The accurate mineralogical information obtained for both ores studied confirmed the validity
of the strategies applied for tungsten and graphite ores. This validity further indicates that the
iterative analysis protocol developed provides a robust foundation for reliable CT data generation
across varying sample properties, with its individual steps being flexibly adjustable to the specific
mineralogical properties of samples studied.

In summary, the synthesis findings demonstrate that optimisation of CT data successfully covered
all key aspects necessary for effectiveCT analysis of graphite and tungsten ores. This encompassed
the development of a dedicated CT analysis protocol (Article 1), the enhancement of grey value
contrast of CT datasets (Article 2), and the use of advanced segmentation strategies (Article 1
and Article 3). These specific optimisation strategies improved image quality and successfully ad-
dressed segmentation challenges, leading to valid, high-quality qualitative and quantitative min-
eralogical information of graphite and tungsten ores. Although a limited number of samples was
used, it was successfully demonstrated how CT can be optimised for these ores. Therefore, it can
be concluded that the main research question has been successfully answered.
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Evaluating the achievement of the main research aim
Optimising CT for graphite and tungsten enabled its appropriate use for the mineralogical char-
acterisation of these ores. The studies demonstrated that CT is an effective tool for extracting a
variety of mineralogical properties. For graphite ore, CT enabled flake size analysis, determin-
ation of flake size distribution, identification of impurities, and calculation of graphite volume.
For tungsten ore, CT enabled the determination of tungsten grade, modal mineralogy, scheelite
distribution and size. Furthermore, it revealed structural features such as veins, facilitating their
identification. However, while the scope of Article 1 was on method development, with the
specific aim to extract information on graphite properties, the study provided little information
on the gangue mineralogy, as was examined in Article 3. Additionally, this work was restricted
to a limited amount of graphite and tungsten ore types. Given the variability in mineralogical
composition and texture across these ores, further targeted analysis of different graphite and
tungsten ore varieties is necessary to capture CT’s full potential for these ores.

In summary, while this research demonstrated the added value of CT for the mineralogical char-
acterisation of graphite and tungsten ore, revealing significant potential, the full extent of this
potential remains to be explored. Therefore, it is concluded that the main research aim has been
partially achieved.

5.3 Critical assessment on the advancements in CT analysis
of graphite and tungsten ores

Building upon the key factors that have contributed to the optimisation of CT data for graphite
and tungsten ores, it is essential to contextualise these achievements within the broader landscape
of CT-based ore analysis, assessing the research contributions to the field. Accordingly, the fol-
lowing subsections critically evaluate the acquisition and segmentation strategies employed and
the results obtained, offering a deeper understanding of their strengths, limitations, and overall
impact. In addition, practical aspects are discussed and the main contributions together with
remaining challenges are highlighted at the end of the section.

5.3.1 Effectiveness of data acquisition
The primary contributors to image quality are image contrast and spatial resolution, determining
the final image quality. Thus, the strategies used to optimise image contrast and spatial resolution
for graphite and tungsten ores and their outcomes are evaluated and discussed below.

Image contrast
Following the experimental work, it has been shown that, while the set-up of most scanning
parameters is primarily independent of the ores mineralogy, voltage is a crucial exception. The
optimal kV setting is ore-type specific andmust consider the sample’s mineralogical composition.
As kV directly controls X-ray energy, thereby influencing the X-ray attenuation, it significantly
influences image contrast, essential for accurate mineral analysis. Therefore, in the following,
the energy setup for graphite and tungsten ores is discussed. Best practices for optimising data
acquisition for graphite and tungsten ore is provided in Appendix D.
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Graphite ore In articles 1 and 2, the CT datasets showed that graphite generally exhibited low
grey values owing to its X-ray attenuation properties. In the grey value histogram, graphite was
positioned between air (lower grey values) and silicates (higher grey values, e.g., quartz, feldspar)
without showing a distinct peak, indicating overlap in grey values with these phases. To enhance
image contrast in CT, low kV settings are generally recommended [47], because of the energy
dependence of X-ray attenuation [43]. Studies specifically addressing kVoptimisation for graphite
ores are limited. However, considering materials with similar attenuating target minerals, Wang
and Miller [27] suggested the application of 60 kV for gypsum-bearing rocks. Regarding CT
analysis of ores, Reyes et al. [118] showed for copper bearing ores that pyrite and chalcopyrite
could visually differentiated at 50 kV and 80 kV, whereas Warlo et al. [115] found that at 160 kV,
proper differentiation between these minerals was not possible despite their density differences
(chalcopyrite = 4.19 g/cm3, pyrite = 5.01 g/cm3). These studies align with Godel et al. [85], who
noted that phases are more challenging to distinguish at high beam energy.

In Article 1, the calculated 𝜇 values for graphite suggested that low kV settings would be beneficial
for maximising image contrast, as the difference in 𝜇 values to the silicates is greatest. However, as
the beam energy is limited by the intensity sufficiency of the transmitted X-rays [47], this means
that in practice not all sample compositions allow the use of low X-ray energies, especially in
the case of complex ores such as graphite ore. As observed during test measurements, low X-ray
energies did not adequately penetrate high X-ray attenuating minerals (e.g., pyrite), resulting in
artefacts that would have compromised subsequent quantitative analysis. Therefore, the presence
of high X-ray absorbing minerals in graphite ore required a trade-off in the applied voltage (100
kV) to balance contrast with artefact reduction.

In addition to considering the attenuation properties for X-ray high absorbing phases, Article 2
emphasised that the attenuation properties of sample features such as pores, cracks, and voids
(trapped air) must also be taken into account. These structures generally exhibited lower grey
values compared to graphite, yet they were non-uniform causing partial grey value overlap with
graphite despite their significantly lower X-ray attenuation than graphite. This non-uniformity
in grey values of trapped air was likely a result of bright streak and scatter artefacts introduced by
adjacent denser phases (e.g., HFOand hematite) (cf. Fig. 3.3). This phenomenon of beamhardening
(streak artefacts and scattering artefacts) has been previously documented where bright and/or
dark streaks emanated from high-attenuating phases into the surrounding X-ray absorbing ma-
terial [26, 198, 199]. Bam et al. [100] reported that these artefacts intensify with increasing differ-
ences in attenuation contrast between the corresponding phases. Considering the high difference
in attenuation properties between trapped air compared to HFO and hematite, this difference
indicates that trapped air is highly affected by beam hardening with some grey values rendered
brighter. Consequently this artefact induced grey value modification resulted in reduced local
contrast between graphite and trapped air.

Unexpectedly, Article 2 revealed that the highest contrast between graphite and trapped air was
achieved with high kV settings rather than low kV, suggesting a reduction in artefacts. However,
while this artefact reduction was not clearly visible in the data, the enhanced contrast at high kV
may further be explained by the chemical composition of graphite and air. Graphite and the main
gases of air (nitrogen (Z=7) and oxygen (Z=8)) have very similar Z. At lower kV, the photoelectric
effect, sensitive to Z, dominates X-ray attenuation. In contrast, at higher kV, Compton scattering,
which is more sensitive to material density (graphite = 2.1 g/cm3, air = 1.2 x 10−3 g/cm3 at 20°C).
This density difference thus becomes the dominant factor influencing X-ray attenuation, leading
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to higher contrast at elevated kV settings. Regardless, further analysis is needed to clarify the
relative contributions of these mechanisms.

The findings of Article 1 and Article 2 are significant demonstrating that while low kV settings
are generally recommended between two phases to increase contrast [85], this may not always
be true for graphite ores and likely other complex ores with similar X-ray absorption properties.
As a result, selecting the most suitable X-ray energy for graphite ores must involve considering
the overall mineralogical composition and structural features of the samples, rather than focusing
on the target mineral only. This consideration further includes accounting for both Z𝑒𝑓 𝑓 and the
density of all constituents to determine the optimal kV settings (cf. Article 2). In this context, it is
noteworthy that most studies have emphasised the role of density in assessing X-ray attenuation
mechanisms and selecting appropriate X-ray energy, especially since CT has traditionally been
used for metal ores [e.g., 21, 26, 29]. In contrast, the data obtained suggests different acquisition
approaches for complex ores with low X-ray absorbing target minerals compared to metal ores.

Tungsten ore With graphite ore, the main challenge was to differentiate graphite from the
silicate rich gangue and trapped air while reducing artefacts from high-density phases. The main
issue with scheelite was to reduce beam hardening introduced by themineral itself which is a very
high X-ray absorbing mineral owing to its density and Z𝑒𝑓 𝑓 . The general approach to reduce beam
hardening in such ores is to increase the X-ray beam energy (kV), as higher kV settings reduce the
differential absorption of X-rays within the sample [21]. However, while high kV settings reduce
beam hardening, these simultaneously decrease image contrast as previously discussed.

Addressing this challenge, several strategies have been proposed tomitigate beamhardeningwith-
out solely relying on kV adjustments. For instance, using beam hardening correction methods
during image reconstruction [200, 201]. However, such methods are computational demanding
and increase image noise in the reconstructed dataset [202]. Another common approach is using
pre-filters to minimise low-energy X-rays from the polychromatic X-ray beam. However, while
pre-filters reduce beam hardening [83] they require longer scan time [203] and reduce overall
image contrast [203, 204], rendering them impractical for multi-mineral analysis.

Therefore, considering the analysis scope in Article 3, the most effective option to increase the
number of identifiable minerals while addressing beam hardening was to further decrease the
sample size, as suggested by Bam et al. [100]. Reducing sample thickness shortens the length of
the X-ray path penetrating the sample, enhancing its penetration capacity [205]. This adjustment
enabled a lower voltage setting of 150 kV for sample ROM1, compared to 180 kV for ROM4.
However, even with reduced voltage, the X-ray intensity remained too high to clearly distinguish
minerals with similar attenuation properties, particularly those within the same mineral group
(e.g., oxides, sulfides, silicates). Thus, the reliance on high kV settings to counteract beam harden-
ing caused by scheelite ultimately constrains the contrast achievable in scheelite ores, limiting the
differentiation of similarly X-ray absorbing phases.

DECT Recognising the aforementioned ore properties related challenges in achieving suffient
contrast in CT, numerous researchers have emphasised the need to enhance mineral differenti-
ation by optimising image acquisition [e.g., 105, 106]. Studies using synchrotron CT equipped
with X-ray sources that emit a monochromatic X-ray beam showed that it offered improved
resolution by reducing artefacts and producing more uniform grey values [34, 108]. Despite these
advantages, however, the high cost and limited accessibility of synchrotron facilities restrict its

77



Chapter 5. General discussion

wider application [206]. Moreover, the degree of contrast enhancement achieved with synchro-
tron CT has not been fully quantified, limiting a comprehensive evaluation of its potential for
broader geological applications. Notably, many authors suggested DECT for enhancing image
contrast in ore analysis [58, 115, 185]; however, dedicated research evaluating its effectiveness has
remained sparse. As previously noted, the DECT method applied in this study offered a practical
solution for enhancing contrast in graphite ore, facilitating clearermineral differentiationwithout
specialised hardware.

Beyond enhancing contrast, combining low and high energy datasets using DECT has offered
another benefit: it simplifies parameter selection for graphite ore. In SECT, predicting ideal X-ray
energy settings prior to measurement is challenging due to the variety of attenuation properties
in graphite ores. Calculating 𝜇 of the phases within the ore as employed in this work provided a
good starting point, but achieving optimal contrast ultimately required a series of trial scans,
also due to the lack of existing protocols for graphite ore. While advanced methods exist to
predict ideal kV settings before scanning [105, 207], determining optimal X-ray settings remains
complex because of the polychromatic X-ray beam and the constantly changing X-ray spectrum
in heterogeneous materials [21]. DECT, providing superior contrast for graphite ore regardless of
the energy combination, eliminates both the need for finding a proper trade-off in kV settings and
trial scans. Consequently, DECT supports usability and efficiency of data acquisition in graphite
ores and those with low attenuating target minerals.

Another notable feature of DECT is its ability to improve image quality without compromising
data fidelity, compared to frequently used digital filtering techniques that can potentially alter
original image data and lead to information loss [176, 177]. Despite the need for extended acquis-
ition time, approximately twice as long as SECT, DECT’s capability to enhance contrast without
the use of post-processing filters ensures that the integrity of the original data is preserved. This,
in turn, results in more precise and reliable identification of minerals and structures, improving
the accuracy of quantitative analysis.

Lastly, the method developed for determining image quality (cf. Article 2) introduces a valuable
tool for CT image quality evaluation, as standard metrics are largely designed for homogeneous
materials [170, 171]. By providing quantitative evidence of image quality of heterogenous ores,
this approach increases the reliability of analysis results, supporting the improved use of CT
applied to such materials.

Spatial resolution
Spatial resolution determines the size of the smallest feature that can be distinctly resolved in
the CT image data [47]. While the use of a small focal spot size is a prerequisite, optimising
spatial resolution in this work required adjusting sample size, as smaller samples do not only
enable enhanced penetration capacity as mentioned before but also allow for higher scanning
resolutions. As a result samples were prepared with dimensions of 10 - 15 mm in height and
a maximum diameter of 15 mm. This setup enabled scanning resolutions between 5 µm and
8.4 µm voxel size, balancing sample representativity with analysis objectives. However, features
close to voxel size were affected by the partial volume effect (PVE) (Glossary p. 107ff), resulting
in blurred and unrealistic shapes. For example, Article 1 showed that even at a voxel size of 5
µm, only shapes of graphite flakes larger than ∼25 µm could be clearly recognised, though phase
boundaries remained blurred. This blurred image data (mixed grey value information) shows that
minerals range in grey values and overlap with others. Such overlap can impact the accuracy of
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the quantitative analysis, potentially leading to over- or underestimations, especially of features
close to voxel size [83]. This limitation further demonstrates that a voxel size must be used which
is significantly smaller than the feature of interest to capture its actual morphology, as also noted
by Withers et al. [44], and underscores the importance of careful sample preparation to achieve
analysis goals.

Attempts to mitigate the impact of the PVE have included using larger detectors to improve
spatial resolution; however, these adjustments significantly increase acquisition times, introduce
image noise and result in larger data volumes [208], which in turn significantly increase data
processing time. Similarly, scanning regions of interestwithin samples [209] introduces additional
artefacts [50], particularly in heterogeneous materials [200]. Regardless, as the PVE cannot be
fully eliminated, this inherent limitation demonstrates that CT cannot provide detailed textural
information as established techniques using OM and SEM-EDS, emphasising the reliance on
complementary techniques for comprehensive mineralogical analysis.

While adjusting sample size allowed for achieving spatial resolution close to the resolution limits
of CT, it was found that sample orientation during scanning is also crucial to address the spa-
tial resolution limitations introduced by artefacts. In Article 1, the cylindrical sample (polished
section) was positioned horizontally, with the sample surface on top, which is standard practise
[210], to leverage the benefits of its geometry (uniform X-ray path lengths at all projection angles).
This orientation, however, resulted in blurred image data at the topmost and bottommost image
slices. This compromised data quality can be attributed to the fact that surfaces that are oriented
parallel to the X-ray beam are not properly penetrated [211], producing blurred image data and
non-uniform greyscale gradient of the slices near the sample surface.

To address this issue,Warlo et al. [115] have attached two cylindrical-shaped polished sections and
scanned them jointly with the polished surfaces in contact with one another. They found, while
this approach effectively reduced the pronounced artefacts, the presence of dense minerals on the
sample surfaces caused new artefacts in adjacent areas. Furthermore, this approach inevitably
increase the field of view (FOV) considering an increased sample size, which in turn lowers the
scanning resolution.

In Article 2 and Article 3 the samples were slightly tilted tominimise parallel surfaces to the X-ray
beam. The results showed that orientation-related artefacts were significantlyminimised Fig. D.1,
aligning with Villarraga et al. [212], who found that tilting improved edge sharpness for rectan-
gular workpieces in dimensional metrology. Notably, the impact of sample tilt on the cone-beam
artefactwasminimal. Consequently, this optimised orientation enhanced spatial resolution on the
topmost slice, facilitating phase identification and validation through OM and SEM-EDS. This is
significant as enhanced resolution on the topmost slice offers amore representative analysis of the
entire volume, supporting the calibration of CT data with conventional 2D methods and could
potentially serve as a ground truth for deep learning algorithms, enhancing quantitative analysis.

5.3.2 Effectiveness of deep learning-based segmentation
While CT data acquisition required careful optimisation of parameter selection to enhance min-
eral specific attenuation differences and recognition textures, segmentation primarily focuses on
processing the acquired image data. However, the inherent attenuation properties of minerals,
represented by their respective grey values, affect the success and accuracy on the chosen seg-
mentation method [27]. Thus, selecting the appropriate method is key to obtaining accurate
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quantitative mineral information.

Conventional methods, such as thresholding and watershed segmentation, have been effective for
minerals with significant grey value contrasts [35, 58, 93]. These methods produce results fast
and straightforward to apply. However, conventional segmentation depend on clear grey value
differences to separate phases [35] and this dependency introduces a high potential for human
error, especially in complex ores containingmineralswith similar grey values, overlaps, or gradual
transitions between phases [27]. This limitation also poses challenges for multi-mineral analysis
[54, 115, 118]. For example, Warlo et al. [115] found that watershed segmentation yielded inac-
curate results when phases had similar or overlapping grey values and noted that beam hardening
introduced by high X-ray absorbing minerals further compromised accuracy of the segmentation
outcomes. Similarly, Reyes et al. [118] reported that threshold-based segmentation struggled to
differentiate phases with similar X-ray absorbing phases in copper-bearing ores. While several
machine learning (ML)-based methods (e.g., random forest, K-means clustering) have generally
shown improved performance over conventional methods (e.g., in delineating grain boundaries
[116, 119]), the presence of scanning artefacts and overlaps in grey values still limit the segment-
ation result [116, 119]. These limitations restrict the effectiveness of conventional and the stated
ML-based segmentation methods for complex ores and multi-mineral analysis, in which grey
value overlaps and artefacts are common.

However, the experimental work of this thesis demonstrated that DL-based segmentation suc-
cessfully addressed these challenges. For graphite ore, the applied DL-based approach accurately
distinguished between graphite and silicate minerals, despite their similar attenuation properties,
resulting in similar grey values overlap and the presence of artefacts introduced by highly X-ray
absorbing Fe-phases (cf. Article 1). This advancement is significant because graphite ores typically
contain silicate minerals [213], along with cracks and voids from alteration processes [214], all of
which exhibit similar, partially overlapping grey values to graphite, complicating grey value-based
segmentation. Instead, DL-based segmentation has overcome these limitations, enabling accur-
ate quantitative analysis and offering a reliable method for segmenting and analysing graphite
ores. This approach also shows promise for performing quantiative analysis to other complex
ores with similar compositions and low grey value contrasts. Similarly, for tungsten ore, where
conventional segmentation showed inaccurate results due to beam hardening and limited phase
contrast [115], DL-based segmentation applied in Article 3 proved effective. Despite the hetero-
genous mineralogy comprising phases exhibiting similar X-ray attenuation properties and those
leading to beam hardening (e.g., scheelite), the findings demonstrated accurate segmentation of
multiple classes allowing for a comprehensive mineralogical and textural characterisation in 3D.
Enabling multi-mineral segmentation by DL-based segmenation is significant as this advance-
ment broadens the applications of CT in ore analysis.

The results from Article 3 suggest an additional benefit of DL-based segmentation which is the
ability to mitigate geometry-related artefacts (e.g., cone beam artefact, cupping effect), thereby
handling irregular sample geometries without impacting the final analysis outcome. According
to the existing literature, the ideal sample geometry is cylindrical [26] as this shape provides
uniform X-ray penetration due to the consistent path length at every angle. This uniformity
results in a more even grey value distribution from the sample rim to the center (e.g., cupping
effect) and reduces the cone beam artefact. Accordingly, cylindrical samples have been widely
adopted for their effectiveness in reducing geometry related artefacts, enhancing segmentation
accuracy [83]; traditional grey value-based segmentation depends on cylindrical sample shapes
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or subvolume creation to mitigate these artefacts [115]. However, the results obtained in Article
3 suggest that DL-based segmentation eliminates the need for these specific sample geometries
and creating subvolume, thus saving time in sample preparation and maximising the examinable
sample volume. This is significant as maximising the examinable sample volume, thereby enhan-
cing representativeness, is a critical factor in high-resolution scans that typically require smaller
sample sizes.

Despite these advances, this study also revealed limitations of DL-based segmentation. The find-
ings are based on a limited number of graphite and scheelite ore samples. Further analysis of di-
verse types of these ores is necessary to validate the generalisability of these results. Moreover, the
training process is time-consuming and computationally demanding (cf. Section 5.3.3). Manual
labelling is required to provide ground truth data, introducing potential human error [215], es-
pecially when segmenting visually ambiguous phases. However, given combination of inference
stage (cf. Glossary, p. 107ff) and training stage DL-based segmentation significantly reduces hu-
man bias compared to conventional segmentation, which in turn improves the reliability of the
outcome [216].

In addition, DL-based segmentation struggles to label phases with almost identical X-ray attenu-
ation properties (e.g., quartz (𝜇 = 0.37), and K-feldspar (𝜇 = 0.36) in ROM1, Article 3). While these
phases could be visually distinguished, accurate segmentation was not possible, showing the need
for a minimum level of contrast and spatial resolution necessary. This requirement emphasises
that the effectiveness ofDL-based segmentation is inherently tied to the quality of the acquiredCT
data. As a result, sample heterogeneity and the specific mineralogical composition will continue
to pose challenges in CT. Thus, despite the aforementioned advances, CT, even when combined
with DL-based segmentation, cannot match the accuracy in modal mineralogy analysis achieved
by conventional 2D tools such as AMICS.

Regardless, the results of this work demonstrated that DL-based segmentation currently offers
the highest accuracy compared to traditional segmentation, especially in dealing with grey value
overlaps in the CT image data and when performing multi-phase analysis. In this context, the
limitations of traditional segmentation techniques could explain the predominant application of
CT in quantitative analysis of gold and PGE ores, mostly been restricted to segmenting the high-
contrast target mineral(s) from the low-contrast gangue material(s) only, rather than performing
multi-phase analysis. In contrast, DL-based segmentation allows formulti-phase analysis, thereby
expanding the capabilities of CT applications to more complex ore systems.

5.3.3 Practical aspects: time, cost and ease-of-use
While the previous subsections evaluated the strategies applied for data generation and their
outcomes, it is important to discuss the strategies’ impact on practical aspects. Accordingly, the
following subsections elaborate on time, ease-of-use, and cost factors.

Time and cost
The time required for generating CT data varies significantly depending on the specific goals of
the analysis as well as the ores properties. Simple visualisations of samples with highly contrasting
𝜇materials can be obtained in less than two hours if image noise and segmentation are not critical
concerns [217]. However, analysing complex ores, like the ones examined, necessitates optimal
image quality, involving long acquisition times (up to 14 h in this work). While the CT-projection
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recording process itself is automated, refining scanning parameters may require initial test runs.

The time investment for segmentation varies significantly depending on the chosenmethod [218].
Threshold and watershed segmentation can be completed within minutes [218–220]. In con-
trast, DL-based segmentation necessitates algorithm training, which can take hours depending
onmodel selection, parameters, dataset complexity, and computing power as shown in this work.
While the actual training process itself is unsupervised, DL-based segmentation demands signi-
ficant operator involvement during inference stage, which can also span several hours. Thus, for
complex ores, the entire segmentation and feature extraction process may be extended to days.
Consequently, based on the findings, the whole CT processing chain, including a priori analysis,
may take up to two working weeks for the experienced user.

Considering the potential long acquisition and processing time, quantitative CT data is expensive
compared to traditional methods such as OM, SEM-EDS and AMICS, which has particularly
consequences for industrial applications (cf. Section 5.4.1). For example, while AMICS is also
expensive, the analysis proceeds automatically after following the generation of a sample specific
database [18, 221].

Ease-of-use
As the previously shown, CT is not a standardised and automatised technique, requiring user
experience. While standardisedCTprotocols are available in research areaswith constant analysis
goals and sample material, such as in petroleum geology using CT to determine size, distribution
and connectivity of pores [222], standardising protocols for ore analysis is challenging due to
the specific properties of ores, unique for each type. However, the protocols developed and the
CT-specific information generated for graphite and tungsten ores in this work can assist in the
effective application of CT to these ores, simplyfing its use. In addition, these protocols may be
applicable to other ores with similar attenuation properties, thereby contributing to the broader
application of CT in ore analysis. The main factors influencing ease of use, along with ways to
facilitate analysis, are summarised below.

• Acquistion: The acquisition process, while theoretically unique for each ore, follows some
basic rules that have been elaborated in Appendix D.

• Segmentation: The complexity of segmentation varies depending on the chosen technique.
Simple methods such as thresholding require minimal user training, while DL-based seg-
mentation demands some theoretical understanding of machine learning. However, the
use of pre-trained CNNs in the software used makes DL-based segmentation accessible,
requiring primarily proficiency with the software itself, which can be gained through free
and open-source tutorials. This also applies to subsequent feature extraction. Recommend-
ations for proper DL-based segmentation are compiled in Appendix D.

• Mineralogical knowledge: Accurate mineral identification in CT images necessitates a com-
prehensive understanding ofmineralogy and proper knowledge conventional analysismeth-
ods such as OM to obtain a priori information. This expertise is imperative as it finally
enables researchers to interpret CT data effectively and drawmeaningful conclusions about
ore composition and properties.
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5.3.4 Highlighting main contributions and remaining challenges
This assessment has highlighted several contributions that broaden the knowledge base in CT-
based ore analysis and support its continued development in this field:

• Advancing understanding of X-ray energy settings and attenuation behaviour of graphite and
tungsten ores: Thiswork advanced the understanding of parameter selection for both graph-
ite and tungsten ores, providing critical insights into their attenuation behaviour. For tung-
sten ores, CT can differentiate between scheelite and other mineral groups (e.g., Fe-sulfides,
Fe-oxides, silicates) but cannot distinguish between minerals with very similar X-ray ab-
sorption properties (e.g., epidote and chlorite) due to the necessity of using high kV settings.
This observation aligns with other studies, highlighting a general limitation of CT when
applied to complex ores with high X-ray absorbing target minerals, which limits detailed
multi-mineral analysis. In contrast, for graphite ores, the target mineral, graphite, does
not solely determine the X-ray energy setting, requiring a trade-off to mitigate the varying
attenuation properties of the ores constituents. These insights gained fill a critical cap in
CT applied to ores with low-attenuating target minerals.

• Enhancing image quality through advanced acquisition strategies:While DECT does not over-
come CT’s limitation in identifying minerals with nearly identical attenuation coefficients,
it offers a practical tool for enhancing image contrast in complex ores with low X-ray
attenuation minerals, such as graphite. Tilting the sample significantly enhanced spatial
resolution at the sample surfaces, aiding in calibration of CT data with 2D imaging meth-
ods. Together, these strategies advance image quality, supporting subsequent segmentation
capabilities and thus strengthening the analytical outcome.

• Advancing quantitative analysis through DL-based segmentation: Implementing DL-based
segmentation significantly improved the effectiveness of quantitative analysis. While time-
consuming and still dependent on proper image quality, restricting detailed compositional
and textural analysis, this method proved effective in overcoming challenges related to grey
value overlap and imaging artefacts. This advancement represents a significant step forward
in CT, advancing CT’s analytical capabilities to more complex ores.

• Enhancing understanding of ore properties through the CT data: Establishing 3Ddata of graph-
ite and tungsten ores offers an additional layer of information, contributing to a better
understanding of their mineralogical characteristics.

• Broadening CT applications through developed analysis protocols: While CT requires signific-
ant user expertise, the developed strategies not only aid in analysing graphite and tungsten
ores but offer adoption to other complex CRM ores, broadening CT’s applications.

5.4 Implications for the rawmaterials sector
The insights gained from the experimental work and this discussion chapter have several implic-
ations for the rawmaterials sector. In the following, implications of using CT in geometallurgical
programs (industry) and ore deposit research (academia) are discussed.
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5.4.1 Geometallurgy
The core concept of geometallurgy lies in maximising mining efficiency and profitability by un-
derstanding the complex interplay between ore characteristics, their spatial variability, and their
impact on operational performance [223–225]. Achieving this understanding requires a robust
foundation of cross-validated and calibrated analytical methods to ensure accurate characterisa-
tion and prediction of ore properties throughout the mining value chain [226]. In fact, mineralo-
gical and textural information are much more decisive to the modelling of processing operations
than bulk geochemical data [227]. Thus, integrating CT into geometallurgical programs holds
immense potential for enhancing the understanding of ore characteristics and their impact on
process performance.

Theoretical considerations
By leveraging 3D information provided by CT, researchers and engineers could develop more ac-
curate prediction models, optimise processing parameters and ultimately achieve more efficient,
sustainable, and profitable mining operations, for example:

Ore body modelling and resource estimation Proper ore body modelling requires detailed
sample data on textural features such as shape, size and liberation rather than focusing solely on
ore grade given that mineral textures determine the recovery potential [16]. In tungsten deposits,
e.g., the accurate identification and quantification of scheelite grain sizes is crucial for determining
economic viability, considering grains smaller than 20 µm cannot be recovered, regardless of the
overall ore grade [65]. Traditional 2D analysis can suffer from limited sample representativity and
stereological bias, potentiallymisrepresenting the true grain size distribution [54]. In contrast, CT
enables precise measurement of grain sizes within intact ore samples, as shown by this research,
offering amore accurate and representative assessment of the proportion of recoverable scheelite.
This 3D approach eliminates stereological errors inherent in 2D methods [155, 156], providing a
more reliable evaluation of ores’ variability and the deposit’s economic potential. Consequently,
CT could enable targeted exploration and mining strategies that focus on areas with higher pro-
portions of recoverable scheelite.

Mineral processing CTcould enable tailored grinding strategies thatmaximise liberationwhile
minimising energy consumption, a major factor in mining contributing 4% of the global energy
share [228]. By comparing pre- and post-comminution scans, CT could enable quantification of
grinding efficiency and identification of suboptimal liberation. For commodities like graphite,
where flake size directly influences the market value [137], CT’s ability to determine the true flake
size distribution within the ore could enable quantification of the potential yield. Moreover, its
capacity to measure flake thickness (cf. Article 1) could provide a key parameter for breakage
modelling, further enhancing the optimisation of comminution circuits. Similarly, for tungsten
ores, CT could help optimise comminution by liberating scheelite grains without excessive over-
grinding, which leads to losses of fine-grained material. Additionally, an important challenge
in mineral processing is accurately characterising particle shape, as mineral particles are often
irregular and difficult to define from 2D cross-sections obtained by OM or SEM-EDS [20, 229].
CT’s ability to quantify textural features (cf. Articles 1 and 3), including particle shape [230],
provides more accurate particle data than conventional methods. This information could support
the optimisation of separation efficiency and grinding processes, improving recovery rates [231].
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Practical considerations
The effectiveness and practicality of implementing CT in geometallurgical programs, however,
are highly dependent on the specific characteristics of the ore deposits, as these factors ultimately
control time, cost, quality of information, and ease of use of CT analysis, as evidenced by this
work. In scenarios with homogeneous ore bodies and simple ore mineralogy (significant X-ray
attenuation contrast between target minerals and gangue), and simple geological structures, CT
can excel. While 2D techniques typically require multiple 2D sections to mitigate stereological
bias, increasing overall sampling requirements, CT may provide robust 3D data for accurate
characterisation, resource modelling and process performance monitoring with fewer samples,
making it a viable option in geometallurgical programs.

Conversely, in more realistic scenarios, heterogeneous ore bodies comprising ores with varying
mineralogical composition and textures pose a challenge. Accurate resource estimation andmod-
elling necessitate the analysis of a larger number of samples to capture ore variability (e.g., spatial
distribution of minerals and textural features) [227]. Furthermore, constant sampling may be
required within an existing operation for assessing processing performance [181]. For complex
ores such as graphite and tungsten ore, requiring extensive DL-based segmentation, analysis of a
single sample can take several days. This extended analysis time, when multiplied across a large
sample set, can lead to prohibitive costs and delays.

Instead, SEM-based automated image analysis is significantly faster and more cost-effective for
large sample sets [18, 221]. Additionally, CT’s resolution limitations for distinguishing phases
with similar X-ray absorption characteristics may not always provide the desired level of detail,
whereas SEM offers significantly higher resolutions [18, 221]. Therefore, as long as conventional
methods remainmore accurate and practical for ore characterisation, the widespread adoption of
CT in large-scale geometallurgical programs and deposits consisting of multiple geometallurgical
domains is limited. This practical limitation is further evidenced by recent CT research, which
remains focused on method development, examining individual samples rather than applying
large-scale case studies [101, 116, 117, 232–234].

Regardless, in its current state, CT can be used to guide sampling strategies for geometallurgical
testing during exploration, such as with already available benchtop CTs combined with µXRF
establishing borehole data within tens of minutes [235, 236]. Despite a limited spatial resolution
(200 µm voxel size), these scanners can rapidly reveal mineral assemblages, alteration zones, and
structural features (e.g., shear bands, fold hinges) within drill cores [33, 237, 238]. Given the
challenge of traditional sampling, which depends on surface-level analysis, potentiallymissing key
subsurface features [85], scanned drill cores can reduce the reliance on chance in sample selection,
aiding in more targeted and representative sampling of the ore body for downstream analysis
using established mineralogical methods. Additionally, the ability to generate continuous 3D
borehole data is especially effective for identifying and interpreting local and regional geological
structures [238]. This readily accessible 3D data can then be used to refine geological models,
supporting informed and dynamic decision-making in mine planning. Notably, scanned drill
cores and samples can be stored digitally for future reporting or re-analysis as needed, preventing
potential alteration reactions caused by weathering.
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5.4.2 Ore deposit research
In academia, time constraints are less critical than in industrial applications. Users often have the
expertise to conduct complex and thorough analyses, allowing them to optimise CT for each
specific application. These factors minimise the aforementioned operational constraints that
hinder the use of CT in large-scale geometallurgical applications.

As demonstrated by previous studies and this research, CT can contribute to the understanding of
ore-forming processes [26, 30, 239]. By examining 3D distributions of minerals and quantifying
the textural properties of target minerals, CT can offer valuable insights into these processes. For
example, Article 1 showed that CTwas effective in determining the size and spatial distribution of
graphite flakes within an intact sample. Knowledge on these properties is crucial as they provide
evidence for graphite formation [14]. For example, for flake type graphite ore, flake size increases
with the degree of metamorphism [240]. Similarly, both metamorphic grade and deformation
play a significant role in influencing the resulting flake size distribution (e.g., clustered or dis-
seminated) within the deposit [241, 242]. Analysing flake size in graphite ores is usually done by
sieving which requires crushing the samples [14, 130]. Similarly, information on spatial flake size
distribution is usually obtained using cross-sectional 2D imaging methods that may be subject
to the stereological error. By analysing a 3D volume and determining the true flake size and its
distribution within the ore matrix as demonstrated in this work, CT can help to reconstruct the
depositional environment of graphite deposits more precisely [46].

While DL-based segmentation has now enabled compositional analysis (cf. Article 3) CT still lacks
the ability to reveal detailed modal mineralogy due to inherent challenges such as insufficient
attenuation contrast and limited spatial resolution. These limitations also restrict detailed assess-
ments of mineral reactions and overprinting textures (cf. Article 3). Therefore, it is suggested
that the most effective use of CT in ore deposit research is achieved by integrating qualitative and
quantitative CT data with other mineralogical, and geochemical analyses. By using a synergistic
approach that combines the strengths of each method, the analytical outcome can be enhanced.
CT’s 3D imaging capabilities reveal patterns and structures within the ore that might not be
apparent in 2D thin section analysis, as seen in Article 3, where CT facilitated the identification
of structurally controlled scheelite mineralisation. Combining 2D with 3D data can then provide
resolution needed for revealing and interpreting fine-scale textural features on grain boundaries
such as mineral reactions and overprinting textures. Consequently, a multi-dimensional, multi-
scale approach, as also noted by [243], incorporating CT as an additional layer of information,
provides a more holistic understanding of ore deposits.

Recent studies have successfully demonstrated the integration of this advanced approach [244–
247]. Notably, these studies included CT as a standard technique in their methodological toolkit,
rather than positioning it as the primary focus of investigation. This usage indicates the matura-
tion of CT and its increasing value in scientific research. Since CT becomes more accessible and
accepted within the scientific community, it is likely to evolve into a routinely used tool in future.
This growing adoption could lead to new discoveries in ore deposit formation and refinement of
exploration strategies.

5.5 Future work
Based on findings from the experimentalwork and previous discussion, several recommendations
for future work can be made. In addition, considering the current technological advancements in
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AI, a concise outlook on these developments in relation to CT is provided, along with suggestions
for their potential adoption in the context of ore characterisation.

5.5.1 Recommendations for future work related to the experimental
work

• Assessing time-accuracy trade-offs: This thesis prioritised high data accuracy, potentially
leading to longer acquisition and processing times. Future research should investigate the
trade-off between analysis time and result accuracy for both CT-data acquisition and image
processing, aiming to identify parameters that balance data quality with practical con-
straints. This refinementwould facilitate the development ofmore efficient and cost-effective
CT workflows.

– Acquisition time vs. image contrast: Researchers should explore the relationship between
acquisition time and the resulting image contrast, determining the minimum acquis-
ition time required to achieve sufficient contrast for visual phase discrimination and
accurate segmentation. The image qualitymeasure developed in this thesis could serve
as a valuable tool for objectively comparing datasets obtained at different acquisition
settings. This approach would enable optimising acquisition parameters to minimise
time and cost while maintaining data quality.

– Image filtering vs acquisition time: Image filtering can be a valuable tool for CT-image
quality enhancement, as demonstrated in this work where it successfully decreased
noisewhile increasing sharpness. On the other hand, if not used carefully, filtersmight
compromise segmentation accuracy, as they can also introduce blur and diminish
subtle details crucial for proper segmentation. Considering the image processing
software used, future research should assess the efficacy of different filters in terms
of further optimising noise and image sharpness. Given digital filters ability for noise
reduction they may allow for shortening acquisition time. Therefore, research should
investigate the extent to which digital filters can compensate for reduced photon data
(from shorter scan times) without sacrificing the level of detail necessary for accurate
visualisation and segmentation.

– Segmentation time vs. accuracy: Future studies should focus on finding the optimal
balance between the amount of ground-truth input data required for training deep
learning models and the resulting segmentation accuracy considering analysis effi-
ciency. Using established 2D-based analysis as a reference for accuracy, research-
ers can determine the minimum amount of training data needed to achieve com-
parable results. Furthermore, for ores with simpler mineralogy, the time-intensive
deep learning approach may not always be necessary. Therefore, researchers should
systematically evaluate the efficiency of different segmentation techniques across a
variety of ore types and identify sample-specific criteria (e.g., attenuation contrast,
mineral complexity) to guide the selection of the most appropriate technique for a
given scenario.

• Further validation of DECT: The results of Article 2 demonstrated that DECT significantly
enhanced image contrast, ultimately improving image contrast. To further evaluate the
mechanisms contributing to the superior image quality (photon count and X-ray energy
composition), future studies could, e.g., compare DECT scans with SECT datasets having
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double acquisition time.

• Analysis of further graphite and tungsten ore types: Given the research presented based on
a limited number of samples, further investigations concerning data acquisition and DL
segmentation are required to validate the research findings. In addition, given the variability
of graphite and tungsten deposits different types should be examined for gaining a deeper
understanding on how to apply CT on these materials, ultimately leading to more robust
characterisation protocols.

• Analysis of further CRMs: Similar to the aspect above, future research should focus on
exploring the applicability of CT for the study of other CMRs. This will help to better
understand both, the limitations and benefits of CT when applied to these types of ores.

• Literature review: Existing reviews on CT in the context of ore analysis lack in evaluating
the method’s potential in light of recent AI developments. Given the transformative impact
of AI on various domains, it is essential to update these reviews to reflect the new pos-
sibilities for CT applications in the geosciences while acknowledging its limitations. Past
reviews have often emphasised segmentation as amajor limitation of CTwith conventional
segmentationmethods constrainingmulti-phase analysis. However, this perspective is now
outdated due to the advancements in DL-based segmentation which, for example, enables
the multi-phase analysis of complex ores, as demonstrated in this research. Additionally,
these reviews should also consider the broader potential of AI beyond segmentation. It
is noteworthy that the principal factor for accurate and effective CT analysis is the image
quality of the reconstructed CT data set. Thus, enhancing reconstruction will also play
a crucial role in advancing CT based analysis. Consequently, a comprehensive review that
incorporates these advancements is required to reassess the state-of-the-art CT and to guide
future research and applications, while also allowing operators for evaluating a potential
usage of CT.

5.5.2 Outlook on current and future developments of CT
In light of recent developments in AI, it can be posited that the next evolutionary step for CT
lies in leveraging AI. The application of AI across the entire CT-data processing chain, from
data acquisition to segmentation, offers significant potential to enhance resolution, analysis, and
throughput while reducing analytical time. This advancement promises to increase cost-time
efficiency and reduce reliance on specialised expertise, propelling CT beyond its current state-of-
the-art. While a comprehensive exploration of AI’s impact onCT is beyond the scope of this study,
the following bullet points provide a brief overview on some recent developments of AI-based CT
data acquisition and processing as well as recommendations for future work. Interested readers
can find further details on current AI developments in CT [248, 249].

• Image reconstruction: Conventional FBP reconstruction algorithms are prone to image noise
and other artefacts, thereby requiring longer acquisition times for achieving high-scan qual-
ity. Research on AI based reconstruction has just commenced with initial results already
promising showing increasement in CNR and spatial resolution [250–253], yet they require
high computational power. Future work can therefore be suggested to decrease computa-
tional complexity, e.g., via parallelisation paralellisation (cf. Glossary p. 107ff) and dedicated
hardware acceleration.

• Image filtering: AI-based image filtering has already demonstrated to be more effective than
traditional filtering; its applicability, however, is constrained to narrow inspection tasks and
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materials other than rocks and ores [254–256]. Thus, future research should concentrate
on rocks and ores with the objective of establishing more general algorithms that can be
fine-tuned to the specific ore(s) to be analysed. Similar, to AI-based image reconstruction,
AI-based filtering will further decrease acquisition time.

• Segmentation: Similar, DL-based segmentation has already significantly advanced multi-
phase mineral characterisation as this research has demonstrated, emphasising its poten-
tial. However, current DL-based segmentation can be time intensive, and involve manual
labelling, thus a potential operator bias. Future research should therefore focus on finding
alterative solutions to manual labelling. This may be achieved through the mineral inform-
ation obtained from other techniques such as 𝜇XRF or AMICS providing robust ground
truth data, enhancing method robustness.

The ultimate goal following this AI integration is achieving automated analysis comparable to es-
tablished 2D techniques like AMICS. This necessitates fully calibrated CT systems [257], achieved
through mineral libraries with standardised minerals and known absorption properties [253].
These libraries would serve as references, enabling predictive models for X-ray absorption under
various scanning and sample conditions. As a result, grey values in CT images could be directly
linked to specific minerals, facilitating automated mineral identification and quantification. Data
extraction could then occur directly after reconstruction, eliminating the need for segmentation,
minimising user input error, and maximising the robustness and reliability of the method for
standardised quantitative 3D analysis.

5.6 SWOT analysis of CT in ore characterisation
Based on the previous discussion, a SWOTanalysis has been conducted to summarise the strengths,
weaknesses, opportunities, and threats related to the application of CT in ore characterisation, as
demonstrated by the ores studied (Table 5.1).

CT offers significant value in ore characterisation when used in conjunction with state-of-the-art
2D methods, given its ability to unique qualitative and quantitative 3D information as demon-
strated by previous and this research. However, to extend CT’s impact beyond scientific applica-
tions, it is imperative to address its current limitations (Table 5.1). With regard to geometallurgical
programs, these limitations hinder cost-effective workflows necessary for economically viable
throughput, recovery, and thus the effective management of capital expenditures (CAPEX) and
operating expenses (OPEX). Therefore, considering potential users in the industry in the near
future, CT in its current state does not offer adoption by operators, but rather by geological service
providers seeking to enhance their analytical portfolio and capabilities. Streamlining workflows
and developing tools for automatisation are key steps towards realising CT’s widespread adoption
in the mining industry.
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Table 5.1: SWOT analysis illustrating the strengths, weaknesses, opportunities, and threats of
current CT in ore characterisation, as identified in this work.

Strength Weaknesses

• Non-destructive 3D imaging: Provides detailed 3D
visualisation of external and internal ore character-
istics without the need for physical sectioning.

• Eliminates stereological error: Provides true 3D
information, avoiding the biases inherent in 2D
sections.

• Quantitative mineralogical and textural analysis: En-
ables quantification of modal mineralogy, mineral
abundances, grain size distributions, associations,
etc.

• Increased sample representativeness: Enables analyses
of a larger sample volume compared to 2D sections

• Applicable to diverse ore types: Suitable for various
ores, including complex and heterogeneous samples.

• Digital preservation of samples: Digitally stored
samples are protected from weathering processes
and do not require physical storage space.

• Costs: High initial investment and ongoing mainten-
ance expenses; high analysis costs.

• Ease-of-use: Proper data acquisition, processing, and
interpretation require trained personnel, particu-
larly for quantitative analysis.

• Time investment: Depending on the analysis task(s)
and ore(s) to be examined, generating CT data may
require significant time.

• No spectral information: Minerals with similar at-
tenuation characteristics may be indistinguishable,
limiting their differentiation ability

• Indirect mineral identification: Mineral identification
and corresponding grey-value assignment necessit-
ates prior knowledge on the sample’s mineralogy.

• Resolution and sample size limitations:
High-resolution CT analysis is constrained by
limited sample-size and spatial resolution, affecting
proper visualisation of features close to detection
limit.

• High computational and storage requirements: Gener-
ating CT data requires powerful workstations and
substantial storage capacity due to large output sizes.

Opportunities Threats

• Ore deposit research: 3D analysis can aid in interpret-
ation of ore mineralogy and texture, ultimately con-
tributing to a deeper understanding of ore deposits

• Geometallurgical programs: Quantitative true 3D
data on ore textures can provide valuable insights
for optimising ore body modelling, comminution,
separation, and extraction processes, enhancing re-
covery rates.

• Ore deposit modelling: 3D characterisation can aid in
resource estimation and mine planning.

• Multi-dimensional analysis: Integrating 3D CT data
with methods like XRF or SEM offers a more
holistic understanding of ore properties, enhancing
decision-making across the mining value chain.

• Technological advancements and efficiency: Continued
development of AI-based algorithms, automation,
and streamlined workflows can greatly improve
the speed, accuracy, and robustness of CT-based
ore characterisation, making it more efficient and
cost-effective for research and industry, ultimately
reducing barrier to adoption.

• Sample complexity impacts efficiency: Ores compris-
ing phases with similar X-ray attenuation properties
may prolong analysis time and limit the information
extracted, hindering efficient workflows.

• Limited automation and standardisation: The cur-
rent lack of calibrated CT systems and standard-
ised workflows impedes achieving fully automated
analysis, requiring significant operator input and
expertise.

• Reproducibility concerns: The accuracy of CT analysis
can be influenced by operator decisions, potentially
leading to inconsistencies in results.

• Dominance of established techniques: 2D automated
mineralogy tools are more robust, reliable and
straightforward to apply.

• Cost-benefit considerations: The high cost of CT
analysis and time spent and may be a barrier to
adoption for the industry, particularly for smaller
companies.
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5.7 Concluding remarks
The discussion chapter has demonstrated that CT is a promising analysis tool for characterising
graphite and tungsten ore. Developing and implementing optimised acquisition and image pro-
cessing protocols allowed for the generation of valid and accurate quantitative CT data. Thus,
the results of the experimental work obtained underscore the utility of this technique for aiding
in understanding the mineralogy and texture of these ores through the generation of true 3D
information. Notably, applying DL-based segmentation strategies enabled the establishment of
modal mineralogy, even in the presence of overlapping grey values and image artefacts in the CT
data. These strategies represent a substantial advancement in the CT-based characterisation of
ores, since conventional segmentation has largely relied on grey value information. In addition,
the utilisation of DECT has been demonstrated to be an effective and readily applicable tool
to improve contrast in complex ores, as evidenced by the examined graphite ore. The findings
suggest that the protocols developed in this thesis can be adapted and applied to other CRMs,
considering their respective mineralogy and X-ray attenuation properties.

While CT is already proving beneficial in academic settings with sufficient time available and
trained personnel, its widespread adoption in the mining industry (e.g., geometallurgical pro-
grams) remains challenging, especially because of sample heterogeneity, low cost-efficiency, and
inherent limitations of the current CT method. Nevertheless, recent developments in AI offer a
promising avenue for future advancements in CT since AI has the potential to mitigate many of
the current limitations of CT. Thus, future research focusing on integrating AI along the CT data
processing chain, aswell as on automatisation, could significantly contribute to enhance the speed,
accuracy, and standardisation of CT analysis. This advancement would not only provide a deeper
understanding of ore deposits, but also lead to a more efficient resource extraction. Realising this
potential would mark a significant step forward in the responsible and sustainable exploitation
of CRMs.
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Appendix A

MRE CT facility

The CT laboratory at the Institute of Mineral Resources Engineering, RWTH Aachen University
(Fig. A.1), is equipped with a ProCon CT Alpha scanner equipped with a five-axes-manipulation
system. See Table A.1 for further technical configurations.

A B

Figure A.1: CT lab at MRE, RWTH Aachen University. A) ProCon CT Alpha scanner with X-
ray tube and specimen holder highlighted as well as acquisition PC for scanner configuration
and storage of projection data. B) Workstation showing the interfaces of the image processing
software ORS Dragonfly 2022.1 (left monitor) and reconstruction software VGStudio Max 3.5
(right monitor).
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Appendix A. MRE CT facility

Table A.1: Fact sheet CT scanner.

X-ray tube: XWT-225-TCHE Plus
Voltage range 20 - 225 kV
Current range 50 - 1000 µA
Target type Transmission
Operation modi Nanofocus (≤1.5 W), microfocus (≤10 W),

high power (≤50 W)
Maximum resolution 1 µm*
Target material Tungsten
Detector system: XRD 1611 AP3
Type Flat panel detector
Size 4064 x 4064 pixel (100 µm2)
Material Amorphous silica
Work station and software
Chip Intel(R) Xenon(R) CPUE5-2620 v4@ 2.1GHz
RAM 496 GB
Graphic card NVIDIA GeForceRTX 2080 Ti
Image reconstruction VGStudio MAX 3.5
Image processing and feature analysis VGStudio MAX 3.5, ORS Dragonfly 2022.1
*According to manufacturer
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Appendix B

Calculation of the effective atomic
number of graphite and scheelite

General formula
The effective atomic number Z𝑒𝑓 𝑓 for a compound such as a mineral is calculated using the power
law eqation [258, 259] :

𝑍𝑒𝑓 𝑓 =
𝛽

√√√
𝑁∑︁
𝑖

𝑓𝑖 · Z𝛽

𝑖
, (B.1)

whereby Z𝑖 represents the atomic number of the i-th element in the compound, and f𝑖 denotes the
fractional mass of this element in the compound. 𝑁 refers to the total number of elements present
in the compound. The exponent 𝛽 captures how the photon’s energy interacts with the electronic
structure of the compound, reflecting changes in how the effective charge is perceived under
different radiative conditions. It can vary between 2.94 and 3.8. [259–261]. For the exemplary
calculation, 𝛽 of 3.8 from Van Geet et al. [262] was used.

Graphite
1. Atomic number:

Carbon (C): 𝑍C = 6

2. Calculation of Z𝑒𝑓 𝑓 :

𝑍𝑒𝑓 𝑓 =
3.8
√︁
𝑍𝛽

=
3.8√63.8

≈ 6
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Scheelite
1. Atomic numbers and fractions:

Calcium (Ca): 𝑍Ca = 20
Tungsten (W): 𝑍W = 74
Oxygen (O): 𝑍O = 8

2. Mass fractions of each element:

Molar mass of CaWO4 = 287.92 g/mol

Mass fraction of Ca =
40.08
287.92

≈ 0.139

Mass fraction of W =
183.84
287.92

≈ 0.638

Mass fraction of O =
64.00
287.92

≈ 0.222

3. Calculation of 𝑍𝑒𝑓 𝑓 :

𝑍𝑒𝑓 𝑓 =
3.8

√√√
𝑁∑︁
𝑖

𝑓𝑖 · Z3.8
𝑖

=
3.8
√︁
(0.139 · 203.8) + (0.638 · 743.8) + (0.222 · 83.8)

≈ 65.79
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Appendix C

Article 2 and Article 3

C.1 Article 2

Table C.1: Mean Q factor values and results of Fisher LSD test for each material area and
parameter combination from 10 ROIs for each phase and structure. Group A is the highest
(marked dark green), and Group G is the lowest (marked dark orange) Q factor group. Members
of the same group have no significant differences. ThemeanQ factor values, which belong only to
the best or only to the worst group of the focused material area, are marked in bold. The highest
mean Q factor value in each material areais marked bright green, and the lowest is bright orange.
All mean Q factor value members of the best group drew green, of the worst – orange.
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Appendix C. Article 2 and Article 3

Table C.2: Global, mean, and standard deviation values of the CNR and Q-factor measurements
of each material area.
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C.2. Article 3

C.2 Article 3

Figure C.1: AMICS data of the two ore samples (ROM1 and ROM4) studied. The colour-coding
is for a better illustration, with minerals belonging to the same group marked with similar
colours. The ROM1 sample consists mainly of K-feldspar (pink) and quartz (cyan). The ROM4
sample is composed primarily of magnetite (brown), amphibole (green), and pyrite (yellow). In
both samples, the minerals show subhedral or anhedral shapes, occasionally featuring pervasive
textures. Given the number of minerals, a few phases not belonging to the same group, inevitably
have similar colours (e.g., titanite and muscovite); note that mica (biotite and muscovite) is absent
in ROM4 and amphibole minerals (actinolite, ferroedenite, ferrokaersutite) absent ROM1. For
more detailed visualisation (e.g., to distinguish between bornite and chalcopyrite), the figure has
been included to the Supplementary materials at original resolution.
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FigureC.2: A-C) SEM images, andD) OMmicrophotograph of theROM1 sample. Note anhedral
chlorite being partially overprinted by subhedral epidote (A, B). Abbreviations: Bt = biotite, chl =
chlorite, ep = epidote, fl = fluorite, ilm = ilmenite, kfs = K-feldspar, mnz = monazite, qz = quartz,
sch = scheelite, ttn = titanite, zr = zircon.
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Figure C.3: XRD patterns of the samples investigated. The undefined peak at 14.4 2𝜃 in the XRD
pattern of ROM1 is chlorite. However, it was not identified by the Highscore software.
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Appendix D

Best practices and additional data
from experimental work

Best practices for optimising CT acquisition
The research findings presented in this work suggest some basic rules for optimising CT acquis-
ition concerning the ores examined:

1. Sample mounting and orientation: Since the CT system’s sample stage is constructed from
metal, it is crucial to mount the sample on a low-density specimen holder, such as hard
foam, and to separate it from the metal components of the rotation stage. This separation
prevents X-ray absorption or scattering from the metal, which would degrade scan quality.
Additionally, the holder’s material should have minimal X-ray attenuation to maintain op-
timal penetration of X-rays in areas of the sample in direct contact, preserving the greyscale
integrity of the reconstructed CT dataset. The sample should also be mounted at a slight
angle and securely fastened to both the specimen holder and rotational stage to prevent
movement during acquisition. This configuration ensures sharp CT images across all slices,
including the topmost and bottommost slice.

2. Maximise beam efficacy: Use a cylindrical sample for uniform X-ray path lenghts. Adjust
sample dimensions to allow close positioning to the X-ray source, and ensure that the
chosen thickness allows adequate X-ray penetration. Tilt the sample to maximise spatial
resolution. Avoid pre-filters when possible as they demand longer exposure times and may
decrease image contrast.

3. Prioritise voltage: Understanding the relationship between attenuation mechanisms and 𝜇 is
crucial for effectively differentiating minerals in a CT scan. The selection of X-ray source
parameters should always prioritise voltage due to its significant impact on image contrast.
Ores with low-absorbing target minerals (e.g., graphite ores), containing both low and high
absorbing phases, require a balanced voltage setting (e.g., 100 kV was found effective in
this research). For ores with very high-absorbing target minerals (e.g., scheelite in tungsten
ores), maximising kV is generally required to mitigate beam hardening, regardless of the
overall mineralogy.

4. Adjust remaining parameters: Once the optimal kV is determined, the remaining parameters
should be adjusted to optimise image noise, brightness and spatial resolution. Image noise
can be reduced by increasing primarily frame averaging, while brightness is improved by
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using higher exposure time, or beam current. Using a small focal spot (e.g., microfocus
beam, used in articles 2 and 3 increases the spatial resolution and thus image quality as a
smaller focal spot enhances image sharpness. Note that when adjusting these parameters,
it is also important to consider the aspects below.

(a) The scanning parameters influence multiple aspects of image quality simultaneously.
For example, while exposure time primarily affects brightness, it also has a secondary
effect on noise due to the increased signal. Therefore, it is recommended to begin first
selecting the parameter primarily responsible for the desired image quality factor.

(b) A balance between these parameters is essential to avoid overexposure of the detector.
For example, when using a microfocus focal spot, the applied power must not exceed
10 W (Table A.1).

5. Apply DECT: When available and when examining complex ores with weakly X-ray at-
tenuating ore minerals like graphite, utilise DECT to mitigate the large spectrum of X-ray
attenuation properties of the minerals, ultimately facilitating parameter selection.

Recommendations for segmentation
On the basis of these results, DL-based segmentation is recommended for graphite and scheelite
ore analysis, as it can effectively mitigate the impact of scanning artefacts, such as beam hardening
and the cone-beam effect. Furthermore, it is less influenced by human error given sufficient
ground truth data is provided during the inference stage. Therefore, it suggested to always ap-
ply DL-based segmentation quantitatively analysing ores other than graphite and scheelite ores,
particularly when aiming for modal mineralogy analysis. Among the various deep-learning al-
gorithms offered in Dragonfly, the 3D-sensor architecture [145] yielded the most accurate results
for segmentation and is therefore recommended.
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Effect of sample orientation on spatial resolution

A B

Figure D.1: A) Reconstructed dataset of a flake graphite ore sample positioned horizontally. B)
Reconstructed dataset of the same sample, positioned at a tilted orientation.
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Glossary

A priori analysis refers to a set of conventional mineralogical analysis techniques performed
in this work before CT data was collected. These techniques are essential for proper data
aquisition, identifying the minerals present in a sample and providing context for inter-
preting the CT images [46].

Artificial intelligence is the design and creation of computer systems that can carry out tasks
typically associated with human intelligence, including visual perception, speech recogni-
tion, making decisions, and translating languages [263].

Beam current refers to the flow of electric charge through the X-ray tube, typically measured
in milliamperes (mA) [43]. It determines the number of X-ray photons produced per unit
time [43].

Beam hardening refers to an artefact that occurs in CT imaging, when lower-energy X-rays
in a polychromatic X-ray beam are absorbed more easily by the material, leaving higher-
energy X-rays to penetrate the object [50]. This effect results in the X-ray beam becoming
‘hardened’, as it effectively contains a higher proportion of high-energy X-rays.

Complex ore is a polyphase ore containing multiple valuable metals or minerals, requiring ad-
vanced processingmethods for efficient extraction and recovery of all components, e.g., due
to challenges posed by their co-occurences or liberating valuable minerals from impurites
[8, 264].

Deep learning is a subset of artificial intelligence that uses artificial neural networks with mul-
tiple layers to automatically learn patterns and representations from large amounts of data
[60]. Unlike traditional models, it automatically extracts features and captures complex
relationships in data through hierarchical layers [59]. This enables complex tasks like image
segmentation by modeling non-linear patterns.

Dice score is a common metric used to evaluate the performance of segmentation algorithms
[265]. It measures the overlap between the predicted segmentation mask and the ground
truth mask by computing the similarity between the two sets. A higher dice score indicates
better agreement between the predicted and ground truth segmentations, thereby provid-
ing a quantitative measure of segmentation accuracy.

Effective atomic number (Z𝑒𝑓 𝑓 ) is the net positive charge an electron perceives in an atom,
accounting for both the atomic number (Z) and electron shielding [258, 259]. Z𝑒𝑓 𝑓 varies
with radiation energy, which influences electron shielding effects [261]. In single-phasema-
terials, Z𝑒𝑓 𝑓 approximates Z due to consistent bonding and minimal shielding. In polyphase
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materials, Z𝑒𝑓 𝑓 averages electron interactions across different phases, therefore differing
from the average atomic number, which calculates the mean of atomic numbers based on
component proportions without considering radiation effects.

Exposure time refers to the duration during which the X-ray tube emits radiation [47]. It dir-
ectly impacts the number of X-ray photons interacting with the sample, affecting image
quality. For example, longer exposure times increase photon flux, enhancing the signal-to-
noise ratio by reducing statistical noise.

Filtered back projection is common technique used in computed tomography to reconstruct a
two-dimensional (2D) image from a set of one-dimensional (1D) projections taken from
different angles [48]. The process involves two main steps: first, each 1D projection is
filtered to reduce blurring and enhance image quality. Then, the filtered projections are
back-projected across the image plane in their respective directions, accumulating the con-
tributions from all angles to reconstruct the original 2D image. FBP is valued for its com-
putational simplicity and speed but can be prone to artefacts, particularly in low-dose or
noisy data.

Focal spot size is the diameter of the area on the X-ray tube’s anode where X-rays are emitted
[47]. It influences image resolution, with a smaller focal spot size providing finer image
detail and sharper resolution.

Frame averaging is the process of averaging multiple projections acquired sequentially over a
short period of time at the same sample stage angle [44].

Ground truth data refers to manually labeled data used to train and evaluate models, serving
as a benchmark for comparing model predictions to guide learning [266].

Inference is the process of using a trained deep learning model to make predictions or decisions
on new, unseen data based on the learned patterns from the training phase [59].

Line integral represents the total attenuation ofX-rays along a specific path through the scanned
object, being the sum of the attenuation coefficients of all materials encountered along that
path [47].

Linear attenuation coefficient (𝜇) is a constant, describing the fraction of attenuated incident
photons in a monoenergetic beam per unit thickness of a material [44]. This value depends
on the material’s density, atomic composition (Z𝑒𝑓 𝑓 ), and the energy of the X-rays and is ex-
pressed numerically in units of cm−1. The coefficient increases with higher atomic number
and material density, but decreases with increasing photon energy.

Ore texture refers to the spatial arrangement and relationships between the minerals within an
ore, including their size, shape, distribution, and the way they are intergrown or associated
with each other [19].

Paralellisation refers to the process of dividing a computational task into smaller parts that can
be executed simultaneously across multiple processors or cores, rather than sequentially
on a single processor [267]. This approach can significantly reduce the time required to
complete complex tasks by allowingmultiple calculations to be performed at the same time.
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Partial volume effect occurs in CT when a single voxel contains multiple phases, resulting in
mixed attenuation coefficients, or grey values, respectively [83]. This blending effect causes
particles close to or smaller than the voxel size to appear blurred, distorted, or unrealistic
in shape, complicating accurate characterisation of small or finely detailed structures.

Projection is the collection of line integrals along all paths through the object at a specific angle,
recorded during the rotation of the sample stage and digitally stored [68].

Scanning artefacts refer to distortions in the acquired image data, arising from hardware or
processing limitations that may obscure or mimic real features of the sample [50].

Spatial resolution Refers to the smallest distinguishing feature in a CT image, indicating the
level of detail that can be resolved [83].

Synchrotron CT is a specialised CT technique using high-energy X-rays from a synchrotron
particle accelerator. It offers superior spatial and temporal resolution, enabling imaging of
denser materials and rapid processes [206].

Target mineral refers to a mineral of interest wanted for valorisation [268].

Voltage is the electric potential applied across the X-ray tube that will accelerate electrons up to
this maximum energy. It determines the energy of the X-rays produced [43].
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