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Abstract
This work presents a comprehensive investigation into the application of sym-
bolic regression for the discovery of novel material models. The introduction
provides an overview of the motivation behind this work and a discussion of
the current limitations of the state of the art.
The fundamental principles of symbolic regression are presented in detail, in-
cluding an overview of genetic programming and an explanation of the concept
behind the novel method of deep symbolic regression. A continuum mechanical
framework is established to provide a foundation for the subsequent analysis.
This includes general principles and constitutive equations, as well as practical
considerations for the implementation.
Benchmark tests are conducted using both artificial and experimental data to
evaluate the performance of various models. These tests include the evaluation
of the incompressible generalized Mooney-Rivlin model and nearly incom-
pressible formulations. Moreover, the work is validated on classical data sets,
including multi-axial and biaxial loading of vulcanized rubber. Novel inter-
pretable formulations of strain energy functions that are able to characterize
experimental data with extreme high accuracy are presented. Furthermore, the
work is extended to the evaluation of a temperature-dependent thermoplastic
polyester elastomer. A detailed overview of the influences of data set sizes, the
benefits of interpretable models, and performance with respect to interpolation
and extrapolation capabilities is provided.
Furthermore, the rediscovery of the Mullins effect is explored through the use
of artificial data generated by the Ogden-Roxburgh model, with the objective
of assessing the capabilities of this approach. Additionally, a temperature-
dependent filled silicone data set is analyzed. Extreme sparse data conditions
are tested, and the performance of the presented methodology is evaluated.
The approach is extended to microstructural modeling of aerogels. Conse-
quently, novel microstructure-based formulations for the characterization of
silica aerogels as an example of aggregated and 𝜅-carrageenan aerogels as an
example of open-porous cellular-like microstructures are introduced.
In the final analysis, the impact of hydration effects in polyamide aerogels on
material properties are modeled. The work concludes with a summary of the
key findings and implications for future research in this domain.
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Zusammenfassung
Diese Arbeit stellt eine umfassende Untersuchung der Anwendung der symbolis-
chen Regression für die Entdeckung neuer Materialmodelle dar. Die Einführung
gibt einen Überblick über die Motivation für diese Arbeit und eine Diskussion
über die derzeitigen Schwächen des gegenwärtigen Forschungsstandes.
Die grundlegenden Prinzipien der symbolischen Regression werden vorgestellt,
einschließlich eines Überblicks über die genetische Programmierung und einer
Erklärung des Konzepts hinter der neuartigen Methode der tiefen symbolischen
Regression. Die nachfolgende Analyse basiert auf der Entwicklung eines kon-
tinuumsmechanischen Konzepts, welches allgemeine Prinzipien, konstitutive
Gleichungen sowie praktische Überlegungen zur Implementierung umfasst.
Es werden Referenztests durchgeführt, bei denen sowohl künstliche als auch ex-
perimentelle Daten verwendet werden, um die Leistungsfähigkeit zu bewerten.
Diese Tests umfassen die Bewertung des inkompressiblen verallgemeinerten
Mooney-Rivlin-Modells und nahezu inkompressibler Formulierungen. Darüber
hinaus wird die Arbeit an klassischen Datensätzen validiert, einschließlich
der multiaxialen und biaxialen Belastung von vulkanisiertem Kautschuk. Es
werden neuartige interpretierbare Formulierungen von Dehnungsenergiefunk-
tionen vorgestellt, die in der Lage sind, experimentelle Daten mit extrem
hoher Genauigkeit zu charakterisieren. Darüber hinaus wird die Arbeit auf
die Auswertung eines temperaturabhängigen thermoplastischen Polyesterelas-
tomers erweitert. Ein detaillierter Überblick über die Einflüsse von Daten-
satzgrößen, die Vorteile interpretierbarer Modelle und die Leistungsfähigkeit
hinsichtlich Interpolations- und Extrapolationseigenschaften wird vorgestellt.
Darüber hinaus wird die Wiederentdeckung des Mullins-Effekts durch die Ver-
wendung künstlicher Daten untersucht, die mit dem Ogden-Roxburgh-Modell
erzeugt wurden. Zusätzlich wird ein temperaturabhängiger Datensatz von
gefülltem Silikon analysiert. Die Leistungsfähigkeit der vorgestellten Methodik
wird anhand von extrem kleinen Datensätzen untersucht.
Der Ansatz wird auf die mikrostrukturelle Modellierung von Aerogelen erweit-
ert. Infolgedessen werden mikrostrukturbasierte Formulierungen für Silicat-
Aerogelen als Beispiel für aggregierte und 𝜅-carrageenan Aerogelen als Beispiel
für offenporige zelluläre Mikrostrukturen vorgestellt.
Schließlich werden die Auswirkungen von Hydratationseffekten in Polyamid-
Aerogelen auf die Materialeigenschaften modelliert. Am Ende erfolgt eine
Zusammenfassung der wichtigsten Ergebnisse und Schlussfolgerungen.
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1 Introduction

We are at the very beginning of time for the human race. It is not
unreasonable that we grapple with problems. But there are tens of
thousands of years in the future. Our responsibility is to do what
we can, learn what we can, improve the solutions, and pass them
on.

R. P. Feynman

Over the past decade, the field of artificial intelligence (AI) has significantly
impacted the process of solving research problems in science and engineering.
A significant contributing factor to this transformation has been the explosion
in quantity and quality of available data. Advances in computing, imaging tech-
niques, and the development of fast and high-precision electronic components
have contributed to the acceleration of this change. This exponential growth
in data is challenging traditional approaches and enabling the development
of innovative solutions in many research areas. It is now possible to collect
and analyze vast amounts of data with high accuracy and speed. In materials
science, techniques such as scanning electron microscopy (SEM), atomic force
microscopy (AFM), and X-ray diffraction (XRD) are generating data sets of
unprecedented detail, leading to new insights into microstructural properties
and a better understanding of the macroscopic properties of materials.
One particular area where innovative methodologies have demonstrated con-
siderable potential is in the field of materials modeling. The modeling of
materials involves the application of computational techniques for the predic-
tion of material properties and behaviors under diverse conditions. In the
past, this has been accomplished through the use of physical models based on
established theories regarding the properties of different materials. However,
these models frequently depend on simplifications and assumptions that can
restrict their precision. In contrast, data-driven (DD) approaches permit
the determination of physical relationships directly from experimental data,
eliminating the necessity for simplifying assumptions [14]. This is particularly
advantageous for the development of constitutive equations that describe the
relationship between specified inputs and outputs. The combination of large
data sets and machine learning techniques allows for the development of more
accurate and comprehensive models of material behavior that better reflect the
complexity of real-world conditions. Consequently, a novel research area has
emerged in the field of solid mechanics, namely the identification of constitutive
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models using DD methods. These novel methods may be referred to as DD
approaches, as they are solely focused on the identification of material laws
driven by experimental or numerical observations. In contrast to traditional
classical modeling, these approaches are based on advanced computational
techniques, including machine learning, reinforcement learning, and other
statistical methods. A visual representation of the classification of constitutive
modeling into classical and data-driven approaches can be viewed in Figure 1.1.

Constitutive
Modeling

Classical
Approaches

Data-Driven
(DD)

Model
Free (MF)

Machine
Learning (ML)

Interpretable Uninterpretable

Reinforcement
Learning (RL)

Fig. 1.1: Classification of constitutive modeling, including classical and data-driven
approaches. Data-driven approaches are further subdivided into three categories:
model-free (MF), machine learning (ML), and reinforcement learning (RL). Within
the ML category, approaches are distinguished based on their interpretability. An
alternative classification scheme is presented in [14].

Model-free approaches integrate an experimental material observation directly
into the solution of a mechanical problem, avoiding any analytical linkage
in the constitutive relationship. This approach was initially proposed by
Kirchdoerfer and Ortiz, and the fundamental premise is to derive the solution
to a boundary value problem through a collection of material observation
pairs, relying solely on discrete observations [15]. Consequently, the solution
is inherently linked to the provided data set, thereby eliminating potential
errors and uncertainties since no experimental information is lost. The relaxed
problem is solved by minimizing a distance function to the data set in phase
space, taking into account the given constraints introduced by conservation
laws.
One of the most effective tools in the domain of DD methods is machine
learning (ML). A specific application is the utilization of artificial neural net-
works (ANNs), which belongs to the category of uninterpretable approaches,
given that an ANN is a "black box". ML approaches are applicable to both
classification and regression problems. They are capable of making predictions

Chapter 1. Introduction
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by adjusting the weights and biases of the ANN. The analysis of complex data
sets can facilitate the discovery of relationships that may not be immediately
apparent when employing traditional analytical methods. These approaches
frequently demonstrate efficacy in addressing high-dimensional and nonlinear
problems, provided that a sufficiently large data set is available. In the early
2000s, Shen et al. presented an initial approach to constitutive modeling
[16]. With regard to interpretable methodologies, two distinct approaches
have emerged: sparse and symbolic regression. Although the respective names
suggest a certain degree of similarity, the underlying functionalities of the two
approaches are, in fact, entirely distinct.
Symbolic regression (SR) is an algorithmic technique that seeks to identify
a mathematical function that optimally represents the relationship between
input and output data. In contrast to polynomial regression, this approach
does not require the specification of a particular model structure. Instead, it
allows for the use of mathematical functions, such as exponential and angular,
to identify an expression that is both accurate and parsimonious. A significant
benefit of this approach is that it is not subjected to potential biases inherent
in human decision-making. Symbolic regression frequently employs genetic
programming to identify the optimal solution, with roots tracing back to the
initial investigations of the 1970s [17]. In sparse regression, the objective is
to identify the most parsimonious model that balances accuracy with model
complexity, thereby avoiding overfitting. In contrast to symbolic regression,
a crucial initial step involves the selection of a set of arbitrary candidate
functions, which may include polynomial, trigonometric, and other types of
functions. These functions serve as a library from which the sparse regression
algorithm (often a sequential threshold least-squares algorithm) automatically
selects the terms that most accurately interpret the data while maintaining
parsimony, or a minimal number of terms. The objective is to approximate
the desired functional relationship between input and output variables. The
method employs a sparse regularization technique to enforce sparsity in the
model, such as 𝐿1 regularization, also known as Lasso (least absolute shrinkage
and selection operator) or, more generally, 𝐿𝑝 regularization with 0 < 𝑝 ≤ 1.
This statistical method was first introduced in the late 1980s as a means of
solving optimization problems [18].
Moreover, reinforcement learning (RL) methods have been introduced in recent
years for the purpose of material modeling [19]. Reinforcement learning (RL)
is a closed-loop machine learning technique that employs an interaction-based
learning approach, dating back to the early days of machine learning [20]. An
agent can perform actions within an environment, thereby modifying the state
of that environment, and receive feedback in the form of a reward. During
this process, the agent interacts with the environment in an effort to adjust,
identify, and learn the most suitable actions for maximizing the received reward
signal. Consequently, in the most challenging case, the selected action may
even influence subsequent rewards in the future. This results in a fundamental
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challenge in reinforcement learning: the trade-off between exploration (identi-
fying new actions to maximize reward) and exploitation (using known actions
to maximize reward).
The methods presented in this initial introduction each have distinct advan-
tages and disadvantages. Consequently, the following sections will clarify the
objective behind this work by providing a comprehensive analysis of the limi-
tations of these approaches. Section 1.1 will underscore the benefits for using
symbolic regression as a superior technique for identifying material models.
In addition, an examination of the current state of the art in constitutive
modeling, including both data-driven methods and classical models, will be
provided in Section 1.2.

1.1 Motivation
The process of identifying, calibrating, and developing material models is often
regarded by researchers as more of an art than a science. This viewpoint is for
example illustrated in the book Mechanics of Solid Materials by Jean Lemaitre
and Jean-Louis Chaboche [21]. The field of material modeling presents a
number of challenges, particularly with regard to the selection of appropriate
functions and the accurate determination of their numerical coefficients. This
complexity is a result of the lack of standardized processes and clear guidelines
for achieving these objectives. Consequently, researchers must navigate a
complex landscape that requires a combination of creativity and technical
expertise to effectively model material behavior. Classical phenomenological
approaches necessitate an iterative strategy in which theoretical insights are
continuously refined through empirical validation. A notable limitation of
classical modeling is its susceptibility to human bias during the identification of
suitable material models. Consequently, this process is not always grounded in
the scientific method, and requires substantial research experience to identify
effective models.
To address this limitation, one of the primary objectives of this work is to
develop an unbiased and reliable strategy for the accurate identification of
material models. The objective of this work is to mitigate the impact of sub-
jective influences and enhance the robustness and reproducibility of material
model identification through SR. The aim of this thesis is to examine the
potential of SR as a tool for constitutive material modeling and to assess its
capabilities in this context. The initial focus will be on identifying hyperelastic,
incompressible, and nearly incompressible material models. A primary objec-
tive is to identify strain energy functions that already satisfy the fundamental
principles of material theory. Accordingly, a continuum mechanical framework
will be integrated with SR, incorporating the extensive theoretical research
conducted over the past decades. The efficacy of SR in this context will be
substantiated through the utilization of classical benchmark tests with artificial

Chapter 1. Introduction
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data. The evaluation will encompass both interpolation and extrapolation
capabilities. Moreover, it is crucial to assess the efficacy of SR in identifying
novel material models from well-documented experimental data sets, as well
as from a temperature-dependent data set. Another objective of this research
is to expand the applicability of SR to damage modeling, with a particular
focus on the Mullins effect observed in rubber-like materials. Furthermore, the
research will contribute to the understanding and modeling of microstructural
phenomena in aerogels. The primary objective is to elucidate the influence
of microstructural characteristics on macroscopic properties and to generate
innovative material models that incorporate these effects. Of particular inter-
est is the modeling of hydration effects in polyamide aerogels, with the aim
of gaining a deeper understanding of the manner in which microstructural
changes affect the overall behavior of the material.

1.2 State of the Art
The following section provides a concise overview of the current state of the
art in constitutive modeling. It discusses both classical constitutive and data-
driven modeling approaches, which have gained significant attention in recent
years.

1.2.1 Classical Constitutive Modeling Approaches
The earliest known applications of classical constitutive modeling approaches
can be traced back to the early 1940s, when Mooney demonstrated that
Hooke’s law was insufficient for accurately describing the stress-strain behavior
of elastomeric materials [22]. As a result, the field of nonlinear elasticity
theory was subsequently developed. This theory is capable of accommodating
large strain nonlinear responses and is based on the Helmholtz free energy per
unit reference volume, which is a scalar function that relates strain energy to
deformation. Over time, numerous material models have been formulated to
predict the mechanical behavior of hyperelastic materials, which is of crucial
importance for applications in engineering components and systems.
One of the earliest models developed is the neo-Hookean model. In the
incompressible case, the strain energy Ψ is given by

Ψ = 1
2𝑘𝐵𝑇𝑚(IC − 3) = 𝐶(IC − 3) , (1.1)

where 𝑘𝐵 is the Boltzmann’s constant, 𝑇 is the absolute temperature, and
𝑚 denotes the number of polymer chains per unit volume. Therefore, the
constant 𝐶 represents a single material parameter. It should be noted that in
the case of the nearly incompressible formulation, it is necessary to determine
the bulk modulus, represented by the parameter 𝜅, as an additional material

Section 1.2. State of the Art



6

parameter. One of the major advantages of this approach is its simplicity and
ease of use. However, this simplicity comes at a cost as the approach is limited
in its accuracy in predicting complex deformations and does not accurately
capture the behavior under different loading conditions.
The eight-chain model, as proposed by Arruda and Boyce, has been demon-
strated to yield accurate predictions under uniaxial tension (UT) and pure
shear (PS) loading conditions [23]. The strain energy for this model is given
by the following equation

Ψ = 𝑘𝐵𝑇𝑁𝑚

⎛⎝√︃ IC

3𝑁 ℒ−1

√︃
IC

3𝑁 + ln
ℒ−1

√︁
IC
3𝑁

sinh ℒ−1
√︁

IC
3𝑁

⎞⎠− 𝐶 , (1.2)

where ℒ−1 is the inverse Langevin function, 𝑁 is the number of chain segments,
while 𝐶 is a constant such that the energy is zero in the reference state. This
model is micro-mechanically inspired and based on statistical mechanics, which
describes the deformation behavior of polymer chains. Nevertheless, the model
shows a reduced level of accuracy in predicting equibiaxial tension (EBT) and
is based on a number of assumptions regarding chain deformations.
The extended tube model substantially enhances the predictive capabilities
for UT, PS, and EBT loading cases by integrating non-Gaussian statistics and
an additional inextensibility parameter 𝛿 [24]. In its formulation, it includes
contributions from both chain cross-linking and entanglement effects, and is
given by

Ψ =Ψ𝑐 + Ψ𝑝ℎ

=𝐺𝑐

2

{︃
(1 − 𝛿2) (IC − 3)
1 − 𝛿2 (IC − 3) + ln

[︁
1 − 𝛿2 (IC − 3)

]︁}︃

+ 2𝐺𝑒

𝛽2

3∑︁
𝑖=1

(︁
𝜆−𝛽
𝑖 − 1

)︁
. (1.3)

In this case, the strain energy is decomposed into two distinct contributions,
the additional energy of the constrained fluctuations of the polymer chain
junctions, which is represented by Ψ𝑐 , and the energy of the phantom-like
network, which is described by Ψ𝑝ℎ. It should be noted that the contribution
of the phantom-like network is described by an Ogden model. In order to
apply this model to a given material, it is necessary to determine the material
constants 𝐺𝑐, 𝐺𝑒, 𝛽 and 𝛿. The disadvantages of this approach are the complex
calibration process and the high computational cost and time required for
numerical simulations.
More recent developments include the formulation of a micro-mechanical model
based on analytical network averaging of the tube model, which employs a
closed-form expression of the exact Rayleigh distribution function for non-
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Gaussian chains [25]. The strain energy for this model is given by

Ψ =Ψc (IC) + Ψt (IIC)

=𝜇c𝜅𝑛 ln
sin

(︁
𝜋√
𝑛

)︁ (︁
IC
3

)︁ 𝑞
2

sin
(︂

𝜋√
𝑛

(︁
IC
3

)︁ 𝑞
2
)︂ + 𝜇t

⎡⎣(︃IIC

3

)︃ 1
2

− 1
⎤⎦ , (1.4)

where Ψc is defined as the strain energy of the ideal network, while Ψt rep-
resents the strain energy due to topological constraints. The parameters 𝜇c,
𝜅, 𝑛, 𝑞, and 𝜇t are all material constants to be determined. While this mate-
rial model provides highly accurate results for experimental data, a notable
drawback is the sophisticated calibration procedure and the substantial expert
knowledge necessary for optimal deployment.
In recent years, numerous additional material models have been introduced,
frequently concentrating on highly specialized materials and delineating par-
ticular effects. Each of these approaches raises a number of concerns. Firstly,
it is challenging to calibrate these material models, as several material param-
eters are required. Secondly, a significant limitation of many models is their
restricted predictive accuracy in specific loading scenarios. This is attributable
to the nature of the input data selected, as well as the assumptions made
during the model development process. Third, for use in commercial finite
element (FE) solvers, a significant investment of time is required for the im-
plementation of each specific model as a user material model. Therefore, it is
evident that a more sophisticated approach is necessary, capable of generating
specific material models while maintaining a reasonable computation time
without the need for extensive expert knowledge. Furthermore, the approach
must be implementable for practical use in industrial applications.

1.2.2 Data-Driven Modeling Approaches

Some of these shortcomings can be circumvented by employing DD techniques
for the modeling of the complex inelastic behavior of rubber-like materials. The
following section provides a brief overview of the advantages and disadvantages
of model-free and reinforcement learning approaches. A more comprehensive
analysis is presented for CANNs and sparse regression, which have been the
subject of increased interest from the scientific community.
Despite the fact that model-free modeling approaches have been employed in a
variety of applications, including the modeling of nonlinear elasticity [26], the
modeling of fracture mechanics [27], the modeling of multiscale behavior [28],
and the modeling of computational plasticity [29], the practical utilization
of these approaches in industrial applications remains a significant challenge.
This issue arises from the fact that the results obtained are directly correlated
with the data used. Consequently, it is challenging to obtain results that
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are fully unique, as the data dependency affects the prediction. Moreover,
model-free methodologies result in models that are not easily interpretable and
offer only limited insight into the underlying physical processes that govern
the material behavior. Furthermore, integrating such a methodology into a
commercial FE solver represents a significant challenge.
RL techniques have been utilized for the identification of hyperparameters in
self-designing neural networks based on elasto-plastic constitutive laws [30], the
identification of microstructure-based traction–separation laws [31], and the
identification of growth evolution laws of arteries [32]. The primary disadvan-
tage of RL approaches is the necessity of a preliminary training phase, which
limits their suitability for practical applications. The high sample complexity,
which is a consequence of the necessary interactions between the agent and the
environment, presents a significant challenge to effective learning. Moreover,
the "black box" nature of RL models presents a challenge in gaining physical
insights. Furthermore, the issue of knowledge transfer remains, as RL models
may not generalize effectively, thereby limiting the transferability of a material
model to a new material.
The ANN approach initially proposed by Shen et al. was subsequently en-
hanced by Linka et al. through the development of invariant-based constitutive
artificial neural networks (CANNs) [33]. Moreover, an extension of the CANNs
was conducted through the direct incorporation of the polyconvexity condition
[34], as well as through an approach based on physically constrained symbolic
models [35]. Additionally, Fuhg and Bouklas have proposed a probabilistic ma-
chine learning approach for data-driven isotropic and anisotropic constitutive
models [36]. A preliminary investigation into the prediction of inelastic effects
in cross-linked polymers using neural networks was presented by Ghaderi et
al. [37]. The application of neural network constitutive models to nonlinear
electro-elastic finite element analysis has been explored [38], as well as the
potential of sparsification techniques for physics-augmented neural networks
in enabling interpretable model discovery [39]. Although artificial neural net-
works offer significant advantages in model discovery, they are not without
limitations. First and foremost, they are regarded as "black boxes," which
presents a significant challenge to interpretation. The training of such models
requires a significant computational effort, and the high complexity of the
resulting models can hinder further applications, such as FE simulations. A
recent approach by Linka and Kuhl seeks to address these limitations through
the introduction of a new CANN architecture family for automated model
discovery. This novel method addresses the shortcomings of the "black box"
nature of the neural network by providing a straightforward interpretation of
the neural network weights (see Figure 1.2). The primary concept proposes a
CANN architecture with two hidden layers, which approximate the free energy
function 𝜓 as a function of the scalar-valued invariants IF, IIF, IIIF and IVF of
the deformation gradient F. In the initial hidden layer, each of the invariants
are developed as power terms. In the subsequent layer, thermodynamically
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Fig. 1.2: Illustration of the CANNs architecture with two hidden layers, as described
in [40]. The inputs of the CANN are the invariants IF, IIF, IIIF and IVF of the
deformation gradient F. The purpose of the CANN is to approximate the free
energy function 𝜓. In the first hidden layer, power terms of these invariants up
to the third order are computed. In the second hidden layer, thermodynamically
admissible activation functions 𝑓𝑖(·) are applied to these power terms.

admissible activation functions, represented by 𝑓𝑖(·) are applied to these powers.
Consequently, the free strain energy 𝜓 is given by

𝜓 =
4∑︁
𝑖=1

3∑︁
𝑘=1

3∑︁
ℓ=1

𝑤2,𝑚𝑓ℓ
(︁
𝑤1,𝑚𝐼𝑖

𝑘
)︁

with 𝑚 = 9(𝑖− 1) + 3(𝑘 − 1) + ℓ , (1.5)

where the invariants 𝐼𝑖 are given by 𝐼1 = IF − 3, 𝐼2 = IIF − 3, 𝐼3 = IIIF − 1
and 𝐼4 = IVF − 1, respectively. The choice of activation functions is typically
constrained to the identity function or the exponential function. It is important
to note that this CANN has precisely two weight vectors. Consequently, the
primary objective of the neural network is to identify the optimal coefficients
for the linear combination of these terms. Although this approach enhances
interpretability, it essentially represents a process of adjusting the weights and
biases. An alternative approach could have been to employ a conventional
nonlinear optimization scheme. Furthermore, it is crucial to underscore that
the proposed methodology does not lead to the discovery of novel models. In
contrast, its fundamental objective is to identify the most suitable combination
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of terms from a given set of functions that is most closely aligned with the
underlying data.
An alternative methodology for data-driven automatic discovery of constitutive
laws was proposed by Flaschel et al. utilizing sparse regression based on
displacement and global force data [41]. This work was further extended by
the introduction of physically consistent deep neural networks, which were
employed for the discovery of both isotropic and anisotropic hyperelastic
constitutive laws [42]. Recently, this approach has been extended through the
creation of novel libraries of material models based on formal grammars [43]
as well as for the discovery of plasticity models [44]. The primary concept is
the utilization of a feature library, denoted by the vector Q : R3 → R𝑛𝑓 . The
feature library is a set of 𝑛𝑓 nonlinear functions that depend on the invariants
of the isochoric right Cauchy-Green tensor IC̄, IIC̄, and 𝐽 . It serves as a basis
for a linear combination of a strain energy density function, which is given by

Ψ = Q (IC̄, IIC̄, 𝐽) · 𝜃 , (1.6)

where the vector 𝜃 ∈ R𝑛𝑓 is used to group the unknown coefficients associated
with each element of the library. The library Q is defined as follows:

Q =
[︁
(IC̄ − 3)𝑖 (IIC̄ − 3)𝑗−𝑖 : 𝑗 ∈ {1, . . . , 𝑁}, 𝑖 ∈ {0, . . . , 𝑗}

]︁
⊕
[︁
(𝐽 − 1)2𝑘 : 𝑘 ∈ {1, . . . ,𝑀}

]︁
⊕ [ln (IIC̄/3)] , (1.7)

where the initial contribution represents Mooney-Rivlin terms, the second list
of elements corresponds to the volumetric terms, and the final component
is a single logarithmic feature. The operator ⊕ represents a simple vector
concatenation. The vector of unknown constants, denoted by 𝜃, is determined
through a minimization problem for a particular linear equation system derived
from a weak form. Although this approach is valuable in its emphasis on
a parsimonious selection of terms through the Lasso operator, a notable
criticism is that it has limited potential for discovering new material models.
The resulting model will inherently be incapable of exceeding the predictive
capacity offered by all possible combinations within the feature library. The
purpose of this approach is to identify the optimal coefficients for a minimal
subset of terms derived from the feature library. Therefore, the challenge of
discovering genuinely novel models remains unresolved within the current state
of the art. The proposed methods are effective in identifying optimal models
with accurately calibrated coefficients. A rigorous and empirically-grounded
approach to the discovery of novel material models has yet to be presented.
The following chapters will examine how symbolic regression can serve as a
potential alternative approach to address this challenging task.
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2 Basics of Symbolic Regression

Make everything as simple as possible, but not simpler.

A. Einstein

In general, regression analysis is a statistical technique that seeks to establish
mathematical relationships between one or more independent variables and a
single dependent variable. Typically, an initial model structure is provided,
comprising a set of parameters that are optimally fitted to a given data set.
One of the most common examples is linear regression. Nevertheless, the
assumption of a linear relationship between inputs and outputs entails a num-
ber of limitations. The linear regression model is unable to capture complex
nonlinear patterns in the data. Furthermore, the technique is based on the
assumption of homoscedasticity, which may not be applicable in real-world
scenarios, potentially leading to unreliable estimates. Furthermore, linear
regression is susceptible to the influence of outliers and leverage points. Such
factors have the potential to bias the model’s parameter estimates and thereby
negatively impact its predictive accuracy.
Symbolic regression (SR) represents a novel interpretable machine learning
algorithm, a unique form of regression analysis that operates independently of
a pre-specified initial model. It employs an iterative search through a compre-
hensive set of mathematical expressions with the objective of identifying the
most suitable mathematical formula for describing the relationship between the
specified inputs and the desired output. In contrast to polynomial regression,
this approach permits the use of mathematical functions such as exponential,
logarithmic, and angular functions. The objective is to identify an expression
that is both accurate and simple. Figure 2.1 illustrates the iterative evolution
of an expression through a genetic algorithm using SR, which is employed to
describe the provided data set in the most optimal manner. Consequently, the
method is highly independent of any potential human bias or lack of domain
knowledge. The result is an algebraic equation. One of the most significant
advantages is that the learned models are provided as a "white box," which
permits straightforward interpretation. This presents an opportunity to gain
insight into the fundamental characteristics of the acquired model.
The earliest research on SR can be traced back to the 1970s [17, 45, 46],
during which the primary objective was to rediscover empirical laws by em-
ploying iterative data-driven heuristics to derive mathematical expressions.
Subsequently, further advances in SR were explored by Koza [47–49], who
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Fig. 2.1: Visualization of the iterative evolution of an expression over 10 generations,
utilizing the gplearn package. The underlying true data was generated using the
function 𝑓true = 0.2𝑥2 − 0.6𝑥. After 10 generations, the model successfully identifies
the underlying function, achieving a fitness value of 0.05 × 10−1.

proposed the use of genetic programming (GP) to discover symbolic models
by encoding mathematical expressions as computational trees. GP has also
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been studied since the 1970s and is based on the idea of iterative evolution of
an initial population of individuals through time [50–52]. An overview of the
interpretable scientific discovery and its historical development is provided in
[53].
A number of libraries exist for SR, beginning with a symbolic regression
framework known as gplearn that is based on GP [54]. One of the most
promising approaches is the deep symbolic optimization (DSO) framework
proposed by Petersen et al., which introduces a novel method combining re-
current neural networks for the prediction of algebraic equations [55]. This
approach produces a "white box" model using a "black box". Additionally, a
number of other libraries are available, including AIFeynman, which employs
a recursive divide-and-conquer approach [56], Operon, which incorporates
a non-linear least squares constant optimization method, and the Bayesian
symbolic regression framework (BSO), which utilizes the Markov Chain Monte
Carlo method. A comprehensive examination of the advantages and limitations
of a diverse list of libraries is provided in [57].
In Section 2.1 a brief introduction to genetic programming is presented. GP is
utilized in both the gplearn and the DSO package. For further details on GP,
the interested reader is referred to [48, 58, 59], among others. Furthermore,
the concepts of deep symbolic regression and its application for this work is
summarized in Section 2.2. The two packages will be employed throughout this
work for the identification of strain energy functions based on the continuum
mechanical framework presented in Chapter 3. A comparison of their respective
performances will be presented in Chapter 4. This chapter presents an edited
version of the fundamental concepts introduced in my previous publications [1,
3, 4].

2.1 Genetic Programming
Mathematical expressions, such as strain energy functions, can be represented
graphically as a rooted tree. Such trees are frequently designated as com-
putational graphs, calculation trees, or expression trees and are traversed
from the root. There are multiple methods for establishing a traversal from
a tree. One method for generating an expression tree in a sequence while
maintaining a one-to-one correspondence between the tree and its traversal
is to evaluate each vertex within the tree, with the children on the left side
evaluated after the vertex itself and the children on the right side evaluated
subsequently (depth-first, left-to-right). An exemplar of a calculation tree is
illustrated in Figure 2.2, where the function 𝑓(𝑥, 𝑦) = 2.5𝑥+ sin 𝑦 is visualized.
The traversal for this tree is consequently +, ×, 𝑥, 2.5, sin, and 𝑦, relating to
the mathematical expression of 𝑓(𝑥, 𝑦). Vertices that are not succeeded are
referred to as external or terminal. Such vertices contain either one of the
independent arguments (inputs) or constants. Vertices that are not succeeded
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are referred to as internal. Such vertices represent mathematical operators
and basic functions that connect the subsequent vertices. It should be noted
that operators can be classified as either unary or binary.

: Operator : Function : Constant : ArgumentLegend:

Expression:

Tree:

Traversal:

+

f(x, y) = 2.5x+ sin y

×

x 2.5

sin

y

+ × x 2.5 sin y

Fig. 2.2: Illustration of an expression tree representing the function 𝑓(𝑥, 𝑦) =
2.5𝑥+ sin 𝑦. The traversal of this tree is given with +, ×, 𝑥, 2.5, sin, and 𝑦.

A GP algorithm is typically divided into four distinct phases: initiation, se-
lection, evolution, and termination. In the initial phase, a preliminary set
of expressions is randomly generated from a predefined set of mathematical
operations, independent arguments, and functions. In the selection phase, the
initial set of expressions is assessed in a tournament. In this manner, random
subsets are formed, and the most fit individual within each subset is identified.
In the subsequent phase, the most fit individuals are subjected to mutation.
A variety of mutation types are available, including crossover, subtree, point,
and hoist mutations. The termination phase marks the end of the evolutionary
process, and a winning candidate is identified. Each of the four phases is
discussed in greater detail below. Readers interested in further details are
referred to [60, 61], as well as the documentation of gplearn [54].
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2.1.1 Initialization and Selection
In the initialization phase, the genetic algorithm generates a population set
of random mathematical expressions based on a user-defined list of allowed
basic operators (e.g., addition, multiplication, subtraction, and division),
mathematical functions (e.g., exponential, logarithmic, angular, etc.), the
predefined independent arguments, and numerical constants. The initial
population, also referred to as the first generation of expressions, is created
through a random sampling process. Given the random nature of the selection
process, it is probable that the chosen equations will not be suited to the
intended purpose. Two potential hyperparameters for optimization are the
initial program depth and the population size. Subsequently, the selection and
evolution phases are repeated for a user-defined number of generations.
The subsequent generation of mathematical expressions must be formulated in
accordance with the previous generation. A tournament is conducted to identify
the expression that will undergo further evolution. The preceding generation
is randomly divided into subsets, within which the individuals compete against
one another. For each subset, the individual exhibiting the optimal fitness level
(i.e., the one that most accurately represents the underlying data) is selected
as the basis for the subsequent generation. A crucial hyperparameter is the
size of the tournament, which represents the number of individuals engaged in
competition at any given time. This parameter exerts a considerable influence
on the speed of the process, as it determines the number of individuals that
are eliminated. Moreover, the diversity of subsequent generations is influenced
by the number of individuals considered, which is directly proportional to
the size of the tournament. An alternative method of selection is the fitness
proportionate method, which is based on the likelihood of the selection of any
individual related to its fitness on the provided data.

2.1.2 Evolution and Termination
The core concept of evolution is to explore novel regions within the search
space by combining advantageous characteristics from diverse individuals. In
the literature on genetic programming, numerous potential forms of evolution
have been identified. This discussion will provide a brief overview of the
most significant mutations, including the crossover, subtree, point, and hoist
mutations.

Crossover

A crossover mutation results in the formation of a new individual through the
combination of genetic material derived from a parent and a donor. Accordingly,
two distinct tournaments must be conducted, as illustrated in Figure 2.3. In
the initial stage, the original parent is selected, and a random subtree is chosen
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for replacement. Similarly, within the second winner, referred to as the donor,
a subtree is selected for replacement. Subsequently, the substituted element
from the donor is integrated into the original parent, thereby generating a
novel entity for the subsequent generation. From a mathematical perspective,
this can be conceptualized as a process of replacing a randomly selected term
within one expression with a term randomly chosen from the second expression.

: Operator : Function : Constant : ArgumentLegend:
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f(x, y) = 2.5x+ sin y

×

x 2.5

sin

y

−

f(x, y) = y2 − expx

×

y y

exp

x

+

f(x, y) = 2.5x+ y2

×

x 2.5

×

y y

Fig. 2.3: Example of a crossover mutation where the parent 𝑓(𝑥, 𝑦) = 2.5𝑥+sin 𝑦 and
the donor 𝑓(𝑥, 𝑦) = 𝑦2 −exp𝑥 are used to create a new individual 𝑓(𝑥, 𝑦) = 2.5𝑥+𝑦2.
Hereby, the randomly selected subtree term sin 𝑦 of the parent is replaced with the
randomly selected subtree term 𝑦2 of the donor.

Subtree Mutation

Subtree mutation is a process that is closely related to crossover, but it
requires only the original parent. In order to determine the winner of a given
tournament, a random subtree is selected. In contrast to the previous method,
which relied on a donor, the missing replacement is randomly generated (see
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Figure 2.4). From a mathematical perspective, this can be represented as
the replacement of a randomly selected term in an expression with a new
term. This mutation permits the reintroduction of operators, mathematical
functions, and arguments that may have become extinct over the evolutionary
time, thereby preventing premature convergence. Consequently, the diversity
of the population is broadened, and new regions of the search space can be
investigated by introducing minor alterations to the new individuals.
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Fig. 2.4: Example of a subtree mutation for the tournament winner 𝑓(𝑥, 𝑦) =
2.5𝑥 + sin 𝑦, the random subtree sin 𝑦 is selected to be substituted with a new
random subtree given by the expression cos 𝑦. The new created individual is
𝑓(𝑥, 𝑦) = 2.5𝑥+ cos 𝑦.

Point Mutation

A point mutation is a process whereby the winner of a tournament is replaced
with a node that has been randomly selected from a set of similar nodes. This
process is illustrated in Figure 2.5. It is of significant importance that functions
and operators are replaced by functions and operators with an identical number
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of arguments. In this process, constants and arguments are replaced by other
constants and arguments. From a mathematical perspective, this approach is
analogous to replacing a single random operator, function, input, or constant
with another. Point mutation makes it possible to reintroduce operators and
mathematical functions that may have become extinct, thereby enhancing the
diversity of the population.
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Fig. 2.5: Example of a point mutation for the tournament winner 𝑓(𝑥, 𝑦) = 2.5𝑥+
sin 𝑦, where the multiplication operator is replaced by an addition operator to create
the new individual given by the expression 𝑓(𝑥, 𝑦) = 2.5+𝑥+ sin 𝑦.

Hoist Mutation

In the case of the hoist mutation, the objective is to create a more parsimonious
representation of an existing solution by replacing a randomly selected subtree
with a subtree of the original tree (see Figure 2.6). This is mathematically
equivalent to replacing a random term with one of its subterms, thereby
shortening the overall equation. This approach helps to mitigate issues such
as bloat, whereby the resulting solutions become unnecessarily large without
significantly improving performance. Consequently, this can contribute to the
overall computational efficiency.
The evolution process can be terminated either when the maximum number
of generations has been reached or when the specified fitness threshold has
been exceeded. Both are hyperparameters that can be optimized through
the application of appropriate algorithms. The combination of fitness-based
selection criteria (for selecting individuals for the next round) and evolutionary
strategies (that randomly change or mix individuals) is designed to enhance
the overall fitness of the entire population over time. Although the method
ensures the generation of syntactically accurate mathematical expressions, it
does not guarantee the reproduction of a deterministic solution on each random
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: Operator : Function : Constant : ArgumentLegend:

+

f(x, y) = 2.5x+ sin y

×

x 2.5

sin

y

+

f(x, y) = x+ sin y

x sin

y

Fig. 2.6: Example of a hoist mutation for the tournament winner 𝑓(𝑥, 𝑦) = 2.5𝑥+
sin 𝑦, where the subtree given by the expression 2.5𝑥 is replaced by the argument 𝑥
resulting in a new individual given by the expression 𝑓(𝑥, 𝑦) = 𝑥+ sin 𝑦.

execution, nor does it ensure the discovery of the optimal solution. Therefore,
a high maximum number of generations is useful for identifying a suitable
candidate. Nevertheless, this has a direct impact on the computational cost.

2.2 Deep Symbolic Regression
The deep symbolic regression package developed by Peterson et al. represents
a novel method that employs a recurrent neural network (RNN) to predict
a mathematical expression based on a sampled distribution through a risk-
seeking policy gradient [62]. The framework is based on a reinforcement learning
approach, which will be discussed in further detail below. Furthermore, an
overview of the search space constraint and the reward function is provided.

2.2.1 Reinforcement Learning Based Approach
Reinforcement learning is a closed-loop machine learning technique that em-
ploys an interaction-based learning approach. An agent is capable of under-
taking actions within an environment wherein the state of that environment
is subject to change, and the agent receives feedback in the form of rewards.
During this process, the agent interacts with the environment and attempts
to adapt, identify, and learn the most appropriate actions to maximize the
received reward signal. In the most challenging case, the selected action may
even influence future rewards. The DSO framework makes use of this concept.
In this manner, each expression tree is transformed into a sequence, referred
to as a traversal, which corresponds to the environment of the reinforcement

Section 2.2. Deep Symbolic Regression
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learning task (see Figure 2.7). The node values of the traversal are referred to
as tokens, which represent either operations, functions, constants, or arguments.
The recurrent neural network, which serves as the agent, is trained iteratively
on a hierarchical input containing information about the entire expression
tree. The traversal is decomposed into observations about siblings and par-
ents, which are fed directly into the RNN. The next element of the traversal,
corresponding to the action, is sampled based on a probability distribution
function. A reward function is formulated based on the performance of the
sampled expression on the given data set.
In accordance with the explanations provided in [62], the detailed process
of the RL algorithm is described for the strain energy function Ψ(IC, IIC) =
IC + 0.5 ln(IIC), which depends on the invariants IC and IIC. This process is
illustrated in Figure 2.7 and proceeds as follows:

1. In each epoch, a batch of expressions is sampled according to the following
steps:

i. The initialization phase requires the sampling of an initial token,
which represents the root of the expression tree, from a library that
contains all the necessary operations, functions, constants, and argu-
ments. The sampling of the token is based on a predefined probability
distribution. This initial step does not specify any information about
parent or sibling relationships. To illustrate, in the context of the
function Ψ(IC, IIC) = IC + 0.5 ln(IIC), the first sampled token in the
first iteration represents the addition operator +.

ii. Subsequent token sampling requires the updating of observations
based on the previous token, the updating of the weights of the RNN,
and the sampling of the next token. One of the advantages of this
approach is that search space constraints can be incorporated directly
into the sampling process. This may be achieved by introducing a
prior into the probability distribution function. One such a priori
constraint on the search space is that all children of an operator
cannot be constants, given that they would otherwise be reduced
to another constant. For example, in the second iteration of the
subsequent sampling step, the addition operator is designated as the
parent with an arity of two. Since there are no siblings, no additional
information is specified. This results in the sampling of the first
input IC as the next token. The next sampled expression in the
third iteration could be the multiplication operator × for the term
0.5 ln(IIC) which would have an arity of two.

iii. This iterative process continues until all nodes in the tree have been
assigned a terminal node status, which is either a constant or an
input variable. In this manner, each token within the expression
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for function Ψ(IC, IIC) is sampled in a stepwise manner until an
expression is identified.

2. Once the expressions have been generated, the reward is calculated (in
this case) using the normalized root mean square error. A risk-seeking
policy gradient is implemented with the objective of maximizing the
performance of a specified fraction of the best samples. Thus, the best
case performance is prioritized at the potential expense of lower worst
case and average performance.

Furthermore, a prior is embedded within the sampled probability distribution.
The prior is a valuable tool for constraining the search space, for example, by
limiting specific sampling sequences. Furthermore, the DSO package offers a
constant optimization option. Despite the increased time requirement and
the potential for overfitting, this approach allows for a significantly higher
rate of expression recovery. Once a prior has been sampled, the corresponding
symbolic expression is instantiated and evaluated.
The benefit of this procedure is that it generates a "white box" model based

on a "black box" model. When applied to experimental data, this approach
has demonstrated substantial robustness [57]. The DSO package offers an
extensive set of configurable hyperparameters, allowing the user to conduct
experiments tailored to their specific needs and objectives. All hyperparame-
ters may be configured via the config.json file. This file can be imported
directly or specified through a Python script. One crucial hyperparameter
is function_set, which defines the tokens to be sampled during optimiza-
tion. Another essential parameter is n_samples, which determines the total
number of samples generated for the optimization process. Furthermore, the
parameter prior enables the configuration of priors and constraints on the
search space, while max_length sets the maximum traversal length. Specific
hyperparameters, including epsilon for adjusting the risk factor in the policy
gradient and learning_rate, have been maintained at their default values
for this study. Additionally, the general layer structure controlled by the
number of layers num_layers in the RNN has remained unchanged from the
default settings. Additionally, the GP hyperparameters, including the number
of generations generations and the tournament size tournament_size,
as well as the mutation probabilities p_crossover and p_mutate, can be
specified. The seed parameter can be utilized in the experiment configuration
to regulate the random number generator.

2.2.2 Constraints and Reward Function
In order to ensure the efficient and effective management of the search space,
a number of constraints have been included to limit its size to a manageable
extent. In particular, constraints are imposed on the pre-specified minimum
and maximum length of the expression tree, the set of allowed operators and
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functions, and the set of allowed input variables and constants. In addition,
a priori constraints are imposed, including that the children of an operator
should not all be constants, that the child of a unary operator should not be
the inverse of this operator, or that the children of trigonometric operators
should not be other trigonometric operators. The fitness measure is estimated
based on the normalized root mean square error (NRMSE), which can be
calculated using the following formula:

NRMSE = 1
𝜎𝑦

⎯⎸⎸⎷ 1
𝑁

𝑁∑︁
𝑖=1

[𝑦𝑖 − 𝑓(x𝑖)]2 , (2.1)

where (x𝑖, 𝑦𝑖) for 𝑖 = 1, . . . , 𝑁 is the provided data set, 𝑁 is the data set size,
𝑓(·) is the currently evaluated function and 𝜎𝑦 is the standard deviation of
the target values 𝑦𝑖. The NRMSE is employed directly in a bounded reward
signal 𝑅2 through the application of a squashing function, which is defined by

𝑅2 = 1
1 + NRMSE . (2.2)
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Fig. 2.7: Visualization of the deep symbolic regression process. The environment
consists of a traversal of tokens where the last entry is sampled through the RNN
environment. The neural network receives observations of the sibling and parent
of the current token as inputs. The agent’s output is a probability distribution
function, which is used to sample the next action.
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3 Continuum Mechanical
Framework

Men pass away, but their deeds abide.

A.-L. Cauchy

The following chapter provides a short overview of the continuum mechanical
theory and the fundamental assumptions that serve as the foundation for
this work. The interested reader is directed to the following foundational
literature in this field: Truesdell and Noll [63], Müller [64], Holzapfel [65],
Liu [66], Bertram [67], Haupt [68] and Itskov [69]. Moreover, the continuum
mechanical framework for isotropic hyperelastic strain energy functions is
discussed in detail in Section 3.1. Furthermore, in Section 3.2 some remarks
on the implementation are presented. The fundamental concepts of continuum
mechanics have been previously presented in my published work [1, 4].

3.1 Constitutive Equations
A strain energy function Ψ(C) of an isotropic hyperelastic material can also
be expressed in terms of the principal invariants IC, IIC and IIIC of the right
Cauchy-Green tensor C = FTF. In addition to the invariants, the strain energy
may also be a function of other variables, including temperature, strain rate,
damage, and loading history parameters. Accordingly, the first Piola-Kirchhoff
stress tensor P can be expressed as follows:

P = 2F𝜕Ψ(C)
𝜕C

= 2
[︃(︃

𝜕Ψ
𝜕IC

+ IC
𝜕Ψ
𝜕IIC

)︃
F − 𝜕Ψ

𝜕IIC
FC + IIIC

𝜕Ψ
𝜕IIIC

F−T
]︃
. (3.1)

It should be noted that the influence of the material is determined exclusively
by the blue colored terms. The invariants IC, IIC and IIIC of C are given by

IC = tr C IIC = 1
2
[︁
(tr C)2 − tr

(︁
C2
)︁]︁

and IIIC = det C . (3.2)

It is required that the function Ψ(C) satisfies the conditions of the energy
and stress-free natural state at F = I. These conditions can be formulated as
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follows:

Ψ(I) = 0 and 𝜕Ψ(C)
𝜕C

⃒⃒⃒⃒
⃒⃒
C=I

= 0 . (3.3)

In the case of nearly incompressible behavior, it is possible to multiplicatively
decompose the deformation gradient into a volumetric F̂ = 𝐽I and an isochoric
part F̄ = 𝐽−1/3F according to Richter [70], where 𝐽 = det F =

√
IIIC .

Consequently, the principal invariants of the isochoric right Cauchy-Green
tensor C̄ = F̄TF̄ take the form

IC̄ = 𝐽−2/3IC , IIC̄ = 𝐽−4/3IIC and IIIC̄ = 1 . (3.4)

Accordingly, the first Piola-Kirchhoff stress tensor can be expressed as

P = 2
(︃
𝜕Ψ
𝜕IC̄

+ IC̄
𝜕Ψ
𝜕IIC̄

)︃
𝐽−2/3F − 2 𝜕Ψ

𝜕IIC̄
𝐽−4/3FC

+ 𝐽

(︃
𝜕Ψ
𝜕𝐽

− 2
3𝐽

𝜕Ψ
𝜕IC̄

IC̄ − 4
3𝐽

𝜕Ψ
𝜕IIC̄

IIC̄

)︃
F−T. (3.5)

In the case of incompressible materials, for which the constraint 𝐽 = 1 is
imposed, the constitutive equation will take the following form:

P = 2F𝜕Ψ(C)
𝜕C − 𝑝F−T

= 2
[︃(︃

𝜕Ψ
𝜕IC

+ IC
Ψ

IIC

)︃
F − 𝜕Ψ

𝜕IIC
FC

]︃
− 𝑝F−T, (3.6)

where an additional hydrostatic pressure 𝑝 can be determined from equilibrium
and boundary conditions. Depending on the case, Equation 3.1, Equation 3.5
or Equation 3.6 are used for determining a strain energy formulation based on
experimental or artificially created strain-stress data. In this context, only the
derivatives of the strain energy density function with respect to the invariants
are material-specific and will be utilized to identify an optimal expression of
the strain energy function.
If it is assumed that the volumetric and isochoric responses are independent,
a further additive decomposition of the strain energy function can be achieved
by

Ψ(C) = Ψ̄(IC̄, IIC̄) + 𝜅Ψ̂(𝐽)⏟  ⏞  
=𝑈(𝐽)

, (3.7)

where 𝜅 is the bulk modulus that can be determined for isotropic materials
based on the Young’s modulus 𝐸 and Poisson’s ratio 𝜈 using the following
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equation:

𝜅 = 𝐸

3(1 − 2𝜈) . (3.8)

For the volumetric strain energy Ψ̂(𝐽), numerous reliable formulations that
satisfy the conditions in Equation 3.3 and convexity conditions have been
proposed. Some of these formulations are listed in Table 3.1 (see [71] for
further details).

Tab. 3.1: Reliable formulations of various volumetric strain energy functions.

Formulation for Ψ̂(𝐽)
1
2(𝐽 − 1)2

𝐽 − ln 𝐽 − 1 [72]
(𝐽2𝑝 + 𝐽−2𝑝 − 2)𝑘, 𝑝 ≥ 1

2 , 𝑘 ≥ 1 [71]
(𝐽 − 1)𝑘, 𝑘 ≥ 1 [71]

Moreover, it is likewise feasible to calculate alternative stress measures, includ-
ing the second Piola-Kirchhoff stress tensor S and the Cauchy stress tensor 𝜎
through the application of the following transformations:

S = F−1P and 𝜎 = 1
𝐽

PFT . (3.9)

It is also possible to decompose the second Piola-Kirchhoff stress into an
isochoric component S̄ and a volumetric part Ŝ. For a strain energy function
as given in Equation 3.7 both components can be determined using

S̄ = 2𝜕Ψ̄(C̄)
𝜕C̄⏟  ⏞  
=S̃

: 𝐽−2/3
[︂
JS − 1

3C ⊙ C−1
]︂

⏟  ⏞  
=P̄

and Ŝ = d𝑈
d𝐽 𝐽C−1 , (3.10)

where P̄ is known as the isochoric projection tensor, JS = (I ⊗ I)S is the
super-symmetric identity tensor and S̃ is the fictitious second Piola-Kirchhoff
stress, see [69] for further details. The tensor S̃ can be calculated with

S̃ = 2
(︃
𝜕Ψ̄
𝜕IC̄

+ IC̄
𝜕Ψ̄
𝜕IIC̄

)︃
I − 2 𝜕Ψ̄

𝜕IIC̄
C̄ . (3.11)

3.2 Remarks on Implementation
In order to establish a framework that is capable of combining the continuum
mechanical theory described in Section 3.1 with the concepts of symbolic
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regression and genetic programming discussed in Chapter 2, it is necessary
to incorporate the relevant constitutive equations. The available packages
are designed to identify a direct mathematical relationship between inputs
and an output. In the context of continuum mechanics, the inputs (e.g., the
components of the deformation gradient) are not the direct arguments of the
first Piola-Kirchhoff stress tensor P. To perform the fitting, the strain energy
density function must be identified based on the derivatives with respect to
the invariants. Additionally, the strain energy density function cannot be
obtained from experimental data, therefore only a stress value resulting from
the differentiation can be utilized to assess the model performance.
The equations given in Section 3.1 are generally valid for isotropic hyper-
elastic nearly-incompressible as well as incompressible materials depending
on the invariants IC̄, IIC̄ and 𝐽 . It is evident that this approach can be
straightforwardly applied to generalized invariants. Consequently, only the
strain energy density and its derivatives with respect to the invariants are
material-dependent, and no material-specific modifications are required for
proper alignment with symbolic regression. The utilization of this continuum
mechanical framework with a symbolic regression extension offers a number of
advantages:

1. The strain energy function obtained by symbolic regression is automat-
ically in accordance with the material objectivity condition, as it is
formulated in terms of objective invariants.

2. As the invariants are employed as input arguments, the user has the
option to include only isotropic or anisotropic models within predefined
symmetry classes.

3. In comparison to other data-driven models that directly relate a defor-
mation tensor to a stress tensor, the scalar-valued strain energy function
is obtained as an interpretable model. It is thus possible to determine
completely novel models using SR based on the specified data.

4. Finite element codes provide programming interfaces in which material
models can be implemented directly by the user. In certain instances,
such as when utilizing the UHYPER or UMAT subroutine in Abaqus, the
strain energy density and its derivatives with respect to the invariants
are necessary. These equations can be deduced with relative ease.

In addition to the invariants, the strain energy density functions permit depen-
dence on any number of additional parameters, including, e.g., temperature or
a specific concentration of material constituents. A schematic representation
of the general process, incorporating both the invariants and 𝑖 = 1, . . . , 𝑛
additional parameters 𝜅𝑖 is provided in Figure 3.1.
The strain energy is calculated on the basis of the stress-strain data obtained
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∂Ψ̄(IC̄,IIC̄,J,κ1,...,κn)
∂IIC̄

∂Ψ̄(IC̄,IIC̄,J,κ1,...,κn)
∂IC̄

∂Ψ̄(IC̄,IIC̄,J,κ1,...,κn)
∂J
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Inputs Symbolic Regressor for Ψ̄(IC̄, IIC̄, J, κ1, . . . , κn) Output

Fig. 3.1: Illustration of the symbolic regression procedure for novel model discovery.
The inputs to the process include the invariants IC̄, IIC̄, and 𝐽 as well as additional
parameters 𝜅1, . . . , 𝜅𝑛. The output is the first Piola-Kirchhoff stress tensor P.
The symbolic regressor is tasked with deriving the strain energy function, where
derivatives are computed with respect to the invariants and subsequently evaluated
for the fitting.

from the primary loading subjected to different loading conditions. For this
purpose, a user-defined loss function must be defined that calculates the deriva-
tives of the strain energy function with respect to the specified invariants. The
differentiation is performed numerically using the finite difference scheme. In
order to conduct a comparison and validate the results, it is also possible to
implement reverse-mode algorithmic differentiation by incorporating it into
the call tree. This approach is currently 60.00 % less numerically effective
than the numerical differentiation, with no noticeable improvement in the
quality of the output. The primary reason for this is the implementation
of the execution function for each expression within the DSO package. To
further accelerate the process, several operations are vectorized using NumPy
broadcasting. The loss function is evaluated based on the provided stress
response and stresses calculated by Equation 3.1, Equation 3.5 or Equation 3.6.
In this regard, the initial Piola-Kirchhoff stress tensor, as expressed in these
formulas, appears to be highly advantageous, as it permits a direct comparison
with the experimental stress response.
In the comparison with experimental or artificially created stress data, only
derivatives of the strain energy functions are relevant. Consequently, the
condition (3.3)1 can be easily satisfied by a straightforward correction of the
resulting expression by a constant. The fulfillment of (3.3)2 is a direct conse-
quence of the inclusion of the point P = 0 at F = I within the data set used
for the search of the strain energy function. The basis functions for the strain
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energy are provided in the following form: ["add", "sub", "n2", "mul", "div", "sqrt",
"exp", "log"]. To enhance the reliability of the outcome, the final evaluation
stage features a filter that rounds all decimal numbers to the second digit,
thereby significantly simplifying the expressions that have been determined.

Chapter 3. Continuum Mechanical Framework
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4 Benchmark Tests Using Artificial
Data

All models are wrong, but some are useful.

G. E. P. Box

This chapter assesses the efficacy of the proposed framework through the
implementation of a series of benchmark tests. It is crucial to evaluate the
quality of the automatically generated material models through their ability to
accurately interpolate and extrapolate data, as well as to assess the uniqueness
or multiplicity of the obtained solutions. Furthermore, it is essential to deter-
mine the influence of data set size and input variables on the proper material
characterization and the accuracy of the generated models.
Accordingly, the primary performance comparison is conducted using artifi-
cial data generated through the incompressible generalized Mooney-Rivlin
model in three distinct complexity scenarios in Section 4.1. The advantage
of utilizing artificial test data is that all evaluations are conducted within
a controlled setting with known parameters, thereby ensuring the reliability
and reproducibility of the results. Furthermore, the absence of noise in the
data allows for a pure assessment of the model’s theoretical performance,
prior to the consideration of real-world factors that may introduce additional
uncertainties. To identify the optimal framework for model identification, the
evaluation is conducted using the gplearn and the DSO package. Further-
more, the performance of the presented approach is evaluated for the nearly
incompressible Mooney-Rivlin model with two distinct implementations of the
volumetric strain energy contributions in Section 4.2. An additional analysis
in Section 4.3 discusses the impact of two different test-train splits. Finally, a
benchmark using the stretch-based Ogden model is presented in Section 4.4.
The proposed benchmarks for the Mooney-Rivlin models have been the subject
of independent investigation in my previous publications [1, 4].

4.1 Incompressible Generalized Mooney-Rivlin
Model

In this section, the two packages presented in Chapter 2, namely gplearn
and DSO, will be evaluated on three different cases of complexity for a known
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constitutive model. The advantages and disadvantages of both packages are
examined in detail. The efficacy of symbolic regression can be effectively
evaluated due to the prior availability of the ideal solution.
An appropriate constitutive model for this purpose is the incompressible
generalized Mooney-Rivlin model [22, 73]. The model can be applied to
a diverse range of rubber-like materials, serving as a reference point for
evaluating the efficacy of both approaches in determining the expression of the
strain energy function. The strain energy function ΨgMR for the generalized
incompressible Mooney-Rivlin model is given by:

ΨgMR =
3∑︁
𝑖=1

[︁
𝑐𝑖0 (IC − 3)𝑖 + 𝑐0𝑖 (IIC − 3)𝑖

]︁
, (4.1)

where 𝑐𝑖0 and 𝑐0𝑖 represent material constants. In order to examine the
effects of varying degrees of model complexity, a random sampling of the
values of these constants was conducted, resulting in three cases of increasing
model complexity. The values are randomly generated between 0.00 MPa and
1.00 MPa and are presented in Table 4.1 for the gplearn and DSO frameworks.
The inputs for both frameworks are the first and second invariants IC and
IIC (since 𝐽 = 1). The resulting output is the component 𝑃11 of the first
Piola-Kirchhoff stress tensor.

Tab. 4.1: Randomly sampled material parameters between 0.00 MPa and 1.00 MPa
for the generalized incompressible Mooney-Rivlin model for the gplearn and the
DSO framework. Three cases of complexity are considered for both frameworks.

Case 𝑐10 𝑐20 𝑐30 𝑐01 𝑐02 𝑐03

[MPa] [MPa] [MPa] [MPa] [MPa] [MPa]

g
p
l
e
a
r
n 1 0.48 - - 0.12 - -

2 0.87 0.86 - 0.98 0.43 -
3 0.91 0.57 0.79 0.88 0.21 0.70

D
S
O

1 0.63 - - 0.39 - -
2 0.95 0.66 - 0.51 0.62 -
3 0.73 0.43 0.1 0.99 0.97 0.32

In accordance with the methodology outlined Chapter 3, the material responses
under uniaxial tension (UT), pure shear (PS), and equibiaxial tension (EBT)
have been calculated for the three complexity cases as presented in Table 4.1.
In all cases, a total of five formulations of the strain energy function were
identified. This is a necessary step resulting from the randomized sampling
process involved in GP, which has the potential to affect the efficacy of the
population initialization procedure. Consequently, the mean response and
standard deviation are calculated for each strain value of all five models. It
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should be noted that only 50 data points were calculated for each of these
loading cases. In order to assess the quality of the interpolation of the resulting
expressions of the strain energy function, only the data within the strain
interval between 0.00 % and 100.00 % were used for fitting, with an additional
80.00 % for training and 20.00 % for testing. The data in the strain interval
between 100.00 % and 150.00 % are used to assess the extrapolation capacity
of the resulting expressions.

4.1.1 Performance of gplearn
This section presents an evaluation of the performance of the gplearn package.
The utilized hyperparameters, such as the number of generations or the
population sizes, are listed in Table 4.2 for all cases of complexity. Figure 4.1
depicts the fitness plotted over generations, while Figure 4.2 illustrates the
first Piola-Kirchhoff stress as a function of strain for all three loading cases.
The default fitness in gplearn is the mean absolute error (MAE), which is
calculated as follows:

MAE = 1
𝑁

𝑁∑︁
𝑖=1

|𝑓(x𝑖) − 𝑦𝑖| , (4.2)

where 𝑁 is the number of predicted values, 𝑓(x𝑖) is the prediction based on
the inputs x𝑖 and 𝑦𝑖 are the true values.
As the number of generations increases, the resulting fitness value exhibits a
notable improvement for all five samples. As this is an evolutionary algorithm,
the optimal strain energy function is not retained and may continue to mutate.
In all cases, the maximum number of generations has been set to 50. It
is noteworthy that the fitness begins to plateau as this limit is approached.
It can be observed that differing initializations result in a diverse range of
fitness values. The fitness value may be improved by increasing both the
initial population size and the number of generations. As a consequence,
this results in a considerable computational burden. It should be noted that
the parameters presented in Table 4.2 were manually optimized and derived
from general recommendations, without the additional step of hyperparameter
optimization. Accordingly, it is plausible that optimizing the hyperparameters
may result in a further reduction in fitness and the eventual generation of
more accurate models.
In Figure 4.2 the mean responses for UT, PS, and EBT, along with the
corresponding 6𝜎 intervals, are illustrated. Here, 𝜎 represents the standard
deviation. In the first complexity scenario, the accuracy of the obtained results
is notably high in both the interpolation and extrapolation domains. However,
as the complexity of the model increases, the precision of the approximation
decreases. As the complexity of the models increases, the confidence interval
widens for strains above 100.00 %, indicating a higher level of uncertainty. This

Section 4.1. Incompressible Generalized Mooney-Rivlin Model



34

is due to the fact that an increase in model complexity leads to a greater number
of terms in the polynomial function provided in Equation 4.1. The number of
terms that must be identified is inversely proportional to the probability of
their rapid discovery. The averaged predictions in the strain region between
0.00 % and 100.00 % are in close agreement with the corresponding provided
responses. Moreover, based on the derived expressions, it can be concluded
that the model is not unique for the highest complexity case.
A notable finding is that in the second complexity scenario, the pure shear
response in the extrapolation region appears to diverge from the actual response.
The mean response, as well as the confidence interval, indicates that the
identified models overestimate the stresses. This suggests that the precise
expressions have not been identified in all five samples, and that only an
approximate model has been discovered for the interpolation region. In the
third complexity case, the confidence interval in the extrapolation region
for the PS and UT responses is notably larger, while the mean response
remains relatively accurate. This is attributable to the occurrence of an outlier
expression that was unable to accurately predict the stresses.
In theory, a perfect fit can be achieved with a very high number of generations
and a high population size. Despite the limited number of data points utilized
in the fitting process, the resulting accuracy is remarkably high. It is evident
that the approach exhibits superior performance in the interpolation domain
compared to the extrapolation region, which aligns with the established concept
that the greater the magnitude of extrapolation, the larger the associated
error, leading to wider confidence intervals.

Tab. 4.2: List of specified values of hyperparameters used in the gplearn package,
categorized according to three different complexity cases.

Inputs Case 1 Case 2 Case 3

population_size 1000 7500 15000
generations 50 50 50

stopping_criteria 0.001 0.001 0.001
p_crossover 0.7 0.7 0.6

p_subtree_mutation 0.15 0.15 0.15
p_hoist_mutation 0.1 0.1 0.1
p_point_mutation 0.05 0.05 0.15

max_samples 0.9 0.9 0.9
parsimony_coefficient 0.003 0.003 0.0005

Chapter 4. Benchmark Tests Using Artificial Data
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Fig. 4.1: Visualization of the fitness evolution over the number of generations for
the incompressible generalized Mooney-Rivlin model across all five samples 𝑖. The
comparison includes all three complexity cases as described in Table 4.1.
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Fig. 4.2: Mean stress-strain response of all models obtained using gplearn, with
corresponding train and test data (UT, PS and EBT) based on the generalized
Mooney-Rivlin model. Shaded areas indicate 6𝜎 confidence intervals.
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4.1.2 Performance of DSO
The performance of the strain energy functions identified by DSO can be
observed in Figure 4.3, where the resulting stress-strain curves are plotted
along with the training and test data. As in the previous example, five
expressions of the strain energy function are determined. The visualized
predictions correspond to the average response of all five resulting models.
In addition, the 6𝜎 confidence intervals are shown in these plots as colored
enclosures of the curves.
An interesting observation is that the recovery rate of the underlying strain
energies is 100.00 % for the first two cases and 0.00 % for the last case, despite
the fact that all models have an 𝑅2 score exceeding 99.98 %. The 0.00 %
recovery rate in combination with a 𝑅2 score nearly to 100.00 % indicates
that the derived expressions are approaching an alternative formulation of
the strain energy function, which is plausible given the high nonlinearity
of the problem, particularly in the last complexity case of the generalized
Mooney-Rivlin model. For a discussion of such nonuniqueness, for example in
the context of the Ogden model, the reader is directed to [74]. Nevertheless,
close approximations can be identified that accurately describe the data sets
generated by these models. It is also noteworthy that the extrapolation quality
of the underlying models is excellent despite the limited number of training
data points. The confidence interval is negligible in all cases, except for the
last case under UT, which is also reflected in the high 𝑅2 scores. Therefore,
the proposed framework demonstrates robust performance by extrapolating
and interpolating the sparse data provided for all three complexity cases and
three different loading conditions.

4.1.3 Conclusion
The two symbolic regression frameworks demonstrate high efficacy in interpo-
lating and extrapolating stress responses under the incompressible generalized
Mooney-Rivlin model. Nevertheless, the results of this preliminary benchmark
analysis indicate that the DSO approach consistently outperforms gplearn.
The confidence intervals are consistently smaller in all complexity cases, in-
dicating that the DSO package is more effective at generalizing predictions
when presented with unseen test data. In terms of computational efficiency,
gplearn demonstrates a slight advantage due to the application of the con-
stant optimization process within the DSO package. Nevertheless, the DSO
package provides an additional benefit through the implementation of a ge-
netic programming loop optimizer. In this manner, the approach combines the
methodologies of both recurrent neural networks and genetic programming,
thereby establishing a mixed approach for exploring and deriving potential
expressions for the strain energy.
The highest-performing expressions, as identified for both frameworks, are pre-
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sented in Table 4.3. Both approaches demonstrate high accuracy in identifying
the underlying model, particularly in the simplest complexity scenario. How-
ever, as the complexity of the models increases, both frameworks demonstrate
a notable decline in the recovery rate. This can be attributed to the high
degree of nonlinearity and existence of multiple solutions. It is noteworthy that
the constants 𝑐𝑖0 and 𝑐0𝑖 exhibit only marginal discrepancies in their decimal
digits when compared to the original values.

Tab. 4.3: Best performing expressions for the generalized incompressible
Mooney-Rivlin model, obtained using the gplearn and DSO frameworks, across all
three complexity cases. Additionally, the mean absolute error (MAE) and 𝑅2 scores
are provided.

Case Strain energy MAE ∖𝑅2

g
p
l
e
a
r
n

1 ΨgMR = 0.48IC + 0.12IIC − 0.01 0.01

2 ΨgMR =IC (0.11ICIIC + 0.02IIC − 1)
− IIC(0.23IC + 0.02) exp(−.30IIC)
+ 0.11IIC exp(−.74IIC)
+ exp(IC − 1.75IIC)

1.20

3 ΨgMR = exp(413.40 exp(−1.79IIC))
(︂

0.20I2
CII2

C − 0.95I2
CIIC + 1.11I2

C

− 0.48ICII2
C + 2.27ICIIC − 2.66IC

+ 0.29II2
C − 1.36IIC + 1.60

)︂

24.28

D
S
O

1 ΨgMR = 0.63IC + 0.39IIC + 0.39 1.00

2 ΨgMR = 0.66I2
C − 3.01IC + 0.62II2

C − 3.21IIC + 1 1.00

3 ΨgMR =IC (0.09I2
C ln (IC) + 0.07IIC)

(0.25IIC − 0.22)−1 0.77IIC

+ IIC (IIC − 2.67) (IIC − 2.43)
(0.25IIC − 0.22)−1 0.77IIC

)︂ 1.00
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Fig. 4.3: Mean stress-strain response of all models obtained using DSO, with
corresponding train and test data (UT, PS and EBT) based on the generalized
Mooney-Rivlin model. Shaded areas indicate 6𝜎 confidence intervals.
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4.2 Nearly Incompressible Mooney-Rivlin Model

The volumetric-isochoric split of the strain energy function, as described in
Equation 3.7, is a crucial tool, particularly for FE simulations. Consequently, it
is worthy of a dedicated investigation. In this section, two distinct volumetric
functions will be evaluated. The analysis is conducted exclusively with the DSO
package. The isochoric component of the strain energy for the Mooney-Rivlin
model is represented by

Ψ̄gMR = 𝑐10 (IC̄ − 3) + 𝑐01 (IIC̄ − 3) . (4.3)

The same constants as in the first complexity case for the DSO package, as
referenced in Table 4.1, are utilized for the following analysis. In regard to the
volumetric response, a classical quadratic function in 𝐽 is applied, in addition
to an expression proposed by Miehe [72]. The resulting formulations are as
follows:

Ψ̂1 = 1
2𝜅1(𝐽 − 1)2 and Ψ̂2 = 𝜅2 (𝐽 − ln 𝐽 − 1) . (4.4)

The constants 𝜅1 = 50.00 MPa and 𝜅2 = 65.00 MPa are defined in such a
way that the equibiaxial tension response of the two volumetric energies
is equal at a strain of 150.00 %. Once more, a total of five strain energy
functions are sampled, and the mean stress-strain responses of all models with
the corresponding training and test data for UT, PS, and EBT for the two
different volumetric strain energy functions are presented in Figure 4.4. The
colored enclosures surrounding the curves illustrate the 6𝜎 confidence intervals
associated with the predictions. It is evident that the stress-strain response is
accurately described for both formulations in the interpolation region. However,
for the second formulation, a larger confidence interval is visible for the EBT
response in the extrapolation region. As with the previously discussed case,
this result indicates that the selected volumetric contributions are not unique
formulations for describing the stress-strain data.
In both instances, the values of the 𝑅2 score exceeded 99.70 % for all five
models obtained using the DSO package. It is noteworthy that the recovery
rate of the volumetric functions is 60.00 % for the first formulation and 0.00 %
for the second. Therefore, only approximate solutions have been identified. In
the applied procedure, both the isochoric and volumetric strain energies were
simultaneously sought. A reasonable alternative for numerical applications
would be to directly specify a numerically stable volumetric strain energy and
identify only the isochoric contribution. Furthermore, it is notable that the
isochoric components are correctly identified for four out of the five samples
in the first formulation. In the second case, the isochoric components could
not be fully recovered.
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Fig. 4.4: Mean stress-strain response of all five models obtained using DSO, alongside
the corresponding training and test data for UT, PS and EBT for the two different
volumetric strain energy functions in Equation 4.4. Shaded areas indicate 6𝜎
confidence intervals.

4.3 Influence of Train-Test Data Splits
The following section examines the reliability of the approach utilizing the DSO
package across various test-train splits. To this end, a split with 70 to 30.00 %
and 60 to 40.00 % of train and test data, respectively, are compared. The
results for each complexity scenario are presented in Figure 4.5 and Figure 4.6.
In all cases, the achieved 𝑅2 scores exceed 99.98 %. Even for the case of 60 to
40.00 % train-test split, all models capture the underlying material behavior
well. Furthermore, the recovery rates remain consistent across different levels
of complexity for both split cases where in the first two and the last case

Section 4.3. Influence of Train-Test Data Splits
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the recovery rates are 100% and 0%, respectively. Furthermore, it is evident
that in the case of the 60 to 40.00 % train-test split, the confidence interval
exhibits a notable expansion within the range of strains exceeding 100.00 %,
suggesting an overfitting of the data within the interpolation region. The
outcome may be anticipated, given the restricted quantity of training data.
In conclusion, the preliminary investigation indicates that the framework
demonstrates exceptional performance even in circumstances of extreme data
scarcity.

4.4 Remarks on Stretch-Based Ogden Model
As introduced in Chapter 3, while the proposed framework uses invariants, it
is also feasible to evaluate performance using a stretch-based formulation. A
particularly reliable model developed by Ogden has gained wide acceptance in
industrial FE software and has demonstrated excellent performance [75]. The
basic premise of this model is to describe the strain energy function in terms
of the principal stretches 𝜆𝑖, expressed as

Ψ(𝜆1, 𝜆2, 𝜆3) =
𝑁∑︁
𝑖=1

𝜇𝑖
𝛼𝑖

(𝜆𝛼𝑖
1 + 𝜆𝛼𝑖

2 + 𝜆𝛼𝑖
3 − 3) , (4.5)

where 𝑁 , 𝜇𝑖, and 𝛼𝑖 are material constants. A notable limitation of this
approach is that already for 𝑁 = 3 a total of six material parameters are
required. The Ogden model adheres to the Valanis-Landel assumption [76],
which states that the strain energy of an isotropic material can be represented
by a single, continuously differentiable function 𝜔 by

Ψ(𝜆1, 𝜆2, 𝜆3) = 𝜔(𝜆1) + 𝜔(𝜆2) + 𝜔(𝜆3) . (4.6)

To ensure that the conditions of zero energy and stress-free state in the reference
configuration are met, this function must satisfy the following criteria:

𝜔(1) = 0 and 𝑤′(1) = 0 .

In the following, the Valanis-Landel assumption is used to identify a strain
energy function using the DSO framework. It should be noted that the basis list
of functions has been augmented with the incorporation of the power function
["pow"] for this example. The function 𝜔 is determined and expressed as the
sum of the three principal stretches, thereby defining the strain energy Ψ. A
benchmark analysis is conducted using the Ogden model with the specified
material parameters 𝑁 = 1, 𝜇1 = 0.63 MPa, and 𝛼1 = 1.71. In this case, a
train-test split of 80.00 % to 20.00 % is implemented for the strain range up
to 100.00 %. An additional region is investigated for strains up to 150.00 %
for assessing the extrapolation capabilities. Given that the results are once

Chapter 4. Benchmark Tests Using Artificial Data
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more dependent on the arbitrary initialization of the generated expressions,
five samples are selected for analysis. Figure 4.7 depicts the stress-strain
response in addition to the training and test data for the identified strain
energy functions. The visual representation of the predictions depicts the
mean response of all five models, accompanied by an additional 6𝜎 confidence
interval, which is illustrated as colored enclosures around the curves. Table 4.4
provides a list of the identified models. It is noteworthy that the recovery
rate was 100.00 %, with the 𝑅2 scores exceeding 99.99 %. This illustrates
that the presented approach operates with high accuracy even when provided
with a limited number of data points. It can therefore be concluded that
a stretch-based formulation is similarly viable for identifying strain energy
functions.

Tab. 4.4: Recovered functions 𝜔 for the Ogden model, along with their corresponding
𝑅2 scores.

Case Function 𝜔 𝑅2

1 𝜔(𝜆) = 0.37𝜆1.71 − 0.37 1.00

2 𝜔(𝜆) = 0.37
√
𝜆3.42 1.00

3 𝜔(𝜆) = 0.37
(︁
𝜆

4
√
𝜆2
)︁1.14

1.00

4 𝜔(𝜆) = 0.37𝜆.1.71 1.00

5 𝜔(𝜆) = 1
4 ln

(︁
2.461.64

√
𝜆3.42

)︁
1.00
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Fig. 4.5: Mean stress-strain response of all models using DSO, with corresponding
train and test data (UT, PS, EBT) based on the generalized Mooney-Rivlin model
for a 70.00 %/30.00 % train-test split. Shaded areas indicate 6𝜎 confidence intervals.
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Fig. 4.6: Mean stress-strain response of all models using DSO, with corresponding
train and test data (UT, PS, EBT) based on the generalized Mooney-Rivlin model
for a 60.00 %/40.00 % train-test split. Shaded areas indicate 6𝜎 confidence intervals.
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Fig. 4.7: Mean stress-strain response of all models using DSO, with corresponding
train and test data (UT, PS, EBT) for the stretch-based Ogden model. Shaded
areas indicate 6𝜎 confidence intervals.
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5 Benchmark Tests Using
Experimental Data

All my money has been invested into experiments with which I have
made new discoveries enabling mankind to have a little easier life.

N. Tesla

A crucial objective is to evaluate the efficacy of the proposed conceptual
framework by benchmarking its performance on experimental data. In this
regard, an essential benchmark is the data set presented by Treloar, which
focuses on the multi-axial loading of vulcanized rubber. This data set is ana-
lyzed under the influence of noise to evaluate the uniqueness of the resulting
strain energy functions in Section 5.1. Subsequently, the performance of the
derived models is compared to that of classical constitutive approaches. In
Section 5.2, some remarks are made on a stretch-based approach for describing
the multi-axial loading of vulcanized rubber. Moreover, the experimental
investigations of vulcanized rubber conducted by Kawabata et al. will be
examined by analyzing the performance of different data set inputs in Sec-
tion 5.3 [77]. Additionally, a data set that includes temperature-dependent
effects for the thermoplastic polyester elastomer Hytrel 4556 will be tested
in Section 5.4. The interpretability advantages of the proposed methodology
are likewise examined in this context. Parts of the last section have been
previously presented in my published work [4].

5.1 Multi-Axial Loading of Vulcanized Rubber
Natural rubber (NR) is a crucial raw material used in the automotive and tire
industries. It fulfills a multitude of performance requirements, including dura-
bility, safety, weight reduction, and fuel efficiency. The distinctive properties
of NR are attributed to a process known as vulcanization, a chemical process
first discovered by Charles Goodyear in 1839 [78]. This process significantly
enhances the mechanical properties of rubber, resulting in a material that
is stiffer, stronger, more resistant to swelling and abrasion, and elastic over
a wider range of temperatures. The search for suitable material models for
rubber was initiated with Treloar’s pioneering work in the 1940s. He investi-
gated the general properties of rubber, developed a thermodynamic analysis
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of rubber networks, and made a significant contribution to the understanding
of the underlying physics of this complex material [79]. In 1944, he published
a comprehensive data set on stress-strain characteristics of natural rubber,
obtained from a variety of experimental setups, including those measuring
the properties of the rubber under the conditions of UT, EBT, and PS [80].
This data set has become one of the most well-known and frequently utilized
in the scientific community. It continues to serve as a crucial benchmark
for evaluating constitutive models of rubber and rubber-like materials, as
evidenced by the extensive literature on the subject, including [81–83] as well
as references therein.
In the following analysis, the DSO package is employed to identify an optimal
strain energy function for characterizing the Treloar data set. The data will
be divided into a training (80.00 %) and a test set (20.00 %). Subsequently,
the efficacy of the identified strain energy functions will be evaluated in com-
parison to established models, as referenced in [82, 84, 85]. Moreover, an
investigation will be conducted to assess the robustness of the identified strain
energy functions in the presence of noise. To identify an appropriate material
model, it is not sufficient to fit each of the three curves individually. It is
essential to consider all three curves simultaneously. To ensure the integrity
of the analysis, the data set under examination contains 14 data points for
the EBT, 14 data points for the PS, and 25 data points for the UT response.
Given the significant difference in the number of data points for the EBT and
UT responses, a straightforward approach is to duplicate the data set and
assign greater weight to the EBT response. To evaluate the impact of noise,
two distinct levels are tested given by

𝑛𝑖(𝜆) = 𝑎𝑖
𝜆

𝜆max
𝒩 (0, 1) , (5.1)

where 𝒩 (0, 1) is the normal distribution, 𝑎𝑖 is the amplitude level, 𝜆 is the
current stretch and 𝜆max is the maximum stretch. Accordingly, the noise level
is proportional to the amplitude, the current strain, and is normalized to
the maximum stretch. Two distinct amplitude levels 𝑎1 = 0.025 MPa and
𝑎2 = 0.05 MPa will be examined in this investigation.
As reported in [82] the Treloar data set can be fitted using the Mooney-
Rivlin model where the material constants have been determined with 𝑐10 =
1.62 × 10−1 MPa and 𝑐01 = 5.90 × 10−3 MPa, see Figure 5.1 for the stress-
strain response. It is evident that the EBT response accurately depicts the
fundamental data. However, the responses for UT and PS are for strains greater
than 400.00 %, significantly underestimating the observed stress-strain behavior.
An effective material model should demonstrate a consistent performance across
all three responses.

Chapter 5. Benchmark Tests Using Experimental Data
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Fig. 5.1: Best fit for the Treloar data set using the Mooney-Rivlin model, with
parameters 𝑐10 = 1.62 × 10−1 MPa and 𝑐01 = 5.90 × 10−3 MPa as given in Equa­
tion 5.2.

Using the DSO framework, the best performing strain energy ΨT is given by

ΨT = 0.13IC⏟  ⏞  
Ψ1

+ 2.40 × 10−3IIC⏟  ⏞  
Ψ2

+ 2.00 × 10−3 exp
√︁

IC⏟  ⏞  
Ψ3

+ 2.76 × 10−2
(︁
(ln IC)2 + (ln IIC)2

)︁
⏟  ⏞  

Ψ4

. (5.2)

The resulting formulation demonstrates a high degree of predictive power, as
evidenced by an 𝑅2 score of 97.32 %. Figure 5.2 illustrates the UT, PS, and
EBT responses of this hyperelastic model. As this model can be decomposed
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Fig. 5.2: Best fit for the Treloar data set of novel model discovered through DSO.
The stress-strain responses for UT, PS and EBT are generated from the strain
energy function given in Equation 5.2.
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additively, the impact of each term Ψ𝑖 can be visualized for the responses
UT, PS and EBT. This is depicted in Figure 5.3. The predicted response for
UT, PS as well as EBT is almost perfect throughout the whole interpolation
and extrapolation range. A more detailed illustration of the strain ranges
between 0.00 % and 300.00 % is presented in Figure 5.4. Upon analysis of
the strain domain from 0.00 % to 700.00 %, it becomes evident that the first
and third terms are of paramount importance for both UT and PS responses.
It is noteworthy that, in the case of an EBT response, the second term also
plays a crucial role. Nevertheless, within the strain domain from 0.00 % to
300.00 %, it is evident that all four terms contribute significantly to the EBT
response. Interestingly, this strain energy function can be split up into four
additive contributions: the first term Ψ1 can be interpreted as a basic neo-
Hookean response that solely depends on the first invariant. This term plays
a pivotal role in the UT and PS responses, particularly within the range of
small strains up to 300.00 %. The second term Ψ2 is an additional correction
term that depends on the second invariant. This term is a particularly
significant contributing factor for strains exceeding 300.00 %, resulting in a
markedly more rigid response in the EBT response. The third term Ψ3 is a
exponential function that depends on the first invariant. This contribution
is of particular significance when the strain range exceeds 300.00 % for all
loading cases, resulting in a notable stiffer response for large strains. It can
thus be reasonably concluded that an exponential function was selected, given
that it is multiplied by a significantly low coefficient. The last term Ψ4 is
a logarithmic function that depending on both invariants. This term is of
particular importance with regard to the EBT response for the strain range
between 0.00 % and 300.00 %.
Rivlin and Saunders observed in their 1951 experiments with a comparable
rubber that the term 𝜕Ψ/𝜕IC in the strain energy function Ψ is independent
of both IC and IIC, while 𝜕Ψ/𝜕IIC is independent of IC and decreases with an
increase in IIC [86]. In light of these observations, they proposed a function of
the form:

ΨT = 𝑐10 (IC − 3) + Φ (IIC − 3) , (5.3)

where 𝑐10 represents a constant, while Φ denotes a function with a continuously
decreasing slope when IIC increases. Based on this work, Gent and Thomas
proposed a strain energy formulation wherein this function is expressed as a
logarithmic function of IIC with

Φ = 𝑐01 ln
(︃

IIC

3

)︃
, (5.4)

where 𝑐01 is a constant. The strain energy function presented in Equation 5.2
appears to reflect this underlying logic, as evidenced by the term Ψ4. However,
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the refined function is markedly more intricate and nonlinear in character
than the classical models that have been proposed for Φ. It is a considerable
challenge for human intuition to successfully identify such a contribution. This
term has a significant impact on the EBT response, while its influence on the
UT and PS responses is minimal.
The found material model is a more accurate representation of the data set than
many traditional hyperelastic models and requires only four material constants.
Marckmann and Verron provide a summary and comparative analysis of twenty
different models based on their ability to fit the experimental data for the
Treloar data set [82]. A comprehensive investigation was conducted to identify
the optimal performing models under identical loading conditions, specifically
UT, PS, and EBT. In the course of their investigation, it was observed that the
extended-tube model exhibited the best performance characteristics among all
the models under consideration [24]. The model likewise features a minimalistic
set of four material parameters, exhibiting robust predictive capabilities across
a spectrum of loading scenarios. Furthermore, the findings indicated that the
non-hyperelastic Shariff and unit sphere models demonstrated a high level of
accuracy [87, 88]. However, these models are less commonly used in industrial
applications compared to the extended-tube model. As listed in Table 5.1, a
comparison of the 𝑅2 scores of the proposed model discovered using DSO with
those of the alternative approaches is provided. Furthermore, the Ogden model
is capable of accurately predicting the underlying responses. Nevertheless, the
Ogden model requires six material parameters, which makes it less practical for
applications with limited experimental data. Models with fewer parameters,
such as the three-chain, Hart-Smith, and eight-chain models, are unable to
accurately predict the stress response over the entire strain range. It is
noteworthy that in their analysis, they identified that for moderate strains of
up to 200.00 - 250.00 %, the two-parameter Mooney-Rivlin model demonstrated
the greatest efficacy, exhibiting performance characteristics comparable to
those of more complex models. For small strains up to 150.00 %, the neo-
Hookean constitutive equation is the preferred choice due to its physical
basis, simplicity with a single parameter, and ability to predict material
response over a range of loading conditions. These conclusions are supported
by the identified strain energy function. The terms Ψ1 and Ψ2 serve as the
fundamental building blocks for the neo-Hookean constitutive equation and
the two-parameter Mooney-Rivlin model. As illustrated in Figure 5.4, these
contributions are most significant for the small and moderate strain ranges up
to 250.00 %.
Additionally, Ricker and Wriggers conducted a comprehensive study in which
they fitted and compared a range of hyperelastic models for nine distinct
rubber compounds, in addition to evaluating how these models performed
when applied to the classical Treloar data set [84]. It was concluded that across
different rubber compounds, models with three to five parameters generally
perform best. The investigation focused on identifying the role and importance
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of the second principal invariant for rubber models. Based on the findings, it
was determined that UT is mainly influenced by the first invariant, while EBT
and PS responses are equally affected by both invariants. Consequently, test
data from a single experiment cannot adequately calibrate models dependent
on both invariants, IC and IIC. Furthermore, the utilization of solely IC-based
models results in an underestimation of the EBT response. By incorporating
an additional IIC dependency, it is possible to achieve a balance in the stress
response across diverse deformation modes and to offset potential limitations.
These findings substantiate the observations made with the predicted material
model by DSO. A significant benefit of the proposed methodology is that it
does not necessitate an initial screening of any models, thereby preventing any
potential for bias in model selection. The underlying relationships must be
directly identified from the specified data and inputs.
A further question arises concerning the quality of the data set provided
and its impact on performance. Accordingly, two distinct levels of noise
are incorporated into the experimental data set. This leads to two central
questions: first, to determine whether the derived strain energy function is a
unique solution, and second, to explore the robustness of the prediction in the
presence of noise. The analysis identified the optimal strain energy function
Ψ𝑛1

Treloar under the initial noise level as follows:

Ψ𝑛1
Treloar = ln IC + 28.42

−0.03IC + 1.13 −
19.64 exp

(︁
7.57 exp

(︁
0.02

√
IC − 1√

IIC

)︁
−16.15

)︁
IC

. (5.5)

The best strain energy function obtained under the second noise level Ψ𝑛2
Treloar

is given by

Ψ𝑛2
Treloar = 0.09IC + 0.11

√︁
IIC + 0.11 exp 0.60

√︁
0.75IIC − 1

+ exp (0.07 exp [exp (0.02IC)]) . (5.6)

The non-uniqueness of the obtained strain energy is evident due to the direct
effect of the introduced noise on the data. For illustrative purposes, the
stress-strain response for both models is presented in Figure 5.5. In particular,
the strain energy function corresponding to the first noise level is observed to
accurately describe both the PS and UT responses. However, it is noted that
the EBT response is slightly underestimated. Despite this discrepancy, the
derived model captures the underlying data set with a high accuracy and a
𝑅2 score of 98.19 %. The second noise level formulation exhibits comparable
patterns of behavior where the level of accuracy is given by a 𝑅2 score of
97.15 %. In this instance, the PS and UT responses demonstrate a high degree
of similarity, while the EBT response is subject to an underestimation. This
may be attributed to the occurrence of data overlap within the strain range of
0.00 % to 200.00 %, which is a direct result of the noise introduced during the
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process. Furthermore, this data overlap appears to result in a noticeably softer
PS response in comparison to the first noise level for strains higher 300.00 %.
This investigation demonstrates the significance of obtaining accurate experi-
mental data. Additionally, the results indicate the availability of numerous
feasible functions capable of describing the underlying data set. While there
is no guarantee of a function that can be decomposed additively, the derived
models effectively and accurately fitted the provided stress-strain responses
despite the sparsity of the data.

Tab. 5.1: Comparison of the proposed model with existing approaches with respect
to the number of material constants and the 𝑅2 score for the Treloar data for each
model.

Model Number of material constants 𝑅2 score

Proposed DSO 4 97.32 %

Extended tube [24] 4 96.56 %

Non-hyperelastic Shariff [87] 5 96.38 %

Ogden model [75] 6 95.58 %

Tab. 5.2: Material parameters of the extended tube model [24] for the Treloar data
set.

𝐺𝑐 𝐺𝑒 𝛽 𝛿

0.20 MPa 0.19 MPa 0.34 0.10

Tab. 5.3: Material parameters of the non-hyperelastic Shariff model [87] for the
Treloar data set.

𝐸 𝛼0 𝛼1 𝛼2 𝛼3 𝛼4

1.17 MPa 1.00 8.65 × 10−1 3.66 × 10−2 8.35 × 10−5 2.04 × 10−2

Section 5.1. Multi-Axial Loading of Vulcanized Rubber



54

0 100 200 300 400 500 600 700
0

2

4

6

8

Strain [%]

S
tr
es
s
P
1
1
[M

P
a]

Ψ1

Ψ2

Ψ3

Ψ4

UT
Train Data
Test Data

(a)

0 100 200 300 400 500 600 700
0

2

4

6

8

Strain [%]

S
tr
es
s
P
1
1
[M

P
a]

Ψ1

Ψ2

Ψ3

Ψ4

PS
Train Data
Test Data

(b)

0 100 200 300 400 500 600 700
0

2

4

6

8

Strain [%]

S
tr
es
s
P
1
1
[M

P
a]

Ψ1

Ψ2

Ψ3

Ψ4

EBT
Train Data
Test Data

(c)

Fig. 5.3: Visualization of the contributions of each term Ψ𝑖 for 𝑖 = 1, . . . , 4 in the
strain energy identified in Equation 5.2. The responses are shown for UT, PS and
EBT for the strain range from 0.00 % to 700.00 %.
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Fig. 5.4: Visualization of the contributions of each term Ψ𝑖 for 𝑖 = 1, . . . , 4 in the
strain energy identified in Equation 5.2. The responses are shown for UT, PS and
EBT for the strain range from 0.00 % to 300.00 %.
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Fig. 5.5: Visualization of the stress-strain responses of novel models influenced by
two different noise levels. The responses are derived from the strain energy functions
described in Equation 5.5 and Equation 5.6.
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Fig. 5.6: Best fit for the Treloar data set using (a) the extended tube model
(𝑅2 = 96.56 %), (b) the non-hyperelastic Shariff model (𝑅2 = 96.38 %) for UT,
PS and EBT. The used material parameters are listed in Table 5.2 and Table 5.3,
respectively.
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5.2 Stretch-Based Model Identification
As previously outlined in Section 4.4, it is possible to identify a material model
through the use of a stretch-based formulation. The material parameters
provided by Ogden for the Treloar data set can adequately describe the
stress-strain response with a reasonable degree of accuracy. These material
parameters are listed in Table 5.4. The responses for the UT, PS and EBT

Tab. 5.4: List of material parameters of the Ogden model for the Treloar data set,
as detailed in [75].

𝑖 = 1 𝑖 = 2 𝑖 = 3

𝛼𝑖 1.30 5.00 −2.00

𝜇𝑖 0.63 MPa 0.12 × 10−2 MPa −0.10 × 10−1 MPa

data are presented in Figure 5.7. It is evident that the model displays a slight
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Fig. 5.7: Best fit for the Treloar data set using the stretch-based Ogden model for
UT, PS and EBT. The used material parameters are listed in Table 5.4.

tendency to underestimate the UT, PS, and EBT responses for strain up to
400.00 %. A further notable shortfall in performance is evident for strains
exceeding 500.00 %, where the UT response is underestimated. It should be
noted that the level of accuracy achieved was only possible with the use of a
total of six material constants.
This prompts the question of whether an alternative stretch-based formulation
could provide a superior fit to the underlying data set using DSO. Once more,
the basis list of functions has been expanded with the incorporation of the
power function ("pow") for this analysis. The aforementioned approach based
on the Valanis-Landel assumption is utilized to identify a novel material model.
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Once again, an 80.00 % to 20.00 % train-test split was employed. The function
𝜔 was identified as follows:

𝜔(𝜆) =

1.44

⎛⎜⎜⎝0.42.96𝜆
𝜆

+

⎛⎜⎜⎝0.62

⎯⎸⎸⎸⎷0.61𝜆+

⎯⎸⎸⎷exp
(︃

2.0𝜆
𝜆

)︃
− 1

⎞⎟⎟⎠
0.65⎞⎟⎟⎠

0.4

. (5.7)

The stress-strain response of the data set is illustrated in Figure 5.8. It is
noteworthy that an 𝑅2 score of 98.06 %was achieved, indicating that the
identified strain energy function accurately predicts the responses for all three
loading cases. It is evident that the model accurately predicts the responses
across the entire strain region, exhibiting a superior performance compared to
the Ogden model.
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Fig. 5.8: Best fit for the Treloar data set using a novel stretch-based model discovered
through DSO. The model, described in Equation 5.7, is based on the Valanis-Landel
assumption. The fit is shown alongside corresponding training and test data for UT,
PS and EBT.

This example demonstrates the effectiveness of a stretch-based approach in
accurately characterizing the Treloar data set. While the degree of accuracy
has been enhanced, the notable increase in complexity of the model is a
significant drawback. However, further investigations and detailed analysis
are necessary to fully determine the potential of this approach. One potential
avenue for enhancing the simplicity of this approach is the incorporation of
possible priors into the DSO framework.
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5.3 Biaxial Loading of Vulcanized Rubber

In 1981, Kawabata et al. published the results of their comprehensive experi-
mental investigation aimed at gaining a detailed understanding of the strain
energy function of isoprene rubber vulcanizate [77]. They conducted a series
of experiments on the biaxial extension of a sheet specimen at varying temper-
atures, building upon the work previously presented by Treloar. This data is a
significant benchmark for evaluating and assessing the performance of different
constitutive models. A primary objective was to determine the significance of
the first and second invariants through biaxial deformation testing, providing
highly accurate experimental data in both small and large deformation regions.
To guarantee the accuracy of the results, specialised equipment was developed
to enable precise measurements in the small-deformation region. In their
theoretical discussion, they assumed that the material under consideration
can be considered incompressible. The primary conclusions of their research
are for the derivatives of the strain energy with respect to the invariant they
noticed that 𝜕Ψ

𝜕IC
> 𝜕Ψ

𝜕IIC
for all deformation scenarios and that the derivative

with respect to the second invariant 𝜕Ψ
𝜕IIC

can assumed to be of negative value
under small strain conditions.
To evaluate the performance of the DSO package on the Kawabata data set,
three different training scenarios are explored. In the first scenario the UT, PS,
and EBT responses will be used to identify a strain energy function. The re-
maining data will be used to evaluate the performance of the model, specifically
its ability to predict the 𝑃11 and 𝑃22 responses without prior knowledge of the
underlying data for 𝑃22. It is important to note that the stretch information 𝜆2
is only provided through the information of the first and second invariant. In
the second scenario, all data sets for the BT responses are used to determine
if the model’s performance improves with this additional information. The
fitting is again only performed on the 𝑃11 stress. In the final scenario, the
entire data set is used to evaluate the model’s ability to accurately predict all
data points including the 𝑃11 and the 𝑃22 stresses. A test train split of 70.00 %
to 30.00 % is applied for all three cases. It is important to note that the strain
energy function was determined as a function of the invariants IC and IIC as
inputs, although the data are given for the stretches 𝜆1 and 𝜆2. Accordingly,
a straightforward transformation is employed to ascertain the values of the
invariants, as detailed in [77].
For the first example, the identified strain energy is given by

ΨK,1 =0.43
(︂

0.38
[︂
IC

(︂
0.30IC − 8.58 × 10−4 IIC ln IIC

− 0.30 ln IC + 4.73
)︂

+ IIC

]︂
+ 1

)︂ 1
2
. (5.8)
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The corresponding predictions are visualized in Figure 5.9. The 𝑅2 score
is given with 99.67 % and the strain energy demonstrates a high degree of
agreement between the predicted responses and the experimental data for
UT, PS and EBT as depicted in Figure 5.9(a). Nevertheless, it is yet to
be established how accurately the strain energy will predict responses in
other scenarios. Therefore, Figure 5.9(b) illustrates the response of 𝑃11 as a
function of the stretch 𝜆2, while Figure Figure 5.9(c) depicts the response of
𝑃22. Figure 5.9(b) demonstrates that these three loading cases are sufficient
for characterizing the material’s behavior across various stretch combinations.
A more detailed analysis of the 𝑃22 response indicates that, despite not being
included during the fitting process, the strain energy function accurately
captures the trends in the stress-strain responses. It can be concluded that the
information provided by 𝑃11 is not fully sufficient for comprehensive predictions
of 𝑃22.
For the second training case the strain energy is given by

ΨK,2 = 0.17IC − 0.03 + 0.10
⎛⎝3.69 − 2.21

√︂
0.09IC − 0.20

√︁
IIC + 1

⎞⎠
· ln

(︂
4.74IC + IIC + ln

(︂√︁
IIC

)︂
+ 5.21

IC

)︂
. (5.9)

The corresponding stress-strain responses are illustrated in Figure 5.10. It
is evident that the generated predictive response is of an exceedingly high
degree of accuracy, as indicated by an 𝑅2 score of 99.40 %. In the second
training case, all data from the biaxial loading were utilized. However, only
the 𝑃11 response was fitted, while the 𝑃22 response was excluded from the
fitting process. Figure 5.10(a) depicts the responses of UT, PS, and EBT while
Figure 5.10(b) illustrates 𝑃11 over the stretch 𝜆2. The fit is notably precise for
the UT, PS, and BT responses, effectively capturing all observed trends. In
Figure 5.10(c) the response of 𝑃22 over the stretch 𝜆2 is depicted. As illustrated,
the predictive accuracy of the model for 𝑃22 is less precise in comparison to
𝑃11. The predicted response is found to be a significant underestimate of the
material’s behavior, particularly for strains of 𝜆1 = 3.7. This indicates that
both stresses are indispensable for the fitting.
In the final case, both 𝑃11 and 𝑃22 responses were used for the fitting. The
strain energy was determined with

ΨK,3 = 0.12IC + 0.12
√︁

IIC − 0.03 ln IIC

− 0.03 ln
(︁
ln (IIC)4

)︁
− 0.13 − 0.03 (−3.49IC − 5.88IIC) ln (IIC)

IIC
. (5.10)

The resulting responses are visualized in Figure 5.11. In this instance, the
generated predictions are observed to be of an extremely high degree of accuracy
with a 𝑅2 score of 98.40 %. Figure 5.11(a) depicts the predicted outcomes
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Fig. 5.9: Stress-strain responses for 𝑃11 and 𝑃22 for the Kawabata data set for 𝜆1
and 𝜆2 fitted using 𝑃11 of UT, PS and EBT. The responses are based on the strain
energy function identified in Equation 5.8.
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Fig. 5.10: Stress-strain responses for 𝑃11 and 𝑃22 for the Kawabata data set for 𝜆1
and 𝜆2 fitted using 𝑃11 data. The responses are based on the strain energy function
identified in Equation 5.9.
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Fig. 5.11: Stress-strain responses for 𝑃11 and 𝑃22 for the Kawabata data set for 𝜆1
and 𝜆2 fitted using 𝑃11 and 𝑃22 data. The responses are based on the strain energy
function identified in Equation 5.10.
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for UT, PS, and EBT. Figure 5.11(b) illustrates the response of 𝑃11 over 𝜆2,
while Figure 5.11(c) illustrates the response of 𝑃22 over 𝜆2. The fitting of both
stress responses has resulted in a notable enhancement in the precision of the
calculated 𝑃22 response. Nevertheless, a slight underestimation persists.
It is crucial to acknowledge that the identified strain energy functions display
distinctive characteristics that differentiate them from one another. This
analysis indicates that there is no single, universally applicable strain energy
function, rather, multiple potential functions can adequately fit the same
data set. It is apparent that all formulations possess pronounced nonlinear
characteristics. Moreover, the identified strain energy functions illustrate that
both inputs, IC and IIC, are indispensable for developing a reasonable model.
As proposed by Kawabata et al., the micro-mechanical interpretation suggests
that the dependency on IC is primarily associated with intramolecular forces,
while the dependency on IIC reflects intermolecular interactions [77]. It is,
however, worthy of note that physically motivated models do not typically
incorporate the second principal invariant in their formulations of strain energy
functions. While this investigation does not establish any specific micro-
mechanical relationships, it highlights the necessity of both inputs for the
identification of an effective model. Moreover, this investigation indicates that
for a precise model capable of predicting a variety of loading scenarios, both
the 𝑃11 and 𝑃22 responses are indispensable for the fitting process. While the
experimental data obtained from UT, PS, and EBT experiments can yield
satisfactory fits, it is crucial to acknowledge that these data may not provide
highly accurate predictions for specific loading cases, particularly with regard
to the 𝑃22 response. The 𝑃11 stress is sufficiently robust for the identification
of a strain energy function which effectively captures the observed trends in
the 𝑃22 response.

5.4 Temperature-Dependent Thermoplastic
Polyester Elastomer

The mechanical behavior of elastomers is subject to significant influence
from temperature. A change in temperature can affect a material’s fun-
damental properties, including its Young’s modulus, tensile strength, and
stress-strain response. It is therefore essential to consider this effect and to
study the mechanical behavior over a range of different boundary conditions
when modeling materials. It is common practice in the field of constitutive
hyperelastic modeling to incorporate the effects of temperature by consider-
ing temperature-dependent material properties or by introducing additional
temperature-dependent terms in the strain energy function. As discussed in
Section 3.2, the framework presented here can be easily extended to include
the influence of other parameters such as temperature. This methodology
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allows for the systematic accounting of all potential nonlinearities due to
temperature effects, resulting in more sophisticated models that incorporate
not only variations in material parameters.
The following section will examine a temperature-dependent data set, which
presents the stress-strain response of the thermoplastic polyester elastomer
Hytrel 4556 for the uniaxial tensile loading case [89]. A total of nine stress-
strain curves for temperatures between −40.00 ∘C and 120.00 ∘C are available
for the purpose of identifying a suitable material model. In this particular
example, the gplearn package will be employed. The temperature-dependent
strain energy function ΨHy was determined by the following equation:

ΨHy = IC̄ exp
(︃[︂(︂

−𝑇 + exp
(︂

1.41
√︁

0.5𝑇 2
𝑙 − 𝑇𝑙

)︂
− 1.0

)︂
𝑇 2
𝑙

]︂ 1
2
)︃

+ 0.131IC̄𝑇𝑙 − 2IIC̄𝑇𝑙 + exp (41.19 exp (−IIC̄))𝑇𝑙 , (5.11)

where 𝑇𝑙 = ln𝑇 and 𝑇 is a scaled temperature given by

𝑇 = 𝑇

400 + 1
2 . (5.12)

While not a mandatory requirement from a mathematical standpoint, scaling
the input variables to a similar order of magnitude is advantageous for the
numerical performance of the optimization procedure. Figure 5.12 illustrates
the stress-strain responses for the test and training data sets. As anticipated,
the stress response at lower temperatures is markedly stiffer than that ob-
served at higher temperatures. The fitting was conducted on a training set
that included only five temperature-dependent curves (−40.00 ∘C, 0.00 ∘C,
40.00 ∘C, 90.00 ∘C, 120.00 ∘C) (see Figure 5.12(a)). The remaining four curves
(−20.00 ∘C, 23.00 ∘C, 60.00 ∘C, 100.00 ∘C) were not included during the train-
ing phase. Consequently, they can be employed as a test set for the evaluation
of the accuracy and reliability of the predicted strain energy function (see
Figure 5.12(b)). For both sets, even for the curves that were not included
in the training data set, the predicted stress response is in close agreement
with the experimental data. The use of symbolic regression offers a substantial
advantage in the form of interpretable algebraic equations, which will be the
focus of this section’s investigation. The primary objective will be to examine
the strain energy derived from the experimental temperature-dependent data
set, as presented in Equation 5.11, which will be analyzed in greater detail.
Initially, the material law is simplified for the temperatures 𝑇1 = −20.00 ∘C,
𝑇2 = 0.00 ∘C and 𝑇3 = 20.00 ∘C, resulting in three distinct expressions for the
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Fig. 5.12: Temperature-dependent stress-strain responses for the thermoplastic
polyester elastomer Hytrel 4556 [89]. The responses for both the training and test
sets are derived from the strain energy function described in Equation 5.11.

strain energy given by

Ψ̄Hy(IC̄, IIC̄, 0.45) = 3.89IC̄ + 1.60IIC̄ − 0.80 exp(41.19 exp(−IIC̄)) , (5.13)
Ψ̄Hy(IC̄, IIC̄, 0.50) = 2.85IC̄ + 1.39IIC̄ − 0.69 exp(41.19 exp(−IIC̄)) , (5.14)
Ψ̄Hy(IC̄, IIC̄, 0.55) = 2.21IC̄ + 1.20IIC̄ − 0.60 exp(41.19 exp(−IIC̄)) . (5.15)

This simplification demonstrates that the strain energy is comprised of pre-
cisely three additive terms. Upon slight rearrangement of the strain energy
formulation, the following derivation is obtained:

Ψ̄Hy = 𝐶1(𝑇 )IC̄⏟  ⏞  
Ψ1

+𝐶2(𝑇 )IIC̄⏟  ⏞  
Ψ2

+𝐶3(𝑇 ) exp (41.19 exp (−IIC̄))⏟  ⏞  
Ψ3

, (5.16)
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where 𝐶1(𝑇 ), 𝐶2(𝑇 ) and 𝐶3(𝑇 ) represent three temperature-dependent coeffi-
cients given by

𝐶1(𝑇 ) = exp
(︃[︂(︂

−𝑇 + exp
(︂

1.41
√︁

0.5𝑇 2
𝑙 − 𝑇𝑙

)︂
− 1.0

)︂
𝑇 2
𝑙

]︂ 1
2
)︃

+ 0.13𝑇𝑙 , (5.17)
𝐶2(𝑇 ) = − 2𝑇𝑙 , (5.18)
𝐶3(𝑇 ) =𝑇𝑙 . (5.19)

A close examination of this formulation reveals that the initial two terms, Ψ1
and Ψ2, align with the Mooney-Rivlin model, with temperature-dependent
coefficients 𝐶1 and 𝐶2. It bears mentioning that, based on an exhaustive
literature review, the additional term Ψ3, which is weighted by the coefficient
𝐶2, has not yet been proposed in any existing literature. It is possible to
illustrate the evolution of these coefficients 𝐶𝑖 across the temperature range
from −40.00 ∘C to 120.00 ∘C, as depicted in Figure 5.13. It can be observed
that both coefficients 𝐶1 and 𝐶2 are positive. The plot demonstrates that while
the value of coefficient 𝐶1 is initially greater than that of 𝐶2, 𝐶1 also exhibits
a more rapid decline as temperature increases. The coefficient 𝐶3 is inversely
proportional to temperature and approaches zero at higher temperatures. As
the generated model is of an additive nature, the contributions of each term Ψ𝑖

can be decomposed, as shown in Figure 5.14 for the temperatures −40.00 ∘C,
−20.00 ∘C and 0.00 ∘C. The term Ψ3 plays a crucial role in the strain range
from 0.00 % to 100.00 %, serving as the primary factor influencing the initial
stiffness of the material. Nevertheless, this effect decreased considerably as
the strain increased. The primary stress response is mainly attributed to term
Ψ1, while term Ψ2 seems to function as an additional correction factor. This
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Fig. 5.13: Visualization of the material constants 𝐶𝑖 as a function of temperature
for thermoplastic polyester elastomer Hytrel 4556.
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example demonstrates the straightforward analysis of a novel strain-energy
formulation through the use of SR, which offers a notable advantage over
alternative methods such as neural networks, sparse regression, or model-free
approaches. As previously outlined, SR offers a comprehensive understanding of
the fundamental material models and uncovers the manner in which particular
terms impact the comprehensive stress-strain response. Moreover, the identified
models are genuinely novel and can be adapted to specific materials based on
the provided data. The specific characteristics of the material are accurately
identified, and the framework can be trained using sufficiently small data sets.
The framework displays the ability to identify and capture the underlying
physical relationship, as evidenced by its interpolation and extrapolation
capabilities.
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Fig. 5.14: Visualization of the temperature-dependent contributions of each term
Ψ𝑖 for 𝑖 = 1, . . . , 3 for the thermoplastic polyester elastomer Hytrel 4556 [89]. The
responses for both the training and test sets are derived from the strain energy
function described in Equation 5.11.
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6 Rediscovering the Mullins Effect

Prediction is very difficult, especially if it’s about the future!

N. Bohr

Elastomers, and in particular reinforced rubbers, typically demonstrate
a softening behavior that emerges during the unloading phase and persists
during the subsequent loading. This phenomenon was initially documented
in the seminal work of Mullins and is henceforth referred to as the Mullins
effect [90], see Figure 6.1. This phenomenon is more pronounced in materials
containing an increasing amount of filler particles, such as carbon black or
silica. It is typically accompanied by a range of other inelastic effects, including
residual strain and deformation induced anisotropy [91]. Deformation-induced
anisotropy describes the behavior of a material in which the response to tensile
stress along the preload direction differs from the response to tensile stress in
any other direction. The phenomenon of permanent set is typically associated
with the Mullins effect. A substantial body of experimental evidence indicates
that these effects are contingent upon the specific strain level, strain rate,
and loading history. Furthermore, the Mullins effect is highly persistent and
remains present even after a considerable period of relaxation. Nevertheless,
this phenomenon can be reversed by subjecting the material to exposure of
high temperature in a vacuum [92].
The physical source of the Mullins effect, despite its widespread appearance
and importance, remains a topic of debate in the scientific community. For
further insight, see, e.g., [93] and references therein. The Mullins effect has
been interpreted in several differing physical perspectives. These include the
detachment of polymer molecules from the filler interface, molecular slippage,
and the rupture of filler clusters. These interpretations have been used as a
foundation for micro-mechanically motivated material models of the Mullins
effect.
One of the earliest phenomenological models of the idealized isotropic Mullins
effect was proposed by Ogden and Roxburgh [94]. This pseudo-elastic model
incorporates a damage parameter that is expressed as a function of the max-
imum value of the strain energy density that has been previously attained
under tensile loading. Qi and Boyce developed a model with two distinct
phases: one pertaining to a soft domain and the other to a hard domain [95].
The transition from the hard to soft domain is controlled by a state variable.
An updated version of the Ogden-Roxburgh model has been developed by
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Fig. 6.1: Schematic stress-strain response of a rubber sample undergoing a loading
cycle, followed by an unloading and reloading cycle. The curve demonstrates the
Mullins effect and permanent set behavior.

Ogden and Dorfmann [96]. In this work, an alternative dissipation function
was proposed as a means of representing the effects of stress softening and
permanent set. Furthermore, another phenomenological model of the Mullins
effect was proposed, which included permanent set and induced anisotropy [97].
A thermodynamically consistent phenomenological model of the anisotropic
Mullins effect, including permanent set, was formulated in terms of principal
stretches [98]. To describe the anisotropic Mullins effect in carbon black
filled rubbers, a micro-mechanically motivated approach was proposed in [99].
Furthermore, a generalized network decomposition model for filled elastomers
has been introduced [100]. In a recent publication, Ayoub et al. presented
a visco-hyperelastic damage model that is capable of capturing a number of
important mechanical phenomena, including cyclic stress softening, hysteresis,
and permanent set [101]. Moreover, Khiêm and Itskov proposed an averaging-
based tube model, applicable to both filled and unfilled elastomers [102], which
was subsequently extended to model mechanically induced chemiluminescence
in elastomers [103]. A micro-mechanical approach to modeling thermally in-
duced aging in elastomers was proposed by Mohammadi et al. [104]. Recently,
a modeling approach for Mullins-type damage behavior in double network
hydrogels was presented in [105]. Guo et al. [106] introduced a model pre-
dicting deformation-induced damage and failure in elastomers, while Morovati
et al. [107] considered damage accumulation effects for fatigue-induced stress
softening in cross-linked multi-networked elastomers. Furthermore, Saadedine
et al. presented a multiscale model for describing multiaxial inelastic behavior
of elastomeric particulate composites [108]. Wang et al. [109] proposed an
advanced model to study the influence of magnetic fields on the viscoelastic
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behavior of soft magnetorheological elastomers under finite strain.
In the following investigation, the primary goal is to rediscover the Mullins
effect using SR. Accordingly, a benchmark analysis will be conducted using
artificial data generated through the Ogden-Roxburgh model. Moreover, the
analysis will be complemented by an investigation of a temperature-dependent
experimental data set of a filled silicone [110]. The primary objective is to
assess the quality of the automatically generated material models in terms of
accurate interpolation and extrapolation of experimental data. Additionally,
it is crucial to examine the influence of data set size and input variables on
model accuracy. In accordance with the methodology previously outlined, the
continuum mechanical framework presented in Chapter 3 is integrated with
SR as explained in Chapter 2 to determine an additional damage function.
The analysis is conducted using the DSO package. To enhance adaptability,
the modeling procedure is divided into two distinct phases. In the initial stage,
the hyperelastic material model is identified. The determination of the strain
energy necessitates an analysis of the stress-strain data obtained during the
primary loading phase, which is commonly designated as the "virgin curve".
As previously stated, the contributions of isochoric and volumetric effects to
the strain energy function can be defined independently. Subsequently, these
contributions serve as the foundation for the second stage, wherein the damage
function is assessed and evaluated, as illustrated in Figure 6.2. Accordingly,
the derived strain energy function Ψ is employed as the input variable for
this stage. The fitting process for the damage function 𝜂 is conducted on the
cyclic data set. In this case, the maximum strain energy value attained in the
preceding cycles, referred to as Ψ𝑚, is also provided as an input. In both steps,
the first Piola-Kirchhoff stress is calculated in order to determine the strain
energy and damage variable. This methodology can be extended to encompass
additional inputs, including temperature, concentration, or even particle size
distributions.
In the above mentioned pseudo-elastic model of the Mullins effect by Og-
den and Roxburgh [94] the stress resulting from the hyperelastic constitutive
equation is reduced by a damage variable 𝜂 as follows

P = 𝜂 (Ψmax,Ψ) P0 . (6.1)

Accordingly, 𝜂 depends on the actual strain energy Ψ and the maximal value
Ψmax of the strain energy previously reached in the loading history and is
described by

𝜂 (Ψmax,Ψ) = 1 − 1
𝑟

erf
(︃

Ψmax − Ψ
𝑚+ 𝛽Ψmax

)︃
, (6.2)

where erf(·) represents the error function while 𝑟, 𝛽 and 𝑚 denote material
constants. This model is an excellent choice for a benchmark due to its
extensive usage and incorporation into commercial FE software. Moreover, its
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Fig. 6.2: Visualization of the two-step procedure implemented for modeling the
Mullins effect. In the first step, the strain energy function Ψ is expressed in terms of
invariants and other parameters using data from the primary loading curve. In the
second step, the damage function 𝜂 is determined using all inputs from the first step,
along with the values of Ψ and Ψ𝑚. The fit is performed on cyclic loading data.

implementation is relatively straightforward, relying on only three material
parameters. Moreover, this model has been shown to be an effective approach
for accurately representing the Mullins effect.
Accordingly, Section 6.1 describes the application of the Ogden-Roxburgh
model for the generation of an artificial data set for an initial benchmark.
Therefore, the effectiveness of the proposed framework can be evaluated by
quantifying its interpolation and extrapolation properties. In addition, it is
crucial to evaluate the efficacy of this framework when applied to experimental
data, which will be discussed in Section 6.2. To this end, the uniaxial tension
data for six temperature ranges for filled silicone specimens will be employed
in the subsequent analysis. A comprehensive analysis of the data set sizes and
the reliability of the identified formulations for strain energy, as well as the
damage variable, will be conducted for both artificial and experimental data.
This chapter presents an edited version of my previous publication [1].

6.1 Benchmark Tests Using Ogden-Roxburgh
Model

In order to assess the efficacy of the proposed framework in characterizing the
softening behavior of elastomers, the Ogden-Roxburgh model is employed. As
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outlined in Section 3.2 (see also Figure 6.2), the modeling process is initiated
with an evaluation of the strain energy functions based on the primary loading.
The stress-strain data for the primary loading have been generated using the
generalized incompressible Mooney-Rivlin model, with the material constants
for the first case of complexity (for further details, see the material constants
for the DSO package in Table 4.1). The cyclic stress-strain data for unloading
and subsequent reloading were obtained using the Ogden-Roxburgh model
in Equation 6.2, with the following material constants: 𝑟 = 1.2, 𝛽 = 0.5 and
𝑚 = 2.
To assess the quality of the interpolation and extrapolation, three load and
unloading cycles were selected as training data to identify the damage function
𝜂, while two additional cycles were reserved for testing. The strain ranges
within the training set ranged from 0.00 % to 100.00 %, while those within the
test set ranged from 100.00 % to 150.00 %. Similar to the previous example,
the training data was split with 80.00 % to 20.00 % to validate the interpolation
quality. The first loading cycle consisted of 24 data points, the second of 42,
and the third of 56. Consequently, the cyclic data for the test set included
70 and 82 data points for each of the three loading cases: UT, PS, and EBT.
Furthermore, 74 additional data points were added to the existing data set
for each loading case. However, only 122 of these points were included in the
training set, which indicates that the data set as a whole remains relatively
sparse.
As previously stated, the calculation of five strain energies and damage func-
tions is essential for determining the impact of randomness on the output.
A comparison of the mean stress-strain response of all five models, derived
using the DSO package, with the corresponding training and test data for UT,
PS, and EBT is presented in Figure 6.3. These diagrams depict the mean
stress response and the corresponding 6𝜎 confidence intervals, plotted against
the strains for the loading cases of UT, PS, and EBT. It is noteworthy that
the confidence interval in this particular example is exceedingly narrow. The
proposed approach demonstrates a high degree of alignment with the under-
lying data, particularly in terms of both the interpolated and extrapolated
ranges, which are predicted nearly perfectly. These outcomes are particularly
noteworthy given the scarcity of the data utilized.
The recovery rates and the 𝑅2 score for the virgin curve are identical to those
obtained in Subsection 4.1.2. The damage variable exhibited an 𝑅2 score
exceeding 99.98 %, while the recovery rate reached 80.00 %. The determined
damage models are listed in Table 6.1. The results of this benchmark test indi-
cate that a limited number of loading cycles with sparse data are sufficient to
recover the softening behavior with an extremely high degree of accuracy. The
underlying continuum mechanical framework is capable of both interpolation
and extrapolation of the given data, as well as a robust identification of the
damage function.
It is similarly crucial to assess the impact of the train-test data split size. Ac-
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Tab. 6.1: Recovered damage models 𝜂 (Ψ,Ψmax) for the Ogden-Roxburgh model,
along with their corresponding 𝑅2 scores.

N Damage function 𝜂 (Ψ,Ψmax) 𝑅2 score

1 0.83 erf
(︁

4.0Ψ−4.0Ψmax
2Ψmax+8.0

)︁
+ 1.0 1.00

2 0.83 erf
(︁

4.0Ψ−4.0Ψmax
2Ψmax+8.0

)︁
+ 1.0 1.00

3 0.83 erf
(︁

Ψ−Ψmax
0.5Ψmax+2.0

)︁
erf (0.07Ψ + 1.21Ψmax + 3.09) + 1.0 1.00

4 0.83 erf
(︁

2.0Ψ−2.0Ψmax
Ψmax+4.0

)︁
+ 1.0 1.00

5 1.0 − 0.83 erf
(︁
1.98−Ψ+Ψmax

Ψmax+4.0

)︁
1.00

cordingly, an investigation is conducted into the performance of the framework
when subjected to a test-train split of 70 to 30.00 % and 60 to 40.00 %. The
results obtained with regard to the Ogden-Roxburgh model are illustrated
in Figure 6.4 and Figure 6.5. Within the specified interpolation range, the
results demonstrate a near-perfect fit for both train-test splits. It can be
observed that the 𝑅2 scores consistently exceed 99.80 %. As previously stated,
it is possible to obtain a multitude of models that accurately describe the
underlying data. Accordingly, a recovery rate of 80.00 % for the 70 to 30.00 %
split and 20.00 % for the 60 to 40.00 % split were achieved. Upon examination
of the extrapolation range, it was observed that for the 60 to 40.00 % train-test
split, the confidence interval exhibited a notable widening in the final unloading
cycle under EBT. It is evident that the efficacy of the models is influenced by
the quantity of training data. The proposed approach demonstrates robust
and highly accurate results for modeling softening behavior.
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Fig. 6.3: Mean stress-strain response of all five models obtained using DSO, along­
side the corresponding training and test data for UT, PS and EBT based on the
generalized Mooney-Rivlin model of case 1 for the primary loading and the Og­
den-Roxburgh model for the softening (unloading and further reloading). Shaded
areas indicate 6𝜎 confidence intervals.
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Fig. 6.4: Mean stress-strain response of all five models obtained using DSO, along­
side the corresponding training and test data for UT, PS and EBT based on the
generalized Mooney-Rivlin model of case 1 for the primary loading and the Og­
den-Roxburgh model for the softening (unloading and further reloading). Results
are obtained for a test-train split of 70.00 % to 30.00 %. Shaded areas indicate 6𝜎
confidence intervals.
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Fig. 6.5: Mean stress-strain response of all five models obtained using DSO, along­
side the corresponding training and test data for UT, PS and EBT based on the
generalized Mooney-Rivlin model of case 1 for the primary loading and the Og­
den-Roxburgh model for the softening (unloading and further reloading). Results
are obtained for a test-train split of 60.00 % to 40.00 %. Shaded areas indicate 6𝜎
confidence intervals.
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6.2 Temperature-Dependent Filled Silicone

In the final analysis, an experimental data set that is dependent on tempera-
ture is considered [110]. In these experiments, filled silicone specimens were
subjected to uniaxial tensile testing at temperatures of −40.00 ∘C, −20.00 ∘C,
20.00 ∘C, 60.00 ∘C, 100.00 ∘C and 150.00 ∘C. A series of loading and unloading
cycles was conducted, with the amplitude gradually increasing at each step. A
total of 120 data points were utilized to identify the strain energy function for
the four specified training temperatures. Consequently, each curve consisted
of 30 data points. The temperature-dependent strain energy function was
determined from the primary loading curves under the temperatures −40∘C,
20∘C, 100∘C and 150∘C, while the curves of −20∘C and 60∘C served as test
data. The material was considered as ideally incompressible. Accordingly, the
following strain energy ΨT(IC, IIC, 𝑇 ) was obtained:

ΨT(IC, IIC, 𝑇 ) = 0.11 4
√︁

IC

⎡⎣IC

− 0.24

⎯⎸⎸⎷0.85
(︃

IIC

𝑇
+
(︃

2.71ICIIC

𝑇
+ ln

(︃
0.84ICIIC

𝑇
+ ln𝑇

)︃)︃)︃

·
√︂

exp
(︁
0.55IC

(︁
−2.28𝑇 + ln𝑇 + 1.64

)︁)︁
− 1.03 − 2.65

⎤⎦ , (6.3)

Here 𝑇 is a scaled temperature mapping the temperature range from −100∘

to 200∘ to the data range between 0 and 1 using the following function:

𝑇 = 𝑇

300 + 1
3 . (6.4)

While rescaling the temperature range to a comparable order of magnitude
is not a mathematically necessary step, it does enhance the computational
efficiency of the optimization process. As explained in Section 3.2 the obtained
strain energy function in Equation 6.3 is shifted such that the first condition
in Equation 3.3 is satisfied. This shift is expressed as

Ψ𝑛
T(IC, IIC, 𝑇 ) = ΨT(IC, IIC, 𝑇 ) − ΨT(3, 3, 𝑇 ) , (6.5)

where the new function Ψ̄𝑛
T(IC, IIC, 𝑇 ) is used for identifying the temperature

dependent damage function of the Ogden-Roxburg model in Equation 6.1. To
this end, only unloading and reloading stress-strain data of the cyclic test for
the temperature 20∘C were used. All remaining cyclic data sets in particular
for the temperatures −20∘C 60∘C served as test data. The so obtained damage
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function is of the form

𝜂𝑇
(︁
Ψ𝑛

T,Ψ𝑛
T,max

)︁
= 0.29 coth

[︃
Ψ𝑛

T − 0.37Ψ𝑛
T

(︃
Ψ𝑛

T,max

0.09 + 0.33Ψ𝑛
T

+ erf
(︁
1936.97 + Ψ𝑛

T,max

)︁
− tanh

(︁
Ψ𝑛

T

)︁)︃
+ tanh

(︁
1.33 − tanh

(︁
1.90 − 14.49Δ

)︁
− tanh [tanh (1.67 − 47186.20Δ)]

)︁]︃
, (6.6)

where tanh(·) and coth(·) denote hyperbolic tangent and cotangent, respec-
tively, Ψ𝑛

T,max is the maximal value of the accumulated strain energy while
Δ = erf

(︁
Ψ𝑛

T −Ψ𝑛
T,max

)︁
. The stress-strain responses resulting from Equation 6.3,

Equation 6.6 according to Equation 3.6 and Equation 6.1 are shown in Fig-
ure 6.6 and Figure 6.7 for all temperatures. It is seen that only the primary
curve and only one loading cycle were sufficient to describe very accurately
the stress-strain responses at all six temperatures.
To further study the robustness of the proposed framework, the temperatures
20.00 ∘C, 60.00 ∘C and 100.00 ∘C for training and −40.00 ∘C, 20.00 ∘C and
150.00 ∘C for testing the same data set are used in an extrapolation perfor-
mance analysis. Only the cyclic response of the −20.00 ∘C curve is applied to
fit the damage variable.
Furthermore, it is essential to address the interpretability of the resulting
model. A useful tool for such an investigation is to limit the complexity of the
identified models. Therefore, the maximum length of the traversal is restricted
to 32 tokens. The strain energy function obtained for this new evaluation is
given by

Ψ(IC, 𝑇 ) =

0.69
(︂

0.07IC + 𝑇 − 0.38 + 0.13
𝑇

)︂
ln (0.46IC) ln

(︂
1.48

√︁
0.38IC − 1

)︂
, (6.7)

and depends only on the first invariant IC and the scaled temperature 𝑇 .
This is due to the fact the evaluation is based on the uniaxual tension data
where the second invariant is generally not necessary. Note that this important
behavior of the strain energy function (whether or how it depends on the second
invariant) cannot be studied by using other machine learning approaches like
for example artificial neural networks. Furthermore, the strain energy function
can be simplified into two additive terms given by

Ψ(IC, 𝑇 ) = Ψ1(𝑇 )Ψ2(IC) + Ψ3(IC) , (6.8)
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Fig. 6.6: Temperature-dependent cyclic stress-strain responses for a filled silicone
subjected to stepwise increasing strain amplitudes at different temperatures. The
comparison includes the stress-strain responses predicted by the model described in
Equation 6.3 and Equation 6.6 obtained using DSO, alongside experimental data at
−40.00 ∘C, −20.00 ∘C and 20.00 ∘C [110].
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Fig. 6.7: Temperature-dependent cyclic stress-strain responses for a filled silicone
subjected to stepwise increasing strain amplitudes at different temperatures. The
comparison includes the stress-strain responses predicted by the model described in
Equation 6.3 and Equation 6.6 obtained using DSO, alongside experimental data at
60.00 ∘C, 100.00 ∘C and 150.00 ∘C [110].
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where

Ψ1(𝑇 ) = 0.69
(︂
𝑇 − 0.38 + 0.13

𝑇

)︂
, (6.9)

Ψ2(IC) = ln (0.46IC) ln
(︂

1.48
√︁

0.38IC − 1
)︂
, (6.10)

Ψ3(IC) = 0.05ICΨ2(IC) . (6.11)

From the obtained expression it is directly visible that the proposed strain
energy would become unstable for values of IC < 2.63, which cannot be reached
under the incompressibility constraint. This direct stability analysis represents
a significant advantage for example in comparison to the above mentioned
artificial neural networks. In addition, the expression is not defined for the
temperature 𝑇 = −100.00 ∘C. It can be seen that the term Ψ̃3(IC) represents
an average response of the material independent of temperature. The term
Ψ̃1(𝑇 )Ψ̃2(IC) is solely responsible for all (non-linear) temperature effects. The
resulting damage variable for this particular example has been identified by

𝜂𝑇 (Ψ,Ψmax) =

− 5.73 + 16.36 exp
(︂

− tanh
(︂

ln
(︁
−Ψ + 1.77 exp

(︁
−Ψ + Ψmax + erf (0.39Ψ)

)︁)︁
+ tanh (1.38 exp (−30.32Ψ + 30.29Ψmax))

)︂)︂
. (6.12)

The material response for all temperatures is plotted in Figure 6.8 and Fig-
ure 6.9. The 𝑅2 score for the primary loading and unloading curve reached
98.10 % and 93.40 %, respectively. The derived model fits the primary loading
curve of the training data well and interpolates well within the specified range
between -20.00 ∘C and 100.00 ∘C, although there are slight deviations from
the test data at −40.00 ∘C and 150.00 ∘C. The calculated damage variable
accurately describes the unloading responses, although the last unloading cycle
is underestimated for both the 60.00 ∘C and 100.00 ∘C temperatures.
Thus, the proposed method demonstrates a robust ability to accurately gener-
alize the material response with respect to temperature dependence, despite
being trained on only three temperature curves. This performance is partic-
ularly remarkable under conditions of extreme data scarcity. In a broader
application, whether for use in finite element simulations or in more general
contexts, it is advisable to calibrate the material model over the entire available
temperature range.
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Fig. 6.8: Extrapolation assessment for temperature-dependent cyclic stress-strain
responses for a filled silicone subjected to stepwise increasing strain amplitudes
at different temperatures. The comparison includes the stress-strain responses
predicted by the model described in Equation 6.7 and Equation 6.12 obtained using
DSO, alongside experimental data at −40.00 ∘C, −20.00 ∘C and 20.00 ∘C [110].
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Fig. 6.9: Extrapolation assessment for temperature-dependent cyclic stress-strain
responses for a filled silicone subjected to stepwise increasing strain amplitudes
at different temperatures. The comparison includes the stress-strain responses
predicted by the model described in Equation 6.7 and Equation 6.12 obtained using
DSO, alongside experimental data at 60.00 ∘C, 100.00 ∘C and 150.00 ∘C [110].
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7 Microstructural Aerogel
Modeling

Mr. Charles Learned and I, with the kindly assistance and advice
of Prof. J. W. McBain, undertook to test the hypothesis that the
liquid in a jelly can be replaced by a gas with little or no shrinkage.
Our efforts have met with complete success.

S. S. Kistler

The history of aerogels is fascinating and dates back to the first synthesis
by Samuel Stephens Kistler in the 1930s [111]. In this first work, Kistler
succeeded in extracting the liquid phase from the pores of a gel. Realizing that
the evaporation of liquid from a gel often results in a collapsed and densified
solid, he explored the possibility of replacing the gel’s liquid with gas without
disturbing its solid structure, a process now known as supercritical drying.
This initial work laid the foundation for the development of various types of
aerogels, which are now considered the lightest solid materials. In general,
aerogels belong to the group of porous materials and have many fascinating
properties, e.g. silica aerogels (see Figure 7.1) are characterized by a very low
density (< 0.20 g/cm3), high porosity (up to 99.98 v/v) as well as low thermal
conductivity (up to 0.01 W m−1 K−1), and sound velocity as low as 20.00 ms−1

[112]. Because of these exceptional properties, potential applications for silica
aerogels include thermal insulation to reduce heat loss in buildings [113], star
dust collection in spacecraft [114] as well as acoustic insulation to effectively
absorb sound waves, making them useful as sound insulating materials [115].
Furthermore, aerogels can be used to create controlled-release drug carriers
[116, 117] or even as catalysts in fuel cells [118]. These exceptional features
are strongly influenced by the microstructure of the material, such as pore size
distribution, particle connectivity, and specific surface area [119–121].
Traditional aerogel synthesis is based on existing recipes or trial-and-error
approaches derived from chemical principles, which sometimes limits the ex-
ploration of new and sustainable synthesis strategies [112, 122, 123]. The
synthesis of aerogels is a multi-step process, and the desired properties depend
highly on the ratio of precursor materials and other control parameters, see
Figure 7.2 for an schematic synthesis process. To synthesize an aerogel, the
initial step involves preparing a precursor solution by combining a solvent with
the precursor materials. This step is critical as it provides the starting material
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(a) (b)

(c) (d)

Fig. 7.1: Silica aerogel samples observed under different lighting conditions to
demonstrate Rayleigh scattering phenomena: (a) with light illuminated from above
and (b) with light illuminated from behind. Additionally, the figure includes images
of (c) a marshmallow aerogel sample and (d) three corn starch aerogel samples.

for the aerogel formation. The gelation process occurs after the precursor
solution is created. This process transforms the solution into a 3D network
that creates the structural framework of the aerogel. Next, a solvent exchange
is performed. The initial solvent used in the gelation process is replaced with
a different solvent or solvent mixture that is more compatible with the drying
conditions. Finally, the gel is dried either using supercrital drying or special
ambient drying, freeze-drying or evaporation. Ideally, the process ensures that
the gel’s nanoporous morphology is preserved.
Due to the many steps and highly complex relations of the synthesis process,
a comprehensive understanding of the structure-property relationships in aero-
gels is to this day lacking, making it difficult to predict the behavior of these
materials under different environmental and loading conditions. Therefore,
the ability to optimize the microstructure of silica aerogels through targeted
synthesis and, in turn, to tailor their properties for a given application remains
a significant challenge.
The properties of aerogels also highly depend on the type of aerogel. Gen-
erally, aerogels can be classified into two main types: organic aerogels and

Chapter 7. Microstructural Aerogel Modeling
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Fig. 7.2: Schematic representation of a conventional aerogel synthesis process, based
on [122]. The process begins with the creation of a sol by mixing a solvent with
precursor materials. Following gelation, solvent exchange is performed on the
hydrogel, often using ethanol, to produce an alcogel. In the final step, drying is
carried out, which can be achieved through supercritical drying, special ambient
drying, freeze-drying, or evaporation.

inorganic aerogels (see Figure 7.3) [124, 125]. Organic aerogels are primarily
composed of organic polymers or carbon-based materials. Commonly used
precursor materials include resorcinol-formaldehyde, melamine-formaldehyde,
or polyurethane. One major advantage of organic aerogels is their biocom-
patibility and suitability for use in biomedicine, drug delivery, and tissue
engineering applications [124, 126–128]. Inorganic aerogels are composed
primarily of inorganic materials, such as metal oxides (e.g., silica, alumina),
metal chalcogenides (e.g., tellurium, selenium), or metal carbides (e.g., silicon
carbide). Inorganic aerogels offer several advantages, including their high
surface area as well as their thermal insulation properties, see [129] as well as
references therein.
The type of aerogel significantly affects its morphology, with a distinction
being made between colloidal-like aggregated structures and fibrillar-like cel-
lular formations, see Figure 7.4 for the microstructural differences between
𝜅-carrageenan and silica aerogels. Furthermore, minor changes in the syn-
thesis parameters can result in significantly different properties. Since the
early 1990s, various modeling techniques have been used to understand the
mechanical structure-property relationships of aerogels. These approaches
include molecular dynamics (MD), coarse-grained (CG), micro-mechanical
multiscale, and continuum mechanics modeling. Initial efforts were constrained
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Fig. 7.3: Classification of aerogels into organic and inorganic, based on [124]. Organic
aerogels are classified into two main categories: polymers and carbon-based aerogels.
The former are further subdivided into synthetic or biopolymers. Inorganic aerogels
are composed of silica, metal, oxides and chalcogenides.

by computational limitations and data availability. Classical MD simulations
provide insight into nanoscale behavior, but face challenges in extrapolating to
macroscale properties. Despite their ability to accurately capture atomic-scale
dynamics, MD simulations are computationally expensive and time-consuming.
CG models reduce the computational burden, but require careful validation
against experimental data. These modeling approaches share the common
goal of determining the structure-property relationships of aerogels in order to
optimize their performance in various applications, with a focus on increasing
mechanical stiffness while minimizing thermal conductivity.
One of the primary goals of current research is to explore methods for designing
tailored materials (see Figure 7.5). A potential approach is to digitally model
various aerogel structures in an effort to identify their fundamental properties
at the microscale. This involves integrating various variables such as relative
density, particle radius, and pore size distribution into these computational
models. In the following section, the potential to investigate the influence of
these input parameters and to formulate a predictive model for the mechanical
behavior through deep symbolic regression will be explored. This approach
provides an opportunity to optimize mechanical properties and manufacture
tailored microstructures by establishing correlations between input parameters
and actual material properties.
Mechanical properties of aerogels are often described by a power-law relation-
ship. The commonly used power-law relationship between Young’s modulus 𝐸
and relative density 𝑐 or the solid fraction 𝜑𝑠 is expressed as

𝐸 ∝ 𝑐𝑚 or 𝐸 ∝ 𝜑𝑚 , (7.1)
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where 𝑚 denotes the scaling exponent. While the open-cell foam model of Gib-
son and Ashby yields 𝑚 = 2 [130], aerogels characterized by random network
connectivity deviate from the idealized network structure of this model. For
such materials, the value of 𝑚 typically ranges between 2 and 4, as shown by
Groß and Fricke [131]. The effect of density on the mechanical properties of
silica aerogels was further investigated by Wong et al. who observed increased
brittleness at higher aerogel densities [132].

(a) (b)

Fig. 7.4: SEM images of (a) 𝜅-carrageenan aerogel and (b) TEM image of silica
aerogel showing the different microstructures. In the case of 𝜅-carrageenan aerogel
the fibrillar-like cellular formations and for silica aerogel colloidal-like aggregated
structures are visible.

In the following chapter, two different modeling approaches are discussed
that aim to characterize silica aerogels, representing colloidal-like aggregated
structures, and 𝜅-carrageenan aerogels, representing open-porous cellular-like
formations. Both of these approaches require micro-mechanical frameworks.
For silica aerogels, the diffusion-limited cluster-cluster aggregation (DLCA)
method is used to construct representative microstructures, which are subse-
quently used in finite element simulations to determine the mechanical response
in Section 7.1. In the case of 𝜅-carrageenan aerogels, Laguerre-Voronoi tes-
sellation (LVT) is employed to construct analogous microstructures for an
open-porous cellular like network and the results are presented in Section 7.2.
Validation and calibration of both modeling approaches depend on experimen-
tal data including microstructural characterization and macroscopic mechanical
behavior. In addition, a computational data set based on micro-mechanical
attributes such as relative density or pore size distribution is generated to
provide input to micro-mechanically motivated models. As a result, the di-
rect parameters effects on the mechanical properties can be identified. The
micro-mechanically motivated models will be identified using the textttDSO
package, followed by a comprehensive discussion of the implications of the
derived models. Parts of this chapter have been previously presented in my
published work [2, 5, 6].
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To correlate the mechanical responses only the uniaxial compression case will
be considered. Therefore, the deformation gradient can be expressed using

F =

⎡⎢⎣𝜆 0 0
0 1 − 𝜈(𝜆− 1) 0
0 0 1 − 𝜈(𝜆− 1)

⎤⎥⎦ e𝑖 ⊗ e𝑗 , (7.2)

where 𝜆 is the applied stretch, 𝜈 is the Poisson’s ratio and e𝑖 and e𝑗 with
𝑖, 𝑗 = 1, 2, 3 are two orthonormal vectors. To determine an appropriate
strain energy function, this deformation gradient for uniaxial compression is
considered. Note that, cellulose aerogels demonstrate the nearly zero Poisson
effect while the Poisson’s ratio for silica aerogels has been reported ranging
between 𝜈 = 0.20 – 0.22 [133, 134].
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Fig. 7.5: Schematic representation of the RVE-based modeling approach employed
to investigate the influence of input parameters on aerogel microstructures and their
mechanical response through SR.

7.1 Modeling of Silica Aerogels Using Aggregated
Structures

Silica aerogels are characterized by a fractal nature, exhibiting homogeneous
macroscopic properties alongside mass distributions that exhibit fractal char-
acteristics as a result of primary particle aggregation. The determination of
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their fractal nature is often based on techniques such as small-angle X-ray scat-
tering (SAXS) or small-angle neutron scattering (SANS) experiments, where
the scattering curves reveal distinct regimes. In particular, the intermediate
regime allows direct determination of the fractal dimension from the slope of
the double logarithmic plot of the scattering curve. Classical supercritically
dried silica aerogels are typically characterized by very low densities (around
100 kg m−3) corresponding to high porosities around 95.00 % [133]. In combi-
nation with typical pore sizes below 100.00 nm, silica aerogels have attracted
considerable attention, specifically for thermal insulation applications, but also
for cosmic dust capture and drug delivery [135, 136]. There is considerable
literature on the structural and mechanical properties of silica aerogels [112,
131–133, 137–143]. Most of these reports are experimental in nature while
only very few theoretical investigations have been thus far reported. Silica
aerogels deform elastically under small strains, however under large strains,
they undergo irreversible plastic deformation. To characterize aerogel struc-
tures, the commonly utilized parameters are the pore size distribution, fractal
dimension, and cluster correlation length.
Computational modeling has played a key role in investigating the mechanical
and fractal features of aerogels. Different modeling tools applied in this con-
text include molecular dynamics simulations [142, 144, 145], coarse-grained
hard-sphere aggregation approaches [141, 146–149], flexible coarse-grained
approaches [150–152], constitutive models [153], as well as multiscale models
[154].
The sol-gel process for silica aerogels involves the assembly of small particles
to form clusters and networks. As such, this process can be modeled by
means of the aggregation mechanism. A number of particle-based aggrega-
tion algorithms have been developed, including diffusion-limited aggregation
(DLA), reaction-limited aggregation (RLA), diffusion-limited cluster-cluster
aggregation (DLCA), reaction-limited cluster-cluster aggregation (RLCA),
ballistic aggregation, and others. Hasmy et al. investigated the potential
of various algorithms for modeling silica aerogels [146, 147]. Their findings
indicate that the shape of the experimental scattering curve is qualitatively
well reproduced by cluster-cluster algorithms. The use of DLCA for modeling
silica aerogels builds upon the foundational work of Kolb and Herrmann [155].
Furthermore, Ma et al. extended this approach to describe the bulk mechanical
properties of silica aerogels and examine the influence of dangling bonds on
network behavior [141, 148, 149]. They concluded that dangling mass does
not significantly affect the scaling exponent. By subjecting DLCA networks
to hydrostatic compression, they explored the relationship between density
and bulk modulus. Despite numerous studies attempting to characterize silica
aerogels using DLCA, there remains a lack of consensus regarding the impact
of different model parameters on resulting morphology and finite deformation
under mechanical loads. A primary objective is to elucidate the role of network

Section 7.1. Modeling of Silica Aerogels Using Aggregated Structures
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connectivity in load-transfer pathways and to comprehensively describe the
bulk mechanical properties of silica aerogels.

7.1.1 Diffusion-Limited Cluster-Cluster Aggregation
A number of aggregation algorithms can be used to model particles undergoing
random walks due to Brownian motion and the formation of clusters, which in
turn form aggregates that are the building blocks of the network. The sol-gel
process utilized to synthesize silica aerogels follows a comparable clustering
process. The findings of Hasmy et al. indicate a close alignment between
structures generated from DLCA and the scattering data of silica aerogels
[146]. Consequently, this study will employ the DLCA algorithm to model
silica aerogel networks. The methodology of the algorithm is explained below
and illustrated in Figure 7.6. As a starting point for the method, a box with
periodic boundary conditions has to be defined. Within this box a total number
of 𝑁all = 𝑁𝑠 +𝑁𝑤 seeds and walker particles are initialized (see Figure 7.6(a)).
These particles can be placed randomly or in an arranged way within the box.
In this example the particles are initialized on random points and they can
move freely according to the random walk theory in 3D space. Initially, the
DLCA algorithm was developed for a on-lattice approach, meaning that the
particles could only jump to specific grid points in the 3D bounding box. In
this example, an off-lattice algorithm was implemented. The step sizes for
the seed and walker particles 𝑠𝑠 and 𝑠𝑤 are given as the norm of the distance
vector Δx of three Gaussian randomly distributed components Δ𝑥, Δ𝑦 and
Δ𝑧 given by

𝑠𝑠 = 𝑠𝑤 = ||Δx|| with Δx = 1√
Δ𝑥2 + Δ𝑦2 + Δ𝑧2

⎛⎜⎝Δ𝑥
Δ𝑦
Δ𝑧

⎞⎟⎠ .

Thus, the next direction of each particle movement is evenly sampled from the
surface of a sphere at the distance of the step sizes 𝑠𝑠 or 𝑠𝑤. Moreover, the off-
lattice algorithm requires the introduction of a parameter 𝜀crit, which represents
the critical distance between a walker and a seed particle. Upon reaching
this distance, the Brownian motion of the walker is terminated, allowing it to
diffuse towards the seed particle and bind with it. Note that, aging of aerogels
has shown to influence the neck-growth between the particles in the aerogel
network [156, 157]. This neck-growth can subsequently be modeled within
a finite element framework as the growth in the bond beam diameter 𝑑bond.
Additionally, a sticking probability 𝑝𝑠 can be provided to model the cluster
diffusion. In this analysis the sticking probability is 𝑝𝑠 = 1, thus the walker
particles always stick once the critical distance is undershot. With time, all
the walkers diffuse to the seeds and clusters are formed (see Figure 7.6(b) –
(c)).
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Fig. 7.6: Visualization of DLCA algorithm where (a) walkers (blue) and seeds
(orange) are initialized in a given 3D domain, (b)-(e) illustrate the sequential
diffusion of walkers towards the seeds leading to aggregation and cluster formation,
(f) shows the final aggregated structure, where all walkers and seeds have coalesced
into a single domain-spanning aggregate.
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As soon as two particles of two different clusters likewise exceed this critical
distance 𝜀crit, the two clusters are connected to form one single cluster [141] (see
Figure 7.6(d) – (e)). Hence, the term cluster-cluster aggregation is used based
on the algorithm proposed by Meakin [158]. All particles continue to move
until all walkers are connected in a cluster and all clusters are connected to
each other (see Figure 7.6(f)). In this example, the particles exhibit continuous
movement in space. Consequently, a total of seven parameters can be varied:
the radius of particles 𝑟, the critical distance 𝜀crit, the number of walkers
𝑁𝑤, the number of seeds 𝑁𝑠 , the seed step 𝑠𝑠, the walker step 𝑠𝑤 and the
box size 𝐿. Given that particles can be initialized at random positions, the
aggregate structure is subject to randomness, which in turn influences the
mechanical response. The implementation in Matlab was carried out using
an object-oriented approach. To quantify the relative density of the generated
structures, the volume of all particles 𝑉p in ratio to the volume 𝑉b of the
simulation box was calculated by

𝑐 = 𝑉p

𝑉b
= 4𝜋𝑁all𝑟

3

3𝐿3 , (7.3)

where 𝑟 denotes the particle radius and 𝐿 is the box size. The porosity, evalu-
ated as 𝜑 = 1 − 𝑐 for the generated structures with different relative densities
needs to be in agreement with the corresponding values of the synthesized
aerogels.
As silica aerogels are very good examples of fractal material, the computa-
tionally generated and chemically synthesized structures can be correlated
by comparing their fractal properties. The latter can be quantified by the
fractal dimension 𝑑𝑓 , a parameter which characterizes the geometric properties
of a structure by describing its self-similarity across different length scales.
There are several methods for calculating 𝑑𝑓 . One such method requires the
calculation of the mass 𝑚(𝑟), of particles within a sphere of radius 𝑟. By
varying the radius of the sphere and subsequently measuring the logarithmic
increase in 𝑚(𝑟), one can observe that the relationship between 𝑚(𝑟) and 𝑟
follows a power law given by

𝑚(𝑟) ∝ 𝑟𝑑𝑓 , (7.4)

where the slope of the resulting curve, when plotted on a log-log scale, cor-
responds to the fractal dimension 𝑑𝑓 . Once the fractal dimension has been
determined for a given density of a silica aerogel, it can be correlated with
values obtained from experimental SAXS curves. A primary objective in this
context is to further investigate the influence of the relative density on the
fractal dimension.
Exemplary aggregated structures for the concentrations of 𝑐1 = 10.00 %,
𝑐2 = 8.75 %, 𝑐3 = 7.50 % and 𝑐4 = 6.25 % are depicted in Figure 7.7. They
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Fig. 7.7: Visualization of four aggregated structures at varying concentrations. Each
structure is depicted with its 3D particles and includes a cross-sectional view through
the center to highlight the internal connectivity.

have been chosen from a pool of a total of 1708 aggregates that have been
generated using the DLCA algorithm [2]. The 3D network of each aggregated
structure together with a cross-section visualization is shown in the center. The
random network connectivity and high porosity within the network is clearly
visible. In the simulation box, it may appear that a few particles are uncon-
nected and isolated. However, these are, in fact, connected to other particles
within the clusters through periodic boundary conditions. The connectivity
of all particles within the simulation box was validated to guarantee that
the generated aggregated structure accurately represents the microsctructure
of actual silica aerogels. Note that, a simulation box with the edge length
𝐿 = 200.00 nm was chosen.

7.1.2 FE-Based Microstructure Analysis
In order to describe the mechanical properties of the generated aggregates,
the finite element method (FEM) was utilized. Given the geometry of the
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structures, the information about all particle positions and all connections
between the particles was known a priori. In order to perform a FEM simu-
lation, a representative volume element (RVE) was created. Its dimensions
corresponded to the dimensions of the DLCA simulation box. The particles
that originated from the DLCA algorithm were treated as nodes, while the
bonds were modeled as beams. The FEM program Abaqus was used, and
the beam element type B31 based on the Timoshenko beam theory was ap-
plied. Beam elements are a useful choice as they are capable of reflecting
the full range of deformation modes that a bond can undergo, which are
bending, torsion and stretching. Young’s modulus and Poisson ratio of the
beams were specified as 𝐸 = 105 Pa and 𝜈 = 0.29, respectively [141]. In
the implementation of the DLCA algorithm, the boundary surfaces of the
box were subjected to periodic boundary conditions. Nevertheless, this does
not ensure the existence of particles on the boundary. In order to generate
periodic nodes, any connection between two particles that crossed a boundary
surface was filtered. For each node on a boundary surface, a complementary
node was created on the corresponding surface. The particle connections were
separated with exact precision on the surface of the boundary, and a new
node was subsequently generated. The newly generated nodes were stored
in a dedicated set of periodic boundary nodes. Subsequently, the previous
particle connection was removed, and two new connections were established
with the intermediate node on the boundary surface. It should be noted that
the particle position is additionally adjusted during the aggregation process
in order to prevent particle overlap. This is a beneficial step to avoid the
formation of very small elements, ensuring that the distance between the
aggregated particles is precisely equal to the sum of their radii. It is crucial to
emphasise that each node is characterised by six degrees of freedom, consisting
of three translational and three rotational degrees of freedom. Furthermore,
the degrees of freedom at the box boundaries are coupled through periodic
boundary conditions by the use of dummy nodes. Therefore, three dummy
nodes 𝑋𝐴, 𝑋𝐵 and 𝑋𝐶 are defined. Each node corresponds to a surface pair
of the box, e.g. 𝑋𝐴 couples all degrees of freedom on the left and right surface
of the box. With 𝜃 =

(︁
𝑥 𝑦 𝑧 𝜑𝑥 𝜑𝑦 𝜑𝑧

)︁⊤
representing the degrees of

freedom the coupling conditions are given by:

𝜃left − 𝜃right = 𝑋𝐴 , (7.5)
𝜃top − 𝜃bottom = 𝑋𝐵 , (7.6)
𝜃front − 𝜃back = 𝑋𝐶 . (7.7)

These conditions are implemented as *Equations in Abaqus. Moreover, a
point at the center of the RVE was fixed, resulting in the RVE experiencing
expansion or compression about the center. It is possible to define frictionless
contact between all beams with an additional exclusion of self contact. However,
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as the RVE is only compressed up to 10.00 %, no significant contact between
the beams occurs and therefore no effect on the initial stiffness response is
noticeable. To perform the simulations input decks were created by a function
in Matlab. The RVEs were subjected to uniaxial compression, which is the
common mode of deformation used to analyze the mechanical properties of
silica aerogels.
Although the initial pool of aggregates was larger, convergence errors in
conjunction with shorter elements and the absence of a backbone structure
resulted in the generation of a simulation set consisting of only 1708.00 RVEs.
This was an expected outcome, due to the randomness involved in the DLCA
algorithm and the wide range of inputs provided for the generation of the data
set. This resulted in structures with fewer cluster-cluster interactions, leading
to localized cluster formation, which in turn led to the absence of backbone
formation in certain cases. The RVEs lacking backbones are non-physical and
were therefore not considered, as silica aerogels always exhibit a load-bearing
backbone when exposed to compressive forces. Additionally, the data set was
cleaned to remove outliers in the variance, which is introduced into the system
due to the randomness involved in the DLCA process. As such, the converged
1708 samples were averaged over each sample, thus leading to a final data set
of 200 structures. For the four exemplary aggregated structures visualized in
Figure 7.7, it is possible to perform compression simulations up to 10.00 %.
The distribution of the von Mises stress in the RVE structures of four distinct
concentrations is illustrated in Figure 7.8. It is evident that a specific part of the
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ss,1 = 0.3 nm

sw,1 = 0.5 nm

r1 = 3.25 nm

c2 = 8.75%

ss,2 = 0.5 nm

sw,2 = 0.2 nm

r2 = 3.5 nm

c3 = 7.50%

ss,3 = 0.3 nm

sw,3 = 0.2 nm

r3 = 2.5 nm

c4 = 6.25%

ss,4 = 0.4 nm

sw,4 = 0.2 nm

r4 = 3.5 nm

Fig. 7.8: Visualization of four aggregated structures at varying concentrations,
illustrating the results from FE simulations of compression tests.

structure is primarily responsible for the load transfer. This part is called the
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backbone structure of the aerogel network. In addition, it is possible to visualize
the concentration-dependent stress-strain response, as well as the influence
of the varying modulus of elasticity of each beam element, as illustrated
in Figure 7.9. This demonstrates the influence of the concentration on the
mechanical behavior. It can be observed that increasing the concentration
enhances the stiffness of the aggregated structures. This seems reasonable
enough following the scaling behavior observed typically in porous materials.
Additionally, the scaling behavior is compared to experimental results obtained
in [159]. The normalized stress response shows that the aggregated structures
correspond very well to actual silica aerogels. Furthermore, the influence
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Fig. 7.9: Stress-strain responses of four aggregated structures at different concentra­
tions, including a comparison to experimental results obtained by Wong et al. [159].
Additionally, the influence of varying modulus of elasticity for each beam element is
illustrated for the aggregated structure for the concentration 𝑐3.

of skeletal Young’s modulus is visualized for the aggregated structure of
concentration 𝑐3 (see Figure 7.9(b)). It can be seen that the stiffness of the
beam elements increases directly in a linear fashion with increasing 𝐸𝑆,3. The
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Young’s modulus of the beam element can be validated through experimental
measurements of the skeletal Young’s modulus of silica aerogels. The observed
increase in stiffness is supported by the fact that bending is the primary mode
of deformation in silica aerogels, contributing significantly more to the overall
stress than the other two modes. As previously demonstrated by Ma et al.,
within the elastic regime, the bending stress is proportional to the Young’s
modulus [141].
The aggregated structures generated by DLCA can be considered comparable
to those of actual silica aerogels only if the material morphology and chemical
kinetics are subjected to multi-dimensional validation. Accordingly, both
aspects should be correlated with and compared to experimental data, as
illustrated in Figure 7.10. Figure 7.10(a) describes the validation of the scaling
exponent of the elastic modulus of the silica aerogel microstructure. The
exponent of 3.95 (calculated for different concentrations of aggregates with
𝑟 = 3.00 nm, 𝑠𝑠 = 0.30 nm and 𝑠𝑤 = 0.30 nm) in this study closely aligns with
the exponent of 3.80 obtained from experimental measurements. Moreover, it
can be seen in 7.10b(a), that the DLCA gelation kinetics qualitatively describes
the post-nucleation sol-gel growth of the structure. In the computational model,
the aforementioned kinetics are influenced by the step size of the walkers, with
a larger step size resulting in accelerated growth. Consequently, the step size
serves as a numerical representation of the influence of temperature on the
secondary particles. As a result, the presented model structures exhibited
similar characteristics to those of silica aerogels. The scaling exponent can be
compared to the results of molecular dynamics simulations and other coarse-
grained approaches, as well as to experimental results obtained in previous
studies, as listed in Table 7.1. It is not uncommon for MD simulations to yield
a relatively modest scaling exponent. The methodology presented here, which
employs DLCA and FEM, demonstrates superior agreement in this regard.
Moreover, the obtained data set is characterized by a box plot and a correlation
matrix, as illustrated in Figure 7.11. It was observed that the averaging helps
to remove several outliers from the data set. An interesting observations is
that most of the structures have an elastic modulus between 20 to 100 kPa and
many outliers exist that have quite stiff response, see Figure 7.11(a). In the
case of the fractal dimension the fractality ranges between 2.62 to 2.68 for most
of the aggregated structures. To understand the correlation between the DLCA
parameters and material properties of the generated aggregates as well as the
mechanical response, a correlation matrix was calculated, and is illustrated in
Figure 7.11(b). It is immediately apparent that both particle step sizes have
nearly no effect on any other parameter. This can be explained by the fact that
the step size is a mathematical construct to model the influence of temperature
in the gelation process, and as such it only affects the time of gelation in
sol-gel processes [161]. As already known from literature there exists a positive
correlation between the elastic modulus 𝐸 and the concentration 𝑐, which can
be itself validated from the correlation matrix [162]. The concentration has
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Fig. 7.10: Visualization of (a) elastic modulus as a function of concentration, with
the scaling exponent determined to be 𝑚 = 3.95, compared to experimental data
from [5]. (b) shows te gelation kinetics for five different concentrations, compared
to experimental data from [160].

also a positive correlation with the fractality. Furthermore, the analysis of
the matrix reveals an inverse relationship between the radius and the elastic
modulus.
The results obtained indicate that the concentration is the sole variable with a
significant impact on the stress-strain response. Consequently, the development
of a concentration-dependent model is a logical next step, which will be
addressed in the following sections.
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Tab. 7.1: Comparison of the the scaling exponent 𝑚 obtained in this study with
those reported in other modeling and experimental works. Abbreviations: CG -
coarse-grained modeling, MD - molecular dynamics simulations.

Method Exponent 𝑚

Modeling
This work DLCA+FEM 3.95
Rivas-Murillo et al. [145] MD 3.11 ± 0.21
Ferreiro-Rangel and Gelb [152] CG 3.0 ± 0.2
Patil et al. [142] MD 3.25 ± 0.1
Gonçalves et al. [143] MD 3.84 ± 0.22

Experimental
Woignier et al. [134] SiO2 aerogels 3.7 ± 0.2
Groß and Fricke [131] SiO2 aerogels 3.49 ± 0.07

7.1.3 Silica Aerogel Modeling

The microstructural responses, which are concentration-dependent, are em-
ployed in the derivation of a strain energy function. In order to achieve this,
the deformation gradient provided in Equation 7.2 is employed. Moreover, it
is essential to define the Poisson’s ratio, which for silica aerogels is 0.2. In
accordance with the deformation gradient, the input data consist of the three
invariants IC, IIC and 𝐽 , in addition to the concentration 𝑐. The identified
strain energy function is expressed as follows:

Ψ (IIC, 𝑐) =

47.65 exp
(︂

1.46IIC

)︂
exp

⎡⎣exp
(︁
−1044.7

𝑐2

)︁
exp

⎛⎝ exp
[︁
2.39 exp 0.02

IIC

]︁⎞⎠⎤⎦
𝑐+ exp

(︂
33.24 exp (−0.33𝑐)

)︂ . (7.8)

Note that this model achieved an 𝑅2 score of 98.62 %. The stress strain response
is visualized in Figure 7.12. It is evident that the discovered model is capable
of capturing the underlying trend and predicting a concentration-dependent
stress-strain response. It is noteworthy that although three invariants were
provided, only the second invariant was utilized in the model structure. This
is a logical decision, given that the investigation is limited to uniaxial tension
data, and therefore only one invariant is required.
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Fig. 7.11: Visualization of (a) boxplot showing the ranges for the elastic modulus 𝐸
and fractal dimension 𝑑𝑓 , after data pre-processing of all aggregated structures
and (b) correlation matrix illustrating relationships between particle radius 𝑟,
concentration 𝑐, seed step size 𝑠𝑠, walker step size 𝑠𝑤, fractal dimension 𝑑𝑓 and the
elastic modulus 𝐸.

7.2 Open-Porous Cellular-Like Aerogels
Open-porous cellular-like aerogels, such as 𝜅-carrageenan aerogels, have been
the subject of considerable scientific and industrial interest due to their excep-
tional properties. They are distinguished by ultralow bulk densities and thermal
conductivities, making them highly effective for thermal insulation applications
[163, 164]. Additionally, their high surface areas enhance their functionality in
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Fig. 7.12: Concentration-dependent stress-strain responses for silica aerogel based
microstructures. The responses for both the training and test sets are derived from
the strain energy function described in Equation 7.8.

a variety of additional applications, including filtration, oil-water separation,
and CO2 capture, as well as in catalysis [165–167]. Furthermore, the porous
structure and inherent biocompatibility of these aerogels position them as
promising candidates for tissue engineering and regenerative medicine [168].
The interconnected pore architecture facilitates tissue integration and vascu-
larization, enhancing their suitability for advanced biomedical applications.
Modeling open-porous cellular-like aerogels is a challenging endeavor due to
the highly irregular nature of their pore structure, particularly in the case of
biopolymer aerogels with pore sizes below 100.00 nm. The accurate charac-
terization of their 3D pore structures is significantly limited by techniques
such as nanoholotomography and scanning electron microscopy (SEM). The
inability to reconstruct the 3D pore structure presents a significant challenge
for computer simulations. A computational model was proposed by Rege et al.
to describe the network structures of biopolymer aerogels using 2D Voronoi
tessellations [169]. However, this approach failed to account for out-of-plane
connectivity. To address these challenges, a new computational model was
developed using Laguerre–Voronoi tessellation (LVT) based on random closed
packing of polydisperse spheres [170, 171]. The newly developed model accu-
rately depicts realistic 3D pore morphologies and was utilized to examine the
mechanical properties of 𝜅-carrageenan aerogels under compressive deforma-
tion. The generated data set, produced using the LVT, will be employed in
this section for microstructural investigation and the identification of a strain
energy function that can predict the stress-strain response based on a provided
pore size distribution (PSD). This data set has been presented in [171].
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7.2.1 Laguerre-Voronoi Tesselation
The generation of realistic 3D microstructures of an aerogel is achieved through
the use of Laguerre-Voronoi tessellation (LVT). In the initial phase, an al-
gorithm for the random closed packing of polydisperse spheres (RCPPS) is
employed to construct a sphere-packed model box that aligns with the experi-
mental pore-size distribution, as illustrated in Figure 7.13. The RCPPS serves
as an input framework for the LVT, wherein each Voronoi cell encloses a sphere.
A corrector step is introduced to adjust the volume of Voronoi cells relative to
sphere volumes, thereby ensuring that the final structure closely matches the
experimental pore-size distribution. Subsequently, the LVT is applied to the
adjusted sphere distribution, generating a 3D Voronoi diagram that represents
the aerogel’s nanostructured network. This approach enables the creation of
computationally designed 3D aerogel microstructures that closely resemble the
real material’s pore structure. The generated 3D models are then subjected to
further analysis and simulations of the mechanical properties.

Sphere Packing Porous Structure

Tessellation

Desired and Model PSD

Fig. 7.13: Generation of 3D open-porous cellular-like microstructures using Laguer­
re-Voronoi tessellation, based on the random close packing of polydisperse spheres.
The resulting structures are adjusted to match an desired experimental pore-size
distribution, based on [171].

7.2.2 FE-Results and Data Set Analysis
The modeled aerogels were subjected to uniaxial compression testing utilizing
the finite element package LS-DYNA, with the objective of studying their
macroscopic mechanical behavior under periodic boundary conditions. The
Young’s modulus was assigned a value of 4.5 GPa for the beam elements, with
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fiber diameters evaluated theoretically based on data obtained from the exper-
iments. Figure 7.14 depicts three distinct exemplary PSDs and the respective
contributions of pore widths in a box plot, accompanied by the accumulated
PSD and the stress-strain response of the RVEs. The PSD can be described by
a mean value, denoted by 𝜇𝑑, and a standard deviation, denoted by 𝜎𝑑. For the
purpose of further analysis, it is also useful to define a single variable, known as
the coefficient of variation, which is given by the expression 𝑐v = 𝜇𝑑/𝜎𝑑. A total
of 144 simulations were conducted for three solid fractions 𝜑 (1.00 %, 2.50 %,
and 5.00 %) with different 𝑐v values. In this example the experimental PSDs
have a mean value given with 𝜇𝑑 = 47.50 ± 2.50 nm with a cell wall diameter
of 4.50 ± 0.05 nm. The RVE size for all three structures was determined with
400.00 ± 10.00 nm, see Figure 7.14(a). These values were obtained for varying
standard deviations of 𝜎𝑑 = 6.00, 8.00 and 15.00 nm [170]. As illustrated in
Figure 7.14(c), the plateau regime is observed to be smaller in instances where
a larger standard deviation of the PSD is employed. This is due to the fact
that a larger standard deviation also gives rise to the existence of larger cells
within the structure, which in turn contribute to a larger proportion of the
total volume fraction. These contributions are apparent in the cumulative
PSD, as illustrated in Figure 7.14(b). In the case of smaller cells, densification
occurs at an earlier stage, resulting in a stiffer response.
A scaling relationship between the structural parameters of the solid fraction
𝜑 and the Young’s modulus 𝐸 was identified. The scaling exponent obtained
was 𝑚 = 1.82, as illustrated in Figure 7.15. This finding is in close agreement
with the results obtained from open-cell foam models and experimental values.
Moreover, the mechanical anisotropy of the aerogel RVE was investigated
through uniaxial compression in three orthogonal directions. The results of
this study indicate that the observed behavior was consistent across all direc-
tions.
The following section will present a strain energy formulation that character-

izes the stress-strain response of open-porous cellular-like aerogel microstruc-
tures through the volume fraction and the coefficient of variation. These two
parameters exhibit a pronounced influence on the mechanical response of the
generated microstructures.

7.2.3 Open-Porous Cellular-Like Aerogel Modeling

To identify a strain energy function, the mechanical responses of all 144 RVEs
were employed in order to determine the deformation gradient, as provided in
Equation 7.2. In this particular case, the deformation gradient was calculated
with a Poisson’s ratio of 𝜈 = 0. The strain energy function was identified based
on input data consisting of the three invariants, IC, IIC and 𝐽 , in addition to
the volume fraction 𝜑 and the coefficient of variation 𝑐v. The discovered strain
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energy function is given by

Ψ (𝐽, 𝜑, 𝑐v) = −0.03𝜑2
[︂
0.01 ln2 (65.52 − 3.37𝜑)

+ ln (exp 𝐽 + ln (ln (𝑐v))) ln
(︂

−2.62 + 3.62
𝐽

)︂2
+ 1

]︂−2
. (7.9)

Note that the identified strain energy depends only on the invariant 𝐽 as well
as the volume fraction 𝜑 and the coefficient of variation 𝑐𝑣. Since the Poisson’s
ratio is given with 𝜈 = 0 in this case, 𝐽 directly corresponds to the stretch
𝜆. The 𝑅2 score for this model was determined with 97.51 %. Figure 7.16
illustrates the data set utilized in this study, accompanied by the corresponding
predictive responses. Figure 7.16(a) illustrates the results of 144 simulations
conducted across three volume fractions: 1.00 %, 2.50 %, and 5.00 %. The
impact of the normalized coefficient of variation 𝑐v on these responses is also
highlighted. The data suggest that higher values of 𝑐v are associated with
increased stiffness in the initial compression phase, followed by a reduction
in stiffness at greater compression levels. Moreover, Figure 7.16(b) depicts
the strain energy response for each mean value of the coefficient of variation
for each volume fraction. It is crucial to acknowledge that the mean response
is skewed due to the increasing values of 𝑐v, approaching a limited stiffness
response. Figure 7.16(c) illustrates the responses for all three volume fractions
within a confidence interval defined by the standard deviation of the coefficient
of variation 𝜎𝑐v . It can be observed that a deviation in the response is only
influenced in cases where higher volume fractions are involved.
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Fig. 7.14: Visualization of (a) three different pore size distributions with varying
standard deviations 𝜎𝑑 = 6.00, 8.00 and 15.00 nm. (b) shows the accumulated pore
size distributions and (c) shows the resulting stress-strain responses corresponding
to each pore size distribution.
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with the scaling exponent determined to be 𝑚 = 1.82.
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Fig. 7.16: Visualization of (a) provided data set of stress-strain responses for volume
fractions of 1.00 %, 2.50 %, and 5.00 %. (b) shows the mean stress-strain response
derived from the strain energy function identified in Equation 7.9, along with (c) the
stress-strain responses within one standard deviation of the coefficient of variation
𝑐𝑣.
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8 Hydration Effects in Polyamide
Aerogels

These motions were such as to satisfy me, after frequently repeated
observation, that they arose neither from currents in the fluid, nor
from its gradual evaporation, but belonged to the particle itself.

R. Brown

Polyamide aerogels (PAA) are a lightweight porous material with exceptional
mechanical properties and superior thermal insulation capabilities. In contrast
to conventional silica aerogels, polyamide aerogels integrate the flexibility
and conformal characteristics inherent to standard aerogels with augmented
durability and strength [172, 173]. The compressive and tensile strengths of
these materials are notably higher, offering an improved thermal insulation
performance compared to conventional polymer foam insulation, and a rel-
atively straightforward fabrication process. The advantageous properties of
polyamide aerogels allow for their use in a variety of applications, including
construction and aerospace insulation, as well as consumer electronics [172,
174]. However, one critical aspect that influences their performance is their
hygroscopic nature, by which they are capable of rapidly absorbing moisture
from the surrounding environment [175]. The hydration level has a significant
effect on the mechanical and thermal properties of the material, due to alter-
ations in the interactions between the polymer chains [175, 176]. Prior research
has demonstrated that the compressive strength of these materials displays a
non-monotonic relationship with water content, resulting from modifications
to the hydrogen bond network and disruptions within the polymer architecture
[172]. Therefore, it is of paramount importance to gain an understanding of
the effects of hydration in order to accurately predict long-term performance
and stability.
In the dry state, PAAs are composed of fibers held together by hydrogen
bonds between amide groups, as illustrated in Figure 8.1. The initial stage
of hydration involves the binding of water molecules to vacant sites within
the hydrogen bonding network. This effect appears to reinforce the preex-
isting hydrogen bond network, thereby resulting in a stiffening effect within
the aerogel structure. With advanced hydration, additional water molecules
disrupt the original hydrogen bonding network between polyamide chains,
thereby altering the structure of the aerogel. This disruption results in an
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increase in the segmental motion of polyamide macromolecules. The increased
mobility marks the initiation of partial dissolution of the nanosized fibers that
constitute the aerogel backbone.

Nano Scale Level

H2O H2O H2O
Dry 0.2 g/g 0.5 g/g 2.0 g/g

Polymer Struts Water

Fig. 8.1: Schematic overview of the evolving microstructure of polyamide (PA)
aerogels as hydration levels increase. Initially, there is a strengthening of the existing
hydrogen bond network. With further hydration, nanosized fibers begin to dissolve,
ultimately leading to the destruction of the aerogel backbone. This process is based
on findings from [175].

This chapter introduces a novel approach to quantitatively modeling the effects
of hydration on polyamide aerogels through the use of SR. The objective
is to identify the impact of varying water content on mechanical properties
by incorporating hydration into the constitutive modeling framework. This
analysis not only enhances theoretical insights but also serves to improve the
practical applications of polyamide aerogels in a variety of fields. Accordingly,
a brief introduction to the experimental characterization of the hydration effect
is presented in Section 8.1. The hydration-dependent modeling is discussed
in detail Section 8.2, where a new strain energy formulation is presented and
subjected to critical analysis. The data utilized in this analysis has been
previously published in [175].

8.1 Experimental Characterization
Two main techniques were used to achieve controlled hydration. In the initial
approach, the water was added directly to the dry aerogel pieces. This
method was used to analyze and characterize the structural features. The
second hydration method was employed for the mechanical characterization,
whereby equilibrium was achieved for PAA monoliths in sealed desiccators
with controlled humidity for a period of 84.00 h. The compressive strength of
dry and partially hydrated PAA monoliths was determined through the use of

Chapter 8. Hydration Effects in Polyamide Aerogels
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an Instron 4302 universal strength testing machine, employing the humid air
exposure method. During the course of the experiments, cylindrical monoliths
with a length of 28.00 ± 3.00 mm and a diameter of 20.00 ± 2.00 mm were
analyzed. Each measurement was repeated using at least three individual
monoliths from different batches, independently conditioned. The averaged,
smoothed stress-strain responses for the hydration levels of 0.00 %, 30.00 %,
45.00 %, 50.00 %, 70.00 % and 85.00 % are illustrated in Figure 8.2. The present
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Fig. 8.2: Visualization of the averaged and smoothed stress-strain responses of
polyamide aerogel monoliths subjected to compression strain. The hydration rates of
0.00 %, 30.00 %, 50.00 %, and 70.00 % are used as a training set, while the hydration
rates of 40.00 % and 85.00 % serve as a test set.

investigation will leverage four discrete levels of hydration for training and
the identification of a strain energy function. The remaining two hydration
levels will be employed as a test data set. To assess the interpolation and
extrapolation capabilities, the test set includes hydration levels of 40.00 % and
85.00 %.
Low-voltage scanning electron microscopy (LV-SEM) images of the pristine
polyamide aerogel were obtained using a ThermoFisher Scientific Scios 2 device.
The PAA samples were attached to vacuum-resistant carbon tapes without any
additional coating for imaging purposes. The LV-SEM images demonstrate
the existence of a 3D network composed of interconnected nanofibers with
diameters within the range of 20.00 nm to 50.00 nm. The PAA exhibits a highly
porous structure, with pores that are typically within the mesoporous range of
2.00 nm to 50.00 nm. The fibers display extensive interconnectivity, forming a
complex 3D architecture with relatively smooth surface textures. The structure
is observed to be uniform throughout the imaged areas, indicating consistent
synthesis and drying processes without significant fiber aggregation or collapse.

Section 8.1. Experimental Characterization
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8.2 Hydration Effect Modeling
In order to identify the strain and energy function for PA aerogels, it is
necessary to define the deformation gradient, which is influenced by both the
stretches and Poisson’s ratio, as demonstrated in Equation 7.2. Currently,
the existing literature lacks precise data concerning the Poisson’s ratio for PA
aerogel. Therefore, additional research is required to determine this crucial
material parameter. Nevertheless, the Poisson ratio within the elastic region
has been documented for polyurethane aerogels to be 𝜈 = 0.2. Accordingly,
this value will be employed as a point of reference for the forthcoming analysis.
Based on the presented stress stain data, a strain energy formulation dependent
on the degree of hydration was identified, given by

Ψ̄(IC̄, IIC̄, 𝜅) =
(︂

5.05 sin (−IC̄ + 𝜅+ 0.16)
)︂(︂√︁

IC̄ + 3IC̄ + IIC̄+

18.94
IIC̄

√︁
2IC̄ + IIC̄ sin (3.90𝜅) sin

[︁
(2.40 − 𝜅) ln IIC̄ − IC̄ + 0.31

]︁)︂−1
. (8.1)

The value of 𝜅 represents the degree of hydration and is defined within the range
of 0 to 1. It should be noted that the identified formulation is highly nonlinear.
A sinusoidal function was selected as it corresponds to the observation that the
stiffness response is greatest for a hydration level of 50.00 %. The overall 𝑅2

score for this strain energy with respect to the training data was determined
to be 96.00 %. The stress-strain response of the strain energy formulation
is illustrated in Figure 8.3. The identified formulation provides an accurate
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Fig. 8.3: Stress-strain responses of polyamide aerogels at varying levels of hydration,
alongside the corresponding training data. The responses are derived from the strain
energy function described in Equation 8.1.

representation of the underlying data. Nevertheless, it is unclear how effectively
the strain energy function will perform when applied to data that has not been
previously observed. To assess this, two supplementary curves representing

Chapter 8. Hydration Effects in Polyamide Aerogels
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the hydration values of 40.00 % and 85.00 % can be employed. The stress-
strain responses for these hydration levels are illustrated in Figure 8.4. A
detailed analysis of the responses reveals that, although the strain energy
function accurately reflects the general trend, it does not fully capture the
stress-strain response for the test data. A number of factors may be responsible
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Fig. 8.4: Stress-strain responses of polyamide aerogels at varying levels of hydration,
alongside the corresponding test data. The responses are derived from the strain
energy function described in Equation 8.1.

for this underperformance. An examination of Young’s modulus across varying
degrees of hydration reveals considerable inconsistencies in the data obtained,
which can be attributed to uncertainties associated with the synthesis and
measurement processes [175]. These inconsistencies consequently have an
indirect impact on the framework’s predictive capabilities, as they are not
incorporated into the analysis. Moreover, the modeling approach was based
on a number of assumptions, including the assumption of a Poisson ratio of
𝜈 = 0.2. Additionally, there is a possibility that the identified strain energy
function overfits the existing data.
In conclusion, although the existing model offers a satisfactory representation
of the stiffening trend in the stress response, its precision is limited. To gain
further insight into the phenomenon of hydration and to develop a more
accurate model, it is necessary to obtain a more comprehensive data set.

Section 8.2. Hydration Effect Modeling
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9 Conclusion

What is the good of drawing conclusions from experience? I don’t
deny we sometimes draw the right conclusions, but don’t we just as
often draw the wrong ones?

G. C. Lichtenberg

In conclusion, this investigation has demonstrated the potential of symbolic
regression for advancing material modeling through the discovery of novel
constitutive material laws. In particular, the framework of deep symbolic
regression in combination with continuum mechanical theory has shown great
potential for the successful discovery of novel and interpretable formulations
that accurately characterize complex material behaviors. This study presents a
comprehensive analysis and evaluation of the performance of the framework for
both artificial and experimental data sets. A novel model has been proposed
for vulcanized rubber and temperature-dependent thermoplastic elastomers.
The findings demonstrate the efficacy of symbolic regression in addressing
challenges associated with sparse data conditions. Moreover, a methodology
was proposed for incorporating additional nonlinear effects, such as the Mullins
effect, into the modeling process. The modeling of aerogels offers a promising
domain for future research, as this class of materials displays distinctive me-
chanical and thermal properties resulting from their intricate microstructures.
This work presented a novel approach for identifying microstructure-based
constitutive formulations for silica aerogels and 𝜅-carrageenan aerogels. More-
over, the work put forth a novel strategy for comprehending hydration effects
in polyamide aerogels. Further investigation in this field can facilitate a more
comprehensive understanding of the interrelationships between microstructural
and macroscopic properties, thereby enhancing the practical utility of aerogels
in a range of industrial applications.
It is anticipated that symbolic regression will prove a valuable tool for further
investigation in the field of material modeling, particularly for the develop-
ment of predictive models applicable to a broader range of materials and
conditions, as well as for the incorporation of uncertainties. The framework
can be straightforwardly extended to accommodate anisotropic effects and
the identification of viscoelastic material models. Moreover, the methodology
may be extended to yield polyconvex formulations. The capacity to generate
interpretable models suggests promising applications in the optimization of
material design and the determination of the influence of microstructure on
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macroscopic properties. This approach can be further extended for the dis-
covery of surrogate models of RVEs, which can provide valuable insights into
homogenization techniques such as FE2. Further research could concentrate on
improving the dependability of these methodologies across a range of data sets
and extending their applicability to other complex materials, thereby making
a significant contribution to the field of materials science.
Moreover, the framework of deep symbolic regression presents a promising
avenue for further expansion and development. In particular, investigations
into effective strategies for hyperparameter tuning could yield significant ad-
vancements in the field of material modeling. Furthermore, the methodology
can be expanded to include the formulation of heuristic rules that could be
integrated as priors within the model, which has not been explored in this
analysis. Additionally, the approach could be enhanced by incorporating
tensorial relationships between stress and strain tensors, which may facilitate
a more profound understanding of material behavior. Despite these promising
directions for future research, this work concludes here, acknowledging that
there is still a significant amount of work to be done in advancing this field.

Chapter 9. Conclusion
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A Introduction to Tensor Calculus
When I calculate and see a tiny insect that has flown on my paper
then I feel something like Allah is Great and we are miserable
dribblers with all our sciences glory.

A. Einstein

This chapter summarizes the basic concepts of tensor algebra and analysis
that form the foundation of this work. The notation used corresponds to that
presented by Itskov [69]. A number of other books are recommended, including
books by Bertram [67], Holzapfel [65] as well as Chaves [177].

Vectors
A vector space V is defined as a set of elements that are called vectors, that
satisfy the following eight axioms:

Commutative in addition: x + y = y + x , (A.1)
Associative in addition: x + (y + z) = (x + y) + z , (A.2)
Zero element: x + 0 = 0 + x = x , (A.3)
Inverse element: x + (−x) = 0 , (A.4)
Associative in scalar multiplication: 𝛼(𝛽x) = (𝛼𝛽)x , (A.5)
Unit element of scalar multiplication: 1x = x , (A.6)
Distributive in vector addition: 𝛼(x + y) = 𝛼x + 𝛼y , (A.7)
Distributive in scalar addition: (𝛼 + 𝛽)x = 𝛼x + 𝛽x , (A.8)

where x, y and 0 are vectors of the given vector space V and 𝛼, 𝛽 and 1 are
scalar real numbers.
An essential definition is that of linearly dependent vectors. A set of vectors
{x1,x2, . . . ,x𝑛} is said to be linearly dependent if there exists a set of real
scalars {𝛼1, 𝛼2, . . . , 𝛼𝑛} that are not all zero, such that

𝑛∑︁
𝑖=1

𝛼𝑖x𝑖 = 0 . (A.9)

Otherwise, the vectors {x1,x2, . . . ,x𝑛} are said to be linearly independent.
Any set of 𝑛 linearly independent vectors 𝒢 = {g1, g2, . . . , g𝑛} in a 𝑛-
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dimensional vector space V𝑛 can be combined linearly to form any vector in
V𝑛. This set is also called a basis 𝒢 ⊂ V𝑛. Thus, any arbitrary vector x can
be expressed through the vectors {g1, g2, . . . , g𝑛} with

x =
𝑛∑︁
𝑖=1

𝑥𝑖g𝑖 = 𝑥𝑖g𝑖 , ∀x ∈ V𝑛 , (A.10)

where the Einstein summation convention is used.
The scalar product x · y is defined as a real-valued function between the two
vectors x and y satisfying the following four conditions:

Commutative: x · y = y · x , (A.11)
Distributive in vector addition: x · (y + z) = x · z + y · z , (A.12)
Associative in scalar multiplication: (𝛼x) · y = 𝛼(x · y) , (A.13)
Positive-definite: x · x ≥ 0 , x · x = 0 iff. x = 0 . (A.14)

An 𝑛-dimensional vector space given these properties by the scalar product
is called the Euclidean space E𝑛. Thus, it is possible to define a norm of the
vector x with

||x|| =
√

x · x . (A.15)

For a given basis 𝒢 = {g1, g2, . . . , g𝑛} in the 𝑛-dimensional Euclidean space,
a basis 𝒢 ′ = {g1, g2, . . . , g𝑛} is referred to as dual if

g𝑖 · g𝑗 = 𝛿𝑗𝑖 , 𝑖, 𝑗 = 1, . . . , 𝑛 , (A.16)

where 𝛿𝑗𝑖 is the Kronecker delta defined by

𝛿𝑖𝑗 = 𝛿𝑖𝑗 = 𝛿𝑖𝑗 = 𝛿𝑗𝑖 =
⎧⎨⎩1 for 𝑖 = 𝑗

0 for 𝑖 ̸= 𝑗
. (A.17)

It is possible to transform a basis 𝒢 into a basis 𝒢 ′ using the metric coefficients
with

g𝑖 = 𝑔𝑖𝑗g𝑗 or g𝑖 = 𝑔𝑖𝑗g𝑗 , with 𝑔𝑖𝑗 = g𝑖 · g𝑗 and 𝑔𝑖𝑗 = g𝑖 · g𝑗 . (A.18)

Second Order Tensors

A second order tensor is defined as a linearly mapping between a vector x and
y with

y = Ax , A ∈ Lin𝑛 ,x ,y ∈ E𝑛 , (A.19)

Chapter A. Introduction to Tensor Calculus
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where A is a second order tensor and Lin𝑛 are all possible linear mappings
of one vector into another in Euclidean space E𝑛. Here, the linearity is given
through the distributive rule and the associative rule for the multiplication by
a scalar with

A(x + y) = Ax + Ay , ∀x,y ∈ E𝑛, ∀A ∈ Lin𝑛 , (A.20)
A(𝛼x) = 𝛼(Ax) , ∀𝑥 ∈ E𝑛, ∀A ∈ Lin𝑛 , ∀𝛼 ∈ R . (A.21)

As for the axioms for vectors, a zero tensor 0, the identity tensor I as well as
the inverse element need to be defined with

Ix = x , (A.22)
0x = 0 , (A.23)

A + (−A) = 0, ∀𝑥 ∈ E𝑛, ∀A ∈ Lin𝑛 . (A.24)

Furthermore, it is possible to define the tensor product which can be used to
construct a second-order tensor from two vectors a and b with

A = a ⊗ b, ∀a, b ∈ E𝑛, A ∈ Lin𝑛 , (A.25)

where the product is expressed through the symbol "⊗". Following properties
need to be fulfilled:

(a ⊗ b)x = a(b · x) , (A.26)
a ⊗ b ̸= b ⊗ a , (A.27)
𝑥⊗ (b + a) = x ⊗ b + x ⊗ b , (A.28)
(𝛼a) ⊗ b = a ⊗ (𝛼b) . (A.29)

If the linear mapping y = Ax is given, then a tensor is called invertible if
there exists the inverse tensor A−1 ∈ Lin𝑛 such that

x = A−1y ∀x ∈ E𝑛 . (A.30)

The transpose tensor AT can be defined by

ATx = xA . (A.31)

Fourth Order Tensors
It is possible to linearly map a second order A into another second order tensor
B using the following mapping

B = C : A C ∈ Lin𝑛 ,X ,Y ∈ Lin𝑛 , (A.32)
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where C is a fourth-order tensor and Lin𝑛 denotes all possible linear mappings
of a second order tensor into another second order tensor in Lin𝑛. The linearity
of this mapping is given by

C : (A + B) = C : A + C : B , ∀A,B ∈ Lin𝑛 ,∀C ∈ Lin𝑛 , (A.33)
C : (𝛼X) = 𝛼(A : X) , ∀𝛼 ∈ R ,∀∈ Lin𝑛 ,∀C ∈ Lin𝑛 . (A.34)

The same axiomatic framework that applies to second-order tensors also applies
to fourth-order tensors. Additionally, it is possible to define using the zero
tensor O and the identity tensor I following rules:

I : A = A , (A.35)
O : A = 0 , (A.36)
A+O = A , ∀A ∈ Lin𝑛,∀A ∈ Lin𝑛 . (A.37)

Tensor Analysis
If a scalar-valued tensor function 𝑓(A) : Lin𝑛 ↦→ R is given, it is differentiable
in a neighborhood of A if there exists a tensor 𝑓(A),A ∈ Lin𝑛, which fulfills

d
d𝑡𝑓(A + 𝑡X)

⃒⃒⃒⃒
⃒⃒
𝑡=0

= 𝑓(A),A : X, ∀A ∈ Lin𝑛 , (A.38)

where 𝑓(A)A is called the derivative of 𝑓(A). An explicit representation in
terms of a given basis can be derived as follows:

𝑓(A),A = 𝜕𝑓

𝜕𝐴𝑖𝑗
g𝑖 ⊗ g𝑗 = 𝜕𝑓

𝜕𝐴𝑖𝑗
g𝑖 ⊗ g𝑗 = 𝜕𝑓

𝜕𝐴𝑗𝑖
g𝑖 ⊗ g𝑗 = 𝜕𝑓

𝜕𝐴𝑖𝑗
g𝑖 ⊗ g𝑗 . (A.39)

The aforementioned formula can be utilized to derive the derivatives of tensor
powers of traces, as expressed by the following equation:(︁

tr A𝑘
)︁
,A

= 𝑘
(︁
A𝑘−1

)︁T
. (A.40)

As the invariants of a second-order tensor A ∈ Lin3 can be expressed in terms
of traces, this in turn allows us to derive the derivatives of the invariants with
respect to this tensor A ∈ Lin3 by

(IA),A = I , (IIA),A = IIAI − AT , (IIIA),A = IIIAA−T . (A.41)

Chapter A. Introduction to Tensor Calculus
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B Foundations of Continuum
Mechanics

Whoever follows a path to seek knowledge, Allah will make the path
to Jannah easy for them.

Prophet Muhammad

In order to describe the relationship between material points and their
time-dependent positions in space, it is essential to have a comprehensive
understanding of the kinematic relations. To comprehend the manner in which
motion and deformation give rise to interactions within the material, it is
necessary to define the concept of stress. Moreover, it is essential to introduce
the principles of balance, including the conservation of mass, momentum
balance principles, and energy balance. These principles are universally
applicable to any material and must be satisfied at all times. This section
is primarily based on [65, 67, 69]. As the reader is presumed to possess
a fundamental understanding of the aforementioned topics, comprehensive
explanations will be omitted.

General Principles
The fundamental principles of kinematics and balance laws, as outlined in
Appendix B, provide a comprehensive framework for understanding the ar-
bitrary deformation of bodies within a universal context, irrespective of the
specific material properties involved. However, it is crucial to integrate the
effects of diverse material behavior into the existing theory. Accordingly, it
is essential to establish constitutive equations (also referred to as material
equations, material laws, functionals, or material models) that describe the
various effects that influence material behavior. The objective of material
theory is to identify common properties that are applicable to a range of
materials, to develop general material equations, and to classify materials
according to their characteristics. It is therefore possible to assume certain
underlying principles that have been derived from experience, plausibility
principles, and experimental investigations. These principles are frequently
referred to as Noll’s axioms [63]. This section provides a summary of the ideas
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behind these general principles and builds on the discussions presented in
[65–67].

Principle of Stress Determinism

In the field of mechanics, it is commonly accepted that a deterministic rela-
tionship exists between the stresses experienced by a body and the manner
in which it moves. This assumption can be expressed in the principle of
determinism for the stress, which states that the stresses that a material point
is subjected to at a given moment depend on the motion of the body up to
that moment, including both its present state and its past history, but not
on any future motion. The earliest known reference to this principle can be
attributed to Cauchy [63].

Principle of Local Action

Moreover, it has been empirically demonstrated that the stresses at a given
material point are independent of the motion of other points, particularly
if these points are sufficiently distant. This assumption can be expressed
by the principle of local action, which states that the stresses at a point in
the material are influenced only by the motion that occurs within a finite
environment surrounding that point.

Principle of Material Objectivity

The principle of material objectivity states that observers in relative motion
with respect to a given body should observe the same material properties and
the same constitutive laws. This implies that the constitutive law remains unal-
tered in any reference frame and is not affected by Euclidean transformations.
In general, a significant number of physical quantities are not indifferent to the
observer. In consequence, these quantities are unsuitable for the formulation of
material laws, as evidenced by a comparison of a physical quantity such as the
deformation gradient in both frames. Accordingly, we consider a novel observer
in motion and rotation relative to an initial observer whose observations were
utilized to characterize the deforming body. In comparison to the original
observer, the new observer experiences the rigid body motion as

x⋆ = c(𝑡) + Q(𝑡)x , (B.1)

where x is the position in the current configuration for the initial observer, c(𝑡)
is the arbitrary time-dependent translational displacement, Q(𝑡) ∈ Sorth3 is a
proper orthogonal tensor and x⋆ is the position in the current configuration
of the new observer. Using this relation the deformation gradient can be

Chapter B. Foundations of Continuum Mechanics
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determined with

F⋆ = 𝜕x⋆

𝜕X
= 𝜕x⋆

𝜕x
𝜕x
𝜕X

= QF , (B.2)

where X is the reference configuration. This comparison can also be done e.g.
the relative volume change 𝐽 , the right Cauchy-Green tensor C or the stress
power ℓ = 𝜎 : d which leads to

𝐽⋆ = 𝐽 , C⋆ = C and ℓ⋆ = 𝜎⋆ : d⋆ = 𝜎 : d = ℓ . (B.3)

It can be demonstrated that Lagrangian or material tensor and scalar fields are
observer-independent, exhibiting no changes between different reference frames.
Consequently, they are classified as objective or material frame-indifferent.

Kinematics
A body ℬ0 is considered in the reference placement at time 𝑡0 as depicted in
Figure B.1. An arbitrary point 𝑃 can be described by the position X in the

0

X
x

u

F−1

F

B0 Bt
P

Fig. B.1: Mapping between reference X and current configuration x of a body ℬ.

reference configuration. After a time 𝑡, the body ℬ𝑡 has changed its position
and the placement of the same point 𝑃 is x(X , 𝑡) = 𝜒(X , 𝑡), where 𝜒(X , 𝑡)
represents the motion mapping. It is also possible to define a mapping u
describing the displacement between the position of a material point in the
current and in the reference placement. Mathematically, this is done by

u(X , 𝑡) = 𝜒(X , 𝑡) − X = x(X , 𝑡) − X . (B.4)
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The fields on ℬ𝑡 are described by the Eulerian description (also known as or
spatial description). The gradient with respect to the Lagrangian variables of
the mapping 𝜒 and the displacement 𝑢 are defined by:

F = Grad(𝜒(𝑋, 𝑡)) = 𝜕𝜒(X , 𝑡)
𝜕X

(B.5)

where F is known as the deformation gradient. It is also possible to define the
displacement gradient H given by

𝐻 = Grad(u(𝑋, 𝑡)) = 𝜕u(𝑋, 𝑡)
𝜕X

= F + 1 . (B.6)

Since it is assumed that 𝐹 is invertible, the deformation gradient can multi-
plicativly decomposed into

𝐹 = 𝑅𝑈 = 𝑉 𝑅 . (B.7)

This is a polar decomposition with the rotation tensor 𝑅, the right and left
stretch tensors 𝑈 and 𝑉 , respectively. It should be noted that both tensors
are positive-definite and symmetric. Furthermore, it is possible to define the
right and left Cauchy-Green tensors C and b

C = FTF = U2 and b = FFT = V2 . (B.8)

Furthermore, it is possible to define the Green strain tensor with

𝐸G := 1
2(𝐶 − 1) = 1

2(𝐹 T𝐹 − 1) . (B.9)

Stress Measures

If the body ℬ𝑡 in its current configuration is subjected to external forces, it
can be divided into two distinct parts by introducing a smooth surface passing
through point 𝑃 , see Figure B.2. The surface area surrounding point 𝑃 is
denoted as Δ𝐴, with n representing the outward normal unit vector, Δf a
force and Δm a couple. The Cauchy stress vector t, also known as the traction
vector, can be defined as follows:

t = lim
Δ𝐴→0

Δf
Δ𝐴 . (B.10)

It is additionally postulated that for the couple that

lim
Δ𝐴→0

Δm
Δ𝐴 = 0 . (B.11)

Chapter B. Foundations of Continuum Mechanics
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P

Fig. B.2: Visualization of cutting face through point 𝑃 of body ℬ𝑡 with the Cauchy
stress vector t, force vector Δf , outward normal unit vector n, couple Δm and
surface area Δ𝐴.

The Cauchy stress vector t is dependent on the selected surface exclusively
through the outward-pointing unit normal n. The Cauchy theorem estab-
lishes a relationship between these quantities, which is expressed through the
following linear mapping:

t = 𝜎n , (B.12)

where 𝜎 is the Cauchy stress tensor. This stress tensor is also referred to as the
true stress, as it is defined with respect to the surface of the body in its current
configuration. Nevertheless, for a multitude of engineering applications, it is
beneficial to define stress in relation to the reference configuration. Accordingly,
the first Piola-Kirchhoff stress tensor, also designated as the engineering stress
or nominal stress, is given by

P = 𝐽𝜎F−T . (B.13)

It should be noted that the first Piola-Kirchhoff stress tensor is not symmetric.
A variety of other stress tensors can be defined, including the second Piola-
Kirchhoff stress tensor S and the Kirchhoff stress tensor 𝜏 . These can be
defined through the following relationships:

S = F−1P and 𝜏 = 𝐽𝜎 . (B.14)

Tangent Tensor
For numerical simulations employing the finite element method, it is crucial to
compute a tangent tensor. A variety of different tangent tensors exist. The
material tangent tensor C can be formulated as the derivative of the second
Piola-Kirchhoff stress or directly as the second-order derivative of the strain



x

energy function with respect to the right Cauchy-Green tensor C with

C = 4𝜕
2Ψ(C)
𝜕C2 = 2 𝜕S

𝜕C = 2 𝜕S̄
𝜕C + 2 𝜕Ŝ

𝜕C = C̄+ Ĉ . (B.15)

The material tangent tensor C can further be decomposed into an isochoric
contribution C̄ and a volumetric contribution Ĉ. The isochoric part C̄ can be
determined by

C̄ = P̄T :
(︃

4𝜕
2Ψ̄(C̄)
𝜕C̄2

)︃
: P̄T + 2

3
(︁
S̄ : C̄

)︁
P̃

− 2
3𝐽

−2/3
(︁
S̄ ⊙ C−1 + C−1 ⊙ S̄

)︁
, (B.16)

where the projection tensor P̃ is given by

P̃ =
(︁
C−1 ⊗ C−1

)︁S
+ 1

3C−1 ⊙ C−1 . (B.17)

Moreover, it is possible to derive the second derivative of the strain energy
function with respect to the isochoric contribution C̄ as follows:

𝜕2Ψ̄(C̄)
𝜕C̄2 = 𝜕S̃

𝜕C̄
= 𝛼1C ⊙ C̄ + 𝛼2

(︁
C ⊙ I + I ⊙ C̄

)︁
+ 𝛼3J+ 𝛼4I ⊙ I , (B.18)

where J is the fourth-order identity tensor and the coefficients 𝛼1, 𝛼2, 𝛼3 and
𝛼4 are given with

𝛼1 = 2 𝜕2Ψ̄
𝜕IIC̄

2 , 𝛼2 = −2
(︃

𝜕2Ψ̄
𝜕IC̄𝜕IIC̄

+ IC̄
𝜕2Ψ̄
𝜕IIC̄

2

)︃
, (B.19)

𝛼3 = −2 𝜕Ψ̄
𝜕IIC̄

, 𝛼4 = 2
(︃
𝜕2Ψ̄
𝜕IC̄

2 + 2IC̄
𝜕2Ψ̄

𝜕IC̄𝜕IIC̄
+ 𝜕Ψ̄
𝜕IIC̄

+ I2
C̄
𝜕2Ψ̄
𝜕IIC̄

2

)︃
. (B.20)

The volumetric part Ĉ can be calculated using the following formula:

Ĉ =
(︃
𝐽2 d2𝑈

d𝐽2 + 𝐽
d𝑈
d𝐽

)︃
C−1 ⊙ C−1 − 2𝐽 d𝑈

d𝐽
(︁
C−1 ⊗ C−1

)︁S
. (B.21)

In the context of FE applications, it is essential to provide the spatial tangent
tensor . This tensor can be obtained through a push-forward operation given
with

𝑖𝑗𝑘𝑙 = 1
𝐽
C𝐼𝐽𝐾𝐿F𝑖𝐼F𝑗𝐽F𝑘𝐾F𝑙𝐿 . (B.22)

In the case of Abaqus, the tangent tensor relates the volume-normalized
Jaumann rate of the Kirchhoff stress to the symmetric rate of the deformation

Chapter B. Foundations of Continuum Mechanics
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tensor, see [178] for further details. The Abaqus tangent Abq is given with

Abq = 𝑖𝑗𝑘𝑙 + ′
𝑖𝑗𝑘𝑙 . (B.23)

Here, the fourth-order tensor ′
𝑖𝑗𝑘𝑙, also known as the geometric tangent, can be

reduced to purely kinematic terms, given by

′
𝑖𝑗𝑘𝑙 = 1

2 (𝛿𝑖𝑘𝜎𝑗𝑙 + 𝛿𝑖𝑙𝜎𝑗𝑘 + 𝛿𝑗𝑘𝜎𝑖𝑙 + 𝛿𝑗𝑙𝜎𝑖𝑘) , (B.24)

where 𝛿𝑖𝑗 is the Kronecker delta.

Balance Laws

Based on [66], all fundamental balance laws can be encapsulated within a
master balance principle in the global formulation, expressed as follows:

d
d𝑡

ˆ
𝒫𝑡

𝜓 d𝑣 =
ˆ
𝜕𝒫𝑡

Φ𝜓𝑛 d𝑎+
ˆ

𝒫𝑡

𝜎𝜓 d𝑣 . (B.25)

Here, 𝒫 denotes any bounded regular subregion of the body ℬ, with 𝒫𝑡

representing its current configuration. The vector n is the outward unit
normal to the boundary of the region 𝒫𝑡. The quantities 𝜓 and 𝜎𝜓 are given
as tensor fields of order 𝑚, while Φ𝜓 is a tensor field of order 𝑚 + 1. For
instance, if 𝑚 = 0, then 𝜓 is a scalar quantity and Φ𝜓 is a vector quantity.
If 𝑚 = 1, then 𝜓 is a vector quantity and Φ𝜓 is a second-order tensor. A
comprehensive list of potential quantities for 𝜓, Φ𝜓 and 𝜎𝜓 relevant to the
balance laws of mass, linear momentum, angular momentum, and energy are
provided in Table B.1. Note that for this representation an additional exterior
product between x and y, is defined given by

x ∧ y = x ⊗ y + y ⊗ x . (B.26)

In the given table the quantity 𝜌 is the mass density in the current configuration,
b is the body force density, x∘ is a specific reference location for the momentum,
𝜀 is the specific internal energy density, q is the heat flux vector, and 𝑟 is the
energy supply density.
The local forms of the integral balance can also be determined at a point
within the region ℬ𝑡. The derivation of these local forms relies on specific
assumptions regarding the smoothness of the tensor fields 𝜓, Φ𝜓, and 𝜎𝜓. This
analysis encompasses both regular points, where all tensor fields are smooth,
and singular points, where they may exhibit jump discontinuities. At a regular
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point x, the general balance equation in Equation B.25 simplifies to:

𝜕𝜓

𝜕𝑡
+ div (𝜓 ⊗ 𝑥̇ − Φ𝜓) − 𝜎𝜓 = 0 (B.27)

In this context, the term 𝜓⊗ 𝑥̇ is referred to as the convective flux of 𝜓. When
𝜓 is a scalar quantity, this notation should be interpreted as 𝜓𝑥̇.

Tab. B.1: List of quantities for 𝜓, Φ𝜓 and 𝜎𝜓 relevant to the balance equations of
mass, linear momentum, angular momentum, and energy.

Balance Law 𝜓 Φ𝜓 𝜎𝜓

Mass 𝜌 0 0
Linear Momentum 𝜌ẋ 𝜎 𝜌b

Angular Momentum (x − x∘) ∧ 𝜌ẋ (x − x∘) ∧ 𝜎 (x − x∘) ∧ 𝜌b
Energy 𝜌𝜀+ 1

2𝜌ẋ · ẋ −q + 𝜎ẋ 𝜌𝑟 + 𝜌ẋ · b

Chapter B. Foundations of Continuum Mechanics
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