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Microscopic imaging of materials often requires the examination of large sample areas at high magnification 
to identify and analyse rare structural features. High-resolution imaging in scanning electron microscopy is 
particularly time-intensive, as images are acquired through sequential scanning of an electron beam across the 
sample surface. This presents a critical challenge, as researchers must balance imaging speed and resolution 
while ensuring statistically meaningful observations of sparsely distributed features. To address these challenges, 
we present a novel resolution enhancement method for electron microscopy based on artificial intelligence. 
Suitable reference images are selected using vector embeddings and processed by a texture-transformer network. 
Using a tailored dataset of dual-phase steel micrographs, we demonstrate that our trained network outperforms 
traditional interpolation methods in both quantitative similarity metrics and crucial material-specific features, 
such as phase boundaries and microstructural voids. The method’s transferability is validated using micrographs 
from a 16MnCrS5 case-hardening steel sample. We achieve a 16-fold acceleration through resolution trade

offs between target and recording and additionally propose a scan-enhance-rescan workflow where resolution

enhanced micrographs guide the identification of regions of interest for targeted high-resolution rescanning. 
We provide quantitative estimates of expected time savings, offering a practical framework for efficient high

resolution microscopy across large areas.

1. Introduction

Scanning electron microscopy (SEM) is essential for understanding 
and optimizing metallic materials, yet the examination of large sam

ple areas at high magnification presents a significant challenge. This is 
particularly important where rare microstructural features at the sub

micron level govern the material’s properties at the macroscopic scale. 
This is the case, for example, in many steels, where manufacturing 
processes induce damage from deformation steps. Understanding this 
deformation induced damage as rare events analysed by large area but 
high resolution microscopy as a basis to design and control better pro

cessing strategies of semifinished products, such as sheet metal, may 
have a significant effect on the amount of material that has to be used to 
guarantee safety in any final product. Using less material is a common 
strategy to mitigate environmental impact. Steel production, being a 
major contributor to anthropogenic greenhouse gas emissions [1,2], ac

counts for approximately a quarter of global industrial CO2 emissions in 
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2019 [3]. Therefore, efficient microscopic characterisation methods are 
crucial for developing optimized microstructures that can improve ma

terial properties while reducing energy consumption during production.

To achieve these optimisations, researchers must address several key 
challenges in understanding and controlling material behaviour dur

ing manufacturing and service and the methodological requirements for 
generating this understanding from experimental data. One related chal

lenge is the tendency of multi-phase alloys to form damage sites in the 
shape of voids during forming operations at the interfaces of phases or 
through the fracture of one phase [4]. By understanding damage nu

cleation and evolution, the active formation mechanisms and how they 
relate to the underlying multi-phase microstructures, processing routes 
can be adjusted to improve material performance and allow for more 
precise determination of component safety and lifetimes [5,6]. Scanning 
electron microscopy offers unique capabilities to resolve the underlying 
microstructure, including damage sites, at high resolution. This allows 
to understand the relationship between the behaviour of these intricate 
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structures and physical mechanisms. However, since damage formation 
and evolution are inherently stochastic processes, electron micrographs 
must cover large areas at high resolution to be able to draw statistically 
meaningful conclusions [7--10].

The analysis of the resulting increasingly large datasets through man

ual evaluation is labour intensive. Therefore, in previous studies, tools 
have been developed to automate data evaluation [7,9,11]. These tools 
either combine traditional computer vision techniques with deep learn

ing methods [7,11] or employ a full deep learning based pipeline [9]. 
While these tools enable the automated analysis of large datasets, the ac

quisition of large areas still requires long imaging times, posing as a bot

tleneck in the study of damage. Recent developments in deep learning

based image enhancement, especially in consumer photography [12, 
13], medical imaging [14--16], and first applications to material science 
[17] suggest untapped potential for time-e˙icient imaging. These deep 
learning-based super-resolution algorithms have emerged as powerful 
techniques for enhancing image quality. At its core, super-resolution 
aims to reconstruct high-resolution images from low-resolution coun

terparts, effectively increasing pixel density while preserving or recov

ering fine details. The two main approaches are single-image super

resolution [18,19], i.e. the reconstruction of high-resolution informa

tion from its low-resolution counterpart, and reference-based super

resolution [12,13], where high-resolution reference image are addition

ally supplied.

Building on these advances in super-resolution techniques, we pro

pose a novel approach to accelerate large-area imaging in scanning elec

tron microscopy. Conventionally, large areas are imaged at resolutions 
required for the subsequent analysis of damage sites. We hypothesise 
that by using a fraction of the full resolution combined with the suc

cessive application of deep learning-based super-resolution techniques, 
imaging times can be significantly reduced. This approach enables or 
greatly expands the scope of experiments that aim to understand and 
control deformation-induced damage and accelerate the evaluation of 
a broader range of parameter combinations and processing routes, for 
example by large-area in-situ experiments to observe the formation and 
evolution of damage sites [20,9] or large-area slice-and-view experi

ments for comprehensive three-dimensional analysis [21]. Ultimately, 
the approach can also be transferred to many other investigations of 
features or processes in multiphase microstructures of metallic or other 
solid materials to enhance the efficiency of material characterisation 
and process optimisation.

In this work, we implement a pipeline for the automated selection of 
reference images, train and evaluate a texture transformer network for 
super-resolution (TTSR) [12] on two materials, a dual-phase steel -- as a 
proof of concept -- and a 16MnCrS5 case-hardening steel -- to study the 
method’s transferability. These materials have different microstructures 
and are both studied for their damage behaviour [7,11,21,9].

2. Methods

2.1. Materials

Both dual-phase and case-hardening steels are pivotal in numerous 
industrial applications due to their distinct properties and widespread 
usage in sectors such as automotive manufacturing and heavy ma

chinery. We used a commercial DP800 dual phase steel in sheet form 
(ThyssenKrupp Steel Europe AG). Damage in these very different mi

crostructures occurs in characteristic locations and by different under

lying mechanisms, which we describe briefly below and refer to by the 
short keywords given in brackets for each case. Dual-phase steels con

sist of a comparatively brittle martensite phase and a ductile ferrite 
phase, shown in Fig. 1 (a). During forming operations damage sites nu

cleate in the form of microscopic voids at the interface of martensite 
and ferrite (interface decohesion), at the grain boundary of two ferrite 
grains (boundary decohesion) or through the cracking of martensite is
lands (martensite crack) [22]. 16MnCrS5 case-hardening steel consists 

Fig. 1. Labelled electron micrographs of (a) a commercial DP800 dual-phase 
steel and (b) 16MnCrS5 case-hardening steel.

of pearlite and ferrite with dispersed manganese sulfide (MnS) inclu

sions, illustrated in Fig. 1 (b). We use here a commercial case-hardening 
steel sample (Georgsmarienhütte Holding GmbH, Germany). Damage in 
this material tends to form at the interface of the MnS inclusion to the 
surrounding steel matrix (decohesion) or through the cracking of MnS 
inclusions (crack). The microstructures of both materials after metallo

graphic preparation are visually different when imaged in the SEM, as 
can be seen in Fig. 1.

2.1.1. Sample preparation

A bending sample (dual-phase steel) and a tensile test sample (16Mn

CrS5 case-hardening steel) were cut using an electrical discharge ma

chine. Then, both samples underwent a similar metallographic prepara

tion process: in a first step, the surface of both samples was ground using 
sandpaper with grits ranging from 800 to 4000, using water as a cool

ing agent. Subsequently, the sample surface was mechanically polished 
using 6 μm, 3 μm and 1 μm water-based diamond suspensions. In this 
step, a DAC cloth was used for the dual-phase steel sample, while an Al

pha cloth was used for the 16MnCrS5 case-hardening steel sample. Both 
samples were finished by polishing with a 0.25 μm Oxide Polishing Sus

pension (OPS) for 1min. In a last step, the samples were etched in Nital 
solution to achieve a topographical contrast, allowing to discriminate 
between the different phases of the samples under the scanning elec

tron microscope. The dual-phase steel was etched in 1% Nital solution 
for 5 s, while the case-hardening steel was etched in 5% Nital solution 
for 5 s.

Both samples were deformed in the same microMECHA Proxima 
testing stage using the appropriate module for the respective sample 
geometry. The dual-phase steel bending sample was deformed using the 
three-point bending test module up to a plastic strain of 11% at the 
outer edge of the sample. This deformation step took place before met

allographic preparation of the sample. In contrast, the tensile test of the 
case-hardening steel sample was conducted after metallographic prepa

ration, and terminated at a plastic strain of 3%. After preparation and 
deformation the samples were mounted in the SEM chamber for the 
analysis of the prepared surface.

2.2. Image acquisition

Supervised deep learning algorithms require both target and input 
data to learn. For deep-learning super-resolution algorithms, these cor

respond to the target high-resolution images and low-resolution counter
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Fig. 2. Examples for pairs of high-resolution and low-resolution images used as training data. Top: dual-phase steel, bottom: 16MnCrS5 case-hardening steel. 

parts. In the case of reference-based super-resolution algorithms, a stack 
of reference images is additionally required. Here, the target resolution 
was chosen to equal the resolution used in our previous the studies of 
damage [7,9]. As the pre-trained network weights are trained to increase 
the resolution by a factor of four [12], the lower resolution corresponds 
to a quarter of the target resolution for both cases. Furthermore, the in

put size is constrained to 32×32 pixel, the output size to 128×128 pixel 
and the high-resolution reference images to 300 × 300 pixel.

Deep learning-based super-resolution algorithms follow two ap

proaches to acquire corresponding low-resolution counterparts to their 
target images. Either low-resolution images are generated from the tar

get images through interpolation [19,18,12] or they are both recorded 
using special devices [23]. In consumer photography the latter approach 
has additional challenges, as the resolution cannot be seen as an inde

pendent parameter. Different resolutions result from physically different 
cameras which differ also in field of view, curvature, and colour distri

butions. Therefore most often, the low-resolution images are generated 
from high-resolution images by image processing rather than recorded 
separately. In the SEM however, due to the sequential acquisition of 
data points, recording the same field of view in two different resolu

tions poses fewer challenges. Because of the ease of acquisition and to 
prevent possible noise transfer from high-resolution images to gener

ated low-resolution images, we recorded both high and low-resolution 
images. These images then need to be aligned afterwards, as effects 
such as drift can influence the position of features. These effects accu

mulate with recording time, therefore the recording window size has 
a strong influence on the data quality. In this work we recorded three 
different datasets, the first consists of 25,000 image pairs on the dual

phase steel sample, recorded at the lower bound of possible window 
sizes, given by the target size of the reference-based super-resolution 
algorithm, i.e. 128 × 128 for the high-resolution images and 32 × 32
for the low-resolution images, representing a field of view of 3.125 μm. 
Then additionally, one larger pair of micrographs at the other extreme, 
determined by the microscope interface, here 4096 × 4096 for the high

resolution images and 1024 × 1024 for the low-resolution images, both 
corresponding to a field of view of 100 μm, was recorded on the same 
sample, to investigate its performance when generating larger images 
and give researchers more contextual information. Lastly, to investigate 
the transferability of this approach, 160 image pairs with window sizes 
3072× 3072 and 976× 976, again representing a field of view of 100 μm
were recorded on the 16MnCrS5 sample, of which a fraction was used 
here. A summary of datasets can be found in Table 1 and a few examples 
of subdivided and aligned images can be seen in Fig. 2.

The electron micrographs were acquired using a TESCAN CLARA 
(Tescan Group, Czech Republic) scanning electron microscope using 
secondary electrons for detection. For the dual-phase steel sample, an 
accelerating voltage of 20 kV and a beam current of 3 nA was used. For 
the 16MnCrS5 case-hardening steel sample, an accelerating voltage of 
10 kV and a beam current of 1 nA was used.

2.3. Reference-based super-resolution

Reference based super-resolution aims to reconstruct high-resolution 
information given a low-resolution input and a suitable additional high

resolution reference image. Since super-resolution is mathematically 
ill-posed, with multiple possible high-resolution outputs mapping to 
the same low-resolution input, the additional high-resolution reference 
image can provide constraints for the reconstruction process. To imple

ment this approach, we adopted the texture transformer architecture 
from [12], leveraging their pre-trained network weights through trans

fer learning. Our implementation follows a two-step process: first, a 
reference selector assigns appropriate reference images to each input im

age. These paired low-resolution and reference image batches are then 
processed by the texture transformer network to produce the resolution

enhanced output. The complete workflow is illustrated in Fig. 3. Since 
the network was originally trained on colour images, we transform our 
grey scale SEM micrographs to the expected colour format and normal

ize these channels to fall within the interval [−1,1].

2.3.1. Reference selector

The reference selector identifies reference images with the high

est similarity to the low-resolution input. Central to this process is the 
calculation of embedding vectors using a truncated convolutional neu

ral network, specifically the VGG19 network [24]. We truncated the 
VGG19 layers in a manner consistent with the subsequent texture trans

former network after the 13th convolutional layer and initialized it with 
weights pre-trained on the ImageNet dataset for image classification 
[25]. The selection process can be formalised as follows:

1. Transform the low-resolution input images and the high-resolution 
reference images to the same image domain: using bi-cubic inter

polation, up-sample the low-resolution image to high-resolution. To 
be able to compare the similarity between the high-resolution refer

ence images and the low-resolution input, remove high-resolution 
information from the reference images through subsequent down-

and up-sampling.
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Table 1
Overview of recorded datasets. The data in the ``DP-small'' data for the dual-phase 
steel were used for the training of the neural networks, whereas the single image 
in the ``DP-large'' dataset was only recorded for inference and has therefore no 
training and validation data.

Name DP-small DP-large 16MnCrS5 
Recorded image pairs 25 000 1 160
Low-resolution window size 32 × 32 1024 × 1024 768 × 768
High-resolution window size 128 × 128 4096 × 4096 3072 × 3072
Low-resolution 98 nm∕px 98 nm∕px 102 nm∕px
High-resolution 24 nm∕px 24 nm∕px 33 nm∕px
Dwell time 100 μs 100 μs 32 μs

Recorded reference images 256 - -

Window size 300 × 300 - -

Reference resolution 24 nm∕px - -

Dwell time 100 μs - -

Number of training pairs 20 000 - 1600
Number of validation pairs 2500 - 200
Number of test pairs 2500 1700 200
Number of reference images 256 256 (Same as DP-small) 256

Fig. 3. Two step workflow consisting of a reference selector and a texture trans

former network.

2. Calculate embedding vectors K and V for the low-resolution and 
reference images using the truncated VGG19 network

K = VGG19(X𝐵), (1)

V = VGG19(YRef) (2)

3. Using the resulting embedding vectors calculate the cosine similar

ity between reference and low-resolution images:

𝑆𝑖𝑗 =
(𝐾 ⋅ 𝑉 𝑇 )𝑖𝑗√∑
𝑘 𝐾

2
𝑖𝑘

√∑
𝑙 𝑉

2
𝑙𝑗

(3)

4. Select the indices of the most similar reference images:

𝐵𝑗 = argmax
𝑖 (𝑆𝑖𝑗 ) (4)

5. Construct the batch of selected reference images:

Y𝐵,𝑖 = YRef,𝐵𝑖
(5)

To optimize efficiency during training, we pre-determined the high

est similarity reference image for each low-resolution image. Post

training, the weights of the trained texture extractor from the texture 
transformer network [12] can be used to initialize the VGG19 network 
in the reference selector, potentially enhancing its selection capabilities.

2.3.2. Resolution enhancement using texture transformers

The texture transformer network for super-resolution combines three 
major concepts. First the extraction of texture using a truncated VGG19 
network [24]. Texture here refers to the intermediate representation of 
image information in convolutional neural networks. Using this texture 
information, an attention mechanism [26] aligns features from the ref

erence image with the input and then reconstructs the super-resolved 
output. These so-called texture transformers aim to improve the res

olution at different scales. To achieve a four-fold resolution increase, 
intermediate outputs at single-fold, two-fold, and four-fold are com

bined in a network [12]. During training this output is compared to 
the high-resolution ground truth and weights are adjusted according to 
the loss function. Here we followed the same approach as in [12] and 
used a combination of the following loss functions.

• Reconstruction Loss: The reconstruction loss calculates the pixel

wise difference between output and ground truth and is defined as

𝑟𝑒𝑐 =
1 

𝐶𝐻𝑊
‖𝐼𝐻𝑅 − 𝐼𝑆𝑅‖1 (6)
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Here, 𝐶 , 𝐻 , and 𝑊 are the number of colour channels, the height, 
and the width, 𝐼 represents the image, and ‖…‖1 is the 𝐿1 norm 
of the difference. Only using this loss function generally results in 
overly smooth predictions, as a conservative prediction will on av

erage result in a lower loss value.

• Perceptual Loss: The perceptual loss calculates the difference in 
an intermediate layer of a trained neural network between the gen

erated enhanced image and the ground truth [27] and has been 
specifically developed for the application of neural networks in 
resolution-enhancement algorithms.

𝑝𝑒𝑟 =
1 

𝐶𝑖𝐻𝑖𝑊𝑖

‖𝜙𝑣𝑔𝑔
𝑖

(𝐼𝑆𝑅) − 𝜙𝑣𝑔𝑔
𝑖

(𝐼𝐻𝑅)‖22
+
∑
𝑗

1 
𝐶𝑗𝐻𝑗𝑊𝑗

‖𝜙𝑙𝑡𝑒
𝑗
(𝐼𝑆𝑅) − 𝑇 ‖22 (7)

𝜙
𝑣𝑔𝑔

𝑖
is the VGG19 network truncated after the 𝑖th layer, 𝐶𝑖 , 𝐻𝑖, and 

𝑊𝑖 are the number of channels, the height and width of that layer. 
Similarly 𝜙𝑙𝑡𝑒

𝑗
is the learnable texture extractor truncated after the 

𝑗th layer, 𝐶𝑗 , 𝐻𝑗 , and 𝑊𝑗 are the number of channels, the height 
and width of the 𝑗th layer. Here we chose 𝑖 to be the layer after 
the 13th convolutional layer and sum over 𝑗 to be chosen after the 
first convolutional layer, the third convolutional layer, and after the 
fifth convolutional layer, following again the approach in [12].

• Adversarial Loss: Finally, the adversarial loss is based on the idea 
behind generative adversarial networks (GANs) [28]. Adversarial 
networks typically consist of two competing networks, where the 
generator network creates new images and the discriminator net

work tries to tell the output from the generator apart from authen

tic images. As done in [12], we chose the Wasserstein loss [29] 
given by:

𝑎𝑑𝑣 = 𝔼
𝑥̃∼ℙ𝑔

[𝐷(𝑥̃)] − 𝔼
𝑥∼ℙ𝑑

[𝐷(𝑥̃)] + 𝜆 𝔼
𝑥̂∼ℙ𝑥̂

[(‖∇𝑥̂𝐷( ̃̂𝑥)‖2 − 1
)2]

(8)

where 𝐷 is the discriminator, 𝔼 is the expectation value over 
ℙ𝑔 , the distribution over generated images after the resolution

enhancement process, ℙ𝑑 the distribution of ground truth images, 
ℙ𝑥̂, the distribution of all possible images, 𝜆 is a regularisation pa

rameter that controls the degree of gradient penalisation. Following 
[12] we used 𝜆 = 10.

Combining all parts, the final loss function is a weighted combination 
of the three contributions:

tot = 𝜆recrec + 𝜆perper + 𝜆advadv (9)

Training with the full loss function from the beginning of the training 
can lead to unstable behaviour, where the competing contributions can 
produce undesired outputs. This is well known for the case of generative 
adversarial networks [30]. To mitigate this behaviour, we follow the 
approach by Yang et al. [12] and train the network for 80 epochs, the 
first 40 epochs only with the reconstruction loss and then add the other 
contributions later for the last 40 epochs.

2.3.3. Model training

We divided each dataset into 80% training data, 10% validation data, 
and 10% test data. This corresponds to 20000, 2500, and 2500 high

resolution, low-resolution, reference image triplets, respectively for the 
first dual-phase steel dataset. As we recorded images in a larger window 
size than the network can process at once for both the dual-phase steel 
and the 16MnCrS5 sample, we first needed to divide the larger images 
into patches. Effects such as drift play an important role for these larger 
image sizes, therefore the low- and high-resolution image pairs needed 
to be realigned. We performed this alignment by defining a search win

dow in the high-resolution image, then down-sample the high-resolution 
image using nearest-neighbour sampling, and calculated the position in 
the high-resolution image corresponding to the highest structural simi

Fig. 4. Loss function during training progression. It quickly converges to a value 
at around 0.0112. After step 100,000 the remaining loss functions are added to 
the reconstruction loss, resulting in a slight increase.

larity score. We generated 2000 training image pairs in this manner. We 
also selected two images and subdivided them into 256 reference im

ages of size 300× 300 pixel. The further technical details of the training 
are as follows: we used a cyclic learning rate scheduler [31] together 
with the Adam optimiser [32]. The neural network was trained using 
an NVIDIA Tesla V100 SXM2 16 GB at the RWTH ITC high-performance 
cluster. The training took 20 h for the dual-phase steel dataset and 3 h
for the 16MnCrS5 case-hardening steel dataset. As an example the loss 
function during training on the dual-phase steel dataset is presented in 
Fig. 4. In the first phase only the reconstruction loss is optimised until 
it starts to converge at a value around 0.0101. Then the remaining loss 
components were added to the total loss function and its value spiked 
before converging around a value of 0.0105.

2.4. Evaluation criteria

In a first step, we established a baseline to evaluate the performance 
of our resolution enhancement with the texture transformer network 
against by using conventional interpolation methods to enhance the res

olution of the low-resolution electron micrographs. These interpolation 
methods use different families of functions, determine their parameters 
at positions with known values, and then evaluate them at positions of 
unknown values.

• Nearest-Neighbour Interpolation: Nearest-neighbour interpola

tion uses a step function, missing pixels are given the pixel value of 
the nearest known pixel value.

• Bi-Cubic Interpolation: Bi-cubic interpolation employs cubic func

tions in both dimensions to interpolate pixel values.

• Lanczos Interpolation: Lanczos interpolation [33] uses sinc(x) =
sin(𝑥)
𝑥 functions to calculate pixel values for interpolated pixels.

In the next step, we evaluated the quality of the images after resolution 
enhancement quantitatively for both the three baseline methods and the 
output of the texture transformer neural network using three metrics:

• Structural Similarity Index Measure (SSIM): The SSIM quanti

fies the structural integrity preserved in the images resulting from 
the machine-learning algorithm compared to the (high-resolution) 
ground-truth data. This metric compares the luminance, contrast, 
and structure between the reconstructed and high-resolution im

ages. It takes values between −1 and 1, where 1 indicates a perfect 
match and −1 a complete mismatch [34].

• Peak Signal-to-Noise Ratio (PSNR): The PSNR is, essentially, an 
extension of the mean squared error to images and measures the 
ratio between the maximum possible power of the signal, here the 
maximum pixel value, and the corrupting noise, the squared dif

ference between the pixel values of the predicted image and the 



Materials & Design 253 (2025) 113955

6

T. Reclik, S. Medghalchi, P. Schumacher et al. 

Fig. 5. Low resolution input and comparison of nearest-neighbour, bi-cubic, and 
Lanczos interpolation with the high-resolution ground truth of the area high

lighted in blue on a dual-phase steel scanning electron micrograph.

high-resolution ground truth. The value of PSNR is expressed in dB, 
the higher the value the higher the similarity between the images.

• Edge-Based Structural Similarity Index Measure (ESSIM): While 
SSIM provides valuable information about overall structural sim

ilarity, it may not fully capture the quality of reconstructed fine 
structural details crucial in SEM imaging. ESSIM extends the stan

dard SSIM by giving higher weight to edge regions during the 
similarity assessment [35], making it more sensitive to blur and 
edge degradation. This approach is especially relevant for evaluat

ing super-resolution methods applied to SEM images, where edge 
preservation and enhancement of fine structural details are criti

cal. Like SSIM, ESSIM produces values between −1 and 1, with 1
indicating perfect similarity.

3. Results

3.1. Evaluation of network performance on dual-phase steel

To establish a benchmark, we first evaluated the performance of 
conventional interpolation methods. These results served as a baseline 
against which the results obtained from the texture transformer network 
were compared. A visual representation of these methods is provided in 
Fig. 5. Nearest-neighbour interpolation was observed to produce block

like artefacts, while both bi-cubic and Lanczos interpolation resulted 
in noticeably blurred images. While both Lanczos interpolation and 
bi-cubic interpolation produced visually similar results, bi-cubic inter

polation outperformed Lanczos interpolation in terms of SSIM, ESSIM, 
and PSNR. We therefore chose bi-cubic interpolation as a visual bench

mark in the following analysis.

Subsequently, we assessed the performance of the texture trans

former neural network for resolution-enhancement. This evaluation was 
conducted using a dataset of images recorded at the network’s native 
input resolution, as outlined in subsection 2.2. Fig. 6 shows visual ex

amples of the low-resolution input, the expected high-resolution output 
that should be recovered, the result from the texture transformer net

work (TTSR), as well as the result from bi-cubic interpolation. The quan

titative metrics are summarised in Table 2. Our analysis revealed that 
while conventional similarity metrics (SSIM, PSNR) showed only modest 
improvements, ESSIM, which specifically accounts for edge preserva

tion, demonstrated more substantial enhancement with the TTSR ap

proach (0.400 ± 0.006) compared to bi-cubic interpolation (0.354 ±
0.005). This quantitative edge-preservation advantage aligns with de

tailed visual inspection which highlighted significant differences. The 
neural network-based method consistently produced results closer to the 
expected high-resolution version, particularly in preserving fine struc

tural details. In contrast, bi-cubic interpolation results exhibited con

sistent limitations, producing blurred images with diffused interfaces 
and softened edges. The superiority of the texture transformer network 
was particularly evident in reconstructing material-specific properties, 

Table 2
Similarity metrics for bi-cubic and Lanczos interpolation, as well as 
the texture transformer neural network applied to the dual-phase steel 
dataset with an image size of 128 × 128 pixels.

Metric Bi-Cubic Lanczos TTSR 
SSIM 0.622 ± 0.002 0.574 ± 0.002 0.626 ± 0.002
PSNR 25.57 dB ± 0.05 dB 24.38 dB ± 0.04 dB 25.96 dB ± 0.04 dB
ESSIM 0.354 ± 0.005 0.340 ± 0.005 0.400 ± 0.006

as demonstrated in Fig. 6 (a). In this example, where a brittle marten

site island had cracked into two pieces, the network accurately recon

structed the separation visible in the high-resolution ground truth. The 
bi-cubic interpolation, however, introduced unphysical bridges between 
the separated pieces - an artifact that could lead to misinterpretation 
of the material’s structural properties. Notably, the network demon

strated appropriate restraint in cases where fine structural details were 
ambiguous. For instance, with very fine granular martensite structures, 
as shown in Fig. 6 (d), the network predicted smooth structures rather 
than introducing potentially incorrect details. Further examples of the 
network’s predictions compared to the high-resolution ground truth and 
interpolation can be found in the supplementary material section B.

In terms of similarity metrics, the texture transformer network im

proves over bi-cubic and Lanczos interpolation, outlined in Table 2. A 
direct comparison of the mean values reveals a substantial improvement 
between the resolution-enhanced output and the interpolated results. 
While the network in terms of structural similarity index only improved 
from 0.622 ± 0.002 to 0.626 ± 0.002, the network improved in terms of 
peak-signal-to-noise ratio to a higher degree from 25.57 dB ± 0.05 dB
to 25.96 dB ± 0.04 dB. Most notably, the edge-based structural similar

ity index showed the most significant improvement from 0.354 ± 0.005
with bi-cubic interpolation to 0.400 ± 0.006 with the TTSR approach. 
This substantial 13% improvement in ESSIM underscores the network’s 
superior ability to preserve critical edge information, which is particu

larly relevant for microstructural analysis.

3.1.1. Prediction of larger micrographs

To evaluate the network’s capability to enhance larger micrographs, 
we tested it on images of 4096 × 4096 pixels (DP-large in Table 1). This 
larger field of view is crucial as microstructural features are influenced 
not only by their immediate surroundings but also by longer-range struc

tural correlations.

Before these larger images could be processed by the neural network 
we needed to split them into smaller patches corresponding to the in

put size of the neural network. Following resolution-enhancement, the 
images were stitched to the size of the original micrograph. As arte

facts at the borders of the prediction can occur, the smaller patches 
were generated with overlap in such a way that only the central 62.5%
of the prediction were used in the stitching process without loss of in

formation. A small section of the super-resolution micrograph after the 
stitching process is shown in Fig. 7. This section is 1024 × 512 pixels 
large which equals 8 × 4 images of the output size of the network. No 
stitching artefacts can be seen.

In order to compensate for accumulated drift of the electron beam 
during the imaging process, the low-resolution patches needed to be 
realigned with the high-resolution patches before calculating the simi

larity metrics and performing any direct visual comparison. In the evalu

ation of the metrics, bi-cubic interpolation was marginally outperformed 
by the TTSR method, which achieved the highest SSIM and PSNR values. 
While Lanczos interpolation delivered comparable results, it fell slightly 
below both bi-cubic and TTSR, further emphasising the TTSR method’s 
effectiveness. Additionally, ESSIM showed more substantial improve

ment with TTSR (0.574 ± 0.005) compared to bi-cubic interpolation 
(0.559 ± 0.005) and Lanczos interpolation (0.546 ± 0.005), highlight

ing the network’s ability to maintain critical edge details. The results 
for the similarity metrics are summarised in Table 3.
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Fig. 6. Scanning electron micrographs along with the output of the texture transformer network. Each group shows the low-resolution input to the network, the 
high-resolution ground truth, the networks output, and for comparison bi-cubic interpolation both for the size of the entire patch as well as a zoom around each 
damage site.

Fig. 7. Example of super-resolution patches, stitched together to a larger micro

graph.

Table 3
Evaluation metrics from the dual-phase steel dataset using a win

dow size of 4096 × 4096 pixels.

Metric Bi-Cubic Lanczos TTSR 
SSIM 0.559 ± 0.005 0.546 ± 0.005 0.574 ± 0.005
PSNR 22.1 dB ± 0.1 dB 21.8 dB ± 0.1 dB 22.2 dB ± 0.1 dB
ESSIM 0.353 ± 0.005 0.340 ± 0.005 0.400 ± 0.006

3.2. Evaluation of network performance on case-hardening steel

To further investigate the transferability of the developed methodol

ogy, we applied the network trained on dual-phase steel data directly to 
the case-hardening steel dataset before performing additional training 
using a small dataset of 1600 image pairs and assessed the improvement.

3.2.1. Baseline

To assess the performance of the network, we again established 
a baseline for comparison. An example of the typical microstructure 
for this material is shown in Fig. 8. Here, we illustrated the perfor

mance of nearest, bi-cubic, and Lanczos interpolation alongside the 
high-resolution ground truth images. The cementite lamellae were not 
visible in the nearest-neighbour interpolation and are barely visible both 
for bi-cubic and Lanczos interpolation. The similarity metrics for Lanc

zos and bi-cubic interpolation are summarised in Table 4. As bi-cubic 

Fig. 8. Low-resolution input and comparison of nearest-neighbour, bi-cubic, 
and Lanczos interpolation with the high-resolution ground truth of the area 
highlighted in blue on a 16MnCrS5 case-hardening steel scanning electron mi

crograph.

interpolation performed better than Lanczos interpolation, we chose this 
for the comparisons with the machine-learning based super-resolution 
method. 

3.2.2. Direct application to case-hardening steel micrographs

To test whether additional training is necessary when changing ma

terial systems or a substitution of reference images is sufficient, we used 
the network weights trained on the dual-phase steel, supplied high

resolution reference images from the 16MnCrS5 dataset and evaluated 
the performance of the network. The direct application of the network 
trained on the dual-phase steel dataset produced overly bright images, 
with a mean pixel value of 202, compared to a mean pixel value of 133 in 
the ground truth dataset. In order to evaluate whether this is related to 
the brightness and/or contrast differences during image acquisition, we 
re-scaled the pixel values of the images after resolution-enhancement to 
the high-resolution ground truth distribution. However, this resulted in 
images that were still overly bright and showed additional colour arte

facts as can be seen in Fig. 9 (c). Furthermore, the features at the borders 
of the predictions did not align leading to stitching artefacts, which can 
be seen as straight lines in both horizontal and vertical direction in the 
enhanced image, highlighted with blue arrows in Fig. 9 (c).
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Fig. 9. Resolution-enhancement network trained on dual-phase steel dataset ap

plied to 16MnCrS5 case-hardening steel micrographs without further network 
training, (a) low-resolution input, (b) high-resolution ground truth, (c) output 
of the texture transformer. Stitching artefacts are indicated with blue arrows.

Table 4
Similarity metrics for bi-cubic, Lanczos interpolation and super

resolution on the aligned 16MnCrS5 dataset.

Metric Bi-Cubic Lanczos TTSR (fine-tuned) 
SSIM 0.476 ± 0.003 0.467 ± 0.003 0.492 ± 0.004
PSNR 18.4 dB ± 0.1 dB 18.1 dB ± 0.1 dB 19.1 dB ± 0.1 dB
ESSIM 0.314 ± 0.004 0.309 ± 0.004 0.488 ± 0.006

3.2.3. Fine-tuning with data from case-hardening steel
Fig. 9 suggests that the network trained on dual-phase steel cannot 

be applied directly to a new material but fine-tuning is necessary when 
changing material systems. We fine-tuned with a small dataset con

sisting of 1600 low-resolution, high-resolution, and reference images, 
corresponding to approximately 20min of recording time.

The resulting similarity metrics are summarised in Table 4. The fine

tuned network improved both in terms of SSIM, PSNR, and ESSIM over 
Lanczos and bi-cubic interpolation.

A visual comparison between different microstructural elements 
from the low-resolution input, high-resolution ground truth, the output 
of the TTSR network, and the output of bi-cubic interpolation is shown 
in Fig. 10. Fig. 10 (a) and (b) depict two examples of pearlitic regions. 
The network produced clearer cementite lamellae that closely resemble 
the high-resolution ground truth. Fig. 10 (b) illustrates how challeng

ing the enhancement of the fine lamellae was. Here, the resolution

enhancement algorithm showed a continuous lamella whereas there is 
a small gap in the high-resolution image. However, we could see from 
the low-resolution input, that the reconstruction of such intricate de

tails is challenging. In Fig. 10 (c) and (d) different MnS inclusions are 
displayed. The network performed seemingly better when reconstruct

ing high-resolution information in these MnS inclusions compared to the 
fine pearlitic structures.

4. Discussion

In this work we have successfully implemented and trained a deep 
learning reference-based super-resolution algorithm for scanning elec

tron microscopy using pre-trained model architectures. We recorded 
three datasets of scanning electron micrographs on two materials with 
visually different microstructures, with a target resolution commonly 
used for the damage analysis in each respective material and the input 
resolution of the algorithm at a quarter of that value. Here, we discuss 
the performance and limitations of the developed methodology, difficul

ties with similarity metrics for scanning electron micrographs of metallic 
microstructures, and present a novel imaging workflow based on the tex

ture transformer network.

4.1. Metrics for resolution enhancement

We quantitatively assess the improvement of the enhanced image 
compared to the high-resolution ground truth with multiple metrics: 
SSIM, PSNR, and ESSIM. While SSIM and PSNR show modest improve

ments when using the machine-learning based approach compared to 
the conventional interpolation methods, the edge-based structural sim

ilarity index demonstrates more substantial enhancements. This aligns 
better with our visual assessment where machine-learning enhanced im

ages appear considerably closer to the high-resolution ground truth than 
interpolated ones. The discrepancy between metrics can be attributed 
to the different approaches followed by interpolation and resolution

enhancement: In terms of traditional metrics, interpolation is a good 
conservative approximation of the high-resolution images, where coin

ciding pixels have the same value. When using an interpolation method, 
these original pixels form the ``scaffolding'' that is then filled by the in

terpolation algorithm using a smooth function. The machine-learning 
based method, on the other hand, creates a new image and, there

fore, does not simply fill in pixels in the space between pixels from the 
original low-resolution input. In addition, the resolution-enhancement 
algorithm is trained with a more complex mixture of metrics in addi

tion to the reconstruction loss that compares the pixel-wise difference 
between images. Therefore, the images follow a less conservative ap

proach after resolution-enhancement, resulting in sharper features in 
contrast to the smooth interpolation. As these sharp features correspond 
to fast changes in pixel values, small deviations in position have a strong 
negative impact on the conventional similarity metrics. The ESSIM met

ric, which specifically emphasizes edge preservation, better captures 
these improvements in structural details and boundary definition that 
are critical for accurate microstructural characterisation. Additionally, 
similarity metrics are not designed to take noise into account that is in

herent to electron micrographs. However, as this noise is, essentially, a 
physical artefact from the image acquisition process, comparing two mi

crographs is not entirely suitable to assess super resolution performance. 
In particular, because small shifts in the noisy pixels do not change the 
underlying image information in any way but may influence the nu

merical value of the metrics. While extensions of both the SSIM and 
PSNR exist that were designed to be less sensitive to noise, e.g. PSNR

HVS, SSIM-HVS, PSNR-HVS-M, SSIM-HVS-M [36,37], these extensions 
are designed after the perception of the human visual system and intro

duce additional biases in their calculation. The ESSIM metric, with its 
focus on edge preservation, provides a more relevant evaluation for our 
microstructural analysis without introducing such perceptual biases.

4.2. Feature size constraints and physical validity in deep learning-based 
SEM image enhancement

The application of deep-learning based super-resolution to SEM 
imaging reveals important considerations regarding the relationship be

tween physical feature sizes and reconstruction quality. Our observa

tions across dual-phase and case-hardening steel samples demonstrate 
that special attention must be paid when the dimensions of microstruc

tural features approach the resolution limit of the low-resolution in

put images. This becomes particularly evident in the reconstruction of 
pearlitic structures in the 16MnCrS5 case-hardening steel, where cemen

tite lamellae dimensions are close to the lower resolution threshold. In 
Fig. 10 (b), for example, the network predicted a continuous lamella 
structure where the ground truth revealed two distinct lamellae meet

ing at a point. This discrepancy highlights a fundamental challenge: 
when feature sizes approach the resolution limit, the network may gen

erate plausible but physically incorrect reconstructions in the absence 
of constraining factors. Interestingly, this limitation appears to be mit

igated in cases where physical constraints are inherently represented 
in the training dataset. For example, the network successfully recon

structed martensite cracks, Fig. 6 (a), despite their similar physical di

mensions. This success can be attributed to the consistent morphological 
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Fig. 10. Different points of interest of the microstructure of the case-hardening steel shown for the low-resolution input, the high-resolution ground truth, the output 
of the network, and for comparison the bi-cubic interpolation results. Each row depicts a larger area in high-resolution and one zoomed in region.

patterns of cracks present in the training data, effectively providing 
the network with implicit physical constraints. The contrast between 
these cases demonstrates that the network’s ability to make accurate 
predictions depends not only on feature size but also on whether the 
physical constraints are adequately expressed through examples in the 
training dataset. These observations underscore the importance of care

ful validation when applying deep learning-based super resolution to 
microstructural analysis, particularly when examining features near the 
resolution limit.

4.3. Cross-material adaptability and transfer learning

The direct application of the texture-transformer trained on the 
dual-phase steel dataset resulted in overly bright images, even after 
re-scaling of brightness and contrast. Furthermore, stitching of the pre

dicted patches to a larger image resulted in stitching artifacts present at 
the borders of the prediction. We attribute this to the substantially dif

ferent microstructure of the 16MnCrS5 case-hardening steel. Unifying 
the imaging conditions between different materials could mitigate this 
issue to some extent.

Several factors likely influenced this transferability challenge, with 
microstructural differences being the most significant. The fundamen

tal disparity between dual-phase steel (ferrite-martensite structure) and 
16MnCrS5 (ferrite, pearlitic regions and MnS inclusions) creates dis

tinctly different feature morphologies, size distributions, and boundary 
characteristics. As shown in Fig. 10, feature complexity significantly im

pacts transferability—the model adapted more readily to MnS inclusions 
than to the intricate pearlitic lamellae structures. A multitude of factors 
beyond the microstructure itself may impact transferability, but would 
require specific and in some case correlative new datasets, e.g. use of dif

ferent electron detectors (we exclusively used SE imaging in this work), 
sample preparation (our microstructures were polished and etched for 
phase contrast), or simply imaging parameters such as acceleration volt

age. While we demonstrate successful transfer to reasonably similar 
images taken from very different microstructures, limitations may arise 
in future applications across diverse materials and microscopes. In any 
case, we assume that the collection of fine-tuning data that adequately 
represents all key microstructural features of the target material will be 
beneficial or even essential.

Using a smaller dataset consisting of 2000 additional images, corre

sponding to 20min of image acquisition time, for further training of the 
neural network improved the performance of the network substantially, 

both in terms of the SSIM, PSNR, and ESSIM metrics, as well as visual 
similarity.

This successful adaptation through fine-tuning suggests a promising 
pathway for broader application of machine learning-based resolution 
enhancement in electron microscopy. Recent advances in foundation 
models, such as the Segment Anything Model [38], have demonstrated 
the power of pre-trained models that can be rapidly adapted to new 
tasks. Drawing inspiration from these developments, we envision the 
creation of a foundation SEM enhancement model trained on a com

prehensive dataset spanning various materials and imaging conditions. 
Such a model could capture universal features of electron microscopy 
images. Our results suggest that this foundation model could then be 
efficiently fine-tuned to new materials and imaging conditions with min

imal additional data collection, potentially requiring even fewer than 
the 2000 images used in this study. This approach could significantly 
streamline the adoption of super-resolution techniques in electron mi

croscopy while maintaining high enhancement quality across different 
material systems.

Beyond material-specific adaptability, we also investigated the effec

tiveness of our approach when applied to images acquired with accel

erated scanning parameters. A supplementary experiment on the dual

phase steel with reduced dwell time (10 μs versus 100 μs) demonstrated 
that the texture transformer can effectively enhance noisier, rapidly ac

quired micrographs while still outperforming traditional interpolation 
methods (see Table S1 in the supplementary material section A). This 
suggests our approach can be combined with parameter optimisation 
strategies, offering independent yet complementary pathways to reduce 
overall acquisition time in SEM imaging.

4.4. Experimental acceleration through intelligent scanning strategies

The application of deep learning-based resolution enhancement 
transforms microscopy workflows by reducing image acquisition time 
by a factor of 16. This acceleration converts what would tradition

ally be a 9 h scan of a 1mm2 area at 32.5 nm∕px resolution into a 
30min procedure. While this speed-up alone enables previously infeasi

ble experiments, such as complete cross-section analysis of macroscopic 
tensile specimens or multi-step in-situ deformation studies within stan

dard 8 h instrument sessions, its true potential lies in combining rapid 
acquisition with intelligent scanning strategies.

Drawing parallels from face recognition research [39], where en

hanced low-resolution images can improve feature detection despite 



Materials & Design 253 (2025) 113955

10

T. Reclik, S. Medghalchi, P. Schumacher et al. 

Fig. 11. Depiction of the expected relative imaging time compared to conventional high-resolution scanning (y-axis) against the fraction of the area of interest over 
the total area to be imaged (x-axis). The ratio between imaging times using super-resolution and imaging with full high-resolution depends linearly on the area that 
needs to be rescanned and the total area. Several micrographs depicting 𝐴𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡∕𝐴𝑡𝑜𝑡𝑎𝑙 scenarios are given as well. In regions of the graph highlighted in blue time 
can be saved by applying a scan-enhance-rescan strategy.

not being perfectly accurate, we propose a scan-enhance-rescan (SER) 
strategy. In this approach, the resolution-enhanced micrographs serve as 
intelligent guides for identifying regions of interest, even if some fine de

tails may not be perfectly reconstructed. The enhanced images, having 
re-introduced features such as clear phase boundaries and more dis

tinct voids, enable more precise targeting of subsequent high-resolution 
scans. This approach can be further refined by quantifying model un

certainty in the enhanced images, prioritizing areas of high uncertainty 
for rescanning to ensure physical realism of critical features.

For a resolution ratio of 4 between high- and low-resolution scans in 
each dimension, the time efficiency of this strategy can be expressed as:

𝑡𝑆𝐸𝑅∕𝑡𝐻𝑅 = 1∕16 +𝐴𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡∕𝐴𝑡𝑜𝑡𝑎𝑙 (10)

where 𝑡𝑆𝐸𝑅 is the combined time for a scan-enhance-rescan strategy, i.e. 
low-resolution scanning and high-resolution re-scanning of regions of 
interest, 𝑡𝐻𝑅 is the time for complete high-resolution scanning, 𝐴𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡
is the combined area of regions of interest, and 𝐴𝑡𝑜𝑡𝑎𝑙 is the total scan 
area. This approach remains time-e˙icient up to a region of interest to 
total area ratio of 15∕16, making it practical even when many regions 
require detailed examination. A visual depiction of these estimates can 
be found in Fig. 11. The method is particularly valuable for in-situ ex

periments, where high-resolution images from previous steps can serve 
as reference data for the model, improving subsequent predictions. This 
creates a positive feedback loop where each experimental stage benefits 
from prior high-quality data while maintaining rapid acquisition speeds.

5. Conclusion

In this work, we developed a novel resolution-enhancement method 
for improving scanning electron micrographs that generates much more 
realistic images compared to conventional interpolation approaches. 
The method, based on a texture-transformer deep-learning algorithm, 
was able to enhance low-resolution micrographs with high fidelity for 
the subsequent analysis that requires high-resolution images.

By reducing the recording resolution we achieved a 16-fold decrease 
in acquisition time while maintaining image quality suitable for mi

crostructural analysis.

We further show that the trained network is capable of adapting to 
a visually different microstructure through fine-tuning with a dataset 
associated with an additional recording time of 20min.

Furthermore, we propose a scan-enhance-rescan strategy in cases 
where accurate high resolution images of rare features are essential for 
subsequent analysis. In this case, low resolution scanning coupled with 
resolution enhancement can serve as a starting point for the localisation 
of points of interest, effectively avoiding lengthy high-resolution imag

ing on sample area not of interest. Following this approach, large-area 
in-situ and slice-and-view experiments can be performed in a fraction of 
the previously required time. In this way, a larger range of compositions, 
processing routes, strains, or simply observation of more representative 
areas, to name just a few examples, become accessible by electron mi

croscopy.
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