
Iterative Soft-Thresholding from a Statistical Learning Perspective

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften
der RWTH Aachen University zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Ekkehard Schnoor, M.Sc.

aus

Stuttgart, Deutschland

Berichter: Prof. Dr. Holger Rauhut
Prof. Dr. Hartmut Führ

Tag der mündlichen Prüfung: 20. Juni 2024

Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek verfügbar.

Eidesstattliche Erklärung

Ich, Ekkehard Schnoor,

erkläre hiermit, dass diese Dissertation und die darin dargelegten Inhalte die eigenen
sind und selbstständig, als Ergebnis der eigenen originären Forschung, generiert wurden.

Hiermit erkläre ich an Eides statt

1. Diese Arbeit wurde vollständig oder größtenteils in der Phase als Doktorand dieser
Fakultät und Universität angefertigt;

2. Sofern irgendein Bestandteil dieser Dissertation zuvor für einen akademischen Ab-
schluss oder eine andere Qualifikation an dieser oder einer anderen Institution ver-
wendet wurde, wurde dies klar angezeigt;

3. Wenn immer andere eigene- oder Veröffentlichungen Dritter herangezogen wur-
den, wurden diese klar benannt;

4. Wenn aus anderen eigenen- oder Veröffentlichungen Dritter zitiert wurde, wurde
stets die Quelle hierfür angegeben. Diese Dissertation ist vollständig meine eigene
Arbeit, mit der Ausnahme solcher Zitate;

5. Alle wesentlichen Quellen von Unterstützung wurden benannt;

6. Wenn immer ein Teil dieser Dissertation auf der Zusammenarbeit mit anderen ba-
siert, wurde von mir klar gekennzeichnet, was von anderen und was von mir selbst
erarbeitet wurde;

7. Ein Teil oder Teile dieser Arbeit wurden zuvor veröffentlicht und zwar in:

• M. Tiomoko, E. Schnoor, M.E.A. Seddik, I. Colin and A. Virmaux. “Deciphe-
ring Lasso-based Classification Through a Large Dimensional Analysis of the
Iterative Soft-Thresholding Algorithm”. In Proceedings of the 39th International
Conference on Machine Learning (PMLR 162:21449-21477), 2022.

• A. Behboodi, H. Rauhut and E. Schnoor. “Compressive Sensing and Neural
Networks from a Statistical Learning Perspective”. In Compressed Sensing in
Information Processing (pp. 247-277). Birkhäuser, Cham, 2022.

• E. Schnoor, A. Behboodi and H. Rauhut. “Generalization Error Bounds for Ite-
rative Recovery Algorithms Unfolded as Neural Networks”. Accepted for pu-
blication in Information and Inference: A Journal of the IMA 12.3 (pp. 2267-2299),
2023.

Dresden, 4. Juni 2023

3

Abstract

This dissertation explores connections between the areas of compressive sensing and
machine learning. It is centered around the so-called iterative soft-thresholding algo-
rithm (ISTA), an iterative algorithm to solve the ℓ1-regularized least squares problem
also known as LASSO (least absolute shrinkage and selection operator) that has various
applications in statistics and signal processing.

We will investigate two statistical learning problems that can be regarded as two differ-
ent interpretations of the same underlying optimization problem and its solution through
ISTA. While both are different, in common they have a generalization perspective, i.e., we
aim for finding performance guarantees at inference, that is when applying the trained
model to new data samples that have not been used for training, but can be regarded
as samples from the same underlying (but in practice, typically unknown) distribution.
Thus, the contribution of this thesis lies in providing novel investigations of the iterative
soft-thresholding algorithm from the viewpoint of statistical learning theory. We heavily
rely on tools from high-dimensional probability theory to prove our results.

The first of the problems we consider deals with an interpretation of ISTA as a neu-
ral network, a topic which attracted attention with the rise of deep learning in the past
decade. As a first step to introduce trainable parameters, we address a rather simple
model, where a dictionary is learned implicitly. Then, we extend our results to a greatly
generalized setup including a variety of ISTA-inspired neural networks, ranging from
recurrent ones to architectures more similar to feedforward neural networks. Based on
estimates of the Rademacher complexity of the corresponding hypothesis classes, we de-
rive the first generalization error bounds for such specific neural network architectures
and compare our theoretical findings to numerical experiments. While previous works
strongly focused on generalization of deep learning in the context of classification tasks,
we provide theoretical results in the context of inverse problems, which is much less
explored in the literature.

The second problem considers the application of LASSO in a classification context,
where the solution found through ISTA plays the role of a sparse linear classifier. Under
realistic assumptions on the training data, we show that this induces a concentration on
the distribution over the corresponding hypothesis class. This enables us to derive an
algorithm to predict the classification accuracy based solely on statistical properties of
the training data, which we confirm with the help of numerical experiments.

5

Zusammenfassung in deutscher Sprache

Die vorliegende Dissertation beschäftigt sich mit Themen an der Schnittstelle des Com-
pressive Sensing und des Maschinellen Lernens. Schwerpunkt sind dabei Anwendun-
gen des sogenannten iterativen Soft-Thresholding-Algorithmus (ISTA), eines iterativen
Algorithmus zur Lösung des auch als LASSO (engl. least absolute shrinkage and selection
operator) bekannten ℓ1-regularisierten kleinste-Quadrate-Problems, mit zahlreichen An-
wendungen in der Statistik und Signalverarbeitung.

Wir untersuchen zwei Probleme der statistischen Lerntheorie, die als zwei unterschied-
liche Interpretationen des selben zugrundeliegenden Optimierungsproblems mitsamt der
Lösung durch ISTA angesehen werden können. Obwohl sie verschieden sind, ist ge-
meinsam eine Untersuchung in Hinblick auf ihre Generalisierung, d.h. wir untersuchen
die Genauigkeit der Vorhersage der Modelle auf Daten der zugrundeliegenden (und
üblicherweise nicht bekannten) Verteilung, die jedoch nicht für die Optimierung des Mo-
dells verwendet wurden. Der Beitrag dieser Dissertation liegt somit in neuen Untersu-
chungen des iterativen Soft-Thresholding-Algorithmus aus Sicht der statistischen Lern-
theorie. Für die Herleitung unserer Ergebnisse stützen wir uns stark auf Resultate aus
der hochdimensionalen Wahrscheinlichkeitstheorie.

Das erste Problem betrifft die Interpretation von ISTA als neuronales Netz, ein Thema,
das mit den Durchbrüchen im tiefen Lernen im letzten Jahrzehnt an Aufmerksamkeit
gewonnen hat. In einem ersten Schritt zur Einführung trainierbarer Parameter befassen
wir uns mit einem recht einfachen Modell, bei dem ein sogenanntes dictionary implizit
gelernt wird. Anschließend dehnen wir unsere Ergebnisse auf ein deutlich allgemeine-
res Modell aus, das eine Vielzahl von ISTA-inspirierten neuronalen Netzen umfasst, von
rekurrenten Netzen bis hin zu Architekturen, die klassischen sogenannten feedforward-
Netzen ähnlicher sind. Wir leiten die ersten Schranken für den Generalisierungsfehler für
diese Netzwerkarchitekturen her, die auf Abschätzungen der Rademacher-Komplexität
der entsprechenden Hypothesenklassen beruhen, und vergleichen unsere theoretischen
Ergebnisse mit numerischen Experimenten. Während frühere Arbeiten sich stark auf die
Generalisierung des tiefen Lernens im Kontext von Klassifikationsaufgaben konzentrier-
ten, liefern wir theoretische Ergebnisse mit den in diesem Zusammenhang weniger un-
tersuchten inversen Problemen.

Das zweite Problem betrifft die Anwendung von LASSO im Kontext einer Klassifizie-
rungsaufgabe, in dem die durch ISTA gefundene Lösung die Rolle eines dünnbesetzten
linearen Klassifizierers spielt. Unter realistischen Annahmen über die Trainingsdaten zei-
gen wir, dass dies eine Konzentration auf die Verteilung über die entsprechende Hypo-
thesenklasse induziert. Das ermöglicht es uns, einen Algorithmus zur Vorhersage der
Klassifizierungsgenauigkeit zu entwickeln, der ausschließlich auf den statistischen Ei-
genschaften der Trainingsdaten beruht, und dies bestätigen wir mit Hilfe numerischer
Experimente.

7

Notation

Let us introduce a set of notations and conventions that will be used throughout the entire
thesis, besides the standard notation used in the mathematical literature.

Conventions. Throughout the thesis, we follow the conventions from mathematical
statistics to denote the dimension by p and the sample size by n. As common in the
compressive sensing literature, m is the number of measurements and s stands for the
sparsity level of some sparse signal. Further, in case a flexible formulation is convenient,
we usually employ the letter d (as in Rd) for a general dimension with no fixed meaning.

Numbers, Vectors and Matrices. Based on the standard notation N, Z, Q, R, C for
numbers, we will use (self-explanatory) expressions like R>0 := {x ∈ R : x > 0} to
denote the set of (strictly) positive real numbers. To make it easier to distinguish scalars
from higher-dimensional objects, the latter are printed in bold type. Vectors v ∈ Rp and
matrices A ∈ Rp×n are denoted with bold (minuscule or capital, respectively) letters.
1p ∈ Rp is the vector of all ones and Ip denotes the p × p identity matrix; if the size is
clear from the context, we simply write I. General norms are denoted by ∥ . ∥. Concrete
norms will always be specified, in particular we will make use of the vector ℓp-norm ∥ . ∥p
for 1 ≤ p ≤ ∞ and the spectral norm ∥A∥2→2 as well as the Frobenius norm ∥A∥F for
matrices. The transpose of a matrix A is A⊤, and the trace of a quadratic matrix A is
denoted by tr(A). The (decreasingly ordered) singular values of a rank-k matrix A are
denoted by σ1(A), . . . , σk(A), or shortly just σ1, . . . , σk if A is clear from the context. The
Hadamard (or entrywise) product of two matrices A and B of same size is written as
A ⊙ B. The expression ker(A) denotes the kernel of the the linear mapping associated
to A. The notation D(A) ∈ Rp for a square matrix A ∈ Rp×p is a vector containing
the diagonal elements of A. Furthermore, for a vector v ∈ Rp, we write diag(v) for the
(p × p) diagonal matrix with v on its main diagonal. Sometimes functions f : R → R

are applied to vectors x ∈ Rp, when f (x) ∈ Rp stands for the element-wise application
of f (analogously for matrices). Similarly, for mappings f : Rp → Rd we may apply
them to matrices X ∈ Rp×n, when f (X) ∈ Rd×n has to be understood as a column-wise
application of f . Sometimes, we collect vectors x1, . . . , xn ∈ Rp as columns in a matrix
X ∈ Rp×n, expressed as [x1, . . . , xn].

Sets, metric and normed spaces. Sets are usually denoted by italic letters like S . Metric
spaces are denoted by (S , d), and normed spaces by (V , ∥ . ∥). Covering numbers of
metric or normed spaces (or subsets thereof) are denoted by N (S , d, ε) or N (V , ∥ . ∥, ε).
The unit ball of an n-dimensional normed space (V , ∥ . ∥) is denoted by Bn

∥·∥ := {x ∈ V :

∥x∥ ≤ 1}, or simply by Bn
V or Bn, and similarly the sphere Sn−1

∥·∥ := {x ∈ V : ∥x∥ = 1}
or Sn−1

V , or shortly Sn−1. As usual, A being a subset of B is written as A ⊂ B (in the
non-strict sense). The letter H is reserved for hypothesis spaces in a statistical learning
setting. By O(p) we denote the orthogonal group and SO(p) is the special orthogonal
group. For any k ∈ N, we write [k] := {1, . . . , k}.

Probability theory and statistics. This thesis relies heavily on stochastical tools. Proba-
bility spaces (Ω, E , P) (i.e., a probability measure P defined on a σ-algebra E of an under-
lying set Ω) are typically omitted, as often we are only interested in the distribution of

9

random variables X defined on some underlying probability space rather than the prob-
ability space itself. For instance, as usually done in the literature with a slight abuse of
notation, we shortly write P(X > λ) instead of P({ω ∈ Ω : X(ω) > λ}) for a real-valued
random variable X defined on some underlying set Ω, and any scalar λ ∈ R. Similarly,
following the usual conventions in the literature, statements like “Let x ∈ Rp be a ran-
dom vector . . . ” have to be understood in the sense that x : Ω → Rp is a random variable
taking values in Rp. One of the most important distributions is the Gaussian distribution.
To denote a univariate Gaussian random variable of mean µ and variance σ2, we write
N (µ, σ2), and in particular N (0, 1) for the standard normal distribution. In the multi-
variate case N (µ, Σ) with mean (vector) µ and covariance matrix Σ, e.g. N (0, I) for the
most simple case of an isotropic Gaussian random vector with mean zero. Expectations
of a random variable X (including vector- or matrix valued ones) are denoted by E[X],
or shortly just by EX or X̄, and the variance by Var(X). For a random vector v ∈ Rp, the
matrix Cov(v) = Σv ∈ Rp×p denotes its covariance matrix (if it exists).

O-Notation. The following is relevant to Chapter 3.

• Consider x = (1, . . . , 1) ∈ Rp, so that ∥x∥2 =
√

p. Interpreted as a sequence
(xp)p∈N, but as usual omitting the index p, we have that ∥x∥2 = O(

√
p). Note

that, for any absolute constant α ∈ R \ {0} (the case of α = 0 is not of interest
anyways), there is also ∥α · x∥2 = O(

√
p).

Example: In a binary classification problem, for feature vectors x1, . . . , xn ∈ Rp and
labels y1, . . . , yn collected in y ∈ {−1, 1}n, there is ∥y∥2 = O(

√
n).

• This motivates to normalize x = (1/
√

p, . . . , 1/
√

p) ∈ Rp, so that ∥x∥2 = 1. Inter-
preted as a sequence, this is a sequence of unit vectors and we write ∥x∥2 = O(1).
We use this expression whenever there is no dimension-dependency and the limit
depends only on absolute constants. For example, for any absolute α ∈ R and αx =
(α/

√
p, . . . , α/

√
p) ∈ Rp, there is ∥αx∥2 = α and we still write ∥α · x∥2 = O(1). As

another example, for x = (1/p, . . . , 1/p) ∈ Rp there is ∥x∥2 = O(p−1/2).

• Moving to matrices and matrix norms, for the identity matrix Ip (or any multiple
thereof) we have (independently of p) that ∥Ip∥2→2 = 1, so of course ∥Ip∥2→2 =
O(1). However, there is a dimension-dependency with respect to the Frobenius
norm, as ∥Ip∥F = O(

√
p). Considering a matrix 1p×p whose entries are all 1 (or

α ̸= 0), of course ∥α · 1p×p∥F = O(p).

• Note that when p/n → c ∈ (0, ∞), when the number of rows and columns of a
random matrix are of the same order of magnitude, they can even be used inter-
changeable with respect to their asymptotic behavior. Thus, the assumption of a
commensurable convergence rate is also helpful to enable simplifications.

• To ensure convergence, usually a normalization is required, and typically the data is
normalized by 1/

√
n (or 1/

√
p), which is suitable for most appropriate data models

[LC18b].

Examples: One application of this normalization (in the single asymptotic n → ∞)
is the introductory example of ridge regression (1.21). We may also need to bal-
ance the asymptotic growth rate of the data with that of hyperparameters of the
algorithm; an example of this will be discussed in Assumption 3.9 in Chapter 3.

10

Contents

Preface 3
Eidesstattliche Erklärung . 3
Abstract . 5
Zusammenfassung in deutscher Sprache . 7
Notation . 9

1 Introduction 19
1.1 Motivation . 19
1.2 The Iterative Soft-Thresholding Algorithm 23
1.3 Statistical Learning Theory . 25
1.4 Generalization: Asymptotic and Non-Asymptotic Approaches 33

2 Unfolded Neural Networks for Sparse Reconstruction 43
2.1 Introduction . 43
2.2 LISTA for Dictionary Learning . 45
2.3 LISTA: General Model . 57
2.4 Numerical Experiments . 73
2.5 Related Work and Outlook . 78

3 Sparse Linear Classifiers via ISTA 85
3.1 Predicting Classification Accuracy . 86
3.2 Assumptions and Preparations . 90
3.3 Random Fixed Point Equations . 92
3.4 Derivation of the Algorithm and Numerical Experiments 96
3.5 Related Work and Outlook . 124

A Covering Numbers and Dudley’s Integral 125
A.1 Covering Numbers . 125
A.2 Dudley’s Inequality . 126

B High-Dimensional Probability Theory 129
B.1 The Normal Distribution . 129
B.2 Stein’s Lemma . 130
B.3 Contraction Principles . 130
B.4 Random Matrix Theory . 131

C ISTA and the Soft-Thresholding Operator 133
C.1 Basics and Perturbation Results . 133
C.2 A few Integrals . 134

Bibliography 139

11

List of Figures

2.1 Orthogonality of the learned dictionary . 74
2.2 Reconstruction and generalization: MNIST dataset 75
2.3 Generalization error for synthetic data . 76
2.4 Generalization error for fixed dimension . 77
2.5 Generalization error for varying number of measurements (MNIST) 77
2.6 Generalization error vs generalization bound 78

3.1 Gaussian classification scores (illustration) 87
3.2 Classifications scores for real datasets . 88
3.3 Theoretical and empirical classification error as function of λ 123
3.4 Theoretical and empirical classification accuracy as function of λ 123

13

Summary

This dissertation explores connections between compressive sensing and statistical learn-
ing theory. It is centered around the classical ℓ1-regularized least squares problem

arg min
x∈Rp

∥Ax − y∥2
2 + λ∥x∥1 (0.1)

also known as the LASSO (least absolute shrinkage and selection operator) [Tib96]. Here,
a matrix A ∈ Rm×p and a vector y ∈ Rm are given; the ℓ1-regularizer is well-known to
promote sparse (that is, containing only few non-zero entries) solutions x ∈ Rp. This
convex but non-smooth optimization problem has no explicit solution, but iterative algo-
rithms with convergence guarantees exist, of which here we focus on ISTA [DDDM04].
It can be derived using tools from convex optimization theory (proximal mappings) and
be regarded as a projected gradient descent, consisting of a gradient descent step (of the
non-regularized problem) followed by an application of the sparsity-promoting soft-
thresholding function. Formally, after initializing x0 = 0, we compute recursively

xk+1 = Sτλ

(
xk + τA⊤(y − Axk)

)
(0.2)

for k ≥ 0, where the threshold λ > 0 and the step size τ > 0 are parameters of the algo-
rithm, and Sλ (applied entrywise) is the soft-thresholding or shrinkage operator defined as
Sλ(x) = sign(x) ·max(0, |x| − λ) for any x ∈ R. It is well-known [DDDM04] that (xk)k∈N

converges to a minimizer of the optimization problem, if τ∥A∥2
2→2 < 2. While being

well-understood from an optimization viewpoint, this thesis investigates two different
interpretations of (0.1) as problems of statistical learning theory, and analyses them from
a generalization viewpoint. Thus, we consider different machine learning tasks (such as
regression or classification) using hypothesis classes that are build upon ISTA and are
combined with appropriate loss functions that measure the performance of the models
on given samples.

In Chapter 2, we take the viewpoint of compressive sensing, where A ∈ Rm×p is a mea-
surement matrix, taking m linear measurements, where we aim to reconstruct the original
signal x ∈ Rp from the measurement vector y = Ax ∈ Rm. To make this task feasible,
compressive sensing considers a sparsity prior on the signals x ∈ Rp, i.e., it assumes that
x contains only few non-zero entries. As a variant of this, we assume that x ∈ Rp is
sparse with respect to some (orthogonal) dictionary Φ ∈ Rp×p, if x = Φz for z ∈ Rp

being the sparse representation of x with respect to Φ. By inserting this into (0.2) and by
rearranging the terms, one ISTA iteration takes the form

zk+1 = Sτλ

[(
I − τΦ⊤A⊤AΦ

)
z + τ(AΦ)⊤y

]
,

which can be interpreted as a layer of a neural network with the weight matrix I −
τΦ⊤A⊤AΦ, bias τ(AΦ)⊤y and activation function Sτλ, where the trainable parame-
ters are the entries of Φ. (For now, we assume the step size τ and the threshold λ to
be hyperparameters.) Generally, such an interpretation of ISTA as a neural network has

15

been first proposed in [GL10] in 2010, inspiring intense research activity combining com-
pressive sensing and deep learning in the recent years. Most of this work has been ex-
perimental, while we approach this problem as a statistical learning problem and aim
to prove bounds on the generalization error. Roughly speaking, this is defined as the
difference between the training and test errors and measures how well the model gen-
eralizes to unseen data. To that end, we formulate a statistical learning problem and
derive a generalization error bound based on a well-established general result employ-
ing the Rademacher complexity [BM02], a complexity measure for hypothesis classes in
statistical learning theory. The main difficulty lies in the derivation of sharpest-possible
estimates of the Rademacher complexity. A key ingredient of the proof is a generalized
contraction principle [Mau16] for vector-valued function classes; furthermore, we apply
Dudley’s inequality [Dud67] to upper bound the Rademacher complexity and therefore
derive estimates of the covering numbers in Dudley’s integral.

Our main result is rigorously stated in Theorem 2.1 in Chapter 2, and establishes a
uniform bound on the generalization error for this recovery problem, measuring the re-
construction error simply with respect to the ℓ2-norm. Informally, denoting its true and
empirical risk by L(h) and L̂(h), the generalization error bound can be bounded as

|L(h)− L̂(h)| ≲
√

pm log(L) + p2 log(L)
n

,

uniformly for all h ∈ H, where n denotes the sample size and L stands for the number
of iterations of ISTA, or layers of the ISTA-inspired neural network. Remarkably, we
achieve an only logarithmic dependence of the generalization error on the number of
layers, while it is generally well-known to be challenging to derive generalization error
bounds of deep neural networks with a mild dependence on the depth that are able to
explain the surprisingly good generalization often observed in practice.

Then, we extend our findings to a much more general scenario, including the dictio-
nary learning problem above, and many other examples of practical interest. For in-
stance, it includes the case that step sizes τ and thresholds λ are trainable in each layer,
and a very general setup for weight matrices, so that we can cover a wide range of archi-
tectures from recurrent neural networks to networks more similar to standard feedfor-
ward neural networks. Furthermore, we allow flexible dimensions (widths, in the deep
learning terminology), such that the model is suitable for other tasks than just reconstruc-
tion. Again, it is remarkable that we obtain a fairly mild linear dependence of the gen-
eralization error on the number of layers in the most general scenario covered in Theo-
rem 2.11, which reduces to a logarithmic dependence in important special cases (Remark
2.12). The described results are layed out in detail in Chapter 2, which is based on the
book chapter [BRS22] as well as the journal paper [SBR21], both of which are co-authored
by the author of this thesis, together with Arash Behboodi and Holger Rauhut.

Chapter 3 is based on the same underlying optimization problem and its solutions
through ISTA, but takes a different perspective by considering a binary classification
problem. Here, with a different notation (0.1) reads as

ω⋆ = arg min
ω∈Rp

1
2
∥y − X⊤ω∥2

2 + λ∥ω∥1, (0.3)

with the data matrix X = [x1, . . . , xn] ∈ Rp×n collecting the samples from two classes C1
and C2 and y ∈ {−1, 1}n containing the corresponding labels. As the solution ω⋆ from
(0.3), we obtain a linear classifier and thus a hypothesis class consisting of functions of the

16

type hω(x) = sign(ω⊤x), a basic linear model in machine learning. It is a building block
of some of the most fundamental machine learning models including logistic regression
with the logistic loss function ℓ(x, y, hω) = log(1 + exp(−yhω(x))), and support vector
machines with a hinge loss ℓ(x, y, ω) = max(0, 1− y · x⊤ω). In contrast, the least-squares
loss used in (0.3) is more established for regression than classification problems. The ℓ1-
regularizer promotes sparse solutions that discard most of the features; thus, it is useful
in applications when only few of the features discrimate between the two classes.

Again, we are interested in the generalization of this model with respect to its accuracy
(thus, using different loss functions for training and inference). Upper bounds for the
generalization error for linear models are straightforward to obtain through Rademacher
complexity and VC dimension bounds that can easily be computed for such simple mod-
els. Instead, we derive an algorithm that predicts the precise classification accuracy based
on statistical properties of the training data, and depending on the regularization param-
eter λ, enabling applications to hyperparameter optimization. Here, it will be useful to
consider the following random fixed point equation

ω⋆ = Φ(X)(ω⋆) = Sτλ

(
ω⋆ + τX(y − X⊤ω⋆)

)
, (0.4)

where the randomness in the data matrix X induces randomness in the function Φ(X) :
Rp → Rp, and therefore a probability distribution over the solution ω⋆ of the fixed point
equation. Thus, if well defined, ω⋆ as implicitly given in (0.4), is a random vector in Rp

whose properties depend on the distribution of X. As an assumption that is both capable
of modelling realistic data, and restrictive enough from a mathematical viewpoint, we
assume that the data points x ∈ Rp satisfy the concentration inequality

P (|φ(x)− E[φ(x)]| ≥ t) ≤ Ce−(t/c)2 ∀t > 0 (0.5)

for any 1-Lipschitz (with respect to the ℓ2-norm) real valued function φ : Rp → R. Here,
c, C > 0 are absolute constants that do not depend on n and p and thus enable the appli-
cation of tools from random matrix theory to problems from high-dimensional statistics
[CL22]. Variants of (0.5) are ubiquitous in high-dimensional probability theory and are
generally based on the so-called concentration of measure phenomenon [Led01] in high di-
mensions. A key finding formulated in Theorem 3.13 in Chapter 3 is that, under the
above assumption on the underlying data distribution, the random vector ω⋆ as implic-
itly defined by (0.4) is tightly concentrated. This result is obtained through an applica-
tion of a probabilistic variant and extension [LC20, Theorem 5] of the classical fixed point
theorem of Banach. Thus, in contrast to generalization error bounds based on uniform
convergence, we obtain a distribution on the hypothesis class, and we propose an algo-
rithm to approximately compute its mean and its covariance, or, more precisely, so-called
deterministic equivalents thereof. Namely, by being able to express the performance of the
classifier in terms of few scalar observations like the Lipschitz functions φ above, this is
sufficient to predict the performance of the classifier. A great technical challenge arises
from the intricate dependencies induced by the iterative procedure of ISTA. A key tool
for dealing with those dependencies is the so-called leave-one-out approach [EK09], where
we may omit the ith sample xi from the data matrix X, e.g. replacing it by the zero vector,
to obtain the modified data matrix X−i that is deprived of the ith entry and independent
of xi. This work will be presented in more detail in Chapter 3. It is based on the con-
ference paper [TSSCV22] which is co-authored by the author of this thesis, together with
Malik Tiomoko, Mohamed El Amine Seddik, Igor Colin and Aladin Virmaux.

17

I would like to express my gratitude to my PhD advisor Prof. Holger Rauhut for giving
me the opportunity to do a PhD under his supervision in first place - at the intersection
of two modern and fascinating topics of applied mathematics, Compressive Sensing and
Machine Learning - and for providing both a lot of freedom as well as his expert guid-
ance when needed, and support throughout the past years. Also, I want to thank Prof.
Hartmut Führ for agreeing to be the second examiner.

Furthermore, I would like to acknowledge the exchange with and contributions from
my colleagues and coauthors: Bella Naumova and Sebastian Lubjuhn (Aachen) and Dr.
Igor Colin, Dr. Mohamed El Amine Seddik and Dr. Aladin Virmaux (Paris). Espe-
cially I had the immense pleasure to work closely together with Dr. Arash Behboodi
(Aachen/Amsterdam) during the earlier phases of this work, and with Dr. Malik Tiomoko
(Grenoble/Paris) in the final project.

I am grateful for interesting discussions with Vicky Kouni (Athens) and Dr. Cosme
Louart (Beijing/Grenoble), and for proofreading and feedback on earlier versions of this
thesis provided by Wiebke Bartolomaeus, Dr. Leonardo Galli and Laura Paul (Aachen)
and Dr. Fateme Ghayem with Dr. Mostafa Sadeghi (Grenoble/Paris) that helped improv-
ing the readability.

My interest in some of the topics underlying this dissertation dates back to the time
before joining RWTH Aachen: I was able to build up on my experience gained from my
Master thesis under supervision of Prof. Jan Vybı́ral (Berlin/Prague) and my research
internship in the group of Prof. Romain Couillet (Grenoble).

Finally, I would like to acknowledge the funding by the Deutsche Forschungsgemein-
schaft (DFG) by the project Compressive Sensing via Neural Network Learning (SCoSNeL,
MA 1184/36-1) within the SPP 1798 Compressed Sensing in Information Processing (CoSIP)
that made this research possible.

Dresden, May 1, 2023 Ekkehard Schnoor

18

1 Introduction

This first chapter serves as a light introduction for the main topics in this thesis. We will
lay out the core ideas and recall some key concepts and results that are the foundation for
the later chapters. Note that this introduction does not contain any novel ideas and re-
sults; rather, most can be considered common sense and folklore in the respective fields.
The material presented here can be found in various monographs and textbooks; in par-
ticular and as main references, let us point the textbooks [MRT18; SSBD14a] on machine
learning, and [FR13] for compressive sensing. A classical and elaborate reference for neu-
ral networks from the perspective of statistical learning theory is [AB99], which, however,
does not take into account many of the more recent advances from the last few years.
Other, related references include [Ver18] on high-dimensional probability with applica-
tions in data science, and [Wai19] on high-dimensional statistics from an non-asymptotic
viewpoint. We will take both non-asymptotic and asymptotic viewpoints; the later being
linked to asymptotic random matrix theory [CD11; Tao12]; of particular interest for us are
its applications to machine learning [CL22]. In contrast to the spirit of this chapter, results
that are of a more technical nature and that will be required for the proofs in Chapters 2
and 3, the main content of this thesis, but are not necessary for a general understanding
of the main ideas, are provided (accompanied by proofs or literature references) in the
appendices, Appendix A, Appendix B and Appendix C.

1.1 Motivation

To motivate the main content to follow later on in Chapter 2 and Chapter 3, let us begin
by informally introducing the two main scenarios studied throughout this thesis, namely
the problem of sparse recovery, and sparse linear classifiers. While both rely on the same
underlying optimization problem and a specific algorithm to solve it, they still differ in
the task to be solved and the tools used to derive mathematical performance guarantees.

1.1.1 Sparse Recovery

The area of inverse problems studies (in the finite-dimensional case) the recovery of signals
x ∈ Rp from measurements y = Ax. In the most simple noiseless case, we aim to solve
problems of the type

Ax = y, (1.1)

i.e., solving linear systems of equations in a finite-dimensional setting. In this case, A ∈
Rm×p is the measurement matrix (whose m rows are interpreted as measurements, taken
by inner products of the rows of A with x) applied to the original signal x to obtain the
measurement vector y ∈ Rm. Aiming for reconstruction from as few measurements as
possible (i.e., A has fewer rows than columns, m ≪ p) leads to an under-determined
linear system with an infinite number of solutions, if any. However, incorporating prior
knowledge on x (e.g. based on modelling the class of vectors of interest, typically from
some low-complexity distribution) changes the situation: Reconstruction may become
possible, from surprisingly few measurements. Of particular interest are sparse signals,

19

i.e., vectors x containing only a few (say s < p) non-zero entries, when reconstruction is
possible from as few as O(s log(p)) measurements, much less than predicted by Shan-
nons classical sampling theory [Sha48]. This turned out to be a useful model as many
natural signals and data allow an (approximate) sparse representation with respect to a
suitable basis or frame; in the past almost two decades, a whole branch of applied math-
ematics called compressive sensing (or compressed sensing, or compressive sampling, or sparse
recovery) has been devoted to this study of inverse problems with sparsity constraints. It
was initiated by Candès and Tao [CT05] and Donoho [Don06] in 2006, even though it has
earlier origins in [DS89] and is related to the least absolute shrinkage and selection opera-
tor (LASSO) [Tib96]. While the first breakthroughs were achieved on the theoretical side,
compressive sensing quickly entered applications such as medical imaging [LSLDP05],
radar [BS07], and wireless communications [BHSN10; PAW07]. Let us very briefly recall
some main ideas. Formally, x ∈ Rp is called s-sparse (with s ≤ p, and typically s ≪ p), if

∥x∥0 := | supp(x)| :=
∣∣{j : xj ̸= 0}

∣∣ ≤ s. (1.2)

Further, we denote the set of s-sparse vectors by Σs = {x ∈ Rp : ∥x∥0 ≤ s}. (Note
that ∥ . ∥0 is not a norm; however, the notation may be justified by the observation of
limp→0 ∥x∥p

p = ∥x∥0 for all x ∈ Rp.) Searching for a solution of (1.1) that is as sparse as
possible, it is tempting to consider the optimization problem

arg min
x∈Rp

∥x∥0 subject to y = Ax. (P0)

Unfortunately, it can be shown that the ℓ0-minimization problem is NP-hard [Nat95].
(Note that a s-sparse vector x ∈ Rp can have (p

s) different support patterns, which be-
comes intractably large for sufficiently large values of p and s of practical interest.) How-
ever, it turned out that (P0) is often equivalent to the following ℓ1-minimization problem,
its convex relaxation, the so-called basis pursuit, which was introduced in [CDS01], for
which efficient reconstruction algorithms exist:

arg min
x∈Rp

∥x∥1 subject to y = Ax, (P1)

passing from rom ∥ . ∥0 (see (1.2) above) to the ℓ1-norm. Next we turn to sufficient condi-
tions on the matrix A, so that the problems (P0) and (P1) are equivalent. One such condi-
tion is the so-called null space property (NSP) that, informally stated, requires the elements
of ker(A) to be “well-spread”, in the sense that they are not supported on an index set of
a small size [CDD09]. While it again suffers from the typical combinatorial problems due
to the number of different support patterns (and thus is difficult to check on a given ma-
trix), a sufficient condition for the NSP to hold is the so-called restricted isometry property
(RIP), a fundamental concept in compressive sensing introduced in [CT05]. We say that
A ∈ Rm×p has the RIP of order s (with s ∈ [n]), when there exists a so-called RIP constant
0 ≤ δs = δs(A) < 1, such that

(1 − δ)∥x∥2
2 ≤ ∥Ax∥2

2 ≤ (1 + δ)∥x∥2
2 ∀x ∈ Σs. (1.3)

Intuively, (1.3) means that the restriction of A to the set of s-sparse vectors acts as an ap-
proximate isometry, explaining the nomenclature. Again, it turns out that (deterministic)
RIP matrices are difficult to construct (or, similarly, checking a given matrix whether it
possesses the RIP). However, it can be shown that certain random matrices have the RIP
(for sufficiently large s and small δ) with high probability. The prototype of a random

20

measurement matrix is (an appropriately normalized) Gaussian measurement matrix,

A ∈ Rm×p with Akl ∼ N (0, 1/m2) i.i.d.

By the concentration of measure phenomenon, ∥Ax∥2
2 concentrates strongly around its

mean E∥Ax∥2
2 = ∥x∥2

2 for any x ∈ Rp; thus, one may establish the restricted isome-
try property. There is a close connection to the classical Johnson-Lindenstrauss Lemma
[Joh84] often applied for random projections of finite point clouds for linear dimensional-
ity reduction (approximately distant-preserving embeddings similar as in the RIP): Ran-
dom matrices that can be used in the Johnson-Lindenstrauss Lemma also have the RIP
with high probability [BDDW08]; on the other hand, a given (deterministic) RIP ma-
trix with randomized column signs (i.i.d. ±1 with probability 1/2) is also a Johnson-
Lindenstrauss embedding [KW11]. Note that besides the standard case of Gaussian mea-
surement matrices, various other cases like Bernoulli random matrices or different struc-
tured random matrices have been studied in the literature (see [Rau] and the references
therein).

Thus, with the use of appropriate random measurement matrices, we may consider
the more accessible convex relaxation (P1) of the intractable problem (P0). Besides this
encoding procedure (which refers to taking measurements to obtain a compression y of x)
just described, we are interested in efficient and robust decoders, i.e., algorithms to solve
(P1). Such algorithms are typically based on techniques from convex optimization [Ber09]
and also referred to as reconstruction algorithms as they aim to recover the original signal
(or at least, a good approximation thereof) x. We may also investigate their robustness,
which refers to situations of noisy measurements, or when the signal of interest is not
exactly sparse, but may be well-approximated by a sparse vector.

Let us also remark that it has become apparent that the encoding scheme of Gaus-
sian measurements described above is universal in the sense that it works well for other
data types beyond the classical assumption of sparsity. For instance, [BCDH10] considers
model-based compressive sensing and [BW09] random projections of smooth manifolds,
aiming for distance-preserving embeddings with respect to the geodesic distance. With
the rise of deep learning, techniques from compressive sensing have also been experi-
mentally applied to highly realistic data models such as generative models [BJPD17] and
investigated from a theoretical viewpoint [HHHV21; HV18; HV19]. We will return to the
problem of data models in Section 1.3.

From the various reconstruction algorithms, the iterative soft-thresholding algorithm
[DDDM04] (short: ISTA) will be our focus within this thesis. We will introduce it in
Section 1.2 and observe that it can be interpreted as a neural network. By introducing
trainable parameters, it is possible to solve inverse problems in a data-driven (rather than
model-based) fashion, which has become popular in the past decade in connection with
the spectacular empirical success of machine learning with artificial neural networks.
Later on, this approach will be investigated in Chapter 2. Before moving to the main
content of this thesis, we recall some aspects of statistical learning theory in 1.2.

Finally, let us note that for simplicity we restrict ourselves to real signals and measure-
ment matrices throughout this thesis, even though it is often straightforward, and for cer-
tain applications such as synthetic aperture radar (SAR), even desirable to extend the the-
ory of compressive sensing to the complex case. On the other hand, neural networks with
complex weights or processing complex-valued input data are, for the time being, much
less established. Still, they could be desirable to be able to process certain data types
that are naturally suited to be represented and processed using complex numbers. An
adaption of the backpropagation algorithm to this case is given in [Nit97], recently, com-

21

plex neural networks have been investigated from an approximation-theoretic viewpoint
[CLMPV22]. For a comparison between equivalent architectures of complex-valued and
real-valued networks see [BRMVO22] and for possible merits of complex-valued neural
networks in applications for PolSAR image segmentation we refer to [BRMVO]. For re-
cent surveys on the topic, see also [BQL21; LHG22] and the references therein. Extending
the work from Chapter 2 to complex-valued signals and network parameters could be an
interesting extension for future work, as well as practical applications of ISTA-inspired
neural networks for complex data.

Extensions of sparse recovery are low-rank matrix recovery (we refer to the survey
[DR16] and the references therein) and low-rank tensor recovery: [GQ14; HMGW14;
RSS17; ZWZM19].

1.1.2 Sparse Classifiers

As a second scenario (and later the topic of Chapter 3), we revisit the following basic
binary classification problem. Consider a simple linear classifier g(x) = x⊤ω = ⟨x, ω⟩,
which, based on the sign of g(x), assigns x ∈ Rp to either class C1 or C2, through a
separating hyperplane {y ∈ Rp : y⊤ω = 0}. We assume that the classes C1 and C2 are
associated to the labels ±1, which can be directly predicted by hω(x) = sign(g(x)) =
sign(x⊤ω) for a given weight vector ω, where the sign function is given by1

sign(x) =

{
−1, x < 0,
1, x ≥ 0.

(1.4)

This is a fundamental example for a machine learning problem, which will be discussed
more in general in the following Section 1.3. Let us here briefly and informally describe
the situation we are interested in in the context of Chapter 3. Denoting the label of a given
feature vector x by y ∈ {−1, 1}, we may train the model to satisfy

g(x) = x⊤ω ≈ y.

Given a whole training sequence x1, . . . , xn ∈ Rp (collected as columns in the data matrix
X ∈ Rp×n) and corresponding labels y1, . . . , yn ∈ R, collected in the label vector y ∈ Rn,
we may pass to a compact matrix notation to obtain the desired condition

X⊤ω ≈ y.

The discrepancy between the desired output (i.e., the true label), and the output provided
by a specific hypothesis hω (characterized/parameterized by ω) is measured through a loss
function. Of the many possibilities, let us first mention the simple least-square problem
(x⊤ω − y)2, that is, across the whole training set, we may aim to minimize

∥X⊤ω − y∥2
2.

(For convenience when calculating gradients, a factor 1/2 may be added.) In the case
only a few features are responsible to distinguish between the two classes, and the ma-
jority of the features are not informative to the classifier, it makes sense to use a sparse
classifier, i.e., a weight vector ω containing many zero entries. This has turned out to

1One may modify the rule of the classifier at the decision boundary {x ∈ Rp : g(x) = 0}, but this is a
technical detail and putting sign(0) = 1 is convenient for our purposes.

22

be useful in high-dimensional applications with comparably small sample sizes such as
being encountered in bioinformatics [Con+17]. If chosen appropriately, the non-zero en-
tries of ω correspond to the features relevant to the classifiers decision, with their indi-
vidual weights. Making use of the sparsity-promoting effect of the ℓ1-norm, we add an
ℓ1-regularizer to the least squares problem to obtain the very well-known LASSO [Tib96]

ω⋆ = arg min
ω∈Rp

1
2
∥y − X⊤ω∥2

2 + λ∥ω∥1. (1.5)

The regularized minimization problem is known to be equivalent to a corresponding
constraint minimimization problem, i.e., for an appropriate choice of λ′ > 0 the solution
of (1.5) coincides with the solution of

ω⋆ = arg min
ω∈Rp

1
2
∥y − X⊤ω∥2

2 s.t. ∥ω∥1 ≤ λ′.

Again, we will employ ISTA to (approximately) solve the above optimization problem
and obtain a classifier hω⋆ given through ω⋆. Often we combine two loss functions in
machine learning, as we may use one loss function for training and another one for the
performance on the test dataset. For instance, after obtaining hω⋆ using ISTA, we may be
interested in the accuracy (i.e., probability of correct classification) of the classifier. Ideally,
we would like to find guarantees to predict its performance.

This generalization perspective is common to both situations outlined in this section,
firstly sparse recovery using ISTA-inspired neural networks, and secondly sparse linear
classifiers obtained through ISTA. They are both based on the same well-known under-
lying mathematical problem, yet describe different situations, and will be tackled using
different tools. Before recalling important concepts from statistical learning theory more
rigourosly in Sections 1.3 and 1.4, let us finally introduce ISTA.

1.2 The Iterative Soft-Thresholding Algorithm

Note that in this section we mainly use the notation from the sparse recovery problem (mea-
surement matrix A applied to a signal x to obtain a measurement vector y) introduced in
Section 1.1. The case of sparse classifiers with a data matrix X, weight vector ω and label
vector y is analog. Later one, by using different notations we avoid confusion between
the two models under consideration; the only “overlap” of y (denoting both the mea-
surement vector and the label vector) will be not problematic as it will always be obvious
which is being considered.

Regularized Least Squares Problems. One of the most fundamental and classical meth-
ods in statistics and numerical analysis, attributed to both Legendre and Gauß [Gau87]
(who famously used it for his astronomical calculations) is the following least-square
problem

min
x∈Rp

1
2
∥y − Ax∥2

2, (1.6)

assuming an approximate linear relation between y and x through A. The functional
appearing in (1.6) is differentiable and its gradient (with respect to x) is given by

∇1
2
∥y − Ax∥2

2 = A⊤(y − Ax).

23

One is often interested in regularized variants of (1.6), i.e., minimization problems of the
type

min
x∈Rp

1
2
∥y − Ax∥2

2 + λR(x),

with a regularizer R(x) and regularization parameter λ > 0 influencing the strength of
the regularizer as part of the whole expression. Regularizers can be seen as a way to
incorporate prior knowledge on x; from a statistical learning perspective, they can also
be interpreted as a form of (implicit) dataset augmentation to prevent overfitting (more
details in Section 1.3). In the case R(x) = ∥x∥2

2, we obtain the so-called ridge regression
problem

arg min
x∈Rp

∥Ax − y∥2
2 + λ∥x∥2

2. (1.7)

Here, an explicit solution of (1.7) exists and it is straightforward to derive the minimizer

x⋆ = (A⊤A + λI)−1A⊤y. (1.8)

We will return to the problem (1.7) later for illustrational purposes. However, with regard
to the main content of this thesis we are mainly interested in the more challenging case
of a sparsity-promoting ℓ1-regularizer, that is

arg min
x∈Rp

∥Ax − y∥2
2 + λ∥x∥1, (LASSO)

as already seen above in (1.5). In either case, for λ = 0 this boils down again to the
ordinary regression problem (1.6), which is therefore also called ridgless regression. The
problem given in (LASSO) is a convex, but non-smooth optimization problem. Thus,
there exists no explicit solution, and standard gradient-descent methods are not directly
applicable. However, using proximal gradient methods from convex optimization, one
can derive the so-called iterative soft-thresholding algorithm (ISTA) as a practical method
to solve (LASSO), which lies at the heart of this thesis. Even though we stick to the
original setup explained above, let us point out that also variants of (LASSO) exist that
employ a differentiable approximations of the ℓ0-norm and the sign function [Sad+19].

Iterative Soft-Thresholding Algorithm. An actual algorithm for computing such min-
imizer is ISTA [DDDM04], where we initialize x0 = 0, and then recursively compute

xk+1 = Sτλ

(
xk + τA⊤(y − Axk)

)
, (1.9)

where λ and τ are parameters of the algorithm, and Sλ (applied entrywise) is the soft-
thresholding or shrinkage operator defined as

Sλ : R → R, x 7→
{

0, if |x| ≤ λ,
x − λ sign(x), if |x| > λ,

or, equivalently, in closed form Sλ(x) = sign(x) · max(0, |x| − λ) for any x ∈ R. It is
well-known, see e.g. [DDDM04], that xk converges to a minimizer of (LASSO) under the
condition

τ∥A∥2
2→2 < 2. (1.11)

Let us add a few remarks that will be useful later. Firstly, simply by rearranging terms

24

in (1.9) we can rewrite one ISTA iteration as follows [GL10]

xk+1 = Sτλ

(
(I − τA⊤A)xk + τA⊤y

)
.

Thus, we observe that one ISTA iteration takes the form of a layer of a neural network
with weight matrix I − τA⊤A, bias τA⊤y and activation function Sτλ applied entrywise.
Note that for now it only takes the form of a neural network; in Chapter 2 we will for-
mulate it more rigorously as a machine learning problem, introducing a hypothesis class
through trainable parameters. Also a fixed point equation viewpoint will be useful. As
this will show up in Chapter 3, let us use the notation from there and note that, if ISTA
converges, its limit ω⋆ satisfies the fixed point equation

ω⋆ = Sλτ

(
(I − τXX⊤)ω⋆ + τXy

)
.

Due to the randomness in the data matrix X, this leads to a random fixed point equation
of the type ω = Φ(X)(ω), with Φ(X) being a random function taking ω as an input.
Such situations have been studied in detail in [LC20].

Let us briefly review other reconstruction algorithms and alternatives for ISTA, even
though they will play no role for the remainder of this thesis. A closely related algorithm
is the so-called hard-thresholding algorithm [BD09], which however has the disadvan-
tage of being non-continuous. Another variant is to select the, say s largest entries after
the gradient descent step and set all remaining entries to zero: this is problematic (for
instance, in the context of neural networks) as a comparison of all entries is required,
instead of a straightforard entrywise application of the activation function. Another al-
gorithm for sparse reconstruction is orthogonal matching pursuit [Zha11]. ISTA is of
particular interest to us due to the possible formulations as neural network and fixed
point equations seen above. Finally, let us remark that we collect a few properties of the
soft-thresholding function and ISTA in Appendix C.

1.3 Statistical Learning Theory

In this section, we first recall some basic concepts such as hypothesis classes, data models
and distributions, and loss function in machine learning, and then we discuss the topic
of generalization in statistical learning theory, that plays a central role in this thesis. For
textbooks providing thorough introductions to such topics, we refer to [CL22; Jun22;
MRT18; SSBD14b].

Firstly, let us note that here we focus exclusively on supervised learning, which aims
at learning a function f : X → Y based on labeled training data. That is, we have ac-
cess to data points, or feature vectors, or samples xi ∈ X and labels yi (if scalar-valued;
or yi in case of vector-valued) from some set Y , being collected in a training set S =
{(x1, y1), . . . , (xn, yn)}. Throughout this thesis, we will only encounter the case of Eu-
clidean data, i.e., X ⊂ Rp; for a binary classification problem we have labels yi ∈ {−1, 1},
and Y ⊂ Rm in case of a regression problem. Typically, the (xi, yi) are assumed to be i.i.d.
samples from some joint distribution D over X × Y . Thus, f : X → Y is a function
from features to labels, that shall satisfy f (xi) ≈ yi. We consider such functions that are
elements of some hypothesis class H, and for any element h ∈ H of this hypothesis class
we use a loss function to measure the discrepancy between ŷ = h(x) and y

ℓ : H×X ×Y → [0, ∞), (h, x, y) 7→ ℓ(h, x, y). (1.12)

25

Ideally, we would like to find a hypothesis h ∈ H that minimizes the true risk, i.e., the
expectation of the loss with respect to the data distribution D,

L(h) = Ex,y∼D(ℓ(h, x, y)). (1.13)

For real applications, the distribution D is typically not known or cannot be fully de-
scribed. Furthermore, minimizing the expression in (1.13) may be challenging or even
intractable. Therefore, a hypothesis hS ∈ H is learned in practice from sampled training
data S = {(x1, y1), . . . , (xn, yn)}, typically through minimizing

L̂(h) = 1
n

n

∑
i=1

ℓ(h, xi, yi), (1.14)

i.e., applying the well-known principle of empirical risk minimization (short: ERM) for the
training of our model, which is given through the hypothesis class H. If no explicit solu-
tion is available, usually (a variant of) the gradient descent method is employed to solve
the optimization problem.

However, ultimately, we are not interested in a low training error only, but we would
like the hypothesis to generalize well, i.e., to perform well (or, more precisely: to perform
similarly well) on the true distribution. This way, we want to prevent the common prob-
lem of overfitting, which describes the situation of the learned hypothesis performing well
on the training data (i.e., f (xi) ≈ yi), but not being able to make good predictions on new
samples from the same distribution, but not belonging to the training set. While again
the true distribution is typically not known, we may instead use a test or validation set
for comparison, which was not used for training. This motivates to introduce the so-
called generalization error (GE(hA)) of hA ∈ H (learned through some algorithm A, e.g.
empirical risk minimization), defined as the gap between the true and empirical error,

GE(hA) = |L̂(hA)−L(hA)|. (1.15)

Ideally, we would like to find mathematical guarantees to ensure a certain performance
of our machine learning method of interest, and conditions that enable us to estimate or
upper bound the generalization error (1.15). It turns out such conditions usually strongly
depend on the ambient dimension p and the sample size n, and are connected with the
notion of sample complexity that denotes the minimal number of training samples required
to successfully learn a target function.

After this informal and rather brief overview, we will discuss more details of the above,
and review some examples of interest for the remainder of this work, in the rest of this
section. We conclude with a brief summary, that also serves as an overview for the more
detailed coverage in Chapters 2 and 3.

1.3.1 Hypothesis Classes

From the large amount of hypothesis classes considered in machine learning, we will
mainly consider models from the opposites extremes in terms of complexity. On the one
hand, we will deal both with simple linear hypothesis classes and on the other hand,
we will investigate particular instances of neural networks, very rich hypothesis classes
containing highly non-linear functions.

26

Linear Hypothesis Classes. Let us consider the basic linear model ω⊤x = ⟨ω, x⟩, i.e., the
inner product of a weight vector ω ∈ Rp with some feature vector x ∈ Rp, which can be
used for either regression or classification purposes. Depending on the combination with
different loss functions, this may result in different machine learning models such as lo-
gistic regression or support vector machines (SVMs).

Geometrically, this operation divides the p-dimensional space, through the linearly sep-
arating hyperplane {x ∈ Rp : ω⊤x = 0}, into two distinct areas where either ω⊤x < 0 or
ω⊤x > 0. Given linear separability in a binary classification problem, our predictor takes
the form

hω(x) = sign(ω⊤x),

with the so-called decision boundary corresponding to the separating hyperplane, i.e., the
region {x ∈ Rp : ω⊤x = 0}. Formally, without any further assumptions on ω, our
hypothesis class in this linear model is the set of functions given by

H :=
{

h : Rp → {−1, 1} | hω(x) = sign(ω⊤x), ω ∈ Rp
}

.

However, typically we assume that the models parameter are contained in a bounded
set. This is usually needed to derive theoretical guarantees; also this restriction is natural
anyways regarding the practical applicability (e.g. hardware constraints etc.). The easiest
choice would be to incorporate an ℓ2-norm constraint on the parameter vector ω, that is

H2 :=
{

h : Rp → {−1, 1} | hω(x) = sign(ω⊤x), ω ∈ Rp, ∥ω∥2 ≤ B2

}
.

For sparse linear classifiers, we can again make use of the sparsity-promoting effect of an
ℓ1-norm constraint on ω (also note Lemma 1.5 below). Therefore, let us define

H1 :=
{

h : Rp → {−1, 1} | hω(x) = sign(ω⊤x), ω ∈ Rp, ∥ω∥1 ≤ B1

}
.

Later on in this introduction, we will review different combinations of such simple mod-
els with loss functions, as well as discuss their generalization behavior. A particular
instance of this, namely the LASSO-based classification using (1.5) will be the topic of
Chapter 3.

Note that linear models are fairly simple and not expressive enough for many appli-
cations. Therefore, they are often used in combination with other methods as a part of
a larger machine learning pipeline. For instance, one may first apply a non-linear fea-
ture map to increase the separability of classes, followed by a simple linear classifier.
An important example of this are neural networks, which often contain a simple linear
classifier in their last layer that may be trained together in an end-to-end fashion with the
non-linear feature map (all previous layers). Let us briefly discuss neural networks in the
next section.

Artificial Neural Networks. Artificial neural networks form a class of functions that
are loosely inspired by biological neurons and can be traced back to [Ros58]. However,
their practical breakthrough, first in computer vision applications, was possible only due
to the increased availability of sufficiently large datasets as well as advances in hardware
(graphics processing units). In their most simple form, one layer of a (fully-connected
feedforward) neural network,

f (x) = ρ(Wx + b), (1.16)

27

is an affine linear function x 7→ Wx + b with a weight matrix W and a bias b of appro-
priate sizes, followed by a non-linear activation function ρ : R → R applied entrywise.
A (deep) neural network is a concatenation of several (many) layers of the form (1.16),
resulting in function classes of very strong expressive power. In its basic form, the col-
lection of all weight matrices and biases form the set of trainable parameters. Note that
this describes classical feed-forward neural networks; many particular or related models
(including convolutional neural networks, recurrent neural networks, or residual neural
networks etc.) exist. They can be applied to classical machine learning tasks such as
classification and regression, but also for various other applications like dimensionality
reduction or representation learning (e.g. through so-called autoencoders that map the
original data onto some latent space, as introduced in [HS06] and further developements
such as variational autoencoders [KW13] that aim to estimate the parameters of the latent
space distributions, and sparse autoencoders [MF13; Ng+11]). Moreover, data generation
[Goo+20] (which will also be discussed in the next subsection) or playing games (with
a first series of breakthroughs in Chess, Go and Shogi [Sil+16; Sil+17a; Sil+17b; Sil+18]
inspiring many subsequent efforts) where often they represent the state of the art.

Despite the empirical success, many questions are still open from a theoretical point of
view. Of particular interest for us is the generalization of (often deep and overparameter-
ized) neural networks, which behaves completely differently than traditional techniques.
Later, we will study this problem at the hand of a particular instance of neural networks,
namely the ones that are inspired by the iterative soft-thresholding algorithm (see Sec-
tion 1.2). This will be discussed in detail in Chapter 2, after introducing the necessary
background on the topic of generalization in the next section.

There is a vast and fast-growing amount of literature on deep learning, often focusing
on numerical experiments. For a recent monograph describing the current mathematical
understanding of this topic, we refer to [GK22] and the references therein.

1.3.2 Data Models and Distributions

In this section, we briefly discuss different data models and distributions that are en-
countered in machine learning, and that are relevant to the remainder of the thesis. For
instance, we focus exclusively on feature vectors or signals that can be interpreted as
vectors in Rp.

Modeling a data distribution, or estimating certain parameters of the distribution un-
derlying some given samples, is a key problem in machine learning and statistics. Often,
distributions of datasets of practical interest are not accessible. Nevertheless, many use-
ful models have been developed and we recall a few of them below that are of interest for
the upcoming Chapters 2 and 3. From a generalization perspective (more details in the
following section), let us note that generalization error bounds based on the Rademacher
complexity (see Definition 1.6 below) or the VC dimension (see Definition 1.2 below) are
distribution-free (or at least, can be applied when having access to only finitely many sam-
ples rather than the full distribution). This situation is encountered in Chapter 2, where
the hypothesis class of interest is adapted to be suitable for sparse reconstruction tasks,
but the derived generalization bounds are data-independent and hold for any arbitrary
distribution (and thus, may be somewhat pessimistic). In Chapter 3 we will take a differ-
ent approach, where our goal will be to predict the generalization in terms of few scalar
quantities that are derived from the training data. For now, let us recall the following
data models.

28

Sparsity has attracted considerable attention in the past almost two decades with the
rise of compressive sensing and related topics. Examples include dictionary learning (see
[Ela10] and the references therein) and methods from applied harmonic analysis (such as
wavelets [Mal99], and an abundance of further, often multiscale representation systems
that have been developed). To illustrate, we say some (possibly dense, i.e., having non-
zero entries) signal x ∈ Rp is sparse with respect to some dictionary Φ ∈ Rp×p, if x = Φz
for z ∈ Rp being sparse, i.e., ∥z∥0 small. Note that sparsity turned out useful not only
in the context of machine learning, but in general for many applications in signal and
image processing, in particular for compression purposes (such as the JPEG compression
standard for compression of digital image files). Sparsity plays an important role in this
thesis as well: We will encounter it both as a data model in the sparse reconstruction
problem in Chapter 2 and as a model of the parameters in the case of a sparse linear
classifier in Chapter 3.

Gaussian Mixture Model. The Gaussian mixture model (GMM) is a classical example for
a data model, which may be used in either supervised or unsupervised settings. We
focus on a two-class Gaussian mixture model; the generalization to the multi-class case is
straightforward. Let N (µ1, C1) and N (µ2, C2) be two multivariate normal distributions
with characteristic means µl , Cl , l = 1, 2 corresponding to the two classes C1 and C2. In the
GMM, we draw with probability p1 ∈ (0, 1) from class C1, i.e., x ∼ N (µ1, C1), and with
probability p2 = 1 − p2, we sample from class C2, i.e., x ∼ N (µ2, C2). If both classes are
balanced, p1 = p2 = 1/2. While not being a realistic model for complex real-life datasets,
it is still a useful toy model as we will also see in the next section.

Generative Models. Many real-life datasets (such as natural images) have been known
to be very difficult to model and are often thought of as a distribution over a submanifold
in a high-dimensional space that eludes a precise mathematical description. Generative
adversarial networks (GANs) [Goo+20] have changed this situation, by allowing to gener-
ate synthetic data that strongly resembles real datasets, like certain image classes. Based
on concepts from two-player-games originating in game theory, the idea is to train two
connected neural networks that try to outperform each other: Firstly, a so-called genera-
tor that generates samples from a random input, aiming for highly realistic outputs that,
secondly, the discriminator tries to distinguish from real datasets (thus, classifies between
real and fake images). In the last few years, generative adversarial networks have received
tremendous attention and can nowadays create strikingly realistic artificial samples. This
research activity has led to an unmanageable amount of literature available; as a recent
survey article, let us mention [GSWTY21] and the references therein. Generative mod-
els as a signal prior, rather than the traditional assumption of sparsity, have then also
been employed in compressive sensing, firstly showing highly favorable behavior in ex-
periments [BJPD17] followed by efforts from a theoretical perspective [HHHV21; HV18;
HV19]. Mathematically speaking, such generative models are Lipschitz continuous trans-
formations of Gaussian random vectors, but remarkably, in some sense, behave as if they
were Gaussian [SLTC20]. This motivates us to consider the class of random vectors obey-
ing a certain concentration property, by being both a realistic model and at the same time
mathematically more accessible.

Concentrated Random Vectors. Let us recall the Gaussian concentration inequality [Led01;
LT11], stating that for a Gaussian random vector x ∼ N (0, Σ) in Rp and any L-Lipschitz

29

function f : Rp → R (with Lipschitz continuity with respect to the ℓ2-norm), there is

P (| f (x)− E f (x)| ≥ t) ≤ 2 exp
(
− t2

2L∥Σ∥2→2

)
. (1.17)

This is an instance of the so-called concentration of measure phenomenon, where Lipschitz
observations f (x) of x concentrate strongly around their mean E f (x). Let us also point
out that the bound on the right hand side of the inequality is independent from p (up to
a possible implicit dependence of p due to ∥Σ∥2→2; however, for instance when Σ = Ip
the expression would be entirely independent from p). We are more generally interested
in distributions that behave similar to (1.17).

Definition 1.1 (q-exponential concentration; observable diameter) Let (X , ∥ · ∥X) be a
normed vector space and q > 0. A random vector x ∈ X is said to be q-exponentially
concentrated if for any 1-Lipschitz continuous (with respect to ∥ · ∥X) real-valued func-
tion φ : X → R there exists C ≥ 0 independent of dim(X) and σ > 0 such that, for all
t ≥ 0,

P (|φ(x)− Eφ(x)| ≥ t) ≤ Ce−(t/σ)q
. (1.18)

This is denoted as x ∝ Eq(σ | X , ∥ · ∥X), where σ is called the observable diameter. If σ does
not depend on dim(X), we write x ∝ Eq(1 | X , ∥ · ∥X).

Let us point out again that the observable diameter may depend on dim(X), unlike
the absolute constant C ≥ 0. Even more so, it can turn out to be very interesting to
study this dimensionality-dependence of the observable diameter σ: on the one hand,
when σ decreases with increasing dim(X), there is a concentration of measure effect in the
sense that the random vector behaves close to deterministic in large dimensions (consider
X = Rp and φ to be the coordinate projections). On the other hand, when (1.18) holds
only for a relatively large or increasing (with the dimension) observable diameter σ, the
concentration of φ(x) becomes weaker, i.e., it may fluctuate more around its mean Eφ(x).
In this sense, the observable diameter can be interpreted as a degree of concentration of x
under scalar Lipschitz observations with respect to the dimension.

Furthermore, let us remark that the mean in (1.18) may be replaced by the median,
possibly with slight adjustments. The concentration property in Definition 1.1 is slightly
more general than the convex concentration property considered in [Ada05; Ada15; KR17;
Led01; MS12; VW15] where convex (rather than Lipschitz continuous) functions are con-
sidered in the special case where q = 2. Let us discuss a few examples and properties of
concentrated random vectors, that are either fundamental or of interest in the context of
this thesis, in particular in view of Chapter 3. For more examples, see [KR17, p. 10].

1. Returning to the Gaussian concentration inequality (1.17) above, x ∼ N (0, Σ) is
2-exponentially concentrated, i.e., x ∝ E2(σ |Rp, ∥ · ∥2) with σ =

√
2L∥Σ∥2→2. For

x ∼ N (0, Ip) (i.e., the covariance being the identity), σ is ensured to be dimension-
independent so that, using the convention introduced in Definition 1.1, we then
write x ∝ E2(1 |Rp, ∥ · ∥2).

2. We denote the spherical distribution, or uniform distribution over the sphere in Rp

with radius
√

p by x ∼ Unif
(√

pSp−1). (Rigorously, x is uniformly distributed on
the sphere

√
pSp−1 if for every Borel subset E ⊂ √

pSp−1 the ratio of the (p − 1)-
dimensional volumes of E and

√
pSp−1 equals the probability of the event x ∈ E .)

By the concentration of Lipschitz functions on the sphere (see, for instance, [Ver18,
Theorem 5.1.4]), we have x ∝ E2(1 |Rp, ∥ · ∥2) as for Gaussian random vectors.

30

3. An important property of the concentration property described in (1.18) is its stabil-
ity under Lipschitz transforms. More precisely, if f : Z → X (for (Z , ∥ . ∥Z) being an-
other normed space) is a K-Lipschitz function and x ∈ X with x ∝ Eq(σ | X , ∥ · ∥X)
then f (x) ∝ Eq(K | Z , ∥ · ∥Z) where K might depend on dim(X). As neural net-
works represent Lipschitz continuous mappings, generative adversarial networks
are Lipschitz continuous transforms of (isotropic) Gaussian random vectors and
can therefore be modeled using concentration properties such as (1.18) [SLTC20].

1.3.3 Loss functions

Let us return to the concept of loss functions already introduced in (1.12). Here, we
discuss some examples of loss functions that are relevant in the context of this work.

Mean Squared Error. A typical choice of the loss function, mainly for regression tasks
(including the sparse reconstruction task), is

ℓMSE = ∥h(x)− y∥2
2, (1.19)

giving rise to the so-called mean squared error (MSE). However, deviations from this are
possible as well. In Chapter 2, we simply measure the reconstruction error with respect
to the (non-squared) ℓ2-norm, that is ℓ = ∥h(x)− y∥2, which has the advantage of being
Lipschitz continuous (even on unbounded domains). Also, even though possibly some-
what unusual, we will use the MSE (or variants of it, such as with added regularization)
also for classification tasks, using labels y ∈ {−1, 1} instead of vectors y ∈ Rd. We will
discuss other possible choices for the loss function in the following paragraphs.

Accuracy, or 0/1-loss Function. For the linear binary classifier hω(x) = ω⊤x with (true)
label y ∈ {−1, 1} and prediction ŷ = hω(x), we may consider the 0/1-loss function defined
as follows by

ℓ0/1 ((x, y), hω) =

{
0, sign(ω⊤x) = y,
1, sign(ω⊤x) ̸= y.

Here, the loss equals zero, if the prediction was correct, and one, if the prediction was
not correct. When taking the empirical error on a sufficiently large training set, this cor-
responds to the percentage of misclassified points in the training set; in expectation, this
can be interpreted as the probability of misclassification.

Logistic Regression. A classical example for a linear machine learning model is logistic
regression and the corresponding logistic loss, which assumes the following probabilistic
model on the data. Given some data point x ∈ Rp and model parameters ω ∈ Rp, the
(conditional) probabilities of the corresponding label y ∈ {−1, 1} are assumed to be given
by (depending on ω⊤x)

Pω(y = 1|x) = 1
1 + exp(−ω⊤x)

,

for the label y = 1, and consequently for y = −1, using the relation Pω(y = −1|x) =
1 − Pω(y = 1|x),

Pω(y = −1|x) = 1
1 + exp(ω⊤x)

.

31

Given i.i.d. realizations S = ((x1, y1), . . . , (xn, yn)) of a joint distribution D of fea-
tures xi and corresponding labels yi (assumed to obey the probabilistic model above), the
maximum-likelihood estimator ω⋆ for the parameter ω is given by (through independence)

ω⋆ : = arg max
ω∈Rp

P(y1|x1, . . . , yn|xn) = arg max
ω∈Rp

n

∏
i=1

P(yi|xi)

= arg max
ω∈Rp

n

∏
i=1

1
1 + exp(−yiω⊤x)

.

Maximizing this positive function is equivalent to maximizing its logarithm, i.e.,

ω⋆ = arg max
ω∈Rp

n

∑
i=1

− log
(

1 + exp(−yiω
⊤x)

)
= arg min

ω∈Rp

1
n

n

∑
i=1

log
(

1 + exp(−yiω
⊤x)

)
.

We have rewritten this maximum-likelihood estimator as the empirical risk minimizer of
the so-called logistic loss function, which is given by

ℓlogloss(x, y, hω) := log(1 + exp(−yhω(x))).

Note that ℓlogloss is non-negative, convex and differentiable with respect to the param-
eters contained in the weight vector ω and can thus be solved by using gradient descent.
One may also consider an ℓ1-regularized version of the logistic loss, i.e.,

log(1 + exp(−yhω(x))) + λ∥ω∥1,

which however is not differentiable anymore.

Support Vector Machines (SVMs) are another class of linear classifiers based on the
model g(x) = x⊤ω (often used after applying a non-linear feature map first to increase
the linear separability of classes). Building upon the hinge loss given by

ℓ(x, y, ω) = max(0, 1 − y · x⊤ω),

they classically add a ℓ2-regularization term to obtain

ℓ(x, y, ω) = max(0, 1 − y · x⊤ω) + λ∥ω∥2.

Again, one may replace the ℓ2-regularizer with a ℓ1-regularizer, promoting a sparse
classifier that performs a feature selection, when only few features are expected to be rel-
evant to discriminate the classes. This has been proposed in [BM98; ZRTH03] and was
latter analysed in [KV17]. For an exhaustive treatment of support vector machines, we
refer to the monography [SC08] and the references therein.

32

1.4 Generalization: Asymptotic and Non-Asymptotic Approaches

In this section, we want to take a closer look at the topic of generalization, which plays
a key role in statistical learning theory, and also in this thesis. In (1.15) earlier in this
section, we have already introduced the generalization error. Here, we consider different
approaches on how to derive mathematical performance guarantees for machine learn-
ing models, which typically depend on some notion of complexity or richness of the un-
derlying hypothesis space (to be defined more precisely), and crucial parameters like
the sample size (available training data) and the feature dimension. This will be made
more precise in this section, where we then recall generalization error bounds (based
on the Rademacher complexity and VC dimension in the non-asymptotic case), as well
as asymptotic approaches that aim to derive the asymptotically precise performance. We
will discuss the following cases.

1. Finite p, finite n: Finite sample complexity bounds for a finite-dimensional setting.
This is well-established in the machine learning literature (e.g. uniform conver-
gence through Rademacher complexity/VC dimension bounds).

2. Finite p, n → ∞: Known through many classical results (e.g. central limit theo-
rem, law of large numbers etc.); however, low-dimensional intuition behind ma-
chine learning methods (e.g. kernels) may collapse in a high-dimensional setting
[CBG16].

3. Large p, large n: Models a scenario of large-dimensional statistics where both the
dimension and the sample size are large, through the limit n, p → ∞ with p/n →
c ∈ (0, ∞), with tools based on (asymptotic) random matrix theory (RMT).

We discuss advantages and disadvantages of the different approaches. Thus, we are
well prepared for the upcoming chapters, where Chapter 2 corresponds to the first cases,
and Chapter 3 corresponds to the third of the three cases.

1.4.1 Finite n, finite p: Uniform Convergence through non-asymptotic Bounds

VC Dimension. The Vapnik-Chervonenkis dimension (or short: VC dimension) is possi-
bly the most classical notion to quantitatively measure what is meant by the idea of the
complexity or richness of a hypothesis class [VC15]. It is defined as follows.

Definition 1.2 (Vapnik-Chervonenkis dimension) The VC dimension VCdim(H) of H is
the size n of the largest set of samples that can be shattered by H, i.e., for any of the 2n

possible assignments of binary labels, there exists an hypothesis h ∈ H that realizes this
assignment of labels.

As the definition already suggests, the VC dimension is mainly suitable for classifica-
tion tasks. Recalling the simple example of linear binary classifiers allocating x to either
class x → C1 or x → C2 based on the test (for some η ∈ R)

g(x) = ω⊤x
C2
≷
C1

η,

geometrically dividing the space Rp in two half spaces via the separating hyperplane
{y ∈ Rp : ω⊤y = η}. As can be shown easily, the VC dimension of this hypothesis class
of hyperplane separators in Rp is p + 1; as a reference, see Example 3.12 and Theorem

33

3.13 in [MRT18]. (In this case, the VC dimension is close to the vector space dimension
of Rp; note, however, that the VC dimension may be in stark contrast to the vector space
dimension, if the hypothesis class has a vector space structure at all.) Generally, given an
estimate of the VC dimension VCdim(H) of the hypothesis class H of interest, we obtain
upper bounds for the generalization error as follows.

Theorem 1.3 (Generalization via the VC Dimension - Binary Classification) Let H be a
family of functions taking values in {−1,+1} with VC dimension VCdim(H) = d. Then, for
any δ > 0, with probability at least 1 − δ, the following holds for all h ∈ H (with sample size n):

L(h) ≤ L̂(h) +
√

2d log(en/d)
n

+

√
1/δ

2n
.

For a reference and proof, see [MRT18, Corollary 3.19]. Note that from the inequality
given in the theorem it is straightforward to obtain bounds on the generalization error
as defined in (1.15). Results of this type are called uniform, explaining also the notion of
uniform convergence, as the bounds are valid for all h ∈ H (in particular, for the empirical
risk minimizer). For the linear classifier, ignoring constants and logarithmic terms we
roughly have

L(h) ≤ L̂(h) +O
(√

p
n

)
,

which crucially depends on the ratio of the dimension p and sample size n. Theorem
1.3, and similar theorems below relying on the Rademacher complexity instead of the VC
dimension, can be applied as follows in a practical setting.

1. Train a model on a training set of size n to obtain some hypothesis h ∈ H!

2. Calculate the empirical error L̂(h) (track during training).

3. Given VC dimension of H (and desired probability δ), calculate an upper bound for
the true (or test) error L(h).

4. “Rule of thumb” to obtain meaningful bounds: n ∼ 100 · p.

Let us also remark that VC dimension bounds for neural networks have been studied
in [AB99]; however, it is difficult to obtain sharp VC dimension bounds that are able to
explain the generalization behaviour observed in practice [NK19; ZBHRV17].

Rademacher Complexity. As another complexity measure for hypothesis classes, which
is suitable both for classification and regression tasks, we discuss the so-called Rademacher
complexity [BM02]. It will play an important role in Chapter 2. Let us begin by consider-
ing the Rademacher complexity of general subsets A of Rn before moving to Rademacher
complexities of hypothesis classes in the context of statistical learning theory.

Definition 1.4 (Rademacher complexity of sets A ⊂ Rn) For a set A ⊂ Rn with elements
a = (a1, . . . , an) ∈ A, its Rademacher complexity R(A) is defined as follows by

R(A) = Eε sup
a∈A

1
n

n

∑
i=1

ε iai,

where ε is a Rademacher vector, i.e., a vector of independent Rademacher variables ε i,
i = 1, . . . , n, taking the values ±1 with equal probability.

34

Lemma 1.5 The Rademacher complexity of the convex hull of A equals the Rademacher com-
plexity of the set A itself, i.e., R(A) = R(conv(A)).

Proof. See Lemma 26.7 in [SSBD14b]. ■

We can easily extend Definition 1.4 to the case of hypothesis classes, whose elements
are evaluated at finitely many points (data points in the context of machine learning).

Definition 1.6 (Rademacher complexity of function classes) For a class G of real-valued
functions g, and samples drawn from xi ∼ D (where D is a distribution on the joint
domain of the functions g ∈ G), the empirical Rademacher complexity is defined as

RS (G) = Eε sup
g∈G

1
n

n

∑
i=1

ε ig(xi), (1.20)

where again the expectation is taken with respect to a Rademacher vector (ε1, . . . , εn).
The (true) Rademacher complexity is then given by Rn(G) = ES∼DnRS (G).

Intuitively, the Rademacher complexity measures the capability of the function class
G to “match” random labels ε i ∈ {−1, 1}. While this reasoning is based on a classifica-
tion problem, the Rademacher complexity is also applicable to regression problems. Let
us also already refer to Appendix A containing more details on suprema of stochastic
processes (including technical details with regard to measurability), of which (1.20) is a
special instance, and introducing Dudley’s integral, an important tool to find sharp upper
bounds for Rademacher complexities.

Let us illustrate the definition of a Rademacher complexity by employing a rather sim-
ple example of linear hypothesis classes. We will revisit and discuss a different approach
to this later on in Chapter 3. Instead, in Chapter 2 we will estimate the Rademacher
complexities of much more complicated hypothesis classes.

Lemma 1.7 Consider the hypothesis class of linear functionals from Rp to R with ℓ2-norm
constraint, i.e., H :=

{
g : Rp → R | g(x) = ω⊤x, ω ∈ Rp, ∥ω∥2 ≤ B2

}
and samples S =

(x1, . . . , xn) with xi ∈ Rp. We obtain the following upper bound for the Rademacher complexity
RS (H)

RS (H) ≤ B2

√
maxi ∥xi∥2

2
n

.

Despite being fairly simple, let us give the easy proof for illustrational purposes. It can
be found in various textbooks on statistical learning theory, such as [MRT18; SSBD14b].

Proof. Firstly, by the Cauchy-Schwartz inequality and the boundedness of ω, we obtain

nRS (H) =E sup
g∈H2

n

∑
i=1

ε ig(xi) = E sup
∥ω∥2≤B2

〈
ω,

n

∑
i=1

ε ixi

〉
≤ E sup

∥ω∥2≤B2

∥ω∥2

∥∥∥∥∥ n

∑
i=1

ε ixi

∥∥∥∥∥
2

=B2 · E

∥∥∥∥∥ n

∑
i=1

ε ixi

∥∥∥∥∥
2

.

Next, by Jensens inequality for the concave square root function, we get

E

∥∥∥∥∥ n

∑
i=1

ε ixi

∥∥∥∥∥
2

= E

∥∥∥∥∥ n

∑
i=1

ε ixi

∥∥∥∥∥
2

2

1/2

≤

E

∥∥∥∥∥ n

∑
i=1

ε ixi

∥∥∥∥∥
2

2

1/2

.

35

By a basic rearrangement of terms and the independence of the Rademacher variables ε i,

E

∥∥∥∥∥ n

∑
i=1

ε ixi

∥∥∥∥∥
2

2

=E

〈
n

∑
i=1

ε ixi,
n

∑
j=1

ε jxj

〉
= ∑

i ̸=j
⟨xi, xj⟩E[ε iε j] +

n

∑
i=1

⟨xi, xi⟩E[ε2
i]

=
n

∑
i=1

∥xi∥2
2 ≤ n · max

i=1,...,n
∥xi∥2

2.

Finally, combining our findings yields the bound on the Rademacher complexity RS (H),

RS (H) ≤ B2

n
·
√

n ·
√

max
i=1,...,n

∥xi∥2
2 = B2

√
maxi ∥xi∥2

2
n

,

finishing the proof of the lemma. ■

An analog to Theorem 1.3, relying on the Rademacher complexity instead of the VC
dimension, is the following result [MRT18, Theorem 3.5] that provides generalization
error bounds in a binary classification setting.

Theorem 1.8 (Generalization via the Rademacher Complexity - Binary Classification) Let
H be a family of functions taking values in {−1, 1} and let D be the distribution over the input
space X . Then, for any δ > 0, with probability at least 1 − δ over a sample S of size n drawn
according to D, each of the following holds for any h ∈ H:

L(h) ≤ L̂(h) +RS (H) +
log(1/δ)

2n
,

L(h) ≤ L̂(h) +R(H) + 3
log(2/δ)

2n
.

For regression problems such as the reconstruction problem, which will be the topic of
Chapter 2, we rely on the following result. As for the previous result, a key ingredient
for its proof is McDiarmid’s inequality [McD].

Theorem 1.9 (Generalization via the Rademacher Complexity - Regression) Let H be a
family of functions, S the training set drawn from Dn, and ℓ a real-valued bounded loss function
satisfying |ℓ(h, z)| ≤ c for all h ∈ H, z ∈ Z. Then, for δ ∈ (0, 1), with probability at least 1 − δ
we have, for all h ∈ S ,

L(h) ≤ L̂(h) + 2R(ℓ ◦ H) + c

√
2 log(2/δ)

n
,

L(h) ≤ L̂(h) + 2RS (ℓ ◦ H) + 4c

√
2 log(4/δ)

n
.

In Chapter 2, we will derive generalization error bounds based on Theorem 1.9. Note
that the Rademacher complexity terms in Theorem 1.9 are Rademacher complexities of
the function class that results from the concatenation of the hypothesis class H and the
loss function ℓ. In such cases (and assuming that H consists of real-valued functions),
when the loss function is K-Lipschitz continuous we may apply Talagrands contraction
principle (see Theorem B.3) to obtain

RS (ℓ ◦ H) ≤ K · RS (H),

36

so that in the end the problem boils down to finding Rademacher complexities of the
hypothesis class itself anyways. In the case of vector-valued function classes (such as
high-dimensional regression problems, a situation also encountered in Chapter 2 in this
thesis), the Rademacher complexity as in Definition 1.6 is not well-defined. To still be
able to make use of Theorem 1.9 nevertheless, we will employ a generalized contraction
principle due to Maurer which will be discussed in the Appendix B in Theorem B.4.

1.4.2 Finite p, n → ∞: Classical Statistics

This situation of a finite, fixed dimension p and a sample size n tending to infinity is
ubiquitous in many classical results from probability theory and statistics. As a promi-
nent example, let us recall the classical central limit theorem (CLT), the deeper reason why
the normal distribution is ubiquitous in many phenomena.

Theorem 1.10 (Central Limit Theorem) Let (Xn)n∈N be a sequence of i.i.d. real-valued ran-
dom variables with mean µ = E[Xi] < ∞ and variance σ2 = Var(Xi) < ∞ with σ2 ̸= 0. Then,
the sequence (Zn)n∈N of random variables given by

Zn =
X1 + · · ·+ Xn − nµ√

nσ

converges in distribution towards the standard normal distribution N (0, 1). In particular (see
also (B.4) in the appendix), for any a, b ∈ R with a < b, as n → ∞,

P (Zn ∈ [a, b]) → 1√
2π

∫ b

a
e−x2/2 dx.

We will make use of the Central Limit Theorem later on in Chapter 3. Let us here also
introduce the following variant of the central limit theorem, showing that inner products
with concentrated random vectors behave approximately like Gaussians. It will be im-
portant in Chapter 3 to justify that the classification scores g(x) = ω⊤x of linear classifiers
behave like Gaussians in high dimensions. It is originally due to [FGP07; Kla07]; here,
we follow the version and notation provided [SLCT21, Theorem 3.2]. (Recall Definition
1.1 and the comment thereafter for the notion of concentrated random vectors, and the
notation x ∝ E2(1 |Rp, ∥ · ∥2) is explained.)

Theorem 1.11 (CLT for Concentrated Random Vectors) Let x ∈ Rp be a random vector with
E[x] = 0 and E[xx⊤] = Ip. Further, let η be the uniform measure on the sphere S p−1 ⊂ Rp of
radius 1. Then, if x follows the concentration x ∝ E2(1 |Rp, ∥ · ∥2), there exist two constants
C, c > 0 and a set Ω ⊂ S p−1 such that η(Ω) ≥ 1 − C

√
pe−c

√
p and

sup
t∈R

∣∣∣P(ω⊤x ≥ t)− F0,1(t)
∣∣∣ ≤ p−1/4 ∀ω ∈ Ω,

where F0,1 is the cumulative distribution function of the standard normal distribution N (0, 1);
see equation (B.1) in the appendix.

If x is a general (possibly non-centered and non-isotropic) Gaussian random vector, an
analog result can be obtained through appropriate shifting and scaling (similar for ω not
being normalized).

Let us again consider a linear classifier, but in its ℓ2-regularized version (1.7) with the
corresponding solution (1.8). Note that in general, in the limit n → ∞, the solution

37

provided in (1.8) does not need to converge. Thus, it may be required to normalize ap-
propriately to ensure convergence when passing to the asymptotics n → ∞. Usually, the
data is normalized by the factor of 1/

√
n, which is appropriate for typical assumptions1

on X; see also [CL20]. Thus, we may consider

arg min
ω∈Rp

∥∥∥∥ 1√
n

X⊤ω − y
∥∥∥∥2

2
+ λ∥ω∥2

2 (1.21)

and from (1.7) we immediately obtain the minimizer of (1.21) to be

ω⋆
n =

(
1
n

XX⊤ + λIp

)−1 1√
n

Xy, (1.22)

which, depending on the distribution over X, may converge with limn→∞ ω⋆
n = ω⋆ ∈ Rp.

Then, the (asymptotic) classification score g(x) = x⊤ω⋆ is given by

1√
n

x⊤ω⋆ =
1
n

x⊤
(

1
n

XX⊤ + λIp

)−1

Xy. (1.23)

The expression (1
n XX⊤ + λIp)−1 appearing in (1.23) is called the resolvent of the sample

covariance matrix (assuming zero mean) 1
n XX⊤. The resolvent is very difficult to analyse

in case of large n alone, even under a Gaussian mixture model (with few attempts such
as [TB20] available in the literature). However, it is a classical object being studied in
(asymptotic) random matrix theory, when also p → ∞, which is naturally linked to the
setting when both n and p are large. We discuss this in the next section.

1.4.3 Large n, large p: Large-dimensional Statistics

As we have seen in the previous section, it may be difficult to derive results when n → ∞
alone. Furthermore, this approach may also be insufficient to model correctly situations
where the dimension p is similarly large (or even larger, in extreme cases) as the sample
size n. While many machine learning algorithms are designed based on low-dimensional
intuitions, their behavior in a large-dimensional setting may be very different. As an il-
lustration, let us refer to the large n, large p investigation [CBG16] of kernel spectral clus-
tering [NJW01; SM00], revealing insights into its inner workings that are very different
to the original reasoning [VL07].

This approach of the double asymptotics is thus naturally linked to non-asymptotic
random matrix theory, which studies spectral properties of random matrices when n, p →
∞, typically at commensurable rate p/n → c ∈ (0, ∞). Here, in contrast to a non-
asymptotic setting, there are some differences: For instance, pointwise convergence does
not imply convergence with respect to some matrix norms; furthermore, equivalence of
norms no longer holds.

Note this is different from the use of random measurement matrices in compressive
sensing, where one is usually interested in non-asymptotic bounds. Nevertheless, some
asymptotic approaches in compressive sensing exist as well, such as an asymptotic anal-
ysis of the RIP [CEG15].

After early works due to Wishart [Wis28] and Wigners semi-circle law [Wig55] (inspired

1For an isotropic Gaussian random vector x ∼ N (0, Ip) there is E∥x∥2 =
√

p, with a strong concentration
around the mean. (Thus, the large dimensional Gaussian behaves very differently than our
low-dimensional intuition would suggest, and in high dimension it is similar to the spherical distribution.)

38

by applications in physics), the field greatly advanced with the work of Marčenko and
Pastur [MP67] (see Theorem 1.12 below). While originally mainly intended for applica-
tions in statistics (especially covariance estimation) and physics, later on it became an
important tool for applications in wireless communications (see [CD11], and the refer-
ences therein) and machine learning [CL22].

Now let us turn to the classical work [MP67], providing the limiting (n, p → ∞) spectral
behavior (i.e., the convergence of the discrete distribution of eigenvalues converges to a
continuous spectral density) of the sample covariance matrix

1
n

XX⊤ ∈ Rp×p

of some data matrix X ∈ Rp×n. (Note that more precisely, this is a sequence of random
matrices indexed by n and p, with p/n → c ∈ (0, ∞). Typically in the literature, the index
is omitted for convenience.)

Theorem 1.12 (Marčenko–Pastur) Let X ∈ Rp×n be a random matrix with i.i.d. mean-zero,
unit variance entries. Then, the spectral density of 1

n XX⊤ in the limit of n, p → ∞ with p/n →
c ∈ (0, ∞) is given by

µ(dx) = (1 − c−1)+δ0(x) +
1

2πcx

√
(x − E−)+(E+ − x)+dx,

where E± = (1 ±
√

c)2 and (x)+ = max{0, x} and δ0 is a Dirac measure.

Remark 1.13 Note that the Dirac measure δ0 in zero takes (isolated) zero eigenvalues
into account for the rank-deficient case (when p > n, so that c > 1). If X is not rank-
deficient (i.e., when n > p, i.e., c ∈ (0, 1)), then µ(dx) has compact support [E−, E+] and
the probability of eigenvalues lying in [a, b] ⊂ [E−, E+] is given by∫ b

a

1
2πcx

√
(x − E−)+(E+ − x)+ dx,

with the density given by (and integration with respect to) the Lebesgue measure. ♢

Remark 1.14 Let us remark that different versions of the above theorem exist. Originally
(and as stated above), i.i.d. mean-zero and unit variance have been considered. However,
this makes the original results unsuitable for applications in statistical learning theory,
where the typical assumption of having i.i.d. samples xi is already a strong assumption,
but certainly an i.i.d. assumption on the entries of each feature vector vector realistic
data types (such as natural signals and images) would be inappropriate. However, many
results such as the version of the Marčenko–Pastur law as stated above in Theorem 1.12
have been generalized to the case of having i.i.d. columns (or rows, respectively), thus
enabling applications in statistical learning theory. Of particular importance is the case
of concentrated random vectors introduced above, which is both a more realistic data
model [SLTC20] and is compatible with random matrix theory [EK09]. ♢

Let us return to the problem of ridge regression (1.22), considered previously in the
large n alone setting. Note that when in (1.22) passing to the limit of both n, p → ∞, it is
unclear how to describe convergence of (1.22) in Rp when p → ∞, even provided knowl-
edge of Theorem 1.12 and thus its resolvent (1

n XX⊤ + λIp)−1. Furthermore, in more
difficult situations, the limiting eigenvalue distribution of the involved expressions may
not be accessible at all. However, it turns out that for applications in statistical learning

39

theory, a full description of asymptotic eigenvalue distributions is not strictly required,
as the generalization behavior of some algorithms can be described through knowing a
(few) scalar quantities, whose asymptotic behavior is more likely to be tractable. Namely,
we will use the important idea that often quantities such as regression errors, or mis-
classification rates, may be described as functionals of random matrices, whose (scalar-
valued) asymptotic behavior may be tracked through so-called deterministic equivalents
[HLN07]. In this example, let us note that (1.23) is a quadratic form of the resolvent
(1

n XX⊤ + λIp)−1 of 1
n XX⊤, and deterministic equivalents have been derived in [LC20].

In general, we may say that (the sequence; omitting the index n) Q̄ ∈ Rn×n is a determin-
istic equivalent for the symmetric random matrix Q ∈ Rn×n (again, more precisely: in
the limit n → ∞) if, for (sequences of) deterministic vectors a, b ∈ Rn of unit (Euclidean)
norm

a⊤(Q − Q̄)b → 0,

as n → ∞, with convergence in probability or almost surely. Thus, the idea is to find
deterministic objects that asymptotically behave, under operations like quadratic forms,
similar to the random object of interest. Note that we may also consider different situ-
ations than quadratic forms: In Chapter 3, we will also encounter functionals involving
the trace and then consider deterministic equivalents with respect to this operation. More
details on deterministic equivalents can be found in B.

While classically being used for topics such as covariance estimation for decades, only
in recent years this approach has been adapted to the analysis of more elaborate machine
learning algorithms. This section could only provide a glimpse into this area of research;
for a systematic treatment of this topic, we refer to the recent monograph [CL22]. Note
that the main challenges of this approach lie in dealing with dependencies and the non-
linear nature of many advanced machine learning methods, such as neural networks.
Besides, generally speaking, such techniques prefer dense over sparse expressions (see also
the discussion at the end of [CL22, Section 2.6.2]). Furthermore, this approach works
better with a simple training procedure (for instance, for a convex loss surface with avail-
able convergence guarantees, or more generally when the minimizer of the loss function
can be expressed implicitly as the solution of a fixed-point equation). It may become
intractable in case of highly complicated models, such as the highly non-linear func-
tions represented by deep neural networks, with an inaccessible training procedure (non-
convex loss surface, stochastic gradient descent). Nevertheless, some works on (shallow,
typically having only one hidden layer) neural networks exist, and use full-batch training
rather than stochastic gradient descent [ASS20; LC18a; LLC18; SMG13].

However, when it is possible to deal with the technical challenges posed, often a good
agreement between theoretical (asymptotic) predictions and empirical (non-asymptotical)
observations can be found. This is also due to the speed of convergence at the rate of
O(

√
pn) in the double limit compared to O(

√
n) in the central limit theorem (single

asymptotics when n → ∞ only).

40

Overview

We conclude this introduction, and prepare the upcoming two chapters, with the follow-
ing overview.

Chapter 2 - Uniform Convergence

ISTA (introduce trainable parameters):

xk+1 = Sτλ

(
(I − τA⊤A)xk + τA⊤y

)
,

• Measurement matrix A ∈ Rm×p,

• (sparse) signal x ∈ Rp,

• measurement vector y ∈ Rm.

Generalization of trained decoder (error
measured by the ℓ2-norm):

L(h) ≤ L̂(h) +O
(
R(H)√

n

)
+ . . .

• Finite dimension p and sample size n.

• Estimate the Rademacher complexity
R(H) (or other complexity measure).

• Algorithm-independent: holds for all
h ∈ H (in particular ERM).

• Distribution-free (no explicit use any
assumptions on the data distribution,
such as sparsity).

• Advantage: concrete bound for any
given values of p and n.

• Disdvantage: Only upper bound for
generalization error!

Chapter 3 - Asymptotic Approach

ISTA (fixed point formulation):

ω⋆ = Sλτ

(
ω⋆ + τX(y − X⊤ω⋆)

)
.

• Data matrix X ∈ Rp×n,

• label vector y ∈ {−1, 1}n,

• (sparse) linear classifier ω⋆ ∈ Rp.

Generalization of the linear classifier ob-
tained (using accuracy/ 0/1-loss):

Compute EL(h⋆)

• n, p → ∞ with p/n → c ∈ (0, 1).

• Data distribution induces distribu-
tion (and concentration!) over h⋆.

• Relying on (simple) algorithm to
compute h⋆ ∈ H.

• Employing a concentration of mea-
sure framework; estimation of first
and second order moments.

• Advantage: Precise performance
guarantees (asymptotically).

• Disdvantage: Intractable for highly
complicated models (NNs).

41

2 Unfolded Neural Networks for Sparse
Reconstruction

In this chapter, we will study neural networks that arise from unfolding the iterative
soft-thresholding algorithm. This chapter is based on [BRS22; SBR21] where our main
contribution is to provide a novel analysis of the generalization error of a general class
of neural networks inspired by ISTA. Thus, a main goal of this chapter is to connect
the areas of inverse problems and statistical learning theory, whereas so far research on
generalization of neural networks has strongly focused on classification problems. The
chapter is structured as follows. After the introductury Section 2.1, Section 2.2 studies
the problem of generalization of ISTA-inspired networks at the hand of a comparatively
simple example, namely that of learning an orthogonal dictionary, being included in ISTA
as the trainable parameters. By avoiding the presentation to become overly technical, this
allows us to focus on the main methods of the proof. This will be greatly generalized in
Section 2.3 to a much larger class of ISTA-inspired neural networks, that take a flexible
choice of parameters into account, and even allow trainable thresholds and stepsizes,
which may also differ from layer to layer. Furthermore, this general scenario contains
both recurrent neural networks and ones more similar to feedforward neural networks,
and in particular covers the dictionary learning problem studied previously as a special
case. The proof relies on classical bounds of the generalization error via estimates of the
Rademacher complexity of the hypothesis class; however, an important ingredient is a
generalized contraction principle for vector-valued hypothesis classes. In Section 2.4 we
present results of numerical experiments and compare with our theoretical findings from
the previous sections. In Section 2.5 we discuss various related topics, extensions, and
open questions.

Before delving into this chapter, let us remark that the notation used here differs from
the one in the original papers, in order to be consistent with the rest of this thesis. Namely,
we adapt the notation from statistics where p (not N) is the ambient dimension and n
denotes the sample size (rather than m, which is here reserved for the number of mea-
surements, as common in the compressive sensing literature anyways).

2.1 Introduction

In Chapter 1, we have introduced the iterative soft-thresholding algorithm. Let us recall
that ISTA, for fixed stepsize τ > 0 and fixed threshold λ > 0, consists in first computing

f1(y) = Sτλ(τA⊤y),

and then, iteratively for l ≤ 2 up to a certain number l = L of iterations,

fl(z) =Sτλ

[
z + τA⊤(y − A)z)

]
=Sτλ

[(
I − τA⊤A

)
z + τA⊤y

]
.

43

(Note that for l > 1, all fl coincide as functions on Rp.) Let us point out an observation
that is fundamental to this chapter, namely that one iteration of ISTA can be interpreted
as a layer of a neural network with weight matrix I − τA⊤A, bias τA⊤y and non-linear
activation function Sτλ applied elementwise. In this context, the index l refers to the layer
number of the neural network. Note that the neural networks studied here in some sense
resemble autoencoders, classes of neural networks with the purpose to learn a lower-
dimensional or structured representation of the data: This is typically achieved by train-
ing a neural network to reconstruct its input, but enforcing dimensionality reduction (and
thus, avoiding trivial solutions like an identity map) through shrinking the dimension-
ality into a small central layer of latent variables. This concept was originally proposed
in [HS06]; various variants of this approach have been developed, most notably maybe
variational autoencoders [KW13]. Interesting in the context of this thesis are also sparse au-
toencoders [MF13; Ng+11], that aim to obtain a sparse representation of the data, possibly
of larger dimension.

Here, taking the measurements y = Ax =: encA(x) may be interpreted as encoding
the signal x into y, corresponding to a shallow, one-layer linear neural network (which
is deterministic, when the measurement matrix A is considered to be fixed), the decoder
is based on the unfolded version of the iterative soft thresholding algorithm (ISTA) with
L iterations as follows. However, note that in the current form ISTA only takes the form
of a neural network (in this context, also called unfolded neural network). Introducing
parameters that are optimized with respect to some available training data, this leads
to the notion of learned iterative soft-thresholding algorithms (LISTA). This has been
observed for the first time in [GL10], and this combination of inverse problems and deep
learning is interesting for various reasons:

• Firstly, a fundamental difference compared to traditional approaches is that it works
in a data-driven manner. Thus, rather than using prior assumptions on the data
of interest, the training may help the algorithm adapt to a specific data distribu-
tion. For instance, instead of plain sparsity additional structure (certain support
patterns, correlations between entries etc.) may arise in applications, to which the
flexible models like neural networks may easily adapt.

• Related to the previous point, one may hope for (approximate) reconstruction via
trained decoders to be possible, at least in some cases, from (even) fewer measure-
ments than predicted by classical compressive sensing (which itself already revo-
lutionized sampling theory by massively improving classical bounds by Shannon
[Sha48]).

• At test time (or inference), that is when applying the trained model to new data, the
numerical evaluation of the neural network may be faster than traditional algo-
rithms.

The recent years have witnessed considerable research activity at the intersection of
deep learning and inverse problems. This chapter provides, to the best of our knowledge,
a first detailed theoretical investigation of the generalization error of neural networks
inspired by ISTA. By introducing trainable parameters P of the unfolded network, we
would like to learn parameters that are suitable to perform a certain task, from a training
sequence S = ((xi, yi))i=1,...,n with i.i.d. samples drawn from an (unknown) distribution
D. Mainly, we consider the task of sparse reconstruction - Section 2.2 focusses exclu-
sively on this, while the more flexible setup in Section 2.3 covers general regression tasks,

44

including reconstruction. Formally, D is a distribution over the xi, and then the corre-
sponding measurements yi are given by yi = Axi, with A being fixed.

While the algorithms studied are mostly suitable for sparse reconstruction tasks (but,
apart from that, also general regression tasks), throughout our derivation we make no
explicit assumptions on the signals x of interest except that we presume that the signals x in the
class are bounded by a certain value, say Bin, in the ℓ2-norm. Furthermore, for technical rea-
sons that will become apparent later on, we will also introduce functions σ to be applied
after the final layer to bound its output.

For a more rigorous formulation as a statistical learning problem, we will formally
introduce a hypothesis class H (parameterized by the respective parameters P) and a
loss function. The hypothesis set essentially consists of all functions that can be expressed
as L-step soft-thresholding with parameters from P , and based on the training samples
S and given the hypothesis space H (with a technical modification after the final layer
which will be introduced below), a learning algorithm yields a function h ∈ H that aims
at reconstructing x from the measurements y = Ax.

Different choices for the loss function ℓ to measure the quality of the reconstruction
x̂i = h(yi) compared to the original signal xi are possible. A popular choice for regression
problems is the mean squared error (1.19). Instead, throughout this chapter we use the
the loss function

ℓ(h, x, y) = ∥h(y)− x∥2, (2.1)

which (in contrast to the squared norm, leading to the mean-squared-error) has the ad-
vantage of being 1-Lipschitz continuous, even on unbounded domains. For the notions
of empirical and true risk and the definition of the generalization error, which are central ob-
jects of interests in this chapter, we refer to Section 1.3 in Chapter 1 (see equations (1.13),
(1.14) and (1.15)).

Finally, let us also comment on the measurement design. Throughout the thesis, we
will assume a fixed measurement matrix for theoretical investigations and an appropri-
ately normalized Gaussian random matrix for the numerical experiments. Thus, the the-
oretical investigations focus on the reconstruction task. Let us note, however, that the
approach described here can, in principle, also be applied to training the measurement
matrix, either independently of the training the measurement matrix, or simultaneously
in an end-to-end fashion. A rigorous theoretical investigation of the combined problem is
highly challenging and remains an opportunity for future research. From an experimen-
tal viewpoint, such scenarios that include training the measurement matrix (to satisfy
RIP-like conditions to be suitable for reconstruction tasks) have been considered previ-
ously in [WRL19; Wu+19].

2.2 LISTA for Dictionary Learning

In this section, we will derive generalization error bounds for a specific model learning an
orthogonal dictionary suitable for reconstruction. By focusing on such a relatively simple
example, we avoid an overly technical presentation and can focus on the developing the
required proof methods. This section is based on the book chapter [BRS22], which is co-
authored by the author of this thesis. Later on, we will adapt the proof to a much more
general setup.

45

2.2.1 Dictionary Learning Model

To introduce trainable parameters, one may consider the following scenario. Namely, let
us be given a class of signals x ∈ Rp which are not necessarily sparse themselves, but
sparsely representable with respect to a dictionary Φ0 ∈ Rp×p. In other words, for each
x there is a sparse vector z ∈ Rp such that x = Φ0z. The dictionary Φ0 is assumed to
be unknown. For a fixed stepsize τ > 0, and a fixed λ > 0, the first layer is defined
by f1(y) = Sτλ(τ(AΦ)⊤y). For the iteration (or layer, respectively) l > 1, the output is
given by

fl(z) =Sτλ

[
z + τ(AΦ)⊤(y − (AΦ)z)

]
(2.2)

=Sτλ

[(
I − τΦ⊤A⊤AΦ

)
z + τ(AΦ)⊤y

]
,

which again can be interpreted as a layer of a neural network with weight matrix I −
τΦ⊤A⊤AΦ, bias τ(AΦ)⊤y and activation function Sτλ, where the trainable parameters
are the entries of Φ. Note that for l > 1, all fl coincide as functions on Rp. The index then
refers to the iteration step or layer of the neural network, respectively. Then we denote
the concatenation of l such layers as f l

Φ, i.e., for Φ in every layer and given by

f L
Φ(y) = fL ◦ fL−1 · · · ◦ f1(y), (2.3)

Note that, strictly speaking, the vector y will also be an input to the subsequent layers
f2, f3 etc., but to simplify the notation, we do not write it explicitly after each layer. This
point will not be of major importance for our derivations throughout this chapter.

For an actual reconstruction we need to apply the dictionary Φ again after the final
layer. This means, a decoder (for a fixed number of layers L) is a neural network with
shared weights

decL
Φ(y) = Φ fL ◦ fL−1 · · · ◦ f1(y) = Φ f L

Φ(y).

For technical reasons which will become apparent later in the proofs in Section 3, we will
add an additional function σ after the final layer. Different choices are possible here; we
consider the choice

σ : Rp → Rp, x 7→
{

x if ∥x∥2 ≤ Bout,
Bout

x
∥x∥2

if ∥x∥2 > Bout,
(2.4)

with some fixed constant Bout. Obviously, this ensures ∥σ(x)∥2 ≤ Bout. Furthermore,
note that σ is norm-contractive and 1-Lipschitz, i.e.,

∥σ(x)∥2 ≤ ∥x∥2 and ∥σ(x1)− σ(x2)∥2 ≤ ∥x1 − x2∥2 (2.5)

for any x and x1, x2 ∈ Rp. The role of σ is to push the output of the network inside the
ℓ2-ball of radius Bout, which in many applications is approximately known. The prior
knowledge about the range of the output (boundedness) can improve the reconstruction
performance and generalization [WGLZ20]. The constant Bout may be simply chosen to
be equal to Bin.

The hypothesis set consists of all functions that can be expressed as L-step soft thresh-
olding, where the dictionary matrix Φ parameterizes the hypothesis class, and with an
additional σ after the final layer added. That is,

HL
1 = {σ ◦ f : Rm → Rp : f (y) = Φ f L

Φ(y), Φ ∈ O(p)}. (2.6)

46

The assumption that Φ ranges over the orthogonal group O(p) and is shared across the
layers leads to a recurrent neural network with a moderate number of weights. Using
weight sharing enables a straightforward interpretation of learning a dictionary for re-
construction. (Much more general scenarios are discussed later, including models with-
out weight-sharing (or different degrees thereof), and models where also the threshold λ
and the stepsize τ may be trainable, and even be altered from layer to layer.) Throughout,
we will use the loss function (2.1) (which has the advantage of being 1-Lipschitz) and the
notion of the generalization error as in (1.15).

2.2.2 Main result

Let us begin by stating the following result on the generalization error of the class of
neural networks HL

1 introduced above in (2.6) with a learned orthogonal dictionary. We
state our theorem here under the simplifying but reasonable assumption that τ∥A∥2

2 ≤ 1,
satisfying the convergence condition (1.11). A more general version of the result will be
presented in Section 2.2.7. Note that this, and similar results in this Chapter, are applica-
tions of Theorem 1.9.

Theorem 2.1 Consider the hypothesis space HL
1 , L ≥ 2, defined in (2.6) and assume the samples

xi, i = 1, . . . , n, to be drawn i.i.d. at random according to some (unknown) distribution such that
∥xi∥2 ≤ Bin almost surely with Bin = Bout in (2.4). Let yi = Axi and assume that τ∥A∥2

2→2 ≤
1. Then with probability at least 1 − δ, for all h ∈ HL

1 , the generalization error is bounded as

L(h) ≤ L̂(h) + 8Bout

√
pm
n

√
2 log(5L) + 8Bout

N
√

log(e + 8eL)√
n

+Bout

√
128 log(4/δ)

n
.

Proof. The proof of Theorem 2.1 is based on Theorem 2.8 and Corollary 2.9 further below
in Section 2.2.7. ■

Of course, the idea is to choose an h that minimizes the empirical loss L̂(h), i.e., the first
term on the right hand side of (2.7), but in principle any h (computed by some algorithm)
can be inserted into this bound. Since the samples are available, both L̂(h) and the other
terms can be computed (assuming Bin is known), so that the theorem allows to provide
a concrete bound of the true risk L(h). Roughly speaking, i.e., ignoring constants, the
generalization error can be bounded as

|L(h)− L̂(h)| ≲
√

pm log(L) + p2 log(L)
n

. (2.8)

In other words, once the number of training samples scales like n ∼ (pm + p2) log(L),
the generalization error is guaranteed to be small with high probability.

Remarkably, the number L of layers only enters logarithmically, while some of the
previously available bounds for deep neural networks (in the context of classification,
however) scale even only exponentially with L (at least in many interesting settings).

The remainder of this section is devoted to the proof of the above statement. We will
use the approach based on the Rademacher complexity as described in Chapter 1, in

47

particular in Theorem 1.9. Hence, we need to estimate the Rademacher complexity

Rn(ℓ ◦ HL
1) = E sup

h∈HL
1

1
n

n

∑
i=1

ε i∥h(yi)− xi∥2.

As explained in Chapter 1, the so-called contraction principle is often applied in such
situations. However, since we are dealing with a hypothesis class of vector-valued func-
tions, it is not applicable in its standard form. A crucial tool, upon which our proof relies,
is a is a generalization to this situation of vector-valued functions due to [Mau16, Corol-
lary 4], which is provided in the appendix in Lemma B.4. As both the ℓ2-norm and (by
assumption) the function σ from (2.4) are 1-Lipschitz, applying Lemma B.4 yields

Rn(ℓ ◦ HL) ≤
√

2E sup
h∈HL

1
n

n

∑
i=1

p

∑
k=1

ε ikhk(xi). (2.9)

In order to derive a bound for the Rademacher complexity, we use chaining techniques.
Roughly speaking, this refers to bounding the expectation of a stochastic process by geo-
metric properties of its index set (covering numbers at different scales), equipped with an
appropriate norm (or metric). We briefly provide the necessary results in the next section,
for a more detailed introduction to the topic, we refer the reader to [LT11; Tal14].

2.2.3 Boundedness: Assumptions and Results

For technical reasons that will become apparent, we will introduce a separate dictionary
for the linear transformation after the very final layer and consider the enlarged hypoth-
esis class

HL
2 = {σ ◦ h : Rm → Rp : h(y) = Ψ f L

Φ(y), Ψ, Φ ∈ O(p)}. (2.10)

In order to apply Theorem 1.9, the loss function needs to be bounded. Therefore, and
as commonly done in the machine learning literature, we assume (as already mentioned)
that the input is bounded in the ℓ2-norm by some constant Bin, i.e.,

∥x∥2 ≤ Bin. (2.11)

Furthermore, let us recall from (2.5) that the function σ is bounded by Bout. In particular,
this means that every h ∈ HL

2 (analogously for HL
1) is also bounded by

∥h(y)∥2 =
∥∥∥σ
(

Ψ f L
Φ(y)

)∥∥∥
2
≤ Bout (2.12)

independently of Ψ, Φ ∈ O(p). By passing to the matrix notation (i.e., considering the
matrix Y collecting all measurements, instead of a single measurement y), we obtain the
similar estimate

∥h(Y)∥F ≤
√

nBout (2.13)

where the additional term of
√

n takes the number of training points into account. By
combining (2.11) and (2.12), we find that the loss function is bounded by Bin + Bout, as

ℓ(h, y, x) = ∥h(y)− x∥2 ≤ ∥x∥2 + ∥h(y)∥2

≤ Bin + Bout,

so that Bin + Bout plays the role of c in Theorem 1.9. Besides these boundedness assump-

48

tions, we can also upper bound the output f l
Φ(Y) with respect to the Frobenius norm after

any number of layers l (in particular for l < L, when the layer is not directly followed by
an application of the σ function) as follows . This will be used later in the main technical
result, Theorem 2.8.

Lemma 2.2 For any Φ ∈ O(p), l ∈ N, and arbitrary τ, λ > 0 in Sτλ in the definition (1.10)
of f l

Φ, we have

∥∥∥ f l
Φ(Y)

∥∥∥
F
≤
∥∥∥τ(AΦ)⊤Y

∥∥∥
F

l−1

∑
k=0

∥∥∥I − τΦ⊤A⊤AΦ
∥∥∥k

2→2
(2.15)

≤ τ∥A∥2→2∥Y∥F

l−1

∑
k=0

∥∥∥I − τA⊤A
∥∥∥k

2→2
. (2.16)

Before we prove this result, let us point out the following useful observation regarding
the expression ∥I − τA⊤A∥2→2 that we will encounter more often in the sequel. By part
(i) of Lemma C.2 below, it can be easily bounded under realistic assumptions. In partic-
ular, we can use it to simplify the above estimate to obtain for arbitrary Ψ, Φ ∈ O(p).
Namely, under the condition of τ∥A∥2

2→2 ≤ 1 and assuming yi = A(xi) we have∥∥∥Ψ f L
Φ(Y)

∥∥∥
2
=
∥∥∥ f L

Φ(Y)
∥∥∥

2
≤ Lτ∥A∥2→2∥Y∥F= Lτ∥A∥2→2∥AX∥F

≤ L∥X∥F ≤ L
√

nBin, (2.17)

i.e., a linear growth with L. Note that this is a worst case bound, and might possibly be
improved under additional assumptions. Now, let us return to Lemma 2.2 and prove this
result.

Proof. Note that the second inequality (2.16) immediately follows from (2.15) due to the
orthogonality of Φ. We will prove (2.15) via induction. Clearly, for l = 1, we have∥∥ f 1

Φ(Y)
∥∥

F =
∥∥τ(AΦ)⊤Y

∥∥
F. Assuming the statement is true for l, we obtain it for l + 1

by the following chain of inequalities, using in particular the contractivity of Sτλ with
respect to the Frobenius norm,∥∥∥ f l+1

Φ (Y)
∥∥∥

F
=

∥∥∥Sτλ

[(
I − τΦ⊤A⊤AΦ

)
f l
Φ(Y) + τ(AΦ)⊤Y

]∥∥∥
F

≤
∥∥∥(I − τΦ⊤A⊤AΦ

)
f l
Φ(Y)∥F + ∥τ(AΦ)⊤Y

∥∥∥
F

≤
∥∥∥I − τΦ⊤A⊤AΦ

∥∥∥
2→2

∥∥∥ f l
Φ(Y)

∥∥∥
F
+
∥∥∥τ(AΦ)⊤Y

∥∥∥
F

≤
∥∥∥τ(AΦ)⊤Y

∥∥∥
F

(
l−1

∑
k=0

∥∥∥I − τΦ⊤A⊤AΦ
∥∥∥k+1

2→2

)
+
∥∥∥τ(AΦ)⊤Y

∥∥∥
F

=
∥∥∥τ(AΦ)⊤Y

∥∥∥
F

l

∑
k=0

∥∥∥I − τΦ⊤A⊤AΦ
∥∥∥k

2→2
,

where we have used the induction hypothesis to arrive at the fourth line. ■

49

2.2.4 Bounding the Rademacher Complexity

Recalling our hypothesis spaces introduced above in equations (2.6) and (2.10), obviously
HL

1 is embedded in HL
2 , i.e., we have the set inclusion

HL
1 ⊂ HL

2 .

For fixed number of layers L ∈ N and i = 1, 2 define the set Mi ⊂ Rp×n as follows by

Mi =
{
[h(y1), . . . , h(yn)] ∈ Rp×n : h ∈ HL

i

}
.

Concretely, in the case i = 2, the set M2 corresponding to the hypothesis space HL
2 reads

as
M2 =

{
σ
(

Ψ f L
Φ(Y)

)
∈ Rp×n : Ψ, Φ ∈ O(p)

}
. (2.18)

Note that M2 is parameterized by Ψ, Φ ∈ O(p) (as the hypothesis space HL
2 is), such

that we can rewrite (2.9) as

Rn(ℓ ◦ HL
2) ≤

√
2E sup

M∈M2

1
n

n

∑
i=1

p

∑
k=1

ε ik Mki. (2.19)

We use Dudley’s inequality, Theorem A.4, and a covering number argument to bound
the Rademacher complexity term (2.19) . The appropriate (pseudo-)metric d from (A.2)
appearing in Theorem A.4 turns out to be the Frobenius norm, since for any M, M̂ ∈ M2,

d(M, M̂)

=

E

∣∣∣∣∣ n

∑
i=1

mL

∑
k=1

ε ik Mki −
n

∑
i=1

mL

∑
k=1

ε ik M̂ki

∣∣∣∣∣
2
1/2

=

E

(
n

∑
i=1

mL

∑
k=1

ε ik(Mki − M̂ki)

)2
1/2

=

(
n

∑
i=1

mL

∑
k=1

(Mki − M̂ki)
2

)1/2

= ∥M − M̂∥F, (2.20)

where we have used that E[ε2
ik] = 1 and E[ε ikε jl] = E[ε ik]E[ε jl] = 0 whenever i ̸= j or

k ̸= l due to independence of the Rademacher variables ε ik and ε jl . The Rademacher
process defined in (2.19) is a sub-Gaussian process, i.e., satisfying (A.3), as it is obviously
centered and furthermore

E exp

(
θ

(
n

∑
i=1

mL

∑
k=1

ε ik Mki −
n

∑
i=1

mL

∑
k=1

ε ik M̂ki

))
= E exp

(
θ

(
n

∑
i=1

mL

∑
k=1

ε ik(Mki − M̂ki)

))
≤ exp(θ2∥M − M̂∥2

F/2).

Furthermore, for the set of matrices M2 defined above in (2.19), its radius ∆(M2) can
be bounded by

∆(M2) = sup
h∈HL

2

√√√√
E

(
n

∑
i=1

p

∑
k=1

ε ikhk(yi)

)2

≤ sup
h∈HL

2

√√√√E
n

∑
i=1

p

∑
k=1

(hk(yi))
2

≤ sup
h∈HL

2

√
n

∑
i=1

∥h(yi)∥2 ≤
√

nBout,

50

with the last inequality already known from (2.13). Plugging our findings into Dudley’s
inequality (A.4), the Rademacher complexity term (2.19) can be upper bounded by

Rn(ℓ ◦ HL
2) ≤

4
√

2
n

∫ √
nBout/2

0

√
logN (M2, ∥ · ∥F, ε)dε. (2.21)

We only need to find the covering numbers inside the integral. For that, we bound the
covering number of the hypothesis class by the covering number of its parameter space.
This is done using a perturbation analysis argument.

2.2.5 A Perturbation Result

The following theorem relates the effect of perturbation of the parameters on the function
outputs. This result will be used to bound their covering numbers.

Theorem 2.3 Consider the functions f L
Φ defined as in (2.3) with L ≥ 2 and a dictionary Φ in

O(p). Then, for any Φ1, Φ2 ∈ O(p) we have∥∥∥ f L
Φ1
(Y)− f L

Φ2
(Y)
∥∥∥

F
≤ KL∥AΦ1 − AΦ2∥2→2, (2.22)

where KL is given by

KL = τ∥Y∥F∥I − τA⊤A∥L−1
2→2

+ τ∥Y∥F

L

∑
l=2

∥I − τA⊤A∥L−l
2→2

(
1 + 2τ∥A∥2

2→2

l−2

∑
k=0

∥I − τA⊤A∥k
2→2

)
. (2.23)

If τ∥A∥2
2→2 ≤ 1, we have the simplified upper bound

KL ≤ τ∥Y∥FL(L + 3). (2.24)

The bound (2.24) follows from the observation in part (i) of Lemma C.2.

Proof. We formally set f 0
Φ1
(Y) = f 0

Φ2
(Y) = Y for a unified treatment of all layers l ≥ 1.

Using the fact that Sτλ is 1-Lipschitz we obtain∥∥∥ f l
Φ1
(Y)− f l

Φ2
(Y)
∥∥∥

F

≤
∥∥∥(I − τ(AΦ1)

⊤AΦ1

)
f l−1
Φ1

(Y) + τ(AΦ1)
⊤Y

−
(

I − τ(AΦ2)
⊤AΦ2

)
f l−1
Φ2

(Y)− τ(AΦ2)
⊤Y
∥∥∥

F

≤
∥∥∥(I − τ(AΦ1)

⊤AΦ1

)
f l−1
Φ1

(Y)−
(

I − τ(AΦ2)
⊤AΦ2

)
f l−1
Φ2

(Y)
∥∥∥

F

+
∥∥∥τ(AΦ1)

⊤Y − τ(AΦ2)
⊤Y
∥∥∥

F

≤
∥∥∥(I − τ(AΦ1)

⊤AΦ1

)
f l−1
Φ1

(Y)−
(

I − τ(AΦ2)
⊤AΦ2

)
f l−1
Φ2

(Y)
∥∥∥

F
+2τ ∥Y∥F ∥AΦ1 − AΦ2∥2→2 .

The term (2.25) is estimated further as follows.∥∥∥(I − τ(AΦ1)
⊤AΦ1

)
f l−1
Φ1

(Y)−
(

I − τ(AΦ2)
⊤AΦ2

)
f l−1
Φ2

(Y)
∥∥∥

F

51

≤
∥∥∥(I − τ(AΦ1)

⊤AΦ1

)
f l−1
Φ1

(Y)−
(

I − τ(AΦ1)
⊤AΦ2

)
f l−1
Φ1

(Y)

+
(

I − τ(AΦ1)
⊤AΦ2

)
f l−1
Φ1

(Y)−
(

I − τ(AΦ2)
⊤AΦ2

)
f l−1
Φ1

(Y)
∥∥∥

F

+
(

I − τ(AΦ2)
⊤AΦ2

)
f l−1
Φ1

(Y)−
(

I − τ(AΦ2)
⊤AΦ2

)
f l−1
Φ2

(Y)
∥∥∥

F

≤
∥∥∥(I − τ(AΦ1)

⊤AΦ1

)
f l−1
Φ1

(Y)−
(

I − τ(AΦ1)
⊤AΦ2

)
f l−1
Φ1

(Y)

+
(

I − τ(AΦ1)
⊤AΦ2

)
f l−1
Φ1

(Y)−
(

I − τ(AΦ2)
⊤AΦ2

)
f l−1
Φ1

(Y)

+
(

I − τ(AΦ2)
⊤AΦ2

) (
f l−1
Φ1

(Y)− f l−1
Φ2

(Y)
)∥∥∥

F

≤
∥∥∥τ(AΦ1)

⊤AΦ1 f l−1
Φ1

(Y)− τ(AΦ1)
⊤AΦ2 f l−1

Φ1
(Y)

+τ(AΦ1)
⊤AΦ2 f l−1

Φ1
(Y)− τ(AΦ2)

⊤AΦ2 f l−1
Φ1

(Y)
∥∥∥

F

+
∥∥∥(I − τ(AΦ2)

⊤AΦ2

)∥∥∥
2→2

∥∥∥ f l−1
Φ1

(Y)− f l−1
Φ2

(Y)
∥∥∥

F

≤
∥∥∥τ(AΦ1)

⊤
∥∥∥

2→2

∥∥∥(AΦ1 − AΦ2) f l−1
Φ1

(Y)
∥∥∥

F

+ τ
∥∥∥(AΦ1)

⊤ − (AΦ2)
⊤
∥∥∥

2→2

∥∥∥AΦ2 f l−1
Φ1

(Y)
∥∥∥

F

+
∥∥∥(I − τ(AΦ2)

⊤AΦ2

)∥∥∥
2→2

∥∥∥ f l−1
Φ1

(Y)− f l−1
Φ2

(Y)
∥∥∥

F

≤τ ∥A∥2→2 ∥AΦ1 − AΦ2∥2→2

∥∥∥ f l−1
Φ1

(Y)
∥∥∥

F
+ τ ∥A∥2→2 ∥AΦ1 − AΦ2∥2→2

∥∥∥ f l−1
Φ1

(Y)
∥∥∥

F

+
∥∥∥(I − τ(AΦ2)

⊤AΦ2

)∥∥∥
2→2

∥∥∥ f l−1
Φ1

(Y)− f l−1
Φ2

(Y)
∥∥∥

F

=2τ ∥A∥2→2 ∥AΦ1 − AΦ2∥2→2

∥∥∥ f l−1
Φ1

(Y)
∥∥∥

F
+
∥∥∥I − τA⊤A

∥∥∥
2→2

∥∥∥ f l−1
Φ1

(Y)− f l−1
Φ2

(Y)
∥∥∥

F
.

Plugging this back into (2.25) gives us∥∥∥ f l
Φ1
(Y)− f l

Φ2
(Y)
∥∥∥

F

≤
∥∥∥I − τA⊤A

∥∥∥
2→2

∥∥∥ f l−1
Φ1

(Y)− f l−1
Φ2

(Y)
∥∥∥

F

+τ
(

2 ∥Y∥F + 2 ∥A∥2→2

∥∥∥ f l−1
Φ1

(Y)
∥∥∥

F

)
∥AΦ1 − AΦ2∥2→2

≤ A
∥∥∥ f l−1

Φ1
(Y)− f l−1

Φ2
(Y)
∥∥∥

F
+ Bl ∥AΦ1 − AΦ2∥2→2 ,

where A and Bl in the previous estimate (2.27) are given by

A =
∥∥∥I − τA⊤A

∥∥∥
2→2

,

Z0 = 0, Zl =
l−1

∑
k=0

∥∥∥I − τA⊤A
∥∥∥k

2→2
, l ≥ 1,

Bl = τ∥Y∥F

(
2 + 2τ ∥A∥2

2→2 Zl−1

)
, l ≥ 1.

Using these abbreviations, the general formula for KL in (2.23) has the compact form

KL =
L

∑
l=1

AL−l Bl , L ≥ 1. (2.28)

52

Based on (2.27) we prove via induction that (2.22) holds for any number of layers L ∈ N

with KL given by (2.28). For L = 1, we can directly calculate the constant K1 via∥∥∥ f 1
Φ1
(Y)− f 1

Φ2
(Y)
∥∥∥

F
=
∥∥∥Sτλ(τ(AΦ1)

⊤Y)− Sτλ(τ(AΦ2)
⊤Y)

∥∥∥
F

≤τ∥Y∥F ∥AΦ1 − AΦ2∥2→2 ,

so that τ∥Y∥F ≤ 2τ∥Y∥F = B1 = K1, as claimed in (2.28). Now we proceed with the
induction step, assuming formula (2.28) to hold for some L ∈ N. Applying the estimate
after (2.26) for the output after layer L + 1, we obtain∥∥∥ f L+1

Φ1
(Y)− f L+1

Φ2
(Y)
∥∥∥

F
≤A

∥∥∥ f L
Φ1
(Y)− f L

Φ2
(Y)
∥∥∥

F
+ BL+1 ∥AΦ2 − AΦ1∥2→2

≤AKL∥AΦ2 − AΦ1∥2→2 + BL+1∥AΦ2 − AΦ1∥2→2

≤(AKL + BL+1)∥AΦ2 − AΦ1∥2→2,

and therefore,

KL+1 = AKL + BL+1 = A
L

∑
l=1

AL−l Bl + BL+1 =
L+1

∑
l=1

A(L+1)−l Bl .

This is indeed the desired expression for KL+1, finishing the proof of (2.22). It remains to
prove the upper bound (2.24). In part (i) of Lemma C.2 we show that ∥I − τA⊤A∥2→2 = 1
when τ∥A∥2

2→2 ≤ 1. Therefore we obtain

KL =
L

∑
l=1

AL−l Bl ≤
L

∑
l=1

Bl = τ∥Y∥F

L

∑
l=1

(
2 + 2τ ∥A∥2

2→2 Zl−1

)
≤ 2Lτ∥Y∥F + 2τ∥Y∥F

L

∑
l=1

Zl−1 ≤ 2Lτ∥Y∥F + 2τ∥Y∥F

L

∑
l=1

l

= τ∥Y∥FL(L + 3),

finishing the proof of the theorem. ■

The following result is an adaptation of the previous theorem to take the special form
of the final layer into account (a final linear transformation, followed by applying the
function σ).

Corollary 2.4 Consider the thresholding networks Ψ f L
Φ ∈ HL

2 as defined in Section 2.2.4, with
L ≥ 2 and Ψ, Φ ∈ O(p). Then, for any Φ1, Φ2 ∈ O(p) and Ψ1, Ψ2 ∈ O(p) we have∥∥∥σ(Ψ1 f L

Φ1
(Y))− σ(Ψ2 f L

Φ2
(Y))

∥∥∥
F

≤ ML∥Ψ1 − Ψ2∥2→2 + KL∥AΦ1 − AΦ2∥2→2,

with KL as in Theorem 2.3 and

ML = τ∥A∥2→2∥Y∥F

L−1

∑
k=0

∥∥∥I − τA⊤A
∥∥∥k

2→2
. (2.30)

53

Under the additional assumption that τ∥A∥2
2→2 ≤ 1 we have∥∥∥σ(Ψ1 f L

Φ1
(Y))− σ(Ψ2 f L

Φ2
(Y))

∥∥∥
F

≤ τ∥Y∥F (L∥A∥2→2∥Ψ1 − Ψ2∥2→2 + L(L + 3)∥AΦ1 − AΦ2∥2→2) .

Proof. Let us begin with the following estimates, which now include the application of
the measurement and the respective dictionary after the final layer. By the 1-Lipschitzness
of σ, adding mixed terms and applying the triangle inequality, and finally using Theorem
2.3 for the second summand in the last step we obtain∥∥∥σ

(
Ψ1 f L

Φ1
(Y)
)
− σ

(
Ψ2 f L

Φ2
(Y)
)∥∥∥

F

≤
∥∥∥Ψ1 f L

Φ1
(Y)− Ψ2 f L

Φ1
(Y) + Ψ2 f L

Φ1
(Y)− Ψ2 f L

Φ2
(Y)
∥∥∥

F

≤
∥∥∥Ψ1 f L

Φ1
(Y)− Ψ2 f L

Φ1
(Y)
∥∥∥

F
+
∥∥∥Ψ2 f L

Φ1
(Y)− Ψ2 f L

Φ2
(Y)
∥∥∥

F

≤
∥∥∥ f L

Φ1
(Y)
∥∥∥

F
∥Ψ1 − Ψ2∥2→2 +

∥∥∥ f L
Φ1
(Y)− f L

Φ2
(Y)
∥∥∥

F

≤
∥∥∥ f L

Φ1
(Y)
∥∥∥

F
∥Ψ1 − Ψ2∥2→2 + KL ∥AΦ1 − AΦ2∥2→2 .

Now, (2.29) follows from Lemma 2.2. The additional simplified bounds then easily follow
from the respective ones in Theorem 2.3 as well as in (2.17). ■

Remark 2.5 One may try a similar computation like in the proof above for the hypothesis
space HL

1 instead HL
2 . However, after the analog estimate for Φ1, Φ2 ∈ O(p),∥∥∥Φ1 f L

Φ1
(Y)− Φ2 f L

Φ2
(Y)
∥∥∥

F
≤
∥∥∥ f L

Φ1
(Y)
∥∥∥

F
∥Φ1 − Φ2∥2→2 + KL ∥AΦ1 − AΦ2∥2→2 ,

we need to consider both ∥AΦ1 − AΦ2∥2→2 and ∥Φ1 − Φ2∥2→2 for later covering num-
ber arguments. Using HL

2 helps to obtain more concise covering numbers for the class.
Therefore, we decouple the single dictionary applied after the final layer from the previ-
ous layers (which all appear together with A). ♢

2.2.6 Covering number estimates

Our proof is built on Dudley’s integral in (2.21). We need to compute covering numbers
N (M2, ∥ · ∥F, ε) at different scales ε > 0 to evaluate the integral for the space M2. The
following lemma provides a covering number estimate of A applied to the orthogonal
group. It is a straightforward application of the well-known Lemma A.2 in the appendix.

Lemma 2.6 For a fixed matrix A ∈ Rm×p consider the set W defined by

W = {AΦ : Φ ∈ O(p)} ⊂ Rm×p, (2.31)

i.e., A applied to the orthogonal group. The covering number estimate is given by

N (W , ∥ · ∥2→2, ε) ≤
(

1 +
2∥A∥2→2

ε

)mp

.

54

Proof. First note that W can be rewritten as

W =

{
∥A∥2→2

AΦ

∥A∥2→2
: Φ ∈ O(p)

}
.

For the covering numbers of the orthogonal group (O(p), ∥ · ∥2→2) equipped with the
spectral norm we have

N (O(p), ∥ · ∥2→2, ε) ≤
(

1 +
2
ε

)p2

.

This follows from the fact that the orthogonal group O(p) is contained in Bp×p
∥ · ∥2→2

, and
therefore Lemma A.2 applies. This bound then gives

N (W , ∥ · ∥2→2, ε) =N ({AΦ/∥A∥2→2 : Φ ∈ O(p)} , ∥ · ∥2→2, ε/∥A∥2→2)

≤
(

1 +
2∥A∥2→2

ε

)mp

. ■

Recall that for Dudleys inequality (Theorem A.4), we need to estimate the covering
numbers N (M2, ∥ · ∥2→2, ε) of the set M2 defined in (2.18). In Corollary 2.4, we showed
we can estimate distances in M2 via distances of the underlying parameters, ∥Ψ1 −
Ψ2∥2→2 and ∥AΦ1 − AΦ2∥2→2. We make use of this in the next corollary, which prepares
the application of Dudleys inequality afterwards.

Corollary 2.7 The (logarithms of the) covering numbers of the set M2 are bounded by

log (N (M2, ∥ · ∥2→2, ε))

≤ p2 · log
(

1 +
4ML

ε

)
+ mp · log

(
1 +

4∥A∥2→2KL

ε

)
.

Proof. Using the definition of the set (2.31), we have

N (KL{AΦ : Φ ∈ O(p)}, ∥ · ∥2→2, ε) = N ({AΦ : Φ ∈ O(p)}, ∥ · ∥2→2, ε/KL)

≤
(

1 +
2∥A∥2→2KL

ε

)mp

.

By the inclusion O(p) ⊂ Bp×p
∥ · ∥2→2

, and by Lemma A.2 (with ε/2 instead of ε) we obtain

N (ML · O(p), ∥ · ∥2→2, ε/2) = N (O(p), ∥ · ∥2→2, ε/(2ML))

≤
(

1 +
4ML

ε

)p2

.

Applying Lemma A.3 for covering numbers estimates of product spaces (in the case p =
2) and the previous estimates, we can now bound the covering number of the set M2 by

N (M2, ∥ · ∥F, ε) ≤ N (ML · O(p)× KL · W , ∥ · ∥2→2, ε)

≤ N (ML · O(p), ∥ · ∥2→2, ε/2)N (KL · W , ∥ · ∥2→2, ε/2)

≤
(

1 +
4ML

ε

)p2 (
1 +

4∥A∥2→2KL

ε

)mp

,

55

which immediately gives us the desired statement after taking the logarithm. ■

2.2.7 Main result

Finally, we are able to state and prove the main result of this section. It is similar to
Theorem 2.1; in fact, Theorem 2.1 will be derived from the following result, but consid-
ers the larger hypothesis class HL

2 instead of HL
1 . Furthermore, note that the condition

τ∥A∥2
2→2 ≤ 1 from Theorem 2.1 only appears below in Corollary 2.9, a special case of the

following result. Furthermore, we do not yet assume Bin = Bout.

Theorem 2.8 Consider the hypothesis space HL
2 defined in (2.10) and assume the samples xi,

i = 1, . . . , n, to be drawn i.i.d. at random according to some (unknown) distribution such that
∥xi∥2 ≤ Bin almost surely with Bin = Bout in (2.4), with yi = Axi. Then with probability at
least 1 − δ, for all h ∈ HL

2 , the generalization error is bounded as

L(h) ≤ L̂(h) + 8Bout

√
pm
n

√
log e

(
1 +

8KL∥A∥2→2√
nBout

)

+8Bout
p√
n

√
log e

(
1 +

8ML√
nBout

)
+ 4(Bin + Bout)

√
2 log(4/δ)

n
,

where KL is the constant from (2.23) in Theorem 2.3, and ML is given in (2.30).

Proof. For the proof it remains to bound the Rademacher complexity via Dudley’s inte-
gral (2.21), for which in turn we use the covering number arguments from the previous
subsection (Corollary 2.7) as follows,

Rn(ℓ ◦ HL
2) = E sup

M∈M2

1
n

n

∑
i=1

p

∑
k=1

ε ik Mik

≤ 4
√

2
n

∫ √
nBout/2

0

√
logN (M2, , ∥ · ∥F, ε) dε

≤ 4
√

2
n

∫ √
nBout/2

0

√
p2 · log

(
1 +

4ML

ε

)
dε

+
4
√

2
n

∫ √
nBout/2

0

√
mp · log

(
1 +

4∥A∥2→2KL

ε

)
dε

≤ 4
√

2p
n

∫ √
nBout/2

0

√
log
(

1 +
4ML

ε

)
dε

+
4
√

2mp
n

∫ √
nBout/2

0

√
log
(

1 +
4∥A∥2→2KL

ε

)
dε

≤ 2
√

2Bout
p√
n

√
log
(

e
(

1 +
4ML√

nBout/2

))

+2
√

2Bout

√
pm
n

√
log
(

e
(

1 +
4KL∥A∥2→2√

nBout/2

))
.

56

where we have used the following inequality for the last step [FR13, Lemma C.9]

∫ α

0

√
log
(

1 +
β

t

)
dt ≤ α

√
log (e(1 + β/α)) for α, β > 0.

The theorem is obtained using Theorem 1.9 with the upper bound c = Bin + Bout for
the functions output from (2.13), and bounding the Rademacher complexity term (2.9)
with the generalized contraction principle Lemma B.4, which in turn is bounded using
Dudleys integral as above. ■

Let us make the reasonable assumption that τ∥A∥2→2 ≤ 1. Taking into account that
ML ≤ τ∥A∥2→2∥Y∥FL, see also (2.17), i.e., that ML scales at most linearly in L (which
remains inside the logarithm), and since KL depends quadratically on L, see (2.24), we
have

L(h)− L̂(h) ≲ p√
n

√
log(L) +

√
pm
n

√
log(L) ∼

√
log(L)p(p + m)

n
∼
√

log(L)p2

n
,

where the last relation holds under the reasonable assumption that 1 ≤ m ≤ p. This
estimate is stated more rigorously and with explicit constants in the following corollary.

Corollary 2.9 In the situation of Theorem 2.8, let us assume additionally that τ∥A∥2
2→2 ≤ 1.

With probability at least 1 − δ, for all h ∈ HL
2 , the generalization error is bounded as

L(h) ≤ L̂(h) + 8Bout

√
pm
n

√
1 + log

(
2 +

8L(L + 3)τ∥Y∥F∥A∥2→2√
nBout

)

+8Bout
p√
n

√
log e

(
1 +

8τL∥A∥2→2∥Y∥F√
nBout

)
+ 4(Bin + Bout)

√
2 log(4/δ)

n
.

Proof. The statement of the corollary is obtained from Theorem 2.8 by inserting firstly
KL ≤ τ∥Y∥FL(L + 3) from (2.24) in Theorem 2.3, which holds under the assumption
τ∥A∥2

2→2 ≤ 1, and by secondly inserting ML = τ∥A∥2→2∥Y∥FL; recall (2.30) for the
definition of ML and see also part (ii) of Lemma C.2. ■

Combining our findings so far, the main result Theorem 2.1 can be obtained easily from
Theorem 2.8 and Corollary 2.9 as follows.

Proof of Theorem 2.1. Recall from (2.17) that τ∥A∥2→2∥Y∥F ≤
√

nBin. Further, by assump-
tion of Theorem 2.1 we have Bin = Bout and L ≥ 2, such that 2 + 8L(L + 3) ≤ (5L)2.
Therefore, the following term appearing in Corollary 2.9 has a much simpler upper bound,

log
(

2 +
8L(L + 3)τ∥Y∥F∥A∥2→2√

nBout

)
≤ log(2 + 8L(L + 3)) ≤ 2 log(5L).

Plugging in this estimate and using HL
1 ⊆ HL

2 gives the statement of Theorem 2.1. ■

2.3 LISTA: General Model

In this section we are going to derive generalization error bounds for a much more gen-
eral model than the one studied in the previous section. This section is based on the

57

paper [SBR21], which in turn builds up on the techniques previously developed by the
same group of authors, including the author of this thesis, in [BRS22] .

2.3.1 A flexible ISTA model

We will now introduce a considerably more general setting, that goes far beyond the par-
ticular above example of learning an orthogonal dictionary suitable for reconstruction,
but still contains it as a special case. We abandon the assumption of necessary weight-
sharing between all layers. More precisely, the weight sharing can happen in any possible
order, i.e., between any arbitrary number of layers, appearing at any position in the neu-
ral network - in particular, weight sharing is not only possible among subsequent layers.
(No weight sharing is also included.) Furthermore, we allow various additional (train-
able) parameters, and include additional 1-Lipschitz operations after each soft threshold-
ing step, such as pooling operations.

Formally, for L being the number of layers in the decoder, we introduce J ≤ L + 1
bounded parameter sets

W (1) ⊂ Rk1 , . . . ,W (J) ⊂ Rk J , k1, . . . , k J ∈ N,

where Rk j is equipped with a norm ∥ · ∥(j). For each layer l = 1, . . . , L + 1 (including
a final transform after the last layer), we introduce Lipschitz continuous mappings Bl
(often linear) that provide the parameterization of a matrix Bl(w(j)) ∈ Rm×ml−1 using a
parameter w(j) ∈ W (j), where j = j(l) corresponds to the parameter set associated to the
l-layer:

Bl : W (j(l)) → Rm×ml−1 , w(j) 7→ Bl(w(j)). (2.32)

Note that if J = 1, then all layers share the same weights; if J = L + 1, there is no
weight sharing and all layers, and the final transform after the last layer, have different
underlying parameters. If l is either clear from the context, or not relevant, we may omit it
in j(l) and simply write j. If j(l) = j(l′) for any two different layers l ̸= l′, the two layers
share the same weights. Note that even in this situation still it may be that Bl ̸= Bl′ ,
since already the involved dimensions ml−1 and ml′−1 may be different - this means that
even if layers share the same underlying parameters, the parameterizations in the sense of
the mappings Bl and Bl′ may still be different. (We typically denote the index refering
to the parameter set as an upper index, and the index referring to the layer number as a
lower index.) Let us also remark that W (i) = W (k) is possible even when i ̸= k.

To make the Lipschitz assumption precise, we require that for each l ∈ [L + 1], there
exists a constant Dl > 0, such that

∥Bl(w1)− Bl(w2)∥2→2 ≤ Dl∥w1 − w2∥(j(l)) ∀w1, w2 ∈ W (j(l)). (2.33)

In order to introduce the network architecture, let Ik denote the k × k identity matrix,
for some k ∈ N, and Sλ the soft thresholding operator (1.10) acting componentwise.
Further, we will use a 1-Lipschitz operation Pl : Rml−1 → RmL such as pooling, which
satisfies

∥Pl(z)∥2 ≤ ∥z∥2 ∀ z ∈ Rml−1 .

Then Pl ◦ Sτlλl is also 1-Lipschitz and norm contractive. (In many scenarios with ml−1 =
mL, Pl will simply be the identity; see also Remark 2.10 and the examples in Section 2.3.3.)

For l = 1, . . . , L, and dimension (width) parameters m0, . . . , mL, we then define the

58

layer fl : Rml−1 × Rm → RmL as

fl (z, y) = PlSτlλl

[(
Iml−1 − τl Bl(w(j(l)))⊤Bl(w(j(l)))

)
z + τl Bl(w(j(l)))⊤y

]
,

with parameter vector w(j(l)) ∈ W (j(l)), stepsize τl , threshold λl . The input vector y ∈ Rm

may be y = Ax ∈ Rm for some (a priori unknown) vector x ∈ Rp in a compressive
sensing scenario, but our setup allows more general regression tasks. The vector z will
be initialized as 0 for the input of the first layer; afterwards it will be the output of the
previous layer (see below). The stepsize τl > 0 and the threshold λl > 0 in the soft
thresholding activation function can be either trainable parameters, or fixed all the time.
In the simplest case τl = τ, λl = λ > 0 are fixed and the same in each layers.

After the final layer fL, we apply another linear transform BL+1(wj(L+1)) followed by
some function σ : RmL+1 → RmL+1 to be specified below, i.e., ,

gL+1 : RmL → RmL+1 , gL+1 = σ ◦ BL+1(wj(L+1)).

For reconstruction tasks, the function gL+1 projects the sparse representation onto the
ambient space and controls the output norm. For technical reasons, we will require a
function σ which will be applied after the final layer of the decoding networks. The
function σ is assumed to be norm-contractive and norm-clipping as well as be 1-Lipschitz,
i.e.,

∥σ(x)∥2 ≤ min{∥x∥2, Bout} and ∥σ(x1)− σ(x2)∥2 ≤ ∥x1 − x2∥2 (2.34)

for any x and x1, x2 ∈ RmL and some fixed constant Bout > 0. The technical reasons
behind introducing σ will become apparent later in the proofs in Section 2.3.5. A typical
choice for σ satisfying all requirements is

σ : RmL+1 → RmL+1 , x 7→
{

x if ∥x∥2 ≤ Bout,
Bout

x
∥x∥2

if ∥x∥2 > Bout,
(2.35)

The motivation for introducing σ, both regarding technical reasons and with respect to
applications, is the same as in (2.4) in the previous section on the dictionary learning
problem. Obviously we make essentially the same choice of σ here (and for simplicity
continue to use the same notation), only taking a more general output dimension into
account. (Typically, for reconstruction tasks we have mL+1 = p.) Note that for the first
layer’s input we have m0 = m, i.e., the number of measurements. A typical choice for the
last layer’s dimension is mL+1 = p, which corresponds to the setting of reconstruction
problems; but note that our framework allows to consider different situations. Let us
introduce the compact notation

W := W (1) × · · · ×W (J) ⊂ Rk1 × · · · × Rk J =: X

for the set of K-dimensional weights W = (w(1), . . . w(J)) ∈ W , where K is the sum of the
individual dimensions k j = dimW (J), i.e.,

K := k1 + · · ·+ k J . (2.36)

In order to allow for learnable stepsizes and thresholds we introduce the set T ⊂ RL
>0

of stepsize vectors τ = (τ1, . . . , τL) and the set Λ ⊂ RL
>0 of thresholding vectors λ =

59

(λ1, . . . , λL). Then we define f L
W ,τ,λ to be the concatenation of all layers fl ,

f L
W ,τ,λ(y) := fL(. . . f2(f1(0, y), y) . . .),

and the neural network – also called decoder – is obtained after an application of gL+1,

h(y) = hL
W ,τ,λ := gL+1 ◦ f L

W ,τ,λ(y) = gL+1(fL(. . . f2(f1(0, y), y) . . .)). (2.37)

The fact that the input y is entered directly into each of the layers in addition to the
input from the previous layers, may be interpreted as the network having so-called skip
connections.

For the investigations in the following sections it will be convenient to view the pa-
rameter sets as subsets of normed spaces. The set W is contained in the K-dimensional
product space X = Rk1 × · · · × Rk J , which we equip with the norm

∥W∥X := max
j=1,...,J

∥w(j)∥(j) for W =
(

w(1), . . . , w(J)
)
∈ X , (2.38)

where we recall that ∥ · ∥(j) is the norm on Rk j used in (2.33). Denoting BL
∥·∥∞

= {τ ∈ RL :
∥τ∥∞ ≤ 1} the unit ℓ∞-ball, we assume that the set T of stepsizes and the Λ of thresholds
are contained in shifted ℓ∞-balls of radii r1 and r2, i.e.,

T ⊂ τ0 + r1BL
∥·∥∞

Λ ⊂ λ0 + r2BL
∥·∥∞

. (2.39)

Setting r1 = r2 = 0 corresponds to the case of fixed stepsizes and thresholds while choos-
ing r1, r2 > 0 corresponds to learned stepsizes and thresholds. The above conditions
require that τj ∈ [τ0,j − r1, τ0,j + r1] for all τ ∈ T and λj ∈ [λ0,j − r1, λ0,j + r2] for all
λ ∈ Λ. Recalling that W is assumed to be bounded, we can introduce the parameters

B∞ := sup
W∈W

l∈[L+1]

∥∥∥Bl(w(j(l)))
∥∥∥

2→2
, W∞ := sup

W∈W
∥W∥X , (2.40)

τ∞ := sup
τ<∈T

∥τ∥∞, λ∞ := sup
λ∈Λ

∥λ∥∞. (2.41)

Note that if the Lipschitzness assumption (2.33) on the mappings Bl (2.32), it holds that

B∞ ≤ W∞ max
l∈[L+1]

Dl ≤ W∞D∞, D∞ := max
l∈[L+1]

Dl . (2.42)

Moreover, there is τ∞ ≤ ∥τ0∥∞ + r1 and λ∞ ≤ ∥λ0∥∞ + r2 according to assumption (2.39).

Remark 2.10 Let us add some comments to motivate the setup above. Allowing weight-
sharing between layers can be easily motivated, for instance, through the dictionary
learning problem considered in Section 2.2. However, weight-sharing between the step-
sizes and thresholds seems less realistic, which is why we consider different τl and λl
for each layer, l ∈ [L]. It is possible to generalize this even further by training these
parameters entrywise. However, to prevent the presentation from becoming even more
technical, we focus on the problem at hand. ♢

Using the concepts and notation introduced above, given a number L of layers, we
define our hypothesis space as the parameterized set of all h (see (2.37) for the definition

60

of h), i.e.,

HL := {h : Rm → RmL+1 | h = hL
W ,τ,λ, W ∈ W , τ ∈ T , λ ∈ Λ}, (2.43)

Note that once again we will employ the loss function (2.1) and make use of its 1-
Lipschitzness, and rely on the notion of the generalization error as in (1.15).

2.3.2 Main Result

Our main result uses the setup and the notation introduced in Section 2.3.1. In order
to state it, we additionally introduce the following quantities, where we recall that B∞,
W∞, τ∞ and λ∞ are defined in (2.40) and (2.41), the dimension K of the parameter set of
weights in (2.36), and D∞ in (2.42). We set

α = sup
l∈[L]

sup
w(j(l))∈W (j(l))

sup
τ∈T

∥∥∥Iml−1 − τl Bl(w(j(l)))⊤Bl(w(j(l)))
∥∥∥

2→2
, (2.44)

and define Z0 = 0,

Zl = τ∞B∞

l−1

∑
k=0

αk =

{
τ∞B∞α 1−α(l−1)

1−α if α ̸= 1
τ∞B∞(l − 1) if α = 1

l = 1, . . . , L. (2.45)

Using this definition of Zl , let us introduce the further abbreviations ML, OL, QL given by

ML =
L

∑
l=1

(λ∞
√

m∞n + B∞∥Y∥F(B∞Zl−1 + 1)) αL−l , (2.46)

OL =
L

∑
l=1

τ∞
√

m∞nαL−l , (2.47)

QL = (B∞KL + ∥Y∥FZL)D∞, (2.48)

where KL in the definition (2.48) of QL is given as follows by

KL =
L

∑
l=1

τ∞∥Y∥F (1 + 2B∞Zl−1) αL−l . (2.49)

We assume that the data distribution D is such that for (x, y) ∼ D

∥y∥2 ≤ Bin almost surely

for some constant Bin. In particular, ∥yi∥2 ≤ Bin for all i = 1, . . . , n (with probability 1).
Furthermore, we require the function

Ψ(t) =
√

log(1 + t) + t(log(1 + t)− log(t)), t > 0, Ψ(0) = 0. (2.50)

Note that the function Ψ is continuous in t = 0, and satisfies the bound Ψ(t) ≤
√

log(e(1 + t)),
see below in Lemma A.5. Our main theorem reads as follows.

Theorem 2.11 Consider the hypothesis space HL defined in (2.43). With probability at least

61

1 − δ, the true risk for any h ∈ HL is bounded as

L(h) ≤ L̂(h) + 2
√

2RS (HL) + 4(Bin + Bout)

√
2 log(4/δ)

n
, (2.51)

where the Rademacher complexity term is further bounded by

RS (HL) (2.52)

≤2
√

2Bout

[√
K
n

Ψ
(

16W∞QL√
nBout

)
+

√
L
n

Ψ
(

16r2OL√
nBout

)
+

√
L
n

Ψ
(

16r1ML√
nBout

)]
.

Remark 2.12 In the special case that the stepsizes τ0 ∈ RL and/or the thresholds λ0 ∈
RL are fixed, so that r1 = 0 and/or r2 = 0, the above bound simplifies due to Ψ(0) = 0.
For instance, if r1 = r2 = 0 then

RS (HL) ≤ 2
√

2Bout

√
K
n

Ψ
(

16W∞QL√
nBout

)
,

greatly simplifying the bound (2.52) in Theorem 2.11 above. ♢

While the constants ML, OL and QL look complicated in general and may actually scale
exponentially in L, the expressions greatly simplify in the important special case that
α ≤ 1. In fact, the motivating algorithm ISTA, corresponding to fixing AΦ in (2.2) and
letting L → ∞, is known to converge under the condition that τ∥AΦ∥2→2 ≤ 1 (compare
(1.11) in the introductury chapter) implying that ∥I − τ(AΦ)⊤(AΦ)∥2→2 ≤ 1; see Lemma
C.2. These conditions correspond to τ∞B2

∞ ≤ 1 and α ≤ 1 in our general setup. This
suggests to impose these condition on the hypothesis space (and therefore in the training
of the network). The corresponding generalization result reads as follows.

Corollary 2.13 Assume that τ∞B2
∞ ≤ 1, implying α ≤ 1. Set m∞ = maxl∈[L] ml . Then the

Rademacher complexity term in (2.51) is bounded by

RS (HL) ≤2
√

2Bout

[√
K
n

log
(

e
(

1 + 16L(L + 1)τ∞B∞W∞D∞
Bin

Bout

))
(2.53)

+

√
L
n

Ψ
(

16r2Lτ∞
√

m∞

Bout

)
+

√
L
n

Ψ

(
16r1L

(
λ2

∞m∞
√

n + Bin(B∞λ∞
√

m∞n + (L − 1)/2)
)

Bout

)]
.

Proof. Note that ∥Y∥F ≤
√

nBin. Under our assumptions, the constant KL satisfies

KL =
L

∑
l=1

τ∞∥Y∥F (1 + 2B∞Zl−1) αL−l ≤
L

∑
l=1

τ∞∥Y∥F
(
1 + 2(l − 1)τ∞B2

∞
)

≤ τ∞∥Y∥F

(
L + 2

L

∑
l=1

(l − 1)

)
= τ∞∥Y∥F (L + L(L − 1)) = τ∞∥Y∥FL2 ≤ τ∞L2√nBin.

Hence,

QL = (B∞KL + ∥Y∥FZL)D∞ ≤
[
L2τ∞B∞

√
nBin +

√
nBinLτ∞B∞

]
D∞

62

= L(L + 1)τ∞B∞D∞
√

nBin.

For the constant OL, we obtain OL = ∑L
l=1 τ∞

√
m∞nαL−l ≤ Lτ∞

√
m∞n. The constant ML

satisfies

ML =
L

∑
l=1

(λ∞
√

m∞n + B∞∥Y∥F(B∞Zl−1 + 1)) αL−l

≤ L(λ∞
√

m∞n + B∞∥Y∥F)λ∞
√

m∞n +
L

∑
l=1

∥Y∥Fτ∞B2
∞(l − 1)

≤ L(λ∞
√

m∞n + B∞
√

nBin)λ∞
√

m∞n +
√

nBin
L(L − 1)

2
.

Plugging the above bounds into (2.52) and using that Ψ(t) ≤
√

log(e(1 + t)) completes
the proof. ■

Note that in case the mappings Bl are linear it follows from B∞ ≤ W∞, see (2.42), that
the assumption τ∞B2

∞ ≤ 1 is implied by τ∞B∞W∞D∞ ≤ 1. Additionally assuming Bin =
Bout, the first logarithmic term in (2.53) takes the simple form log(e(1 + 16L(L + 1))).

In general, considering only the dependence in K, L and n and viewing all other terms
as constants, the bound of Corollary (2.13) essentially reads as

RS (HL) ≲

√
(K + L) log(L)

n
.

Moreover, if the thresholds and stepsizes are fixed (not learned), so that r1 = r2 = 0, we
obtain the bound

RS (HL) ≲

√
K log(L)

n
.

This is one of the main messages of our result: The dependence of the generalization
error on the number of layers is only logarithmic in important cases in contrast to many
previous results on the generalization error for deep learning, where the scaling in the
number of layers is often exponential. It is furthermore interesting to compare with our
findings from the previous section, as stated in the main result Theorem 2.1, and the
discussion thereafter. Here, the price to pay for the more general setup is a possible
linear dependence of the generalization error on the number of layers, while in important
special we fall back to the logarithmic behavior observed above. Nevertheless, we can
avoid loose bounds with an exponential dependence on the number of layers that naive
approaches would produce.

2.3.3 Examples

Let us illustrate this general scenario considered in this section with a few different ex-
amples of practical interest. We apply our general main result to the specific situations.

Learning an orthogonal dictionary. Let us start by demonstrating how to recover the
dictionary learning problem from Section 2.2. Here, we choose J = 1 (thus, j(l) = 1 for
all l) and

W (1) = {Φ : Φ ∈ O(p)} ⊂ Rp×p ≃ Rk1 ,

63

Bl(Φ) = AΦ, l = 1, . . . , L, BL+1(Φ) = Φ, (2.54)

where all dimensions m1 = m2 = · · · = mL = p are equal, k1 = p2, and with τl = τ and
λl = λ being fixed. We simply put Pl = Ip for all l ∈ [L]. Let us put ∥ · ∥(1) = ∥ · ∥2→2,
so that for all Φ ∈ O(p) and l ∈ [L] we have

∥Bl(Φ)∥2→2 = ∥AΦ∥2→2 ≤ ∥A∥2→2∥Φ∥(1),

so that Dl = ∥A∥2→2 for all l ∈ [L] due to the linearity of Bl . Moreover, ∥Bl(Φ)∥2→2 =
∥Φ∥2→2 = ∥Φ∥(1) resulting in DL+1 = 1 and B∞ = W∞ = D∞ = max{1, ∥A∥2→2}.

Assuming that τ max{1, ∥A∥2→2} ≤ 1 and considering that the thresholds and step-
sizes are fixed, Corollary 2.13 states that the generalization error bound scales like (with
high probability)

C

√
p2 log(L)

n
(2.55)

for a constant C depending on τ, ∥A∥2→2, Bin, Bout, as we have already shown (only for
this specific case) in our previous work [BRS22] (noting that p + m ≍ p).

Overcomplete dictionaries. As another important class of dictionaries, let us consider
overcomplete dictionaries. This case is similar to the previous one, but here we consider

W (1) = {Φ : Φ ∈ Rp×d, ∥Φ∥2→2 ≤ ρ} ⊂ Rm×d ≃ Rk1 , d > p > m, ρ > 0,

with k1 = p · d > m · p. The mappings Bl are defined as in (2.54). We have the in-
put/output dimensions m0 = m1 = m2 = · · · = mL−1 = d, and mL = p. We use
again ∥ · ∥(1) = ∥ · ∥2→2, which, as above, leads to D∞ = B∞ = W∞ = max{ρ∥A∥∞, 1}.
Assuming constant stepsizes and thresholds and τB2

∞ ≤ 1, Corollary 2.13 leads to a gen-
eralization bound scaling like

C

√
pd log(L)

n
.

This is slightly worse than for orthonormal dictionaries due to p ≥ d.

Two (alternating) dictionaries. Similar to the first two examples, one may consider two
“alternating” dictionaries. In case of orthogonal dictionaries, similar to the first example,
we have J = 2 (thus, j(l) = 1 for all l) and

W (1) = {Φ1 : Φ1 ∈ O(p)} ⊂ Rp×p ≃ Rk1 , W (2) = {Φ2 : Φ2 ∈ O(p)} ⊂ Rp×p ≃ Rk2 .

The mappings Bl are defined as in (2.54), but, for odd l, Bl operates on W (1), while for
even l it operates on W (2). Here, K = k1 + k2 = 2p2, which results in an additional
factor of

√
2 appearing in (2.55). Analogously, one may obtain bounds for two alternating

overcomplete dictionaries, or more than two alternating dictionaries, or other related
scenarios. For example, we can consider the case without any weight-sharing between
layers, i.e., where J = L. Then j(l) = l, k j = p2 for all j = 1, . . . , N and K = k1 + · · ·+ kL =

Lp2. This leads to an additional factor of
√

L. Of course, this may also be combined with
trainable stepsizes and thresholds.

64

Convolutional LISTA. For input images, one natural choice of weight matrices is con-
volutional kernels. In this model, the layer l contains the following operation

Bl(w)(z) = Ω(w) ∗ z,

where the length of the convolutional filter wj is k j, and the mapping Ω : Rk j → Rp is
its zero-padded version. This model is discussed in [SG18a]. Since K is merely depen-
dent on the number of parameters k j and not p, our result already shows that smaller
convolutional filters lead to smaller overall K and therefore are expected to show better
generalization.

2.3.4 Bounding the Rademacher Complexity via Dudley’s Integral

Again, we employ the loss function ℓ from (2.1), and the same boundedness assumptions
as in the previous section, such that

ℓ(h, y, x) = ∥h(y)− x∥2 ≤ ∥x∥2 + ∥h(y)∥2 ≤ Bin + Bout.

Thus, with this choice of the loss function, again the main challenge and focus of this
section is to bound the Rademacher complexity of ℓ ◦ H,

RS (ℓ ◦ H) = E sup
h∈H

1
n

n

∑
i=1

ε i ∥xi − h(yi)∥2 , (2.56)

with H = HL as defined in (2.43) in the most general case studied here, or some other
hypothesis spaces of interest. We proceed analogously to the previous section. For a fixed
number L ∈ N of layers, and given a hypothesis space H of functions mapping from Rm

to RmL+1 (with mL+1 = p for reconstruction tasks) let us define the set MH ⊂ RmL+1×n as

MH :=
{
[h(y1), . . . , h(yn))] ∈ RmL+1×n : h ∈ H

}
.

From now on, we focus on the hypothesis space H = HL, when the corresponding set is
given by (using the compact matrix notation)

MHL =
{

hL
W ,τ,λ(Y) ∈ RmL+1×n : W ∈ W , τ ∈ T , λ ∈ Λ,

}
. (2.57)

In words, MHL is the set consisting of all matrices whose columns are the outputs of
any possible hypothesis applied to the measurements yi. In the compressive sensing
scenario, these are the reconstructions from the measurements in the training set, using
any possible decoder in our hypothesis space. If the hypothesis space is clear from the
context, we write M instead of MHL . In the case H = HL, the set M is parameterized
by (τ, λ, W) ∈ T × Λ ×W (as HL is). In this case, applying Lemma B.4 to (2.56) and
rewriting the expression using (2.57), we obtain

RS (HL) ≤
√

2E sup
M∈M

1
n

n

∑
i=1

mL

∑
k=1

ε ik Mik

=
√

2E sup
τ∈T

sup
λ∈Λ

sup
W∈W

1
n

n

∑
i=1

mL

∑
k=1

ε ik

(
hL

W ,τ,λ(Y)
)

ik
. (2.58)

Analogously to (2.20) and thereafter, it can be shown that the Rademacher process un-

65

der consideration has sub-Gaussian increments, and therefore, we can apply Dudley’s
inequality. For the set of matrices M defined in (2.57), the radius can be estimated as

∆(M) = sup
h∈HL

√√√√
E

(
n

∑
i=1

mL

∑
k=1

ε ikhk(xi)

)2

= sup
h∈HL

√
n

∑
i=1

mL

∑
k=1

hk(xi)2

= sup
h∈HL

√
n

∑
i=1

∥h(xi)∥2
2 ≤

√
nBout,

where the last inequality follows from the properties of the function σ; see (2.35). Dud-
ley’s inequality, as stated in [FR13, Theorem 8.23.], then bounds the Rademacher com-
plexity as

RS (H) ≤ 4
√

2
n

∫ √
nBout/2

0

√
logN (M, ∥ · ∥F, ε)dε. (2.59)

To derive the generalization bound, it essentially suffices to bound the covering num-
bers of M. All technical details are provided in the next subsection.

2.3.5 Proof

In this subsection, we will prove the main result Theorem 2.11. The proof is an adaption
of the proof strategy seen in the previous section to the more general setup studied here.
Analogously to the previous section, the proof is split into several steps.

Bounding the output. As a first auxiliary tool, we prove a bound for the output of the
network, after any number of (possibly intermediate) layers l, in the next lemma. We
state a general version which allows possibly different stepsizes and thresholds for each
layer. It is straightforward to obtain special cases such as Lemma 2.2 from this scenario.

Lemma 2.14 For l = 1, . . . , L and W =
(

w(1), . . . w(J)
)
∈ W , τ = (τ1, . . . , τl) ∈ T and

λ = (λ1, . . . , λl) ∈ Λ, we have∥∥∥ f l
W ,τ,λ(Y)

∥∥∥
F

≤
l

∑
k=1

(∥∥∥τkBk(w(j(k)))⊤Y
∥∥∥

F

l−1

∏
i=k

∥∥∥Imi − τiBi+1(w(j(i+1)))⊤Bi+1(w(j(i+1)))
∥∥∥

2→2

)
(2.60)

≤∥Y∥F

l

∑
k=1

(
τk

∥∥∥Bk(w(j(k)))
∥∥∥

2→2

l−1

∏
i=k

∥∥∥Imi − τiBi+1(w(j(i+1)))⊤Bi+1(w(j(i+1)))
∥∥∥

2→2

)
,

following the usual convention of defining the empty product as one.

Proof. We just prove the first inequality (2.60), from which the last lines then follows
immediately. We proceed via induction. For l = 1, using the norm contractivity of Pl and
of the soft thresholding operator we obtain∥∥∥ f 1

W ,τ,λ(Y)
∥∥∥

F
=
∥∥∥P1Sτ1,λ1

(
τB1(w(j(1)))⊤Y

)∥∥∥
F
≤
∥∥∥τ1B1(w(j(1)))⊤Y

∥∥∥
F

.

Assuming the statement is true for l, we obtain∥∥∥ f l+1
W ,τ,λ(Y)

∥∥∥
F

66

≤
∥∥∥Iml − τl+1Bl+1(w(j(l+1)))⊤Bl+1(w(j(l+1)))

∥∥∥
2→2

∥∥∥ f l
W ,τ,λ(Y)

∥∥∥
F
+
∥∥∥τl+1Bl+1(w(j(l+1)))⊤Y

∥∥∥
F

≤
l

∑
k=1

(∥∥∥τkBk(w(j(k)))⊤Y
∥∥∥

F

l

∏
i=k

∥∥∥Imi − τi+1Bi+1(w(j(i+1)))⊤Bi+1(w(j(i+1)))
∥∥∥

2→2

)
+
∥∥∥τl+1Bl+1(w(j(l+1)))⊤Y

∥∥∥
F

≤
l+1

∑
k=1

(∥∥∥τkBk(w(j(k)))⊤Y
∥∥∥

F

l

∏
i=k

∥∥∥Imi − τi+1Bi+1(w(j(i+1)))⊤Bi+1(w(j(i+1)))
∥∥∥

2→2

)
.

Indeed, this is the claimed inequality for l + 1, completing the proof by induction. ■

We immediately obtain the coming corollary bounding the output of the full network.

Corollary 2.15 For any h = hW ,τ,λ ∈ HL, the output is bounded with respect to the Frobenius
norm by

∥h(Y)∥F =
∥∥∥σ
(

BL+1(w(j(L+1))) f L
W ,τ,λ(Y)

)∥∥∥
F
≤ B∞

∥∥∥ f L
W ,τ,λ(Y)

∥∥∥
F

.

Proof. The statement follows immediately from the fact that σ, as being defined in (2.35),
is norm-contractive (2.34). ■

Perturbation argument. In this section we prove our main result Theorem 2.11. We
consider the most general scenario introduced in Section 2.3.1 with H = HL defined in
(2.43). The main ingredient for bounding the covering numbers of M, as is required to
continue from (2.59) on, will be Lipschitz estimates of the neural networks with respect
to the parameters, i.e., bounds for (again using the compact matrix notation)∥∥∥ f L

τ(1),λ(1),W1
(Y)− f L

τ(2),λ(2),W2
(Y)
∥∥∥

F
,

with respect to the differences of the individual involved parameters (for l = 1, . . . , L)∣∣∣λ(2)
l − λ

(1)
l

∣∣∣ ,
∣∣∣τ(2)

l − τ
(1)
l

∣∣∣ ,
∥∥∥Bl(w

(j(l))
1)− Bl(w

(j(l))
2)

∥∥∥
2→2

.

Here τ(i), λ(i) and Wi denote the different stepsizes, thresholds and parameters for the
Bl functions for i = 1, 2. To shorten the notation in the following, we will summarize the
respective parameters in a vector P and write f L

P (Y) and hL
P (Y).

Let us note that the upper bounds provided in Lemma 2.14 do not depend on the
threshold λl . However, this is not the case anymore when it comes to the perturbation
bound. It is easy to verify that |Sτ2λ2(x)− Sτ1λ1(x)| ≤ |τ2λ2 − τ1λ1| for arbitrary x ∈ R

and τ1, τ2, λ1, λ2 > 0. This implies that, for a vector x ∈ Rp, we have

∥Sτ2λ2(x)− Sτ1λ1(x)∥2 ≤ √
p |τ2λ2 − τ1λ1|

and more generally (see Lemma C.1 in the appendix), for a matrix X ∈ Rp×n,

∥Sτ2λ2(X)− Sτ1λ1(X)∥F ≤ √
np |τ2λ2 − τ1λ1| . (2.61)

To simplify the notation further, let us introduce the following quantities

ξl :=
∣∣∣τ(2)

l λ
(2)
l − τ

(1)
l λ

(1)
l

∣∣∣ ≤ τ∞

∣∣∣λ(2)
l − λ

(1)
l

∣∣∣+ λ∞

∣∣∣τ(2)
l − τ

(1)
l

∣∣∣ (2.62)

67

δl :=
∥∥∥τ

(1)
l Bl(w

(j(l))
1)− τ

(2)
l Bl(w

(j(l))
2)

∥∥∥
2→2

(2.63)

≤ B∞

∣∣∣τ(1)
l − τ

(2)
l

∣∣∣+ τ∞

∥∥∥Bl(w
(j(l))
2)− Bl(w

(j(l))
1)

∥∥∥
2→2

(2.64)

γl :=
∥∥∥(Iml−1 − τ

(1)
l Bl(w

(j(l))
1)⊤Bl(w

(j(l))
1)

)
f l−1
P1

(Y) (2.65)

−
(

Iml−1 − τ
(2)
l Bl(w

(j(l))
2)⊤Bl(w

(j(l))
2)

)
f l−1
P2

(Y)
∥∥∥

F
.

The given estimates for ξl and δl provided immediately after their definition follow easily
from the triangle inequality and the definition of τ∞, λ∞ and B∞ in (2.41) and (2.40). The
following lemma provides a useful bound also for the quantity γl .

Lemma 2.16 For any l ∈ [L] and γl as being defined in (2.65), it holds that

γl ≤ 2τ∞B∞

∥∥∥ f l−1
P1

(Y)
∥∥∥

F

∥∥∥Bl(w
(j(l))
2)− Bl(w

(j(l))
1)

∥∥∥
2→2

+ B2
∞

∥∥∥ f l−1
P1

(Y)
∥∥∥

F

∣∣∣τ(1)
l − τ

(2)
l

∣∣∣+ α
∥∥∥ f l−1

P2
(Y)− f l−1

P1
(Y)
∥∥∥

F
.

Proof. We obtain∥∥∥(Iml−1 − τ
(1)
l Bl(w

(j(l))
1)⊤Bl(w

(j(l))
1)

)
f l−1
P1

(Y)−
(

Iml−1 − τ
(2)
l Bl(w

(j(l))
2)⊤Bl(w

(j(l))
2)

)
f l−1
P2

(Y)
∥∥∥

F

≤
∥∥∥(Iml−1 − τ

(1)
l Bl(w

(j(l))
1)⊤Bl(w

(j(l))
1)

)
f l−1
P1

(Y)−
(

Iml−1 − τ
(1)
l Bl(w

(j(l))
1)⊤Bl(w

(j(l))
2)

)
f l−1
P1

(Y)

+
(

Iml−1 − τ
(1)
l Bl(w

(j(l))
1)⊤Bl(w

(j(l))
2)

)
f l−1
P1

(Y)−
(

Iml−1 − τ
(2)
l Bl(w

(j(l))
2)⊤Bl(w

(j(l))
2)

)
f l−1
P1

(Y)

+
(

Iml−1 − τ
(2)
l Bl(w

(j(l))
2)⊤Bl(w

(j(l))
2)

)
f l−1
P1

(Y)−
(

Iml−1 − τ
(2)
l Bl(w

(j(l))
2)⊤Bl(w

(j(l))
2)

)
f l−1
P2

(Y)
∥∥∥

F

≤
∥∥∥(τ

(1)
l Bl(w

(j(l))
1)⊤Bl(w

(j(l))
2)− τ

(1)
l Bl(w

(j(l))
1)⊤Bl(w

(j(l))
1)

)
f l−1
P1

(Y)
∥∥∥

F

+
∥∥∥(τ

(2)
l Bl(w

(j(l))
2)⊤Bl(w

(j(l))
2)− τ

(1)
l Bl(w

(j(l))
1)⊤Bl(w

(j(l))
2)

)
f l−1
P1

(Y)
∥∥∥

F

+
∥∥∥(Iml−1 − τ

(2)
l Bl(w

(j(l))
2)⊤Bl(w

(j(l))
2)

) (
f l−1
P2

(Y)− f l−1
P1

(Y)
)∥∥∥

F

≤τ∞B∞

∥∥∥ f l−1
P1

(Y)
∥∥∥

F

∥∥∥Bl(w
(j(l))
2)− Bl(w

(j(l))
1)

∥∥∥
2→2

+ δl B∞

∥∥∥ f l−1
P1

(Y)
∥∥∥

F

+
∥∥∥Iml−1 − τ

(2)
l Bl(w

(j(l))
2)⊤Bl(w

(j(l))
2)

∥∥∥
2→2

∥∥∥ f l−1
P2

(Y)− f l−1
P1

(Y)
∥∥∥

F

≤τ∞B∞

∥∥∥ f l−1
P1

(Y)
∥∥∥

F

∥∥∥Bl(w
(j(l))
2)− Bl(w

(j(l))
1)

∥∥∥
2→2

+ α
∥∥∥ f l−1

P2
(Y)− f l−1

P1
(Y)
∥∥∥

F

+
(

B∞

∣∣∣τ(1)
l − τ

(2)
l

∣∣∣+ τ∞

∥∥∥Bl(w
(j(l))
2)− Bl(w

(j(l))
1)

∥∥∥
2→2

)
B∞

∥∥∥ f l−1
P1

(Y)
∥∥∥

F

=2τ∞B∞

∥∥∥ f l−1
P1

(Y)
∥∥∥

F

∥∥∥Bl(w
(j(l))
2)− Bl(w

(j(l))
1)

∥∥∥
2→2

+ α
∥∥∥ f l−1

P2
(Y)− f l−1

P1
(Y)
∥∥∥

F

+ B2
∞

∥∥∥ f l−1
P1

(Y)
∥∥∥

F

∣∣∣τ(1)
l − τ

(2)
l

∣∣∣ .

Hereby, we have used the estimate (2.64) for δl and a simple estimate by α, eq. (2.44). ■

Next we state our main technical result, which will be a key ingredient for the cov-
ering number estimate, and thus for deriving the generalization bounds. It bounds the
perturbation of the output of a network with respect to changes in the parameters.

Theorem 2.17 Consider the functions fτ,λ,W as defined in (2.3.1) with L ≥ 2. Then, for any

68

two such functions parameterized by
(

τ(1), λ(1), W1

)
,
(

τ(2), λ(2), W2

)
∈ T × Λ ×W we have∥∥∥ f L

τ(1),λ(1),W1
(Y)− f L

τ(2),λ(2),W2
(Y)
∥∥∥

F
(2.66)

≤KL · max
l∈[L]

∥∥∥Bl(w
(j(l))
1)− Bl(w

(j(l))
2)

∥∥∥
2→2

+ ML ·
∥∥∥τ(1) − τ(2)

∥∥∥
∞
+ OL ·

∥∥∥λ(1) − λ(2)
∥∥∥

∞
,

with KL, OL and ML all being defined before Theorem 2.11 in (2.49), (2.47) and (2.46).

Proof. For the sake of avoiding to treat the case l = 1 separately, we formally introduce
the notation f 0

P1
(Y) = f 0

P2
(Y) = Y . As a first step, using that Pl is 1-Lipschitz in the

first inequality and basic properties of the involved norms in the second inequality, and
applying (2.61) for the third inequality, we obtain∥∥∥ f l

P1
(Y)− f l

P2
(Y)
∥∥∥

F

=
∥∥∥PlSτ

(1)
l λ

(1)
l

[(
Iml−1 − τ

(1)
l Bl(w

(j(l))
1)⊤Bl(w

(j(l))
1)

)
f l−1
P1

(Y) + τ
(1)
l Bl(w

(j(l))
1)⊤Y

]
− PlSτ

(2)
l λ

(2)
l

[(
Iml−1 − τ

(2)
l Bl(w

(j(l))
2)⊤Bl(w

(j(l))
2)

)
f l−1
P2

(Y) + τ
(2)
l Bl(w

(j(l))
2)⊤Y

]∥∥∥
F

≤
∥∥∥S

τ
(1)
l λ

(1)
l

[(
Iml−1 − τ

(1)
l Bl(w

(j(l))
1)⊤Bl(w

(j(l))
1)

)
f l−1
W1

(Y) + τ
(1)
l Bl(w

(j(l))
1)⊤Y

]
− S

τ
(2)
l λ

(2)
l

[(
Iml−1 − τ

(2)
l Bl(w

(j(l))
2)⊤Bl(w

(j(l))
2)

)
f l−1
P2

(Y) + τ
(2)
l Bl(w

(j(l))
2)⊤Y

]∥∥∥
F

≤
∥∥∥S

τ
(1)
l λ

(1)
l

[(
Iml−1 − τ

(1)
l Bl(w

(j(l))
1)⊤Bl(w

(j(l))
1)

)
f l−1
P1

(Y) + τ
(1)
l Bl(w

(j(l))
1)⊤Y

]
− S

τ
(2)
l λ

(2)
l

[(
Iml−1 − τ

(1)
l Bl(w

(j(l))
1)⊤Bl(w

(j(l))
1)

)
f l−1
P1

(Y) + τ
(1)
l Bl(w

(j(l))
1)⊤Y

]∥∥∥
F

+
∥∥∥S

τ
(2)
l λ

(2)
l

[(
Iml−1 − τ

(1)
l Bl(w

(j(l))
1)⊤Bl(w

(j(l))
1)

)
f l−1
P1

(Y) + τ
(1)
l Bl(w

(j(l))
1)⊤Y

]
− S

τ
(2)
l λ

(2)
l

[(
Iml−1 − τ

(2)
l Bl(w

(j(l))
2)⊤Bl(w

(j(l))
2)

)
f l−1
P2

(Y) + τ
(2)
l Bl(w

(j(l))
2)⊤Y

]∥∥∥
F

≤
∣∣∣τ(2)

l λ
(2)
l − τ

(1)
l λ

(1)
l

∣∣∣√ml−1n

+
∥∥∥(Iml−1 − τ

(1)
l Bl(w

(j(l))
1)⊤Bl(w

(j(l))
1)

)
f l−1
P1

(Y) + τ
(1)
l Bl(w

(j(l))
1)⊤Y

−
(

Iml−1 − τ
(2)
l Bl(w

(j(l))
2)⊤Bl(w

(j(l))
2)

)
f l−1
P2

(Y)− τ
(2)
l Bl(w

(j(l))
2)⊤Y

∥∥∥
F

≤
∣∣∣τ(2)

l λ
(2)
l − τ

(1)
l λ

(1)
l

∣∣∣√ml−1n

+
∥∥∥(Iml−1 − τ

(1)
l Bl(w

(j(l))
1)⊤Bl(w

(j(l))
1)

)
f l−1
P1

(Y)−
(

Iml−1 − τ
(2)
l Bl(w

(j(l))
2)⊤Bl(w

(j(l))
2)

)
f l−1
P2

(Y)
∥∥∥

F

+
∥∥∥τ

(1)
l Bl(w

(j(l))
1)⊤Y − τ

(2)
l Bl(w

(j(l))
2)⊤Y

∥∥∥
F

≤ξl
√

ml−1n + γl + δl∥Y∥F,

using the abbreviations introduced in (2.62), (2.63) and (2.65). Inserting the estimates for
ξl , δl and γl in (2.62), (2.64) and Lemma 2.16, and using

√
ml−1n ≤ √

m∞n, we obtain∥∥∥ f l
P1
(Y)− f l

P2
(Y)
∥∥∥

F
≤

√
m∞nτ∞

∣∣∣λ(2)
l − λ

(1)
l

∣∣∣+√
m∞nλ∞

∣∣∣τ(2)
l − τ

(1)
l

∣∣∣
+ 2τ∞B∞

∥∥∥ f l−1
P1

(Y)
∥∥∥

F

∥∥∥Bl(w
(j(l))
2)− Bl(w

(j(l))
1)

∥∥∥
2→2

+ B2
∞

∥∥∥ f l−1
P1

(Y)
∥∥∥

F

∣∣∣τ(1)
l − τ

(2)
l

∣∣∣
+ α

∥∥∥ f l−1
P2

(Y)− f l−1
P1

(Y)
∥∥∥

F
+ B∞∥Y∥F

∣∣∣τ(1)
l − τ

(2)
l

∣∣∣+ τ∞∥Y∥F

∥∥∥Bl(w
(j(l))
2)− τ

(2)
l Bl(w

(j(l))
1)

∥∥∥
2→2

.

69

Recall that by Lemma 2.14 we have, for ℓ = 1, . . . , L,

∥∥∥ f l
P1
(Y)
∥∥∥

F
≤ ∥Y∥F

l

∑
k=1

(
τk

∥∥∥Bk(w
(j(k))
1)

∥∥∥
2→2

l−1

∏
i=k

∥∥∥Imi − τiBi+1(w
(j(i+1))
1)⊤Bi+1(w

(j(i+1))
1)

∥∥∥
2→2

)

≤ ∥Y∥Fτ∞B∞

l

∑
k=1

(
sup

i=k,...,l−1

∥∥∥Imi − τiBi+1(w
(j(i+1))
2)⊤Bi+1(w

(j(i+1))
2)

∥∥∥
2→2

)l−k

≤ ∥Y∥Fτ∞B∞

l

∑
k=1

αl−k = ∥Y∥Fτ∞B∞

l−1

∑
k=0

αk = ∥Y∥FZl , (2.67)

with α as defined in (2.44) and Zl as in (2.45). This leads to the estimate∥∥∥ f l
P1
(Y)− f l

P2
(Y)
∥∥∥

F

≤ α
∥∥∥ f l−1

P2
(Y)− f l−1

P1
(Y)
∥∥∥

F
+ τ∞∥Y∥F (1 + 2B∞Zl−1)

∥∥∥Bl(w
(j(l))
2)− Bl(w

(j(l))
1)

∥∥∥
2→2

+ (λ∞
√

m∞n + B∞∥Y∥F(B∞Zl−1 + 1))
∣∣∣τ(1)

l − τ
(2)
l

∣∣∣+ τ∞
√

m∞n
∣∣∣λ(2)

l − λ
(1)
l

∣∣∣ .

Introducing the additional quantities

βl = τ∞∥Y∥F (1 + 2B∞Zl−1) ,
κl = (λ∞

√
m∞n + B∞∥Y∥F(B∞Zl−1 + 1)) ,

φl = τ∞
√

m∞n,

we can write our estimate more compactly as∥∥∥ f l
P1
(Y)− f l

P2
(Y)
∥∥∥

F

≤α
∥∥∥ f l−1

P1
(Y)− f l−1

P2
(Y)
∥∥∥

F
+ βl

∥∥∥Bl(w
(j(l))
2)− Bl(w

(j(l))
1)

∥∥∥
2→2

+ κl

∣∣∣τ(1)
l − τ

(2)
l

∣∣∣+ φl

∣∣∣λ(2)
l − λ

(1)
l

∣∣∣ , (2.68)

Using our abbreviations, the general formulas for KL, ML and OL for L ≥ 1 are given by

KL =
L

∑
l=1

βlα
L−l , ML =

L

∑
l=1

κlα
L−l , OL =

L

∑
l=1

φlα
L−l , L ≥ 1, (2.69)

which indeed for L ≥ 2 is just a compact notation for (2.49), (2.46) and (2.47) in Theorems
2.11 and 2.17. We now prove via induction that (2.66) holds for any number of layers
L ∈ N with KL, ML and OL as just stated. For L = 1, we can directly obtain these
factors from the following estimate. Using similar arguments as above, we obtain (with
m∞ = m0, to keep the notation consistent)∥∥∥ f 1

P1
(Y)− f 1

P2
(Y)
∥∥∥

F

=
∥∥∥P1S

τ
(1)
1 λ

(1)
1

[
τ
(1)
1 B1(w

(j(1))
1)⊤Y

]
− P1S

τ
(2)
1 λ

(2)
1

[
τ
(2)
1 B1(w

(j(1))
2)⊤Y

]∥∥∥
F

≤
∥∥∥S

τ
(1)
1 λ

(1)
1

[
τ
(1)
1 B1(w

(j(1))
1)⊤Y

]
− S

τ
(2)
1 λ

(2)
1

[
τ
(2)
1 B1(w

(j(1))
2)⊤Y

]∥∥∥
F

70

≤
∥∥∥S

τ
(1)
1 λ

(1)
1

[
τ
(1)
1 B1(w

(j(1))
1)⊤Y

]
− S

τ
(1)
1 λ

(1)
1

[
τ
(2)
1 B1(w

(j(1))
2)⊤Y

]∥∥∥
F

+
∥∥∥S

τ
(1)
1 λ

(1)
1

[
τ
(2)
1 B1(w

(j(1))
2)⊤Y

]
− S

τ
(2)
1 λ

(2)
1

[
τ
(2)
1 B1(w

(j(1))
2)⊤Y

]∥∥∥
F

=∥Y∥F

∥∥∥τ
(1)
1 B1(w

(j(1))
1)− τ

(2)
1 B1(w

(j(1))
2)

∥∥∥
F
+
√

m0n
∣∣∣τ(2)

1 λ
(2)
1 − τ

(1)
1 λ

(1)
1

∣∣∣
≤B∞∥Y∥F

∣∣∣τ(1)
1 − τ

(2)
1

∣∣∣+ τ∞∥Y∥F

∥∥∥B1(w
(j(1))
1)− B1(w

(j(1))
2)

∥∥∥
F

+ τ∞
√

m0n
∣∣∣λ(2)

l − λ
(1)
l

∣∣∣+ λ∞
√

m0n
∣∣∣τ(2)

l − τ
(1)
l

∣∣∣
=τ∞∥Y∥F

∥∥∥B1(w
(j(1))
1)− B1(w

(j(1))
2)

∥∥∥
F
+ (B∞∥Y∥F + λ∞

√
m∞n)

∣∣∣τ(1)
1 − τ

(2)
1

∣∣∣
+ τ∞

√
m∞n ·

∣∣∣λ(1)
1 − λ

(2)
1

∣∣∣ ,

which by (2.69) gives (2.66) for L = 1, since β1 = τ∞∥Y∥F and κ1 = λ∞
√

m∞n + B∞∥Y∥F
(because Z0 = 0) and φ1 =

√
m∞nτ∞. Now we proceed with the induction step, assuming

that the claim holds for some L ∈ N. The estimate (2.68) used for the output after L + 1
layers, combined with the induction hypothesis give us∥∥∥ f L+1

P1
(Y)− f L+1

P2
(Y)
∥∥∥

F

≤α
∥∥∥ f L

P1
(Y)− f L

P2
(Y)
∥∥∥

F
+ βL+1

∥∥∥BL+1(w
(j(l))
2)− BL+1(w

(j(l))
1)

∥∥∥
2→2

+ κL+1

∣∣∣τ(1)
L+1 − τ

(2)
L+1

∣∣∣+ φL+1

∣∣∣λ(2)
L+1 − λ

(1)
L+1

∣∣∣
≤ (αβL + βL+1)max

l∈[L]

∥∥∥Bl(w
(j(l))
1)− Bl(w

(j(l))
2)

∥∥∥
2→2

+ (ακL + κL+1)
∥∥∥τ(1) − τ(2)

∥∥∥
∞
+ (αφL + φL+1) ·

∥∥∥λ(1) − λ(2)
∥∥∥

∞
,

so that (2.66) holds with the claimed expression for KL+1 and thus finishes the proof, since

KL+1 = αKL + βL+1 = α
L

∑
l=1

βlα
L−l + βL+1 =

L+1

∑
l=1

βlα
L+1−l .

and since similar expressions also hold for OL+1 and ML+1. ■

Let us finally provide the Lipschitz bound for the full network in terms of the parameters.

Corollary 2.18 For two networks hP1 , hP2 ∈ HL we have

∥hP1(Y))− hP2(Y))∥F

≤
∥∥∥ f L

P1
(Y)
∥∥∥

F

∥∥∥BL+1(w
(j(L+1))
1)− BL+1(w

(j(L+1))
2)

∥∥∥
2→2

+
∥∥∥ f L

P1
(Y)− f L

P2
(Y)
∥∥∥

F

≤ (B∞KL + ∥Y∥FZL) · max
l∈[L+1]

∥∥∥Bl(w
(j(l))
1)− Bl(w

(j(l))
2)

∥∥∥
2→2

+ ML ·
∥∥∥τ(1) − τ(2)

∥∥∥
∞
+ OL ·

∥∥∥λ(1) − λ(2)
∥∥∥

∞

with KL, ML and OL as given in (2.49), (2.46) and (2.47).

Proof. Using that σ is 1-Lipschitz, and applying the triangle inequality, we obtain

∥hP1(Y))− hP2(Y))∥F =
∥∥∥σ
(

BL+1(w
(j(L+1))
1) f L

P1
(Y)
)
− σ

(
BL+1(w

(j(L+1))
2) f L

P2
(Y)
)∥∥∥

F

71

≤
∥∥∥BL+1(w

(j(L+1))
1) f L

P1
(Y)− BL+1(w

(j(L+1))
2) f L

P2
(Y)
∥∥∥

F

≤
∥∥∥BL+1(w

(j(L+1))
1) f L

P1
(Y)− BL+1(w

(j(L+1))
2) f L

P1
(Y)
∥∥∥

F

+
∥∥∥BL+1(w

(j(L+1))
2) f L

P1
(Y)− BL+1(w

(j(L+1))
2) f L

P2
(Y)
∥∥∥

F

≤
∥∥∥ f L

P1
(Y)
∥∥∥

F

∥∥∥BL+1(w
(j(L+1))
1)− BL+1(w

(j(L+1))
2)

∥∥∥
2→2

+ B∞

∥∥∥ f L
P1
(Y)− f L

P2
(Y)
∥∥∥

F
,

where we used that ∥BL+1(w
(j(L+1))
1)∥2→2 ≤ B∞ by definition of B∞, see (2.40). Using the

bound (2.66) in Theorem 2.17 for
∥∥∥ f L

P1
(Y)− f L

P2
(Y)
∥∥∥

F
and that

∥∥∥ f L
P1
(Y)
∥∥∥

F
≤ ∥Y∥FZL by

(2.67) yields the claimed estimate. ■

Covering number estimates and proof of the main result. Finally, we are prepared for
the proof of our main result.

Proof of Theorem 2.11. By the assumption (2.32) that Bl is Dl-Lipschitz, and putting D∞ :=
maxl=1,...,L Dl (see (2.33) for the definition of Dl), Corollary 2.18 implies that

∥hP1(Y)− hP2(Y)∥F

≤(B∞KL + ∥Y∥FZL) · max
l∈[L+1]

∥∥∥Bl(w
(j(l))
1)− Bl(w

(j(l))
2)

∥∥∥
2→2

+ ML ·
∥∥∥τ(1) − τ(2)

∥∥∥
∞
+ OL ·

∥∥∥λ(1) − λ(2)
∥∥∥

∞

≤(B∞KL + ∥Y∥FZL) · D∞ · ∥W1 − W2∥X + ML ·
∥∥∥τ(1) − τ(2)

∥∥∥
∞
+ OL ·

∥∥∥λ(1) − λ(2)
∥∥∥

∞

Recalling that QL = (B∞KL + ∥Y∥FZL) · D∞, see (2.48), we equip Y = T × Λ ×W with
the following norm

∥(τ, λ, W)∥Y := ML∥τ∥∞ + OL∥λ∥∞ + QL∥W∥X , (τ, λ, W) ∈ Y

where ∥ · ∥X was defined in (2.38). Recall from (2.39) that T ⊂ τ0 + r1BL
∥·∥∞

and Λ ⊂
λ0 + r2BL

∥·∥∞
, while W ⊂ W∞BK

X by (2.40). Using that covering numbers with respect to
norms are invariant under translations of the set, Lemma A.3 and Lemma A.2 give

N (M, ∥ · ∥F, ε) ≤ N (T × Λ ×W , ∥ · ∥Y , ε)

≤N
(

r1BL
∥·∥∞

, ∥ · ∥∞, ε/(4 · ML)
)
· N

(
r2BL

∥·∥∞
, ∥ · ∥∞, ε/(4 · OL)

)
· N

(
W∞BK

X , ∥ · ∥X , ε/(4 · QL)
)

≤
(

1 +
8r2OL

ε

)L (
1 +

8r1ML

ε

)L (
1 +

8W∞QL

ε

)K

Already preparing its application in Dudley’s integral, let us apply the logarithm to
obtain

log (N (M, ∥ · ∥F, ε))

≤K log
(

1 +
8W∞QL

ε

)
+ L log

(
1 +

8r2OL

ε

)
+ L log

(
1 +

8r1ML

ε

)
(2.70)

Plugging the covering number estimate (2.70) into Dudley’s integral (see (2.58) and (2.59))

72

gives

E sup
M∈M

1
n

n

∑
i=1

mL

∑
k=1

ε ik Mik ≤
4
√

2
n

∫ √
nBout/2

0

√
logN (M, ∥ · ∥F, ε)dε

≤4
√

2K
n

∫ √
nBout/2

0

√
log
(

1 +
8W∞QL

ε

)
dε +

4
√

2L
n

∫ √
nBout/2

0

√
log
(

1 +
16r2OL

ε

)
dε

+
4
√

2L
n

∫ √
nBout/2

0

√
log
(

1 +
16r1ML

ε

)
dε

≤2
√

2Bout

[√
K
n

Ψ
(

16W∞QL√
nBout

)
+

√
L
n

Ψ
(

8r2OL√
nBout

)
+

√
L
n

Ψ
(

8r1ML√
nBout

)]
.

where we applied Lemma A.5 in the last step. The theorem is obtained using Theorem
1.9 and Lemma B.4. ■

2.4 Numerical Experiments

In this section, we report on the numerical experiments performed to practically test our
findings in the previous section. Note that we have not aimed at achieving state of the art
results in terms of reconstruction, but instead we pursue different goals in this section.
Firstly, we would like to give further evidence that the proposed framework is mean-
ingful and captures various interesting examples of practical interest. Secondly, we are
interested in the generalization error and its scaling with respect to training parameters.
Specifically, we have obtained a sample complexity bound that holds uniformly over the
hypothesis space and for any distribution. Although the bound is quite simple and gen-
eral, it is interesting to see if we expect improvements when it is applied to data from
low complexity distributions. ISTA is used mainly in sparse coding and recovery, and
therefore we consider a similar scenario. Thirdly, we are interested in the role of sparsity:
Recall that in our main results in this Chapter, Theorem 2.11 and Corollary 2.13 (and The-
orem 2.1 and Corollary 2.9 for the special case of learning an orthogonal dictionary), we
have provided worst-case bounds on the sample complexity that holds uniformly over
the hypothesis space and for any arbitrary data distribution. It is interesting to see if this
bound can be improved for data distributions limited to low complexity sets distribu-
tions, for example over the set of sparse vectors. ISTA is used mainly in sparse coding
and recovery tasks, therefore it is reasonable to ask if the generalization error behaves
similarly when it is applied to sparse recovery tasks.

We consider both synthetic data as well as the popular MNIST dataset [LeC] using a
Pytorch implementation and a Titan XP GPU. In all the experiments, we have used the
Adam optimizer [KB14] for training the network with the learning rate 10−2. The objec-
tive function for optimization is the MSE loss (see equation (1.19)) of the recovered vec-
tor with respect to the ground truth. (Note that this slightly differs from the theoretical
section; however, thanks to its differentiability it is more convenient from a numerical
standpoint.) For all cases, the measurement matrix is a Gaussian random matrix, prop-
erly normalized to guarantee convergence of ISTA. The synthetic data is generated for
different input and output dimensions, and sparsity levels. The default parameters are
the ambient dimension p = 120, a number of measurements of m = 80 and sparsity s
equal to 10. Sparse vectors are generated by choosing their support uniformly randomly
and then drawing the non-zero values from the standard normal distribution. The exper-

73

iments for the synthetic data are repeated at least 50 times, and the results are averaged
over the repetitions. For both the MNIST and the synthetic dataset, we sweep over L, p
and m to see how the generalization error behaves. For the synthetic data, we use the
training data with size 10 000 and the test date with size 50 000. Each model is trained
separately and mostly not more than 10 epochs are required to get first promising results,
and often times, the loss goes down very slowly after 10 epochs. To generate sparse vec-
tors, the support is chosen uniformly at random. The non-zero values are drawn from the
standard normal distribution. We repeat the experiments for the synthetic data between
10 to 100 times to obtain a smoother curve after averaging.

2.4.1 Learning an Orthogonal Dictionary

This subsection considers experiments for our main example of learning implicitly an
orthogonal dictionary suitable for reconstruction from compressive measurements, to
which the entire Section 2.2 has been devoted; later on, in Subsection 2.3.3 we observed
that it is a special case of the more general setup studied in Section 2.3.

Orthogonality Constraint. Firstly, let us comment on the orthogonality constraint for
weight matrices. One way to implement it is described in [LCMR19] and uses the fact that
the matrix exponential mapping provides an onto mapping from the skew-symmetric
matrices onto the special orthogonal group SO(p). However, we use the alternative
method of adding a regularization term ∥I − Φ⊤Φ∥F (or with another matrix norm) to
the loss function, which means to penalize if Φ is far from being orthogonal during train-
ing. We choose a random orthogonal matrix as the ground truth dictionary and initialize
the model with a random matrix. Figure 2.1 plots Φ⊤Φ for the learned dictionary for
a visual inspection. Indeed, it is approximately the identity matrix, and therefore the
learned matrix seems to be approximately orthogonal.

Figure 2.1: Orthogonality of the learned dictionary

Experiments with the MNIST Datset. Before considering the generalization, let us
firstly confirm that our model is capable of achieving a low reconstruction error on the
MNIST datset. Note that the MNIST images are grayscale images of a pixel size of 28× 28,

74

that we vectorize and represent as a vector in the 784-dimensional space. As can be ob-
served in Figure 2.2(a), even with a comparably small number of layers LISTA outper-
forms standard ISTA. (Note that the error in the MNIST experiments is the pixel-based
error normalized by the image dimension and MNIST pixels are all normalized between
0 and 1.) We have chosen ISTA with a similar structure and 5 000 iterations. The result
warrants the applicability of dictionary learning for sparse reconstruction. Figure 2.2(b)
shows an decreasing generalization error with an increasing number of measurements
on MNIST.

(a) Absolute reconstruction error for different
measurements of MNIST

(b) Generalization error for different measure-
ments of MNIST (averaged)

Figure 2.2: MNIST dataset

Experiments with Synthetic Data. Figure 2.3(a) confirms the dependence of the gener-
alization error on the number of layers L. Increasing the number of layers increases the
generalization error for a fixed number of measurements m. However, the generalization
error decreases by increasing the number of layers for MNIST dataset. For both synthetic
and the MNIST dataset, it seems that increasing the number of measurements decreases
the generalization error; see also Figures 2.2(b), 2.3(a) and 2.3(b). Besides, Figure 2.3(b)
shows that increasing p increases the generalization error. Therefore, our bound scales
correctly with the input dimension and the number of layers but incorrectly with the
number of measurements. Although not predicted by our theoretical results, this is not
unexpected. Note that the number of measurements m is not essential here, since it can
always be upper bounded by the dimension p. Therefore, the theoretical bound on the
generalization error (see (2.8), and Theorem 2.1 as well as Corollary 2.9 for more details)
can be lower and as follows upper bounded via√

log(L)
n

p ≤
√

log(L)
n

(p +
√

pm) ≤ 2

√
log(L)

n
p.

Furthermore, as mentioned above, the sample complexity is supposed to apply to all
possible input distributions. Possibly, if we restrict ourselves to distributions over low
complexity sets, then various worst-case bounds in our analysis might be improved. The
experiments seem to confirm this reasoning. Namely, for the MNIST dataset there is
a clear improvement with increasing the number of measurements and the number of
layers. This is intuitive from a compressive sensing standpoint, as more number of layers
in ISTA leads to better results and more measurements provide more information about
the input.

75

On the other hand, the synthetic dataset shows that the generalization error increases
with the input dimension and the number of layers. Note that the bound of this chapter
is obtained for a very general setting where nothing is assumed on the data structure.
Potentially, additional assumptions on the structure of the problem such as sparsity could
be used to improve the current bounds. Nonetheless, the mild logarithmic dimension
dependency of the current bound makes it a very good baseline for future comparisons.

(a) Generalization error for different measure-
ments of synthetic data (p = 120)

(b) Generalization error for different input dimen-
sions of synthetic data (m = 80)

Figure 2.3: Generalization error for synthetic dataset

The model that is used for our experiments shares the weights across layers conforming
to our theoretical setup. However, we can improve the performance of this method by
using ideas similar to LISTA literature. Many works on LISTA use a different dictionary
at each layer, which eases the training procedure and can lead to potentially better results.

Role of Sparsity. Next, we consider similar synthetic data with sparse inputs. In Figure
2.4, the generalization error is plotted for a variation of parameter choices. The input
dimension is fixed to p = 120. We have used a linear fit between the data points with
different numbers of layers. Increasing the number of layers increases the generaliza-
tion error. Note that increasing sparsity, which can be seen as the effective dimension
of the input, increases the generalization error. Also, the observation about dependence
on the generalization error on L is compatible with our theoretical results and suggests
that the logarithmic scaling in L may not be removed in general. These two points are
compatible with findings of our theory. We conjecture that the dependence to input di-
mension can be relaxed to a potentially smaller effective dimension. On the other hand,
in conflict with our theory, the generalization error decreases with the number of mea-
surements m. Larger number of measurements consistently yields better generalization
error. Therefore, it is expected as the task becomes easier with more measurements, the
generalization error improves. To accommodate this theoretically is an open question.

We run a similar analysis for MNIST dataset. Although MNIST images are themselves
sparse, they possess additional structure. The generalization error is plotted in Figure 2.5.
First of all, it can be seen that the generalization error decreases with increasing number
of measurements. A similar observation is made in the experiments on the synthetic
data. But in this case, an additional discrepancy with the theory emerges as increasing
the number of layers decreases the generalization error.

While our theoretical bound actually increases with increasing number of layers (and
slightly increases with increasing number of measurements [BRS22], although that de-
pendence is swallowed by the constant in (2.55)), the better behavior obtained here may

76

Figure 2.4: Generalization error for p = 120

Figure 2.5: Generalization error for different measurements of MNIST

be justified from a compressive sensing standpoint. The reconstruction task becomes eas-
ier with more measurements and the quality becomes better with more iterations. Note
that the soft-thresholding step only promotes sparsity structure, so additional layers can
help recovering more details. Additional assumptions that may take the specific com-
pressive sensing scenario into account are currently not captured by our general worst
case result Theorem 2.11, which provides a uniform complexity bound that applies to
all possible input distributions. We conjecture that the bound of Theorem 2.11 can be
improved by taking into account assumptions like sparsity of the input and properties
of the measurement matrix A and the underlying true dictionary Φ0 such as a restricted
isometry property of AΦ0. Presently however, it is not clear how this could potentially
be done.

77

2.4.2 Learning a non-orthogonal dictionary.

Here, we abandon the orthogonality assumption by removing the regularizer mentioned
above.

Correlation of Generalization bound and Generalization error In this section, we ex-
plore if our bound correlates with the generalization error. We first consider the case
where the dictionaries are chosen to be an arbitrary matrix and not necessarily orthog-
onal. In order to evaluate how close our theoretical bounds are to reality, Figure 2.6
shows the empirically observed generalization error versus our theoretical generaliza-
tion bound. We clearly observe that our bounds are generally positively correlated with
the empirical generalization error. Note that in this experiment, the dictionaries are not
orthogonal matrices. The generalization error increases with the number of layers and
with with the dimension p. The other dependencies are less clear, since their effect is
mixed with other terms in the generalization bound. We have chosen a sparsity s = 10
for these experiments and plotted the generalization bound from Theorem 2.11.

Figure 2.6: Generalization error vs generalization bound

2.5 Related Work and Outlook

In this final section of this chapter, let us conclude by discussing extensions, related work
and open questions that are connected with the topics presented in this chapter.

Extensions of Generalization Error Bounds to Other Algorithms. To the best of our
knowledge, our papers [BRS22; SBR21] are the first results providing statistical learn-
ing guarantees for deep learning with ISTA-inspired neural networks for sparse recon-
struction or regression tasks, whereas most work on generalization of deep neural net-
works focused on classification tasks. Our result has been featured in the survey article
[SHRHE22] on theoretical perspectives on deep learning methods in inverse problems.
Furthermore, it has proven to be useful beyond the particular setting of ISTA-inspired

78

neural networks and was successfully adapted to other cases, namely in two Master
thesis co-supervised by the author of this thesis: firstly, in [Lub21] this approach was
extended to the first-order primal-dual algorithm [CP11], and in another Master thesis
[Nau22] to ALISTA-like networks [LC19] (both were co-supervised by the author of this
thesis). Another extension of our work to deep unfolding network for analysis-sparsity-
based compressive sensing is [KP22].

Robustness with Respect to the Measurements. An important part of the proofs in
this chapter was to derive perturbation bounds with respect to different choices of the
parameters. It is also to consider instead perturbations in the measurements y, i.e., we
consider, for two different measurements y1, y2 ∈ Rm (where we may interpret y2 to be a
noisy or perturbed version of y1) ∥∥∥ f L(y1)− f L(y2)

∥∥∥
2

.

Robustness is classically studied in compressive sensing, and also from a deep learn-
ing perspective with its possible connection to adversarial perturbations [Sze+13], even
though they are more common in classification settings. However, also robustness of
deep learning for inverse problems has been investigated mostly from an experimen-
tal view but remain unsettled, as conflicting results have been reported in the literature
[ARPAH20; GAAH20; GMM20]. With regard to robustness to perturbations in the mea-
surements, we would like to find a bound for the quantity above that only mildly de-
pends on ∥y1 − y2∥2 and the number of layers L. How much can such a perturbation
influence the reconstruction error? Under realistic assumptions, one can show that L
iterations of ISTA are L-Lipschitz, i.e.,

∥ f L(y1)− f L(y2)∥2 ≤ L∥y1 − y2∥2,

where f L simply denotes L iterations of/layers of ISTA. This is shown in the following
simple and so far unpublished result, that shows at least a certain degree of robustness
with respect to the measurements.

Theorem 2.19 (Rauhut, S., 2020) Consider L iterations of ISTA and assume that∥∥∥I − τA⊤A
∥∥∥

2→2
≤ 1, τ∥A∥2→2 ≤ 1. (2.71)

Then, for any two (different) measurements y1, y2 ∈ Rm there is

∥ f L(y1)− f L(y2)∥2 ≤ L∥y1 − y2∥2. (2.72)

Note that the result may be sub-optimal, as no assumptions on the data (such as spar-
sity) or RIP-like conditions on the measurement matrix are being used. Further, let us
remark that, given such bounds, it is straightforward to obtain perturbation bounds with
respect to perturbations both in the measurements and the parameters. Indeed, by the triangle
inequality we get

∥ f L
P1
(y1)− f L

P2
(y2)∥2 = ∥ f L

P1
(y1)− f L

P1
(y2) + f L

P1
(y2)− f L

P2
(y2)∥2

≤ ∥ f L
P1
(y1)− f L

P1
(y2)∥2 + ∥ f L

P1
(y2)− f L

P2
(y2)∥2,

where the first summand is of the type studied here, and the second summand (pertur-

79

bations with respect to the parameters, but not measurements) has been studied earlier
in this chapter.

Proof. If y1 = y2, the statement is trivial. Otherwise, we prove this via induction on L.
For L = 2 layers we obtain by introducing mixed terms the following estimate:

∥ f 2(y1)− f 2(y2)∥2 = ∥ f2(f1(0, y1), y1)− f2(f1(0, y2), y2)∥2

≤∥ f2(f1(0, y1), y1)− f2(f1(0, y1), y2)∥2 (2.73)
+ ∥ f2(f1(0, y1), y2)− f2(f1(0, y2), y2)∥2 (2.74)

=2∥y1 − y2∥2.

For instance, the first term in (2.73) can be estimated as follows, just using basic properties
such as 1-Lipschitzness, the assumption (2.71)

∥ f2(f1(0, y1), y1)− f2(f1(0, y1), y2)∥2

=
∥∥∥Sτλ

[(
I − τA⊤A

)
f1(0, y1) + τA⊤y1

]
− Sτλ

[(
I − τA⊤A

)
f1(0, y1) + τA⊤y2

]∥∥∥
2

≤
∥∥∥(I − τA⊤A

)
f1(0, y1) + τA⊤y1 −

(
I − τA⊤A

)
f1(0, y1)− τA⊤y2

∥∥∥
2

=τ∥A∥2→2∥y1 − y2∥2

≤∥y1 − y2∥2.

and a similar computation can be done for the second term in the line (2.74) as follows:

∥ f2(f1(0, y1), y2)− f2(f1(0, y2), y2)∥2

=
∥∥∥Sτλ

[(
I − τA⊤A

)
f1(0, y1) + τA⊤y2

]
− Sτλ

[(
I − τA⊤A

)
f1(0, y2) + τA⊤y2

]∥∥∥
2

≤
∥∥∥(I − τA⊤A

)
f1(0, y1) + τA⊤y2 −

(
I − τA⊤A

)
f1(0, y2)− τA⊤y2

∥∥∥
2

=
∥∥∥(I − τA⊤A

)
f1(0, y1)−

(
I − τA⊤A

)
f1(0, y2)

∥∥∥
2

=
∥∥∥I − τA⊤A

∥∥∥
2→2

∥ f1(0, y1)− f1(0, y2)∥2

=
∥∥∥I − τA⊤A

∥∥∥
2→2

∥∥∥Sτλ(τA⊤y1)− Sτλ(τA⊤y2)
∥∥∥

2

≤
∥∥∥I − τA⊤A

∥∥∥
2→2

τ∥A∥2→2∥y1 − y2∥2

≤∥y1 − y2∥2.

where again we used that f1 is 1-Lipschitz in the last two steps. We proceed with the
induction step for the general case as follows. Assume that (2.72) holds for a fixed L ∈ N.
Then, with arguments similar to above, we obtain∥∥∥ f L+1(y1)− f L+1(y2)

∥∥∥
2

=
∥∥∥ fL+1(f L(y1), y1)− fL+1(f L(y2), y2)

∥∥∥
2

≤
∥∥∥ fL+1(f L(y1), y1)− fL+1(f L(y1), y2)

∥∥∥
2
+
∥∥∥ fL+1(f L(y1), y2)− fL+1(f L(y2), y2)

∥∥∥
2

≤
∥∥∥y1 − y2∥2 + ∥ f L(y1)− f L(y2)

∥∥∥
2

80

≤∥y1 − y2∥2 + L∥y1 − y2∥2

=(L + 1)∥y1 − y2∥2,

which finishes the proof. ■

Generalization of Deep Neural Networks. In the past decade, deep neural networks
have been used with great success in many practical applications, but their theoretical un-
derstanding remains limited, despite great efforts. Deep and overparameterized neural
networks seem to work very differently to traditional neural networks and tend to gener-
alize surprisingly well. Understanding generalization of neural networks, and the com-
plex interplay of the generalization with an approximation-theoretic or function space
viewpoint, and the delicate questions of optimization on the non-convex loss surface etc.
remain challenging questions. Note that we have exclusively focused on a generalization
viewpoint and omitted the study of the (highly challenging) underlying non-convex op-
timization problem. Let us briefly review some other works of generalization in the con-
text of deep neural networks. Note that they, in contrast to our work, are mainly devoted
to classification (rather then regression) problems and operate in an overparametrized
setting.

An early work providing VC dimension bounds for deep neural networks is [AB99].
Later on, bounds on the Rademacher complexity were derived in [BFT17] to obtain norm-
based (i.e., norms of involved objects like weight matrices) generalization error bounds
for the probability of misclassification of a neural network in a multi-class problem with
K classes. A similar, but slightly worse, norm based bound was obtained [NBS18] using
a PAC Bayesian approach, which leads to a completely different analysis. A bound with
potentially better dimension dependence was obtained in [GRS18].

However, it is doubtful if traditional such as the VC dimension and the Rademacher
complexity are suitable tools for explaining generalization in deep learning, as argued
based on detailed experiments in [JNMKB20; NK19; ZBHRV17]. For instance, [NK19]
shows that such quantities may even grow with an increasing size of the training dataset.

Furthermore, this approach works better with a simple training procedure (for in-
stance, for a convex loss surface with available convergence guarantees, or more gen-
erally when the minimizer of the loss function can be expressed implicitly as the solution
of a fixed-point equation). On the other hand, it may become intractable in case of highly
complicated models, such as the highly non-linear functions represented by deep neu-
ral networks, with an inaccessible training procedure (non-convex loss surface, stochas-
tic gradient descent). Nevertheless, some works on (shallow, typically having only one
hidden layer) neural networks exist, and using full batch training rather than stochastic
gradient descent [ASS20; LC18a; LLC18; SMG13].

On the other hand, asymptotic approaches try to determine asymptotically precise be-
havior, for instance an asymptotically precise generalization, rather than generalization
error bounds. In the context of neural networks, this has been investigated for simpler
models such as shallow neural with only one hidden layer, using toy models for the data
and full batch training [ASS20; LC18a; LLC18; SMG13]. For large and realistic mod-
els and using stochastic gradient descent, this approach remains intractable for the time
being due to the immense technical difficulties arising from the non-linearity and compli-
cated dependence structure. Another approach that also uses asymptotic techniques, but
in an infinite-width limit, is the so-called neural tangent kernel approach [JGH18], which
has received tremendous interest in recent years. However, it must be pointed out again
that, due to the sheer amount of literature on the subject, no complete literature review

81

can be provided. For a recent monograph on the current mathematical understanding of
deep learning, let us again refer to [GK22].

Other Related Work The idea of interpreting gradient steps of iterative algorithms such
as ISTA [DDDM04] for sparse recovery as layers of neural networks has appeared in
[GL10] and has then become an active research topic, e.g., [CLWY18; KM16; LCWY19;
MPB15; WGLZ20; XWGWW16]. The present paper is another contribution in this line
of work and can be seen as a direct follow-up to our previous work [BRS22]. Both are
characterized by studying LISTA-inspired networks from a generalization perspective,
which has been neglected in the literature before. Our previous work [BRS22] focusses
on a comparably simple problem of learning a dictionary suitable for reconstruction and
may serve as an introduction to the topic, containing many related references and also
a short introduction to generalization of neural networks for classification problems. In-
stead, this paper studies a much more general framework aiming to capture many other
models of practical interest. It contains the scenario studied in [BRS22] as a special case,
but also other models studied before, such as a class of LISTA models that use convolu-
tional dictionaries [SG18a]; see also Section 2.3.3.

To our best knowledge, it provides the first generalization error bounds for all of them,
apart from our own previous work [BRS22]. Thus, it will serve as a reference and baseline
for comparison with future works. Even though the basic proof methods are very similar
to the ones used in [BRS22], the derivations become clearly more involved by taking ad-
ditional training parameters into accout, as well as the numerical experiments. Instead
of novel algorithmic aspects, our contribution is to conduct a generalization analysis for
a large class of recovery algorithms, which to the best of our knowledge has not been
addressed in the literature before in this particular setting. Furthermore, our setup pro-
posed here also includes general regression tasks apart from reconstruction. In this way,
we connect this line of research with recent developments [BFT17; GRS18] in the study
of generalization of deep neural networks. Particularly, we use a similar framework to
[BFT17] by bounding the Rademacher complexity using Dudley’s integral. However, the
approach of [BFT17] applies only to the use of neural networks for classification prob-
lems. The extension to our problem, which is a regression problem with vector-valued
functions, involves additional technicalities requiring the generalized contraction prin-
ciple for hypothesis classes of vector-valued functions from [Mau16]. Besides, we show
linear dependence of the number of training samples with the dimension (number of
free parameters), using techniques that are different from the ones in [GRS18]. It is not
straightforward to extend the result of [GRS18] to our case because we allow weight shar-
ing between different layers of the thresholding networks.

The unfolded networks we consider here fall into the larger class of proximal neural
networks studied in [Has+20; Has+21; HNS21]. Many other related works are in the con-
text of dictionary learning or sparse coding: The central problem of sparse coding is to
learn weight matrices for an unfolded version of ISTA. Different works focus on different
parametrization of the network for faster convergence and better reconstructions. Learn-
ing the dictionary can also be implicit in these works. Some of the examples of these algo-
rithms are recently suggested Ada-LISTA [AGE20], convolutional sparse coding [SG18b]
learning efficient sparse and low-rank models [SBS15]. Another line of work considers
analytic LISTA (ALISTA) [LCWY19], where only thresholds and step-size parameters are
learned. For instance, in neurally augmented ALISTA [BSJ21] step sizes and thresholds
are updated based on the output of the previous layers. Like many other related pa-
pers, such as ISTA-Net [ZG18], these methods are mainly motivated by applications like

82

inpainting [AGE20]. Sample complexity of dictionary learning has been studied before
in the literature [Geo18; GJBKS15; GS10; Sch14; VMB11]. The authors in [VMB11] also
use a Rademacher complexity analysis for dictionary learning, but they aim at sparse
representation of signals rather than reconstruction from compressed measurements and
moreover, they do not use neural network structures. Fundamental limits of dictionary
learning from an information-theoretic perspective has been studied in [JEG14; JEG16].
Unique about our perspective and different to the cited papers is our approach for deter-
mining the sample complexity based on learning a dictionary (or generally, other param-
eters to enable good reconstruction) implicitly by training a neural network.

In case of weight sharing between all layers, the networks is a recurrent neural net-
work. The authors of [DS96] derive VC-dimension estimates of recurrent networks for
recurrent perceptrons with binary outputs. The VC-dimension of recurrent neural net-
works for different classes of activation functions has been studied in [KS98]. However,
their results do not apply to our setup, since they focus on one-dimensional inputs and
outputs, i.e., corresponding to just a single measurement in our compressive sensing sce-
nario. Furthermore, VC dimension bounds are mainly suited for classification tasks,
making an application to (and comparison with) our vector-valued regression problem
difficult.

83

3 Sparse Linear Classifiers via ISTA

This chapter revisits one of the most basic models in machine learning, namely simple
linear models of the type g(x) = ω⊤x, i.e., inner products of a weight vector ω ∈ Rp with
a data point x ∈ Rp. Linear models may be used for either regression or classification
problems and have been heavily studied in the literature. Examples are classical machine
learning algorithms such as least-squares problems, logistic regression, support vector
machines (SVMs) etc., some of which we have already briefly encountered in Chapter 1.
While being apparently simple, note that often they are building blocks of more pow-
erful, non-linear models such as kernel SVMs that consist in a non-linear feature map
(to increase the separability of classes) followed by a linear classifier (hyperplane sepa-
ration). Furthermore, deep neural networks can also be regarded as highly non-linear,
elaborated feature maps that allow a simple classifier in the very final layer, e.g. through
logistic regression. This approach is often referred to as end-to-end learning, by learning
the features and training a classifier simultaneously, rather than independently of each
other. Thus, despite their simplicity, such linear models remain relevant also in the con-
text of modern applications of machine learning.

In this chapter, we focus on classification problems where we assume that only a few of
the features collected in the data point x characterize its class membership. That means
that a good classifier must perform a feature selection of those features that are most rele-
vant to obtain good predictions, which can be modelled through a sparsity assumption
on the weight vector ω: if it contains only few-nonzero entries, only the few correspond-
ing features will be considered for the task at hand, while all other features will be essen-
tially discarded.

This chapter provides a novel analysis of the performance of sparse linear classifiers
obtained through ISTA. It is based on the paper [TSSCV22] which is coauthored by the
author of this thesis. Some of the shortcomings of the original paper could have been im-
proved upon while preparing this chapter, notably Section 3.3. Other aspects contained
in the original paper [TSSCV22] such as hyperparamter optimization have been left out:
even though a very interesting application, we focus purely on a generalization perspec-
tive.

We should point out that the paper [TSSCV22], and thus this chapter in general, rely
heavily on results developed previously in [LC20; Lou23] on deterministic equivalents
and concentration of random equations. This approach has already been applied before
to softmax classifiers in [SLCT21]; some parts of our derivation can be regarded as an
adaption to our case. Closely related is former work on the asymptotic performance lo-
gistic regression model in [EKBBLY13; MLC19]. However, they still consider the data
to be Gaussian, while [SLCT21] and the present work consider a more general concen-
tration assumption on the input data. An important tool to break the arising stochastic
dependencies is the leave-one-out approach [CFMW19; DC18; EKBBLY13], which has been
employed also in the aforementioned works.

This chapter is structured as follows. We begin in Section 3.1 with some observations
on predicting the accuracy of linear classifiers that are of interest even in more general
scenarios as long as the classifications scores ω⊤x are normally distributed. Then, in Sec-
tion 3.2 we formally introduce the specific ISTA-based setup we will investigate, along

85

with technical assumptions. Section 3.3 is short but important as we show that the dis-
tribution over the hypothesis class has favorable properties: the learned weight vector
ω will be viewed as the solution of a random fixed point equation, and the underlying
data distribution induces a tight concentration on ω. This is formulated more rigorously
in Theorem 3.13. In Section 3.4 we delve into the laborious derivation of an algorithm
to estimate the statistics of ω or, more precisely, related scalar quantities thereof, and we
test the quality of our predictions at the hand of numerical experiments.

Finally, we conclude this chapter in Section 3.5 by discussing our findings, related
work, and possible future work.

3.1 Predicting the Classification Accuracy from the Distributions of the
Classification Score

We begin this chapter with a few general observations regarding linear classifiers, whose
output g(x) = ω⊤x we refer to as the classification score. Note that the results here are not
at all specific to the ISTA-based classifiers, so that we formally introduce the latter only
below in the next section.

3.1.1 Classification Scores

Firstly, we state a rather elementary but fundamental observation regarding linear mod-
els of the type g(x) = ω⊤x in general. It is relevant far beyond the specific ISTA-based
derivation of the weight vector ω ∈ Rp that we consider here, and only assumes a Gaus-
sian behavior of g(x) = ω⊤x for high-dimensional data, which is not unrealistic due
to Theorem 1.11. Formally, we consider a linear binary classifier which allocates a data
point x ∈ Rp to class C1 (short: x → C1) or to class C2 (short: x → C2) through the test

g(x) = ω⋆⊤x
C2
≷
C1

η,

with a chosen threshold η ∈ R. We will also shortly write “x ∈ Cℓ” when we mean that
x is a random vector that follows the distribution of class Cℓ for ℓ = 1, 2. We will also
assume the classes C1 and C2 to have class-specific means and covariances

µ1, µ2 ∈ Rp, Σ1, Σ2 ∈ Rp×p.

(More details and technical assumptions that are not yet required for the purpose of this
section are provided later in Section 3.2.) The classification error (i.e., the probability of
misclassification) ε of this classifier (for now, simply assuming equal prior class probabil-
ity, i.e., c1 = c2 = 1/2) is given by

ε =
1
2

P (x → C1|x ∈ C2) +
1
2

P (x → C2|x ∈ C1) .

It turns out that, assuming that g(x) = ω⋆⊤x has (univariate!) normal distributions
N (m1, σ2

1) for x ∈ C1 and N (m2, σ2
2) for x ∈ C2, it is possible to derive the precise clas-

sification error. Therefore, it is crucial to precisely understand the statistical behavior of
g(x) = ω⋆⊤x, which in turn depends on the statistical properties of the underlying data
distribution. Before we delve into this rather technical matter, this section explains how
to predict the classification error. The following lemma provides the classification error
in the aforementioned setting.

86

Figure 3.1: Illustration of the one-dimensional Gaussian distributions of the classifica-
tion score g(x) = x⊤ω for both classes C1 (blue) and C2 (red). The smaller the “overlap”
(brown/grey area) of the two bell curves, the higher is the classification accuracy. With far
distant means, and smaller variances, the classification accuracy becomes higher.

Lemma 3.1 (Classification accuracy: general case) Let us assume that, for a linear binary
classifier ω⋆ ∈ Rp, the classification score g(x) = ω⋆⊤x has normal distributions N (m1, σ2

1)
for x ∈ C1 and N (m2, σ2

2) for x ∈ C2. Then, the classification error (i.e., probability of misclassi-
fication) is given by, with Q being defined in (B.4),

c1Q
(
m1 − η

σ1

)
+ c2Q

(
−m2 − η

σ2

)
.

Thus, for a practical application of this result, one needs to estimate the specific means
and variances characterizing both distributions. Note again that this result holds far
beyond the specific LASSO-based classification analyzed in this chapter. It makes no
assumption on the underlying data distribution and applies whenever the condition of
the normally distributed classification scores is satisfied. Even though rather basic, let us
give the short proof for completeness.

Proof. The proof is straightforward by computing the conditional probabilities, calculat-
ing the tail probabilities using the function Q from (B.4), and applying a substitution
therein.

ε =c1P (x → C2 | x ∈ C1) + c2P (x → C1 | x ∈ C2)

=c1P
(

ω⋆⊤x > η |ω⋆⊤x ∼ N
(
m1, σ2

1
))

+ c2P
(

ω⋆⊤x < η |ω⋆⊤x ∼ N
(
m2, σ2

2
))

=c1P
(
X − η > 0 | X ∼ N

(
m1, σ2

1
))

+ c2P
(
X − η < 0 | X ∼ N

(
m2, σ2

2
))

=
c1√
2π

∫ 0

−∞
exp

(
− (z − η +m1)

2

2σ2
1

)
dz +

c2√
2π

∫ 0

−∞
exp

(
− (z −m2 + η)2

2σ2
2

)
dz

=c1Q
(
m1 − η

σ1

)
+ c2Q

(
−m2 − η

σ2

)
. ■

Now it is easy to derive simplified expressions of various special cases of interest.

Corollary 3.2 (Classification accuracy for classes of equal size) In the aforementioned set-
ting, but with classes of equal size, the classification error (i.e., the probability of misclassification)
is given by

ε =
1
2

Q
(
m1 − η

σ1
− m2 − η

σ2

)
.

Proof. This result follows immediately by choosing c1 = c2 = 1/2 in Lemma 3.1. ■

This expression may further simplify in case of η = 0 or σ1 = σ2. For instance, let
us consider the case of equal covariance matrices for both classes (Σ1 = Σ2), when the

87

variance of the decision score is the same for class C1 and C2, i.e., σ1 = σ2 = σ (see (3.2)
in Lemma 3.3 below). Then, the classification error is given by ε = 1

2 Q
(
m1−m2

σ

)
. Further-

more, when additionally the data (assuming equal prior class probability) is centered
(i.e., E[x | x ∈ C1] + E[x | x ∈ C2] = 0, that is, µ1 = −µ2), then also E[g(x) | x ∈ C1] =
−E[g(x) | x ∈ C2] so that the optimal threshold is η = 0 and the decision is given by

g(x)
C2
≷
C1

0.

Let us briefly consider the trivial extreme case when m1 = m2 and σ1 = σ2. As the two
classes are not distinguishable by the distributions of their corresponding classification
scores, an accurate classification is not possible in this case, and indeed we obtain

ε = Q(0) =
1√
2π

∫ 0

−∞
e−

x2
2 dx =

1
2

,

which corresponds to making “random guesses” in a binary classification problem.

(a) Amazon review dataset (“review to score: positiv
vs. negative”) for two score classes with dim. p =
400 and n1 = n2 = 100. Histogram of the values of
the classification score g(x) = ω⋆⊤x generated from
400 test samples.

(b) MNIST dataset: PCA-preprocessed classes
corresponding to “4 vs. 9” with p = 100, and
n1 = n2 = 100. Histogram of the values of the
classification score g(x) = ω⋆⊤x generated from 400
test samples.

Figure 3.2: Classifications scores for real datasets

Therefore, the main challenge to apply our findings in this section is to prove that
the classification scores are indeed normally distributed, and furthermore to derive the
means and variance(s) characterizing their distributions. Before we turn towards this
challenge, let us briefly comment on the figures. Figure 3.1 serves illustrative purposes
only and exemplarily shows two normal distribution of two classes with respective nor-
mal distributions. Figure 3.2 shows the same situation for real datasets and it already
anticipates our later findings: it displays both the empirical distribution of the classifi-
cations scores and the prediction by our algorithm that will only be derived below in
Section 3.4. Note that our prediction is far more accurate for the MNIST dataset (b) than
the Amazon review dataset (a); however, let us also remark that the latter is dataset based
on text embeddings with unclear statistical properties that may be too far from our as-
sumptions that are given below in Section 3.2.

88

3.1.2 Decomposing the Classification Score

As demonstrated in the previous section, the classification performance of a linear clas-
sifier is fully determined by only few scalar quantities, namely means and variances of
the classification score, assuming they are univariate Gaussians. The following result
shows how to decompose them in terms of the means and covariances of both the data
distribution and the distribution over the hypothesis class, i.e., that of the weight vector
ω.

Proposition 3.3 Let x, ω ∈ Rp be two independent random vectors with means E[x] = x̄ and
E[ω] = ω̄, and covariance Cov(x) = Σx and Cov(ω) = Σω, respectively. Then, it holds that

E[g(x)] = E[ω⊤x] = ω̄⊤E[x] = ω̄⊤ x̄, (3.1)

Var(g(x)) = E[g(x)2]− E[g(x)]2 = tr(ΣωΣx) + tr(Σω x̄x̄⊤) + tr(Σxω̄ω̄⊤). (3.2)

Again, even though only a simple computation, let us give the proof for completeness.

Proof. Firstly, the formula for the expectation (3.1) follows easily by linearity and inde-
pendence of the random vectors x and ω. Secondly, to show (3.2), by the definition of the
covariance we have that E[ωω⊤] = Σω + ω̄ω̄⊤ and, analogously, E[xx⊤] = Σx + x̄x̄⊤.
Using this, together with independence and basic trace properties, we obtain

E[ω⊤xx⊤ω] = tr
(

E[ωω⊤xx⊤]
)
= tr

(
(Σω + ω̄ω̄⊤)(Σx + x̄x̄⊤)

)
= tr(ΣωΣx) + ω̄⊤ x̄x̄⊤ω̄ + tr(Σω x̄x̄⊤) + tr(Σxω̄ω̄⊤).

By inserting our findings into the following basic equality,

E[g(x)2]− E[g(x)]2 = E[ω⊤x · ω⊤x]−
(

ω̄⊤ x̄
)2

= E[ω⊤xx⊤ω]− ω̄⊤ x̄x̄⊤ω̄,

the second term cancels out and we obtain

E[g(x)2]− E[g(x)]2 = tr(ΣωΣx) + tr(Σω x̄x̄⊤) + tr(Σxω̄ω̄⊤). ■

Remark 3.4 Again, Lemma 3.3 as stated above holds under quite general conditions. We
will apply it to the weight vector ω ∈ Rp as the solution of LASSO calculated from the
training data, and x ∈ Cℓ being an (independent!) test datum from either class, ℓ = 1, 2.
In this case, note that the existence of E[ω] and Cov(ω) is not clear a priori, but will
follow from the fact that the distribution of ω induced by the data distribution is tightly
concentrated, as shown in Section 3.3. ♢

Remark 3.5 (Special cases) Depending on the situation, the expression (3.2) may simplify
further. For instance, the second and third sumand on the right hand side may be (asymp-
totically) negligible compared to the first term tr(ΣωΣx). Furthermore, when the data co-
variance Σx equals the identity matrix, only the diagonal elements of Σω are required to
evaluate the expression tr(ΣωΣx). Indeed, in this case Var (g(x)) = tr(Σω) = σ⊤

ω1p with
σω = D(Σω) ∈ Rp being the vector that consists of the diagonal of the matrix Σω. ♢

89

3.2 Assumptions and Preparations

3.2.1 Setup

We consider ISTA to derive the weight vector ω of the linear classifier and would like to
predict its performance using the results from the previous section. Here, we provide a
more detailed account of the basic setup already outlined in the introductory Chapter 1.
Suppose we have n data points x1, . . . , xn ∈ Rp gathered as columns in the data matrix

X = [x1, . . . , xn] ∈ Rp×n.

We study a binary classification problem (the multi-class case can be treated by the one
versus all technique) where the xi ∈ Rp, i = 1, . . . , n, belong to either of the two (nonempty)
data classes C1 (of size n1) and C2 (of size n2) corresponding to the labels ±1, i.e.,

X =
[

X(1), X(2)
]

, X(ℓ) =
[

x(ℓ)1 , . . . , x(ℓ)nℓ

]
, ℓ = 1, 2, n1 + n2 = n,

and all the labels y(ℓ)i ∈ {−1, 1} associated to the data points x(ℓ)i ∈ Cl , i = 1, . . . , nℓ are
collected in the label vector y ∈ Rn given by

y = [y1, . . . , yn] =
[
y(1)1 , . . . , y(1)n1 , y(2)1 , . . . , y(2)n2

]⊤
∈ {−1, 1}n.

Given a test datum x ∈ Rp, our goal is to predict its associated label y = ±1. Even though
more common in the context of regression or sparse recovery, we employ the LASSO as
our loss function (during the training), which means to solve the minimization problem

ω⋆ = arg min
ω∈Rp

1
2
∥y − X⊤ω∥2

2 + λ∥ω∥1. (3.3)

While the least-square part simply performs a regression to fit the labels well, the ℓ1-
regularizer promotes the classifier ω⋆ to be sparse, i.e., to select a few features most rele-
vant for the classification task, where the degree of sparsity depends on the hyperparam-
eter λ > 0. We then consider the simple linear model ω⋆⊤x = ⟨ω⋆, x⟩, i.e., the inner prod-
uct of the weight vector ω⋆ ∈ Rp with some feature vector x ∈ Rp, geometrically dividing
the p-dimensional space, through the linearly separating hyperplane {x ∈ Rp : ω⊤x = 0},
into two distinct areas where either ω⋆⊤x < 0 or ω⋆⊤x > 0. Given linear separability in
a binary classification problem, our predictor takes the form (recall (1.4) for the definition
of the sign function)

hω(x) = sign(ω⊤x),

with the so-called decision boundary corresponding to the separating hyperplane, that is
the set {x ∈ Rp : ω⊤x = 0}. To solve (3.3) and find its solution ω⋆, or at least a good
approximation thereof, we will once again employ the iterative soft-thresholding algo-
rithm. Even though encountered earlier already, let us recall that ISTA, with the notation
specific to this chapter, is the iterative procedure

ω0 = 0p,

ωj+1 = Sτλ

[
ωj + τX

(
y − X⊤ωj

)]
, j ≥ 1, (3.4)

90

where τ > 0 denotes the step-size of the (projected) gradient descent step. (We com-
ment below on questions of convergence and the choice of hyperparameters under the
assumptions being used here.) However, for inference (i.e., at test time), we are interested
in the classification accuracy, which was already a central theme in the preparatory Sec-
tion 3.1. That is, rather than predicting the loss (3.3) used for training, we employ the 0/1
test loss given by

ℓ ((x, y), ω) =

{
0, ŷ = y,
1, ŷ ̸= y.

The main goal of this chapter is to find the asymptotically precise 0/1 test loss, i.e., under
the following framework. Note that the risk - recall (1.13) - is the probability of misclas-
sification, as (for A being the event of misclassification)

Ex,y∼D ℓ0/1(h, x, y) =
∫
A

1 dP +
∫
A∁

0 dP = P(A).

3.2.2 Assumptions

Throughout this chapter, we work under the following assumptions.

Assumption 3.6 (Commensurability of n and p) We assume n > p and, as nℓ, n, p → ∞,
asymptotically p/n → c0 ∈ (0, 1) and nℓ/n → cℓ > 0 for ℓ = 1, 2. Further, we restrict
ourselves to tuples with (p, n) ∈ N2 such that clower ≤ p/n ≤ cupper, where of course
clower ≤ c0 ≤ cupper.

While this assumption is useful to find asymptotically deterministic behavior of the
involved quantities of interest later on, sample sizes and dimensions are finite in practi-
cal applications. Thus, in the algorithm derived in Section 3.4 finite quantities are used
(such as nℓ, rather than normalizing by n to obtain cℓ asymptotically). Nevertheless, our
experiments show a good match also in a finite-dimensional setting.

Assumption 3.7 (Distribution of X and x) The columns of X are independent random
vectors, and the columns x of X, and X itself, are assumed to follow the concentration

x ∝ E2 (1 |Rp, ∥ · ∥2) , X ∝ E2
(
1 |Rp×n, ∥ · ∥F

)
,

following the notation introduced earlier in Definition 1.1 in the introductory Chapter 1.

Remark 3.8 This implies the existence of mean and covariance of xi ∈ Cℓ for ℓ = 1, 2,

µℓ = E [xi] , Σℓ = Cov (xi) = E
[

xix⊤i
]
− µℓµ

⊤
ℓ , i ∈ {1, . . . , nℓ}.

Furthermore, let us also introduce Cℓ, sometimes called the generalized covariance matrix,

Cℓ = Σℓ + µℓµ
⊤
ℓ = E

[
xix⊤i

]
∈ Rp×p, ℓ = 1, 2, (3.5)

that will also be used throughout the rest of this chapter. Furthermore, it will be conve-
nient to assume that Σ1 = Σ2 = Ip, such that the two classes are only distinguishable by
their means. Still, parts of the derivation below will be valid in a more general setting
of an arbitrary (or diagonal) covariance, such that we will also make use of the general
notation with Σ1 and Σ2, and pass to the special case when convenient. ♢

91

Assumption 3.9 (Growth rate of data and stepsize) For the growth rate of the hyperpa-
rameter τ and the spectral norm of the data matrix X we assume that

τ = O(1/n), ∥X∥2→2 = O(
√

n).

Making the dependence on n explicit, let us put τn = 1
n for the sequence (τn)n∈N.

Remark 3.10 (Consistency with convergence guarantuees) Let us point out that Assump-
tion 3.9 is consistent with the convergence condition (1.11) of ISTA, τ∥X∥2

2→2 < 2. ♢

We have already discussed the convergence of ISTA in Section 1.2 in Chapter 1. Note
that under the asymptotic regime employed here, it is not clear in which sense to define
convergence of ISTA if not only j → ∞, but in the triple limit n, p, j → ∞ (i.e., the di-
mension, sample size and the number of iteration tending to infinity). This is different to
the notions of convergence under this asymptotic framework we have encountered oth-
erwise, such as in the sense of convergence of measures as seen in Theorem 1.12, or in the
sense of deterministic equivalents (see Definition B.5); the latter however boils down to
the simpler case of convergence of scalars. For constructing a practical algorithm in Sec-
tion 3.4 (which of course will always be applied to a case of finite dimension and sample
size), we will take the approach of “freezing” the iteration index j and, if required, take
only the limit n, p → ∞ to derive deterministic equivalents of interest.

It is interesting to view the solution of ISTA as the as the solution of corresponding
random fixed-point equation. A key finding, and explanation for the good theoretical
results presented in Section 3.4, is the observation that the concentration assumed on the
data (see Assumption 3.7 above) induces a concentration on the weight vector ω (whose per-
formance thus becomes predictable). Similar observations has been made before, like the
propagation of data concentration to the weights of the softmax function [SLCT21]. We
will show a similar result for the random ISTA fixed point, also establishing more gener-
ally a concentration of measure phenomenon appearing in the solution of the LASSO.

3.3 Random Fixed Point Equations: Data Concentration Induces Model
Concentration

In this section, we investigate the formulation of ISTA as the random fixed-point equation

ω = Φ(X)(ω) = Sλτ

(
ω + τX(y − X⊤ω)

)
, (3.6)

where Φ(X) is a random function whose randomness is induced by the random data
matrix X. Implicitly, this defines a random vector ω⋆ ∈ Rp, i.e., the solution of the ran-
dom fixed point equation. (Further below in Remark 3.12, we will comment on questions
of measurability of Φ(X) and show that ω is indeed a Borel-measurable function, and
therefore a well-defined random vector taking values in Rp.)

Our major goal in this section is to prove that the assumption of the random data
matrix X to be concentrated (in the sense of Definition 1.1), as stated in Assumption 3.7,
induces a tight concentration of the random solution of the fixed point equation, that is,
of the random vector ω⋆ ∈ Rp. We will tackle this problem with the help of Theorem 3.11
below, a probabilistic variant and extension of the classical Banach fixed point theorem.
It is a slight reformulation of original result [LC20, Theorem 5]; see also [Lou23, Theorem
C.6]. Before we state the result, we introduce some necessary notation. For any function

92

Ψ ∈ C(Rp) := { f : Rp → Rp | f is continuous}, let us define a semi-norm on C(Rp) by

∥Ψ∥B(r) = sup
ω∈B(r)

∥Ψ(ω)∥2 = sup
∥ω∥2≤r

∥Ψ(ω)∥2, (3.7)

where B(r) = {ω ∈ Rp : ∥ω∥2 ≤ r∥} is closed the ball of radius r in (R, ∥ · ∥2). We
consider the situation where Ψ is a random function (more precisely, a random variable
taking values in C(Rp); for questions of measurability, again we refer to Remark 3.12 be-
low). This evokes the random fixed-point equation ω = Ψ(ω), like in the case Ψ = Φ(X)
in (3.6). Besides basic question of existence and uniqueness of its solution, also properties
like the concentration the of distribution of ω⋆ (induced by the distribution over Ψ) are
of interest. The following result provides a general statement in this regard. While exis-
tence and uniqueness are a straightforward consequence of Banachs fixed point theorem,
under appropriate assumptions it additionally guarantees a concentration of the random
solution of the fixed point equation.

Theorem 3.11 ([LC20, Theorem 5]) Let Ψ be a random function taking values in C(Rp) = { f :
Rp → Rp | f is continuous}, equipped with the semi-norm ∥ · ∥B(r) from (3.7). Furthermore,
let ε ∈ (0, 1) and σ, δ > 0 be some parameters (possibly depending on the dimension p). Then,

(i) if Ψ is (1 − ε)-Lipschitz almost surely, that is, with probability one it holds that

∥Ψ(ω1)− Ψ(ω2)∥2 ≤ (1 − ε)∥ω1 − ω2∥2 ∀ω1, ω2 ∈ Rp,

by Banach’s fixed point theorem, for almost any realization of Ψ the random fixed point equation
ω = Ψ(ω) has a unique solution. Further, if additionally the following conditions are satisfied,

(ii) ∥Ψ(0)∥2 ≤ δ almost surely, and

(iii) Ψ ∝ E2

(
σ | C(Rp), ∥ · ∥B(δ/ε)

)
,

then, the random vector ω⋆ ∈ Rp, implicitly defined as the solution of the random fixed point
equation ω = Ψ(ω), satisfies the concentration ω⋆ ∝ E2 (σ/ε |Rp, ∥ · ∥2).

For convenience, we have formulated the conditions in (i) and (ii) to hold almost surely.
If required, the result may be restated such that the conclusion holds conditionally on
(the intersection of) the corresponding events. Before we continue to apply this result in
Theorem 3.13 to the ISTA-based random fixed point equation (3.6), let us briefly comment
on questions of measurability arising in the context of Theorem 3.11 to justify the usage of
terms like random functions and to show that ω⋆ is actually (measurable) random vector.

Remark 3.12 Let us comment on questions of measurability arising in the context of
Theorem 3.11. We will denote by Bp and Bp×n the Borel-σ-algebras on Rp and Rp×n,
respectively. Firstly, by definition, X is a random matrix, i.e., it is a measurable mapping

X : (Ω,F , P) → (Rp×n,Bp×n),

where (Ω,F , P) denotes the underlying probability space. While generally it is not obvi-
ous (and not adressed in [Lou23]) which σ-algebra to consider on C(Rp), in the intended
case of Ψ = Φ(X), i.e., for Φ : Rp×n → C(Rp), X 7→ (ω 7→ Φ(X)(ω)), we employ the
following push-forward σ-algebra FΨ on C(Rp) and the probability measure PΨ given by

FΨ = {A ⊂ C(Rp) : Φ−1(A) ∈ Bp×n},

93

PΨ(A) = P(Φ−1(A)), A ∈ FΨ.

In this sense, Φ(X) : (Ω,F , P) → (Rp×n,Bp×n) → (C(Rp),FΨ) is indeed measurable,
i.e., a C(Rp)-valued random variable. Furthermore, by the continuity of Φk for any k ∈ N,

f : (Ω,F , P) → (Rp×n,Bp×n) → (Rp,Bn)

ι ∈ Ω 7→ X = X(ι) 7→ lim
k→∞

Φk(X(ι))(ω0) = ω⋆ a.s. ,

for any initialization ω0 ∈ Rp of the fixed point iteration, and therefore, the limit ω⋆

is a (Borel-)measurable random vector taking values in Rp, as it is a pointwise limit
of a sequence of measurable functions (recall that continuous functions are also Borel-
measurable). ♢

Let us now turn towards our application of the above result to the ISTA-based fixed
point equation (3.6), again using the notation introduced in Definition 1.1. The following
result has not been published before, and in particular was not contained in [TSSCV22].
From a mathematical perspective, we consider it the main result of this chapter. It states
that, under realistic assumptions, the solution of the fixed point equation (3.6) is concen-
trated with an observable diameter of order 1/

√
p (or 1/

√
n, as p, n are commensurable

by Assumption 3.6). Intuitively this means that for large p, the solution of the fixed
point equation behaves essentially deterministically (by considering φ in Definition 1.1
to be the 1-Lipschitz continuous coordinate projections). This observation also helps to
explain our numerical results in the next section.

Theorem 3.13 (S., 2023) Under the standing assumptions from the previous section, the random
vector ω⋆ ∈ Rp as implicitly defined as the solution of the random fixed point equation (3.6),
i.e., ω = Φ(X)(ω) (and thus, the solution of the corresponding LASSO problem), satisfies,
conditionally on the high-probability event {τ∥X∥2

2→2 ≤ 1− ε}, for ε ∈ (0, 1), the concentration

ω⋆ ∝ E2 (1/
√

p |Rp, ∥ · ∥2) .

This result is an application of of Theorem 3.11. Compared to the conclusion of that
result, note that in the conclusion of Theorem 3.13 we omit the dependency on ε ∈ (0, 1),
which is treated as an absolute constant, as described in the very end of the proof.

Proof. Note that for our application of Theorem 3.11 to the ISTA-based random fixed
point equation (3.6), the function Φ(X) plays the role of the (random) function Ψ, with
the randomness being induced by the randomness of the data matrix X, so that we will
write Ψ = Φ(X). We have to check all the conditions from Theorem 3.11. Firstly, with
regard to the Lipschitz condition (i), we obtain the following chain of inequalities

∥Φ(X)(ω1)− Φ(X)(ω2)∥2

≤
∥∥∥Sλτ

(
(I − τXX⊤)ω1 + τXy

)
− Sλτ

(
(I − τXX⊤)ω2 + τXy

)∥∥∥
2

≤
∥∥∥(I − τXX⊤)ω1 + τXy − (I − τXX⊤)ω2 − τXy

∥∥∥
2

≤
∥∥∥(I − τXX⊤)ω1 − (I − τXX⊤)ω2

∥∥∥
2

≤
∥∥∥I − τXX⊤

∥∥∥
2→2

∥ω1 − ω2∥2

≤(1 − ε)∥ω1 − ω2∥2,

94

where the last step holds due to part (ii) of Lemma C.2, conditionally on the high-probability
event {τ∥X∥2

2→2 ≤ 1− ε}. In the second step, we will check that condition (ii) in Theorem
3.11 is satisfied. Again replacing Ψ by Φ(X), we obtain the following simple estimate

∥Φ(X)(0)∥2 = ∥Sλτ (τXy)∥2 ≤ ∥τXy∥2

≤τ∥X∥2→2∥y∥2 = τ∥X∥2→2
√

n
≤δ

with δ = O(1) by Assumption 3.9. Finally, let us move to the third condition of Theorem
3.11. Here, we show another Lipschitz condition, namely that the mapping X 7→ Φ(X)
is a Lipschitz continuous mapping from (Rp×n, ∥ · ∥F) to (C(Rp), ∥ · ∥B(δ/ε)), that is

sup
ω∈B(δ/ε)

∥Φ(X1)(ω)− Φ(X2)(ω)∥2
def
= ∥Φ(X1)− Φ(X1)∥B(δ/ε) ≲ ∥X1 − X2∥F,

where X1, X2 ∈ Rp×n denote any two different realizations of the random data matrix.
With the simple fact that ∥y∥2 =

√
n for the label vector y ∈ {−1, 1}n, we indeed obtain

∥Φ(X1)(ω)− Φ(X2)(ω)∥2

=
∥∥∥Sλτ

(
ω + τX1(y − X⊤

1 ω)
)
− Sλτ

(
ω + τX2(y − X⊤

2 ω)
)∥∥∥

2

≤
∥∥∥ω + τX1(y − X⊤

1 ω)− ω − τX2(y − X⊤
2 ω)

∥∥∥
2

=τ
∥∥∥X1(y − X⊤

1 ω)− X2(y − X⊤
2 ω)

∥∥∥
2

=τ
∥∥∥X1y − X1X⊤

1 ω − X2y + X2X⊤
2 ω
∥∥∥

2

=τ
∥∥∥X1y − X2y + X2X⊤

2 ω − X1X⊤
1 ω
∥∥∥

2

≤τ ∥(X1 − X2)y∥2 + τ
∥∥∥(X2X⊤

2 − X1X⊤
1)ω

∥∥∥
2

≤τ
√

n ∥X1 − X2∥2→2 + τ
∥∥∥X2X⊤

2 − X1X⊤
1

∥∥∥
2→2

∥ω∥2

≤τ
√

n ∥X1 − X2∥2→2 + τ
∥∥∥X2X⊤

2 − X1X⊤
2 + X1X⊤

2 − X1X⊤
1

∥∥∥
2→2

∥ω∥2

≤τ
√

n ∥X1 − X2∥2→2 + τ
∥∥∥(X2 − X1)X⊤

2 + X1(X⊤
2 − X⊤

1)
∥∥∥

2→2
∥ω∥2

≤τ
√

n ∥X1 − X2∥2→2 + 2τ max
ℓ=1,2

∥Xℓ∥2→2 ∥X1 − X2∥2→2 ∥ω∥2

=

(
τ
√

n + 2τ max
ℓ=1,2

∥Xℓ∥2→2∥ω∥2

)
∥X1 − X2∥2→2 .

Next, using the ISTA convergence condition, i.e., τ∥X∥2
2→2 < 2 ⇐⇒ ∥X∥2→2 < 2/

√
τ

(see also Assumption 3.9) and passing to the supremum over ω, and simply moving to
the Frobenius norm (by equivalence to the spectral norm), we obtain the inequality

sup
ω∈B(δ/ε)

∥Φ(X1)(ω)− Φ(X2)(ω)∥2 ≤ (τ
√

n + 4δ
√

τ/ε)∥X1 − X2∥F.

Thus, again by Assumption 3.9 on the growth rate of τ, we obtain the Lipschitz condi-
tion ∥Φ(X1)− Φ(X1)∥B(δ/ε) ≤ σ∥X1 − X2∥F with Lipschitz constant σ = O(1/

√
n). By

Assumption 3.7 combined with the stability of concentration under Lipschitz continuous

95

mappings (see also the comment below Definition 1.1) we have shown the implication

X ∝ E2
(
1 |Rp×n, ∥ · ∥F

)
=⇒ Φ(X) ∝ E2

(
σ | C(Rp), ∥ · ∥B(δ/ε)

)
,

i.e., the (data) concentration of X induces a concentration of Φ(X). Thus, we have ver-
ified the condition in part (iii) of Theorem 3.11. The conclusion of that result, ω⋆ ∝
E2 (σ/ε |Rp, ∥ · ∥2) with ε ∈ (0, 1) and σ = O(1/

√
n), gives us the desired result ω⋆ ∝

E2
(
1/

√
p |Rp, ∥ · ∥2

)
; recall that by Assumption 3.6, n and p are commensurable. ■

Remark 3.14 Note that the proof only makes use of the condition ∥y∥2 = O(
√

n) on the
label vector y ∈ {−1, 1}n which may easily be satisfied beyond the particular classifica-
tion problem under investigation here, thus potentially opening the door for application
such as in regression. However, the applicability is also restricted by Assumption 3.6,
i.e., n > p (such that XX⊤ is of full rank with high probability/almost surely) and the
application of Lemma C.2 (ii); see also the comment below that result. ♢

3.4 Derivation of the Algorithm and Numerical Experiments

Introduction. The goal of this section is to derive, and numerically test, a practical al-
gorithm to predict the classification accuracy of the LASSO-based classifier, based on the
results from Section 3.1, in particular Lemma 3.1 and Proposition 3.3. It should be noted
that the derivation is not entirely rigorous, and furthermore, there is a lack of conver-
gence guarantees for the resulting algorithm. Nevertheless, some parts of the derivation
can be proven (possibly under additional assumptions), and it is confirmed by numerical
experiments.

Recall that our goal is to find the mean E[ω⋆] and covariance Cov(ω⋆) of the classifier
ω⋆ from (3.3) in order to employ the techniques from Section 3.1.1. This is a challeng-
ing task, and likely there exists no closed-form solution. Our approach is based on the
construction of an iteration scheme that computes mean and covariance updates for any
ISTA iteration ωj → ωj+1 as in (3.4). This scheme resembles ISTA itself, and while its
convergence properties are unclear, it yields very promising numerical results. We begin
by rewriting a single iteration of ISTA, simply by introducing an intermediate zj+1 and
separating the application of the soft-thresholding function Sτλ as follows:

zj+1 = ωj − τXX⊤ωj + τXy, ωj+1 = Sτλ(zj+1). (3.8)

In the sense of keeping the iteration index j fixed, that is, while considering a single
update step of ISTA, we will also omit the index j for simplicity and write in a short way

z = ω − τXX⊤ω + τXy, ω = Sτλ(z). (3.9)

In the next step, let us rewrite zj+1 from (3.8) based on basic rules for matrix computa-
tions, and further pass to the mean. Using the short notation z from (3.9), we obtain

E[z] = E
[
ω + τXy − τXX⊤ω

]
= E[ω] + τE[Xy]− τ

n

∑
i=1

E
[
(ω⊤xi)xi

]
= E[ω] + τ

n

∑
i=1

yiµπ(i) − τ
n

∑
i=1

E
[
(ω⊤xi)xi

]
. (3.10)

96

Next, we can express the desired mean and covariance of ωj in terms of zj as follows by

E
[
ωj
]
= E

[
Sτλ(zj)

]
, (3.11)

Cov
(

ωj
)
= E

[
Sτλ(zj)Sτλ(zj)⊤

]
− E

[
Sτλ(zj)

]
E
[
Sτλ(zj)

]⊤
. (3.12)

It will be convenient to introduce the following functions φ and Γ for computing the
expressions in (3.11) and (3.12).

φ(λ, µ, σ) = Ez∼N (µ,σ2)[Sλ(z)], (3.13)

Γ(λ, µ, σ) = Ez∼N (µ,σ2)[S
2
λ(z)]. (3.14)

Note that the usage of the normal distributions in the functions φ and Γ in (3.13) and
(3.14) is not justified rigorously, but based on the following reasoning, that assumes an
approximately Gaussian behavior of zj. By the concentration of ω⋆ with observable di-
ameter of order 1/

√
p by Theorem 3.13, we may assume a similar tight concentration of

ωj for sufficiently large j. Then, the normal distribution is justified by Theorem 1.11 in
the introductory chapter, see also [TSSCV22, Lemma 2]. Let us use the opportunity to
introduce another function ψ which takes a form similar to those of φ and Γ (and where
a similar reasoning applies), even though its usage will become apparent later in (3.29),

ψ(λ, µ, σ) = Ez∼N (µ,σ2)

[
S′

λ(z)
]

. (3.15)

(We comment on the derivative of the soft-thresholding function below in Remark 3.15.)
Closed-form expressions (even though somewhat technical and requiring numerical in-
tegration) for these functions are provided in the Appendix in Section C.2. Note that the
functions φ, Γ, ψ are all defined in the setting of a one-dimensional Gaussian distribution
z ∼ N (µ, σ2), but can be extended to the multivariate setting with an elementwise appli-
cation. More concretely, let us consider a multivariate Gaussian random vector v in Rp,
and denote the diagonal of its covariance matrix by σv, i.e., , let us recall our notation

σv := D(Σv) ∈ Rp, for v ∼ N (v̄, Σv).

With the approximately Gaussian z in the sense of (3.9), the functions φ, ψ will be used as

φ(λ, z̄, σz) = Ez∼N (z̄,Σz) [Sλ(z)] ,

ψ(λ, z̄, σz) = Ez∼N (z̄,Σz)

[
S′

λ(z)
]

,

by an elementwise application of the respective function, and the expectation. Let us
recall that, by Assumption 3.7 and Remark 3.8, we consider the simple case of Σ1 =
Σ2 = Ip, even though parts of the derivation will be carried out in the general setting.
Therefore, by Remark 3.5, we only require σω⋆ = D(Σω⋆) ∈ Rp, i.e., the diagonal of the
covariance Σω⋆ of the random solution ω⋆, rather than the entire expression Σω⋆ ∈ Rp×p.
Similarly, for our iterative scheme at the jth iteration, we only compute an approximation
of σωj = D(Σωj) ∈ Rp rather than Σωj ∈ Rp×p. Therefore, to compute the diagonal of
the first summand of the right hand side in (3.12), we employ the function Γ from (3.14)
as

Γ(λ, z̄, σz) = Ez∼N (z̄,Σz)

[
D
(

Sλ(z)Sλ(z)⊤
)]

∈ Rp.

97

Note that indeed we only need to deal with the expressions of the type Sλ(zk)
2 for

k = 1, . . . , p, while the knowledge of the off-diagonal terms Sλ(zk)Sλ(zl) with k ̸= l is not
required. (They would be needed for the case of general covariances, which would then
also require multidimensional numerical integration.) Thus, the one-dimensional form
turns out to be sufficient for Γ, given in (3.14), and similar to φ and ψ in (3.13) and (3.15).

Remark 3.15 Regarding the function ψ from (3.15), note that the soft-thresholding func-
tion Sλ is differentiable almost everywhere except for the points ±λ. We simply put

S′
λ : R → R, x 7→


1 if x ≤ −λ,
0 if |x| < λ,
1 if x ≥ λ.

(3.16)

Its derivative is piecewise constant, where the points ±λ could have been assigned to the
respective other neighboring intervals where Sλ behaves linearly. ♢

Overview. Before delving into the technical details, let us provide a brief overview on
the algorithm to be derived, partially reviewing results already presented, partially pro-
viding an outlook and motivating the upcoming derivations. Let us recall that the data
distribution on X (characterized by their class-specific means µℓ and covariances Σℓ for
ℓ = 1, 2) induces a distribution on the classifier ω⋆, which in turn induces distributions
on the classification score g(x) = x⊤ω⋆. As discussed, we assume normal distributions

g(x) = x⊤ω ∼ N
(
mℓ, σ2

ℓ

)
, x ∈ Cℓ, ℓ = 1, 2,

with their respective means mℓ and variances σ2
ℓ . In the special case Σ1 = Σ2 = Ip, simply

σ2 := σ2
1 = σ2

2 holds. For known means and their joint variance, when we are given

m1,m2 ∈ R, σ2 > 0,

and for simplicity also assuming that both classes have the same size n1 = n2, Corollary
3.2 allows us to predict the classification error ε given as follows by

ε =
1
2

Q
(
m2 −m1

σ2

)
, Q(t) =

1√
2π

∫ t

−∞
e−

x2
2 dx,

with Q given in (B.4) in the appendix. With Proposition 3.3 we can decompose the mean
and variance of the classification score in terms of the statistics of the underlying data,
and the induced distribution of the classifier, which remains to be estimated.

• For the mean updates ω̄j → ω̄j+1 (and the corresponding mean updates mj
ℓ → m

j+1
ℓ

for the classification score) we derive an iterative procedure based on determinis-
tic equivalents in Section 3.4.1. Somewhat simplified (simply using the unknown
means for z̄j as in (3.10), instead of the deterministic equivalents to be used below),
this mean update consists of the steps

z̄j = ω̄j + τ
n

∑
i=1

yiµπ(i) − τ
n

∑
i=1

E
[
(x⊤i ωj)xi

]
ω̄j+1 = φ

(
λτ, z̄j+1, σ

j
z

)
,

m
j+1
ℓ = µ⊤

ℓ ω̄j ℓ = 1, 2.

98

• Similarly, in Section 3.4.2 we will derive an iterative procedure for the covariance
updates. Instead of full covariance updates Σωj → Σωj+1 , in the special case of
Σ1 = Σ2 = Ip it is sufficient to compute updates ω̄j → ω̄j+1 for its diagonal. Indeed,
again by Proposition 3.3 we approximate σ2 = Var(g(x)) = E[g(x)2]− E[g(x)]2 ≈
tr(Σω I) = σω1p, using the dominant first summand from (3.2), leaving us with the
task of approximately computing σω ∈ Rp.

In this way, we obtain an algorithm for the mean and covariance updates, resembling
ISTA itself. We begin with the mean updates in the next section.

3.4.1 Mean Updates

The goal of this section is to find at each iteration the mean of z = ω + τX
(
y − X⊤ω

)
, as

already layed out in (3.10). We consider the more general and easier task of finding a de-
terministic equivalent z̄ of z: note that expectations are always a deterministic equivalent,
but may be difficult to compute, while other deterministic objects may show a similar be-
havior under scalar observations. (We refer to Section B.4 for the definition and a small
introduction on deterministic equivalents.) Therefore (note that expectations may be re-
placed by deterministic equivalents later on, i.e., we may sometimes use an expectation
and pass to only a deterministic equivalent later on), we approximately compute

z̄ = ω̄ + τ
n

∑
i=1

µπ(i)yi − τ
n

∑
i=1

E
[(

x⊤i ω
)

xi

]
, (3.17)

where we recall that π(i) ∈ {1, 2} denotes the class (C1 or C2, respectively) of the sample
i. Then, passing from z̄ to ω̄ with (3.11) and (3.13), and iterating this procedure will lead
to an iterative algorithm that resembles ISTA itself. The intrinsic difficulty inherent to
computing z̄ in (3.17) arises from the contained term

E
[(

x⊤i ω
)

xi

]
, (3.18)

due to the non-trivial dependency between ω (and therefore, also x⊤i ω), and xi, as ω itself
depends on X, and so in particular on xi. To deal with these issues, we will employ the so-
called leave-one-out approach to first tackle x⊤i ω and to “break” the dependence between xi
and ω, followed by an application of Proposition B.2 for the expression in (3.18). Finally,
this can be used for the entire sum over the terms of the form in (3.18), enabling us to
compute the entire expression from (3.17).

Leave-one-out procedure. To prepare for the leave-one-out procedure, let us begin by
rewriting the ISTA-based fixed point equations as follows. For any i = 1, . . . , n, note that

ω = Sτλ

(
ω + τX

(
y − X⊤ω

))
(3.19)

= Sτλ

(
ω + τ

n

∑
k=1

(
yk − x⊤k ω

)
xk

)

= Sτλ

(
ω + τ

n

∑
k ̸=i

(
yk − x⊤k ω

)
xk + τ

(
yi − x⊤i ω

)
xi

)
= Sτλ

(
ω + τX−i

(
y−i − X⊤

−iω
)
+ τ

(
yi − x⊤i ω

)
xi

)
. (3.20)

99

Here, we splitted up the argument into two parts, one independent of xi and only the
other one involving xi, where X−i and y−i appearing in (3.20) are the data matrix and
label vector deprived of the ith data point. Formally, X−i and y−i are defined as

X−i := [x1, . . . , xi−1, 0, xi+1, . . . , xn] ∈ Rp×n,

y−i := [y1, . . . , yi−1, 0, yi+1, . . . , yn]
⊤ ∈ Rn.

Note that by inserting zeros, X−i and y−i keep the same size as their original counterparts
X and y. Next, by omitting the term in (3.20) depending on xi, we implicitly define a
leave-one-out version ω−i of ω as the solution of the following fixed point equation,

ω−i = Sτλ

(
ω−i + τX−i

(
y−i − X⊤

−iω−i

))
, (3.21)

which is independent of xi. Introducing a parameter t ∈ [0, 1] controlling the influence
of this term in (3.20) that does involve xi leads to the parameterized fixed point equation

ω−i(t) = Sτλ

ω−i(t) + τX−i

(
y−i − X⊤

−iω−i(t)
)
+ τt(yi − x⊤i ω−i(t))︸ ︷︷ ︸

=:ρi(t)

xi

 , t ∈ [0, 1],

which implicitly defines ω−i(t) for i = 1, . . . , n and t ∈ [0, 1] as the solution of this
equation. For any i = 1, . . . , n, this defines a path from ω−i(0) to ω−i(1) connecting
the leave-one-out solution ω−i from (3.21) and the original fixed point ω from (3.19), as
indeed it holds that

ω−i(0) = ω−i, and ω−i(1) = ω,

and we will be interested in determining the difference between them. By the fundamen-
tal theorem of calculus applied entrywise, the difference between ω and its leave-one-out
approximation ω−i can be expressed as

ω∆i = ω − ω−i = ω−i(1)− ω−i(0) =
∫ 1

0

∂ω−i(t)
∂t

dt ∈ Rp, (3.22)

where ∂ω−i(t)
∂t is the derivative of ω−i. Next, by recalling the (scalar-valued) expression

ρi(t) = τt(yi − x⊤i ω−i(t)) (3.23)

as already introduced above, this derivative is given (implicitly, like ω−i itself) by

∂ω−i(t)
∂t

=

[
∂ω−i(t)

∂t
− τX−iX⊤

−i
∂ω−i(t)

∂t
+

∂ρi(t)
∂t

xi

]
(3.24)

⊙
[
Sτλ

′
(

ω−i(t) + τX−i

(
y−i − X⊤

−iω−i(t)
)
+ ρi(t)xi

)]
, t ∈ [0, 1],

where ⊙ is the Hadamard product, i.e., multiplication entrywise; recall (3.16) for the
derivative of the soft-thresholding function. In order to pass from this notation to a
matrix-vector product, let us define the (parameterized) diagonal random matrix Di(t) ∈
Rp×p,

Di(t) := diag
[
Sτλ

′
(

ω−i(t) + τX−i

(
y−i − X⊤

−iω−i(t)
)
+ ρi(t)xi

)]
, t ∈ [0, 1]. (3.25)

100

Note that while Di(t) may look complicated on first glance, it is a diagonal matrix with
entries in {0, 1}; in other words, it can be obtained from the identity matrix of the same
size by (possibly) changing some of the diagonal entries to zero. With the help of the
matrix Di(t), we can rewrite the above equation from (3.24) in a more compact form by

∂ω−i(t)
∂t

=

[
Di(t)

∂ω−i(t)
∂t

− τDi(t)X−iX⊤
−i

∂ω−i(t)
∂t

+ Di(t)
∂ρi(t)

∂t
xi

]
, t ∈ [0, 1].

In the next step, by summarizing terms and rearranging, this can be reformulated as

[
Ip − Di(t) + τDi(t)X−iX⊤

−i

] ∂ω−i(t)
∂t

= Di(t)
∂ρi(t)

∂t
xi, t ∈ [0, 1].

Finally, this can be rewritten once again to obtain the following closed-form solution

∂ω−i(t)
∂t

=
∂ρi(t)

∂t
Qi(t)Di(t)xi, t ∈ [0, 1], (3.26)

with the (parameterized by t ∈ [0, 1]) random matrix Qi(t) ∈ Rp×p being defined as

Qi(t) =
[

Ip − Di(t) + τDi(t)X−iX⊤
−i

]−1
, t ∈ [0, 1]. (3.27)

Note that the invertibility in (3.27) follows from the fact that the matrix is positive definite
(with high probability). Next, we will approximate Di(t) and Qi(t) from (3.25) and (3.27)
by random matrices D and Q taking a simpler form, not depending on t, and derive
deterministic equivalents for them, before we are able to derive a deterministic equivalent
for (ω⊤xi)xi, which was the starting point of this section in (3.18).

Definition of D and Q and their deterministic equivalents. We will make the follow-
ing simplification to approximate the random matrices Di(t) and Qi(t) from (3.25) and
(3.27) by random matrices D and Q which neither depend on t ∈ [0, 1], nor on the leave-
one-out index i ∈ {1, . . . , n}. (Note that this step is not rigorously proven.) Concretely,
by inserting t = 1, firstly Di(1) becomes

D := diag
[
Sτλ

′
(

ω + τX
(

y − X⊤ω
))]

, (3.28)

including the ith sample and therefore justifying the notation of D. A deterministic equiv-
alent for D in (3.28), denoted as D̄, can be obtained easily by computing the expectation

D̄ = E [D] = E
[
diag

(
Sτλ

′(z)
)]

= diag (ψ(τλ, z̄, σz)) , (3.29)

relying on the approximately Gaussian behavior of z and using the function ψ from (3.15).
Similar to the procedure for Di(t), we plug t = 1 into Qi(t) from (3.27) to obtain an
expression which however still depends on i as it contains X−iX⊤

−i. Replacing this ex-
pression simply by XX⊤ (which asymptotically has the identical spectral properties), we
arrive at, and, as another simplification, replacing the random matrix D by its mean (or
deterministic equivalent) D̄ = E [D] from (3.29),

Q =
[

Ip − D̄ + τD̄XX⊤
]−1

, (3.30)

101

which indeed no longer depends on the leave-one-out index i, which again justifies the
notation. Next, we want to derive a deterministic equivalent of Q as defined in (3.30).
Let us recall that, by Assumption 3.9, we have τ = 1/n, such that τXX⊤ coincides with
1
n XX⊤. Therefore, the task of finding a deterministic equivalent Q̄ of Q from (3.30) is
related to the task of finding deterministic equivalents of the so-called resolvent (1

n XX⊤ +

zIp)−1 of 1
n XX⊤, defined for any z ∈ C such that 1

n XX⊤ + zIp is invertible. (Note that z
may be replaced by −z in the definition of the resolvent, but for our purposes this choice
is convenient.) This problem has been studied in [LC18b] before, and we will adapt its
solution to our situation. As also explained in [LC18b], the naive approach of simply
passing to the mean with (1

n E[XX⊤] + zIp)−1 generally does not provide a deterministic
equivalent of the resolvent. Adapting the approach of [LC18b], we instead make the
following ansatz, for some deterministic matrix S′ ∈ Rp×p to be determined later on,

Q′ :=
[
Ip − D̄ + S′]−1 . (3.31)

Next, we will apply Lemma B.6, a very convenient tool to compute the difference Q′ − Q
in terms of their respective inverse matrix, leading to favourable simplifications, since

Q′ − Q =Q(Q−1 − Q′−1
)Q′

=Q
[
(Ip − D̄ + τD̄XX⊤)− (Ip − D̄ + S′)

]
Q′

=Q
(

τD̄XX⊤ − S′
)

Q′.

Passing to the mean, recalling τ = 1/n from Assumption 3.9 and further using τXX⊤ =
1
n XX⊤ = 1

n ∑n
i=1 xix⊤i as well as simply ∑n

i=1
S′

n = S′, we obtain the chain of equalities

E[Q′ − Q] =E
[

Q
(

τD̄XX⊤ − S′
)

Q′
]

=E

[
Q

(
1
n

D̄
n

∑
i=1

xix⊤i −
n

∑
i=1

S′

n

)
Q′
]

=
1
n

n

∑
i=1

E
[

Q
(

D̄xix⊤i − S′
)

Q′
]

=
1
n

n

∑
i=1

E
[

QD̄xix⊤i Q′ − QS′Q′
]

. (3.32)

Similar to before, we encounter the problem of the dependence between Q and xi for each
summand in (3.32). To break this dependence, we will next derive equivalent expressions
for Q and for QD̄xi in (3.32) that are due to the Sherman-Morrison-Woodbury identity
from Lemma B.7. To that end, let us rewrite Q, and define a leave-one-out variant of Q−i,

Q =

Ip − D̄ + τD̄
n

∑
k=1
k ̸=i

xkx⊤k + τD̄xix⊤i


−1

,

Q−i =

Ip − D̄ + τD̄
n

∑
k=1
k ̸=i

xkx⊤k


−1

. (3.33)

102

Next, an application of Lemma B.7 in the appendix with b = τD̄xi ∈ Rp and c = xi ∈ Rp,
and further with

(
A + bc⊤

)−1
= Q ∈ Rp×p and A−1 = Q−i ∈ Rp×p from (3.33) gives us

Q = Q−i − τ
Q−iD̄xix⊤i Q−i

1 + τx⊤i Q−iD̄xi
. (3.34)

Multiplying (3.34) from the right with D̄xi and straightforward simplifications yield

QD̄xi =Q−iD̄xi −
τQ−iD̄xix⊤i Q−iD̄xi

1 + τx⊤i Q−iD̄xi

=

(
1 + τx⊤i Q−iD̄xi − τx⊤i Q−iD̄xi

1 + τx⊤i Q−iD̄xi

)
Q−iD̄xi

=
Q−iD̄xi

1 + τx⊤i Q−iD̄xi
. (3.35)

Finally, we insert the expressions for Q from (3.34), and for QD̄xi as provided in (3.35),
into their respective appearance in the following expression from (3.32). This then yields

QD̄xix⊤i Q′ − QS′Q′

=Q−i
D̄xix⊤i

1 + τx⊤i Q−iD̄xi
Q′ −

(
Q−i − τ

Q−iD̄xix⊤i Q−i

1 + τx⊤i Q−iD̄xi

)
S′Q′

=Q−i

(
D̄xix⊤i

1 + τx⊤i Q−iD̄xi
− S′

)
Q′ + τQ−i

D̄xix⊤i Q−i

1 + τx⊤i Q−iD̄xi
S′Q′.

Thus, passing again to the mean and once more recalling that τ = 1
n (note that we will

both τ and 1
n in parallel, depending on what is more convenient), now (3.32) reads as

E[Q′ − Q] =
1
n

n

∑
i=1

E

[
Q−i

(
D̄xix⊤i

1 + τx⊤i Q−iD̄xi
− S′

)
Q′
]

(3.36)

− 1
n2

n

∑
i=1

E

[
Q−i

D̄xix⊤i Q−i

1 + τx⊤i Q−iD̄xi
S′Q′

]
. (3.37)

Note that [LC18b, page 8] studies a situation very similar to ours in (3.36) and (3.37), but
with Ip instead of D̄. We conjecture that the findings from [LC18b] can be extended to our
case (recall that D̄, as defined in (3.29), takes a form very similar to that of the identity
matrix of the same size, with possibly a few of the diagonal entries changed from one
to zero), that the second term (3.37) is asymptotically negligible thanks to the additional
factor 1/n compared to the first term (3.36), and a deterministic equivalent of Q given by

Q̄ =

(
Ip − D̄ +

2

∑
ℓ=1

τnℓ

1 + κℓ
CℓD̄

)−1

, (3.38)

103

where κℓ = κπ(i) ∈ R is defined, for xi belonging to class Cℓ with ℓ = π(i) ∈ {1, 2}, by

κπ(i) =τE
[

x⊤i DQxi

]
≈ τ tr(D̄Q̄C̄ℓ) ∈ R, ℓ = π(i) ∈ {1, 2}, (3.39)

κ =
[
κπ(1), . . . , κπ(n)

]⊤
= [κ1, . . . , κ1︸ ︷︷ ︸

n1 times

, κ2, . . . , κ2︸ ︷︷ ︸
n2 times

]⊤ ∈ Rn, n1 + n2 = n,

recalling the symmetric matrix Cℓ from (3.5), and the diagonal matrix D̄ from (3.29). It
should be pointed out that (3.38) is a fixed point equation in Q̄ (recall from (3.39) that
κℓ on the right-hand side of (3.38) indeed depends on Q̄) which we simply attempt to
solve numerically via fixed point iterations for the practical experiments. The expression
of the deterministic equivalent in (3.38) is based on the reasoning layed out in [LC18b]
that S′ (remember that this is a suitable deterministic matrix for finding a deterministic
equivalent) should be chosen for the right-hand side of (3.36) to vanish, motivating the
following choice for S′ from (3.31), analogously to [LC18b],

S′ = τ
n

∑
i=1

D̄E
[
xix⊤i

]
1 + τE

[
x⊤i Q−iD̄xi

] = 2

∑
ℓ=1

τnℓ

1 + τ tr(D̄Q̄C̄ℓ)
CℓD̄.

The deterministic equivalents D̄ and Q̄ from (3.29) and (3.38) will turn out useful for
dealing with the expression ω∆i from (3.22). Plugging (3.26) into the integral in (3.22),
and by ρi(0) = 0 (recall (3.23) for the definition of ρi),

ω∆i =
∫ 1

0

∂ρi(t)
∂t

Qi(t)Di(t)xi dt

≈
∫ 1

0

∂ρi(t)
∂t

QDxi dt

=ρi(1)QDxi

=τ(yi − ω⊤xi)QDxi. (3.40)

Next, recall that ω∆i = ω − ω−i by definition in (3.22). Combining this with our findings,

ω⊤xi =ω⊤
−ixi + ω⊤

∆ xi

≈ω⊤
−ixi + τ(yi − ω⊤xi)x⊤i D⊤Q⊤xi

=ω⊤
−ixi + τyix⊤i DQxi − τω⊤xix⊤i DQxi, (3.41)

where we have also used that both D (as a diagonal matrix) as well as Q (as the inverse of
a symmetric matrix) are symmetric (recall (3.28) and (3.30)). We will make another sim-
plification which is not precisely justified, namely to replace the expression τx⊤i DQxi,
which appears twice in (3.41), by its mean κπ(i) = τE[x⊤i DQxi] from (3.39). This is based
on the reasoning that, if D and Q were deterministic, the expression x⊤i DQxi would
have a tighter concentration (with an observable diameter of 1/n) compared to ω⊤

−ixi
with an observable diameter of 1/

√
n (or equivalently, 1/p and 1/

√
p, respectively); in

other words: the fluctuations in the right-hand side of (3.41) are due to the first sum-
mand, whereas the second and third summand are assumed to be essentially constant in
comparison. In this way, we will obtain the following equation (3.42) provides a relation
between ω⊤xi and its leave-one-out version ω⊤

−ixi. This will be a crucial ingredient to de-
rive a deterministic equivalent of (ω⊤xi)xi in the next step. Proceeding in the described

104

manner, by inserting κπ(i) twice in in (3.41) and rearranging terms after ω⊤xi we obtain

ω⊤xi ≈
ω⊤

−ixi + yiκπ(i)

1 + κπ(i)
, π(i) ∈ {1, 2}. (3.42)

Deterministic equivalent of (ω⊤xi)xi. We return to the challenging task of dealing
with the term (3.18), the main obstacle in computing the mean updates as outlined in
(3.17) in the beginning of this section. We will take the approach of deriving a determin-
istic equivalent (again, we refer to Definition B.5 where they are formally introduced),
i.e., we are aiming for an expression of the following type (for any deterministic “test
vector” v ∈ Rp)

E
[
(ω⊤xi)v⊤xi

]
= v⊤aℓ, xi ∈ Cℓ. (3.43)

Here, the (deterministic) aℓ ∈ Rp provides a deterministic equivalent of (ω⊤xi)xi, that
is: it provides a deterministic expression that behaves, when taking inner products with
arbitrary v ∈ Rp, as if taking inner products of (ω⊤xi)xi with v, in expectation. Towards
obtaining the desired expression (3.43), we insert (3.42) in the first step followed by an
application of Steins identity, (B.5) from Proposition B.2, in the second step, and using
E[ω] ≈ E[ω−i] for large n (or limp→∞ E[u⊤ω−i] = E[u⊤ω] asymptotically for any u ∈
Rp), to obtain that

E
[(

ω⊤xi

) (
v⊤xi

)]
=

Eω−i Exi

[(
ω⊤

−ixi + yiκℓ
) (

v⊤xi
)]

1 + κℓ

=
Eω−i

[
Exi

[(
ω⊤

−ixi
) (

v⊤xi
)]]

+ yiκℓv⊤µℓ

1 + κℓ

=
Eω−i

[
v⊤µℓω

⊤
−iµℓ + v⊤Σℓω−i

]
+ yiκℓv⊤µℓ

1 + κℓ

≈
v⊤µℓµ

⊤
ℓ ω̄ + v⊤Σℓω̄ + yiκℓv⊤µℓ

1 + κℓ

=v⊤
(

Cℓω̄ + yiκℓµℓ

1 + κℓ

)
, (3.44)

recalling again Cℓ = Σℓ+µℓµ
⊤
ℓ from (3.5) and κℓ from (3.39), for each ℓ = 1, 2. Therefore, a

deterministic equivalent of (ω⊤xi)xi for xi belonging to class Cℓ can be read off (compare
again (3.43) for this approach to obtain deterministic equivalents) from (3.44) to be

aℓ :=
Cℓω̄ + (−1)ℓκℓµℓ

1 + κℓ
, ℓ = 1, 2, (3.45)

since yi = (−1)ℓ by the convention for the labels, −1 for class C1 and 1 for class C2, re-
spectively. Note that, in the special case of Cℓ = Ip + µℓµ

⊤
ℓ , the expression for aℓ becomes

aℓ =
ω̄ + µℓµ

⊤
ℓ ω̄ + (−1)ℓκℓµℓ

1 + κℓ
=

µ⊤
ℓ ω̄ + (−1)ℓκℓ

1 + κℓ
µℓ +

ω̄

1 + κℓ
(3.46)

With the derived deterministic equivalent from (3.45), and returning to (3.17), we obtain

z̄ =ω̄ + τ
n

∑
i=1

yiµπ(i) − τ
n

∑
i=1

aπ(i)

105

=ω̄ + τ
2

∑
ℓ=1

(−1)ℓnℓµℓ − τ
2

∑
ℓ=1

nℓaℓ

=ω̄ + τ
2

∑
ℓ=1

nℓ

(
(−1)ℓµℓ − aℓ

)
. (3.47)

3.4.2 Covariance Updates

Preparations. Besides (approximately) computing the mean E[ω], we also need to de-
rive the covariance Cov(ω) in order to apply Proposition 3.3, which provides a de-
composition of the mean E[g(x)] and the variance Var(g(x)) of the classification score
g(x) = ω⊤x in terms of E[ω] and Cov(ω), each for x ∈ C1 and x ∈ C2. (Recall Section
3.1 and Figure 3.1 for an illustration.) Again, similar as for the mean, we will derive an
iterative update scheme for one iteration z = ω − τX(X⊤ω − y) of ISTA (3.8); recall
again that we discard the iteration index j in the interest of readability. Note that we first
deal with Cov(z) in order to pass to Cov(ω) as in (3.12), with the help of the function Γ
introduced in (3.14). However, instead of directly computing the large covariance matrix
Cov(z) = E[zz⊤]− z̄z̄⊤ we consider the following random matrix

M := zz⊤ − z̄z̄⊤, (3.48)

that satisfies E[M] = Cov(z) and is a “stochastic approximation” of the original covari-
ance matrix as the sum of the random matrix zz⊤ and the deterministic matrix z̄z̄⊤. Again
we take the approach of deterministic equivalents, and since by Proposition 3.3 we are
interested in expressions of the type tr(PΣω), we aim for a deterministic equivalent M̄ of
M in the sense of

tr (PCov(z)) = tr (PE[M]) = E [tr (PM)] = tr(PM̄) (3.49)

for any deterministic matrix P, when M̄ can be read off to be a deterministic equivalent.
(Note that this approach is very similar to that of (3.43) for the mean, where we consid-
ered an inner product instead of a trace.) Large parts of the upcoming derivation hold for
general data covariances Σ1 and Σ2. However, in the end we need to return to the sim-
pler setting of Σ1 = Σ2 = I, as then (3.12) can be found more easily with the help of the
function Γ introduced in (3.14) (and also the function φ (3.13), introduced earlier on the
same occasion), which makes it possible to avoid non-diagonal entries; recall also (3.4).
We begin our derivation with the first summand in (3.48) and the simple observation of

zz⊤ =
[
ω − τX(X⊤ω − y)

] [
ω − τX(X⊤ω − y)

]⊤
= ωω⊤ − τωω⊤XX⊤ + τωy⊤X⊤ − τXX⊤ωω⊤ + τXyω⊤ (3.50)

+ τ2XX⊤ωω⊤XX⊤ − τ2XX⊤ωy⊤X⊤ − τ2Xyω⊤XX⊤ + τ2Xyy⊤X⊤,

by straightforward matrix computations. Similarly, now including the expectation, we
obtain for z̄z̄⊤, the second summand in (3.48), by the linearity of the expected value

z̄z̄⊤ = E
[
ω − τX(X⊤ω − y)

]
E
[
ω − τX(X⊤ω − y)

]⊤
= ω̄ω̄⊤ − τω̄E

[
ω⊤XX⊤

]
+ τω̄E

[
y⊤X⊤

]
− τE

[
XX⊤ω

]
ω̄⊤

+ τE [Xy] ω̄⊤ + τ2E
[

XX⊤ω
]

E
[
ω⊤XX⊤

]
− τ2E

[
XX⊤ω

]
E
[
y⊤X⊤

]

106

− τ2E [Xy]E
[
ω⊤XX⊤

]
+ τ2E [Xy]E

[
y⊤X⊤

]
. (3.51)

Leave-one-out procedure. Before deriving a deterministic equivalent M̄ of M, we will
need, as an additional preparation, an adaption of our findings regarding the leave-one-
out approach, notably of (3.42). Recall that this provided us with a link between ω⊤xi
and ω⊤

−ixi, thus enabling to break the dependence between the ith sample and the weight
vector. Here, we will need to adapt this connection to an expression of the type ω⊤Pxi for
any deterministic matrix P ∈ Rp×p. We will need to be able to deal with the expression
ω⊤Pxi. Recalling ω = ω−i + ω∆i from (3.22) and ω∆i ≈ τ(yi − ω⊤xi)QDxi from (3.40),
and further using (3.42), as well as the fact that both D (as a diagonal matrix) as well as
Q (as the inverse of a symmetric matrix) are symmetric, we obtain

ω⊤Pxi =ω⊤
−iPxi + ω⊤

∆i
Pxi

=ω⊤
−iPxi + τ(yi − ω⊤xi)x⊤i D⊤Q⊤Pxi

=ω⊤
−iPxi + τ(yi − ω⊤xi) tr

(
x⊤i DQPxi

)
=ω⊤

−iPxi + τ

(
yi −

ω⊤
−ixi + yiκπ(i)

1 + κπ(i)

)
tr
(

xix⊤i DQP
)

=ω⊤
−iPxi + τ

(
yi − ω⊤

−ixi

1 + κπ(i)

)
tr
(

Pxix⊤i DQ
)

(3.52)

for which we also recall κπ(i) = κℓ from (3.39), for ℓ ∈ {1, 2}. Next, we proceed in a way
similar to the derivation from (3.41) dealing with ω⊤xi. Here, assuming the trace expres-
sion to be almost constant and thus simply replacing it by its mean again, we obtain

ω⊤Pxi = ω⊤
−iPxi +

(
yi − ω⊤

−ixi

1 + κπ(i)

)
Kπ(i), ℓ = π(i) ∈ {1, 2}. (3.53)

where Kπ(i) is given as follows by, with D̄ from (3.29) and Q̄ from (3.38) and Cℓ from (3.5),

Kℓ = τE
[
tr
(

Pxix⊤i DQ
)]

≈ τ tr (PCℓD̄Q̄) = tr (PKℓ) , ℓ = π(i) ∈ {1, 2}, (3.54)

where the matrix Kℓ ∈ Rp×p appearing in (3.54), and its diagonal kℓ ∈ Rp, are defined as

Kℓ = τCℓD̄Q̄ ∈ Rp×p, kℓ = D(Kℓ) ∈ Rp. (3.55)

Note that Kℓ from (3.54) is similar to κℓ = τ tr(CℓD̄Q̄) = tr(Kℓ) from (3.39), but it does
contain the matrix P additionally. Further note that κℓ is simply the sum of the entries
of kℓ for ℓ = 1, 2. These preparations will turn out useful for deriving deterministic
equivalents in the next paragraph.

Deterministic equivalents. Now, let us turn to the task of finding a deterministic equiv-
alent M̄ as stated in (3.49). We begin by rewriting the left-hand side of (3.49) using (3.50)

107

and (3.51) by rearranging and summarizing the individual terms in the following order,

E [tr (PM)] = E
[
tr
(

Pzz⊤
)]

− tr
(

Pz̄z̄⊤
)
=

6

∑
k=1

E [tr (PAk)] , (3.56)

with M from (3.48), and the individual terms A1, . . . , A6 arising in the sum given by

A1 = ωω⊤ − ω̄ω̄⊤,

A2 = τ(B2 + B⊤
2),

A3 = τ(B3 + B⊤
3),

A4 = τ2
(

XX⊤ωω⊤XX⊤ − E
[

XX⊤ω
]

E
[
ω⊤XX⊤

])
,

A5 = −τ2(B5 + B⊤
5),

A6 = τ2
(

Xyy⊤X⊤ − E[Xy]E
[
y⊤X⊤

])
,

where the random matrices B2, B3, B5 ∈ Rp×p from the definitions of A2, A3 and A5 are

B2 = E
[

XX⊤ω
]

ω̄⊤ − XX⊤ωω⊤, (3.57)

B3 = Xyω⊤ − E [Xy] ω̄⊤, (3.58)

B5 =
(

XX⊤ωy⊤X⊤ − E
[

XX⊤ω
]

E
[
y⊤X⊤

])
. (3.59)

We will compute individual deterministic equivalents of the random matrices A1, . . . , A6,
as their sum then provides us with a deterministic equivalent of the matrix M by (3.56).
We will proceed analogously to the approach in (3.49) - only here applied to the indi-
vidual summands. Note that the deterministic equivalents of A1 and A6 are clearly the
easiest to obtain, simply by a straightforward mean computation, since they do not in-
volve both X and ω. For the others, we will rely on variants of the leave-one-out approach
to break the dependency between the two expressions and be able to derive determinis-
tic equivalents, and we may also rely on asymptotics. Let us emphasize again that for
simplicity we drop the iteration index j. For instance, ω̄ is to be read as ω̄j, and Σω is
to be understood as Σ

j
ω. Of course, the deterministic equivalents will again depend on

the data means and (generalized) covariance µℓ, Σ and Cℓ, ℓ = 1, 2, which are in practice
estimated from the training data. Before we proceed with the proofs, let us also introduce
the notation Cω (similar to Cℓ as seen in (3.5) earlier) which will be useful in the sequel,

Cω = E
[
ωω⊤

]
∈ Rp×p. (3.60)

Lemma 3.16 (Deterministic equivalent Ā1.) A deterministic equivalent Ā1 of A1 is given by

Ā1 = Σω.

Proof. For the summand corresponding to A1 on the right-hand side of (3.56) it holds that

E [tr(PA1)] = E
[
tr
(

P
(

ωω⊤ − ω̄ω̄⊤
))]

= tr
(

PE
[
ωω⊤ − ω̄ω̄⊤

])
= tr (PΣω) .

Thus, we can read off - compare again (3.49) - a deterministic equivalent Ā1 = Σω. ■

108

Lemma 3.17 (Deterministic equivalent Ā2.) A deterministic equivalent Ā2 of A2 is given by

Ā2 = τ(B̄2 + B̄⊤
2),

where the deterministic equivalent B̄2 of B2 from (3.57) is given as follows by

B̄2 =
2

∑
ℓ=1

nℓ

(
ω̄a⊤

ℓ +
CℓCω + (−1)ℓκℓµℓω̄

⊤

1 + κℓ
+

κℓ − tr(CωCℓ)

(1 + κℓ)2 Kℓ

)
.

Proof. We only have to derive the deterministic equivalent B̄2 of B2 (as the statement for
Ā2 then immediately follows from their connection A2 = τ(B2 + B⊤

2)), i.e., we consider

E [tr(PB2)] = tr
(

E
[
PXX⊤ω

]
ω̄⊤
)
− tr

(
E
[
PXX⊤ωω⊤

])
. (3.61)

We begin by considering the first summand from the right hand side of (3.61). With the
help of the deterministic equivalent aℓ, ℓ = 1, 2, from (3.45), it is straightforward to obtain

tr
(

E
[
PXX⊤ω

]
ω̄⊤
)
= tr

(
PE

[
n

∑
k=1

(ω⊤xk)xk

]
ω̄⊤
)

=
2

∑
ℓ=1

nℓ tr
(

Paℓω̄
⊤
)

, (3.62)

such that we can immediately find the deterministic equivalent ∑2
ℓ=1 nℓaℓω̄

⊤ for this part
of (3.61). Next, we move on to consider the second summand from (3.61). By inserting
both the expression for ω⊤Pxi from (3.53), and the expression for ω⊤xi from (3.42), both
of which allowing to break the dependency due to the leave-one-out approach, we obtain

tr
(

E
[
PXX⊤ωω⊤

])
=E

[
ω⊤PXX⊤ω

]
=

n

∑
i=1

E
[
ω⊤Pxiω

⊤xi

]
=

n

∑
i=1

E

[(
ω⊤

−iPxi +
yiKπ(i) − Kπ(i)ω

⊤
−ixi

1 + κπ(i)

)(
ω⊤

−ixi + yiκπ(i)

1 + κπ(i)

)]

=
n

∑
i=1

E

[
ω⊤

−iPxiω
⊤
−ixi

1 + κπ(i)

]
+

n

∑
i=1

E

[
yiκπ(i)ω

⊤
−iPxi

1 + κπ(i)

]
(3.63)

+
n

∑
i=1

E

[(
yiKπ(i) − Kπ(i)ω

⊤
−ixi

1 + κπ(i)

)(
ω⊤

−ixi + yiκπ(i)

1 + κπ(i)

)]
(3.64)

After developing terms in (3.64) next, the quantity considered in the previous chain of
equalities can be written as the sum of all the individual summands arising in (3.63) and
(3.64). Towards finding a deterministic equivalent, we will next rewrite them as follows:

n

∑
i=1

E

[
ω⊤

−iPxiω
⊤
−ixi

1 + κπ(i)

]
=

2

∑
ℓ=1

nℓ
tr(PCℓCω)

1 + κℓ
,

n

∑
i=1

E

[
yiκπ(i)ω

⊤
−iPxi

1 + κπ(i)

]
=

2

∑
ℓ=1

nℓ
(−1)ℓκℓ tr

(
Pµℓω̄

⊤)
1 + κℓ

,

109

n

∑
i=1

E

yiKπ(i)ω
⊤
−ixi(

1 + κπ(i)

)2

 =
2

∑
ℓ=1

nℓ
(−1)ℓω̄⊤µℓ

(1 + κℓ)2 Kℓ,

n

∑
i=1

E

 y2
i Kπ(i)κπ(i)(
1 + κπ(i)

)2

 =
2

∑
ℓ=1

nℓ
κℓ

(1 + κℓ)2 Kℓ,

−
n

∑
i=1

E

Kπ(i)
(
ω⊤

−ixi
)2(

1 + κπ(i)

)2

 = −
2

∑
ℓ=1

nℓ
tr (CωCℓ)

(1 + κℓ)2 Kℓ,

−
n

∑
i=1

E

yiκπ(i)Kπ(i)ω
⊤
−ixi(

1 + κπ(i)

)2

 = −
2

∑
ℓ=1

nℓ
(−1)ℓκℓω̄⊤µℓ

(1 + κℓ)2 Kℓ.

Let us also recall Kℓ = tr (PKℓ) with Kℓ = τCℓD̄Q̄ ∈ Rp×p introduced earlier in (3.54)
and (3.55) for ℓ = 1, 2, as well as Cω from (3.60). (Note that we pass from Cω−i to Cω as
they have asymptotically the same spectral properties; compare passing from X−iX⊤

−i to
XX⊤ just below (3.29)). Combining our findings from (3.62) and the expressions derived
for the individual summands in (3.63) and (3.64), we obtain the claimed deterministic
equivalent of B2, and thus of A2. ■

Lemma 3.18 (Deterministic equivalent Ā3.) A deterministic equivalent Ā3 of A3 is given by

Ā3 = τ(B̄3 + B̄⊤
3),

where the deterministic equivalent B̄3 of B3 from (3.58) is given as follows by

B̄3 = τ
2

∑
ℓ=1

nℓ

(
1 − (−1)ℓω̄⊤µℓ

)
1 + κℓ

CℓD̄Q̄.

Proof. We only have to derive the deterministic equivalent B̄3 of B3 (as the statement for
Ā3 then immediately follows from their connection A3 = τ(B3 + B⊤

3)), i.e., we consider

E [tr(PB3)] =E
[
tr
(

P
(

Xyω⊤ − E [Xy] ω̄⊤
))]

=E
[
tr
(

PXyω⊤
)]

− E
[
tr
(

PXyω̄⊤
)]

. (3.65)

For the second summand in (3.65), we can directly compute the mean as follows by

E
[

Xyω̄⊤
]
=

(
2

∑
ℓ=1

(−1)ℓnℓµℓ

)
ω̄⊤ =

2

∑
ℓ=1

(−1)ℓnℓµℓω̄
⊤.

Therefore, we obtain the following expression for the second summand fom (3.65),

E
[
tr
(

PXyω̄⊤
)]

= tr

(
P

2

∑
ℓ=1

(−1)ℓnℓµℓω̄
⊤
)

. (3.66)

Next, we consider the first summand in (3.65), which poses challanges due to the depen-
dency of X and ω, requiring to use (3.53). Here, we obtain (see again (3.54) for Kℓ)

110

E
[
tr
(

PXyω⊤
)]

=
n

∑
i=1

yiE
[
ω⊤Pxi

]
=

n

∑
i=1

yiE

[
ω⊤

−iPxi +

(
yi − ω⊤

−ixi

1 + κπ(i)

)
Kπ(i)

]

=
n

∑
i=1

yiE
[
ω⊤

−iPxi

]
+

n

∑
i=1

yiE

[(
yi − ω⊤

−ixi

1 + κπ(i)

)
Kπ(i)

]

=
n

∑
i=1

E
[
tr
(

Pxiω
⊤
−i

)]
+

n

∑
i=1

yiE

[(
y2

i − yiω
⊤
−ixi

)
1 + κπ(i)

Kπ(i)

]
. (3.67)

While the first term in (3.67) cancels for large n with (3.66), as indeed it holds that

lim
n→∞

n

∑
i=1

yiE
[
tr
(

Pxiω
⊤
−i

)]
= tr

(
P

2

∑
ℓ=1

(−1)ℓnℓµℓω̄
⊤
)

,

it remains to consider the second only the summand from (3.67) to derive the determin-
istic equivalent. For this term, we get as y2

i = 1 and yi = (−1)ℓ with ℓ = π(i) as usual,

lim
n→∞

n

∑
i=1

E

[(
y2

i − yiω
⊤
−ixi

)
1 + κπ(i)

Kπ(i)

]
=

2

∑
ℓ=1

nℓ

(
1 − (−1)ℓω̄⊤µℓ

)
1 + κℓ

Kℓ,

where we recall Kℓ = τ tr (PKℓ) from (3.54), with Kℓ = τCℓD̄Q̄ from (3.55). Therefore

B̄3 =
2

∑
ℓ=1

nℓ

(
1 − (−1)ℓω̄⊤µℓ

)
1 + κℓ

Kℓ

=τ
2

∑
ℓ=1

nℓ

(
1 − (−1)ℓω̄⊤µℓ

)
1 + κℓ

CℓD̄Q̄,

which is the desired deterministic equivalent of B3, and thus of A3. ■

Lemma 3.19 (Deterministic equivalent Ā4.) A deterministic equivalent Ā4 of A4 is given by

Ā4 =τ2
2

∑
ℓ,ℓ′=1

nℓnℓ′Σℓ′ΣωΣℓ

(1 + κℓ)(1 + κℓ′)

+ τ2
2

∑
ℓ=1

nℓ
tr (ΣωΣℓ) + 2(−1)ℓκℓω⊤µℓ + κ2

ℓ

(1 + κℓ)2 Cℓ

+
2

∑
ℓ=1

nℓ

(
aℓa⊤

ℓ +
tr (ΣωΣℓ) + 2ω̄⊤µℓ(−1)ℓκℓ + κ2

ℓ

(1 + κℓ)
2 µℓµ

⊤
ℓ

)
.

Proof. Similar to before, up to normalization by τ2 the summand with A4 is given by

1
τ2 E [tr(PA4)]

=E
[
tr
(

P
(

XX⊤ωω⊤XX⊤ − E
[

XX⊤ω
]

E
[
ω⊤XX⊤

]))]
. (3.68)

111

We begin by considering the first term in (3.68). By rewriting the expression and splitting
up the sum, using basic properties of the trace and, as before, XX⊤ω = ∑n

k=1(ω
⊤xk)xk

and a similar expression for its transpose ω⊤XX⊤ = ∑n
k=1(ω

⊤xk)x⊤k , we obtain

E
[
tr
(

PXX⊤ωω⊤XX⊤
)]

=
n

∑
k=1

E

[
tr
(

P
(

ω⊤xk

)2
xkx⊤k

)]
+

n

∑
k,l=1
k ̸=l

E
[
tr
(

P(ω⊤xk)(ω
⊤xl)xkx⊤l

)]

=
n

∑
k=1

E

[(
ω⊤xk

)2
x⊤k Pxk

]
+

n

∑
k,l=1
k ̸=l

E
[
(ω⊤xk)(ω

⊤xl)x⊤l Pxk

]
. (3.69)

Next, let us move to the second term in (3.68). Again, rewriting the arising expressions
and splitting up the sum, and further using the deterministic equivalent (3.45), we obtain

tr
(

PE
[

XX⊤ω
]

E
[
ω⊤XX⊤

])
= tr

(
PE

[
n

∑
k=1

(ω⊤xk)xk

]
E

[
n

∑
l=1

(ω⊤xl)x⊤l

])

=
n

∑
k,l=1

tr
(

PE
[
(ω⊤xk)xk

]
E
[
(ω⊤xl)x⊤l

])
=

n

∑
k=1

tr
(

PE
[
(ω⊤xk)xk

]
E
[
(ω⊤xk)xk

]⊤)
+

n

∑
k,l=1
k ̸=l

tr
(

PE
[
(ω⊤xk)xk

]
E
[
(ω⊤xl)x⊤l

])

=
n

∑
k=1

tr
(

PE
[
(ω⊤xk)xk

]
E
[
(ω⊤xk)xk

]⊤)
+

n

∑
k,l=1
k ̸=l

a⊤
π(l)Paπ(k), (3.70)

with aℓ from (3.45) for ℓ = 1, 2 in the last step. In the next step, we will subtract the first
term in (3.70) from the first term in (3.69). With the help of Steins identity - Proposition
B.2 in the appendix - and recalling Cℓ = Σℓ + µµ⊤ from (3.5) for either class ℓ = 1, 2,

n

∑
k=1

E

[(
ω⊤xk

)2
x⊤k Pxk

]
−

n

∑
k=1

tr
(

PE
[
(ω⊤xk)xk

]
E
[
(ω⊤xk)xk

]⊤)
=

n

∑
k=1

E

[(
ω⊤xk

)2
]

tr(PΣπ(k))

+
n

∑
k=1

E

[(
ω⊤xk

)2
]

tr
(

Pµπ(k)µ
⊤
π(k)

)
−

n

∑
k=1

tr
(

PE
[
(ω⊤xk)xk

]
E
[
(ω⊤xk)xk

]⊤)
=

n

∑
k=1

E

[(
ω⊤xk

)2
]

tr(PΣπ(k)) (3.71)

+
n

∑
k=1

tr
(

PE
[(

ω⊤xk

)
µπ(k)

(
ω⊤xk

)
µ⊤

π(k)

])
−

n

∑
k=1

tr
(

PE
[
(ω⊤xk)xk

]
E
[
(ω⊤xk)xk

]⊤)
.

112

For (3.71), we obtain an expression convenient for finding a deterministic equivalent,

1
n

n

∑
k=1

E
[
(ω⊤xi)

2
]

tr(PΣπ(k)) =
1
n

2

∑
ℓ=1

nℓE

[(
ω⊤x(ℓ)1

)2
]

tr(PΣℓ)

→
2

∑
ℓ=1

cℓ
tr (ΣωΣℓ) + 2ω̄⊤µℓ(−1)ℓκℓ + κ2

ℓ

(1 + κℓ)
2 tr(PΣℓ). (3.72)

as n, p → ∞, where we have also made use of the following consequence of (3.42),

E

[(
ω⊤xi

)2
]
=

E
[
tr
(
ω−iω

⊤
−ixix⊤i

)]
+ 2E [ω−i]

⊤
E [xi] yiκπ(i) + κ2

π(i)(
1 + κπ(i)

)2

≈
tr (ΣωΣℓ) + 2ω̄⊤µℓ(−1)ℓκℓ + κ2

ℓ

(1 + κℓ)
2 , ℓ = π(i). (3.73)

Next, we consider the second and third term from just below (3.71), i.e., the expression

n

∑
k=1

tr
(

PE

[(
ω⊤xk

)2
µπ(k)µ

⊤
π(k)

])
−

n

∑
k=1

tr
(

PE
[
(ω⊤xk)xk

]
E
[
(ω⊤xk)xk

]⊤)
=:I − I I. (3.74)

For the first term I in (3.74), similar to (3.72) and using once again (3.73), we obtain

I =
n

∑
k=1

tr
(

PE

[(
ω⊤xk

)2
]

µπ(k)µ
⊤
π(k)

)

=
2

∑
ℓ=1

nℓ tr

(
P

tr (ΣωΣℓ) + 2ω̄⊤µℓ(−1)ℓκℓ + κ2
ℓ

(1 + κℓ)
2 µℓµ

⊤
ℓ

)
,

such that we can read off a deterministic equivalent corresponding to this part, namely

2

∑
ℓ=1

nℓ
tr (ΣωΣℓ) + 2ω̄⊤µℓ(−1)ℓκℓ + κ2

ℓ

(1 + κℓ)
2 µℓµ

⊤
ℓ . (3.75)

Next, let us consider the second term I I from (3.74) above, for which we can immedi-
ately find a deterministic equivalent using of with aℓ from (3.45) for ℓ = 1, 2 as follows,

2

∑
ℓ=1

nℓaℓa⊤
ℓ . (3.76)

After dealing with the first summands from each (3.69) and (3.70), we will next - keep-
ing in mind (3.68) - subtract the second term in (3.70) from the second term in (3.69).
To that end, we first approximate each single summand from the second term in (3.69)
analogously to [SLCT21, p. 16] as follows by, for any k, l ∈ {1, . . . , n} with k ̸= l,

E
[
(ω⊤xk)(ω

⊤xl)x⊤l Pxk

]

113

≈
(

ω̄⊤µπ(k) + yπ(k)κπ(k)

1 + κπ(k)
µπ(k) +

Σπ(k)ω̄

1 + κπ(k)

)⊤

P

(
ω̄⊤µπ(l) + yπ(l)κπ(l)

1 + κπ(l)
µπ(l) +

Σπ(l)ω̄

1 + κπ(l)

)

+
tr
(

Σπ(k)PΣπ(l)Σω

)
(

1 + κπ(k)

) (
1 + κπ(l)

)
=

(
Cπ(k)ω̄ + (−1)π(k)κπ(k)µπ(k)

1 + κπ(k)

)⊤

P

(
Cπ(l)ω̄ + (−1)ℓκπ(l)µπ(l)

1 + κπ(l)

)

+
tr
(

Σπ(k)PΣπ(l)Σω

)
(

1 + κπ(k)

) (
1 + κπ(l)

) .

Next, we pass to the sum and obtain the following expression, also using (3.45),

n

∑
k,l=1
k ̸=l

E
[
(ω⊤xk)(ω

⊤xl)x⊤l Pxk

]
=

n

∑
k,l=1
k ̸=l

a⊤
π(l)Paπ(k) +

n

∑
k,l=1
k ̸=l

tr
(

Σπ(k)PΣπ(l)Σω

)
(

1 + κπ(k)

) (
1 + κπ(l)

) . (3.77)

Finally, we subtract the second term in (3.70) from the second term in (3.69), as just rewrit-
ten in (3.77), which after a straightforward cancellation leaves us with the difference

n

∑
k,l=1
k ̸=l

tr
(

Σπ(k)PΣπ(l)Σω

)
(

1 + κπ(k)

) (
1 + κπ(l)

)
=n1(n1 − 1)

tr (Σ1PΣ1Σω)

(1 + κ1) (1 + κ1)
+ n1n2

tr (Σ1PΣ2Σω)

(1 + κ1) (1 + κ2)

+ n1n2
tr (Σ2PΣ1Σω)

(1 + κ2) (1 + κ1)
+ n2(n2 − 1)

tr (Σ2PΣ2Σω)

(1 + κ2) (1 + κ2)

≈
2

∑
ℓ,ℓ′=1

nℓnℓ′ tr (Σℓ′PΣωΣℓ)

(1 + κℓ)(1 + κℓ′)
, (3.78)

for sufficiently large n1, n2 (or equality asymptotically). Finally, combining our findings
from (3.72), (3.75), (3.76) and (3.78), and again inserting the factor τ2 to make up for the
normalization in (3.68), we obtain the deterministic equivalent Ā4 of A4,

Ā4 =τ2
2

∑
ℓ,ℓ′=1

nℓnℓ′Σℓ′ΣωΣℓ

(1 + κℓ)(1 + κℓ′)
+ τ2

2

∑
ℓ=1

nℓEℓCℓ

+
2

∑
ℓ=1

nℓ

(
aℓa⊤

ℓ +
tr (ΣωΣℓ) + 2ω̄⊤µℓ(−1)ℓκℓ + κ2

ℓ

(1 + κℓ)
2 µℓµ

⊤
ℓ

)
,

where Eℓ is defined as an abbreviation for the expression from (3.72),

Eℓ := E
[
(ω⊤xi)

2
]
=

tr (ΣωΣℓ) + 2(−1)ℓκℓω⊤µℓ + κ2
ℓ

(1 + κℓ)2 , ℓ = π(i),

finishing the proof. ■

114

Lemma 3.20 (Deterministic equivalent Ā5.) A deterministic equivalent Ā5 of A5 is given by

Ā5 = −τ2(B̄5 + B̄⊤
5),

where the deterministic equivalent B̄5 of B5 from (3.59) is given as follows by

B̄5 =
2

∑
ℓ=1

nℓ(−1)ℓ
(

ω̄⊤µℓ + (−1)ℓκℓ
1 + κℓ

Cℓ −
Cℓω̄µ⊤

ℓ + (−1)ℓκℓµℓµ
⊤
ℓ

1 + κℓ

)
.

Proof. We only have to derive the deterministic equivalent B̄5 of B5 (as the statement for
Ā5 then immediately follows from their connection A5 = −τ2(B5 +B⊤

5)), i.e., we consider

E [tr(PB5)] =E
[
tr
(

P
(

XX⊤ωy⊤X⊤ − E
[

XX⊤ω
]

E
[
y⊤X⊤

]))]
=E

[
tr
(

PXX⊤ωy⊤X⊤
)]

− tr
(

PE
[

XX⊤ω
]

E
[
y⊤X⊤

])
. (3.79)

We begin by rewriting the expression involving the trace in the first summand. With
the identity tr(uv⊤) = u⊤v for any u, v ∈ Rp, applied to u = XX⊤ω and v⊤ = y⊤X⊤P,

tr
(

PXX⊤ωy⊤X⊤
)
= tr

(
XX⊤ωy⊤X⊤P

)
=

n

∑
k=1

(ω⊤xk)x⊤k
n

∑
l=1

ylP⊤xl

=
n

∑
k,l=1

yl(ω
⊤xk)x⊤k P⊤xl . (3.80)

Rewrite the first term in (3.79) by splitting up the sum and passing to the mean in (3.80),

E
[
tr
(

PXX⊤ωy⊤X⊤
)]

=
n

∑
k=1

ykE
[
ω⊤xkx⊤k P⊤xk

]
+

n

∑
k,l=1
k ̸=l

ylE
[
ω⊤xkx⊤k

]
E
[
P⊤xl

]
. (3.81)

Next, we consider the second term from (3.79). In a similar way, it can be rewritten as

tr
(

PE
[

XX⊤ω
]

E
[
y⊤X⊤

])
=

n

∑
k=1

E
[
ω⊤xkx⊤k

] n

∑
l=1

ylE
[
P⊤xl

]
=

n

∑
k,l=1

ylE
[
ω⊤xkx⊤k

]
E
[
P⊤xl

]
(3.82)

Thus, subtracting (3.82) from (3.81) reduces the task to finding a deterministic equivalent

n

∑
k=1

ykE
[
ω⊤xkx⊤k P⊤xk

]
−

n

∑
k=1

ykE
[
ω⊤xkx⊤k

]
E
[
P⊤xk

]
, (3.83)

our focus from now on. The first term in (3.83) can be treated with Proposition B.2; fur-

115

thermore also using (3.42) and proceeding in a similar way to (3.44) above, we obtain

n

∑
k=1

ykE
[
ω⊤xkx⊤k P⊤xk

]
=

2

∑
ℓ=1

nℓ(−1)ℓ
ω̄⊤µℓ + (−1)ℓκℓ

1 + κℓ
tr(PCℓ) (3.84)

where we also used that tr(P⊤Cℓ) = tr(PC⊤
ℓ) = tr(PCℓ), thanks to the symmetry of

Cℓ. Next we consider the second term from (3.83). With the help of the deterministic
equivalent (3.45) of (ω⊤xk)xk for xk belonging to class Cℓ, π(k) = ℓ, we find that

n

∑
k=1

ykE
[
ω⊤xkx⊤k

]
E
[
P⊤xk

]
=

n

∑
k=1

yk tr
(

E
[
ω⊤xkxk

]
E
[

x⊤k P
])

=
n

∑
k=1

yk tr
(

PE
[
ω⊤xkxk

]
µ⊤

π(k)

)
=

2

∑
ℓ=1

nℓ(−1)ℓ tr
(

P
Cℓω̄ + (−1)ℓκℓµℓ

1 + κℓ
µ⊤
ℓ

)

=
2

∑
ℓ=1

nℓ(−1)ℓ tr

(
P

Cℓω̄µ⊤
ℓ + (−1)ℓκℓµℓµ

⊤
ℓ

1 + κℓ

)
(3.85)

Thus, with regard to (3.83) and the individual expressions found in (3.84) and (3.85), we
obtain the claimed deterministic equivalent of B5, and thus of A5. ■

Lemma 3.21 (Deterministic equivalent Ā6.) A deterministic equivalent Ā6 of A6 is given by

Ā6 = τ2
2

∑
ℓ=1

nℓΣℓ

Proof. For A6, again ignoring the factor τ2 in the interest of a clearer presentation for now,

1
τ2 E [tr(PA6)] =E

[
tr
(

P
(

Xyy⊤X⊤ − E[Xy]E
[
y⊤X⊤

]))]
= tr

(
P
(

E
[

Xyy⊤X⊤
]
− E[Xy]E

[
y⊤X⊤

]))
. (3.86)

Next, for the second summand within the trace in (3.86) it is straightforward to obtain

E[Xy]E
[
y⊤X⊤

]
=

(
2

∑
ℓ=1

(−1)ℓnℓµℓ

)(
2

∑
ℓ=1

(−1)ℓnℓµ
⊤
ℓ

)
=n2

1µ1µ⊤
1 − n1n2µ1µ⊤

2 − n1n2µ2µ⊤
1 + n2

2µ2µ⊤
2 . (3.87)

For the first summand within the trace in (3.86), the following term can be rewritten as

Xyy⊤X⊤ =

(
n

∑
k=1

ykxk

)(
n

∑
l=1

ylx⊤l

)
=

n

∑
k,l=1

ykylxkx⊤l .

We pass to the expectation and split up the sum on the right hand side into two parts.

116

Recalling Cℓ from (3.5) for the first sum, and exploiting independence for the second sum,

E
[

Xyy⊤X⊤
]
=E

[
n

∑
k,l=1

ykylxkx⊤l

]

=E

[
n

∑
k=1

y2
kxkx⊤k

]
+ E

 n

∑
k,l=1
k ̸=l

ykylxkx⊤l


=

n

∑
k=1

E
[

xkx⊤k
]
+

n

∑
k,l=1
k ̸=l

ykylE [xk]E [xl]
⊤

=
2

∑
ℓ=1

nℓCℓ + n1(n1 − 1)µ1µ⊤
1 − n1n2µ1µ⊤

2

− n1n2µ2µ⊤
1 + n2(n2 − 1)µ2µ⊤

2 . (3.88)

Subtracting (3.87) from (3.88), thanks to cancellations we obtain the simplified expression

E
[

Xyy⊤X⊤
]
− E[Xy]E

[
y⊤X⊤

]
=

2

∑
ℓ=1

nℓCℓ − n1µ1µ⊤
1 − n2µ2µ⊤

2 =
2

∑
ℓ=1

nℓΣℓ.

Taking into account the factor τ2 leads to the desired deterministic equivalent Ā6. ■

Summary: Covariance Updates. Before moving on to considering the special case of
Σ1 = Σ2 = Ip for the covariances (when the classes only differ in their means), let us
first provide an overview summarizing our findings for the deterministic equivalents
Ā1, . . . , Ā6 that we found in the previous lemmas, from Lemma 3.16 to Lemma 3.21. With
B̄2, B̄3, B̄5 (recall B2, B3, B5 from (3.57), (3.58) and (3.59)) appearing in the expressions of
Ā2, Ā3, Ā5, given as

B̄2 =
2

∑
ℓ=1

nℓ

(
ω̄a⊤

ℓ +
CℓCω + (−1)ℓκℓµℓω̄

⊤

1 + κℓ
+

κℓ − tr(CωCℓ)

(1 + κℓ)2 Kℓ

)
,

B̄3 =τ
2

∑
ℓ=1

nℓ

(
1 − (−1)ℓω̄⊤µℓ

)
1 + κℓ

CℓD̄Q̄,

B̄5 =
2

∑
ℓ=1

nℓ(−1)ℓ
(

ω̄⊤µℓ + (−1)ℓκℓ
1 + κℓ

Cℓ −
Cℓω̄µ⊤

ℓ + (−1)ℓκℓµℓµ
⊤
ℓ

1 + κℓ

)
,

the deterministic equivalents Ā1, . . . , Ā6 are given as follows by

Ā1 =Σω,

Ā2 =τ(B̄2 + B̄⊤
2),

Ā3 =τ(B̄3 + B̄⊤
3),

Ā4 =τ2
2

∑
ℓ,ℓ′=1

nℓnℓ′Σℓ′ΣωΣℓ

(1 + κℓ)(1 + κℓ′)
+ τ2

2

∑
ℓ=1

nℓ
tr (ΣωΣℓ) + 2(−1)ℓκℓω⊤µℓ + κ2

ℓ

(1 + κℓ)2 Cℓ

117

+
2

∑
ℓ=1

nℓ

(
aℓa⊤

ℓ +
tr (ΣωΣℓ) + 2ω̄⊤µℓ(−1)ℓκℓ + κ2

ℓ

(1 + κℓ)
2 µℓµ

⊤
ℓ

)
,

Ā5 =− τ2(B̄5 + B̄⊤
5),

Ā6 =τ2
2

∑
ℓ=1

nℓΣℓ.

Note that in case of the covariances being the identity matrices, that is Σ1 = Σ2 = Ip, to
compute tr(ΣωΣℓ) = tr(Σω I) = tr(Σω) = σ⊤

ω1p (3.2) in Proposition 3.3 for the variance of
the classification score for each class we just require the diagonal, of Σω, denoted by σω =
D(Σω). Further, when passing to this special case, we will use again the approximation
Cℓ ≈ Σℓ = Ip, and obtain D(CωCℓ) ≈ D(ΣωΣℓ) = D(Σω I) = D(Σω) = σω. Passing to
the diagonals, e.g. D(Σℓ) = D(Ip) = 1p for ℓ = 1, 2, passing both from Cℓ to D(Cℓ) as
well as from Kℓ = τCℓD̄Q̄ ∈ Rp×p to kℓ = D(Kℓ) ∈ Rp (both defined in (3.55) already),
and summarizing terms in Ā2, Ā3, Ā5 (they are the sum of a matrix with its transpose,
which can be easily simplified when passing to the diagonal), we obtain the following
counterparts σk to Āk for k = 1, . . . , 6:

σ1 =σω,

σ2 =2τ
2

∑
ℓ=1

nℓ

(
D
(

ω̄a⊤
ℓ

)
+

σω

1 + κℓ
+

(−1)ℓκℓ
1 + κℓ

D(µℓω̄
⊤) +

κℓ − σω1p

(1 + κℓ)2 kℓ

)
,

σ3 =2τ
2

∑
ℓ=1

nℓ

(
1 − (−1)ℓω̄⊤µℓ

)
1 + κℓ

kℓ,

σ4 =τ2
2

∑
ℓ,ℓ′=1

nℓnℓ′

(1 + κℓ)(1 + κℓ′)
σω + τ2

2

∑
ℓ=1

nℓ
σ⊤

ω1p + 2(−1)ℓκℓω⊤µℓ + κ2
ℓ

(1 + κℓ)2 D(Cℓ)

+
2

∑
ℓ=1

nℓ

(
D
(

aℓa⊤
ℓ

)
+

σ⊤
ω1p + 2ω̄⊤µℓ(−1)ℓκℓ + κ2

ℓ

(1 + κℓ)
2 D

(
µℓµ

⊤
ℓ

))
,

σ5 =− 2τ2
2

∑
ℓ=1

nℓ(−1)ℓ
ω̄⊤µℓ + (−1)ℓκℓ

1 + κℓ
D(Cℓ),

σ6 =τ2
2

∑
ℓ=1

nℓ1p.

Let us summarize some terms arising in σ1, . . . , σ6. The term from σ1 and one of the
summands from σ2 and σ4 containing σω are collected in ς1, given as follows by

ς1 =
2

∑
ℓ=1

(
1
2
+

2τnℓ

1 + κℓ
+

2

∑
ℓ′=1

τ2nℓnℓ′

(1 + κℓ)(1 + κℓ′)

)
σω.

Similarly, we summarize σ3 and one of the summands from σ2 containing kℓ in ς2,

ς2 =2τ
2

∑
ℓ=1

nℓ

(
1 − (−1)ℓω̄⊤µℓ

1 + κℓ
+

κℓ − σω1p

(1 + κℓ)2

)
kℓ

=2τ
2

∑
ℓ=1

nℓ

(
1 + 2κℓ − (1 + κℓ)(−1)ℓω̄⊤µℓ − σω1p

(1 + κℓ)2

)
kℓ.

118

A similar procedure for the terms corresponding to D(Cℓ), i.e., σ5 and one of the re-
maining summands from σ4, leads to ς3, which is given by

ς3 =τ2
2

∑
ℓ=1

nℓ

(
σ⊤

ω1p + 2(−1)ℓκℓω⊤µℓ + κ2
ℓ

(1 + κℓ)2 − 2
(−1)ℓω̄⊤µℓ + κℓ

1 + κℓ

)
D(Cℓ)

=τ2
2

∑
ℓ=1

nℓ

(
σ⊤

ω1p − 2(−1)ℓκℓω⊤µℓ − κℓ
(1 + κℓ)2

)
D(Cℓ).

All the remaining terms are collected as follows in ς4 and ς5,

ς4 =2τ
2

∑
ℓ=1

nℓ

(
τ

2
1p +D

(
ω̄a⊤

ℓ

)
+

(−1)ℓκℓ
1 + κℓ

D
(

µℓω̄
⊤
))

,

ς5 =
2

∑
ℓ=1

nℓ

(
D
(

aℓa⊤
ℓ

)
+

σ⊤
ω1p + 2ω̄⊤µℓ(−1)ℓκℓ + κ2

ℓ

(1 + κℓ)
2 D

(
µℓµ

⊤
ℓ

))
.

Note that by construction it holds that ∑6
k=1 σ

j
k = ∑5

k=1 ς
j
k.

3.4.3 Algorithm and Numerical Experiments

Finally, let us combine our findings and state the overall algorithm which will then be
tested numerically. Recall that we assume a normal distribution of the classification
scores

g(x) = x⊤ω ∼ N
(
mℓ, σ2

ℓ

)
, x ∈ Cℓ,

for each ℓ = 1, 2 with their respective means mℓ ∈ R and variances σ2
ℓ > 0. Note however

that in the special case Σ1 = Σ2 = Ip and by Proposition 3.3, the variances are the same,
i.e., σ2

1 = σ2
2 . Notably, again by Proposition 3.3 we approximate σ2

1 = σ2
2 = Var(g(x)) =

E[g(x)2]− E[g(x)]2 ≈ tr(ΣωΣx) = tr(Σω I) = σω1p, using the dominant first summand
from (3.2), leaving us with the task of approximately computing σω ∈ Rp; see also Re-
mark 3.5. Based on our findings from the previous section, we state an iterative scheme

ω̄j → ω̄j+1, σ
j
ω → σ

j+1
ω

which will then provide us, thanks to Proposition 3.3, with corresponding updates on the
means and variances of the classification scores g(x) = x⊤ω for x belonging to class Cℓ,

m
j
ℓ → m

j+1
ℓ ,

(
σ2
ℓ

)j →
(
σ2
ℓ

)j+1
, ℓ = 1, 2.

This algorithm resembles ISTA itself, and while the convergence remains unclear from
a theoretical perspective, the numerical results are promising. Note further that now
for stating the algorithm we will make the iteration index visible again as an upper j,
which we left out in the previous derivations in the interest of readability. Recalling
(3.1), again from Proposition 3.3, we have that for x belonging to class Cℓ the mean of the
corresponding classification score is given as

mℓ = E[g(x)] = E[ω⊤x] = ω̄⊤E[x] = ω̄⊤ x̄ = ω̄⊤µℓ,

where the class mean µℓ is estimated from the training data. As we compute mean up-

119

dates ω̄j → ω̄j+1 according to our findings from Section 3.4.1, the classification score
means are obtained accordingly as follows (again making the iteration index j explicit),

m
j
ℓ = µ⊤

ℓ ω̄j. (3.89)

Input and Initializations.

For ℓ = 1, 2, we first precompute and initialize some of the involved objects as follows,
before running the subsequent iteration until a stopping criterion is met, when updates
for all involved parameters fall below a certain threshold (measured by the ℓ2- norm for
vectors, and by the absolute values for scalar quantities), or simply for a fixed number of
iterations.

• Hyperparameters τ, λ > 0; training data for classes Cℓ of size nℓ with n = n1 + n2.

• Estimate µℓ from the training data and put Cℓ = Ip + µℓµ
⊤
ℓ (since Σ1 = Σ2 = Ip).

• Initialize k0
ℓ = ω̄0 = σ0

ω = σ0
z = 0p ∈ Rp and m0

ℓ = κ0
ℓ = 0 ∈ R.

Mean Updates ω̄j → ω̄j+1 and m
j
ℓ → m

j+1
ℓ

The mean update ω̄j → ω̄j+1 is straightforward to obtain by the deterministic equivalent
for z̄ (or z̄j) from (3.47), containing aℓ (or aj

ℓ) from (3.45), which we will use in the special
case as provided in (3.46). We pass from zj to ωj as in (3.11) with the help of φ from (3.13).
Finally, the mean update m

j
ℓ → m

j+1
ℓ for the classification score is computed via (3.89).

aj
ℓ =

m
j
ℓ + (−1)ℓκ j

ℓ

1 + κ
j
ℓ

µℓ +
1

1 + κ
j
ℓ

ω̄j, ℓ = 1, 2 (3.90)

z̄j+1 = ω̄j − τ
2

∑
ℓ=1

nℓ

(
aj
ℓ + (−1)ℓµℓ

)
,

ω̄j+1 = φ
(

λτ, z̄j+1, σ
j
z

)
,

m
j+1
ℓ = µ⊤

ℓ ω̄j, ℓ = 1, 2.

Covariance Update σ
j
ω → σ

j+1
ω and Computing the Variance σ2 = σ2

1 = σ2
2

For the covariance updates, we recall that in (3.48) in Section 3.4.2 we have considered
the random matrix M j = zjzj⊤ − z̄jz̄j⊤ ∈ Rp×p (now again with the index j). For M j, we
have derived a deterministic equivalent M̄ j = ∑6

k=1 Āj
k that behaves similar under taking

traces, like the traces in Proposition 3.3. Again for the special case Σ1 = Σ2 = Ip,

ς
j
1 =

2

∑
ℓ=1

(
1
2
+

2τnℓ

1 + κ
j
ℓ

+
2

∑
ℓ′=1

τ2nℓnℓ′

(1 + κ
j
ℓ)(1 + κ

j
ℓ′)

)
σ

j
ω,

ς
j
2 =2τ

2

∑
ℓ=1

nℓ

(
1 + 2κℓ − (1 + κℓ)(−1)ℓµ⊤

ℓ ω̄j − 1⊤p σ
j
ω

(1 + κ
j
ℓ)

2

)
kj
ℓ,

120

ς
j
3 =τ2

2

∑
ℓ=1

nℓ

(
1⊤p σ

j
ω − 2(−1)ℓκ j

ℓµ
⊤
ℓ ω̄j − κ

j
ℓ

(1 + κ
j
ℓ)

2

)
D(Cℓ),

ς
j
4 =2τ

2

∑
ℓ=1

nℓ

(
τ

2
1p +D

(
ω̄jaj

ℓ

⊤
)
+

(−1)ℓκ j
ℓ

1 + κ
j
ℓ

D
(

µℓω̄
j⊤
))

,

ς
j
5 =

2

∑
ℓ=1

nℓ

D
(

aj
ℓa

j
ℓ

⊤
)
+
1⊤p σ

j
ω + 2(−1)ℓκ j

ℓµ
⊤
ℓ ω̄j + κ

j
ℓ

2(
1 + κ

j
ℓ

)2 D
(

µℓµ
⊤
ℓ

) .

Next we pass to the diagonal of the covariance; recall (3.12) and (3.4) for the function Γ,
which is sufficient to handle diagonal covariances as in (3.14). With ς

j
1, . . . , ς

j
5 as above,

σ
j
z = D

(
M̄ j
)
=

5

∑
k=1

ς
j
k,

σ
j+1
ω = Γ

(
λτ, z̄j+1, σ

j+1
z

)
− ω̄j+1ω̄j+1⊤ .

Next, we compute the updates for the other involved quantities such as κℓ from (3.39),
Q̄ from (3.38), D̄ from (3.29) and κℓ from (3.55), now inserting the iteration index j:

D̄j+1 = ψ
(

λτ, z̄j+1, σ
j+1
z

)
,

Q̄j+1 =

(
Ip − D̄j+1 +

2

∑
ℓ=1

τnℓ

1 + κ
j
ℓ

CℓD̄j+1

)−1

,

kj+1
ℓ = τD

(
CℓD̄j+1Q̄j+1

)
, ℓ = 1, 2,

κ
j+1
ℓ = tr

(
τCℓD̄j+1Q̄j+1

)
= 1⊤p kj

ℓ, ℓ = 1, 2.

Output: Predicted Classification Error

After running the mean and covariance updates as described above for J ∈ N iterations,
after termination we obtain the estimates for the classification score means and variances,

m1 := mJ
1, m2 := mJ

2, σ2 := σ2
1 := σ2

2 := σ⊤
ω1p.

Then, Corollary 3.2 allows us (in case of balanced classes, i.e., with the same number of
samples n1 = n2 from both classes C1 and C2; for the general case, we refer instead to
Lemma 3.1) to predict the classification error ε (or the accuracy 1 − ε) given as follows by

ε =
1
2

Q
(
m2 −m1

σ2

)
, Q(t) =

1√
2π

∫ t

−∞
e−

x2
2 dx,

where for the function Q we also refer to (B.4) in the appendix. We summarize the algo-
rithm in Algorithm 1 below.

We conclude this section by summarizing weaknesses in the derivation of the algo-
rithm and open questions that are of interest for future work.

• The derivation is somewhat hindered due to the fact that the soft-thresholding
function Sλ is not differentiable everywhere; recall Remark 3.15; a more rigorous

121

attempt would arguably require to work with smooth approximations.

• Open questions and gaps revolving around D and Q from (3.28) and (3.30), in
particular justifying to obtain them as an approximation by inserting t = 1 into
Di(t) and Qi(t) from (3.25) and (3.27). Furthermore, regarding D and Q obtained
this way, we have simplified the derivation by assuming a tight concentration of
x⊤i DQxi around its mean in (3.41); and similar for (3.52).

• Rigorous convergence guarantees for the iterative scheme developed would be de-
sirable, beyond merely a verification with numerical experiments.

• Possible simplifications of the algorithm by identifying asymptotically negligible
terms, as suggested by numerical experiments.

• Of great interest for practical applications beyond the experiments performed here
is an extension of the derivation to cover the more general case of generic covari-
ance matrices Σ1, Σ2 ∈ Rp×p, beyond the simple case of Σ1 = Σ2 = Ip considered
here. While large parts of the derivation hold in a more general setting, for the
computation of the covariance (3.12) we would require multi-dimensional numeri-
cal integration, beyond the one-dimensional solution for the diagonal entries with
the function Γ from (3.14).

Algorithm 1 Predicting accuracy of LASSO-based classification

Input: Parameters λ, τ; estimated means µℓ of classes of size nℓ, ℓ = 1, 2.
Generalized covariance Cℓ = Ip + µℓµ

⊤
ℓ ∈ Rp×p for ℓ = 1, 2.

Initialize: For ℓ = 1, 2, initialize kℓ, ω̄, σω, σz = 0p and mℓ, κℓ = 0;
compute initial aℓ by (3.90)

repeat
Compute z̄ = ω̄ − ∑2

ℓ=1 τnℓ

(
aℓ + (−1)ℓµℓ

)
.

Compute the ridge-less variance σz = σ1 + σ2 + σ3 + σ4 + σ5 + σ6.
Update D̄ and Q̄ and kℓ and κℓ = τ tr (CℓD̄Q̄) for ℓ = 1, 2
Update ω̄ = φ(λ, z̄, σz) and σω = Γ(λ, z̄, σz)− ω̄ω̄⊤

Update mℓ = ω̄⊤µℓ and aℓ for ℓ = 1, 2.
until Convergence criterion met.
Output: Classification error ε = 1

2 Q
(
m2−m1
σ⊤

ω1p

)
.

122

3.4.4 Numerical Experiments

10−4 10−3 10−2 10−1 100 101 102
0.44

0.46

0.48

0.5

Regularization parameter λ−1

Empirical
Theory

10−4 10−3 10−2 10−1 100 101 102

0.3

0.4

0.5

Regularization parameter λ−1

Empirical
Theory

Figure 3.3: Theoretical versus empirical classification error as function of the regularization
parameter. µ1 drawn once from µ1 ∼ N (0p, Ip) and sparsified by putting its entries to zero
with α = 0.95 (left) and α = 0.5 (right); furthermore, simply µ2 = −µ1 for the means.

100 101 102 103

0.5

0.6

0.7

Regularization parameter λ

Theory α = 0.95
Empirical α = 0.95

Theory α = 0.9
Empirical α = 0.9

Theory α = 0.2
Empirical α = 0.2

Figure 3.4: Close fit between the theoretical and empirical (averaged over 1 000 test sam-
ples) classification accuracy (as a function of the regularization parameter λ), for three dif-
ferent values of α (sparsity level). We consider Gaussian mixture model with class sizes
n1, n2 = 500 and x(ℓ)i ∼ N (µℓ, Ip), for ℓ = 1, 2, with mean µℓ = (−1)ℓb ⊙ m, where
m ∼ N (0p, 1

p Ip), and where b is a Bernoulli random vector that puts each single entry to
zero with probability α/p, where p = 100 is the dimension (number of features), and where
α ∈ {0.2, 0.9, 0.95} is a parameter controlling the sparsity.

We test Algorithm 1 with experiments on synthetic data to predict the classification ac-
curacy of the linear classifier found through ISTA. Recall that we have already plotted the
classification score for practical datasets in Figure 3.2. Here, we test the algorithm for dif-
ferent values of λ and observe a very good agreement between the theoretical prediction
and the empirical performance. This opens up new ways of hyperparameter optimiza-
tion by grid search, as an alternative to the established method of cross validation. In
both figures, we observe that for large λ, when the regularization term outweighs the
least square loss, the accuracy tends to 1/2, corresponding to random guesses.

123

3.5 Related Work and Outlook

Related Work. A large body of literature on the LASSO and related topics exist; for an
extensive treatment of the subject, we refer to [BVDG11] and the references therein. From
a technical point of view, the work presented in this chapter is similar to the analysis of
machine learning algorithms such as a high dimensional analysis of logistic regression
[EKBBLY13; MLC19], support vector machines [MC18; ML19], and more recently of the
softmax classifier [SLCT21]. However, in contrast the aforementioned works, the diffi-
culty of the LASSO lies in the non-differentiability of the loss function and the complex
iterative procedure used to solve the minimization problem. Sparse linear classifiers have
been studied from the statistical learning perspective before, based on VC dimension
bounds, previously in [SSSSHZ15] and, for sparse logistic regression in [AG18]. Besides,
previous work often focused on a regression rather than a classification setup. Based on
techniques from approximate message passing, [BM11; CMW20; GAK20; Hua20] derive
exact asymptotic expressions for the reconstruction error. These works have been com-
plemented by an analysis using the Convex Gaussian Min-max Theorem [ASKAAN20;
TOH15]. The present paper is part of this line of work employing an asymptotic anal-
ysis of the LASSO. However, unlike previous works, we have derived the error in the
different setting of classification, i.e., , the classification accuracy. Furthermore, we use
different tools, namely the powerful leave-one-out approach [CFMW19; DC18; EKBBLY13].

Fixed point based methods are a classical in mathematics and being used for instance in
numerical analysis and in the study of differential equations. Random fixed point equa-
tions have been studied before, but often in the context of functional analysis and op-
erator theory with applications to stochastic differential equations [Ito79; Pap86]. Fixed
point methods receive increasing attention from an machine learning viewpoint. Similar
to ISTA, many iterative algorithms such as gradient descent methods allow an interpre-
tation as fixed point equations [Jun17]; a comprehensive survey article on fixed point
strategies in data science is [CP21]. Of great interest are connections to stochastic ap-
proximation, a field that more systematically studies random iterative methods [BMP12;
Duf13; HKY97].

Outlook. This chapter has seen an approach to study generalization in machine learn-
ing that is different from classical VC dimension or Rademacher complexity bounds. A
main difference is that, in contrast to uniform convergence bounds, the data distribution
needs to be taken into account and notably how it induces a distribution over the hypoth-
esis class through a specific algorithm. If it is possible to overcome the technical difficulties,
this may result in a highly accurate prediction of the classification accuracy even before
training the model, that is just based on the statistical properties of the training dataset.
Interesting future work could be a more elaborate study to compare such different ap-
proaches. On the one hand, in the case of simple linear classifiers, sharp VC dimension
and Rademacher complexity estimates exist. On the other hand, Proposition 3.3 allows
us to accurately describe the classification accuracy under a Gaussian distribution of the
classification score. However, it requires estimates of the (first and second moments) of
the data distribution, or, more precisely, just scalar observations thereof. Here, we have
simply relied on arithmetic means and sample covariances. An interesting extension
would be to take into account a more rigorous study of the estimation quality, possibly
allowing a comparison with classical results based on the Rademacher complexity or VC
dimension in terms of the estimation accuracy.

124

A Covering Numbers and Dudley’s Integral

A.1 Covering Numbers

Given a metric space (S , d), its covering numbers N (S , d, ε) at level ε > 0 is the smallest
number nε ∈ N, such that there exists a subset Sε ⊂ S of cardinality nε that covers S , i.e.⋃

x∈Sε

Bε(x) = S ,

where Bε(x) = {y ∈ S : d(x, y) ≤ ε} denotes the closed balls of radius ε > 0 centered at
x. For a normed space (S , ∥ . ∥), with a slight abuse of notation we write N (S , ∥ · ∥, ε).

Lemma A.1 Let (S , d) be a metric space. Then, the following statement holds.

(i) Covering numbers are monotone, i.e. for a subset U ⊂ S , there is N (U , d, ε) ≤ N (S , d, ε).

(ii) If (S , d) is a subset of a normed space (V , ∥ . ∥), with d induced by ∥ . ∥, then, for all α > 0,

N (α · S , ∥ . ∥, ε) = N (S , α · d, ε) = N (S , d, ε/α).

(iii) If d′ is another metric on S with d′(x, y) ≤ d(x, y) for all x, y ∈ S , then it holds that

N (S , d′, ε) ≤ N (S , d, ε).

The next lemma provides covering numbers estimates for subsets of the unit balls (and
by rescaling through Lemma A.1 (ii), for any bounded subsets). Again we omit simple
proof, which can be found in various sources; as a reference, see [FR13, Proposition C.3].

Lemma A.2 Let ε > 0 and let ∥ · ∥ be a norm on a n-dimensional vector space V . Then, for any
subset S ⊆ BV := {x ∈ V : ∥x∥ ≤ 1} contained in the unit ball of V , there is

N (S , ∥ · ∥, ε) ≤
(

1 +
2
ε

)n

.

The next lemma provides a bound for the covering numbers of product spaces, based on
the individual covering numbers of each single metric space that is part of the product.

Lemma A.3 Consider p metric spaces (S1, d1), . . . , (Sp, dp), and positive numbers c1, . . . , cp.
We define the product space S , equipped with the metric d by

S = (S1 × · · · × Sp, d), d(x, y) =
p

∑
k=1

ckdk(xk, yk),

where x = (x1, . . . , xp), y = (y1, . . . , yp) ∈ S . Then, we have the covering number estimate

N (S , d, ε) ≤
p

∏
k=1

N (Sk, dk, ε/(ck · p)) .

125

Proof. Suppose that, for any k ∈ [p], we have individual coverings of Sk at level ε/(ck p)
of cardinality N (Sk, dk, ε/(ck p)). We will show that the product of all these ε/(ck p)-nets
is an ε-net for the product space S. Indeed let x = (x1, . . . , xp) ∈ S , i.e. xk ∈ Sk. Then,
for each xk ∈ Sk, there exists some element yk in the ε/(ck · p)-net of Sk, i.e. dk(xk, yk) ≤
ε/(ck · p). Then, y = (y1, . . . , yp) is an element of the product of all nets, and by the
definition of the metric d there is d(x, y) ≤ c1(ε/(c1 · p)) + · · ·+ cp(ε/(cp · p) = ε. ■

A.2 Dudley’s Inequality

A stochastic process (Xt)t∈T is a family of random variables indexed by an index set T .
While for many practical applications T is interpreted as the time (e.g. by considering
a time interval as a subset of the real numbers), in some applications more complicated
index sets of higher dimensions appear. In particular, let us point out the case of ma-
trix sets, frequently met in compressive sensing [KMR14] and statistical learning theory
[BBL03]. In many of these applications (compare e.g. Rademacher complexity, Definition
1.4), one is interested in upper bounding the expression

E sup
t∈T

Xt := sup
{

E max
t∈F

Xt : F ⊂ T, F finite
}

. (A.1)

(Note that considering finite subsets F is necessary to ensure measurability of supt∈T Xt.)
Expressions of the type of (A.1) notably appear in areas like compressive sensing and sta-
tistical learning theory for bounding the Rademacher complexity, as also seen in Chapter
2 in this thesis, where Dudley’s inequality often provides tight bounds.

Furthermore, we define the pseudometric on the index set T associated to (Xt)t∈T by

d(s, t) :=
(
E|Xs − Xt|2

)1/2 ∀ s, t ∈ T . (A.2)

(Xt)t∈T is called a sub-Gaussian process, if it is centered (i.e. EXt0 = 0 for all t0 ∈ T) and

E exp(θ(Xs − Xt)) ≤ exp(θ2d(s, t)2/2) ∀ s, t ∈ T , θ ∈ R. (A.3)

Now we are ready to state Dudley’s inequality, which, under certain conditions, pro-
vides an upper bound of expressions of the type given in (A.1) as follows.

Theorem A.4 (Dudley’s inequality) Let (Xt)t∈T be a sub-Gaussian process with radius ∆(T) :=
supt∈T(E|Xt|2)1/2 and associated pseudometric d. Then,

E sup
t∈T

Xt ≤ 4
√

2
∫ ∆(T)/2

0

√
logN (T , d, ε)dε. (A.4)

Remarkably, Dudley’s inequality bounds a probabilistic quantity (on the left-hand side
of the inequality) by a geometric property (based on the covering numbers of the index
set of the involved stochastic process on the right-hand side of (A.4)). By integrating over
different levels of the covering in the so-called Dudley’s integral, Dudley’s inequality is
an example for the method of chaining, which typically refers to multiscale coverings of
sets. In some sources Dudley’s inequality is stated with ∞ as an upper bound of the
integral; however, for bounded sets and sufficiently large levels ε, the covering number
of T equals one, so that the integrand vanishes then, and the integral is becomes definite.

126

The following Lemma is used to bound an integral arising from Dudley’s inequality in
Chapter 2. This estimate is a refinement of the similar result [FR13, Lemma C.9], which
is too crude for β close to zero.

Lemma A.5 For α, β > 0 and the function Ψ being defined in (2.50), it holds

∫ α

0

√
log
(

1 +
β

t

)
dt ≤ αΨ(β/α), (A.5)

where
Ψ(t) :=

√
log(1 + t) + t(log(1 + t)− log(t)).

The function Ψ satisfies limt→0 Ψ(t) = 0 and Ψ(t) ≤
√

log(e(1 + t)) for all t ∈ R.

Note that by setting Ψ(0) = 0 the above estimates is trivially true also for β = 0.

Proof. We proceed similarly to the proof of [FR13, Lemma C.9] and first apply the Cauchy-
Schwarz inequality to obtain

∫ α

0

√
log(1 + βt−1)dt ≤

√∫ α

0
1dt ·

∫ α

0
log (1 + βt−1)dt

For the second integral on the right hand side above we apply a change of variable and
integration by parts to obtain∫ α

0
log(1 + βt−1)dt = β

∫ ∞

β/α
u−2 log(1 + u)du

=β −u−1 log(1 + u)
∣∣∣∞

β/α
+ β

∫ ∞

βα
u−1 1

1 + u
du

=α log(1 + β/α) + β lim
z→∞

[∫ z

β/α

1
u

du −
∫ z

β/α

1
1 + u

du
]

=α log(1 + β/α) + β (log(1 + β/α)− log(β/α))

=αΨ(β/α)

by the definition of Ψ. A combination with the inequality derived shows inequality (A.5).
Since limt→0 t log(t) = 0 it follows easily that also limt→0 Ψ(t) = 0. Moreover, by the
mean-value theorem, there exists some ξ ∈ [t, 1 + t],

log(1 + t)− log(t) =
1
ξ
≤ 1

t
.

Hence, Ψ(t) ≤
√

log(1 + t) + 1 =
√

log(e(1 + t)). ■

127

B High-Dimensional Probability Theory

B.1 The Normal Distribution

Here, we briefly recall some basic technical notions connected with the normal distribu-
tion, and collect some necessary notations. Firstly, a real-valued random variable x is
(unitary) normally distributed or Gaussian with mean µ and standard deviation σ (or
variance σ2), if it has the density function f : R → R given by

fµ,σ2(t) =
1√

2πσ2
exp

(
− (t − µ)2

2σ2

)
.

We shortly write x ∼ N (µ, σ2) and there is E[x] = µ and Var(x) = σ2. If x ∼ N (0, 1)
(i.e., when µ = 0 and σ2 = 1), then x is called standard normally distributed. Let us further
recall the error function erf and the cumulative distribution function Fµ,σ2(y) of the univariate
normal distribution N (µ, σ2) and their various properties that we need.

erf(x) =
2√
π

∫ x

0
e−τ2

dτ, erf′(x) =
2√
π

e−x2
, erf(−x) = − erf(x),

erf(a, b) =
2√
π

∫ b

a
e−τ2

dτ, erf(a, b) = erf(b)− erf(a),

Fµ,σ2(y) =
1
2

(
1 + erf

(
y − µ√

2σ2

))
, (B.1)

erf(0) = 0, lim
x→∞

erf(x) = 1, lim
x→−∞

erf(x) = −1.

Furthermore, in the sequel we will require the anti-derivative Hµ,σ2 of the function y 7→
y · fµ,σ2(y) as well as the anti-derivative Gµ,σ2(y) of the function y 7→ y2 · fµ,σ2(y). They
are given by given by

Hµ,σ2(y) =
σ

2

(
−µ

σ
erf
(

µ − y√
2σ

)
−
√

2
π

exp
(
− (y − µ)2

2σ2

))
, (B.2)

Gµ,σ2(y) = −µ2 + σ2

2
erf
(

µ − y√
2σ2

)
− σ (µ + y)√

2π
exp

(
− (µ − y)2

2σ2

)
. (B.3)

For x ∼ N (0, 1) we can calculate tail probabilities via the Gaussian Q-function (or,
closely related, the cumulative distribution function F0,1 of the normal distribution),

P(x ≥ t) = 1 − F0,1(t) = Q(t) :=
1√
2π

∫ t

−∞
e−

x2
2 dx (B.4)

129

B.2 Stein’s Lemma

For the following classical result, see Lemma 1 (and the comment thereafter) in [Ste81].

Lemma B.1 (Stein’s Lemma) Let x ∼ N (µ, σ2) be normally distributed. Furthermore, suppose
that f : R → R is a differentiable function for which the two expectations E[f (x)(x − µ)] and
E[f ′(x)] both exist. Then,

E[f (x)(x − µ)] = σ2E[f ′(x)].

In particular, in case of the identity function f (x) = x, we get E[x2 − µx] = σ2E[x] =
σ2µ, which can also be derived through the properties of the Chi-square distribution.
We need the following consequence of Stein’s Lemma involving inner products and
quadratic forms. It is formulated for Gaussian random vectors, but can be extended
to concentrated random vectors x ∝ E2 (1 |Rp, ∥ · ∥2) in the sense of Definition 1.1, and
as used also in Assumption 3.7. As references, we refer to [SLCT21, Proposition 1.8 and
Remark 1.9.].

Proposition B.2 Let x ∼ N (µ, Σ) be a Gaussian random vector in Rp. Furthermore, let
v, w ∈ Rp be two (deterministic) vectors, and A ∈ Rp×n be a deterministic matrix. Then, for
any function f : R → R which is twice differentiable, it holds that

E[f (ω⊤x)v⊤x] = E[f (ω⊤x)]v⊤µ + E[f ′(ω⊤x)]v⊤Σω, (B.5)

E[f (ω⊤x)x⊤Ax] = E[f (ω⊤x)]E[x⊤Ax]

E[f (ω⊤x)x⊤Ax] = E[f (ω⊤x)] tr (AΣ) +O(p−1/2).

When f is the identity function, i.e., f (x) = x, then f ′(x) = 1 such that (B.5) simplifies to

E
[
ω⊤xv⊤x

]
= E

[
ω⊤x

]
v⊤µ + v⊤Σω.

B.3 Contraction Principles

Let us recall the classical contraction principle due to Talagrand [LT91, Corollary 3.17];
see also [SSBD14b, Lemma 26.9].

Theorem B.3 (Talagrand’s Contraction Principle) Let H be a class of functions h : X → R

and let f : R → R be a Lipschitz continuous function with Lipschitz constant K. Then, for any
(x1, . . . , xn) ∈ X n, it holds that

E sup
h∈H

n

∑
i=1

ε i f (h(xi)) ≤ KE sup
h∈H

n

∑
i=1

ε ih(xi),

where (ε i)
n
i=1 is a finite i.i.d. Rademacher sequence.

In the context of machine learning, this statement is useful to estimate the (empirical)
Rademacher complexity. Here, we think of h ∈ H as an element of the hypothesis class
applied to some data x1, . . . , xn, and we typically interpret h as the loss function. It is
natural to ask (and it can be, like in this thesis, be motivated through regression problems
requiring vector-valued hypothesis classes, for instance) for a generalization of the above
result to vector-valued functions h : X → Rd, and thus a (Lipschitz) function f : Rd → R.

130

It turns out that the seemingly natural conjecture (with C > 0 being a universal constant)

E sup
h∈H

n

∑
i=1

ε i f (h(xi)) ≤ CKE sup
h∈H

∥∥∥∥∥ n

∑
i=1

ε ih(xi)

∥∥∥∥∥
2

,

i.e. simply applying a norm on the right hand side in order to obtain a scalar there so
that the supremum is well-defined, is false, as shown with a counterexample by Maurer
[Mau16]. Instead, he proves the following result [Mau16, Corollary 4]. (In fact it is a
corollary of a more general result shown in [Mau16], but the following formulation is
useful for our purposes).

Lemma B.4 Suppose that H is a set of functions h : X → Rd and that f : Rd → Rd is
K-Lipschitz with respect to the ℓ2-norm. Let S = (xi)i∈[n] be the training sequence. Then

E sup
h∈H

n

∑
i=1

ε i f ◦ h(xi) ≤
√

2KE sup
h∈H

n

∑
i=1

d

∑
k=1

ε ikhk(xi),

where (ε i) and (ε ik) are both Rademacher sequences.

B.4 Random Matrix Theory

Deterministic equivalents. Random matrix theory studies studies matrices whose en-
tries are real or complex-valued random variables (or equivalently, matrix-valued ran-
dom variables) and in particular their spectral properties (eigenvalues and eigenvectors).
For a monograph on non-asymptotic random matrix theory we refer to [Ver10]. A mathe-
matical work on asymptotic random matrix theory is given [Tao12], and [CL22] provides
a treatment with applications in machine learning.

Definition B.5 (Deterministic equivalents) We say that (the sequence; omitting the index
n) a matrix Q̄ ∈ Rn×n is a deterministic equivalent for the symmetric random matrix
Q ∈ Rn×n (again, more precisely: in the limit n → ∞) if, for (sequences of) deterministic
matrices A ∈ Rn×n of unit spectral norm i.e., ∥A∥2→2 = 1, it holds that as n → ∞,

1
n

tr A(Q − Q̄) → 0,

with convergence in probability or almost surely.

Note that there exist alternative definitions of deterministic equaivalents, for instance
with respect to quadratic forms (i.e., conditions like a⊤(Q − Q̄)b → 0 rather, or addi-
tionally to, taking the trace as in our definition above). For our purposes, the definition
given above is convenient as in Chapter 3 we are interested in deterministic equivalents
with respect to the trace, as this behaviour helps to characterize the performance of the
classifiers studied there. Further note that deterministic equivalents are not unique, so
that typically one aims to find a simple one. Deterministic equivalents are related to
the mean: indeed, if the expectation can be easily calculated, one may simply choose
Q̄ = EQ. However, the entrywise computation of the mean could be elaborated or not
feasible, while its asymptotic scalar behavior (under the trace) may be accessible. There-
fore, in practice (and as done in Chapter 3) we try to compute the mean of the trace

E

[
1
n

tr AQ
]
=

1
n

tr AQ̄

131

and try to rewrite in a way that Q̄ can be read off. Furthermore, the following two results
are useful in Chapter 3 for computing deterministic equivalents.

Lemma B.6 For any two invertible square matrices A and B, the following identity is satisfied,

B − A = A(A−1 − B−1)B.

Proof. This identity is immediately verified by multiplying both sides of the equation
with A−1 from the left, and with B−1 from the right. ■

Lemma B.7 (Sherman-Morrison-Woodbury) For any square matrix A ∈ Rp×p and any
b, c ∈ Rp with 1 − cA−1b⊤ ̸= 0, the rank-one perturbation A + bc⊤ of A is invertible with(

A + bc⊤
)−1

= A−1 − A−1bc⊤A−1

1 − c⊤A−1b
.

Proof. Again, it is immediately verified by a straightforward computation that the right-
hand-side is indeed the inverse of A + bc⊤. ■

132

C ISTA and the Soft-Thresholding Operator

C.1 Basics and Perturbation Results

Definition of the soft-thresholding operator. The soft-thresholding function appears
in ISTA as the proximal mapping of the absolute value function (or of the ℓ1-norm in the
vector-valued case) and plays a central role in this thesis. In this part of the appendix, we
collect a few technical statements that are used in this thesis. Firstly, us recall that it is,
for any threshold λ ≥ 0, defined as

Sλ : R → R, x 7→
{

0 if |x| ≤ λ,
x − λsign(x) if |x| > λ,

which can also be expressed in closed form as Sλ(x) = sign(x) · max(0, |x| − λ). As a
side remark, let us not that Sλ can be expressed as the sum of two rectified linear units
via Sλ(x) = ReLU(x − λ)− ReLU(−x − λ), even though we do not make us of it. (The
function ReLU(x) = max(0, x) is one of the most popular activation functions used by
deep learning practitioners.)

Lipschitzness and perturbations bounds. Firstly, it is easy to see that the soft-thresholding
function is 1-Lipschitz, i.e., |Sλ(x1) − Sλ(x2)| ≤ |x1 − x2| for any x1, x2 ∈ R. Similarly,
this holds for higher-dimensional objects, i.e.,

∥Sλ(M1)− Sλ(M2)∥F ≤ ∥M1 − M2∥F

for any matrices M1 and M2 of the same size. We also require bounds on perturbations
with respect to the thresholding parameters; even though a Lipschitz-like condition also
holds in this case, it depends on the dimensionality of the involved objects, as shown in
the following lemma.

Lemma C.1 Let M ∈ Rd1×d2 be a matrix and λ1, λ2 ≥ 0 thresholding parameters. Then it
holds

∥Sλ1(M)− Sλ2(M)∥F ≤
√

d1d2|λ1 − λ2|.

Proof. If λ1 = λ2, the inequality is trivially satisfied. Otherwise, it is easy to verify that

|Sλ1(x)− Sλ2(x)| ≤ |λ1 − λ2| ∀x ∈ R,

i.e., the statement holds in the scalar case. Using this, we obtain the general statement as

∥Sλ1(M)− Sλ2(M)∥F =

√√√√ d1

∑
i=1

d2

∑
j=1

∣∣Sλ1(mij)− Sλ2(mij)
∣∣2 ≤

√
d1d2|λ1 − λ2|,

when applying the soft-thresholding function entrywise to some matrix M. ■

133

Spectral norm of I − τM⊤M. In ISTA, an expression of the type I − τM⊤M appears
in every iteration. The following Lemma provides useful statements in this context.

Lemma C.2 For M ∈ Rd1×d2 some matrix, ∥Id2 − τM⊤M∥2→2 can be bounded as follows.

(i) For τ∥M∥2
2→2 ≤ 1 and d1 < d2, it holds that

∥∥Id2 − τM⊤M
∥∥

2→2 = 1.

(ii) For τ∥M∥2
2→2 < 1 and M of full rank, it holds that

∥∥Id2 − τM⊤M
∥∥

2→2 < 1.

In this thesis, the two parts of this Lemma are relevant in the following two scenarios.

(i) In Chapter 2, the matrix M plays the role of the measurement matrix A ∈ Rm×p,
with m being the number of measurements and p the ambient dimension, and d1 =
m < p = d2 (or even m ≪ p) in the typical compressive sensing setup.

(ii) In Chapter 3 (see also Section 3.3 for the discussion on random fixed point equa-
tions), the matrix M plays the role of (the transpose of) the data matrix X ∈ Rp×n

with the data dimension p and the number of samples n. Under reasonable as-
sumptions on the data distribution, and if additionally the sample size exceeds the
dimension (d2 = n > p = d1), then XX⊤ ∈ Rp has full rank with high probability;
furthermore, by choosing τ small enough we can ensure that τ∥X∥2

2→2 < 1, as by
high probability its singular values are bounded (or almost surely asymptotically
by Theorem 1.12).

Proof. Assume that M is of rank k with k ≤ min{d1, d2} and denote the singular values
of M by σ1, . . . , σk. Since Id2 is a diagonal matrix and M⊤M is symmetric and therefore
diagonizable, the singular values of the (d2 × d2)-matrix Id2 − τM⊤M are given by

1, . . . , 1︸ ︷︷ ︸
d2−k

,
∣∣1 − τσ2

1
∣∣, . . . ,

∣∣1 − τσ2
k
∣∣.

Next, recall that the singular values of M⊤M are the squared singular values of M and
further, that the spectral norm of a matrix agrees with its largest singular value. Now,
in the first case the condition d1 < d2 means that M⊤M is rank-deficient and guaran-
tees the existence of d2 − d1 singular values of 1, while the condition τ

∥∥M⊤M
∥∥

2→2 =

τ ∥M∥2
2→2 ≤ 1 makes sure that 0 < τσ2

i ≤ 1 and therefore |1 − τσ2
i | ≤ 1 for i = 1, . . . , k,

which proves (i). In the case (ii) when M⊤M is of full rank n = d2 ̸= d1, only the singular
values 1 − τσ2

i for i = 1, . . . , d2 remain, which are strictly smaller than 1, so that in this
case the strict inequality

∥∥Id2 − τM⊤M
∥∥

2→2 < 1 holds. ■

C.2 A few Integrals

In the proof of Chapter 3, we used the three help functions φ, ψ and Γ. The goal of this
section is to obtain precise and simplified expressions for those functions that enable a
practical computation, even though requiring numerical integration. Even though al-
ready introduced before in equations (3.13), (3.14) and (3.15), let us recall the functions
for convenience and in the interest of better readability.

φ(λ, µ, σ) = Ez∼N (µ,σ2)[Sλ(z)],

ψ(λ, µ, σ) = Ez∼N (µ,σ2)[S
′
λ(z)],

Γ(λ, µ, σ) = Ez∼N (µ,σ2)[Sλ(z)2].

134

Note that all three functions are here defined in a one-dimensional setting φ, ψ, Γ :
R>0 × R × R>0 → R (that is, corresponding to a univarite normal distribution N (µ, σ2),
but this can be easily extended by entrywise application in case of Gaussian random
vectors or matrices). In the sequel, the upcoming Lemmas C.3, C.4 and C.5 will provide
the desired formulas for the three help functions φ, ψ and Γ that are used in Chapter 3.

Lemma C.3 (Mean of Sλ(z).) Let z ∼ N (µ, σ2) and Sλ be the soft-thresholding operator with
λ > 0. Furthermore, denote by fµ,σ2 the density function of N (µ, σ2). Then, the φ(λ, µ, σ) =
E[Sλ(z)] is given by

φ(λ, µ, σ) =µ +
σ√
2π

[
exp

(
− (µ − λ)2

2σ2

)
− exp

(
− (µ + λ)2

2σ2

)]
+

(µ − λ)

2
erf
(
(µ − λ)√

2σ

)
− (µ + λ)

2
erf
(
(µ + λ)√

2σ

)
.

Note that limλ→0 E[Sλ(z)] = µ, and furthermore limλ→∞ E[Sλ(z)] = 0. Indeed, note
that the summands containing the erf function can be rewritten as

(µ − λ)

2
erf
(
(µ − λ)√

2σ

)
− (µ + λ)

2
erf
(
(µ + λ)√

2σ

)
=

µ

2

(
erf
(

µ − λ√
2σ

)
− erf

(
µ + λ√

2σ

))
− λ

2

(
erf
(

µ − λ√
2σ

)
+ erf

(
µ + λ√

2σ

))
By passing to the limit for λ → ∞, using basic properties of the erf function and using
the rule of de L’Hospital for the second summand, we obtain

lim
λ→∞

[
µ

2

(
erf
(

µ − λ√
2σ

)
− erf

(
µ + λ√

2σ

))
− λ

2

(
erf
(

µ − λ√
2σ

)
+ erf

(
µ + λ√

2σ

))]
= −µ,

which cancels with the other summand µ, while the exponentials vanish in the limit
λ → ∞.

Proof. Since Sλ is a piecewise linear (or even constant zero) function on the intervals
(−∞,−λ], [−λ,−λ] and [λ, ∞), the mean Ez∼N (µ,σ2)[Sλ(z)] can be easily obtained by
integration via∫ ∞

−∞
Sλ(y) fµ,σ2(y)dy =

∫ −λ

−∞
(y + λ) fµ,σ2(y)dy +

∫ λ

−λ
0 · fµ,σ2(y)dy +

∫ ∞

λ
(y − λ) fµ,σ2(y)dy

=
∫ −λ

−∞
(y + λ) fµ,σ2(y)dy +

∫ ∞

λ
(y − λ) fµ,σ2(y)dy

=
∫ 0

−∞
y fµ,σ2(y − λ)dy +

∫ ∞

0
y fµ,σ2(y + λ)dy

=
∫ 0

−∞
y fµ+λ,σ2(y)dy +

∫ ∞

0
y fµ−λ,σ2(y)dy.

Let us first focus on the second summand and use (B.2) (replacing µ by µ − λ, and
using basic properties of the involved functions):∫ ∞

0
y fµ−λ,σ2(y)dy =

[
Hµ−λ,σ2(y)

]∞

0

135

=

[
σ

2

(
− (µ − λ)

σ
erf
(
−y − (µ − λ)√

2σ

)
−
√

2
π

exp
(
− (y − (µ − λ))2

2σ2

))]∞

0

=

[
σ

2
(µ − λ)

σ

]
−
[

σ

2

(
− (µ − λ)

σ
erf
(
(µ − λ)√

2σ

)
−
√

2
π

exp
(
− (µ − λ)2

2σ2

))]

=
σ

2

[
(µ − λ)

σ
+

(µ − λ)

σ
erf
(
(µ − λ)√

2σ

)
+

√
2
π

exp
(
− (µ − λ)2

2σ2

)]

=
(µ − λ)

2
+

(µ − λ)

2
erf
(
(µ − λ)√

2σ

)
+

σ√
2π

exp
(
− (µ − λ)2

2σ2

)
.

Next, we deal with the first summand above and again use (B.2) (this time replacing µ
by µ + λ); similar to above, we obtain

∫ 0

−∞
y fµ+λ,σ2(y)dy =

[
Hµ+λ,σ2(y)

]0

−∞

=

[
σ

2

(
− (µ + λ)

σ
erf
(
−y − (µ + λ)√

2σ

)
−
√

2
π

exp
(
− (y − (µ + λ))2

2σ2

))]0

−∞

=

[
σ

2

(
− (µ + λ)

σ
erf
(
(µ + λ)√

2σ

)
−
√

2
π

exp
(
− (µ + λ)2

2σ2

))]
+

[
(µ + λ)

2

]
=− (µ + λ)

2
erf
(
(µ + λ)√

2σ

)
− σ√

2π
exp

(
− (µ + λ)2

2σ2

)
+

(µ + λ)

2
.

Altogether, we obtain the closed-form solution of φ(λ, µ, σ),∫ ∞

−∞
Sλ(y) fµ,σ2(y)dy =µ +

σ√
2π

[
exp

(
− (µ − λ)2

2σ2

)
− exp

(
− (µ + λ)2

2σ2

)]
+

(µ − λ)

2
erf
(
(µ − λ)√

2σ

)
− (µ + λ)

2
erf
(
(µ + λ)√

2σ

)
.

finishing the proof. ■

Lemma C.4 [Mean of S′
λ(z).] Let z ∼ N (µ, σ2) and Sλ be the soft-thresholding operator with

λ > 0. Furthermore, denote by fµ,σ2 the density function of N (µ, σ2). Then, the mean E[S′
λ(z)]

is given by

ψ(λ, µ, σ) = Ez∼N (µ,σ2)[S
′
λ(z)] = 1 +

1
2

(
erf
(
−λ + µ√

2σ2

)
− erf

(
λ − µ√

2σ2

))
.

By the properties of the erf function, we immediately obtain limλ→∞ E[S′
λ(z)] = 0.

Proof. Since S′
λ is a piecewise linear (or even constant function) on the intervals (−∞,−λ),

(−λ,−λ) and (λ, ∞). Even though not differentiable at z = ±λ, we can calculate the
mean Ez∼N (µ,σ2)[S′

λ(z)] by piecewise computation of the corresponding integrals. (More
formally, one could smoothly approximate Sλ(z). More generally, let us recall that the ap-
proach of smooth approximations [Sad+19] could be an interesting alternative to avoid

136

the technical problems due to the non-smoothness of the soft-thresholding function.)∫ ∞

−∞
Sλ(y) fµ,σ2(y)dy =

∫ −λ

−∞
1 · fµ,σ2(y)dy +

∫ λ

−λ
0 · fµ,σ2(y)dy +

∫ ∞

λ
1 · fµ,σ2(y)dy

=
∫ −λ

−∞
fµ,σ2(y)dy +

∫ ∞

λ
fµ,σ2(y)dy

=
∫ 0

−∞
fµ,σ2(y − λ)dy +

∫ ∞

0
fµ,σ2(y + λ)dy

=
∫ 0

−∞
fµ−λ,σ2(y)dy +

∫ ∞

0
fµ+λ,σ2(y)dy

=
∫ 0

−∞
fµ−λ,σ2(y)dy + 1 −

∫ 0

−∞
fµ+λ,σ2(y)dy

=
1
2

(
1 + erf

(
−λ + µ√

2σ2

))
+ 1 − 1

2

(
1 + erf

(
λ − µ√

2σ2

))
=1 +

1
2

(
erf
(
−λ + µ√

2σ2

)
− erf

(
λ − µ√

2σ2

))
,

finishing the proof. ■

Lemma C.5 [Variance of Sλ(z).] Let z ∼ N (µ, σ2) and Sλ be the soft-thresholding operator
with λ > 0. Furthermore, denote by fµ,σ2 the density function of N (µ, σ2). Then, the variance
Γ(λ, µ, σ) = Var(Sλ(z)) is given by

Γ(λ, µ, σ) =µ2 + λ2 + σ2 +
(µ + λ)2 + σ2

2
erf
(

µ + λ√
2σ2

)
+

σ (µ + λ)√
2π

exp

(
− (µ + λ)2

2σ2

)

− (µ − λ)2 + σ2

2
erf
(

µ − λ√
2σ2

)
− σ (µ − λ)√

2π
exp

(
− (µ − λ)2

2σ2

)
− E[Sλ(z)]2,

with E[Sλ(z)] given by Lemma C.3.

Proof. The mean Ez∼N (µ,σ2)[S2
λ(z)] can be easily obtained by integration via∫ ∞

−∞
Sλ(y)2 fµ,σ2(y)dy

=
∫ −λ

−∞
(y + λ)2 fµ,σ2(y)dy +

∫ λ

−λ
0 · fµ,σ2(y)dy +

∫ ∞

λ
(y − λ)2 fµ,σ2(y)dy

=
∫ 0

−∞
y2 fµ+λ,σ2(y)dy +

∫ ∞

0
y2 fµ−λ,σ2(y)dy. (C.1)

Using the formula for the anti-derivative (B.3) allows to retrieve for the first summand in
(C.1) ∫ 0

−∞
y2 fµ+λ,σ2(y)dy =

[
Gµ+λ,σ2(y)

]0

−∞

=

[
− (µ + λ)2 + σ2

2
erf
(

µ + λ − y√
2σ2

)
− σ (µ + λ + y)√

2π
exp

(
− (µ + λ − y)2

2σ2

)]0

−∞

=− (µ + λ)2 + σ2

2
erf
(

µ + λ√
2σ2

)
− σ (µ + λ)√

2π
exp

(
− (µ + λ)2

2σ2

)
+

(µ + λ)2 + σ2

2
.

137

For the second summand in (C.1), we obtain in a similar way∫ ∞

0
y2 fµ−λ,σ2(y)dy =

[
Gµ−λ,σ2(y)

]∞

0

=

[
− (µ − λ)2 + σ2

2
erf
(

µ − λ − y√
2σ2

)
− σ (µ − λ + y)√

2π
exp

(
− (µ − λ − y)2

2σ2

)]∞

0

=
(µ − λ)2 + σ2

2
erf
(

µ − λ√
2σ2

)
+

σ (µ − λ)√
2π

exp

(
− (µ − λ)2

2σ2

)
+

(µ − λ)2 + σ2

2
.

Therefore, combining our findings finally yields

Ez∼N (µ,σ2)[S
2
λ(z)]

=µ2 + λ2 + σ2 +
(µ + λ)2 + σ2

2
erf
(

µ + λ√
2σ2

)
+

σ (µ + λ)√
2π

exp

(
− (µ + λ)2

2σ2

)

− (µ − λ)2 + σ2

2
erf
(

µ − λ√
2σ2

)
− σ (µ − λ)√

2π
exp

(
− (µ − λ)2

2σ2

)
.

We can then deduce the result by using Varz∼N (µ,σ2)(Sλ(z)) = E
[
S2

λ(z)
]
−E [Sλ(z)]

2. ■

138

Bibliography

[AB99] M. Anthony and P. L. Bartlett. Neural Network Learning: Theoretical Foundations.
Cambridge University Press, 1999. DOI: 10.1017/CBO9780511624216.

[Ada05] R. Adamczak. “Logarithmic Sobolev inequalities and concentration of measure
for convex functions and polynomial chaoses”. arXiv preprint math/0505175 (2005).

[Ada15] R. Adamczak. “A note on the Hanson-Wright inequality for random vectors
with dependencies”. Electronic Communications in Probability 20 (2015), 1–13.

[AG18] F. Abramovich and V. Grinshtein. “High-dimensional classification by sparse
logistic regression”. IEEE Transactions on Information Theory 65.5 (2018), 3068–
3079.

[AGE20] A. Aberdam, A. Golts, and M. Elad. “Ada-LISTA: Learned Solvers Adaptive to
Varying Models”. Preprint arXiv:2001.08456 (2020).

[ARPAH20] V. Antun, F. Renna, C. Poon, B. Adcock, and A. C. Hansen. “On instabilities of
deep learning in image reconstruction and the potential costs of AI”. Proceedings
of the National Academy of Sciences 117.48 (2020), 30088–30095.

[ASKAAN20] A. M. Alrashdi, H. Sifaou, A. Kammoun, M.-S. Alouini, and T. Y. Al-Naffouri.
“Precise error analysis of the lasso under correlated designs”. arXiv preprint
arXiv:2008.13033 (2020).

[ASS20] M. S. Advani, A. M. Saxe, and H. Sompolinsky. “High-dimensional dynamics of
generalization error in neural networks”. Neural Networks 132 (2020), 428–446.

[BBL03] O. Bousquet, S. Boucheron, and G. Lugosi. “Introduction to statistical learning
theory”. Summer school on machine learning. Springer. 2003, 169–207.

[BCDH10] R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde. “Model-based compres-
sive sensing”. IEEE Transactions on information theory 56.4 (2010), 1982–2001.

[BD09] T. Blumensath and M. E. Davies. “Iterative hard thresholding for compressed
sensing”. Applied and computational harmonic analysis 27.3 (2009), 265–274.

[BDDW08] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin. “A simple proof of the
restricted isometry property for random matrices”. Constructive Approximation
28.3 (2008), 253–263.

[Ber09] D. Bertsekas. Convex optimization theory. Vol. 1. Athena Scientific, 2009.

[BFT17] P. L. Bartlett, D. J. Foster, and M. J. Telgarsky. “Spectrally-normalized margin
bounds for neural networks”. Advances in Neural Information Processing Systems
30. Ed. by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett. 2017, 6240–6249.

[BHSN10] W. U. Bajwa, J. Haupt, A. M. Sayeed, and R. Nowak. “Compressed channel sens-
ing: A new approach to estimating sparse multipath channels”. Proceedings of the
IEEE 98.6 (2010), 1058–1076.

[BJPD17] A. Bora, A. Jalal, E. Price, and A. G. Dimakis. “Compressed sensing using gen-
erative models”. International Conference on Machine Learning. PMLR. 2017, 537–
546.

[BM02] P. L. Bartlett and S. Mendelson. “Rademacher and Gaussian Complexities: Risk
Bounds and Structural Results”. Journal of Machine Learning Research 3.Nov (2002),
463–482. ISSN: ISSN 1533-7928. (Visited on 03/21/2021).

139

https://doi.org/10.1017/CBO9780511624216

[BM11] M. Bayati and A. Montanari. “The LASSO risk for Gaussian matrices”. IEEE
Transactions on Information Theory 58.4 (2011), 1997–2017.

[BM98] P. S. Bradley and O. L. Mangasarian. “Feature selection via concave minimiza-
tion and support vector machines.” ICML. Vol. 98. 1998, 82–90.

[BMP12] A. Benveniste, M. Métivier, and P. Priouret. Adaptive algorithms and stochastic
approximations. Vol. 22. Springer Science & Business Media, 2012.

[BQL21] J. Bassey, L. Qian, and X. Li. “A survey of complex-valued neural networks”.
arXiv preprint arXiv:2101.12249 (2021).

[BRMVO] J. A. Barrachina, C. Ren, C. Morisseau, G. Vieillard, and J.-P. Ovarlez. “Merits of
Complex-Valued Neural Networks for PolSAR image segmentation”.

[BRMVO22] J. A. Barrachina, C. Ren, C. Morisseau, G. Vieillard, and J.-P. Ovarlez. “Com-
parison Between Equivalent Architectures of Complex-valued and Real-valued
Neural Networks-Application on Polarimetric SAR Image Segmentation”. Jour-
nal of Signal Processing Systems (2022), 1–10.

[BRS22] A. Behboodi, H. Rauhut, and E. Schnoor. “Compressive Sensing and Neural
Networks from a Statistical Learning Perspective”. Compressed Sensing in Infor-
mation Processing (2022), 247–277.

[BS07] R. Baraniuk and P. Steeghs. “Compressive radar imaging”. 2007 IEEE radar con-
ference. IEEE. 2007, 128–133.

[BSJ21] F. Behrens, J. Sauder, and P. Jung. “Neurally Augmented ALISTA”. International
Conference on Learning Representations. 2021.

[BVDG11] P. Bühlmann and S. Van De Geer. Statistics for high-dimensional data: methods,
theory and applications. Springer Science & Business Media, 2011.

[BW09] R. G. Baraniuk and M. B. Wakin. “Random projections of smooth manifolds”.
Foundations of computational mathematics 9.1 (2009), 51–77.

[CBG16] R. Couillet and F. Benaych-Georges. “Kernel spectral clustering of large dimen-
sional data”. Electronic Journal of Statistics 10.1 (2016), 1393–1454.

[CD11] R. Couillet and M. Debbah. Random Matrix Methods for Wireless Communications.
Cambridge University Press, 2011. DOI: 10.1017/CBO9780511994746.

[CDD09] A. Cohen, W. Dahmen, and R. DeVore. “Compressed sensing and best k-term
approximation”. Journal of the American mathematical society 22.1 (2009), 211–231.

[CDS01] S. S. Chen, D. L. Donoho, and M. A. Saunders. “Atomic decomposition by basis
pursuit”. SIAM review 43.1 (2001), 129–159.

[CEG15] M. Chiani, A. Elzanaty, and A. Giorgetti. “Analysis of the restricted isometry
property for Gaussian random matrices”. 2015 IEEE Global Communications Con-
ference (GLOBECOM). IEEE. 2015, 1–6.

[CFMW19] Y. Chen, J. Fan, C. Ma, and K. Wang. “Spectral method and regularized MLE are
both optimal for top-K ranking”. Annals of statistics 47.4 (2019), 2204.

[CL20] R. Couillet and C. Louart. “Concentration of solutions to random equations with
concentration of measure hypotheses” (2020).

[CL22] R. Couillet and Z. Liao. Random Matrix Methods for Machine Learning. Cambridge
University Press, 2022.

[CLMPV22] A. Caragea, D. G. Lee, J. Maly, G. Pfander, and F. Voigtlaender. “Quantitative
approximation results for complex-valued neural networks”. SIAM Journal on
Mathematics of Data Science 4.2 (2022), 553–580.

[CLWY18] X. Chen, J. Liu, Z. Wang, and W. Yin. “Theoretical linear convergence of un-
folded ISTA and its practical weights and thresholds”. Advances in Neural Infor-
mation Processing Systems. 2018, 9061–9071.

140

https://doi.org/10.1017/CBO9780511994746

[CMW20] M. Celentano, A. Montanari, and Y. Wei. “The Lasso with general Gaussian de-
signs with applications to hypothesis testing”. arXiv preprint arXiv:2007.13716
(2020).

[Con+17] T. O. Conrad, M. Genzel, N. Cvetkovic, N. Wulkow, A. Leichtle, J. Vybiral, G.
Kutyniok, and C. Schütte. “Sparse Proteomics Analysis–a compressed sensing-
based approach for feature selection and classification of high-dimensional pro-
teomics mass spectrometry data”. BMC bioinformatics 18.1 (2017), 1–20.

[CP11] A. Chambolle and T. Pock. “A first-order primal-dual algorithm for convex
problems with applications to imaging”. Journal of mathematical imaging and vi-
sion 40.1 (2011), 120–145.

[CP21] P. L. Combettes and J.-C. Pesquet. “Fixed point strategies in data science”. IEEE
Transactions on Signal Processing 69 (2021), 3878–3905.

[CT05] E. J. Candès and T. Tao. “Decoding by linear programming”. IEEE transactions
on information theory 51.12 (2005), 4203–4215.

[DC18] L. Ding and Y. Chen. “Leave-one-out approach for matrix completion: Primal
and dual analysis”. arXiv preprint arXiv:1803.07554 (2018).

[DDDM04] I. Daubechies, M. Defrise, and C. De Mol. “An iterative thresholding algorithm
for linear inverse problems with a sparsity constraint”. Communications on Pure
and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical
Sciences 57.11 (2004), 1413–1457.

[Don06] D. L. Donoho. “Compressed sensing”. IEEE Transactions on information theory
52.4 (2006), 1289–1306.

[DR16] M. A. Davenport and J. Romberg. “An overview of low-rank matrix recovery
from incomplete observations”. IEEE Journal of Selected Topics in Signal Processing
10.4 (2016), 608–622.

[DS89] D. L. Donoho and P. B. Stark. “Uncertainty principles and signal recovery”.
SIAM Journal on Applied Mathematics 49.3 (1989), 906–931.

[DS96] B. DasGupta and E. Sontag. “Sample complexity for learning recurrent percep-
tron mappings”. IEEE Transactions on Information Theory 42.5 (Sept. 1996), 1479–
1487.

[Dud67] R. M. Dudley. “The sizes of compact subsets of Hilbert space and continuity of
Gaussian processes”. Journal of Functional Analysis 1.3 (1967), 290–330.

[Duf13] M. Duflo. Random iterative models. Vol. 34. Springer Science & Business Media,
2013.

[EK09] N. El Karoui. “Concentration of measure and spectra of random matrices: Ap-
plications to correlation matrices, elliptical distributions and beyond”. The An-
nals of Applied Probability 19.6 (2009), 2362–2405.

[EKBBLY13] N. El Karoui, D. Bean, P. J. Bickel, C. Lim, and B. Yu. “On robust regression
with high-dimensional predictors”. Proceedings of the National Academy of Sci-
ences 110.36 (2013), 14557–14562.

[Ela10] M. Elad. Sparse and redundant representations: from theory to applications in signal
and image processing. Vol. 2. 1. Springer, 2010.

[FGP07] B. Fleury, O. Guédon, and G. Paouris. “A stability result for mean width of Lp-
centroid bodies”. Advances in Mathematics 214.2 (2007), 865–877.

[FR13] S. Foucart and H. Rauhut. A Mathematical Introduction to Compressive Sensing.
Applied and Numerical Harmonic Analysis. New York, NY: Springer New York,
2013. (Visited on 06/18/2016).

[GAAH20] N. M. Gottschling, V. Antun, B. Adcock, and A. C. Hansen. “The troublesome
kernel: why deep learning for inverse problems is typically unstable”. Preprint
arXiv:2001.01258 (2020).

141

[GAK20] C. Gerbelot, A. Abbara, and F. Krzakala. “Asymptotic errors for high-dimensional
convex penalized linear regression beyond gaussian matrices”. Conference on
Learning Theory. PMLR. 2020, 1682–1713.

[Gau87] C. F. Gauss. Abhandlungen zur Methode der kleinsten Quadrate. P. Stankiewicz,
1887.

[Geo18] A. Georgogiannis. “The Generalization Error of Dictionary Learning with Moreau
Envelopes”. Proceedings of the 35th International Conference on Machine Learning.
Ed. by J. Dy and A. Krause. Vol. 80. Proceedings of Machine Learning Research.
Stockholmsmässan, Stockholm Sweden: PMLR, 2018, 1617–1625.

[GJBKS15] R. Gribonval, R. Jenatton, F. Bach, M. Kleinsteuber, and M. Seibert. “Sample
complexity of dictionary learning and other matrix factorizations”. IEEE Trans-
actions on Information Theory 61.6 (2015), 3469–3486.

[GK22] P. Grohs and G. Kutyniok. Mathematical Aspects of Deep Learning. Cambridge
University Press, 2022.

[GL10] K. Gregor and Y. LeCun. “Learning fast approximations of sparse coding”. Pro-
ceedings of the 27th International Conference on International Conference on Machine
Learning. 2010, 399–406.

[GMM20] M. Genzel, J. Macdonald, and M. März. “Solving Inverse Problems With Deep
Neural Networks – Robustness Included?” arXiv:2011.04268 (Nov. 2020).

[Goo+20] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio. “Generative adversarial networks”. Communications of
the ACM 63.11 (2020), 139–144.

[GQ14] D. Goldfarb and Z. Qin. “Robust low-rank tensor recovery: Models and algo-
rithms”. SIAM Journal on Matrix Analysis and Applications 35.1 (2014), 225–253.

[GRS18] N. Golowich, A. Rakhlin, and O. Shamir. “Size-Independent Sample Complex-
ity of Neural Networks”. Conference On Learning Theory. July 2018, 297–299.

[GS10] R. Gribonval and K. Schnass. “Dictionary identification - sparse matrix-factorisation
via ℓ1-minimisation”. IEEE Transactions on Information Theory 56.7 (2010), 3523–
3539.

[GSWTY21] J. Gui, Z. Sun, Y. Wen, D. Tao, and J. Ye. “A review on generative adversarial
networks: Algorithms, theory, and applications”. IEEE Transactions on Knowledge
and Data Engineering (2021).

[Has+20] M. Hasannasab, J. Hertrich, S. Neumayer, G. Plonka, S. Setzer, and G. Steidl.
“Parseval Proximal Neural Networks”. en. Journal of Fourier Analysis and Appli-
cations 26.4 (July 2020), 59. ISSN: 1531-5851. (Visited on 03/24/2021).

[Has+21] M. Hasannasab, J. Hertrich, S. Neumayer, G. Plonka, S. Setzer, and G. Steidl.
“Correction to: Parseval Proximal Neural Networks”. Journal of Fourier Analysis
and Applications 27.3 (2021), 1–2.

[HHHV21] W. Huang, P. Hand, R. Heckel, and V. Voroninski. “A provably convergent scheme
for compressive sensing under random generative priors”. Journal of Fourier
Analysis and Applications 27.2 (2021), 1–34.

[HKY97] J Harold, G Kushner, and G. Yin. “Stochastic approximation and recursive algo-
rithm and applications”. Application of Mathematics 35.10 (1997).

[HLN07] W. Hachem, P. Loubaton, and J. Najim. “Deterministic equivalents for certain
functionals of large random matrices”. The Annals of Applied Probability 17.3
(2007), 875–930.

[HMGW14] B. Huang, C. Mu, D. Goldfarb, and J. Wright. “Provable low-rank tensor recov-
ery”. Optimization-Online 4252.2 (2014), 455–500.

142

[HNS21] J. Hertrich, S. Neumayer, and G. Steidl. “Convolutional proximal neural net-
works and plug-and-play algorithms”. Linear Algebra and its Applications 631
(2021), 203–234.

[HS06] G. E. Hinton and R. R. Salakhutdinov. “Reducing the dimensionality of data
with neural networks”. science 313.5786 (2006), 504–507.

[Hua20] H. Huang. “Asymptotic risk and phase transition of l {1}-penalized robust es-
timator”. The Annals of Statistics 48.5 (2020), 3090–3111.

[HV18] P. Hand and V. Voroninski. “Global guarantees for enforcing deep generative
priors by empirical risk”. Conference On Learning Theory. PMLR. 2018, 970–978.

[HV19] P. Hand and V. Voroninski. “Global guarantees for enforcing deep generative
priors by empirical risk”. IEEE Transactions on Information Theory 66.1 (2019),
401–418.

[Ito79] S. Itoh. “Random fixed point theorems with an application to random differen-
tial equations in Banach spaces”. Journal of Mathematical Analysis and Applications
67.2 (1979), 261–273.

[JEG14] A. Jung, Y. C. Eldar, and N. Görtz. “Performance limits of dictionary learning
for sparse coding”. 2014 22nd European Signal Processing Conference (EUSIPCO).
2014, 765–769.

[JEG16] A. Jung, Y. C. Eldar, and N. Görtz. “On the Minimax Risk of Dictionary Learn-
ing”. IEEE Transactions on Information Theory 62.3 (2016), 1501–1515.

[JGH18] A. Jacot, F. Gabriel, and C. Hongler. “Neural tangent kernel: Convergence and
generalization in neural networks”. Advances in neural information processing sys-
tems 31 (2018).

[JNMKB20] Y. Jiang, B. Neyshabur, H. Mobahi, D. Krishnan, and S. Bengio. “Fantastic Gen-
eralization Measures and Where to Find Them”. International Conference on Learn-
ing Representations. 2020.

[Joh84] W. B. Johnson. “Extensions of Lipschitz mappings into a Hilbert space”. Con-
temp. Math. 26 (1984), 189–206.

[Jun17] A. Jung. “A fixed-point of view on gradient methods for big data”. Frontiers in
Applied Mathematics and Statistics 3 (2017), 18.

[Jun22] A. Jung. Machine Learning: The Basics. Springer Nature, 2022.

[KB14] D. P. Kingma and J. Ba. “Adam: A method for stochastic optimization”. arXiv
preprint arXiv:1412.6980 (2014).

[Kla07] B. Klartag. “A central limit theorem for convex sets”. Inventiones mathematicae
168.1 (2007), 91–131.

[KM16] U. S. Kamilov and H. Mansour. “Learning optimal nonlinearities for iterative
thresholding algorithms”. IEEE Signal Processing Letters 23.5 (2016), 747–751.

[KMR14] F. Krahmer, S. Mendelson, and H. Rauhut. “Suprema of chaos processes and the
restricted isometry property”. Communications on Pure and Applied Mathematics
67.11 (2014), 1877–1904.

[KP22] V. Kouni and Y. Panagakis. “DECONET: an Unfolding Network for Analysis-
based Compressed Sensing with Generalization Error Estimates”. arXiv preprint
arXiv:2205.07050 (2022).

[KR17] M. Kabanava and H. Rauhut. “Masked Toeplitz covariance estimation”. arXiv
preprint arXiv:1709.09377 (2017).

[KS98] P. Koiran and E. D. Sontag. “Vapnik-Chervonenkis dimension of recurrent neu-
ral networks”. Discrete Applied Mathematics. Vapnik-Chervonenkis dimension
86.1 (Aug. 1998), 63–79. ISSN: 0166-218X. (Visited on 06/05/2020).

143

[KV17] A. Kolleck and J. Vybı́ral. “Non-Asymptotic Analysis of ℓ1-Norm Support Vec-
tor Machines”. IEEE Transactions on Information Theory 63.9 (2017), 5461–5476.

[KW11] F. Krahmer and R. Ward. “New and improved Johnson–Lindenstrauss embed-
dings via the restricted isometry property”. SIAM Journal on Mathematical Anal-
ysis 43.3 (2011), 1269–1281.

[KW13] D. P. Kingma and M. Welling. “Auto-encoding variational bayes”. arXiv preprint
arXiv:1312.6114 (2013).

[LC18a] Z. Liao and R. Couillet. “The dynamics of learning: A random matrix approach”.
International Conference on Machine Learning. PMLR. 2018, 3072–3081.

[LC18b] C. Louart and R. Couillet. “Concentration of Measure and Large Random Matri-
ces with an application to Sample Covariance Matrices”. arXiv preprint arXiv:1805.08295
(2018).

[LC19] J. Liu and X. Chen. “ALISTA: Analytic weights are as good as learned weights
in LISTA”. International Conference on Learning Representations (ICLR). 2019.

[LC20] C. Louart and R. Couillet. “Concentration of solutions to random equations with
concentration of measure hypotheses”. arXiv preprint arXiv:2010.09877 (2020).

[LCMR19] M. Lezcano-Casado and D. Martınez-Rubio. “Cheap orthogonal constraints in
neural networks: A simple parametrization of the orthogonal and unitary group”.
International Conference on Machine Learning. PMLR. 2019, 3794–3803.

[LCWY19] J. Liu, X. Chen, Z. Wang, and W. Yin. “ALISTA: Analytic Weights Are As Good
As Learned Weights in LISTA”. International Conference on Learning Representa-
tions. 2019.

[LeC] Y. LeCun. “The MNIST database of handwritten digits”. http://yann.lecun.com/exdb/mnist/
().

[Led01] M. Ledoux. The concentration of measure phenomenon. 89. American Mathematical
Soc., 2001.

[LHG22] C. Lee, H. Hasegawa, and S. Gao. “Complex-Valued Neural Networks: A Com-
prehensive Survey”. IEEE/CAA Journal of Automatica Sinica 9.8 (2022), 1406–1426.

[LLC18] C. Louart, Z. Liao, and R. Couillet. “A random matrix approach to neural net-
works”. The Annals of Applied Probability 28.2 (2018), 1190–1248.

[Lou23] C. Louart. “Concentration of the measure and random matrices to study data
processessing algorithms”. PhD thesis. 2023.

[LSLDP05] M. Lustig, J. M. Santos, J.-H. Lee, D. L. Donoho, and J. M. Pauly. “Application
of compressed sensing for rapid MR imaging”. SPARS,(Rennes, France) (2005).

[LT11] M. Ledoux and M. Talagrand. Probability in Banach spaces: isoperimetry and pro-
cesses. Classics in mathematics. Berlin ; London: Springer, 2011. ISBN: 978-3-642-
20211-7 978-3-642-20212-4.

[LT91] M. Ledoux and M. Talagrand. Probability in Banach Spaces: isoperimetry and pro-
cesses. Springer, 1991.

[Lub21] S. Lubjuhn. “Neural Networks motivated by Primal-Dual Algorithms for Sparse
Reconstruction”. Master Thesis (2021).

[Mal99] S. Mallat. A wavelet tour of signal processing. Elsevier, 1999.

[Mau16] A. Maurer. “A vector-contraction inequality for rademacher complexities”. Al-
gorithmic Learning Theory: 27th International Conference, ALT 2016, Bari, Italy, Oc-
tober 19-21, 2016, Proceedings 27. Springer. 2016, 3–17.

[MC18] X. Mai and R. Couillet. “Statistical analysis and improvement of large dimen-
sional svm”. private communication (2018).

[McD] C McDiarmid. Surveys in Combinatorics, Chapter On the methods of bounded differ-
ences, 148–188, 1989.

144

[MF13] A. Makhzani and B. Frey. “K-sparse autoencoders”. arXiv preprint arXiv:1312.5663
(2013).

[ML19] X. Mai and Z. Liao. “High Dimensional Classification via Regularized and Un-
regularized Empirical Risk Minimization: Precise Error and Optimal Loss”. arXiv
preprint arXiv:1905.13742 (2019).

[MLC19] X. Mai, Z. Liao, and R. Couillet. “A large scale analysis of logistic regression:
Asymptotic performance and new insights”. ICASSP 2019-2019 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2019,
3357–3361.

[MP67] V. A. Marčenko and L. A. Pastur. “Distribution of eigenvalues for some sets of
random matrices”. Mathematics of the USSR-Sbornik 1.4 (1967), 457.

[MPB15] A. Mousavi, A. B. Patel, and R. G. Baraniuk. “A deep learning approach to struc-
tured signal recovery”. 2015 53rd Annual Allerton Conference on Communication,
Control, and Computing (Allerton). IEEE. 2015, 1336–1343.

[MRT18] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of machine learning.
MIT press, 2018.

[MS12] M. Meckes and S. Szarek. “Concentration for noncommutative polynomials in
random matrices”. Proceedings of the American Mathematical Society 140.5 (2012),
1803–1813.

[Nat95] B. K. Natarajan. “Sparse approximate solutions to linear systems”. SIAM journal
on computing 24.2 (1995), 227–234.

[Nau22] B. Naumova. “Neural Networks via Unfolded Iterative Optimization Algorithms
fof Compressive Sensing”. Master Thesis (2022).

[NBS18] B. Neyshabur, S. Bhojanapalli, and N. Srebro. “A PAC-Bayesian Approach to
Spectrally-Normalized Margin Bounds for Neural Networks”. International Con-
ference on Learning Representations. 2018.

[Ng+11] A. Ng et al. “Sparse autoencoder”. CS294A Lecture notes 72.2011 (2011), 1–19.

[Nit97] T. Nitta. “An extension of the back-propagation algorithm to complex num-
bers”. Neural Networks 10.8 (1997), 1391–1415.

[NJW01] A. Ng, M. Jordan, and Y. Weiss. “On spectral clustering: Analysis and an algo-
rithm”. Advances in neural information processing systems 14 (2001).

[NK19] V. Nagarajan and J. Z. Kolter. “Uniform convergence may be unable to explain
generalization in deep learning”. Advances in Neural Information Processing Sys-
tems. 2019, 11611–11622.

[Pap86] N. S. Papageorgiou. “Random fixed point theorems for measurable multifunc-
tions in Banach spaces”. Proceedings of the American Mathematical Society 97.3
(1986), 507–514.

[PAW07] J. L. Paredes, G. R. Arce, and Z. Wang. “Ultra-wideband compressed sensing:
Channel estimation”. IEEE Journal of Selected Topics in Signal Processing 1.3 (2007),
383–395.

[Rau] H. Rauhut. “Compressive sensing and structured random matrices”. Theoretical
foundations and numerical methods for sparse recovery 9.1 (), 92.

[Ros58] F. Rosenblatt. “The perceptron: a probabilistic model for information storage
and organization in the brain.” Psychological review 65.6 (1958), 386.

[RSS17] H. Rauhut, R. Schneider, and Ž. Stojanac. “Low rank tensor recovery via itera-
tive hard thresholding”. Linear Algebra and its Applications 523 (2017), 220–262.

[Sad+19] M. Sadeghi, F. Ghayem, M. Babaie-Zadeh, S. Chatterjee, M. Skoglund, and C.
Jutten. “LOSoft: ℓ0 Minimization via Soft Thresholding”. 2019 27th European Sig-
nal Processing Conference (EUSIPCO). IEEE. 2019, 1–5.

145

[SBR21] E. Schnoor, A. Behboodi, and H. Rauhut. “Generalization Error Bounds for
Iterative Recovery Algorithms Unfolded as Neural Networks”. arXiv preprint
arXiv:2112.04364 (2021).

[SBS15] P. Sprechmann, A. M. Bronstein, and G. Sapiro. “Learning efficient sparse and
low rank models”. IEEE transactions on pattern analysis and machine intelligence
37.9 (2015), 1821–1833.

[SC08] I. Steinwart and A. Christmann. Support vector machines. Springer Science &
Business Media, 2008.

[Sch14] K. Schnass. “On the Identifiability of Overcomplete Dictionaries via the Minimi-
sation Principle Underlying K-SVD”. Applied and Computational Harmonic Anal-
ysis 3 (2014), 37.

[SG18a] H. Sreter and R. Giryes. “Learned convolutional sparse coding”. 2018 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2018, 2191–2195.

[SG18b] H. Sreter and R. Giryes. “Learned convolutional sparse coding”. 2018 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE.
2018, 2191–2195.

[Sha48] C. E. Shannon. “A mathematical theory of communication”. The Bell system tech-
nical journal 27.3 (1948), 379–423.

[SHRHE22] J. Scarlett, R. Heckel, M. R. Rodrigues, P. Hand, and Y. C. Eldar. “Theoreti-
cal perspectives on deep learning methods in inverse problems”. arXiv preprint
arXiv:2206.14373 (2022).

[Sil+16] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J.
Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. “Mastering
the game of Go with deep neural networks and tree search”. nature 529.7587
(2016), 484–489.

[Sil+17a] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel, et al. “Mastering chess and shogi by self-play
with a general reinforcement learning algorithm”. arXiv preprint arXiv:1712.01815
(2017).

[Sil+17b] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T.
Hubert, L. Baker, M. Lai, A. Bolton, et al. “Mastering the game of go without
human knowledge”. nature 550.7676 (2017), 354–359.

[Sil+18] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanc-
tot, L. Sifre, D. Kumaran, T. Graepel, et al. “A general reinforcement learning
algorithm that masters chess, shogi, and Go through self-play”. Science 362.6419
(2018), 1140–1144.

[SLCT21] M. E. A. Seddik, C. Louart, R. Couillet, and M. Tamaazousti. “The Unexpected
Deterministic and Universal Behavior of Large Softmax Classifiers”. Interna-
tional Conference on Artificial Intelligence and Statistics. PMLR. 2021, 1045–1053.

[SLTC20] M. E. A. Seddik, C. Louart, M. Tamaazousti, and R. Couillet. “Random matrix
theory proves that deep learning representations of gan-data behave as gaussian
mixtures”. International Conference on Machine Learning. PMLR. 2020, 8573–8582.

[SM00] J. Shi and J. Malik. “Normalized cuts and image segmentation”. IEEE Transac-
tions on pattern analysis and machine intelligence 22.8 (2000), 888–905.

[SMG13] A. M. Saxe, J. L. McClelland, and S. Ganguli. “Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks”. arXiv preprint arXiv:1312.6120
(2013).

[SSBD14a] S. Shalev-Shwartz and S. Ben-David. Understanding machine learning: From theory
to algorithms. Cambridge university press, 2014.

146

[SSBD14b] S. Shalev-Shwartz and S. Ben-David. Understanding machine learning: from theory
to algorithms. New York, NY, USA: Cambridge University Press, 2014.

[SSSSHZ15] S. Sabato, S. Shalev-Shwartz, N. Srebro, D. J. Hsu, and T. Zhang. “Learning
sparse low-threshold linear classifiers.” J. Mach. Learn. Res. 16 (2015), 1275–1304.

[Ste81] C. M. Stein. “Estimation of the mean of a multivariate normal distribution”. The
annals of Statistics (1981), 1135–1151.

[Sze+13] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R.
Fergus. “Intriguing properties of neural networks”. arXiv preprint arXiv:1312.6199
(2013).

[Tal14] M. Talagrand. Upper and Lower Bounds for Stochastic Processes: Modern Methods
and Classical Problems. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3.
Folge / A Series of Modern Surveys in Mathematics. Springer Berlin Heidel-
berg, 2014. ISBN: 9783642540752.

[Tao12] T. Tao. Topics in random matrix theory. Vol. 132. American Mathematical Soc.,
2012.

[TB20] A. Tsigler and P. L. Bartlett. “Benign overfitting in ridge regression”. arXiv preprint
arXiv:2009.14286 (2020).

[Tib96] R. Tibshirani. “Regression selection and shrinkage via the lasso”. Journal of the
Royal Statistical Society Series B 58.1 (1996), 267–288.

[TOH15] C. Thrampoulidis, S. Oymak, and B. Hassibi. “Regularized linear regression: A
precise analysis of the estimation error”. Conference on Learning Theory. PMLR.
2015, 1683–1709.

[TSSCV22] M. Tiomoko, E. Schnoor, M. E. A. Seddik, I. Colin, and A. Virmaux. “Decipher-
ing lasso-based classification through a large dimensional analysis of the itera-
tive soft-thresholding algorithm”. International Conference on Machine Learning.
PMLR. 2022, 21449–21477.

[VC15] V. N. Vapnik and A. Y. Chervonenkis. “On the Uniform Convergence of Relative
Frequencies of Events to Their Probabilities”. Measures of Complexity: Festschrift
for Alexey Chervonenkis. Ed. by V. Vovk, H. Papadopoulos, and A. Gammerman.
2015, 11–30.

[Ver10] R. Vershynin. “Introduction to the non-asymptotic analysis of random matri-
ces”. arXiv preprint arXiv:1011.3027 (2010).

[Ver18] R. Vershynin. High-Dimensional Probability: An Introduction with Applications in
Data Science. Vol. 47. Cambridge University Press, 2018.

[VL07] U. Von Luxburg. “A tutorial on spectral clustering”. Statistics and computing 17.4
(2007), 395–416.

[VMB11] D. Vainsencher, S. Mannor, and A. M. Bruckstein. “The sample complexity of
dictionary learning”. Journal of Machine Learning Research 12.Nov (2011), 3259–
3281.

[VW15] V. Vu and K. Wang. “Random weighted projections, random quadratic forms
and random eigenvectors”. Random Structures & Algorithms 47.4 (2015), 792–821.

[Wai19] M. J. Wainwright. High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cam-
bridge Series in Statistical and Probabilistic Mathematics. Cambridge Univer-
sity Press, 2019. DOI: 10.1017/9781108627771.

[WGLZ20] K. Wu, Y. Guo, Z. Li, and C. Zhang. “Sparse Coding with Gated Learned ISTA”.
International Conference on Learning Representations. 2020.

[Wig55] E. P. Wigner. “Characteristic vectors of bordered matrices with infinite dimen-
sions”. Ann. of Math. 62 (1955), 548–564.

147

https://doi.org/10.1017/9781108627771

[Wis28] J. Wishart. “The generalised product moment distribution in samples from a
normal multivariate population”. Biometrika (1928), 32–52.

[WRL19] Y. Wu, M. Rosca, and T. Lillicrap. “Deep Compressed Sensing”. Proceedings of
the 36th International Conference on Machine Learning. Ed. by K. Chaudhuri and
R. Salakhutdinov. Vol. 97. Proceedings of Machine Learning Research. PMLR,
2019, 6850–6860. URL: https://proceedings.mlr.press/v97/wu19d.html.

[Wu+19] S. Wu, A. Dimakis, S. Sanghavi, F. Yu, D. Holtmann-Rice, D. Storcheus, A. Ros-
tamizadeh, and S. Kumar. “Learning a Compressed Sensing Measurement Ma-
trix via Gradient Unrolling”. Proceedings of the 36th International Conference on
Machine Learning. Ed. by K. Chaudhuri and R. Salakhutdinov. Vol. 97. Proceed-
ings of Machine Learning Research. PMLR, 2019, 6828–6839. URL: https://
proceedings.mlr.press/v97/wu19b.html.

[XWGWW16] B. Xin, Y. Wang, W. Gao, D. Wipf, and B. Wang. “Maximal sparsity with deep
networks?” Advances in Neural Information Processing Systems. 2016, 4340–4348.

[ZBHRV17] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. “Understanding deep
learning requires rethinking generalization”. International Conference on Learning
Representations. 2017.

[ZG18] J. Zhang and B. Ghanem. “ISTA-Net: interpretable optimization-inspired deep
network for image compressive sensing”. Proceedings of the IEEE conference on
computer vision and pattern recognition. 2018, 1828–1837.

[Zha11] T. Zhang. “Sparse recovery with orthogonal matching pursuit under RIP”. IEEE
transactions on information theory 57.9 (2011), 6215–6221.

[ZRTH03] J. Zhu, S. Rosset, R. Tibshirani, and T. Hastie. “1-norm support vector machines”.
Advances in neural information processing systems 16 (2003).

[ZWZM19] X. Zhang, D. Wang, Z. Zhou, and Y. Ma. “Robust low-rank tensor recovery with
rectification and alignment”. IEEE Transactions on Pattern Analysis and Machine
Intelligence 43.1 (2019), 238–255.

148

https://proceedings.mlr.press/v97/wu19d.html
https://proceedings.mlr.press/v97/wu19b.html
https://proceedings.mlr.press/v97/wu19b.html

	Preface
	Eidesstattliche Erklärung
	Abstract
	Zusammenfassung in deutscher Sprache
	Notation

	1 Introduction
	1.1 Motivation
	1.2 The Iterative Soft-Thresholding Algorithm
	1.3 Statistical Learning Theory
	1.4 Generalization: Asymptotic and Non-Asymptotic Approaches

	2 Unfolded Neural Networks for Sparse Reconstruction
	2.1 Introduction
	2.2 LISTA for Dictionary Learning
	2.3 LISTA: General Model
	2.4 Numerical Experiments
	2.5 Related Work and Outlook

	3 Sparse Linear Classifiers via ISTA
	3.1 Predicting Classification Accuracy
	3.2 Assumptions and Preparations
	3.3 Random Fixed Point Equations
	3.4 Derivation of the Algorithm and Numerical Experiments
	3.5 Related Work and Outlook

	A Covering Numbers and Dudley's Integral
	A.1 Covering Numbers
	A.2 Dudley's Inequality

	B High-Dimensional Probability Theory
	B.1 The Normal Distribution
	B.2 Stein's Lemma
	B.3 Contraction Principles
	B.4 Random Matrix Theory

	C ISTA and the Soft-Thresholding Operator
	C.1 Basics and Perturbation Results
	C.2 A few Integrals

	Bibliography

