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Abstract

Positioning and timing has become a crucial component in a broad field of appli-
cations. This spans from positioning and navigation in aeronautics, maritime, and
automobile applications to system critical time synchronization of power grids or mo-
bile telecommunication networks. On a global scale, this is achieved already today
with global navigation satellite systems (GNSSs). However, environmental conditions
can affect their performance and reliability. A well-known threat in this context is the
multipath propagation. Objects in the nearer receiver environment reflect the satellite
signals, which can cause errors or even failure of conventional GNSS receivers.

A second threat are atmospheric effects, in particular due to the ionosphere.
Solar radiation ionizes the remaining atoms and molecules in this layer of the atmo-
sphere. The resulting free electrons introduce additional signal delays. As this effect
is frequency-dependent, it can be largely eliminated with a multi-frequency receiver
using the ionosphere-free combination. Unfortunately, other errors, such as multipath
errors, tend to be amplified in this process. Multipath propagation depicts therewith
a limiting factor in GNSS.

In the literature, a large number of approaches have been proposed in the past to
mitigate the effect of multipath. They vary in effectiveness and complexity depending
on the application and requirements they were developed for. Nevertheless, a certain
gap has been identified in the literature regarding solutions, that are effective, provide
a good noise performance, and are of feasible complexity.

In this work, a multipath mitigating algorithm has been developed, that is de-
signed to fill this gap. Propagation characteristics are estimated in the form of a line-
of-sight (LOS) delay and an impulse response that represents multipath components.
This enables an improved delay estimation. The approach will be analyzed with syn-
thetic data, hardware emulations, as well as actual measurement data, confirming
that it fulfills the design criteria. In addition, the integration into an advanced vector
tracking (VT) receiver architecture has been shown. The joint processing of all satel-
lites increases reliability in challenging environments and depicts with the increased
multipath resilience of the proposed algorithm a strong combination. Moreover, the
extension to simultaneously processing multiple frequencies has been explored. The
therewith achieved observability of the ionospheric delays is used to actively estimate
this effect. The multipath resilience of the underlying developed algorithm allows
for an accurate estimation, also in multipath environments. Last but not least, the
extension to antenna arrays has been explored. The therewith additionally available
spatial domain allows to overcome the temporal resolution limit that was limiting the
effectiveness of the proposed solution against short delay multipaths.
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range rate measurement

τg Geometric LOS code delay s
τ̇g Geometric LOS code Doppler
φ Carrier range observable s
φ̇ Carrier range rate observable
φerr Carrier range errors s
φg Geometric carrier range s
φ̇g Geometric carrier rate range

Array multipath mitigating EKF related variables

Symbol Description Unit of
component

a Steering vector
j Imaginary unit
k Wave vector rad/m
Nant Number of antenna elements
r Antenna element index
r Antenna element position vector
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φmul Multipath phase ◦

θ Elevation angle ◦

ϕ Azimuth angle ◦

θa Elevation angle of provided steering vector ◦

ϕa Azimuth angle of provided steering vector ◦

Miscellaneous

Symbol Description Unit of
component

p Integer number ∈ Z, i.e., . . . ,−2,−1, 0, 1, 2, . . .

q Natural number ∈ N, i.e., 1, 2, 3, . . .
0q Column vector of zeros with length q

1q Column vector of ones with length q

Iq Identity matrix of dimension q

δ(t) Dirac distribution
sgn (•) Sign function
∗ Convolution operator
[•]∗ Complex conjugate
[•]T Transpose
[•]H Hermitian
‖•‖ Euclidean norm
〈•, •〉 Inner product
◦ Hadamard product
N
(
µ, σ2

)
Normal distribution with mean µ and covariance σ2

Var (•) Computes variance of provided vector
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1 Introduction

1.1 Motivation

Since the development of the very first global navigation satellite system (GNSS), its
performance and widespread use has come a long way. From being initially invented
for military use only, it is nowadays impossible to imagine everyday life without it.
Many critical infrastructures rely on GNSSs, e.g., for time synchronization in mobile
telecommunication networks or power grids [Eur24]. Moreover, GNSSs are being used
more and more in aeronautics, maritime and car navigation, as well as the navigation
of autonomous vehicles. Under nominal conditions, a reliable and precise timing and
position is already possible today. However, such conditions are often not encountered
in the field. Usually the satellite signals reach the receiver distorted by environmental
effects.

A major environmental effect is the multipath propagation. Objects in the closer
vicinity of the receiver reflect the satellite signals, leading to additional delayed repli-
cas at the receiver, superimposing with the direct line-of-sight (LOS) signal. If not
considered in the receiver algorithm, it can cause position errors of up to multiple
meters [Kos+10]; [vNee92a]; [Bre+97]. Correspondingly, relying on GNSS for safety-
critical applications like autonomous cars or unmanned aerial vehicles is a challenging
task, requiring additional countermeasures.

In addition, different atmospheric layers introduce a time, location, weather, and
solar activity dependent effect on the signal propagation, namely the tropospheric
and the ionospheric delay. While the first can be modeled quite reliably [Teu+17,
Chapter 6], modeling for the latter can be more difficult, especially in regions of
higher ionospheric activity as it can be found in equatorial or polar regions. With
the most commonly used Klobuchar model [Klo87] only 50% of the ionospheric de-
lay can be removed on average. As the ionospheric delay is a dispersive effect, it
becomes observable for multi-frequency receivers and its dominating first-order effect
can be eliminated using the ionosphere-free combination [Hof+01, Chapter 6]. Un-
fortunately, this linear combination amplifies other errors. These includes not only
noise contributions [Mis+06, Chapter 5] but also multipath errors [Win00, Chapter 5]
that reflect as erroneous pseudorange measurements in the individual signal bands.
Thus, with the attempt to reduce ionospheric errors, one might end up with even
larger errors due to multipath effects. Multipath propagation depicts therefore the
major constraining factor in GNSS.

In the following, existing solutions to address the effects of multipath propagation
in GNSS receivers are reviewed.
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1.2 State of the Art

Multipath mitigation has been a research subject for a long time. Correspondingly, a
large variety of approaches has been proposed. They differ strongly in complexity and
effectiveness, based on the application and requirements they were designed for. An
overview of the different categories of approaches to reduce the effect of multipath for
GNSSs is given in Figure 1.1. Existing approaches are split into four main classes, i.e.,
sensor fusion, antenna, assisted signal processing, and stand-alone signal processing
approaches.

Sensor fusion approaches reduce the effect of multipath by incorporating infor-
mation from other independent sensors. Most commonly, one relies on acceleration
measurements from an inertial measurement unit (IMU) [Par+96, Chapter 7]. While
IMUs on their own are in general not a stable navigation system due to the inherent in-
crease in dead reckoning errors [Kao91], they can provide accurate information about
relative position changes over the short term. Therewith, they can be beneficial as an
aiding for GNSS-based positioning to mitigate the errors of short-term multipath ef-
fects. Moreover, they allow to bridge short GNSS outages, reduce noise, and increase
tolerance to dynamics [Teu+17, Chapter 28]. Similar to that, odometry sensors, such
as wheel speed sensors (WSSs) [Ner+15], or magnetometers [Mei+07]; [Bar+12] can
be used to provide additional information to the GNSS receiver. The fusion with
imaging and other environmental sensors, such as optical [Suz+14] or infrared (IR)
[Meg+09] fish eye cameras, or the use of light detection and ranging (LiDAR) sys-
tems [Mai+10] allows to capture the nearer receiver environment. This permits the
exclusion of satellites that have currently blocked LOS paths, which would otherwise
be potentially received via reflections, providing erroneous measurements for the po-
sition, velocity, and time (PVT) solution. Alternatively, one can use the images of
the receiver environment to conduct a visual odometry [Sch+16]; [Cio+20]; [Lee+22].
The category of environmental sensors also includes barometers, which can be used
to aid in particular the GNSS height estimates [Chi+20]. Obviously, multiple sensors
can be fused simultaneously to further increase robustness [Hen+18]; [Chi+20]. An-
other field within the class of sensor fusion approaches is the exploitation of signals
of opportunity (SOPs). Examples are the use of Wi-Fi [Bis+14] or cellular [Mor+16]
signals to aid GNSS. With the considerable increase of low Earth orbit (LEO) satel-
lites, those newly arising signals from space also gained attention as SOPs, also known
as LEO position, navigation, and timing (PNT) [Pro+22]; [Kas+23].

With the class of assisted signal processing techniques, such as primarily 3D map-
ping techniques, the shape of buildings are incorporated in order to reduce the effect
of multipath. Those techniques are particularly designed for urban environments. So
called 3 dimensional building models (3DBMs) are used to predict the current signal
propagation conditions so that satellite visibility and multipath propagation can be
considered for the position estimation. The most straight forward approaches deter-
mine the currently visible satellites at the user position using ray tracing techniques.
This allows to introduce a satellite masking in the PVT solution to exclude, or at
least de-weight, satellites that are currently blocked [Piñ+11]; [Obs+12]; [Pey+13],
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Figure 1.1: Overview of different classes of approaches to reduce effect of multipath.

similar to the sensor fusion approaches with fish eye cameras mentioned above. As
the exclusion of measurements leads to a degraded dilution of precision (DOP), more
sophisticated approaches instead use the ray tracing results to correct measurements
obtained from blocked satellites and in addition to that also to remove multipath er-
rors from available satellites received via multiple paths [Suz+13]; [Hsu+16]; [Zie17].
Naturally, this leads to a more computational demanding solution compared to the
simple masking. A different approach is the so called shadow matching [Gro11];
[Wan+13]. Here, the position is found by comparing the predicted satellite visibil-
ity with the measured one. This results in particular in an improved cross-street
accuracy which is generally poor in urban canyons. As the ray tracing results are
highly position depending, one would typically rely on particle filters to reflect the
uncertainty of the user position [Suz+12]; [Yoz+15]; [Suz16].

The use of specialized antennas allows to reject multipath signals even before they
reach the GNSS receiver, contrary to the approaches above. A prominent example is
the choke-ring antenna [Sci+09] which attenuates signals from lower elevations. It is
therewith commonly used to eliminate ground reflections at reference stations where
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the dimension and weight of the antenna is less crucial. In other applications, where
multipath also impinges from higher elevations, choke-ring antennas are of limited
use. In this case, antenna arrays in combination with spatial signal processing pro-
vide more adaptability. They enable the differentiation of interfering signals based
on their spatial characteristics instead of being restricted to the time and frequency
domain. Yet, this remains a challenging task due to the strong temporal correla-
tion between LOS and multipath signals. Solutions for that typically involve spatial
smoothing [Sha+85] in order to de-correlate the individual signal components. How-
ever, this procedure comes at the cost of reducing the effective array aperture and
requires specific antenna geometries. More advanced solutions estimate the individual
multipath direction of arrivals (DOAs) and actively suppress them [Sah+07]. This
concept has been further extended to include the estimation of array specific param-
eters allowing for a more general application [Zor+20]. While solutions involving
antenna arrays can be very powerful, they come along with an increased cost due
to the more complex antenna design and required multichannel receiver architecture.
The so called correlator beamforming [Gun+19] attempts to soften this additional
hardware and processing burden while maintaining the spatial domain. It still re-
lies on multiple antenna elements, however, a hardware radio frequency (RF) switch
selects always just one antenna at a time to be fed to the single channel RF front
end and GNSS receiver. The lower hardware and processing requirements come at
the cost of a correspondingly overall performance degradation due to the limited
temporal observation of each antenna element. With synthetic-aperture processing,
the advantages of an antenna array can be achieved to some extent with only a sin-
gle antenna element. Based on the principles of synthetic-aperture radars, a single
moving antenna is used to coherently combine GNSS signals observed from different
spatial locations [Bre+92]; [Pan+08]; [Pan+13]. To achieve the required long inte-
gration times of up to a few seconds, the navigation data bits have to be stripped
or one needs to rely on data-free pilot signals. This allows to maximize the LOS
power and at the same time mitigate multipaths, impinging from other DOAs due to
their distinct Doppler signatures. This approach has been extended to the so called
supercorrelator [Far+18]. The two main challenges of this kind of approaches are
the need for accurate knowledge of the user clock drift and motion. While the first
can be resolved with appropriate modeling or higher grade clocks, the latter is typ-
ically achieved with an IMU aiding. This concept has been combined with 3DBMs
in [Gro+20] in order to further improve accuracy. Instead of rejecting multipath
signals, the use of dual-polarized antennas follows an opposing approach. Since all
major GNSSs broadcast right-hand circular polarization (RHCP) signals, the direct
LOS signals reach the receiver likewise as RHCP signals. Nevertheless, also left-hand
circular polarization (LHCP) GNSS signals can reach the receiver. The polarization
direction change is caused by reflections. While these typically unwanted signals are
suppressed with conventional RHCP GNSS antennas, their exploitation allows to gain
information about the multipath conditions. A first experimental investigation was
conducted by [Man+04]. [Jia+14] proposed to detect and exclude satellites affected
by multipath propagation based on the LHCP component. Dual-polarized antennas
were used in [Gro+10]; [Xie+17] to mitigate multipath. Spatial signal processing has
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also been combined with dual-polarization [Bre+07]; [Foh+17].

The final class is named stand-alone signal processing. It aggregates approaches
that maintain the conventional GNSS receiver setup consisting of a single antenna
element, a front end, and an analog-to-digital converter (ADC). No additional sen-
sors, prior knowledge, or assistance information such as 3DBMs are used. Thus, a
comparable wide range of application is possible, without specific GNSS receiver re-
quirements and independent of the availability of information about the operation
environment. It is subdivided into three categories, detection, mitigation, and esti-
mation. Table 1.1 provides an overview of existing solutions for the three categories.

1.2.1 Multipath Detection

For a simple multipath detection, signal quality monitoring (SQM) techniques [Mor+21,
Chapter 10] can be used. They can detect signal anomalies and thus also reveal the
distorting effects of multipath propagation. Identified satellites can then be weighted
less in the PVT solution or excluded altogether. Examples for well-known met-
rics are the Delta or Ratio metrics [Phe01], the early late phase (ELP) [Mub+10b];
[Mub+10a], or the slope asymmetric metric (SAM) [Fra+13]. Receiver autonomous
integrity monitoring (RAIM) techniques [Lee86]; [vGra+93] also attempt to detect
erroneous satellite measurements. An overview can be found in [Par+96, Chap-
ter 5]. They rely on exploiting the measurement redundancy when more than four
satellites are available. By determining the PVT solution multiple times, whereby
individual satellites are excluded in each case, faulty measurements can be revealed.
While such approaches can be effective in moderate multipath environments where
only individual satellites are affected, it quickly reaches its limits in more demanding
environments.

1.2.2 Multipath Mitigation
This leads to the group of multipath mitigation techniques. Considerable efforts
have been made to develop advanced correlator structures, that outperform the con-
ventional early-late discriminators with respect to their multipath performance. The
Narrow Correlator™, proposed by [Van+92], depicts in this context the most straight-
forward one. It simply reduces the spacing between the early and late correlators,
lowering the influence of multipaths onto the code tracking. The class of double-delta
correlators (DDCs) augments the conventional early-late correlator structure for the
code tracking by one additional correlator pair. The additional information allows
the DDC techniques to outperform [Bra01]; [Irs+03] the Narrow Correlator™, while
maintaining a relatively low computational complexity. Different implementations
have been proposed, such as the high-resolution correlator (HRC) [McG+99] or the
Strobe Correlator [Gar+96]; [Gar+97]. Essentially, the DDCs narrow the effective
correlation function. This can also be achieved with a modified reference waveform
design, e.g., the gated correlator [Kan+98], or with the as superresolution named pre-
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Table 1.1: Overview of existing stand-alone signal processing techniques for multipath prop-
agation.

Category Existing Techniques

Detection Signal quality monitoring (SQM) [Phe01]; [Mub+10b]; [Mub+10a];
[Fra+13] [Mor+21, Chapter 10]

Receiver autonomous integrity monitoring (RAIM) [Par+96, Chap-
ter 5]

Mitigation Advanced correlator structures
• Narrow Correlator™ [Van+92]
• High-resolution correlator (HRC) [McG+99]
• Strobe correlator [Gar+96]; [Gar+97]
• Gated correlator [Kan+98]
• Superresolution [Wei98]
• Early-late slope (ELS) technique [Tow+94]
• Early1/early2 (e1/e2) technique [Van+97]
• A-posteriori multipath estimation (APME) technique [Sle+01]

Vector tracking (VT) [Cop+80]

Direct position estimation (DPE) [Clo+07a]

Estimation Structured channel model
Non-sequential estimation
• Multipath estimating delay locked loop (MEDLL) [vNee92b]

[vNee+94]; [Tow+95]
• Multipath mitigation technology (MMT) [Wei02]
• Vision Correlator [Fen+05]
• Space alternating generalized expectation-maximization (SAGE)

algorithm [Ant+05]; [Clo+07b]
• Fast iterative ML algorithm (FIMLA) [Sah+08]; [Lan+11]
• Saarnisaari’s method [Saa96]
• Levenberg–Marquardt (LM) algorithm [Nun+07]; [Nun+08]
• Sequential Maximum likelihood (ML) methods [Sah+09]; [Sok+16]
• Selva’s method [Sel04b]; [Sel04a]
• Grid search approach [Bla+12]

Sequential estimation
• Particle Filtering [Len+08]; [Clo+09]; [Kra+10]
• Turbo delay locked loop (DLL) [Dov+04]
• Coupled amplitude delay locked loop (CADLL) [Che+11]; [Che+13]

Unstructured channel model
• Multipath distribution estimation [Enn+17]
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correlation signal shaping filter [Wei97]; [Wei98]. The narrower correlation function
also comes along with a smaller range over which the discriminator function provides
non-zero values. This can result in loss of lock in lower carrier-to-noise density ratio
(C/N0) situations or highly dynamic scenarios [Mor+21, Chapter 15]. In addition to
that, these techniques come at the cost of a poorer noise performance compared to the
conventional early-late tracking [McG+99]; [Pra04]. Other solutions relying on addi-
tional correlators depict the early-late slope (ELS) technique [Tow+94], also known
as the multipath elimination technique (MET), the early1/early2 (e1/e2) tracking
[Van+97] using only two early correlators, and the a-posteriori multipath estimation
(APME) [Sle+01] relying on an additional late correlator. An entirely different ap-
proach, but still in the category of multipath mitigation are vector tracking (VT)
processing architectures [Spi+96, Chapter 7], initially proposed by [Cop+80]. In-
stead of tracking satellites individually, all satellite tracking loops are coupled and
driven by a central filter, exploiting the redundancy of the measurements. Doing
so mitigates the effect of individual multipaths [Luo+14]. This advanced processing
structure can be very powerful, especially as it handles well frequent LOS blockages.
However, since multipaths are not actively suppressed the remaining multipath er-
ror increases the more satellites are affected. The direct position estimation (DPE)
[Clo+07a] takes the concept of the joint processing of all satellites from the VT archi-
tecture one step further. Instead of relying on the intermediate step of calculating the
discriminator function, the DPE determines straight from the correlator outputs the
position estimates. Obviously, no closed-form solution exists for this estimation prob-
lem [Mor+21, Chapter 21]. Implementations need to rely for example on Bayesian
filtering [Clo+10]. This higher computational load is rewarded by a reduced position
error in scenarios where conventional tracking-based receivers fail [Clo+17], especially
when the PVT probability distribution is multi-modal [Dam21].

1.2.3 Multipath Estimation

In order to achieve a higher resilience against multipath propagation and the ability
to maintain it when numerous satellites are affected, multipaths have to be actively
taken into account and suppressed, leading to the category of parameter estimation
techniques. Hereby, a signal model is used that considers for multipath propagation.
The estimation relies usually on the outcome of a correlator bank, that is sampling
the observed distorted correlation function. In this context, the correlation acts as a
compression of the raw signal so that only the correlation result, is provided to the
estimator [Sel04b]; [Boc+22]. Different types of channel models have been used in the
past for the estimation. They can be categorized into structured and unstructured
channel models.

With the structured channel model, the received signal is described as the super-
position of the direct LOS signal with a finite number of multipaths. Each multipath
component is a delayed, attenuated, and phase-shifted replica of the LOS. An estima-
tor is then derived, to determine the delay, amplitude, and phase of each signal com-
ponent [Pan10, Chapter 8]. The multipath estimating delay locked loop (MEDLL),
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proposed by [vNee92b] and further investigated in [vNee+94]; [Tow+95], depicts a
well-known approach in this field that aroused with its publication the interest in
this area of research. It derives a maximum likelihood (ML) estimator to determine
the signal parameters. Since no straightforward closed-form solution to the nonlinear
ML problem exists, the multidimensional ML estimator is approximated iteratively
by breaking it down into one-dimensional ones which are solved sequentially and it-
erated further. However, it remains a computational demanding task and further
grows in complexity with the number of multipath signals taken into account. In
order to lower the computational burden, many different variants thereof have been
proposed in the past. A prominent example is the multipath mitigation technology
(MMT) [Wei02], which introduced a reversible nonlinear transformation to simplify
the solving of the ML problem. This concept of the MMT has been taken up and ap-
plied to the domain of chip transitions by [Fen+05], which led to the so called Vision
Correlator. [Ant+05] proposed to approximate the ML problem using the iterative
space alternating generalized expectation-maximization (SAGE) algorithm [Fes+94],
which has been used before for communication systems [Fle+99]. This approach was
further investigated by [Clo+07b]. Then, [Sah+08] proposed, based on [Sou+02], the
fast iterative ML algorithm (FIMLA), where the computational burden is reduced by
an efficient implementation of the Newton iterative likelihood-maximization method.
An implementation in a standard tracking loop structure can be found in [Lan+11].
Apart from the already mentioned ones, a variety of other ML approaches were sug-
gested such as Saarnisaari’s method [Saa96], the use of the Levenberg–Marquardt
(LM) algorithm [Nun+07]; [Nun+08], sequential ML methods [Sah+09]; [Sok+16],
or Selva’s method [Sel04b]; [Sel04a]. The latter reduced the computational complexity
by an additional compressing of the correlator outputs. An analysis of its close-loop
behavior can be found in [Len+06]. A general weakness of iterative solvers, as the
ones mentioned above, is, that the convergence to the global optimum cannot be guar-
anteed. Measures were taken to reduce this risk, for example by running the solver
multiple times with different initial values at the cost of additional computational
load [Nun+08]. To eliminate convergence problems entirely, a closed-form solution is
needed, as it has been achieved with the grid search approach from [Bla+12], where
interpolation was used to subsequently increase resolution.

All the above mentioned approaches for multipath estimation are non-sequential
solutions. They solve the channel model for each time step individually. As a result,
the temporal correlation that radio propagation channels typically show is disre-
garded. Sequential estimators, on the other hand, exploit this temporal component
in order to track individual multipaths over time. Examples are solutions based on
the recursive Bayesian estimation, typically relying on particle filtering with Rao-
Blackwellization to keep the complexity within limits [Len+08]; [Clo+09]; [Kra+10].
Also among the sequential estimators belongs the Turbo delay locked loop (DLL)
[Dov+04] with its further development, the coupled amplitude delay locked loop
(CADLL) [Che+11]; [Che+13]. Based on the same fundamental idea of a structured
channel model, the individual signal paths are separated via several consecutive track-
ing units, where each unit tracks one signal path and subtracts it from the received
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signal for the following units in the sense of an inference calculation. In order to avoid
stability problems, one needs to ensure that not more tracking units are used than
available signal paths exist.

This brings us to a common drawback of the solutions based on a structured
channel model. The unknown number of currently present number of multipaths need
to be estimated. This can be done with model order estimation techniques [Wax+85].
These are computational costly methods that typically rely on the Akaike information
criterium (AIC) [Aka74] or the minimum descriptive length (MDL) criterion [Ris78].
For the MEDLL it has been proposed to increase the number of signal paths until
the optimization problem is sufficiently well solved or to rely on a static number
of multipaths for simplicity. Other approaches have developed their own likelihood
ratio test [Sok+16]. Approaches based on particle filtering allow to estimate the
number of paths as a hidden channel state variable [Len+08]; [Kra+10]. The CADLL
implements the path estimation by monitoring the state of the individual tracking
units in order to shut down or add one if needed. The accurate estimation of the
number of signal paths is crucial. As already mentioned by [Mor+21, Chapter 22], an
incorrect estimate results inevitable in model errors. At the same time, with a correct
estimate, the model gain can be fully exploited. Correspondingly, with a structured
channel model one operates on a fine line between model gain and model errors. Apart
from these potential model mismatches, such a structured channel model also means
that the computational load of the algorithms depends on the number of signal paths
considered. The more multipaths need to be resolved, the more unknowns need to be
estimated. In practice, one is limited to a handful of paths in order to remain feasible
for a real-time implementation. Moreover, observability concerns arise for approaches
relying on structured channel models. Individual signal paths become increasingly
correlated with decreasing differences in signal delays and Dopplers. As a result, the
estimates of the parameters of closely spaced signal paths are increasingly subject to
noise to the point where the estimator can no longer provide reliable estimates. This
is also known as the problem of noise amplification.

These problems can be resolved with an unstructured channel model. Instead of
resolving individual signal paths, the multipath signal contribution is described as a
statistical distribution. Therewith, a model order estimation is no longer required and
the estimation problem comes down to determining the LOS delay and the parame-
ters of the multipath distribution, independent of the actual number of multipaths.
This also avoids the aforementioned observability concerns for closely spaced signals
paths. Already [Sto+90] proposed the use of a random model instead of a determin-
istic description, though in the context of DOA estimation. The first mentioning in
the field of time of arrival (TOA) estimation has been made by [Sou+02] without
further pursuing it. In [Rib+07] and [Bia+12] such unstructured multipath mod-
els have been applied to mobile radio channels and ultra-wideband (UWB) signals,
respectively. [Wen+15] proposed a simple rank-one model for a dual-polarization
setup. A more general approach can be found in [Enn+17], where a wide-sense sta-
tionary uncorrelated scattering (WSSUS) model has been used. Such a multipath
distribution estimation even allows for a backtracking of the LOS delay when it is
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obscured. Naturally, the choice of the underlying multipath distribution is crucial.
An inappropriate distribution will again lead to model errors, which can result in a
poor performance. Yet, a certain degree of model robustness has been demonstrated
in [Enn+17].

1.3 Research Questions

The previous section gave a broad overview of existing solutions for multipath prop-
agation in GNSSs. A total of four main classes of approaches were identified. The
focus was brought to the class of stand-alone signal processing techniques, that, in
contrast to the remaining ones, does not require prior information about the operation
environment, specialized antennas, or additional sensors to operate. It thus allows
for a more universal application. Despite the large number of approaches existing in
this field, certain gaps still remain.

In the category of parameter estimation techniques, existing solutions largely rely
on a structured channel model that describes the received signal as a superposition of
multiple delayed, attenuated, and phase-shifted signal replicas. The major drawback
of this channel model is that it requires a model order estimation. This is not only
a computationally intensive process, but can also lead to model errors if the number
of paths is estimated incorrectly. In addition to that, observability limitations for
closely spaced signal paths exist. The use of an unstructured channel model has been
proposed, resolving these issues. It no longer relies on the knowledge of the number
of individual signal paths and instead describes the multipath propagation statisti-
cally. This introduces the new model assumption that multipaths occur according
to a certain statistical distribution, again posing a risk for model errors. In gen-
eral it can be said that the more assumption are made about the radio propagation
channel, the higher is the potential model gain. On the other hand, a more specific
model increases the risk for model mismatches as no longer all scenarios might satisfy
the assumptions made. A solution suitable for a general application must therefore
make minimal assumptions about the radio propagation channel. In the category of
multipath mitigation techniques, well-working solutions have been found that indeed
introduce minimal assumptions, an example in this context is the HRC. However,
their major drawback depict the inferior noise performance [McG+99]; [Pra04]. As
the noise performance is a crucial parameter in basically all applications, the following
first research question can be formulated:

1) How can a multipath mitigation solution be designed to make minimal
assumptions about the radio propagation channel and remain competitive
in terms of its noise performance?

Besides the model fidelity and noise concerns described above, complexity is an-
other important factor. This is in particular crucial for the estimation techniques
based on structured channel models. They require not only model order estima-
tions, but also the multipath estimators themselves can be computational demanding.
Moreover, the more signal paths are considered, the higher is the total computational
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burden. Therewith, one is limited in practice to a handful of paths in order to remain
feasible for a real-time implementation. The use of unstructured channel models
resolved that as the estimation problem is brought down to the parameters of the
multipath distribution, independent of the number of multipaths. An increased com-
plexity is not only a drawback regarding a cost-effective implementation, it also tends
to increase the burden for a certification for safety of life applications. Proving the in-
tegrity requirements can be very challenging for such advanced estimators, especially
for the mentioned sequential estimators relying on particle filtering. This brings up
the question, whether a solution based on a signal model with minimal assumptions
remains competitive with respect to complexity concerns:

2) Can the complexity of such a general multipath mitigation technique
be determined and what are the performance tradeoffs when it is brought
to a reasonable level?

Having found such a general multipath mitigation technique of low complexity, it
is of interest, whether its performance can be further improved by integrating it into
existing advanced processing architectures, such as VT. They are known to improve
not only the overall performance due to the joint processing of all satellites, but in
particular also for the reliable handling of frequently blocked satellites. This brings
up the question, to which extent a general multipath mitigation technique can benefit
from such an architecture:

3) To what extent can the multipath mitigation performance of such an
approach be improved with the joint processing of signals of multiple satel-
lites?

The motivation in Section 1.1 has drawn attention to ionospheric effects as a
second important error contributor, besides multipath propagation. While a multi-
frequency receiver is theoretically able to largely eliminate ionospheric delays, this
improvement comes along with the price of a substantially increased impact of mul-
tipath errors. This brings up the following research question:

4) To what extent can such an approach be extended to ionospheric delay
estimation in multipath environments keeping impact of multipath errors
low?

So far, the focus has been mainly on techniques from the stand-alone signal pro-
cessing class. However, approaches from the remaining classes, see Figure 1.1, offer
entirely new possibilities in terms of multipath suppression performance. This is due
to the fact that additional sensors, environmental information, or antenna character-
istics provide an inherent advantage over the stand-alone signal processing techniques.
The use of multi-antenna systems is particularly noteworthy in this context. They
enable the exploitation of the spatial domain, in contrast to a single antenna receiver,
that is limited to the time and frequency domain. This raises the question, to which
extent the multipath robustness of the general multipath mitigation technique can be
enhanced under consideration of the spatial component:
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5) Is it possible to further improve multipath robustness of this general
approach with the help of multi antenna systems?

1.4 Outline

In order to answer the above defined research questions and to fill the identified
gap, the thesis is structured as follows. Subsequent to this introduction, Chapter
2 derives the signal model and the proposed multipath mitigation algorithm. The
signal model is defined in such a way that minimal assumptions were made about
the radio propagation channel in order to address the first part of the first research
question. Correspondingly, the proposed algorithm does not need to perform model
order estimations as with structured channel models, nor are assumptions made over
the multipath distribution as with unstructured channel models. Only the simple
condition, that the LOS signal is the strongest signal path, had to be introduced. The
required number of elementary arithmetic operations for this algorithm was derived
as a complexity metric. This allows for a complexity comparison later on, addressing
the second research question.

In Chapter 3, this multipath mitigation algorithm is analyzed extensively with
synthetic GNSS signals. Thereby, the multipath robustness, its dynamic response,
and the noise performance were demonstrated. The latter answers the second part
of the first research question. In addition to that, performance tradeoffs are ana-
lyzed when reducing the overall complexity of the proposed approach, fulfilling the
second research question. In order to set the obtained performance into perspective,
comparisons are drawn to other multipath mitigation and estimation techniques.

The assumption made that the LOS signal is the strongest signal path is also
common in conventional code tracking algorithms relying for example on the early
minus late (EML) discriminator. However, especially in dense urban environments,
this is not always fulfilled. The direct LOS path might be obstructed due to build-
ings or other objects. VT architectures with their joint processing of all satellites are
known to be more resilient against such LOS blockages. The integration of the pro-
posed multipath mitigation algorithm into VT processing architectures is therefore
investigated in Chapter 4, addressing the third research question.

Chapter 5 examines the extension of the developed multipath mitigation algo-
rithm to multiple frequencies. This has been done to allow for an ionospheric delay
estimation instead of relying on models for that, targeting the fourth research ques-
tion.

In Chapter 6, the proposed algorithm is then verified and analyzed with authentic
GNSS signals from a GNSS signal generator as well as actual measurement data.
This demonstrates its capabilities in different real-world environments. On top of
that, the proposed integration into VT structures as well as the extension to multiple
frequencies for the ionospheric delay estimation were also demonstrated.

Last but not least, the proposed solution is extended to the use of antenna array
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systems in Chapter 7. The increased multipath robustness achieved is compared to
existing beamforming techniques.

The conclusion of this thesis is given in Chapter 8.
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2 Multi-Correlator-Based Multipath Mitigation

In this chapter a novel multi-correlator-based multipath mitigation is introduced. The
multipath mitigation aims to reduce multipath errors in the code tracking of global
navigation satellite system (GNSS) receivers. Therefore, a signal model is first of all
derived below followed by a general Kalman filter (KF) description in Section 2.2.
Subsequently, the proposed joint estimator is developed in Section 2.3.

2.1 Signal Model

A multi-frequency multi-signal GNSS signal model is derived in the following. The
signal model originates from [Sie+23a] which in turn depicts an extension to [Ili+17]
and [Ilt90]. Figure 2.1 schematically illustrates the signal processing chain from the
signal generation in the satellite to the sampled baseband signal at the receiver. This
representation depicts only a simplification with aspects, such as Doppler effects,
missing. All elements in this chain are assumed to be ideal. Moreover, components
that are not strictly necessary for the signal model derivation have been omitted, e.g.,
transmit and receive antennas and amplifiers. It is assumed that a GNSS satellite
operates on Nband frequency bands, with Nsig,j different signals being broadcast in
the j-th band. The i-th navigation data stream in the j-th band dj,i(t) is spread in
frequency before transmission by a pseudorandom noise (PRN) sequence

s̄j,i(t) ≡ s̄j,i(t− pTcode,j,i) , ∀p ∈ Z , j = 1, . . . , Nband , i = 1, . . . , Nsig,j (2.1)

where Tcode,j,i is the i-th code period in the j-th band. Each PRN code consists of
individual chips with duration Tc,j . As all currently deployed civil GNSSs rely on the
same chip duration within one band, Tc,j is assumed to be equal for all Nsig,j signals
of one band. Before the raw PRN code is used to spread the navigation message, it

fc,j
sj,1(t)

sj,Nsig,j (t)

radio
propagation

channel

fc,j

yj(t) C

fs,j

yj,k[n]

D

dj,Nsig,j (t)

dj,1(t)

Figure 2.1: Block diagram of signal processing chain for the j-th band. The vertical dashed
lines separate the three segments: signal generation in the satellite, radio prop-
agation, and signal down-conversion and sampling in the receiver. The last
element in the chain is a continues-to-discrete-time (C/D) converter.
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is modulated itself with the sequence mj,i(t). The legacy Global Positioning System
(GPS) L1 coarse/acquisition (C/A) code uses a binary phase-shift keying (BPSK)
for this purpose, for which the modulating sequence is simply mj,i(t) = 1, ∀t ∈ R.
Since the Galileo Open Service (OS) relies on binary offset carrier (BOC) modulation
schemes, mj,i(t) is the corresponding sub-carrier signal. In addition to that, the
individual chip sequences s̄j,i(t) undergo a chip-shaping. This is modeled with the
impulse response g(t). The resulting modulated PRN signal is referred to as sj,i(t)

with

sj,i(t) = mi(t)s̄j,i(t) ∗ g(t), (2.2)

where ∗ denotes the convolution operator. Without loss of generality, it is assumed
that the impulse response g(t) and the sub-carrier signal mj,i(t) are scaled in such a
way that the following applies for the modulated signal:∫

Tcode,j,i

sj,i(t) dt = 1. (2.3)

The modulated navigation signals are then transmitted on their carrier frequency
fc,j and correspondingly down-converted on the receiver side. The relative velocity
between satellite and user introduces a Doppler shift. It leads to a frequency shift as
well as a shortening or stretching of the received PRN signals. In order to maintain
readability, this effect is omitted in this derivation. However, Subsection 2.3.6 will
revisit this topic. The signal propagation path between satellite and user introduces
a temporal delay τ

(0)
j (t), equal for all Nsig,j in one band. This is also referred to as

the code delay. Further distortions are introduced by channel characteristics, such as
multipath, or hardware imperfections. Assuming these can be modeled by a filtering
operation, the complex received baseband signal of the j-th band can be expressed as

yj(t) =

Nsig,j∑
i=1

yj,i(t) + ηj(t), (2.4)

where

yj,i(t) =

∞∫
−∞

sj,i(t− τ − τ
(0)
j (t))dj,i(t)hj(t, τ) dτ. (2.5)

The noise is modeled as an additive zero mean complex Gaussian noise ηj(t) ∼
N
(
0, σ2

ηj

)
, as in [Teu+17, Chapter 14]. The channel characteristics are approxi-

mated by a time-varying tapped delay line channel model with

hj(t, τ) ≈
Lh,j∑

lh=−Lh,j

h
(lh)
j (t)δ(τ − T

(lh)
h,j ), (2.6)
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where δ(t) is the Dirac distribution, h(lh)
j (t) ∈ C, lh = −Lh,j , . . . , Lh,j are the complex

channel coefficients, and T
(lh)
h,j = sgn (lh)

∑|lh|
l=0 ∆

(l)
h,j , ∆

(0)
h,j = 0 are the channel tap

delays with the sign function

sgn (lh) =

{
0 for lh = 0

lh/|lh| for lh 6= 0
(2.7)

and the channel tap spacings ∆(l)
h,j(t), l > 0. Thus, a total of Ntap,j = 2Lh,j+1 channel

taps are placed, symmetrically distributed around the central tap h
(0)
j . Correspond-

ingly, the channel impulse response (CIR) spans over ±WCIR,j with WCIR,j = T
(Lh,j)

h,j .
Moreover, it is equal for all Nsig,j as all signals propagate with the same carrier fre-
quency fc,j along the same path. The channel coefficients h

(lh)
j (t) have the unit s−1.

In contrast to [Ilt90]; [Ili+17], we also allow channel coefficients with lh < 0, de-
spite the fact that GNSSs are causal systems. Before the first signal path, the CIR
may contain pre-oscillations, which can only be described accurately with an acausal
impulse response. For a better readability, we assume from now on without loss of
generality that the navigation data bits are dj,i(t) = 1, ∀t ∈ R, so that we can omit
them in the following expressions. It should be noted, however, that for the proposed
algorithm introduced later on in Section 2.3, the data bits need to be estimated, see
Subsection 2.3.4. The received baseband signal can then be expressed with

yj(t) ≈
Lh,j∑

lh=−Lh,j

h
(lh)
j (t)

Nsig,j∑
i=1

sj,i(t− T
(lh)
h,j − τ

(0)
j (t)) + η(t). (2.8)

Next, the baseband signal is brought to the discrete signal space by sampling it
at fs,j = 1/Ts,j ≥ 2Bj , with Bj being the one-sided bandwidth of yj(t), fulfilling
the Nyquist-Shannon sampling theorem. Therefore, we make the approximation of
blockwise constant channel coefficients h

(lh)
j,k = h

(lh)
j (kTint) and code delay τ

(0)
j,k =

τ
(0)
j (kTint) with k = bt/Tintc and the integration time Tint. Doing so assumes that

the channel coherence time is larger than Tint, which is a valid assumption for most
applications. Moreover, without loss of generality, we limit Tint to common multiples
of all Tcode,j,i. Therewith, the periodicity of all sj,i(t) is preserved over the integration
time Tint, enabling a simpler mathematical notation in the following. This leads
then, under consideration of the just mentioned periodicity, to the following sampled
received baseband signal

yj,k[n] = y((kNj + n)Ts,j) + η((kNj + n)Ts,j) , k = 0, 1, . . .

=

Lh,j∑
lh=−Lh,j

h
(lh)
j,k

Nsig,j∑
i=1

sj,i(nTs,j − T
(lh)
h,j − τ

(0)
j,k ) + ηj((kNj + n)Ts,j) (2.9)

with Nj = Tint/Ts,j ∈ Z+. Without loss of generality, the sampling frequency fs,j is
assumed to be chosen such that Nj is an integer. The sample index n is restricted to
n = 0, . . . , Nj − 1. With the unrestricted time step index k = 1, 2, . . . , however, the
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sampled signal representation in Equation (2.9) still covers the entire time domain.
Each time step k, Nj samples are stacked to a column vector before further processing.
The signal in matrix notation is then given by

yj,k = [yj,k[0], . . . , yj,k[Nj − 1]]T ∈ CNj×1

=

Lh,j∑
lh=−Lh,j

h
(lh)
j,k sj(τ (0)

j,k + T
(lh)
h,j ) + ηj,k (2.10)

with [•]T denoting the transpose of a matrix or vector. The noise vector and the vector
of PRN signals are defined as follows:

ηj,k = [ηj,k(kTint), ηj,k(Ts,j + kTint), . . . , ηj,k((Nj − 1)Ts,j + kTint)]
T , (2.11)

sj(τ (0)
j,k ) =

Nsig,j∑
i=1

sj,i(τ (0)
j,k ) ∈ CNj×1, (2.12)

sj,i(τ (0)
j,k ) =

[
sj,i(−τ

(0)
j,k ), sj,i(Ts,j − τ

(0)
j,k ), . . . , sj,i((Nj − 1)Ts,j − τ

(0)
j,k )
]T

. (2.13)

In GNSS receivers designed to simultaneously operate on multiple signals on the same
carrier, the phase locked loop (PLL) can hold only one signal in phase. As not all
signal components are necessarily in-phase, other signals may be left in quadrature
in this process. To account for this in the signal model, the PRN signals sj,i(t) were
defined as complex. Therewith, the received baseband signal is fully described.

2.2 Kalman Filtering Algorithm

In the following, a general description of a KF can be found on which the algorithm
proposed in the next Section 2.3 is based on. Since the considered measurement
models in this work are nonlinear, but the process models are linear, a combination of
the linear KF and the nonlinear extended Kalman filter (EKF) [Bar+01, Chapter 10]
is used. First of all, the state vector xk ∈ RNst×1 with Nst states needs to be defined.
This vector holds the parameters to be estimated and evolves over time according to
the linear process model [Bar+01, Chapter 5]

xk+1 = Axk + vk, (2.14)

with the process matrix A ∈ RNst×1 and the process noise vk ∼ N (0Nst ,Q), where
0q ∈ Rq×1 denotes a column vector of zeros. The filter processes each time step k the
measurement vector zk ∈ RNmeas×1 which is related to the state vector through the
measurement model with

zk = f(xk) + uk, (2.15)

where uk ∼ N (0Nmeas ,R) is the measurement noise with the covariance matrix R.
With the process and measurement model defined, the EKF estimates the state vector
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xk based on the measurements z0, . . . , zk in the minimum mean square error (MMSE)
sense [Bar+01, Chapter 10]. This is done in two steps. First, the state vector of the
next time step k is predicted. Then, when the new measurement zk becomes available,
the state prediction is updated. The two steps are explained in the following.

2.2.1 Prediction Step

In the prediction step, the state vector of the upcoming time step k is predicted
based on the previous state estimate x̂k−1|k−1 and the process model A. As we have
a linear process model, one can use the standard KF equations for that with [Bar+01,
Chapter 5]

x̂k|k−1 = Ax̂k−1|k−1 (2.16)

Pk|k−1 = APk−1|k−1AT + Q, (2.17)

where P is the covariance matrix of the estimated state vector x̂. The indexing
notation k|k−1 indicates that the estimate at time step k is based on all measurements
up to and including k − 1. The prediction of the measurements are simply

ẑk|k−1 = f(x̂k|k−1). (2.18)

As the KF is a recursive estimator, an initial state estimate x̂−1|−1 with an initial
state covariance P−1|−1 must be provided.

2.2.2 Update Step

Once the next measurement becomes available, the update step can be performed.
It corrects the predicted state estimate x̂k|k−1 with the new measurement vector zk.
With the nonlinear measurement model from Equation (2.15), we need the full EKF
equations with [Bar+01, Chapter 10]

Innovation covariance Sk = Jf,kPk|k−1JT
f,k + Rk (2.19)

Kalman gain Kk = Pk|k−1JT
f,kS−1

k (2.20)
State correction x̃k|k = Kk(zk − ẑk|k−1) (2.21)
Updated state estimate x̂k|k = x̂k|k−1 + x̃k|k (2.22)
Updated state covariance Pk|k = (INst − KkJf,k)Pk|k−1, (2.23)

where Iq ∈ Rq×q, q ∈ N denotes an identity matrix. The measurement model has
been linearized at the current state estimate x̂k|k−1 with the Jacobian matrix [Bar+01,
Chapter 10]

Jf,k =
df(xk)

dxk

∣∣∣∣
xk=x̂k|k−1

. (2.24)
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2.3 Multipath Mitigating Extended Kalman Filter

Based on the signal model derived in Section 2.1, a joint estimator is developed in
the following. Its purpose is to replace the conventional delay locked loop (DLL)
for the code tracking in a GNSS receiver with the advantage of an improved multi-
path suppression. This approach has been initially proposed by [Ilt90] and was later
on taken up again by [Ili+17]; [Ili+18]. [Sie+21b]; [Sie+21c]; [Sie+21a]; [Sie+22b];
[Sie+23a]; [Sie+24] further pursued the development of this algorithm and conducted
extensive testing in different multipath environments. The algorithm is referred to as
the multipath mitigating EKF (MMEKF) in this work. We begin by introducing the
required correlator bank, followed by the actual algorithm description in Subsection
2.3.2.

2.3.1 Correlator Bank

The number of samples Nj in yj,k that accumulate at each time step k represents a
challenge for further processing. Therefore, an efficient representation of the received
signal is needed without loss of information. We use banks of signal-matched corre-
lators that project the observed signal onto a much smaller space, so that subsequent
computations are significantly simplified. Each correlator bank for each of the Nsig,j

superimposed signals per satellite band is defined as

Cj,i

(
τ̂
(0)
j,k

)
=



sT
j,i(τ̂

(0)
j,k − T

(Lc,j)
c,j )

...
sT
j,i(τ̂

(0)
j,k − T

(1)
c,j )

sT
j,i(τ̂

(0)
j,k − T

(0)
c,j )

...
sT
j,i(τ̂

(0) − T
(−Lc,j)
c,j )



T

∈ CNj×Ncorr,j (2.25)

with the correlator positions T
(lc)
c,j = sgn (lc)

∑|lc|
l=0 ∆

(l)
c,j , lc = −Lc,j , . . . , Lc,j , ∆

(0)
c,j =

0. In total, Ncorr,j = 2Lc,j + 1 signal-matched correlators are placed symmetri-
cally and equidistantly within ±Wbank,j around the prompt with Wbank,j = T

(Lc,j)
c,j .

The hat notation indicates here and in the following the estimate of a parameter.
The Nyquist condition determines the maximal correlator spacing in the bank with
max1≤l≤Lc,j ∆

(l)
c,j ≤ 1/(2Bj). Going below this threshold, i.e., conducting an over-

sampling, is not associated with an information gain as the correlator outputs become
increasingly correlated. The correlation with the received signal results then in

z̃j,i,k = CH
j,i

(
τ̂
(0)
j,k

)
yj,k ∈ CNcorr,j×1

=

Lh,j∑
lh=−Lh,j

h
(lh)
j,k CH

j,i

(
τ̂
(0)
j,k

)
sj,i(τ (0)

j,k + T
(lh)
h,j ) + η̃k,Cj,i . (2.26)
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The conjugate transpose of a matrix is denoted by [•]H. Since the different PRN
codes are largely orthogonal to each other, cross-correlation components have been
neglected. The correlation colored the originally white noise ηj,k and led to η̃k,Cj,i ∈
CNcorr,j×1 with covariance matrix [Mis+06, Chapter 10]

Rη̃Cj,i
= σ2

ηj


Φsj,isj,i(0) · · · Φsj,isj,i(2T

(Lc,j)
c,j )

...
. . .

...
Φsj,isj,i(2T

(Lc,j)
c,j ) · · · Φsj,isj,i(0)

 ∈ RNcorr,j×Ncorr,j , (2.27)

where

Φsj,isj,i(τ) =

∫
Tint

sj,i
∗(t)sj,i(t+ τ)dt (2.28)

is the autocorrelation function of the i-th PRN code. The asterisk indicates the
complex conjugate. Now that the correlation step is fully defined, the actual algorithm
can be described.

2.3.2 Joint Estimation of Code Delay and Channel Impulse Response

Based on the signal model derived above, an EKF is developed in the following in
order to jointly estimate the code delay τ

(0)
k as well as the channel coefficients h

(lh)
k .

The consideration of the CIR aims to provide a higher resilience against multipath
propagation. Although, the signal model and correlator bank from above are defined
in the most general case, including multiple frequencies, the derived EKF in the fol-
lowing operates only on a single frequency. For the multi-frequency case, see Chapter
5. Correspondingly, the band index j has been omitted to improve the readability. A
general description of an EKF has been provided already in Section 2.2. We define
the state vector as

xk =
[
τ
(0)
k , τ̇

(0)
k ,Re

(
h̃T
k

)
, Im

(
h̃T
k

)]T
∈ RNst×1 (2.29)

with

h̃k =
[
h
(−Lh)
k , . . . , h

(Lh)
k

]T
∈ CNtap×1, (2.30)

holding the Nst = 4(Lh + 1) unknown parameters. The operators Re (•) and Im (•)

take the real and imaginary part of a complex number, respectively. In contrast
to earlier publications like [Ilt90]; [Ili+17], the state vector has been augmented by
the code Doppler τ̇

(0)
k as in [Sie+21a]. This enables the operation of the proposed

EKF without carrier-aiding – if desired. Moreover, the complex channel coefficients
h
(lh)
k were split up into real and imaginary part to keep the state vector real-valued,

as initially proposed by [Sie+21b]. This is required to prevent complex values for
the real-valued parameters code delay τ

(0)
k and Doppler τ̇

(0)
k . In order to ensure the

observability of the model, the channel tap spacing must equal the correlator spacing,
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thus ∆
(l)
h = ∆

(l)
c , ∀l ∈ N, and the CIR width must not exceed the correlator bank

width with WCIR ≤ Wbank. We set WCIR = Wbank to not artificially limit the degrees
of freedom of the KF. It follows that Ntap = Ncorr. For the process model, see
Equation (2.14), we set the process matrix to [Bar+01, Chapter 6]

A = diag
([

1 Tint

0 1

]
, INst−2

)
∈ RNst×Nst . (2.31)

The process model predicts the code delay and Doppler according to a first order
model. Furthermore, we assume that the channel coefficients follow, independent of
that, a random walk model. Accordingly, the process noise covariance matrix is given
by [Bar+01, Chapter 6]

Q = diag
(
σ2

Q,τ̈

[
T 4

int/4 T 3
int/2

T 3
int/2 T 2

int

]
, σ2

Q,hINst−2

)
∈ RNst×Nst . (2.32)

The interdependence of CIR and code delay presents an ambiguity for the EKF. A
too small code delay can be compensated by a CIR where the line-of-sight (LOS)
path is represented in a later channel tap and vice versa.

Therefore, an additional optimization criterion is required to resolve this ambi-
guity. Since the LOS path is usually the strongest signal path [Ste+04], this is an
obvious tracking criterion. Combining the estimation of the impulse response based
on the correlator outputs with the condition that the LOS path is the strongest sig-
nal path yields an unambiguous optimization problem. In order to implement this
second condition criteria, we developed a constraining measurement for the EKF, as
first proposed by the author in [Sie+21b]. The constraining measurement is defined
as

zk,constr =

1
Ntap−1

∑Lh
lh=−Lh,lh 6=0

∣∣∣h(lh)
k

∣∣∣2∣∣∣h(0)
k

∣∣∣2 . (2.33)

The constraining measurement is measured as zk,constr = 0, ∀k and provided to the
MMEKF alongside the correlator outputs as a conventional measurement with the
measurement noise variance σ2

constr. For the measurement prediction, the constraining
measurement is simply composed of the latest state estimates, as for any other mea-
surement. Setting zk,constr = 0, ∀k imposes the maximization of the signal power at
the central channel tap h

(0)
k while minimizing the remaining non-line-of-sight (NLOS)

taps. The constraining measurement introduces therewith the additional optimiza-
tion criteria that the LOS is the strongest signal path and inevitably forces, if σ2

constr
is set to a sufficiently small value, the joint estimator to shift the local replicas un-
til the maximal signal power is obtained in the central channel tap h

(0)
k . Using the

absolute value for the maximization, instead of taking, for example, only the real
part where one would ideally find the LOS signal power, has the advantage that the
carrier tracking does not necessarily need to be in lock. Especially in challenging
multipath environments, the carrier tracking, typically implemented with a PLL, can
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temporarily loose lock with the LOS signal, leading to cycle slips. Carrier phase errors
reflect as an overall phase offset in the estimated CIR taps h

(l)
k with an accordingly

increasing imaginary part of h(0)
k . With the constraint considering only the absolute

values of the channel taps, phase offsets have no effect. Moreover, sudden carrier
phase changes, as they appear with cycle slips, induce a transient process in which
the EKF adjusts its CIR estimate, which might also affect channel tap amplitudes.
However, this does not have a lasting effect on the code delay estimate. With the
measurement variance σ2

constr one determines the tightness of the constraint. The
choice of σ2

constr is a tradeoff between distorting the CIR estimate in favor of the
LOS amplitude and, with a too loose constraint, letting the LOS drift off the central
channel tap h

(0)
k , potentially causing the EKF to diverge. The measurement model

of the EKF, see Equation (2.15), consists of the just now introduced constraining
measurement as well as the post-correlation signal model from Equation (2.26) and
can then be summarized as

zk =
[
zT
1,k, . . . , zT

Nsig,k, zk,constr

]T
= f(xk) ∈ RNmeas×1 (2.34)

with

zi,k =
[
Re
(
z̃T
i,k

)
, Im

(
z̃T
i,k

)]T ∈ R2Ncorr×1, (2.35)

where Nmeas = 2NcorrNsig+1. Similar to the state vector, the complex measurements
were also decomposed into their real and imaginary part. This is a necessary measure
to keep the whole EKF and with that the state vector xk real-valued. The signal
model takes the radio propagation channel into account with the help of a CIR. Since
in general WCIR � Tcode,i/2 applies, this is only an approximation and multipaths
with delays > WCIR are not considered, see Equation (2.8). In particular the outer
correlators point out this shortcoming of the signal model as they pick up the corre-
lation triangles of multipaths with delays Wbank < τ < Wbank +Tc that still partially
extend into the correlator bank, where Tc is the PRN code chip duration. The ob-
tained correlation result cannot be accurately reproduced with the signal model. This
modeling mismatch effectively reflects as an increased observed measurement noise
level of affected correlators. In order to account for that, the measurement noise
covariance matrix of the correlator outputs from Equation (2.27) need to be scaled.
While the measurement variance of the central correlator can remain untouched, the
variances of outer correlators need to increase with increasing distance to the central
correlator. In [Sie+23a], a scaling function has therefore been proposed with

Rwη̃Ci
= wTw ◦ Rη̃Ci

. (2.36)

The notation ◦ depicts the Hadamard product. The weighting function w is defined
as a diagonal matrix

w = diag
(
f−1

T (T (−Lc)
c ), . . . , f−1

T (T (0)
c ), . . . , f−1

T (T (Lc)
c )

)
∈ RNcorr×Ncorr , (2.37)
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which relies on the shape of the well-established Tukey window [Pra14, Chapter 3]

fT(τ) =


1, |τ | < (1− α)WT,
1
2
+ 1

2
cos
(

π
α

(
|τ |
WT

+ α− 1
))

, (1− α)WT ≤ |τ | ≤ WT,

0, |τ | > WT.

(2.38)

We set WT = Wbank + ∆
(1)
c to ensure that fT(τ) 6= 0, ∀τ ∈

[
T

(−Lc)
c , T

(Lc)
c

]
. The

weighting function w relies on a window function, as it allows for the required scaling,
i.e., an increased scaling with increasing distance to the central correlator. The Tukey
window is particularly suitable, as it conveniently allows with its tuning parameter
0 ≤ α ≤ 1 to choose between no scaling, i.e., α = 0, and a Hann window shaped
one with α = 1. The entire measurement noise covariance matrix of the EKF is then
given by the following block diagonal matrix

R = diag
(

RwηC1
, . . . ,RwηCNsig

, σ2
constr

)
∈ RNmeas×Nmeas , (2.39)

where

RwηCi
= diag

(
Rwη̃Ci

/2,Rwη̃Ci
/2
)
∈ R2Ncorr×2Ncorr . (2.40)

Having the process and measurement model fully defined, the EKF can be applied
by providing an initial state estimate x̂−1|−1 and an initial state covariance matrix

P−1|−1 = diag
(
σ2

P,τ , σ
2
P,τ̇ , σ

2
P,hINst−2

)
∈ RNst×Nst (2.41)

to iteratively estimate the state vector, as explain in Subsection 2.2.1 and Subsection
2.2.2. For the initial code delay estimate τ̂

(0)

−1|−1 it is crucial, that it approximately
matches the actual LOS delay. Since the constraining measurement expects the LOS
on the central channel tap, convergence cannot be guaranteed if an initial code delay
estimation would be off by multiple channel tap spacings. The Jacobian matrix from
Equation (2.24) for the measurement model from Equation (2.34) results in

Jf,k =
df(xk)

dxk

∣∣∣∣
xk=x̂k|k−1

=
[
∂f(xk)
∂τ

(0)
k

∂f(xk)
∂τ̇

(0)
k

∂f(xk)
∂Re

(
h̃k

) ∂f(xk)
∂Im

(
h̃k

)]∣∣∣
xk=x̂k|k−1

∈ RNmeas×Nst . (2.42)

The individual partial derivatives can be found in Appendix A. With the assumption
that the code delay estimate τ̂

(0)
k is close to the actual code delay τ

(0)
k , the following
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approximation to the measurement model from Equation (2.34) can be made

z̃i,k =

Lh∑
lh=−Lh

h
(lh)
k CH

i (0)si(τ
(0)
k − τ̂

(0)
k + T

(lh)
h ) + η̃k,Ci

≈
Lh∑

lh=−Lh

h
(lh)
k CH

i (0)si(T
(lh)
h ) + ηk,Ci

=

Lh∑
lh=−Lh

h
(lh)
k


Φsisi(T

(lh)
h + T

(Lc)
c )

...
Φsisi(T

(lh)
h + T

(−Lc)
c )

+ η̃k,Ci . (2.43)

The first transformation is possible due to the circularity of the PRN signals si and
with that, the correlator bank Ci. Afterwards, we have approximated τ

(0)
k and τ̂

(0)
k

to be equal. The resulting vector of autocorrelation functions in the final expression
is time-invariant and thus, can be precomputed in an initialization phase, reducing
load during runtime.

Therewith, the proposed MMEKF in its basic form has been described. With the
underlying signal model from Section 2.1, minimal assumptions were made regarding
the radio propagation channel. It is only assumed, that the LOS is the strongest
signal path, which is a valid assumption in most applications. This general approach
has the advantage, that no computational demanding model order estimations are
required to determine the currently present number of signal paths, as it is the case
with structured channel models, as, e.g., the multipath estimating delay locked loop
(MEDLL) [vNee92b]. This fulfills the first part of the first research question stated in
Section 1.3. The second part of this questions regarding its noise performance will be
addressed in the next chapter under Section 3.4. Before that, the complexity of this
algorithm will be derived in the following, targeting the second formulated research
question.

2.3.3 Analysis of Computational Complexity

Computational complexity is an important factor in basically all applications. Ac-
cordingly, the second research question, formulated in Section 1.3, specifically targets
this aspect, which will be addressed in the following. Compared to a conventional
DLL-based GNSS receiver with a simple early minus late (EML) discriminator, the
MMEKF requires the use of correlator banks and a joint estimator such as an EKF
to achieve its multipath mitigation. The additional load due to a higher number of
correlators is easily determined. It simply scales linearly with the number of cor-
relators. On the other hand, the added complexity introduced by the EKF is less
straightforward to assess and is therefore considered separately in the following. In
order to quantify the additional computational effort, we rely on the required number
of elementary arithmetic operations as a complexity metric. The otherwise frequently
used Big O notation would be inappropriate in this context as the dimension of the
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problem scales with the number of correlators and is therefore always comparable
small. For the EKF derived above, the number of operations required for each step
are listed in Table 2.1. It shall be noted that the number of operations in the table are
for the case with Nsig = 1 tracked signals per satellite band. Moreover, we assumed
that the matrix inversion, required for the Kalman gain computation in Equation
(2.20), was implemented with the Gauss-Jordan elimination [Far88, Chapter 1]. Ap-
pendix D derives the required number of operations for this approach separately. A
lower number of operations can be achieved with, for example, a Cholesky decompo-
sition approach [Ben24]. The complexity assessment made here, relying on the more
complex Gauss-Jordan elimination, depicts therewith an upper bound.

It is apparent from Table 2.1, that the number of operations, and therewith the
overall complexity, is highly dependent on the number of correlator outputs Ncorr. The
more correlators are available, the more measurements Nmeas need to be processed.
In addition to that, a higher number of channel coefficients Ntap for the CIR need to
be estimated. Both leads to larger vectors and matrices for the prediction and update
step, see Subsection 2.2.1 and 2.2.2.

The complexity of the proposed MMEKF has therewith been quantified, answer-
ing the first part of the second research question. The second part of this question
targeted the performance tradeoffs made when the complexity is reduced. This has
been investigated in [Sie+23b] before, who has first mentioned the direct relationship
between the computational complexity of the MMEKF and the number of correlators.
Earlier publications, such as [Sie+21b]; [Sie+21a], have not considered complexity
concerns and simply relied on correlator banks spanning across the entire correlation
triangle, uniformly sampling the correlation function, i.e., with an equal correlator
spacing ∆

(l)
c = ∆

(l+1)
c , ∀l > 0. In [Sie+23b], different approaches to lower the num-

ber of correlators have been proposed. In [Sie+23b], different approaches to lower the
number of correlators have been proposed. They are introduced in the following. The
multipath mitigation performance tradeoffs made with these complexity reductions
are analyzed in Subsection 3.2.2 of the following Chapter 3. Moreover, Subsection
3.2.1 compares the complexity of the proposed MMEKF with other well-known ap-
proaches.

2.3.3.1 Uniform Sampling With Reduced Correlator Bank Width

The most straight forward way to lower the number of correlators is to simply reduce
the width of the correlator bank Wbank while maintaining the equal spacing between
the correlators ∆

(l)
c = ∆

(l+1)
c , ∀l > 0. This is a reasonable approach, since the

goal is to distinguish between the LOS and multipaths. The resolution of far away
multipaths is not necessarily of interest. A drawback of this approach is, that a
narrower correlator bank intensifies the approximation made in the signal model by
assuming finite CIR widths. In the following chapter, Subsection 3.2.2.1 analyses this
tradeoff with respect to the multipath mitigation performance.
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2.3.3.2 Nonuniform Sampling

Another approach to reduce the total number of correlators relies on nonuniformly
distributed correlators. The underlying idea is that one maintains a high correla-
tor density around the LOS and let the spacing increase for outer correlators. A
nonuniform correlator spacing has been parameterized by the author in [Sie+23b]
with

∆(l)
c = ∆(l+1)

c ≤ 1/(2B), l = 1, . . . , (Neq − 1)/2− 1 (2.44)

∆(l)
c = ∆(1)

c βl−(Neq−1)/2, l = (Neq − 1)/2, . . . , (Ncorr − 1)/2, (2.45)

where Neq is the number of equivalently spaced correlators around the LOS and β is
the exponential base that determines the increase of the correlator spacing towards
the outside. The nonuniform spacing results in a larger correlator bank width Wbank
without adding additional correlators, alleviating the model approximation of finite
CIRs. On the other hand, a correlator spacing exceeding 1/(2B) introduces errors
itself by violating the Nyquist condition. The tradeoffs will be analyzed in Subsection
3.2.2.2 of the next chapter.

2.3.4 Receiver Architecture

Figure 2.2 schematically illustrates the proposed multi-correlator-based multipath
mitigation algorithm integrated into a GNSS receiver architecture. It represents the
required components to track all Nsig signals of one satellite frequency band and
provide the tracking results to the position, velocity, and time (PVT) solution. The
radio frequency (RF) signal from the front end is fed into the architecture from the left
and is first of all down-converted with a mixer. The carrier replica required for this
is generated using a numerically-controlled oscillator (NCO). The baseband signal
yk, see Equation (2.10), is then passed to the correlator banks Ci from Equation
(2.25), one for each signal component of the tracked satellite. Correspondingly, Nsig

correlator output vectors z̃i,k are obtained, as defined in Equation (2.26). The data
bits are estimated and wiped-off from the correlator outputs for the code and carrier
tracking. This is possible at sufficiently high carrier-to-noise density ratios (C/N0s),
which is the case when a reasonable delay estimation can be made. The MMEKF
processes all correlator outputs. The estimated code delay and Doppler τ̂

(0)
k and ˆ̇τ

(0)
k ,

respectively, are then used to drive the correlator banks, ideally free of multipath
errors. Furthermore, τ̂ (0)

k is required for the PVT solution. The carrier phase tracking
is implemented with a PLL. It relies on all central correlator outputs, i.e., the prompts.
The individual prompts are summed up coherently for the PLL to reduce noise after
the data bits were wiped-off. In case the navigation signals are broadcast in different
phase positions, all prompts must be rotated accordingly to match the primary signal
i = 1.
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z̃Nsig,k

yk

carrier
discriminator

NCO

PVT

MMEKF

prompts

τ̂
(0)
k

RF signal

ˆ̇τ
(0)
k

C1

CNsig

z̃1,k

Figure 2.2: Proposed receiver architecture for the MMEKF.

2.3.5 Local Pseudorandom Noise Replicas

Local replicas of the PRN signals si are required for all GNSS receivers to conduct the
correlation. Our proposed MMEKF does not depict an exception. In fact, it addition-
ally uses them in its measurement model. For our implementation, we determined
the local replicas si(t) for the correlator banks and the EKF measurement model
analytically from the ground up as follows. A pulse shape with a finite spectrum has
been used to compose the PRN signal out of the superposition of adjacent sampled
pulses. Since band-limited pulses are infinite in time, it is inevitably to neglect the
contribution to neighboring pulses at some point to make an implementation feasible.
We neglected contributions after ±10Tc. The resulting residual error was insignifi-
cant. Yet, any discrepancies between the local replica and the actually received signal
would simply be absorbed by the estimated CIR.

2.3.6 Effect of Doppler

A Doppler shift is introduced to the received signal by the relative velocity between
satellite and user. This effect has not been considered by the signal model derived
in Section 2.1 and the algorithm description in Section 2.3 for a better readability.
Nevertheless, the Doppler frequencies in the received signal require an equivalent
shortening and stretching of the local replicas in the correlator banks Ci and the
measurement model of the EKF, see Equation (2.34). Since Doppler frequencies are
constantly changing over time, a precomputation of the autocorrelation functions
for the measurement prediction and the Jacobian with Equations (2.43) and (2.42),
respectively, is then no longer that straightforward. The effect of the Doppler is
in particular dominant for wideband signals and cannot be disregarded. This work,
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however, focuses on narrow band navigation signals. In addition to that, the observed
Doppler frequencies are for most GNSS applications in the range of ±10 kHz. This
corresponds to a shortening or stretching of si(t) over one code period Tcode,i of less
then Tc/100 for the GPS C/A code. The effect on the autocorrelation functions Φsisi
and the correlation results z̃i,k is negligible. We therefore chose to use exclusively
local replicas with zero Doppler and not adjust for any Doppler changes in return for
a lower computational complexity.

2.3.7 Algorithm Initialization
As the applied EKF is an iterative algorithm, initial values are required. The initial
state covariance matrix P−1|−1 has already been defined in Equation (2.41). For the
initial state vector x̂−1|−1 a LOS code delay and Doppler estimate is required. It
turned out to be a reliable solution to start the tracking with a conventional EML-
based DLL. Once it reached a stable tracking state, one switches over to the MMEKF.
The initial code delay and code Doppler estimates τ̂

(0)

−1|−1 and ˆ̇τ (0)
−1|−1, respectively,

are then set according to the latest tracking results. The initial CIR estimates are
simply set to ĥ

(0)

−1|−1 = 1 and ĥ
(l)

−1|−1 = 0, l 6= 0.
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3 Analysis of Scalar Tracking With
Multi-Correlator-Based Multipath Mitigation

This chapter investigates the proposed multipath mitigating EKF (MMEKF) from
the previous Chapter 2 with respect to its multipath mitigation capability, its dy-
namic response, and its code tracking noise performance. Comparisons are drawn to
the conventional early minus late (EML)-based delay locked loop (DLL) [Kap+06,
Chapter 5] as well as to two well-known representatives for multipath mitigation and
estimation techniques, i.e., the high-resolution correlator (HRC) [McG+99] and the
multipath estimating delay locked loop (MEDLL) [vNee92b].

3.1 Simulation Parameters

All signals considered in this chapter are generated synthetically, as explained in
Subsection 2.3.5, using the first pseudorandom noise (PRN) code of the corresponding
signal. A sampling frequency of fs = 20 MHz and a one-sided signal bandwidth of
B = 10 MHz were used. No navigation data bits were added to the signals. Moreover,
all signals have zero Doppler. Correspondingly, we were able to omit the use of a
dedicated carrier tracking for the investigations in this chapter and assumed instead
an error-free carrier tracking. This allows for an isolated examination of the code
tracking performance, independent of carrier tracking effects.

The conventional EML-based DLL uses an early-late spacing of ∆el = 0.1Tc. For
the HRC, one additionally has to define the spacing between the very early and very
late correlators which is set to 0.2Tc. The second order loop filter, that is used for the
EML- and HRC-based DLL relies on a bandwidth of 0.5 Hz. All correlator outputs
are integrated over Tint = 20 ms. In case multiple signals per band per satellite are
tracked, as it is the case with the Galileo E1 Open Service (OS), the correlator outputs
for the DLL-based code tracking are averaged to reduce noise. Table 3.1 summarizes
the general parameters.

For the MMEKF, Table 3.2 provides the state and process noise covariances.
The measurement noise standard deviation (STD) of the constraining measurement
is set depending on the number of correlators in the correlator bank according to
the values listed in Table 3.3. Those values will be derived in Subsection 3.3.1. If
not otherwise specified, the tuning parameter for the measurement noise scaling from
Equation (2.36) is set to α = 1. The measurement noise variance σ2

η is set to a value
suitable for a carrier-to-noise density ratio (C/N0) of 45 dB Hz. The correlator banks
used for the MMEKF, and also the MEDLL, rely on a uniform correlator spacing of
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Table 3.1: General simulation parameters.

Parameter Value

Sampling frequency fs 20 MHz
One-sided bandwidth B 10 MHz
Correlator integration time Tint 20 ms
Early-late spacing 0.1Tc
Very early-very late spacing 0.2Tc
Code loop filter order 2
Code loop filter bandwidth 0.5 Hz
Correlator spacing ∆

(lc)
c 0.05Tc

∆
(l)
c = ∆

(l+1)
c = 0.05Tc, ∀l > 0, unless otherwise specified. The initial line-of-sight

(LOS) code delay and Doppler estimates τ̂
(0)
−1 and ˆ̇τ

(0)
−1 , respectively, are set to the

ground truth values. The channel coefficients h
(lh)
−1 for the initial channel impulse

response (CIR) estimate of the MMEKF are set to h
(lh)
−1 = 0, lh 6= 0 and h

(0)
−1 = 1.

3.2 Multipath Error Envelopes

A common metric to compare different code tracking algorithms with respect to
their multipath robustness is the multipath error envelope [Bra01]. It visualizes the
tracking errors in a two path multipath environment, i.e., an environment where
the LOS is superimposed with an additional delayed, attenuated, and phase shifted
replica. The access delay of the multipath signal with respect to the LOS is referred
to as the multipath delay τmul defined in seconds. The tracking error τ

(0)
err is the

difference between the actual LOS code delay τ (0) and the estimated one τ̂ (0) with

τ (0)
err = τ̂ (0) − τ (0). (3.1)

For the envelopes in the following, a sweeping multipath has been simulated with its
access delay stepwise increased from 0 up to 650 m. Its LOS to multipath power ratio
is set to 3 dB. The envelopes show the range of code tracking errors that are obtained
for a specific multipath delay during a full multipath phase cycle. Each delay and
phase combination was maintained until a steady tracking state was reached.

For the MMEKF the correlator bank width was set to Wbank = Tc, which results

Table 3.2: State and process noise variances of MMEKF.

Initial state covariance P−1|−1 Process covariance matrix Q

Code delay τ
σP,τ = 0.01Tc σQ,τ̈ = 0.02Tc/s2
σP,τ̇ = 0.01Tc/s

CIR h σP,h = 0.05/s σQ,h = 10−3.3/s
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Table 3.3: Measurement noise STD of constraining measurement.

Ncorr σconstr Ncorr σconstr

3 10−2.63 13 10−4.63

5 10−3.44 17 10−4.85

7 10−4 25 10−5.2

9 10−4.28 33 10−5.37

11 10−4.49 41 10−5.88

with the correlator spacing of ∆(l)
c = 0.05Tc, ∀l > 0 in a total of Ncorr = 41 correla-

tors. The goal of this large correlator bank is to determine the best possible multipath
mitigation performance of the MMEKF. Moreover, the large correlator bank allows to
determine the CIR for an equally large range of delays, which facilitates the analysis
of different estimation characteristics of the MMEKF. Results with smaller correlator
banks can be found in Subsection 3.2.2. The multipath error envelopes with the full
Ncorr = 41 correlators can be found in Figure 3.1a and 3.1b for the Global Positioning
System (GPS) coarse/acquisition (C/A) code and for the Galileo E1 OS B ranging
code with a simplified BOC(1,1) modulation, respectively. The multipath error en-
velope of an EML discriminator is well known and have been analyzed for different
signals before, see for example [Irs+04]. Regarding the results of the MMEKF, a su-
perposition of in total three different phenomena led to the obtained multipath error
envelope shapes. They are discussed in detail in the following.

First of all, the multipath error increases with increasing multipath delay up to
errors of 5.4 m, as expected and similar to the EML discriminator. For delays between
5 and 15 m, depending on the phase offset between LOS and multipath, the algorithm
begins to differentiate between the two signal replicas. Correspondingly, the error
starts to decrease and reaches zero again for multipath delays of approximately 24 m.
Afterwards, an oscillating error can be observed. This fluctuation origins from the
shape of the estimated CIR, see Figure 3.2. As soon as a multipath does not perfectly
align with one of the CIR taps, side peaks arise. In Figure 3.2a, for example, this
can be observed as small ripples between the main signal components for multipath
delays < 300 m. The superposition of theses side peaks with the LOS cause the global
maximum of the CIR to deviate slightly from the LOS delay, alternating to the left
and right. With the constraining measurement enforcing the maximum signal power
in the central channel tap, the code delay is correspondingly adjusted, leading to
oscillating errors. This effect applies equally to both signals considered.

Secondly, another increase in error is obtained around 293 m =∧ Tc and 146.5 m =∧

Tc/2 for the GPS and Galileo signal, respectively. This is caused by the constraining
measurement. On the one hand, the MMEKF attempts to replicate the observed cor-
relator outputs as accurately as possible through its measurement model by adjusting
the estimated CIR accordingly. On the other hand, the constraining measurement is
best satisfied with a CIR that has maximal power in the central channel tap h

(0)
k and

minimal power in the remaining ones. These generally contradictory optimization
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(b) Galileo E1 OS B BOC(1,1).

Figure 3.1: Multipath error envelopes. The considered signals have a one-sided bandwidth
of B = 10 MHz and a LOS to multipath power ratio of 3 dB. For the EML dis-
criminator, the early-late spacing was set to 0.1Tc. With the tuning parameter
set to α = 1, the approximation made in the signal model is accounted for, see
Subsection 2.3.2, largely eliminating the biased envelopes for delays between Tc
and 2Tc.
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(c) Galileo E1 B BOC(1,1), α = 0.
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Figure 3.2: CIRs for different multipath delays. The single in-phase multipaths with 3 dB
LOS to multipath power ratio sweeps from 0 to 650 m. Only the real parts of
the estimated CIRs are shown as the imaginary components are zero with this
in-phase multipath.

criteria inevitably lead to a compromise between an accurate CIR estimate and a dis-
torted one. The MMEKF will end up with a CIR estimate with a too high amplitude
for the LOS tap and too low amplitudes for the remaining coefficients. The extent
of this distortion depends on the chosen measurement noise variances. In addition to
that, side peaks arise in the CIR estimate as an attempt to compensate for the over-
estimation of the LOS amplitude and better match the observed correlator outputs.
These can be seen in Figure 3.2. The LOS and multipath is accompanied by addi-
tional peaks every Tc for the GPS C/A code. The Galileo signal with its BOC(1,1)
modulation shows these peaks every Tc/2 due to the doubled post-modulation chip
rate. When the side peaks of the sweeping multipath traverse the LOS, it causes a
shift of the global maximum of the estimated CIR and with that to tracking errors.
The tighter the constraint is set via its measurement noise variance σ2

constr, the more
pronounced is this effect. On the other hand, a too loose constraint might not be
able to keep the LOS reliably in place, causing potentially divergence.

Last but not least, a third phenomena can be observed for multipath delays be-
tween Tc and 2Tc without the correlator output covariance scaling, i.e., α = 0. These
delays are located outside of the correlator bank but their correlation triangles still
extend into the sampled part of the correlation result. Since WCIR = Wbank applies,
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the CIR cannot properly represent such multipaths. Yet, the extended Kalman fil-
ter (EKF) attempts to match the observed correlation result best possible with the
available CIR taps, which leads to additional side peaks. As for the previous two
effects, these additional peaks are superimposed with the LOS leading to tracking er-
rors, see Figures 3.2a and 3.2c. By extending the correlator bank and the CIR width
to Tcode/2 it is ensured that the correlation output is periodic which would resolve
these errors. However, the additional computational cost would be disproportionately
high and would go beyond the scope of a practicable implementation. Alternatively,
one can account for the model approximation by applying a scaling of the correlator
output covariance matrix Rη̃Ci

, as we proposed with Equation (2.36) in Subsection
2.3.2. With α = 1, a Hann window shaped scaling is chosen, largely resolving this
problem. In Figures 3.2b and 3.2d, the effect of the scaling can be seen by the strongly
suppressed side peaks from 300 m onwards and the accordingly improved envelopes
in Figures 3.1.

As stated in Section 3.1, we have used the first PRN code for the envelopes in
Figure 3.1. While the autocorrelation of different Galileo E1 OS PRNs are basically
identical between −Tc and Tc, the GPS L1 C/A code shows slight variations across
different PRNs. These minor variations in the autocorrelation function affect the
resulting multipath error envelopes. However, in view of the insignificance of this
effect, it is not considered further here.

3.2.1 Comparison With Other Multipath Mitigation Techniques
Previously, the proposed solution with its multipath mitigating capability outper-
formed an EML discriminator. This is expected as this conventional approach does
not consider multipath propagation in its estimation process. In the literature many
different multipath mitigation techniques have been proposed, see Section 1.2. A
comparison is therefore made in the following between the proposed MMEKF, the
HRC [McG+99] and the MEDLL [vNee92b].

Figure 3.3 compares the multipath error envelopes of the different solutions. We
chose the HRC to cover the category of multipath mitigating algorithms and the
MEDLL as an exemplary algorithm for a multipath estimating approach using a
structured channel model. For the MEDLL we used the same correlator bank as for
the MMEKF with Ncorr = 41. The comparable simple HRC performs nearly as good
as the proposed solution and the MEDLL with respect to the multipath error envelope.
This is quite respectable, especially given that only four correlators are used for the
code tracking. The catch of the HRC is its inferior noise performance [McG+99],
see Section 3.4. On the other hand, the MEDLL manages to slightly outperform the
proposed solution regarding its multipath error envelope. This comes at the cost of a
higher computational load, at least in our implementation of the MEDLL. It should
be noted that, at present, there is no dedicated publication covering our MEDLL
implementation. However, it follows closely the original publication from [vNee92b].
See Table 3.4 for a comparison of the required number of operations for the two
algorithms. It turned out that the proposed solution required three to four times



3.2 Multipath Error Envelopes 37

0 50 100 150 200 250 300 350 400

−5

0

5

0 50 100 150 200 250 300 350 400

−5

0

5

Multipath delay τmul · c0 / m

T
ra

ck
in

g
er

ro
r
τ
(
0
)

er
r
·c

0
/

m

HRC MMEKF MEDLL

Figure 3.3: Multipath error envelopes of different multipath mitigation techniques. The
considered GPS C/A code signals have a 3 dB LOS to multipath power ratio,
as for the envelopes in Figure 3.1a.

Table 3.4: Number of elementary operations of different multipath mitigation algorithms.

Addition Subtraction Multiplication Division

MEDLL implementation
12, 405, 800 11, 443 12, 764, 367 1, 975with Ncorr = 41

MMEKF with Ncorr = 41 3, 479, 519 575, 399 4, 089, 494 13, 780

less additions and multiplications than the MEDLL. The increase in subtractions
and divisions can in this case be neglected as they are at a lower magnitude. Note,
Section 2.3.3 provides more details on complexity considerations for the MMEKF.

3.2.2 Low-Complexity Variants

For the multipath error envelopes derived above, the MMEKF relied on a correlator
bank with Ncorr = 41 correlators, uniformly distributed across the entire correlation
triangle. Such a large correlator bank allows to conveniently resolve the CIR for a
wide range of delays, which facilitates insights into the estimation characteristics of
the MMEKF. On the other hand, the large number of correlators does come along
with an increased computational load. Subsection 2.3.3 discussed the effect of the
number of correlators onto the overall computational burden of the MMEKF. Dif-
ferent correlator bank setups were proposed to lower the total number of correlators
Ncorr. In the following, the multipath mitigation performance tradeoffs made when
using these complexity reduction approaches are analyzed. This will address the
second research question formulated in Section 1.3 which asked specifically for the
performance tradeoffs made, when the complexity of the algorithm is reduced.

In order to easily compare the multipath mitigation performance, two error met-
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rics are derived from the multipath error envelopes with

E1 = max
τ,φ

|Etrk(τ, φ)| (3.2)

E2 = mean
40 m≤τ≤100 m

max
φ

|Etrk(τ, φ)|, (3.3)

where Etrk(τ, φ) is the function describing the multipath error envelope depending on
the multipath delay and phase τ and φ, respectively. E1 indicates the maximal abso-
lute error that is obtained. This is typically achieved for short delay multipaths. The
second error metric E2 provides information about the maximal average multipath
error to which the envelopes converge after the first error peak. For the considered
setup here, multipath delays larger than 40 m were considered for this error metric.
With this lower bound, the first error peak for short delay multipaths has been ex-
cluded for all considered cases. As the envelopes show little variation between this
initial error peak and the peaks around Tc, and the increasing loss in importance of
multipaths with larger delays [Irs+05], we set an upper bound to 100 m.

3.2.2.1 Uniform Sampling With Reduced Correlator Bank Width

In the following, we will lower the number of correlators by simply reducing the
width of the correlator bank Wbank while maintaining the uniform correlator spacing
∆

(l)
c = 0.05Tc, ∀l > 0, as described in Subsection 2.3.3.1. The effect of this complexity

measure can be observed in the resulting multipath error envelopes in Figure 3.4,
where the width of the correlator bank was stepwise reduced. With the full correlator
bank, i.e., Wbank = Tc and correspondingly Ncorr = 41, the best multipath mitigation
performance can be achieved. Narrowing the correlator bank and therewith reducing
the number of correlators increases the errors for short and medium delay multipaths.
For very low number of correlators, e.g., Ncorr = 7, an error plateau can be observed
for multipath delays between 40 and 260 m meters. This is caused by the enabled
measurement noise scaling with α = 1. The effect of this noise scaling has been
analyzed before for correlator banks with Wbank = Tc, see the discussion of Figure
3.1. Figure 3.5 illustrates the effect of this measure onto the error envelopes for two
exemplary narrower correlator banks, i.e., Wbank = 0.15Tc and Wbank = 0.4Tc. As
expected, for α = 0, both cases show an error bias for multipath delays between
Wbank ≤ τ ≤ Wbank + Tc, as theses multipaths cannot be accurately represented by
the estimated CIR. Setting α = 1 largely eliminates this bias for the wider case with
Wbank = 0.4Tc. For the narrower correlator bank with Wbank = 0.15Tc, the bias arises
before the error reaches zero again. In this case, the measurement noise scaling only
manages to trade in the bias with an error plateau.

In order to better illustrate the performance tradeoffs made with this complexity
reduction approach, the two error metrics defined in Equations (3.2) and (3.3) are
plotted over the number of correlators in Figure 3.6. One can clearly see how both
error metrics, E1 and E2, quickly converge towards 6.35 m and 0.27 m, respectively,
with increasing Ncorr. No significant improvement can be achieved when increasing
the number of correlators beyond Ncorr > 11. Therewith, a valid compromise be-
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Figure 3.4: Multipath error envelopes of MMEKF for different numbers of correlators Ncorr
and a uniform correlator spacing. The considered GPS C/A code signals have
a 3 dB LOS to multipath power ratio, as for the envelopes in Figure 3.1a.
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Figure 3.5: Effect of measurement noise scaling on multipath error envelopes. The consid-
ered GPS C/A code signals have a 3 dB LOS to multipath power ratio.
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tween performance and complexity for the considered signal bandwidth B with this
correlator distribution is to not rely on more than Ncorr = 11 correlators.

When the number of correlators is reduced down to only Ncorr = 3, the MMEKF
error envelope converges towards the one from a conventional EML discriminator.
This is expected, as in this edge case, the measurement model of the MMEKF with its
constraining measurement is effectively reduced down to a simple EML discriminator,
where the early and late correlators are held at an equal level.

It can be concluded, that the computational complexity of the MMEKF can in-
deed be brought down to a reasonable level without scarifying its multipath mitigation
performance significantly. For the considered setup, adding more than Ncorr = 11 cor-
relators turned out to reach the point of diminishing returns. This answers the second
research question formulated in Section 1.3. In an attempt to further reduce the num-
ber of correlators, or, achieve a higher multipath resilience with the same number of
correlators, a nonuniform correlator placement is analyzed in the following.

3.2.2.2 Nonuniform Sampling

In Subsection 2.3.3.2, a nonuniform correlator placement was described. In contrast
to the uniform correlator spacing from before, this allows to increase the total width
of the correlator bank, without adding additional correlators. An increased width
is desirable, in order to alleviate the signal model approximation made with finite
CIR widths. The countermeasure with the measurement noise scaling from Equation
(2.36) reaches its limits for very narrow correlator banks, as unveiled in Figure 3.5. On
the other hand, a larger correlator spacing violates the Nyquist condition, introducing
errors. The tradeoff will be analyzed in the following.

The nonuniform correlator spacing has been parameterized with Equation (2.45).
It is determined by Neq equally spaced correlators around the LOS and the expo-
nential factor β, regulating the correlator spacing increase for the remaining outer
correlators. In order to find a well working nonuniform correlator distribution, the
error metrics E1 and E2 were determined for different β and different Neq. Parameter
combinations that led to widths Wbank > Tc were discarded. The results are shown in
Figure 3.7. The measurement noise scaling remained enabled in all considered cases
with α = 1. As already discovered by the author in [Sie+23b], Neq = 1 leads to
significant error metric increases for both, E1 and E2. In order to allow for a reason-
able axis scaling, those results were partially clipped. Moreover, it was found that
for Ncorr = 7 and Ncorr = 9 with Neq = 5, certain values for β managed to improve
the error metrics. The improvement, however, is rather insignificant and applies not
always to both of the two defined error metrics at the same time.

Thus, in contrast to [Sie+23b], no clear performance improvement was found
for a nonuniform correlator distribution for the chosen σconstr. This is because dif-
ferent measurement noise variances for the constraining measurement were used in
[Sie+23b]. The dependency on σconstr will be analyzed in the following Subsection in
Figure 3.10.
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Figure 3.7: Error metrics for different nonuniform correlator distributions over β. The
metrics were derived from multipath error envelopes using GPS C/A signals.
E1 is represented by the solid lines, E2 by the dashed ones. The corresponding
uniformly spaced cases are shown by the black curves with Neq = Ncorr and
therefore independent of β. The constraint measurement noise variance were
set according to Table 3.3.

3.2.3 Effect of Measurement Noise Variance of Constraint

The constraining measurement has been introduced in Section 2.3 in order to ensure
a reliable tracking of the LOS signal by enforcing the maximization of the signal
power in the central channel tap. Its measurement noise variance σ2

constr determines
the tightness of the constraint and depicts a tradeoff between overly distorting the
estimated CIR and the risk to loose lock with the LOS signal. While the first occurs
for small σconstr and can worsen the multipath error envelopes, the latter may occur
for too large σconstr and lead to biased tracking results, see Subsection 3.3.1. The
effect of the constraint onto the multipath error envelopes has been mentioned already
during the discussion of the multipath error envelopes in Figure 3.1. In the following,
this subject will be addressed in more detail.

Figure 3.8 shows the multipath error envelopes for a selection of constraint vari-
ances σ2

constr and number of correlators. One can clearly see, that with decreasing
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Figure 3.8: Multipath error envelopes for different σconstr. Too small σconstr lead to larger
error envelopes.

σconstr, the envelopes tend to be enlarged.

For a more systematic analysis, we have computed the error metrics E1 and E2

defined in Equations (3.2) and (3.3), respectively, from the derived envelopes. The
result can be found in Figure 3.9. This representation confirms that tighter constraints
indeed worsen the envelopes with respect to the defined error metrics, and that this
critical value of σconstr decreases as the number of correlators Ncorr increases. Taking
only the multipath error envelope of the MMEKF into account, the best results are
in general obtained with the largest possible constraint variance σ2

constr. Only for low
Ncorr an upper bound for σconstr has been observed beyond which the error metric
E2 increases again.

Figure 3.10 shows the error metrics over σconstr for various nonuniform cases.
The analysis of the nonuniform spacing in the previous section, see Figure 3.7, did
not reveal any significant performance improvement over the corresponding uniform
cases. The results in Figure 3.10 illustrate, that a nonuniform correlator placement
can indeed bring a noteworthy advantage for smaller σconstr. However, as for the
uniformly distributed cases in Figure 3.9, the multipath mitigation performance with
nonuniformly distributed correlators benefits in general from a larger constraint vari-
ance σ2

constr. Accordingly, for σconstr for which the nonuniform correlator placement
brings an improvement, the overall performance is still worse than with the uniform
spacing and the chosen σconstr. It can be concluded, that a nonuniform correlator
spacing does not bring a mentionable improvement for the multipath error envelopes
with respect to the defined metrics E1 and E2 for the chosen σconstr.

For a reliable code tracking algorithm, however, other aspects are also of impor-
tance, such as its dynamic behavior. This will be analyzed in the following section.
In doing so, the effect of the measurement noise variance of the constraint σ2

constr
will be revisited in order to determine an upper bound for σconstr for a reliable code
tracking.



3.3 Dynamic Response 43

10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1
0

2

4

6

8

10

10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1
0

2

4

6

8

10

Constraint STD σconstr

E
1

or
E

2
/

m
Ncorr = 5

Ncorr = 7

Ncorr = 11

Ncorr = 17

Ncorr = 41

Figure 3.9: Error metrics E1 of Equation (3.2) and E2 of Equation (3.3) over different
σconstr. E1 is represented by the solid lines, E2 by the dashed ones. The
chosen σconstr are highlighted by circles and crosses. In general, larger σconstr
are favorable with respect to the multipath error envelopes.

3.3 Dynamic Response

So far, the chapter has focused on the multipath error of the proposed MMEKF in
static environments. However, a real-world scenario is highly dynamic. This is not
only due to the movement of the user and the satellites, which constantly affects
the LOS code delay. The closer environment of the receiver as well as atmospheric
conditions also have an effect on the signal propagation. Both can be subject to
high fluctuations over time. The code tracking loop of a global navigation satellite
system (GNSS) receiver has to cope with these temporal changes. Thus, the proposed
MMEKF also needs to be validated in such dynamic environments. Before this is
demonstrated with actual real-world data in Chapter 6, this is first investigated with
synthetic signals below. In [Sie+23a], this topic has been briefly covered before. The
analysis in the following is more in-depth and also demonstrates the effect of process
and measurement model noise variances onto the dynamic response of the MMEKF.

The well-established DLL with an EML discriminator has proven to be a reliable
solution under nominal conditions and is therefore used as a benchmark in the fol-
lowing. The DLL setup is described in Section 3.1. Since we use this DLL also as a
reference in analyses later on, it is important to ensure that both code tracking algo-
rithms have comparable dynamic responses. Otherwise, it cannot be unequivocally
concluded that a superior noise performance or a more robust behavior in multipath
environments is actually due to desirable algorithm characteristics. A slower step
response, for example, also tends to reduce the variance of the code delay estimates
and lower multipath errors due to the more pronounced averaging property.

The MMEKF used in the following relied on a correlator bank with Ncorr = 7

correlators, if not otherwise specified. Considered are only GPS C/A signals. Noise
is added to the synthetically generated GNSS signals so that a C/N0 of 45 dB Hz is
achieved. The results shown were averaged over 5 Monte Carlo runs.
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Figure 3.10: Error metrics E1 of Equation (3.2) and E2 of Equation (3.3) for different
nonuniform correlator distributions and σconstr. The metrics were derived
from multipath error envelopes using GPS C/A signals. E1 is represented
by the solid lines, E2 by the dashed ones. With β = 1, the correlators are
spaced apart equidistantly. The black dashed line indicates the chosen value of
σQ,h for the corresponding number of correlators, see Table 3.3. The nonuni-
form correlator spacing can bring a mentionable performance improvement for
smaller σconstr than the chosen ones.
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3.3.1 Step Response

In a first dynamic scenario, the sudden jump of the LOS code delay is simulated
to investigate the step response. While this is not a scenario one typically faces
in real-world environments, it depicts a good test to ensure, that the constraining
measurement of the MMEKF is able to keep the LOS signal in lock. Moreover, it
allows to compare the step response behavior of the MMEKF with a conventional
DLL. Therefore, a LOS only scenario with zero Doppler is simulated, where after
5 s the LOS code delay conducts a sudden jump. Figure 3.11 shows the resulting
step responses for different jump heights and measurement noise variances of the
constraint σ2

constr.

In Figure 3.11a, one can clearly see how both, the proposed MMEKF and the
conventional EML-based DLL, manage to lock back in with the LOS code delay
after approximately the same duration. In doing so, the MMEKF tends to show less
overshooting with a correspondingly longer rise time than the DLL results. When
σconstr is set too large, in this case σconstr = 10−3, the MMEKF tends to track the
LOS with a small offset after the jump, see the 10 m and 15 m jumps in Figure 3.11b.
This causes biased tracking results. It is therefore crucial, to set the measurement
noise variance of the constraint σ2

constr to a sufficiently small value in order to ensure
a reliable tracking of the LOS signal.

The step response results of the MMEKF are therefore evaluated in Figure 3.12
with respect to the average tracking error between 10 s and 20 s after the LOS jump
for different σconstr and jump heights. For the here considered case of Ncorr = 7, a
STD not exceeding 10−4 is required in order to ensure a reliable tracking of the LOS
signal after the jump. Smaller values are also possible. However, as discovered in
Subsection 3.2.3, a possibly large σconstr is preferable with respect to the multipath
rejection capability.

In order to further generalize the results, the analysis is extended to different
number of correlators Ncorr. Therefore, the average tracking errors between 10 s and
20 s after a LOS jump were averaged over the jump heights 10 m to 50 m in 5 m
steps. Jump heights of 5 m and below were neglected, as the measurement noise
STD of the constraining measurement σconstr showed only negligible effects for such
small jumps, see the results above in Figure 3.12. For meaningful averaging across
jump heights, we average the tracking errors as a percentage of their actual jump
height rather than the absolute error. The result is shown in Figure 3.13. It clearly
illustrates, that the maximal possible σconstr depends on the number of correlators.
This is due to the ratio between the number of measurements from correlator outputs
and the single constraining measurement in the EKF. With more correlator outputs,
the constraining measurement must be tighter to be weighted equally in the filter. In
order to find suitable and comparable values for σconstr for the different number of
correlators Ncorr, the break-off edge is first located. This is defined at a percentage
tracking error of −1.5%, see the black dashed line in Figure 3.13. Then, by taking the
chosen σconstr = 10−4 as a reference value for Ncorr = 7, this line is shifted accordingly,
resulting in the red dashed line. This provides us with measurement noise variances
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Figure 3.11: Step response of the proposed MMEKF compared with a conventional EML-
based DLL. After an initial 5 s of static zero Doppler LOS only conditions,
the LOS code delay jumps by a certain amount. The plots show four different
jump heights of 0, 5, and 10 m. A too large measurement noise variance of
the constraint σ2

constr can cause the MMEKF to no longer be able to track the
LOS free of biases, see the 10 and 15 m jumps in Figure 3.11b.
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Figure 3.12: Illustrated is the average tracking error between 10 s and 20 s after a LOS

code delay jump. The plot unveils that the measurement noise STD of the
constraint should be σconstr ≤ 10−4 in order to ensure a reliable LOS tracking
when using Ncorr = 7. The chosen value of σQ,h = 10−4 is highlighted with
the red dashed line.

of the constraining measurements for all considered Ncorr, as listed in Table 3.3.

Section 3.2.2.2 investigated an alternative nonuniform correlator placement with
the attempt to improve the multipath mitigation performance without increasing
complexity. It turned out that for the chosen σconstr, a nonuniform correlator place-
ment cannot achieve a noteworthy performance improvement. For the analysis we
assumed that the same σconstr suitable for the corresponding uniformly distributed
case would be appropriate for the nonuniform cases as well. In order to demonstrate,
that this was a valid assumption, Figure 3.14 shows the corresponding step response
results exemplary for Ncorr = 7 and Neq = 5. It can be seen that the percental
tracking error is largely independent of β. Thus, the value for σconstr for uniformly
distributed correlators, i.e., β = 1, can be equally applied to nonuniform correlator
distributions.
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Figure 3.13: Illustrated is the average tracking error between 10 s and 20 s after a LOS code
delay jump. Jump heights between 10 m and 50 m in 5 m steps were considered.
For a meaningful averaging across different jump heights, the resulting tracking
errors were averaged as their percentage of their actual jump height. The plot
unveils the maximal possible measurement noise STD of the constraint for
different Ncorr. In general, the more correlators are used, the smaller σconstr
must be. The black dashed line marks the break-off edge. Taking the σconstr
chosen for Ncorr = 7 as a reference, this line is accordingly shifted, providing
suitable σconstr for all possible Ncorr.
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Figure 3.14: Illustrated is the average tracking error between 10 s and 20 s after a LOS
code delay jump for nonuniform correlator distributions with Ncorr = 7 and
Neq = 5. Jump heights between 10 m and 50 m in 5 m steps were considered.
For a meaningful averaging across different jump heights, the resulting tracking
errors were averaged as their percentage of their actual jump height. The plot
unveils the maximal possible measurement noise STD of the constraint for
different β. The black dashed line marks the break-off edge. Taking the
σconstr chosen for β = 1, i.e., the uniform case, as a reference, this line is
accordingly shifted, providing suitable σconstr for the nonuniform cases with
β > 1. A nonuniform correlator distribution does not affect the maximal
possible σconstr.
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3.3.2 Convergence Behavior

In a second dynamic scenario, the convergence behavior of the proposed MMEKF to
a change in the propagation path has been investigated. Therefore, a single in-phase
multipath with a 3 dB power attenuation with respect to the LOS appears after 5 s
static zero Doppler LOS only conditions.

Figure 3.15a and 3.15b show the results for an arising multipath with an additional
path delay of 10 and 30 m, respectively. Both code tracking algorithms, the proposed
MMEKF as well as the conventional EML-based DLL, adjust accordingly to the new
propagation path characteristics. For the DLL, this simply means that its code delay
estimate adjusts according to the steady-state tracking error of the underlying EML
discriminator, see Figure 3.1a for the corresponding multipath error envelope. The
larger the final tracking error is, the longer it takes to converge to this new state.

The MMEKF, on the other hand, also has to adapt its CIR estimate to consider
for the additional signal path. Figure 3.16a shows the estimated CIRs over time.
As already discussed in Section 3.2, the consideration of the multipath in the CIR
does not eliminate the effect of the multipath onto the code delay estimate entirely.
Instead, the MMEKF converges to a slightly erroneous code delay estimate. This
convergence test demonstrated that the MMEKF can quickly adjust to changes in
the radio propagation path.

A crucial parameter for this convergence behavior is the process noise variance
σ2

Q,h of the channel coefficients h(lh), lh = −Lh, . . . , Lh. In order to visualize that,
Figure 3.16b illustrates the estimates of h(2), i.e., the channel coefficient that is closest
to the appearing multipath with 30 m additional path delay, over different σQ,h. One
can clearly see how too small values for σQ,h slow down the convergence process while
too large σQ,h increase the estimation noise. The choice of σQ,h effectively depends
on the time variance of the radio propagation channel. For slower changing channel
characteristics, σQ,h can be reduced in order to take advantage of the better noise
performance. For rapidly changing channels, higher σQ,h are needed to quickly adapt
to the new conditions.

These CIR estimation characteristics propagate to the code delay estimates. Fig-
ure 3.17a shows therefore the effect of different σQ,h onto the tracking errors. Too
small values for σQ,h, which prevent an immediate adjustment of the CIR, cause an
increased overshooting, see Figure 3.17c. This is because the code delay estimates
attempts to match the observed correlator outputs to the CIR which still represents
the single-path case. The more the multipath is already accommodated for in the
CIR, the more returns the code delay estimate to its steady-state value. With too
large σQ,h, the noisier channel coefficient estimates propagate likewise to the code
delay estimates. Figure 3.17b shows therefore the variance of the code delay esti-
mates over σQ,h. The chosen value for σQ,h of 10−3.3 depicts a good tradeoff between
overshooting after propagation path changes and increasingly noisy estimates.



3.4 Noise Performance 49

0 5 10 15 20 25

0

5

10

0 5 10 15 20 25

0

5

10

Time / s

T
ra

ck
in

g
er

ro
r
τ
(
0
)

er
r
·c

0
/

m

MMEKF
EML

(a) 10 m multipath delay.

0 5 10 15 20 25

0

5

10

0 5 10 15 20 25

0

5

10

Time / s

T
ra

ck
in

g
er

ro
r
τ
(
0
)

er
r
·c

0
/

m

MMEKF
EML

(b) 30 m multipath delay.

Figure 3.15: Illustration of the convergence behavior. After an initial 5 s of static zero
Doppler LOS only conditions, a multipath with a 3 dB LOS to multipath to
power ratio appears. The results illustrate how the code tracking algorithms
adjust to the new propagation path conditions with respect to their code delay
estimates.

3.4 Noise Performance

Besides the multipath performance and the dynamic response, the noise performance
is another important criteria for a code tracking algorithm. Correspondingly, the
competitiveness of the noise performance has been explicitly addressed by the first
research question formulated in Section 1.3. In the following, we compare the pro-
posed MMEKF with and a conventional DLL. The latter is implemented once with
an EML discriminator and once with the multipath mitigating HRC. Therefore, a
GNSS signal with a certain C/N0 is tracked for 60 s. The STD of the resulting code
delay estimates, under exclusion of the first 5 s as an initial convergence period, is
determined and averaged over 20 Monte Carlo runs.

Figure 3.18 displays the results, which confirm the slightly inferior noise perfor-
mance of the HRC, as already shown in [McG+99]. For the GPS C/A case, the
STD curve has no values for C/N0s lower than 23 dB Hz, as the HRC-based DLL
was unable to reliably track those signals below that threshold. The strong distur-
bances brought the tracking loop out of the operating range of the narrow S-curve of
the HRC causing it to diverge. Consequently, the resulting STDs became excessively
high. As those values would be misleading, diverged Monte Carlo runs were excluded.
A run is considered diverged when the average tracking error exceeds 15 m. When
the majority of Monte Carlo runs for a single C/N0 value diverged, no code delay
STD has been plotted.

For the MMEKF it turned out, that the noise performance is for high C/N0

comparable to a conventional EML-based DLL. For low C/N0s, the MMEKF managed
to outperform the conventional solution. This is because the EKF naturally relies
more on its process model when the measurements are increasingly affected by noise.
This leads to a stronger smoothing of the code delay estimates and therewith a lower
STD. It is also expected to result in a slower step response. It can be concluded
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Figure 3.16: CIR estimate over time during arising multipath with 30 m delay. The es-
timates quickly adjust to the new conditions. The channel coefficient h(2),
i.e., the closest one to the considered multipath delay, is shown separately for
different process noise STDs σQ,h in Figure 3.16b. While too small σQ,h slow
down the convergence process, too large σQ,h increase the estimate noise. The
chosen σQ,h of 10−3.3 is highlighted by the dashed red line.

that the noise performance of the proposed MMEKF is indeed competitive and even
outperforms other conventional approaches for low C/N0s, answering the first research
question formulated in Section 1.3.

3.5 Initialization Robustness

An interesting aspect for an actual implementation is the robustness of the code
tracking algorithm against initialization errors. This is especially crucial for the first
tracking after a successful acquisition. Due to strict timing and processing constraints
of real-time systems, the accuracy of the initial code delay estimate from the acquisi-
tion may be limited. The code tracking should ideally be able to handle such initial
estimate errors by quickly converging to the actual value without loosing the satellite
again. In the following, we demonstrate that the proposed MMEKF is comparable to
a conventional EML-based DLL in a simplified scenario with zero Doppler. Therefore,
the code tracking algorithms are initialized on purpose with an erroneous code delay
estimate. It is then observed how long it takes for the estimate to reach the ground
truth. Convergence is assumed as soon as the code delay estimate remains below 2 m
of error. The considered GPS C/A signals have a C/N0 of 45 dB Hz. The MMEKF
relied on a correlator bank with Ncorr = 7 correlators. The results are illustrated in
Figure 3.19 averaged over 20 Monte Carlo runs. If any of the Monte Carlo runs did
not achieve to converge for a specific delay, no convergence time is shown for this
value.

It turned out, that the proposed MMEKF is able to converge to the ground truth,
even for very large initial errors, just like the EML-based solution. For completeness
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(c) Illustration of overshooting effect.

Figure 3.17: Effect of the process noise STD σQ,h onto the code delay estimates. The
shown results are for a multipath delay of 30 m. The choice of σQ,h is a
tradeoff between overshooting and increasingly noisy code delay estimates.
The chosen σQ,h is highlighted by the red dashed line in Figure 3.17b and
3.17c.
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Figure 3.18: Noise performance of the proposed MMEKF against a conventional DLL with
an EML discriminator and the HRC.
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Figure 3.19: The robustness against initial code delay estimate errors is demonstrated.
Illustrated is the convergence time of different code tracking algorithms for a
certain initial code delay estimate error. Considered are GPS C/A signals.

the results with the HRC are also shown. For small initial code delay errors, it
behaves similar to the EML discriminator. However, it has a narrower S-curve since
its discriminator function is zero for delay errors larger than approximately 30 m
with the selected correlator spacing. The HRC has therefore no chance to reliably
converge to the ground truth with initial delay errors outside this range. In an
actual implementation, one would typically rely on an EML discriminator with a
larger bandwidth for the code loop filter to quickly converge during an initialization
period. Once convergence is reached, one can then switch over to the HRC, avoiding
its inferior initialization error robustness. Alternatively, one could also increase the
correlator spacing for the HRC to obtain a larger operational range. For the MMEKF,
a faster convergence can for example be achieved with higher process noise variances.



53

4 Vector Tracking Enhanced Multipath Mitigation

In Chapter 2, a multipath mitigation technique has been introduced, referred to as
the multipath mitigating EKF (MMEKF). This technique has proven to be robust
against multipath propagation, as shown with synthetic signals in the previous Chap-
ter 3 and confirmed with more sophisticated simulations and actual measurements in
Chapter 6. However, in real-world environments, multipaths are not the only threat
for global navigation satellite system (GNSS) receivers. Especially in dense urban
environments, the frequent blockage of line-of-sight (LOS) signals due to buildings,
bridges, or other obstacles is common. It can lead to a shortage of available satellites
and thus to a reduced position, velocity, and time (PVT) accuracy and availability
[Bal+00]. Moreover, with a dominant multipath present during a LOS blockage, a
conventional receiver might end up tracking said multipath instead of loosing the
satellite entirely. The same applies to the proposed MMEKF as it assumes that the
LOS is the strongest signal path. This can cause large PVT errors if not detected by
the receiver. A powerful approach to increase robustness in such environments is the
use of vector tracking (VT) processing architectures [Spi+96, Chapter 7]. With VT
approaches, satellites are not tracked individually followed by a separate PVT solu-
tion as with a conventional scalar tracking (ST) receiver. Instead, a central Kalman
filter (KF) handles both jointly. Since the measurements derived from the satellite
signals, i.e., code and carrier phase and Doppler, are interdependent and linked by
the position solution, the joint processing of a VT architecture exploits this mutual
information. Doing so also allows to keep blocked satellites in lock until they reappear
using the measurements from the remaining visible satellites. In addition to that, this
processing structure reduces the effect of individual multipaths. However, the more
satellites are affected by multipath propagation, the larger becomes the final posi-
tion error [Luo+14]. Thus, there is still need for a dedicated multipath mitigation,
especially in urban canyons, as it has been done by, e.g., [Hsu13] before.

The third research question, formulated in Section 1.3, aims at the possible mul-
tipath mitigation improvements that can be achieved by such a joint processing. The
author proposes in this chapter therefore the integration of the MMEKF into VT
processing architectures. First of all, the general VT algorithm is described. Then,
in Section 4.2, the integration of the proposed MMEKF is shown followed by a few
notes on implementation related aspects in Section 4.3. In order to finally answer the
third research question, Section 6.3 of the performance analysis Chapter 6 examines
this proposed architecture with authentic simulations and actual measurement data
in urban environments.
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4.1 Vector Delay/Frequency Locked Loop Algorithm

In the following, the investigated VT structure is introduced. It is a vector delay/fre-
quency locked loop (VDFLL) approach relying on a frequency locked loop (FLL)-
assisted phase locked loop (PLL) [War98] for the carrier tracking. Therewith, not
only the code tracking, but also the carrier frequency tracking is controlled centrally
by the VT loop. Only the carrier phase is tracked individually using the PLL dis-
criminator. The VT loop relies on an extended Kalman filter (EKF) to estimate
the unknown user position and clock biases. Many implementations define for that
the parameters as error states in the state vector [Cun+16]. However, the author
estimates the absolute values as it has been done by [Shy+16] in order to be able to
directly read out the user position and user clock errors. A general EKF description
can be found in Section 2.2. In the following, only the VDFLL specific aspects are
covered.

4.1.1 Process Model

For the process model, the state vector holding the parameters to be estimated must
be first derived. For our purpose, it is set as follow

xk =
[
xu, ẋu, yu, ẏu, zu, żu, tu, ṫu

]T ∈ RNst×1 (4.1)

with ~ru = [xu, yu, zu]
T and ~vu = [ẋu, ẏu, żu]

T being the user position and velocity
defined in the Earth-centered, Earth-fixed (ECEF) coordinate system, respectively.
Only the user’s position and velocity are tracked by the state vector, as this is suffi-
cient for most applications. For highly dynamic applications such as rocket launches,
the inclusion of the user’s acceleration may be considered. Such an extension is
straightforward and is therefore not shown here. The user clock is parameterized
with a clock bias and clock drift tu and tu, respectively, as in [Bro+12, Chapter 9].
In order to consider for inter-system time offsets, one user clock bias per used GNSS
is being tracked, thus, tu =

[
tu,1, . . . , tu,Nsys

]
∈ R1×Nsys , where Nsys is the number of

GNSSs that are being used. The process matrix, which describes the temporal evolu-
tion of the state vector in the process model from Equation (2.14), can be expressed
as [Bar+01, Chapter 6]

A = diag (Ax,Ay,Az,Aclk) , Ax = Ay = Az =

[
1 TPVT

0 1

]
(4.2)

with TPVT being the PVT interval time and

Aclk =

[
INsys TPVT1Nsys

0T
Nsys 1

]
, (4.3)
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where 1q ∈ Rq×1 denotes a column vector of ones. The covariance matrix of the
process noise is then given by [Bar+01, Chapter 6]

Q = diag (Qx,Qy,Qz,Qclk) , (4.4)

Qx = Qy = Qz =

[
T 4

PVT/4 T 3
PVT/2

T 3
PVT/2 T 2

PVT

]
σ2

acc, (4.5)

Qclk =

[(
SfTPVT + SgT

3
PVT/3

)
INsys

(
SgT

2
PVT/2

)
1Nsys(

SgT
2
PVT/2

)
1T
Nsys SgTPVT

]
(4.6)

with Sf = h0/2 and Sg = 2π2h−2, where h0 and h−2 are the Allan variance coeffi-
cients of the receiver’s clock for clock errors in seconds [Bro+12, Chapter 9]. σacc is
the process noise standard deviation (STD) for the user position. The initial state
covariance matrix is given by

P−1|−1 = diag
(
σ2

P,pos, σ
2
P,vel, σ

2
P,pos, σ

2
P,vel, σ

2
P,pos, σ

2
P,vel, σ

2
P,tu 1T

Nsys , σ
2
P,ṫu

)
. (4.7)

4.1.2 Measurement Model
The relationship between the measurements and the state parameters in xk is de-
scribed with the measurement model, see Equation (2.15). For the considered VT
EKF used here, which estimates the absolute position and velocity solution instead
of relying on error states, the measurements are the sum of the pseudorange or pseu-
dorange rate and the corresponding discriminator output. It can be expressed as

zρ,k =

[
ρk

ρ̇k

]
+

[
∆ρk

λ∆fk

]
+ utrk ∈ R2Nsat×1, (4.8)

where

ρk = [ρ1,k, . . . , ρNsat,k]
T , ∆ρk = [∆ρ1,k, . . . ,∆ρNsat,k]

T , (4.9)

ρ̇k = [ρ̇1,k, . . . , ρ̇Nsat,k]
T , ∆fk = [∆f1,k, . . . ,∆fNsat,k]

T . (4.10)

ρls and ρ̇ls are the pseudoranges and pseudorange rates and ls = 1, . . . , Nsat is the
satellite index. λ = c0/fc is the carrier wavelength. The code and carrier frequency
discriminator outputs ∆ρls,k and ∆fls,k are defined in meters and Hz, respectively.
The measurement noise is modeled as a zero mean Gaussian random process utrk ∼
N (02Nsat ,Rk).

When combining different GNSS, the inter-system time offsets must be taken
into account. The state vector in Equation (4.1) therefore contains one user clock
bias for each GNSS. The minimal number of satellites in view required in order to
ensure observability of the state parameters increases accordingly by one for each
additional GNSS. When combining measurements from Global Positioning System
(GPS) and Galileo satellites, an estimate of the inter-system time offset is provided by
the Galileo navigation messages with the Galileo-GPS time offset (GGTO) [Eur21b,
Chapter 5.1.8]. This parameter can be used as an additional measurement in the VT
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EKF in order to aid the user clock bias estimation and reduce the number of required
satellites in sight for an observable system down to only four again. According to
[Eur21a, Chapter 3.5], the 95th percentile of the broadcast GGTO is specified to be
below 20 ns. In practice, it turned out to fulfill the specification with 7.2 ns for the
95th percentile [Hah17]. Nevertheless, for a precise positioning, this is still a rather
inaccurate estimate. In [Mel+20] it was shown that the use of the broadcast GGTO
did not improve the position solution under open sky conditions, or even degraded
it. On the other hand, with limited sky visibility, the additional measurement has a
greater positive impact on the dilution of precision (DOP), so that it can, even with
its limited accuracy, improve the position solution [Mel+20]. As this VT architec-
ture has been developed with the motivation to improve positioning in challenging
environments with limited sky visibility, the use of the broadcast GGTO can there-
fore be beneficial. For this reason, the broadcast GGTO is used as an additional
measurement which is given by [Eur21b, Chapter 5.1.8]

zto,k = tu,2 − tu,1 + uto, (4.11)

assuming that tu,1,k and tu,2,k correspond to the user clock bias with respect to GPS
and Galileo system time, respectively, at time step k. With uto ∼ N (0, σto), the
GGTO has been modeled to be zero mean and follow a Gaussian measurement noise
with variance σto = 3.67 ns. The latter has been derived from the measured 7.2 ns
95th percentile by [Hah17]. zto is provided alongside with zρ,k from Equation (4.8),
leading to the full measurement vector

zk =

[
zρ,k
zto,k

]
= f(xk) ∈ R2Nsat+1×1 (4.12)

for the case where GPS and Galileo satellites are being combined. It should be noted,
that zto,k is an optional parameter that is only available from the navigation messages
when using Galileo signals and only adds value when applied in combination with GPS
signals. The covariance matrix of the measurement noise is then given by

Rk = diag (Rcode,k,Rcarr,k, σto) , (4.13)

Rcode,k = diag
(
σ2

code,1,k, . . . , σ
2
code,Nsat,k

)
, (4.14)

Rcarr,k = λ2 diag
(
σ2

carr,1,k, . . . , σ
2
carr,Nsat,k

)
, (4.15)

where σ2
code,ls,k and σ2

carr,ls,k are the noise variances of the code and carrier frequency
discriminators, respectively. For σ2

code,ls,k, one can rely on the open loop noise STD
from [Mis+06, Chapter 10] for an early minus late (EML) discriminator which is
given by

σcode,ls,k = c0Tc

√
∆elTc

4TPVTC/N0
(4.16)

for binary phase-shift keying (BPSK) signals, such as the GPS coarse/acquisition
(C/A) code, where c0 denotes the speed of light, ∆el is the early-late correlator
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spacing, and C/N0 is the carrier-to-noise density ratio (C/N0). For other signal
modulations, such as the binary offset carrier (BOC) modulation of Galileo signals,
the STD is inversely scaled according to the slope of the correlation triangle. ∆el is
the early-late correlator spacing in seconds. The pseudorange and pseudorange rates
are related to the state parameters through [Kap+06, Chapter 2]

ρls =
∥∥~rsatls −~ru

∥∥ + c0tu,lg , (4.17)

ρ̇ls =
〈
~vsatls − ~vu,~als

〉
+ c0ṫu , ~als =

~rsatls −~ru∥∥~rsatls −~ru
∥∥ , (4.18)

where ~rsatls and ~vsatls are the position and velocity vectors of the ls-th satellite,
respectively, ~als is the unit LOS vector, and lg = 1, . . . , Nsys is the GNSS index. ‖•‖
depicts the Euclidean norm and 〈•, •〉 takes the inner product of two vectors. For a
better readability, the time step indices k have been omitted in Equation (4.17) and
Equation (4.18). The measurement model from Equation (4.12) must be linearized in
order to apply the EKF equations, see Section 2.2.2. Therefore, the Jacobian matrix,
see Equation (2.24), needs to be computed

Jf,k =
df(xk)

dxk

∣∣∣∣
xk=x̂k|k−1

∈ R2Nsat+1×Nst (4.19)

with the required partial derivatives

dρls
d~ru

=
dρ̇ls
d~vu

= −~als (4.20)

dρ̇ls
dṫu

= c0 (4.21)

dρls
dtu,lg

=

{
c0 when satellite ls is part of the lg-th GNSS
0 when satellite ls is not part of the lg-th GNSS

(4.22)

dzto,k

dtu,1
= −dzto,k

dtu,2
= −1. (4.23)

All remaining partial derivatives, that were not explicitly mentioned, are simply zero.
This completes the description of the measurement model for the VT structure.
Therewith, the EKF iteration can be conducted, as explained in Subsection 2.2.1
and Subsection 2.2.2.

4.1.3 Tracking Loop Closure

The algorithm described to this point determines a PVT solution based on pseudo-
range and pseudorange rate measurements using an EKF. In order to perform the
transition from such a ST architecture to a VT one, the tracking loop needs to be
closed from the position estimate all the way back to the satellite tracking. Therefore,
the following correction parameters need to be calculated after each filter iteration
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[Cun+16]

∆fcode,k =
(
ρ̃k|k − (ρk − ρ̂k|k)

) 1

TPVT
(4.24)

∆fcarr,k =
(
˜̇ρk|k − (ρ̇k − ˆ̇ρk|k)

) 1

λ
. (4.25)

ρ̃k|k and ˜̇ρk|k depict the pseudorange and pseudorange rate corrections corresponding
to the state correction x̃k|k determined with Equation (2.21). Equally, ρ̂k|k and ˆ̇ρk|k
are the range and range rates corresponding to the updated state estimate x̂k|k, see
Equation (2.22). These values can be computed with[

ρ̃k|k
˜̇ρk|k

]
= Jf,kx̃k|k,

[
ρ̂k|k
ˆ̇ρk|k

]
= Jf,kx̂k|k. (4.26)

The determined values for the code tracking ∆fcode,k can be used to directly update
the code numerically-controlled oscillators (NCOs), no further filtering required. The
code Doppler required for this can be computed from the VT filter results with

fD,carr,ls,k = fc

(√
c0 + ˆ̇ρls,k|k

c0 − ˆ̇ρls,k|k
− 1

)
, (4.27)

where fc is the carrier frequency. ∆fcarr,k is used to replace the FLL discriminator
output in the FLL-assisted PLL carrier tracking loop filters and controls with that
the carrier NCOs.

4.1.4 Receiver Architecture

In Figure 4.1, the architecture of a VDFLL receiver is schematically illustrated as a
block diagram. The radio frequency (RF) signal is fed into the structure from the
left. A mixer down-converts the signal for each satellite using the carrier replicas
provided by the carrier NCOs. The baseband signal undergoes then the correlation
process to determine early, prompt, and late. The correlation is performed over
Tint. Its outputs are used to determine the delay locked loop (DLL), FLL, and PLL
discriminators. While the PLL discriminator output is directly fed into the FLL-
assisted PLL loop filter, ∆fls,k goes, as for ∆ρls,k, to the VT filter. Due to the lower
update rate of the VT filter which is 1/TPVT, the DLL and FLL discriminator outputs
∆ρk and ∆fk are integrated until the subsequent VT filter iteration. The navigation
data processor uses the prompt correlator outputs as well as the code and carrier
tracking results from the NCOs to decode the navigation data and determine the
pseudorange and pseudorange rate estimates. These are then corrected by various
correction parameters read from the navigation messages and provided to the VT
filter as ρ and ρ̇. The VT loop performs then one filter iteration and determines the
control values ∆fDLL,k and ∆fFLL,k. The latter is fed into the FLL-assisted PLL loop
filter as a FLL discriminator output. The code correction parameters ∆fDLL,k adjust
the code NCOs, closing the tracking loops.
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Figure 4.1: VDFLL receiver architecture.

4.2 Integration of Multipath Mitigating EKF

The above introduced VDFLL structure is extended in the following by a multipath
mitigation component. We therefore use the by the author proposed MMEKF algo-
rithm from Section 2.3. This has been initially proposed by the author in [Sie+22a].
By integrating this multipath mitigation technique into the VDFLL from above, an
increased position accuracy in harsh multipath environments is aimed for. The re-
quired adjusted receiver architecture is explained in the following.

4.2.1 Receiver Architecture

In order to integrate the MMEKF into the VDFLL architecture from Figure 4.1,
only a few adjustments are required. First of all, the early, prompt, and late cor-
relators are replaced by the correlator bank Cls,k for the ls-th satellite. Then, the
DLL discriminator is substituted by the MMEKF. It is internally estimating the
channel impulse response (CIR) as well as the code delay and Doppler τ

(0)
k and τ̇

(0)
k ,

respectively. However, to the VT loop, it only provides the state correction of the
code delay τ̃ls,k|k = τ̂

(0)

ls,k|k − τ̂
(0)

ls,k|k−1. It is treated by the VT filter as if it were the
DLL discriminator output ∆ρls,k. Thus, there is no adjustment required. While the
MMEKF’s prediction step is performed every Tint, the update step is only conducted
every TPVT ≥ Tint to match the VT interval. Correspondingly, the correlator bank
outputs are integrated over TPVT. The code correction parameters ∆fDLL,k do now
not only adjust the code NCOs, but are also returned to the individual MMEKFs,
which use them to correct their internal code delay estimates τ̂

(0)

ls,k|k. If no carrier-
aiding is used, the internal code Doppler estimates are also adjusted according to the
Doppler values obtained with the Equation (4.27).
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Figure 4.2: Proposed VDFLL receiver architecture with MMEKF.

4.3 Implementation Details

Different implementation-related aspects are covered in the following.

4.3.1 Concealed Satellites

Buildings or other obstacles in the nearer receiver environment can block the direct
LOS path to individual satellites. This condition has to be detected by the VT loop
in order to avoid feeding the filter with invalid measurements. A common metric to
detect the blockage is the C/N0. Once it falls below a certain threshold C/N0min,
the satellite is considered concealed. Correspondingly, it is removed from the mea-
surement vector zρ,k and from the Jacobian Jf,k for the update step. In order to
keep the blocked satellite in lock, its code and carrier NCOs continue to be updated
aided by the remaining visible satellites based on the current position estimate using
Equations (4.24) and (4.25). One only has to ensure that the FLL-assisted PLL loop
filter is reduced to a simple FLL loop filter in order to avoid that erroneous carrier
phase measurements interfere with the predicted carrier frequencies. This can sim-
ply be done by setting the PLL discriminator output to zero [Kap+06, Chapter 5].
Once the satellite reappears, it can provide immediately measurements to the VT
filter again. Then, the PLL will also quickly lock back in with the carrier phase.
Reacquisitions, as they would be required with a ST receiver, are not required.

4.3.2 Disabling Vector Tracking Loop

In contrast to a conventional ST receiver, with VT, one can update the position
estimate also with less than the minimal required number of measurements. Of
course, due to the lack of observability, the estimate error and variance increase
accordingly over time. With no measurements available at all, the update step is
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skipped entirely and one only relies on the process model to propagate the state
vector with the prediction step. With an insufficient number of measurements over
an extended period of time, the VT filter may diverge with little chance of converging
back to the ground truth. This results in excessive position errors and may lead to the
effective loss of lock of all satellites, including the remaining visible ones. In order to
avoid that, one should disable VT and revert to a conventional ST. This will result in
the immediate loss of currently blocked satellites and likely no position solution at all.
However, it allows to return to a reasonable PVT solution once enough satellites have
been acquired again so that the VT filter can be reactivated. In order to detect the
VT filter divergence in good time, we implemented a counter that is increased by one
if no measurements were available and is decreased by one when there are enough valid
measurements for an update step until it is zero again. When the counter reaches
NVT, off, the VT loop is disabled. The estimated inter-system time offset between
GPS and Galileo, i.e., t̂2 − t̂1, has been used as an additional indicator for a diverged
VT filter. If it deviates by more than 20 ns from the broadcast GGTO, the counter is
also increased by one, even if enough measurements are available. Moreover, a large
geometric dilution of precision (GDOP) over an extended period of time can also
lead to a filter divergence despite a sufficient number of measurements. Therefore,
the counter is also increased when the GDOP is larger than 20.
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5 Estimation and Mitigation of Ionospheric
Propagation Error

The Chapters 2 and 3 discussed a global navigation satellite system (GNSS) receiver
with respect to its performance against multipath propagation as a major threat.
Then, Chapter 4 aimed at resolving the arising difficulties with frequent line-of-sight
(LOS) blockages under said threat of multipath propagation. However, there exists a
second environmental condition that determines the accuracy of a position, velocity,
and time (PVT) solution, namely the ionospheric total electron content (TEC). The
ionosphere is a region in the Earth’s upper atmosphere, located between about 50 km
and 1000 km above sea level [Hof+01, Chapter 6]. There, particles are ionized by
solar radiation. The free electrons of the resulting plasma depict a dispersive medium
and affect the radio propagation of electromagnetic waves such as that of a GNSS
signal, introducing a time of day, geographic location, solar activity, and direction of
arrival (DOA) dependent carrier phase advance and group delay [Mis+06, Chapter 5].
Conventional single-frequency receivers, as they have been investigated in previous
chapters, rely on ionospheric models to compensate for the latter, i.e., the additional
code delay. Yet, with the most widely used Klobuchar model, the error is reduced only
by 50% on average [Klo87]. In order to be able to actively estimate the ionospheric
delays, a multi-frequency receiver is required. Therewith, the dispersive property can
be exploited by observing the effect simultaneously on several frequencies. A common
technique is the ionosphere-free combination [Hof+01, Chapter 6] to eliminate the
dominating first order effect. However, this method has the drawback that other
errors, such as multipath errors, tend to be amplified. The suppression of both
sources of error must therefore be considered together in order to ensure optimum
combined suppression.

The fourth research question formulated in Section 1.3 is aimed precisely at this
difficulty. In order to address this question, this chapter extends the algorithm pre-
viously conceived only for multipath mitigation to include ionosphere estimation and
correction.

5.1 Ionospheric Multipath Mitigating EKF

The algorithm for mitigating multipath effects from [Ili+17], on which the multipath
mitigating EKF (MMEKF) is based, has already been extended to estimate the first
order ionospheric effects in a previous publication, see [Ili+18]. In the following, the
multi-frequency extension is derived for the MMEKF with an additional carrier range
rate aiding for an increased robustness, as in [Sie+22b]. The derivation is based



64 Chapter 5. Estimation and Mitigation of Ionospheric Propagation Error

on the multi-frequency signal model from Section 2.1. The ionospheric MMEKF
(IMMEKF) depicts an extension to the single-frequency MMEKF from Section 2.3
with the major difference to operate now simultaneously on Nband > 1 frequencies per
satellite in order to estimate the ionospheric TEC. While the correlator bank defined
in Subsection 2.3.1 does not need to be adapted, the extended Kalman filter (EKF)
state and measurement model must be partially reformulated.

5.1.1 Process Model

First of all, the state vector has to be extended to

xk =
[
τg,k, τ̇g,k, ne,k, ṅe,k, hT

1,k, . . . , hT
Nband,k

]T ∈ RNst×1 (5.1)

with

hj,k =
[
Re
(

h̃T
j,k

)
, Im

(
h̃T
j,k

)]T
∈ R2Ntap,j×1 (5.2)

h̃j,k =
[
h
(−Lh,j)

j,k , . . . , h
(Lh,j)

j,k

]T
∈ CNtap,j×1, (5.3)

where Nst = 4+2
∑Nband

j=1 Ntap,j and Ntap,j = 2Lc,j +1. τg,k represents the geometric
code delay in seconds between satellite and user with the geometric code Doppler τ̇g,k.
The state ne,k denotes the ionospheric TEC at time step k with its first derivative
ṅe,k. It is given in TEC units (TECUs) with 1 TECU = 1016 electrons/m2. The TEC
denotes the number of electrons integrated across a tube with one square meter cross
section along the signal path. In contrast to [Ili+18], where the state vector holds
the code delay of the first frequency band which allows to compute the delay of the
second band, our approach has the advantage that defining appropriate process noise
variances is more intuitive as LOS code delay dynamics and ionospheric dynamics are
separated. Under consideration of the first order ionospheric model, see for example
[Hof+01, Chapter 6], one can compose the effective code delay and Doppler for the
j-th frequency band with

τ
(0)
j,k = τg,k +

αI

c0f2
c,j

ne,k, τ̇
(0)
j,k = τ̇g,k, (5.4)

where c0 is the speed of light. See [Har+84] for a detailed derivation of the conversion
factor αI = 40.3 m3/s2. The process matrix needs to be adjusted according to the
new state vector to [Bar+01, Chapter 6]

A = diag
([

1 Tint

0 1

]
,

[
1 Tint

0 1

]
, INst−4

)
∈ RNst×Nst , (5.5)

which implements a constant velocity model for the geometric code delay and the
ionospheric TEC. For the channel coefficients, the random walk model is maintained.
The covariance matrix of the process noise is then obtained by extending Equation
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(2.32), yielding the following block diagonal matrix

Q = diag
(
σ2

Q,τ̈g Qτg , σ
2
Q,n̈e

Qne , σ
2
Q,hINst−4

)
∈ RNst×Nst , (5.6)

Qτg = Qne =

[
T 4

int/4 T 3
int/2

T 3
int/2 T 2

int

]
. (5.7)

The initial state estimate covariance matrix for the EKF initialization is then defined
as

P−1|−1 = diag
(
σ2

P,τg , σ
2
P,τ̇g , σ

2
P,ne , σ

2
P,ṅe , σ

2
P,hINst−4

)
∈ RNst×Nst . (5.8)

5.1.2 Measurement Model

In contrast to the single-frequency MMEKF, an additional carrier range rate aiding
has been proposed by the author in [Sie+22b]. Its purpose is to assist the EKF in
its estimation process, reduce noise, and increase robustness. Therefore, the carrier
Doppler estimates are used, provided by phase locked loop (PLL), to generate several
additional measurements. The carrier range observable can be modeled as [Mis+06,
Chapter 5]

φj,k = φg,k − αI

c0f2
c,j

ne,k + φj,k,err (5.9)

with the geometric carrier range φg,k and different unknown error sources φj,k,err
including constant integer ambiguities and multipath errors. While the latter can
change rapidly with time, it is limited in amplitude to the carrier wavelength c0/fc,j .
Correspondingly, for the carrier range rate φ̇j,k, which is proportional to the car-
rier Doppler, φj,k,err it is negligible for most applications. The same applies for all
static or quasi-static error contributions. Cycle slips, on the other hand, which lead
to sudden jumps in the carrier ranges, must be monitored in order to exclude af-
fected measurements. Following the ionosphere-free and geometric-free combination,
the following additional measurements can be formed out of the carrier range rates
[Mis+06, Chapter 5]

zj1,j2,k,i-free =
f2

c,j1 φ̇j1,k − f2
c,j2 φ̇j2,k

f2
c,j1 − f2

c,j2
= φ̇g,k = τ̇g,k, (5.10)

zj1,j2,k,g-free =
φ̇j1,k − φ̇j2,k
αI

c0f2
c,j2

− αI
c0f2

c,j1

= ṅe,k , j1, j2 = 1, . . . , Nband , j1 6= j2. (5.11)

Therewith, a direct measurement for the geometric code Doppler and the first deriva-
tive of the ionospheric TEC is obtained. The measurement variances of these new
measurements can simply be derived from the measurement variance of the carrier
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range rate σ2
φ̇j

with

σ2
zj1,j2,i-free =

σ2
φ̇j1

f4
c,j1 + σ2

φ̇j2
f4

c,j2(
f2

c,j1 − f2
c,j2

)2 , σ2
zj1,j2,g-free =

σ2
φ̇j1

+ σ2
φ̇j2(

αI
c0f2

c,j1
− αI

c0f2
c,j2

)2 . (5.12)

The Ncomb = Nband(Nband − 1)/2 new measurements and their measurement noise
variances can be summarized as follows.

zk,i-free =
[
. . . , zj1,j2,k,i-free, . . .

]T ∈ RNcomb×1 (5.13)

zk,g-free =
[
. . . , zj1,j2,k,g-free, . . .

]T ∈ RNcomb×1 (5.14)

Ri-free = diag
(
. . . , σ2

zj1,j2,i-free , . . .
)
∈ RNcomb×Ncomb (5.15)

Rg-free = diag
(
. . . , σ2

zj1,j2,g-free , . . .
)
∈ RNcomb×Ncomb (5.16)

In order to embed the carrier range rate aiding into the MMEKF, the measurement
model from Equation (2.34) must be augmented. This is done by simply appending
the new measurements onto the measurement vector with

zk =
[
zT
1,k, . . . , zT

Nband,k, zT
k,i-free, zT

k,g-free
]T ∈ RNmeas×1, (5.17)

where

zj,k =
[
zT
j,1,k, . . . , zT

j,Nsig,j ,k, zj,k,constr

]T
∈ R2Ncorr,jNsig,j+1×1, (5.18)

zj,i,k =
[
Re
(
z̃T
j,i,k

)
, Im

(
z̃T
j,i,k

)]T ∈ R2Ncorr,j×1, (5.19)

Nmeas = 2Ncomb +
∑Nband

j=1 (2Ncorr,jNsig,j + 1) is the total number of measurements.
The constraining measurement is now correspondingly defined for each band individ-
ually with

zj,k,constr =

1
Ntap,j−1

∑Lh,j

lh=−Lh,j ,lh 6=0

∣∣∣h(lh)
j,k

∣∣∣2∣∣∣h(0)
j,k

∣∣∣2 (5.20)

and remains therewith identical to the one from the single-frequency case in Equation
(2.33). The measurement noise matrix is defined equally as

R = diag
(

RwηC1
, . . . ,RwηCNband

,Ri-free,Rg-free

)
∈ RNmeas×Nmeas , (5.21)

RwηCj
= diag

(
RwηCj,1

, . . . ,RwηCj,Nsig,j
, σ2

constr

)
∈ R2Ncorr,jNsig,j+1×2Ncorr,jNsig,j+1

(5.22)

RwηCj,i
= diag

(
Rwη̃Cj,i

/2,Rwη̃Cj,i
/2
)
∈ R2Ncorr,j×2Ncorr,j . (5.23)
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The Jacobian matrix for the measurement model linearization, see Equation (2.24),
is correspondingly given by

Jf,k =
df(xk)

dxk

∣∣∣∣
xk=x̂k|k−1

∈ RNmeas×Nst

=
[
∂f(xk)
∂τg,k

∂f(xk)
∂τ̇g,k

∂f(xk)
∂ne,k

∂f(xk)
∂ṅe,k

∂f(xk)
∂h1,k

. . . ∂f(xk)
∂hNband,k

]∣∣∣
xk=x̂k|k−1

.

(5.24)

The individual partial derivatives are shown in detail in Appendix B.

5.1.3 Receiver Architecture
In Figure 5.1 a multi-frequency GNSS receiver is illustrated with the proposed IM-
MEKF. From the left, the radio frequency (RF) signal is fed into the structure and
for each band individually first of all down-converted. The therefore required carrier
replicas are generated by the numerically-controlled oscillators (NCOs). The base-
band signals yj,k are then passed to the correlator banks Cj,i, i = 1, . . . , Nsig,j . The
correlator outputs zj,i,k as well as the carrier range rates from the PLLs across all
Nband bands are fed provided to the IMMEKF to perform the code tracking and
ionosphere estimation. In addition to that, the central correlator outputs, i.e., the
prompts, are used by the PLL. In case of multiple signals per band, i.e, Nsig,j > 1, the
individual prompts are bit and phase corrected and subsequently averaged to reduce
noise. The PVT solution is determined based on the geometric code delay estimate
τ̂g,k without the need for an ionospheric correction. Last but not least, the IMMEKF
state estimates are also used to adjust the correlator banks accordingly in order to
close the tracking loops.

5.1.4 Hardware Imperfections
With the simultaneous processing of multiple frequencies, hardware imperfections
regarding the signal transit times become relevant, more precisely their differences
across different bands. Differences in signal transit times can emerge already at the
transmitter side. Due to frequency-dependent antenna characteristics as well as dif-
ferent cables and filters implemented on the individual signal paths, signals may be
broadcast with minor misalignments. These instrumental delays are referred to as the
timing group delay (TGD) [Ant+22b]; [Ant+22a] or the broadcast group delay (BGD)
for Galileo [Eur21b]. A correction parameter is broadcast in the navigation message
to compensate for this effect [Ant+22b]; [Ant+22a]; [Eur21b]. Multi-frequency re-
ceivers relying on the ionosphere-free combination automatically cancel out these
errors [Eur21b]. This is because the provided satellite clock correction parameters
ensure that the BGD errors scale with frequency the same way the ionospheric delays
scale. The same applies to the IMMEKF with its geometric code delay estimate τg,k.
Thus, no further considerations are required for the PVT solution. The ionospheric
TEC estimate n̂e,k, on the other hand, will be offset. If one is interested in the actual
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Figure 5.1: Proposed receiver architecture for IMMEKF.

TEC, a correction according to the broadcast TGD is required. Furthermore, on
the receiver side, RF front ends and digitizers can introduce additional signal transit
time differences. However, as they are common to all satellites, in contrast to TGDs,
these errors will be absorbed by the user clock bias estimate in the PVT solution
in a conventional receiver. The TEC estimate of the IMMEKF is also affected by
these differential hardware delays. In order to get the actual TEC value, the common
offset needs to be removed from all n̂e,k. This offset is in general unknown but can
be measured for the specific hardware setup.

5.2 Summary

This chapter has been motivated by the fourths research question, which asked for
a combined multipath mitigation and ionospheric delay estimation. Since multipath
errors prevent an accurate elimination of ionospheric delays with state-of-the-art tech-
niques, it was crucial to combine the suppression of both sources of error. With the
MMEKF developed in Chapter 2, the additional ionospheric delay estimation is a
natural extension and is achieved by extending the underlying EKF accordingly. An
additional carrier range rate aiding has been proposed to assist the EKF in its estima-
tion process and increase robustness. The obtained IMMEKF fulfills therewith the
fourth research question. In the following chapter, the effectiveness of the proposed
MMEKF and its extension the IMMEKF will be demonstrated.
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6 Performance Analysis and Validation

In Chapter 3, the capabilities of the developed multipath mitigating EKF (MMEKF)
has been demonstrated with synthetic signals. This included deriving multipath error
envelopes, drawing comparisons with other well-known multipath mitigation meth-
ods, and investigating its dynamic behavior. The goal of this chapter is to verify the
capability of the MMEKF with authentic global navigation satellite system (GNSS)
signals. This will allow to observe the effect of the increased robustness against mul-
tipath of the MMEKF’s code tracking in the positioning domain. Different realistic
scenarios are simulated in Section 6.2 using a hardware GNSS emulator followed by an
evaluation of an actual measurement campaign conducted in a suburban environment.

Then, in Section 6.3, the integration of the MMEKF into vector tracking (VT)
loops from Chapter 4 is investigated. First, a challenging urban canyon scenario has
been simulated to test this advanced tracking structure under controlled conditions.
Then, a measurement campaign conducted in an urban environment has been evalu-
ated. The results will answer the third research question formulated in Section 1.3,
which concerned the performance improvements with the joint processing of several
satellites.

Furthermore, the ionospheric MMEKF (IMMEKF) from Chapter 5, which ex-
tends the code tracking to multiple frequencies for the ionospheric total electron
content (TEC) estimation, is examined in Section 6.4. This is done again with au-
thentically simulated GNSS signals as well as actual measurement data. Before all
that, the simulation and measurement setups are defined in the following.

6.1 Setup of Simulations and Measurements

The simulation and measurement environments used for the testing below are defined.
The parameters defined in Section 3.1 continue to be valid in this chapter, including
sampling frequencies, signal bandwidths, and others. However, instead of using simple
synthetic GNSS signals with no navigation data bits and zero Doppler, the signals
considered in the following are fully authentic. Correspondingly, a carrier tracking
loop can no longer be omitted. We implemented a conventional phase locked loop
(PLL) relying on a two-quadrant ATAN Costas discriminator [Kap+06, Chapter 5]
for the scalar tracking (ST) cases. The carrier loop filter is of third order with a
bandwidth of 9 Hz. The integration time is set to 4 ms and navigation data bits were
removed before integration. In case of multiple signals per band per satellite, e.g., data
and pilot components as it is the case, among others, with the Galileo E1 Open Service
(OS), the prompts of each signal are averaged under consideration of potential signal
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phase offsets. The results of the carrier tracking loops are used for a carrier-aiding
of the code tracking loops. For the VT cases, a frequency locked loop (FLL)-assisted
PLL was employed as already explained in Section 4.1 using a second-order FLL
assist. The position, velocity, and time (PVT) solution is determined in all ST cases
with a simple snapshot-based least-squares algorithm where all available satellites
are equally weighted. If not otherwise specified, the ionospheric delay is corrected
according to the Klobuchar model. Moreover, tropospheric delays are modeled with
the Hopfield model modified by Goad, see [Goa+74].

As discovered in Subsection 3.2.2, a correlator banks with a reduced number of
correlators can still achieve a sufficiently good performance for the MMEKF. There-
fore, the correlator banks used in this chapter rely only on Ncorr = 7 correlators, unless
otherwise specified, with a uniform correlator spacing of ∆(l)

c = 0.05Tc, ∀l > 0. The
measurement noise variance σ2

η is determined based on the correlator output noise of
a non-existing satellite that impinges with a carrier-to-noise density ratio (C/N0) of
45 dB Hz, as described in [Sie+21b].

For the hardware emulations, GSS9000 series Spirent GNSS constellation simula-
tors were used to generate authentic GNSS signals in real-time. With in-house de-
veloped radio frequency (RF) front ends [Hec+11], those signals were brought down
to an intermediate frequency (IF) and were subsequently digitized and stored using a
NI PXIe-51740 4-channel oscilloscope card. Figure 6.1a schematically illustrates the
processing chain and a picture of the actual setup can be found in Figure 6.2. The
recorded raw samples were processed using a software receiver. In order to reduce
the time to first fix (TTFF), the broadcast ephemeris data was provided instead of
extracting it from the navigation message during the processing. That means, no
additional information was used for the processing and a real-time implementation
would achieve the same results. The clocks of the front ends and the digitizer were
synchronized with the one from the GNSS constellation simulator. The simulated
satellite constellation of the conducted hardware emulations is shown in Figure 6.3.
This hardware emulation with authentic signals from the constellation simulator al-
lows to easily investigate the performance of different code tracking algorithms in a
controlled environment.

For the measurement campaigns, an Antcom G8 antenna has been attached to
the roof of a measurement vehicle while driving through the test environments. The
measurement vehicle is shown in Figure 6.4. As for the simulator setup, the same
front ends and NI PXIe-51740 4-channel oscilloscope card was used to digitize and
subsequently store the antenna signal. A rubidium clock was used as a reference
for the front ends and the digitizer. With a signal splitter, the antenna signal was
simultaneously fed to the commercial NovAtel PwrPak7 receiver which has a built-
in inertial measurement unit (IMU). The manufacturer’s post-processing software
GrafNav was used to process the obtained log files under consideration of precise point
positioning (PPP) correction data. The determined PVT is used as a ground truth
reference track, as discussed in Section 6.1.1. The measurement setup is shown in
detail in Figure 6.5. In contrast to a hardware emulation in a controlled environment,
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Figure 6.1: Schematic illustrations of the different measurement setups.

Figure 6.2: Setup for the hardware emulations. The racks of the Spirent GSS9000 series
can be seen in the background. The generated RF signal is fed through the
blue cable to the RF front end which sits on top of the digitizer with the NI
PXIe-51740 4-channel oscilloscope card, i.e., the white machine on the bottom
right.
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Galileo satellites are highlighted as crosses and circles, respectively.

Figure 6.4: Measurement vehicle.

the actual data allows to demonstrate the performance under real-world conditions
at the cost of a limited knowledge about the environmental properties. For the
processing, all available Global Positioning System (GPS) and Galileo satellites were
used. In the L1 and E1 band, the GPS coarse/acquisition (C/A) code and the Galileo
OS were tracked, respectively. Whenever available, both, the data and pilot signal
components were used.

6.1.1 Ground Truth

In order to have a reference against which to compare the results obtained, a ground
truth must be defined. This is easy for the hardware emulations, as the hardware
emulator provides the ground truth data. Defining a reference trajectory for the
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Figure 6.5: Detailed schematic illustration of the measurement setup.

measurement campaigns, on the other hand, is less straight forward. Ideal would be
an accurate and independent measurement system, such as an external laser trian-
gulation system [Don+15]. However, such a system is very impracticable to setup
for larger areas, if not impossible for the large-scale suburban and urban measure-
ment route carried out in see Sections 6.2.2 and 6.3.2, respectively. For this reason,
a ground truth has been generated using the commercial NovAtel PwrPak7 GNSS
receiver.

It may seem counterintuitive at first to compare GNSS position estimates to a
ground truth that is also based on GNSS. However, the GNSS receiver for the ground
truth trajectory operates on multiple frequencies across multiple GNSSs. This adds
frequency diversity and improves the dilution of precision (DOP) with the increased
number of satellites available. It also includes an IMU whose measurements are fused
with the GNSS measurements. This improves positioning accuracy by overcoming
short-term errors and bridging short GNSS outages. In addition, the manufacturer’s
post-processing software GrafNav was used to process the resulting log files using
a forward/backward smoothing under consideration of PPP correction data. This
processing step goes beyond what a real-time solution could achieve, as the for-
ward/backward filtering requires the measurements of the entire trajectory to be
available, and the incorporated correction parameters only become available in retro-
spect. All these measures result in a very accurate and reliable reference trajectory,
which is well suited as a ground truth for our position estimates.
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6.2 Multipath Mitigating EKF

First of all, the base version of the proposed algorithm, the MMEKF of Section 2.3,
will be tested in the following. This is done first as a hardware emulation in Subsec-
tion 6.2.1 using signals from the GNSS constellation simulator. Then, in Subsection
6.2.2, a measurement campaign conducted in a suburban environment is evaluated to
demonstrate the real-world performance.

6.2.1 Hardware Emulation

With the hardware emulation, a simple static test is conducted. For the static sce-
nario, the receiver tracks four GPS satellites using their L1 C/A signals. After around
50 s seconds, three of the four satellites are affected by a single static multipath each
with a 3 dB line-of-sight (LOS) to multipath ratio. After around 50 s seconds, three
of the four satellites are affected a single static multipath each. The multipath signals
are attenuated by 3 dB with respect to the LOS and otherwise unaltered, i.e., they
are in-phase with the LOS signal and have the same Doppler. The simulated satellite
constellation is shown in Figure 6.3 and Table 6.1 lists details about the processed
satellites and their multipaths.

Figure 6.6 shows the resulting position root-mean-square error (RMSE). The plots
begin after 3 s which was the TTFF in this scenario. For the conventional early minus
late (EML)-based code tracking, the errors increase abruptly to 13 m on average once
the multipaths appear at approximately 50 s.

On the other hand, the proposed MMEKF with the full correlator bank consisting
of Ncorr = 41 shows no noticeable increase in position error. Its lower complexity
variant with only Ncorr = 7 leads to a mean steady-state error of 1.7 m. This is
because the delays of the simulated multipath fall with 50 to 150 m into the region of
the multipath error envelope, where the low complexity variant has a residual error,
see Figure 3.4. With the high-resolution correlator (HRC), the appearing multipaths
also do not affect the position RMSE. The direct comparison with the MMEKF cases
confirm, however, its slightly inferior noise performance.

Moreover, Figure 6.7 illustrates the channel impulse response (CIR) estimates us-
ing the full Ncorr = 41 correlators. The LOS signal is represented for each satellite by
the central tap with the large peak. After 50 s, additional peaks arise for three out of
the four satellites, representing the appearing multipath components. The simulated

Table 6.1: GPS satellite parameters of hardware emulation for MMEKF.

GPS satellite pseudorandom noise (PRN) 9 11 17 27

Multipath delay τmul / Tc 0.34 0.51 – 0.17
Multipath to LOS ratio / dB −3 −3 – −3
C/N0 / dB Hz 43.37 43.34 44.86 43.18
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Figure 6.7: Estimated CIRs of the static scenario. The central peaks represent the LOS
signal. Additional peaks arise from 50 s onwards, representing the appearing
multipaths. See Table 6.1 for the corresponding multipath delays.
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3 dB LOS to multipath power ratio is not accurately reflected in the estimated CIRs.
This is because the constraining measurement distorts the estimates in favor for a
higher LOS channel tap amplitude and lower non-line-of-sight (NLOS) taps.

6.2.2 Suburban Measurement Campaign

In order to demonstrate the real-world performance of the proposed MMEKF, a
measurement campaign has been conducted in Germering, near Munich, Germany.
This campaign has been evaluated before in [Sie+23a]. The measurement vehicle
drove through a variety of different environments, including suburban environments,
short forest sections along rural roads, and highways. An overview of the entire route
can be found in Figure 6.8. The sky plot in Figure 6.9 illustrates all acquired and
tracked satellites. As already mentioned in Section 6.1, the PVT solution has been
determined with a snapshot-based least-squares algorithm. An obtained position
estimate has been rejected if the RMSE of the residual pseudoranges exceeded 3 m,
the estimated time scale offset between GPS and Galileo deviated from the broadcast
Galileo-GPS time offset (GGTO) by more than 20 ns, or the geometric dilution of
precision (GDOP) exceeded a value of 20. Moreover, satellites require a minimal
C/N0 of 30 dB Hz to be considered in the PVT solution.

The 2D position RMSE as well as the altitude estimates of the entire campaign
can be found in Figure 6.10. Despite the PVT estimate filtering based on residual
pseudorange errors, DOP, and GGTOs as described above, multiple significant error
peaks can still be found in the results. The first one around minute 2, which affected
both code tracking algorithms equally, is due to a close pass of a multi-story build-
ing. With all satellites blocked from one side, the GDOP increases to around 11,
causing the position estimate to deviate from the ground truth. Moreover, multiple
bridge underpasses led to error peaks between 12 min and 16.5 min, including the
overall largest peak at 16 min. Figure 6.11a illustrates in a 3D rendering the resulting
position estimates for a few bridge underpasses. The errors occur for the first PVT
estimates after the vehicle has passed the bridge. This is likely due to reflections from
the bridge construction and affects therefore the conventional EML-based GNSS re-
ceiver to a larger extent. Last but not least, the large number of error peaks in the
suburban section are due to numerous NLOS-only situations. Low elevation satel-
lites are being blocked by buildings, while its multipath continues to persist. Both
receiver algorithms begin to track the reflected signal replica, leading to erroneous
pseudoranges (PSRs). Since the reflected signal is above the set C/N0 threshold,
the LOS blockage is not detected by the receiver, leading to the large position er-
rors. Such a LOS blockage also caused the longer PVT outage around minute 24.
The vehicle was waiting at a red light in an unfavorable position with buildings on
both sides of the street, see Figure 6.11b. While the GPS satellites 2 and 4 were
blocked, both receiver algorithms continued to track their persisting multipaths. The
resulting PVT estimate exceeded the set Galileo GPS time scale offset, so that the
estimates were rejected. As soon as the vehicle continues driving, the MMEKF and
the EML-based tracking quickly lock back in with the reappearing LOS signals due
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Figure 6.10: Results of the suburban measurement campaign. The time axes are colored
according to the different route sections, see Figure 6.8.

(a) Bridge underpasses lead to error peaks,
in particular for the EML case.

(b) Stopping between buildings with NLOS
reception.

(c) Suburban section with NLOS reception
around the corner.

Figure 6.11: Representation of the position estimates of the suburban measurement cam-
paign in 3D renderings from Google Earth. The blue line shows the results
with the MMEKF and the red one with a conventional EML-based DLL. The
black line is the ground truth trajectory.
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to their higher signal power compared to the reflected signal replicas. Such false
locks during LOS blockages may be detectable using a receiver autonomous integrity
monitoring (RAIM) algorithm [Par+96, Chapter 5], though high dynamics tend to
complicate this process. Alternatively, one can also rely on advanced VT structures
to overcome such situations, as it will be done in the following Section 6.3. A second
noteworthy PVT outage can be found around minute 33. This is due to an extended
tunnel section blocking all GNSS signals. In such an environment, only the use of
additional sensors, such as wheel speed sensors, could help to overcome the complete
signal outage.

In the altitude estimates in Figure 6.10b, a constant bias of approximately 2 m
can be observed between the estimates and the ground truth. This bias most likely
originates from the circumstance, that for the ground truth trajectory, more accurate
correction data was available in the post-processing, minimizing ionospheric and tro-
pospheric errors, as well as satellite clock biases and orbital deviations. Factoring out
the above explained error peaks and PVT outages, the position RMSE and altitude
estimates unveil that on route parts with less severe multipath propagation, i.e., the
highway sections or on open fields, both, the conventional EML-based GNSS receiver
as well as the proposed MMEKF-based one perform comparable. When the multipath
propagation intensifies, however, as it is for example the case in the suburban section,
the higher multipath resilience of the MMEKF becomes apparent. In order to have
a more detailed look at such multipath scenarios, two sections of the campaign are
shown in detail in the following.

First of all, the very beginning of the measurement campaign is examined as it
points out the typical difficulties in static multipath environments. Therefore, the
altitude error is shown in Figure 6.12. The obtained oscillating error for the EML-
based receiver is typical for such static multipath environments. The root cause is
the low elevation Galileo satellite 8 that appears to have a strong multipath. The
altitude estimates of the proposed MMEKF are not notably affected by that. Once
the vehicle starts to move from 57 s onwards, the multipath disappears, and both
solutions provide comparable results.

Figure 6.13 shows one part of the suburban section in more detail. Buildings
on alternating sides of the street cause considerable multipath propagation. With
the higher multipath resilience of the proposed MMEKF, lower position errors were
obtained compared to a conventional EML-based code tracking. The larger error peak
obtained around minute 22.2 is due to another NLOS-only reception. Figure 6.11c
illustrates this situation with a 3D rendering. The Galileo satellite 31 disappeared
behind a building and both receiver algorithms start to track the remaining multipath
signal until the satellite is lost entirely after all.

6.3 Vector Tracking Enhanced Multipath Mitigation

The integration of the proposed MMEKF into VT architectures has been proposed in
Chapter 4. In the following, the capabilities of this strong combination of a multipath
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Figure 6.13: Position estimates and altitude errors from 21.24 to 22.57 min in the suburban
route section. Residential buildings reflect signals from alternating sides of the
street. They were causing the EML-based solution to deviate from the ground
truth while the MMEKF mostly mitigates the effect of the additional signal
replicas. The error peak around 22.2 min is caused by NLOS-only reception.
The direction of travel is indicated with the arrow.
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mitigation algorithm with the robust VT architecture are demonstrated. This is done
first with a hardware emulation, simulating an urban canyon environment, and then
with an actual measurement campaign in an urban environment in Subsection 6.3.2.
In both cases, frequent LOS blockages occur in combination with strong multipath
propagation, in order to challenge the advanced processing architecture accordingly.
The measurement setups used were described in Section 6.1 and are identical to those
already used in Section 6.2.

In both cases, the VT filter update interval was set to TPVT = 100 ms. The C/N0

threshold below which satellites are considered as concealed was set to 36 dB Hz, see
Subsection 4.3.1. In order to prevent the divergence of the VT filter, it needs to
be disabled when the environmental conditions are too challenging over an extended
period of time. This mechanism is explained in detail in Subsection 4.3.2. The
required counter threshold for this was set to NVT, off = 300. This corresponds to a
disabling of the VT after 30 s when at least one criteria is continuously exceeding its
threshold. The process and measurement model parameters of the VT filter can be
found in Table 6.2.

The code tracking begins in a ST mode. Once a sufficient number of satellites
are tracked stably and a PVT solution has been found, it switches over to the VT
architecture. In case the VT filter must be disabled, it falls back to ST until VT can
be enabled again. The results show only the position estimates determined with VT
enabled. These mechanisms are identical for the conventional vector delay/frequency
locked loop (VDFLL) and the proposed integration of the MMEKF into the VT
structure.

6.3.1 Simulated Urban Canyon

In order to demonstrate the capabilities of the VT architecture with the proposed
integration of the MMEKF in a controlled environment, a challenging urban canyon
scenario has been simulated with the constellation simulator. This hardware emula-
tion has been conducted before in [Sie+22a]. A vehicle drove along a straight road
northbound, passing by buildings on the right and left hand side. The vehicle stopped
several times, simulating red lights at crossings. An overview of the simulated envi-
ronment is given in Figure 6.14. On the roof of the vehicle, at an height of 1.5 m, the
GNSS antenna is mounted. Initially, all satellites are visible and no multipaths are

Table 6.2: Parameters for VT EKF.

User position User clock

Initial state STDs σP,pos = 1 m σP,tu = 5 ns
σP,vel = 1 m/s σP,ṫu = 5 ns/s

Process noise parameters σacc = 1 m/s2 h0 = 2 · 10−19

h−2 = 2 · 10−20
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Figure 6.14: Illustration of the simulated urban canyon environment. A vehicle drives
northbound, i.e., from the left to the right, along the straight road and stops
at the three marked points at the crossings. The building heights are given by
the meter specifications under the respective building numbers.

present, the vehicle velocity is zero. After 30 s the vehicle accelerates to its maximum
velocity of 30 km/h until it reaches the end point, where it comes to a stop again. On
its way it passes the four cuboid-shaped buildings with heights between 13 and 20 m.
The buildings can block and reflect satellite signals. Their facades are simulated to be
smooth non-magnetic lossy surfaces with a permittivity of εr = 5 and a conductivity
of σ = 0.1 S [Erc+06]. For simplicity it is assumed that only the street facing facades
are reflecting satellite signals. Moreover, ground reflections are not considered. The
simulated Doppler of the multipaths has been determined based on the vehicle and
satellite velocity. The receiving GNSS antenna has an ideal isotropic characteristic
and rejects left-hand circular polarization (LHCP) modes entirely. At each marked
crossing, see Figure 6.14, the vehicles comes to a stop for 5 s. All accelerations are
conducted within 5 s with a constant acceleration. The satellite constellation for this
simulation can be found in Figure 6.3. Figure 6.15 illustrates the resulting number
of visible LOS signals and currently active multipaths over time.

The resulting position estimates are illustrated in Figure 6.16. As expected, before
the first building, when no multipaths are present, both solutions, i.e., the proposed
integration of the MMEKF into a VT architecture and the conventional VDFLL,
perform comparable. Once the vehicle passes the first building, multipaths appear
and a few LOS signals are being blocked. The proposed solution remains basically
unaffected by this. On the other hand, the conventional VDFLL starts to show first
errors. However, due to the dominating number of remaining LOS signals, the overall
error is small. This changes with the second building. Due to the closer distance
to the building, the number of LOS signals goes down to only 6. Accordingly, the
VDFLL struggles to mitigate the multipath effects and shows errors of up to 12.76 m.
The errors jump back to lower values once a few LOS signals reappear. The proposed
VT MMEKF also starts to show first errors, but manages to stay below a RMSE of
2 m. The final section of the simulation, between building 3 and 4, a similar result
has been obtained. The conventional VDFLL shows errors of up to 3.88 m while the
proposed solution hits only a maximal RMSE of 1.92 m. Once the vehicle is out of
the zone of influence of the urban canyon, both solutions perform identical again.
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Figure 6.15: The number of visible LOS and active multipath signals during the urban
canyon simulation plotted over time. Building passes are marked by the gray
sections. The vehicle position in Y-direction is given by the orange line to
facilitate the interpretation of the plots.

6.3.2 Urban Measurement Campaign

The results from the urban canyon simulation above will be verified with an actual ur-
ban measurement campaign in the following. Therefore, a measurement vehicle drove
through the city center of Munich in Germany. This campaign has been evaluated
before in [Sie+22a]. The route and the satellite constellation of all used satellites can
be found in Figures 6.17 and 6.18.

The plots in Figure 6.19 provide an overview of the position RMSE and the alti-
tude estimates. The outcomes suggest that the proposed integration of the MMEKF
into a VT architecture results in smoother estimates across the entire campaign,
whereas the conventional VDFLL tends to show larger outliers. This distinction
is especially notable in sections marked in orange, where the receiver encountered
particularly challenging multipath conditions. In these situations, the conventional
solution struggles notably due to the absence of a dedicated multipath mitigation.
Around minute 27, the vehicle turned into an especially narrow urban canyon. As it
was a dead end, the vehicle turned around. With the limited sky-view between the
buildings, the majority of LOS signals were blocked. This allows the VT architec-
ture to demonstrate its full potential. Blocked satellites are kept in lock until they
reappear, avoiding time-consuming reacquisition processes. Nevertheless, the poor
GDOP of the remaining visible satellites leads to larger position errors. In addition
to that, multipath propagation due to reflective building facades introduce further
errors. The latter is being mitigated to a greater extent by the proposed MMEKF
leading to smaller position RMSEs. Towards the end of the campaign, around minute
37, another challenging situation arose. The vehicle had to wait at a red light next
to a six-story building, see Figure 6.20b. This rather static multipath condition was
particularly difficult for the conventional VDFLL relying on an EML discriminator.
As multipath errors cannot average out over time, errors of up to 32.5 m were ob-
tained in this environment. The proposed solution on the other hand, relying on the
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Figure 6.16: Illustration of position estimates of urban canyon simulation.

MMEKF for a dedicated multipath mitigation, manages to keep errors significantly
lower. Last but not least, there is a notable PVT outage between minute 14.1 and
15.1. This is due to a longer underpass followed by a red light at its end where only
6 satellites from a northwestern direction were received. With this poor GDOP, the
VT filter was disabled to avoid a divergence, releasing the remaining visible satellites
into the ST mode and requiring the reacquisition of the blocked ones. Such extended
signal outages, as already discussed under Subsection 6.2.2, can only be overcome
with additional sensors, such as wheel speed sensors or IMUs. Shortly after the VT
is enabled again, the vehicle turns into another narrower urban canyon. The conven-
tional VDFLL peaks here at an RMSE of 42.13 m at 15.6 min. On the other hand,
the proposed solution is not exceeding a RMSE of 5 m in this situation once again
due to its increased multipath resilience.
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Figure 6.17: Route of the urban measurement campaign. The background satellite image
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The orange stretches highlight particularly challenging passages.
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Figure 6.19: Results of the urban measurement campaign. Orange stretches indicate par-
ticularly challenging sections.

(a) Around minute 13. (b) Around minute 37.

Figure 6.20: Representation of the position estimates of the urban measurement campaign
in 3D renderings from Google Earth. The blue line shows the results with the
VT MMEKF and the red one with the VDFLL. The black line is the ground
truth trajectory. The static multipaths while stopping next to multi-story
buildings lead to position errors.

With Figure 6.21, are more detailed view onto the first in orange highlighted
challenging section is given. In this part, the vehicles passes several high-rise buildings
and including a stop right next to one at a traffic light, see Figure 6.20a. Figure 6.21a
show the position estimates projected onto a satellite image. It unveils clearly, how the
conventional VDFLL without a dedicated multipath mitigation deviates frequently
from the ground truth. At the same time, the proposed solution provides more
accurate position estimates. The altitude error plot in Figure 6.21b confirms that.
In addition to that, it unveils a larger outlier around minute 13.4. This is where the
vehicle was required to stop at the red light next to a multi-story building. As it
was already the case at minute 37, the conventional VDFLL suffers in such a static
multipath environment while the proposed integration of the MMEKF is significantly
less affected by this condition as its measurement model considers for the additional
signal replicas.

It can be concluded that the proposed integration of the MMEKF into VT ar-



6.4 Ionospheric Multipath Mitigating EKF 87

1.7 1.75 1.8 1.85 1.9 1.95

0.8

0.85

0.9

0.95

1.7 1.75 1.8 1.85 1.9 1.95

0.8

0.85

0.9

0.95

East / km

N
or

th
/

km

Ground Truth
VT MMEKF
VDFLL

(a) Position estimates.

11.6 11.8 12 12.2 12.4 12.6 12.8 13 13.2 13.4 13.6 13.8

0

20

11.6 11.8 12 12.2 12.4 12.6 12.8 13 13.2 13.4 13.6 13.8

0

20

Time / min

A
lt

it
ud

e
er

ro
r
/

m

0

5

10

0

5

10

V
el

oc
it

y
/

m
/

s

VT MMEKF
VDFLL

(b) Altitude errors plotted jointly with the ground truth vehicle velocity in orange.

Figure 6.21: Position estimates and altitude errors of an exemplary section of the urban
measurement campaign. Considerable multipath propagation is caused by
high-rise buildings adjacent the street. The proposed solution shows smaller
errors than the conventional VDFLL, especially during the extended static
period around 13.4 min.

chitectures comes along with an improved multipath resilience when compared to a
conventional VDFLL, which answers the third research question formulated in Section
1.3.

6.4 Ionospheric Multipath Mitigating EKF

Chapter 5 proposed the extension of the MMEKF to a multi-frequency processing.
This allows for the active estimation of the ionospheric TEC and was thus referred
to as the IMMEKF. The active estimation of the ionospheric delay dissolves the
dependency on ionospheric models, such as the simple Klobuchar model as the use
of ionospheric models can lead to erroneous corrections, as we have for example
seen with the suburban measurement campaign in Subsection 6.2.2. The IMMEKF
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is analyzed first using synthetically generated signals. Then, in Subsection 6.4.2,
a hardware emulation has been conducted. Finally, actual measurement data has
been processed in Subsection 6.4.3 to demonstrate the performance under real-world
conditions. The signals used for the analysis were the Galileo E1 OS as well as
the Galileo E5a band, each using both, data and pilot components. It follows that
Nband = 2 and Nsig,j = 2, j = 1, 2. GPS satellites were not considered as the
deployment of L5 satellites has not been completed yet. The correlator bank for
the E1 band uses Ncorr,1 = 7 correlators, as defined in Subsection 6.1. For the E5a
band, due to the higher chip rates, we used only Ncorr,2 = 5 correlators with the
same equal spacing of ∆(l)

c,2 = 0.05Tc,1, l > 0. As for the MMEKF, the latest results
from the EML-based tracking were used to initialize the IMMEKF. This includes
the initial geometric delay and Doppler τ̂g,−1|−1 and ˆ̇τg,−1|−1, respectively, and the
initial ionospheric TEC estimate n̂e,1|−1. The initial ionospheric TEC rate is simply
set to ˆ̇ne,1|−1 = 0. Further IMMEKF specific parameters can be found in Table
6.3. If not otherwise specified, the in Subsection 5.1.2 proposed carrier range rate
aiding has been enabled. The IMMEKF is primarily compared with a conventional
dual-frequency GNSS receiver. It relies on a EML-based delay locked loop (DLL)
and the well-known ionosphere-free combination to eliminate the ionospheric delays.
The E5a early-late spacing is set to 0.5Tc,2. While the ionosphere-free combination
eliminates the first-order ionospheric delays entirely, it tends to amplify the noise from
the individual bands and other errors such as multipath, as shown in the following
subsections.

6.4.1 Synthetic Signals

First of all, a simple scenario has been simulated with synthetically generated signals,
to demonstrate the basic functionality of the proposed IMMEKF. Therefore, a single
geostationary satellite was assumed, broadcasting Galileo E1 and E5a signals. The
receiver, located statically on the ground, received the LOS signal with 48.61 dB Hz
and correspondingly zero Doppler. The ionosphere was simulated to have a TEC of
50 TECU. A single in-phase multipath arose after 120 s on all bands with an additional
path delay of 50 m and 3 dB LOS to multipath power ratio. The evaluation of this
synthetic scenario has been done before in [Sie+22b].

Table 6.3: IMMEKF specific parameters.

Initial state Process covariance
covariance P−1|−1 matrix Q

Geometric code delay τg
σP,τg = 0.01Tc,1

σQ,τ̈g = 0.02 Tc,1/s2
σP,τ̇g = 0.01 Tc,1/s

TEC ne
σP,ne = 5 TECU

σQ,n̈e = 0.5 TECU/s2
σP,ṅe = 1 TECU/s

CIR h σP,h = 0.05/s σQ,h = 10−3.3/s
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Figure 6.22 shows the ionospheric TEC estimates n̂e. While the estimates quickly
converge towards the ground truth of 50 TECU, the arising multipath introduces from
120 s onwards a small error of approximately 1.3 TECU.

The code delay error is illustrated in Figure 6.23. It compares the results obtained
with the proposed IMMEKF with a conventional dual-frequency receiver using the
ionosphere-free and an EML-based DLL. For the latter, the code delay errors of each
band individually were also plot. At this stage, the ionospheric delay has not yet been
eliminated. Thus, those estimates are biased according to the simulated 50 TECU.
The lower carrier frequency of E5a has accordingly the higher bias. The arising
multipath introduces further errors for the E1 case. As the multipath is delayed by
50 m, the single-frequency E5a tracking is not affected by this since the multipath
correlation triangle is already zero at the early and late correlators. After applying
the ionosphere-free combination, the effect of the ionosphere has been eliminated.
However, the arising multipath causes a significant increase in error to more than
20 m. The IMMEKF case achieves equally the complete elimination of the ionospheric
delays. The difference is though, that the appearing multipath barely affects the code
delay due to the multipath mitigating capability of the proposed solution. This is a
key advantage of combining the MMEKF and the ionospheric TEC estimation. The
fourth research question, which asked for an extension to ionospheric delay estimation
while maintaining multipath mitigation capabilities, has thus been fully addressed.
In addition to that, its estimate variance is significantly lower than the one from the
ionosphere-free combination.

6.4.2 Hardware Emulation
After the simple simulation conducted above, the results are verified with a hardware
emulation in the following. Therefore, the constellation simulator was set up to
simulate a static receiver at 48◦N and 11◦E with an altitude of 550 m. After an
initial LOS-only period, static multipaths appear after 45 s. For the processing, four
Galileo satellites were selected. The satellite constellation can be found in Figure
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Figure 6.22: Ionospheric TEC estimate n̂e using synthetic signals. It quickly converges to
the true value of 50 TECU. From 120 s onwards, the arising multipath causes
a bias.
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Figure 6.23: The tracking errors obtained for the IMMEKF and a conventional dual-
frequency receiver using the synthetically generated signals. For the latter,
the individual band-wise tracking results are additionally shown. As no iono-
spheric delay has been eliminated yet, those estimates are biased. The emerg-
ing multipath introduces additional errors from 120 s onwards.

6.3. Details about the satellites and their multipaths can be found in Table 6.4. The
constellation simulator relied on the Klobuchar model to simulate the ionospheric
delays. This hardware emulation has been evaluated before in [Sie+22b].

The resulting position RMSE can be found in Figure 6.24. Both, the ionosphere-
free combination and the proposed IMMEKF manage to provide a bias-free position
estimate during the initial multipath-free period. The appearing multipath leads to
a RMSE of 22.5 m for the conventional dual-frequency receiver, as no dedicated mul-
tipath mitigation is performed and the ionosphere-free combination further amplifies
multipath errors. The proposed IMMEKF on the other hand stays below a position
error of 3 m. The additional carrier range rate aiding further smooths the estimates
and also holds the IMMEKF back from converging too quickly to the multipath in-
duced bias. As in the simulation above, the noise performance of the IMMEKF, with
or without the additional carrier range rate aiding, outperforms the results from the
ionosphere-free combination.

In addition to that, the TEC estimates n̂e of the IMMEKF are shown in Figure

Table 6.4: Satellite and multipath parameters of hardware emulation for IMMEKF.

GNSS PRN Multipath Multipath C/N0 E1 C/N0 E5adelay to LOS ratio

Galileo 5 – – 47.43 dB Hz 52.97 dB Hz
Galileo 6 150 m −3 dB 46.85 dB Hz 51.78 dB Hz
Galileo 20 100 m −3 dB 47.35 dB Hz 51.93 dB Hz
Galileo 22 50 m −3 dB 47.21 dB Hz 51.95 dB Hz
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Figure 6.24: Position RMSE using a multi-frequency processing of hardware emulation.
The after 45 s arising multipaths lead to positioning errors. Significantly nois-
ier estimates were obtained with the ionosphere-free combination.

6.25. After a short initialization phase, the estimates quickly converge towards the
ground truth. The arising multipaths induce errors again, in this case of up to
10 TECU which corresponds to 1.6 m for the E1 band. Moreover, the carrier range rate
aiding clearly smooths the TEC estimates and, as in the position estimate domain,
prevents the IMMEKF from converging too quickly towards the multipath induced
bias.

6.4.3 Actual Measurements
After the preliminary testing with the synthetic signals and the hardware emulation,
actual measurement data is processed in the following to confirm the results. There-
fore, the signal of a patch antenna placed on a rooftop has been recorded using the
same equipment as for the measurement campaigns. The data was recorded in the
late afternoon in order to observe maximum ionospheric TECs. For this reason, the
data from the suburban measurement campaign from Section 6.2.2 were not used
again, as these were recorded in the early morning. This measurement data has been
evaluated before in [Sie+22b]. A ground truth has been determined using the open
source tool RTKLIB [Tak+09] to determine a PPP estimate from the observables of
a Trimble NetR9 receiver.

Figure 6.26 shows the constellation of the four used Galileo satellites with the
resulting position RMSE in Figure 6.27. The conventional dual-frequency receiver
using the ionosphere-free combination provides quite volatile position errors up to
15 m. The EML discriminator apparently suffers under the multipath propagation
conditions on the rooftop. This effect is amplified by the ionosphere-free combination.
The proposed IMMEKF on the other hand shows significantly lower position errors
due to its multipath mitigating capability. With the proposed carrier range rate aiding
the results are further smoothed and the RMSE is marginally reduces by 15 cm on



92 Chapter 6. Performance Analysis and Validation

0 10 20 30 40 50 60 70 80 90 100 110

10

20

30

0 10 20 30 40 50 60 70 80 90 100 110

10

20

30

Time / s

T
E

C
/

T
E

C
U

Satellite 5 Satellite 6 Satellite 20 Satellite 22

(a) With carrier range rate aiding.

0 10 20 30 40 50 60 70 80 90 100 110

10

20

30

0 10 20 30 40 50 60 70 80 90 100 110

10

20

30

Time / s

T
E

C
/

T
E

C
U

Satellite 5 Satellite 6 Satellite 20 Satellite 22

(b) Without carrier range rate aiding.

Figure 6.25: Ionospheric TEC estimates of the proposed IMMEKF of hardware emulation.
The dashed lines indicate the ground truth. After 45 s, the arising multipaths
introduce errors.
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Figure 6.27: Position RMSE with proposed IMMEKF compared to the ionosphere-free com-
bination.

average.

Figure 6.28 shows the estimated TEC estimates from the IMMEKF. The plotted
values are already corrected by the differential hardware delays and broadcast group
delays (BGDs), as explained in Subsection 5.1.4. Ionospheric maps from the Inter-
national GNSS Service (IGS) were used to provide a ground truth. The estimated
TECs match in the whole the ground truth values. Deviations may originate from
residual multipath errors. The lower elevation satellites 8 and 33, that in general have
stronger multipath propagation, seem to confirm that as they show larger deviations
to the ground truth of up to 4 TECU. The proposed carrier range rate aiding helps
to mitigate the effect of multipath to some extent resulting in smoother estimates.
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Figure 6.28: Ionospheric TEC estimates of the proposed IMMEKF. The dashed lines indi-
cate the TEC values obtained from ionospheric maps from the IGS.
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7 Extension of Multi-Correlator-Based Multipath
Mitigation to Antenna Arrays

The preceding chapters have focused on global navigation satellite system (GNSS)
receivers that rely on a single antenna only. As a result, the differentiation between
line-of-sight (LOS) and multipath was limited to the time and frequency domain,
which naturally limited its effectiveness. This limitation reflected in a residual multi-
path error, especially for short delay multipaths, see the multipath error envelopes in
Chapter 3. As already mentioned in the introductory Chapter 1, the use of multiple
antenna elements can overcome this limitation and facilitate the mitigation of multi-
path signals. With the additional spatial domain available, well-studied beamforming
techniques can be applied, a review can be found in [Vag+16]. As a sufficient spatial
separation is required between LOS and multipath, relying exclusively on the spatial
domain for the multipath mitigation suffers likewise from limitations. For an effi-
cient multipath mitigation, a combination of the space and time/frequency domain is
needed. In the literature, proposals have been made that have pursued this approach
before, see e.g., [Ant+05]; [Sah+07]; [Zor+20]. However, their increased complexity
presents a challenge for practical application.

We propose therefore in the following the extension of the multipath mitigating
EKF (MMEKF) from Chapter 2 to antenna arrays. The simultaneous exploitation
of both, the space and time domain, is achieved by estimating one channel impulse
response (CIR) for each antenna element and linking the central channel taps, which
represent the LOS components, through the steering vector corresponding to the
LOS direction of arrival (DOA) for the tracking criteria. All remaining channel taps
can be set freely to consider for multipath propagation. The required signal model
is given in Section 7.1 followed by the algorithm description in Section 7.2. The
proposed solution is then evaluated in Section 7.3. This array extension addresses
the fifth research question, that specifically points towards the potential of increased
multipath robustness when using antenna arrays.

7.1 Signal Model

The signal model derived in Section 2.1 described the signal for a single antenna
element. It can be simply generalized to the Nant-element array case, see Figure 7.1,
by introducing the element index r = 1, . . . , Nant to the pre-correlation signal model
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Figure 7.1: Schematic illustration of an antenna array with Nant-elements. The element
positions are given by the position vectors rr, r = 1, . . . , Nant. The wave
vector k indicates an impinging signal with the azimuth and elevation angle ϕ
and θ, respectively.

from Equation (2.10). This leads to

yr,k = [yr,k[0], . . . , yr,k[N − 1]]T ∈ CN×1

=

Lh∑
lh=−Lh

h
(lh)
r,k s(τ (0)

k + T
(lh)
h ) + ηr,k, (7.1)

where

ηr,k = [ηr,k(kTint), ηr,k(Ts + kTint), . . . , ηr,k((N − 1)Ts + kTint)]
T (7.2)

s(τ (0)
k ) =

[
s(−τ

(0)
k ), s(Ts − τ

(0)
k ), . . . , s((N − 1)Ts − τ

(0)
k )
]T

. (7.3)

The noise is modeled as an additive zero mean complex Gaussian noise ηr,k ∼
N
(
0, σ2

ηr

)
. For a better readability, the single-signal and single-frequency case has

been considered only, omitting correspondingly the signal and band indices i and j,
respectively. Moreover, it has been assumed that the LOS code delay τ

(0)
k is iden-

tical for each antenna element. This is a valid approximation when the maximal
inter element spacing is sufficiently small with maxr1,r2 |rr1 − rr2 | � c0Tc, r1, r2 =

1, . . . , Nant, r1 6= r2, where rr is the antenna element position vector. Since arrays
have typically a minimal inter element spacing of ≤ λ/2 and consist of a limited
number of elements, the approximation is valid for most GNSS applications. So far,
the individual antenna signals are entirely independent. However, according to the
DOAs of the impinging signals and the antenna element positions, dependencies ex-
ist. Consider the antenna array configuration as illustrated in Figure 7.1. The wave
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vector of an impinging signal is given by [Tre04, Chapter 2]

k(ϕ, θ) = −2π

λ

cos(θ) sin(ϕ)
cos(θ) cos(ϕ)

sin(θ)

 ∈ R3. (7.4)

The DOA of the impinging signal is specified by the azimuth and elevation angle ϕ

and θ, respectively. Its corresponding steering vector can be computed as follows
[Tre04, Chapter 2]

a(ϕ, θ) =


e−jk(ϕ,θ)Tr1

...
e−jk(ϕ,θ)TrNant

 ∈ CNant . (7.5)

Since the angles ϕ and θ are defined in the local coordinate system of the array, its at-
titude is required to compute the steering vector. In the past, various approaches have
been proposed to determine the attitude, see e.g. [Dan+14]; [Zor+20]. Without loss
of generality, it is assumed to be known in the following. The steering vector definition
in Equation (7.5) considers only the geometrical aspects. In reality, antenna element
radiation characteristics introduce additional DOA dependent gain and phase mis-
matches. Since these effects are known to be constant over time [Sch+05], they can be
measured once during the manufacturing process in an anechoic chamber and stored
in a look-up table. At the radio frequency (RF) front end level, additional gain and
phase mismatches are introduced by the active components, such as down-converters,
amplifiers, or filters, as well as unequal cable lengths. Closely spaced signal guiding
cables in the front end can additionally lead to crosstalk effects [Zor+16]. A calibra-
tion matrix can be used to model these effects. Without loss of generality however,
we assumed in the signal model that the antenna array is calibrated and consists of
ideal isotropic antenna elements without mutual coupling effects. Therewith, these
additional uncertainties do not need to be considered. Having the pre-correlation
signal model for antenna arrays defined, the subsequent section will cover the post-
correlation signal model as well as the algorithm description.

7.2 Array Multipath Mitigating EKF

The extension of the MMEKF to antenna arrays has been initially proposed in
[Sie+24] and will be referred to here as the array MMEKF (AMMEKF). Before
the actual algorithm description, the post-correlation signal model is first defined in
Subsection 7.2.1. Then, the actual AMMEKF is given in Subsection 7.2.2, followed
by the required receiver architecture in Subsection 7.2.3. As the AMMEKF depicts
an extension of the MMEKF, only differences are pointed out. Everything stated
in Chapter 2 regarding the MMEKF also applies to the AMMEKF, if not otherwise
specified below.
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7.2.1 Correlator Bank

As for the base MMEKF, the received baseband signals z̃r,k need to be first of all
correlated by the receiver with a local replica of the pseudorandom noise (PRN) signal
s(t), see Section 2.3.1. The correlator bank required for this is given by

C
(
τ̂
(0)
k

)
=



sT(τ̂
(0)
k − T

(Lc)
c )

...
sT(τ̂

(0)
k − T

(1)
c )

sT(τ̂
(0)
k − T

(0)
c )

...
sT(τ̂ (0) − T

(−Lc)
c )



T

∈ CN×Ncorr . (7.6)

Multiplying the correlator bank with the received baseband signals leads to the Ncorr

correlator outputs for the r-th antenna element

z̃r,k = CH
(
τ̂
(0)
k

)
yr,k ∈ CNcorr×1

=

Lh∑
lh=−Lh

h
(lh)
r,k CH

(
τ̂
(0)
k

)
s(τ (0)

k + T
(lh)
h ) + η̃r,C,k. (7.7)

The colored post-correlation noise η̃r,C,k ∼ N (0N ,Rη̃C) has the noise covariance
matrix [Mis+06, Chapter 10]

Rη̃r,C = σ2
ηr


Φss(0) · · · Φss(2T

(Lc)
c )

...
. . .

...
Φss(2T

(Lc)
c ) · · · Φss(0)

 ∈ RNcorr×Ncorr . (7.8)

The correlator outputs z̃r,k are processed by the AMMEKF as explained in the fol-
lowing.

7.2.2 Joint Estimator

As for the base MMEKF from Chapter 2, a joint estimator will be used to process
the correlator outputs and provide a LOS code delay estimate. Since the underlying
signal model from Section 7.1 relies on one CIR per antenna signal, the state vector
from Equation (2.29) for the AMMEKF must be extended accordingly to

xk =
[
τ
(0)
k , τ̇

(0)
k ,Re

(
h̃T
1,k

)
, Im

(
h̃T
1,k

)
, . . . ,Re

(
h̃T
Nant,k

)
, Im

(
h̃T
Nant,k

)]T
∈ RNst×1

(7.9)
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with

h̃r,k =
[
h
(−Lh)
r,k , . . . , h

(Lh)
r,k

]T
∈ CNtap×1, (7.10)

holding then in total Nst = 2Nant(Lc + 1) + 2 state variables. The process model of
the MMEKF can be carried over unchanged for the AMMEKF using the same pro-
cess matrix from Equation (2.31) and noise process covariance matrix from Equation
(2.32). The constraining measurement from Equation (2.33), on the other hand, has
to be adapted. While its purpose remains to ensure a reliable tracking of the LOS
signal, it should now also exploit the newly available spatial domain with the intent
to further increase multipath resilience. This has been done by incorporating the
LOS steering vector a(ϕLOS, θLOS) =

[
a1,k, . . . , aNant,k

]T as follows

zk,constr =
1

NtapNant

∑Nant
m=1

∑Lh
lh=−Lh

∣∣∣h(lh)
r,k

∣∣∣2∣∣∣ 1
Nant

∑Nant
r=1 h

(0)
r,kar,k

∗
∣∣∣2 . (7.11)

The constraint is also set to zk,constr = 0, ∀k, which results in the signal power max-
imization in the central channel coefficients h

(0)
r,k of the CIRs, as for the MMEKF.

However, due to the multiplication with the LOS steering vector in the denominator,
this maximization is conducted only in the direction of the LOS signal. Multipaths,
impinging with a sufficient spatial separation, even if they are temporally very close
to the LOS, will be disregarded in this process, resulting in an increased multipath re-
silience. The required spatial separation between LOS and multipaths for a complete
elimination depends on the array geometry and the number of antenna elements. In
general, larger arrays with more antenna elements result in a better spatial resolution
so that multipaths closer to the LOS can still be suppressed [Tre04, Chapter 2]. Just
like with the single antenna MMEKF from Chapter 3, a weak or an obstructed LOS
path imposes the risk of locking in with another signal path of higher power. The
array characteristic, however, reduces this risk as the LOS power is being amplified
and short delay multipaths, represented with the central channel coefficient, are being
mitigated. It should be noted in this context, that the above defined constraining
measurement is also compatible for the single antenna case with Nant = 1. In this
case, the LOS steering vector is reduced down to a scalar. The resulting loss of spa-
tial information limits the multipath mitigation again to the temporal domain. The
measurement model with the above defined constraining measurement is given by

zk =
[
zT
1,k, . . . , zT

Nant,k, zk,constr
]T

= f(xk) ∈ RNmeas×1 (7.12)

with

zr,k =
[
Re
(
z̃T
r,k

)
, Im

(
z̃T
r,k

)]T ∈ R2Ncorr×1 (7.13)
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and Nmeas = 2NcorrNant + 1. The measurement noise scaling introduced with Equa-
tion (2.36) is applied unmodified with

Rwη̃r,C = wwT ◦ Rη̃r,C , (7.14)

where w is the weighting function from Equation (2.37). The resulting measurement
noise covariance matrix is then given by

R = diag
(

Rwη̃1,C/2,Rwη̃1,C/2, . . . ,Rwη̃Nant,C
/2,Rwη̃Nant,C

/2, σ2
constr

)
∈ RNmeas×Nmeas .

(7.15)

Therewith, the measurement model is fully defined and one can apply the extended
Kalman filter (EKF) with its prediction and update step, as explained in Section 2.2.
The Jacobian matrix required for this is defined as

Jf,k =
df(xk)

dxk

∣∣∣∣
xk=x̂k|k−1

∈ RNmeas×Nst

=
[
∂f(xk)
∂τ

(0)
k

∂f(xk)
∂τ̇

(0)
k

∂f(xk)
∂Re

(
h̃1,k

) ∂f(xk)
∂Im

(
h̃1,k

) . . . ∂f(xk)
∂Re

(
h̃1,k

) ∂f(xk)
∂Im

(
h̃1,k

)]∣∣∣
xk=x̂k|k−1

.

(7.16)

The individual partial derivatives can be found in Appendix C. The approximation
made in Equation (2.43) has been applied to the AMMEKF as well.

7.2.3 Receiver Architecture

The block diagram in Figure 7.2 shows an exemplary receiver architecture for the
proposed AMMEKF. All Nant RF signals are fed into the structure from the left.
The first processing step is the down-conversion, leading to the baseband signals yr,k,
which are in the figure referred to as Yk. These signals undergo then the correla-
tion process leading to the correlator outputs z̃r,k which are referred to as Z̃k with
the condensed notation in the figure. For the carrier tracking, the central prompt
correlator outputs of Z̃k are first beamformed and then used to compute the carrier
discriminator. The latter drives the carrier numerically-controlled oscillator (NCO)
which provides a suitable carrier replica for the down-conversion. On the code track-
ing side, the proposed AMMEKF is integrated. It processes all correlator outputs Z̃k,
estimates internally the CIRs and the code Doppler, and provides then, under consid-
eration of the constraining measurement from Equation (7.11), the LOS code delay
estimate τ̂

(0)
k . It is used to adjust the local replicas in the correlator bank C which

closes the code tracking loop. Moreover, τ̂ (0)
k is also provided to the position, velocity,

and time (PVT) block. Once an approximate position estimate has been found, in
combination with the assumption of a known array attitude and a calibrated array,
the LOS steering vector a(ϕLOS, θLOS) can be computed using Equation (7.5). The
required LOS DOAs can be determined from the ephemeris data in the navigation sig-
nals. The LOS steering vector a(ϕLOS, θLOS) is used to beamform the central prompt
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carrier
discriminator

NCO

Nant RF signals Yk correlator
bank C PVT

beam-
forming

AMMEKF

τ̂
(0)
k

Z̃k

a(ϕLOS, θLOS)

τ̂
(0)
k

prompt

Figure 7.2: Proposed receiver architecture for the AMMEKF with Yk =
[
y1,k, . . . , yNant,k

]
and Z̃k =

[
z̃1,k, . . . , z̃Nant,k

]
.

correlators for the carrier tracking and is also provided to the AMMEKF so that it
can exploit the spatial domain.

7.3 Performance Evaluation

The simulation parameters specified in Section 3.1 were adopted unchanged for the
analyses in the following. Accordingly, synthetic signals are used again to ensure
controlled conditions. Only the measurement noise variance for the constraining
measurement has been adjusted to σconstr = 10−4/Nant in order to take the newly
defined constraint from Equation (7.11) into account. The proposed AMMEKF is
compared with solutions relying on a conventional deterministic beamformer (DET)
[Tre04, Chapter 2]. Since the same information, i.e., the LOS steering vector, is
provided to both, the proposed AMMEKF, as well as the DET, it depicts a valid
competitor. The application of the DET results in a single beamformed signal which
can be simply processed by the single-element code tracking algorithm. For the
analyses in the following we use either a conventional early minus late (EML)-based
delay locked loop (DLL) or the single-element variant of the AMMEKF in order to
process the beamformed signal. The latter is simple the AMMEKF with Nant = 1 so
that the provided steering vector is reduced down to a scalar, i.e., in this case simply
a(ϕLOS, θLOS) = 1. These two DET-based solutions will be referred to as DET + EML
and DET + MMEKF, respectively. In all scenarios, Global Positioning System (GPS)
coarse/acquisition (C/A) signals were considered. The number of correlators in the
correlator banks were set to Ncorr = 11 with a correlator spacing of ∆(l)

c = 0.05Tc, l >

0, resulting in a total bank width of Wbank = 0.25Tc. As discovered in Section 3.2.2,
this bank configuration is a valid tradeoff between performance and complexity as
adding more correlators results only in negligible performance improvements. The
different considered antenna array configurations can be found in Figure 7.3. Each
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array was simulated to be horizontally aligned. Moreover, the antenna element were
simulated to be ideal isotropic, without mutual coupling between elements.

7.3.1 Multipath Mitigation

In the following, the multipath mitigation capability of the proposed AMMEKF is
demonstrated. Therefore, the LOS is assumed to impinge from the zenith. The
multipath hits the array with a 3 dB LOS to multipath power ratio, an additional
access delay and phase of the multipath signal with respect to the LOS τmul and φmul,
respectively. Its DOA is specified with the azimuth and elevation angles ϕmul and θmul,
respectively. In all cases, no noise was added to the synthetic signals. The Figures
7.4 and 7.5 show the resulting tracking errors for different array configurations and
multipath DOAs, delays, and phases using the proposed AMMEKF. The comparison
with the corresponding single-element case, i.e., using the antenna from Figure 7.3a,
clearly unveils how the proposed array extension improves the multipath mitigation.
Obviously, when the multipath DOA approaches the LOS DOA, the performance of
the array cases converge towards the single-antenna case with respect to the tracking
error.

Figure 7.6 shows additionally the multipath errors for certain multipath elevation
angles θmul. As only negligible variations have been observed over the multipath
azimuth angle in the Figures 7.4 and 7.5, we set ϕmul = 0◦. Overall, the errors become
smaller with increasing spatial separation between LOS and multipath. The largest
errors have been obtained for the DET + EML case due to the limited multipath
mitigation of the EML discriminator in the time domain. Replacing the EML with
the multipath mitigating single-antenna variant of the AMMEKF, i.e., the DET +
MMEKF case, considerably reduce the errors for the majority of multipath delays.
The in this chapter proposed array extension for the MMEKF, namely the AMMEKF,
turned out to not further improve the multipath resilience in the considered scenarios.
Given that the proposed AMMEKF is of higher computational complexity as the
code tracking filter has to process all Nant satellite signals, one might prefer using
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(c) Nant = 16.

Figure 7.3: Considered array configurations for the performance evaluation. The minimal
inter-element spacing is λ/2.
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(c) τmul · c0 = 15 m, φmul = 0◦.
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(d) τmul · c0 = 15 m, φmul = 180◦.

Figure 7.4: Illustration of the steady-state tracking error of the proposed AMMEKF for
Nant = 4. It was assumed that the LOS impinged from the zenith and a single
static multipath existed with its azimuth and elevation angles ϕmul and θmul,
respectively. The azimuth angles ϕmul were limited to the first 90◦ as the
considered array configuration is rotationally symmetric. The performance of
the single-element antenna from Figure 7.3a is indicated by the black translucent
surface. As expected, the array solution performs identical to the single-element
case when the DOA of the LOS coincides with the one from the multipath.

the DET + MMEKF case. It achieved the same steady-state tracking errors and the
subsequent code tracking algorithm only has to process a single beamformed signal.
When it comes to the noise performance, however, the proposed AMMEKF can be
advantageous over the sequential application of a beamformer and a single-element
code tracking algorithm. This is demonstrated in the following subsection.

7.3.2 Noise Performance

The noise performance of the proposed AMMEKF will be evaluated and compared
with the DET + MMEKF case in the following. For the analyses conducted so far, the
provided steering vector for the AMMEKF or the DET always coincided exactly with
the actual LOS steering vector. In real-world scenarios, however, this is not always
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Figure 7.5: Illustration of the steady-state tracking error of the proposed AMMEKF for
Nant = 16. The considered setup is identical to the one from Figure 7.4. The
larger antenna array enables the suppression of multipaths with a closer spatial
proximity to the LOS.

possible. Due to for example an inaccurately estimated array attitude or an imperfect
array calibration, the provided steering vector may be erroneous. For this reason, a
steering vector is provided in the following, that coincides with a signal impinging
with an azimuth angle ϕa = 0◦ and an elevation angle of θa. The latter is stepwise
increased from 45◦ to 90◦ while the LOS stays throughout the entire simulation in the
zenith. The noise performance is then determined as follow. The LOS signal with a
constant carrier-to-noise density ratio (C/N0) is tracked for 60 s under consideration
of the provided steering vector in the absence of multipath signals. The standard
deviation (STD) of the obtained code delay estimates is averaged over in total 20

Monte Carlo runs.

Figure 7.7 illustrates the results. One can clearly see how for erroneous provided
LOS steering vectors, i.e., for lower elevation angles θa, the STD of the code delay es-
timates increases. This effect, however, is in particular dominant for the DET-based
approach. When providing erroneous steering vectors, the beamformer eliminates
valuable LOS signal power. The subsequent code tracking algorithm suffers accord-
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0 100 200 300 400 500

−4

0

4

0 100 200 300 400 500

−4

0

4

Multipath delay τmul · c0 / mT
ra

ck
in

g
er

ro
r
τ
(
0
)

er
r
·c

0
/

m

(b) Multipath elevation θmul = 60◦.
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(c) Multipath elevation θmul = 75◦.
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Figure 7.6: Multipath errors for different multipath elevation angles θmul using the 4-
element array from Figure 7.3b. In all cases, the multipath azimuth angle was
set to ϕmul = 0◦. As expected, with increased spatial separation between LOS
and multipath, i.e., for decreasing θmul, the errors are reduced. The proposed
AMMEKF performs basically identical to the combination of the DET and the
corresponding single-element variant of the AMMEKF.

ingly under a higher observed noise level. For the proposed AMMEKF, on the other
hand, the unfiltered antenna signals reach the code tracking stage. Therewith, the
code delay estimate noise increases to a lesser extent for erroneous provided steering
vectors.
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Figure 7.7: The noise performance of the proposed AMMEKF compared with the DET-
based solution. For the shown results, the LOS impinged from the zenith. On
the x-axis, the elevation of the signal corresponding to the provided steering
vector is drawn. Lower elevation angles mean larger deviations between the
provided steering vector and the actual LOS steering vector. The proposed
AMMEKF outperforms the DET-based solution with respect to its noise per-
formance for erroneous provided LOS steering vectors.
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8 Conclusion

8.1 Summary and Contributions

The aim of this thesis was to develop a robust code tracking algorithm for global
navigation satellite systems (GNSSs). An introduction to the main sources of error
in this context and a broad overview of existing countermeasures was given in the first
Chapter 1. This revealed certain gaps in the solutions available in the literature. In
order to fill these gaps, five research questions were formulated in Section 1.3, which
were addressed in the remainder of this thesis.

With multipath propagation being one of the major sources of error for GNSS
receivers, a code tracking algorithm relying on a multi-correlator structure has been
developed in Chapter 2, that was specifically designed to minimize such errors. Its
multipath mitigation performance has been analyzed and demonstrated extensively
with simulations in Chapter 3, including comparisons to state-of-the-art approaches.
For an improved performance in environments with limited sky-view, the integration
into an advanced vector tracking (VT) architecture has been proposed in Chapter 4.

The second major source of error in GNSSs originates from the ionosphere. State-
of-the-art multi-frequency approaches are theoretically able to eliminate this effect to
a large extent. However, residual multipath errors tend to be amplified in this process.
For optimal results, both sources of error, multipath propagation and ionospheric de-
lays, must be considered jointly. The proposed algorithm has therefore been extended
to a multi-frequency processing in Chapter 5, combining its multipath mitigation ca-
pabilities with the estimation and elimination of the ionospheric delay.

The proposed solutions have finally been validated with actual measurement data
in Chapter 6. Last but not least, an extension to antenna array systems has been
proposed in Chapter 7 in order to additionally incorporate the spatial domain.

In this process, the following three major contributions were made.

• The development of a multipath mitigation algorithm for GNSS receivers that
makes minimal assumptions about the radio propagation channel: Its multi-
path mitigation performance reached the current state-of-the-art. At the same
time, an analysis of the algorithms complexity revealed a lower computational
complexity than the multipath estimating delay locked loop (MEDLL), i.e., a
state-of-the-art multipath mitigation approach. Furthermore, its noise perfor-
mance has been analyzed and found to be competitive to a conventional code
tracking algorithm. Additionally, the integration of the developed algorithm
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into advanced VT receiver architectures has been proposed. Therewith, the
first three research questions have been fulfilled.

• The joint mitigation of multipath signals and estimation and elimination of
ionospheric delays: Since residual multipath errors prevent an accurate elimi-
nation of ionospheric delays with state-of-the-art techniques, both effects must
be treated jointly. This has been achieved by extending the proposed algorithm
to a multi-frequency processing and taking into account the ionospheric effects.
An additional carrier range rate aiding has been proposed to further increase
robustness. This extension addresses the fourth research question.

• The extension of the proposed multipath mitigation algorithm to the spatial
domain: Techniques relying solely in the time domain have a natural resolution
limit, resulting in increasing residual multipath errors for short delay multipaths.
In order to overcome this limitation, we have extended the proposed algorithm so
that it also exploits the spatial domain using antenna array systems. Simulations
have demonstrated the increased multipath resilience, in particular for short
delay multipaths, answering the fifth research question.

In addition to that, several minor contributions were made, as listed in the following.

• The development of a reliable criterion for the tracking of the line-of-sight (LOS)
signal in Chapter 2, which is largely unaffected by multipath signals: The sig-
nal model for the proposed multipath mitigation algorithm describes the radio
propagation channel with a channel impulse response (CIR). In order to achieve
a tracking of the LOS signal with this model, it was necessary to establish a
relationship between the CIR and the LOS code delay. Therefore, an additional
constraining measurement has been defined to link these two dimensions with
minimal influence from multipath effects. The results in Chapter 3 and 6 have
demonstrated successfully its effectiveness.

• Accounting for approximations made in the signal model by introducing a scal-
ing of the measurement noise covariance matrix: With the assumption of finite
CIRs in the signal model for the proposed multipath mitigation algorithm, sig-
nal contributions with delays larger than the maximal delay in the CIR cannot
be accurately represented. In order to minimize errors that arise from this
approximation, a scaling of the measurement noise covariances of the affected
measurements has been proposed. Its effectiveness has been analyzed in Chapter
3.

• Determination of the multipath error envelopes of the proposed algorithm: The
observed characteristics of the envelopes were discussed and explained. A com-
parison to other well-known multipath mitigation techniques, i.e., the high-
resolution correlator (HRC) and the MEDLL, unveiled that the proposed so-
lution reaches the current state-of-the-art performance, addressing the first re-
search question.

• Derivation of the computational complexity of the proposed solution: Using the
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required number of arithmetic operations as a metric allowed for a straight for-
ward complexity comparison with other approaches. Comparisons were drawn
to the well-known MEDLL in Chapter 3, where the proposed solution turned
out to be of lower complexity.

• Investigation of low complexity variants of the proposed multipath mitigation
algorithm: A reduction in the total number of correlators and alternative cor-
relator placements were explored. Chapter 3 analyzed the tradeoffs made and
showed a large potential for a complexity reduction until the multipath mit-
igation performance begins to degrade. This addresses the second research
question.

• Comparison of the noise performance of the proposed multipath mitigation al-
gorithm with state-of-the-art approaches: The results shown in Chapter 3 have
shown the competitive noise performance of the proposed solution, addressing
the first research question.

• Analysis of the dynamic response of the proposed algorithm and its dependency
of different parameters: In order to allow for a fair comparison with other code
tracking algorithms, their dynamic behaviors must be comparable. This has
been shown in Chapter 3 in addition to an exhaustive analysis how different
parameters of the proposed algorithm affect its dynamic behavior.

• Integration of the proposed multipath mitigation algorithm into an advanced VT
receiver architecture in order to increase its robustness against LOS blockages:
Since the proposed solution, just like conventional code tracking algorithms,
assumes the availability of the LOS signal, the algorithm cannot handle blocked
satellites. Integrated into an advanced VT receiver architecture, where all satel-
lites are tracked jointly, overcomes this limitation. Chapter 6 demonstrated the
effectiveness of this solution in challenging urban environments, fulfilling the
third research question.

8.2 Recommendations

A multipath mitigation algorithm has been developed and evaluated in this thesis.
Based on the findings of this work, the following recommendations can be made.

Since multipath propagation is an omnipresent environmental condition, as ob-
served in the measurement campaigns in Chapter 6, it is generally recommended to
rely on some form of multipath mitigation solution for a GNSS receiver. With the
algorithm developed in this work, a well-working solution has been proposed. It is
universally applicable, as in its design, minimal assumptions about the radio propa-
gation channel were made. The proposed measurement noise scaling, which has been
suggested to consider for approximations made in the signal model, is recommended
to be used to improve the multipath mitigation performance. The low-complexity
variants that have been proposed are in particular advisable for low power and small
form factor applications, as they can reduce the computational complexity drastically
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with minimal performance tradeoffs. When operating in environments with limited
sky-view, such as urban environments, the proposed integration into advanced VT
architectures is highly recommended. The joint processing of all satellites increases
the ability to handle frequent LOS blockages which is a powerful combination with
the multipath mitigation capability of the proposed algorithm.

In environments with high ionospheric activities, one may want to rely on multi-
frequency receivers to actively eliminate ionospheric delays. Since state-of-the-art
approaches tend to amplified multipath errors, limiting the ability to eliminate iono-
spheric delays, it is advisable to use the proposed joint multipath mitigation and
ionospheric delay estimation and elimination algorithm in order to achieve improved
results in such environments.

When the accuracy requirements are particularly high, antenna array systems
can depict a powerful solution as they enable spatial signal processing techniques.
The proposed multipath mitigation algorithm has been extended to exploit jointly
the time and spatial domain. This approach is recommended when a high multipath
mitigation, in particular against short delay multipaths, is desired.
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A Jacobian Matrix for Multipath Mitigating EKF

The in Section 2.3 developed multipath mitigating EKF (MMEKF) relies on a nonlin-
ear measurement model. Correspondingly, it is linearized at the current state estimate
as part of the extended Kalman filter (EKF). This is done with the Jacobian matrix
Jf,k introduced in Equation (2.42). In the following, the individual partial deriva-
tives of the Jacobian are derived, under consideration of the approximation made in
Equation (2.43). Beginning with the code delay, the derivative with respect to τ

(0)
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given by [Ili+17]
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For the constraining measurement from Equation (2.33), the following partial deriva-
tives exist with [Sie+21b]
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The remaining partial derivatives of Jf,k that are not explicitly specified above are
simply zero. In order to reduce computational load during runtime of the MMEKF,
one can precompute the time-invariant parts of Equations (A.1) and (A.2).
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B Jacobian Matrix for Ionospheric Multipath
Mitigating EKF

In the following the individual partial derivatives for the Jacobian matrix from Equa-
tion (5.24) of the ionospheric MMEKF (IMMEKF) are listed. The approximation
made in Equation (2.43) for the multipath mitigating EKF (MMEKF) has also been
applied here. First of all, the partial derivative with respect to the geometric code
delay is given by
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where Φ′
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Tint
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derivative for the ionospheric total electron content (TEC) estimate can be expressed
as
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For the carrier range rate aiding introduced with Equations (5.10) and (5.11) the
following derivatives exist.
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The remaining derivatives with respect to the channel coefficients and for the con-
straining measurement are basically equivalent to the MMEKF. However, for com-
pleteness, they are also listed below. The notation includes the frequency band indices
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All unmentioned remaining partial derivaties are simply zero. Similar to the MMEKF,
the time-invariant parts of the partial derivatives in Equation (B.1) and (B.4) can be
computed in an initialization phase to reduce computational load.
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C Jacobian Matrix for Array Multipath Mitigating
EKF

This appendix lists the individual partial derivatives for the Jacobian matrix from
Equation (7.16) under consideration of the approximation shown in Equation (2.43).
Beginning with the line-of-sight (LOS) code delay estimate, the partial derivative is
given by
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with Φ′
ss(τ) =

∫
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The partial derivatives for the constraining measurement are as follows:
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All unmentioned partial derivatives are simply zero. It is advisable to precompute
the time-invariant terms in an initialization phase in order to reduce the computing
load during runtime, as for the base multipath mitigating EKF (MMEKF).
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D Gauss-Jordan Elimination Complexity

For the complexity considerations made in Section 2.3.3, the number of elementary
arithmetic operations for a matrix inversion was required. For simplicity, the well-
known Gauss-Jordan Elimination was exemplarily chosen. With this technique, the
inverse of an invertible matrix A ∈ Rp×p with the entries a

(0)
jk , j, k = 1, . . . , p is

determined by applying row and columns operations until A is an identity matrix.
The inverse is then obtained by applying the same sequence of row and column
operations onto an identity matrix Ip of identical dimension. In [Far88, Chapter 1],
the number of operations required for the Gaussian elimination to solve a system of
linear equations has been derived. As this is a related problem, the derivation in the
following is based on [Far88, Chapter 1]. The variable names chosen in this appendix
are to be considered independently of the rest of this work, as the nomenclature
conflicts in part with definitions made in other chapters. Table D.1 illustrates the
first part of the Gauss-Jordan Elimination. The left most column indicates the current
stage index i. In the initialization stage i = 0, the second column holds the coefficients
a
(0)
jk of the matrix A that will be inverted. The right most column holds the identity

matrix Ip, which will be transformed to the inverse of A in this process. The entries
a
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jk and b
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jk are given by

a
(i)
jk = a

(i−1)
jk −

a
(i−1)
ji

a
(i−1)
ii

a
(i−1)
ik

{
j = i+ 1, . . . , p

k = i+ 1, . . . , p
(D.1)

b
(i)
jk = b

(i−1)
jk −

a
(i−1)
ji

a
(i−1)
ii

b
(i−1)
ik

{
j = i+ 1, . . . , p

k = 1, . . . , i− 1
(D.2)

b
(i)
ji = −

a
(i−1)
ji

a
(i−1)
ii

{
j = i+ 1, . . . , p (D.3)



118 Annex D. Gauss-Jordan Elimination Complexity

Table D.1: First part of Gauss-Jordan Elimination.
i
=

0
a
(0)
11 a

(0)
12 a

(0)
13 · · · a

(0)
1p 1 0 0 · · · 0

a
(0)
21 a

(0)
22 a

(0)
23 · · · a

(0)
2p 0 1 0 · · · 0

a
(0)
31 a

(0)
32 a

(0)
33 · · · a

(0)
3p 0 0 1 · · · 0

...
...

...
. . .

...
...

...
...

. . .
...

a
(0)
p1 a

(0)
p2 a

(0)
p3 · · · a

(0)
pp 0 0 0 · · · 1

i
=

1

a
(0)
11 a

(0)
12 a

(0)
13 · · · a

(0)
1p 1 0 0 · · · 0

0 a
(1)
22 a

(1)
23 · · · a

(1)
2p b

(1)
21 1 0 · · · 0

0 a
(1)
32 a

(1)
33 · · · a

(1)
3p b

(1)
31 0 1 · · · 0

...
...

...
. . .

...
...

...
...

. . .
...

0 a
(1)
p2 a

(1)
p3 · · · a

(1)
pp b

(1)
p1 0 0 · · · 1

i
=

2

a
(0)
11 a

(0)
12 a

(0)
13 · · · a

(0)
1p 1 0 0 · · · 0

0 a
(1)
22 a

(1)
23 · · · a

(1)
2p b

(1)
21 1 0 · · · 0

0 0 a
(2)
33 · · · a

(2)
3p b

(2)
31 b

(2)
32 1 · · · 0

...
...

...
. . .

...
...

...
...

. . .
...

0 0 a
(2)
p3 · · · a

(2)
pp b

(2)
p1 b

(2)
p2 0 · · · 1

i
=

p
−

1

a
(0)
11 a

(0)
21 a

(0)
13 · · · a

(0)
1p 1 0 0 · · · 0

0 a
(1)
22 a

(1)
23 · · · a

(1)
2p b

(1)
21 1 0 · · · 0

0 0 a
(2)
33 · · · a

(2)
3p b

(2)
31 b

(2)
32 1 · · · 0

...
...

...
. . .

...
...

...
...

. . .
...

0 0 0 · · · a
(p−1)
pp b

(p−1)
p1 b

(p−1)
p2 b

(p−1)
p3 · · · 1

with the stage index i = 1, . . . , p − 1. Correspondingly, the following number of
operations for the first part of the algorithm are needed

Multiplications
p−1∑
i=1

(p− i)2 +

p−1∑
i=1

(i− 1)(p− i) =
p(p− 1)2

2
(D.4)

Division
p−1∑
i=1

(p− i) =
p(p− 1)

2
(D.5)

Subtractions
p−1∑
i=1

(p− i)2 +

p−1∑
i=1

(i− 1)(p− i) +

p−1∑
i=1

(p− i) =
p(p− 1)2

2
+

p(p− 1)

2
.

(D.6)

Equally, the second part of the algorithm is illustrated in Table D.2. In the last row,
i.e., for stage i = p, the left matrix turns into a diagonal matrix and the right one
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holds the inverse of A with the coefficients

b
(i)
jk = b

(i−1)
jk − aj,p−i+1

ap−i+1,p−i+1
b
(i−1)
p−i+1,k


j = 1, . . . , p− i

k = 1, . . . , p

i = 2, . . . , p− 1

. (D.7)

Due to the lower triangular matrix shape of the coefficients in the right most column
in Table D.2, the coefficient calculation for the first stage i = 1 is simplified with

b
(i)
jk = b

(i−1)
jk − aj,p−i+1

ap−i+1,p−i+1
b
(i−1)
p−i+1,k


j = 2, . . . , p− i

k = 1, . . . , j − 1

i = 1

(D.8)

b
(i)
jk = 1− aj,p−i+1

ap−i+1,p−i+1
b
(i−1)
p−i+1,k


j = 1, . . . , p− i

k = j

i = 1

(D.9)

b
(i)
jk = − aj,p−i+1

ap−i+1,p−i+1
b
(i−1)
p−i+1,k


j = 1, . . . , p− i

k = j + 1, . . . , p− 1

i = 1

(D.10)

b
(i)
jk = − aj,p−i+1

ap−i+1,p−i+1


j = 1, . . . , p− i

k = p

i = 1

. (D.11)

To reach the final stage, one only needs to divide by the remaining diagonal entries
on the left hand side, thus

b
(i)
jk = b

(i−1)
jk /a

(i−1)
jj


j = 1, . . . , p− i

k = 1, . . . , p

i = p

. (D.12)

This leads to the following number of operations for the second part of the algorithm

Multiplications
p−1∑
i=1

p(p− i)− (p− 1) =
p2(p− 1)

2
− (p− 1) (D.13)

Division
p−1∑
i=1

(p− i) =
p(p− 1)

2
(D.14)

Subtractions
p−1∑
i=1

p(p− i) + p2 =
p2(p− 1)

2
+ p2 (D.15)



120 Annex D. Gauss-Jordan Elimination Complexity

Both parts together result in the following numbers of operations for the full Gauss-
Jordan Elimination algorithm.

Multiplications p2 +
3

2
p2 − 1

2
p+ 1 (D.16)

Division 2p2 − p (D.17)

Subtractions p3 − p2 (D.18)
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Table D.2: Second part of Gauss-Jordan Elimination.

i
=

0

a11 · · · a1,p−2 a1,p−1 a1p 1 · · · 0 0 0
...

. . .
...

...
...

...
. . .

...
...

...
0 · · · ap−2,p−2 ap−2,p−1 ap−2,p b

(0)
p−2,1 · · · 1 0 0

0 · · · 0 ap−1,p−1 ap−1,p b
(0)
p−1,1 · · · b

(0)
p−1,p−2 1 0

0 · · · 0 0 app b
(0)
p1 · · · b

(0)
p,p−2 b

(0)
p,p−1 1

i
=

1

a11 · · · a1,p−2 a1,p−1 0 b
(1)
11 · · · b

(1)
1,p−2 b

(1)
1,p−1 b

(1)
1p

...
. . .

...
...

...
...

. . .
...

...
...

0 · · · ap−2,p−2 ap−2,p−1 0 b
(1)
p−2,1 · · · b

(1)
p−2,p−2 b

(1)
p−2,p−1 b

(1)
p−2,p

0 · · · 0 ap−1,p−1 0 b
(1)
p−1,1 · · · b

(1)
p−1,p−2 b

(1)
p−1,p−1 b

(1)
p−1,p

0 · · · 0 0 app b
(0)
p1 · · · b

(0)
p,p−2 b

(0)
p,p−1 1

i
=

2

a11 · · · a1,p−2 0 0 b
(2)
11 · · · b

(2)
1,p−2 b

(2)
1,p−1 b

(2)
1p

...
. . .

...
...

...
...

. . .
...

...
...

0 · · · ap−2,p−2 0 0 b
(2)
p−2,1 · · · b

(2)
p−2,p−2 b

(2)
p−2,p−1 b

(2)
p−2,p

0 · · · 0 ap−1,p−1 0 b
(1)
p−1,1 · · · b

(1)
p−1,p−2 b

(1)
p−1,p−1 b

(1)
p−1,p

0 · · · 0 0 app b
(0)
p1 · · · b

(0)
p,p−2 b

(0)
p,p−1 1

i
=

p
−

1

a11 · · · 0 0 0 b
(p−1)
11 · · · b

(p−1)
1,p−2 b

(p−1)
1,p−1 b

(p−1)
1p

...
. . .

...
...

...
...

. . .
...

...
...

0 · · · ap−2,p−2 0 0 b
(2)
p−2,1 · · · b

(2)
p−2,p−2 b

(2)
p−2,p−1 b

(2)
p−2,p

0 · · · 0 ap−1,p−1 0 b
(1)
p−1,1 · · · b

(1)
p−1,p−2 b

(1)
p−1,p−1 b

(1)
p−1,p

0 · · · 0 0 app b
(0)
p1 · · · b

(0)
p,p−2 b

(0)
p,p−1 1

i
=

p

1 · · · 0 0 0 b
(p)
11 · · · b

(p)
1,p−2 b

(p)
1,p−1 b

(p)
1p

...
. . .

...
...

...
...

. . .
...

...
...

0 · · · 1 0 0 b
(p)
p−2,1 · · · b

(p)
p−2,p−2 b

(p)
p−2,p−1 b

(p)
p−2,p

0 · · · 0 1 0 b
(p)
p−1,1 · · · b

(p)
p−1,p−2 b

(p)
p−1,p−1 b

(p)
p−1,p

0 · · · 0 0 1 b
(p)
p1 · · · b

(p)
p,p−2 b

(p)
p,p−1 b

(p)
p,p
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