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ARTICLE INFO ABSTRACT
Keywords: This study investigates slip behaviour on overlapping, en echelon normal faults by analysing the slip histories of
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data from the Skinos Fault and published Pisia Fault °Cl data were modelled, with both sample sites located
within an overlap zone and separated by an across-strike distance of 1-2 km. Our analysis reveals fluctuating slip
rates, with the two faults alternating between out-of-phase and simultaneous slip. The Pisia Fault exhibited a slip
rate of ~0.5-0.75 mm/yr from ~20 ka to ~9.6 ka, increasing to ~1.25 mm/yr until ~5.2 ka. It then slowed to
~0.25 mm/yr or less until ~2.0 ka, before accelerating again to ~1.25-1.5 mm/yr to the present day. The Skinos
Fault maintained a low slip rate of ~0.25 mm/yr or less from ~20 ka to ~6.4 ka, before accelerating to
~2.0-3.0 mm/yr, persisting to ~1.0 ka or possibly the present-day. Comparing their slip histories, the faults
show periods of simultaneous slip between ~6.4 ka to ~5.2 ka and ~2.0 ka to ~1.0-0.0 ka, and out-of-phase slip
occurred between ~9.6 ka and ~6.4 ka, and from ~5.2 ka to ~2.0 ka. Out-of-phase behaviour on faults across
strike has now been observed on faults spaced across-strike at distances of 1-2 km, 10-20 km, and ~100 km,
raising the question of why it occurs. Possible mechanism(s), including rheological fluctuations within fault/
shear-zone structures linked between the brittle upper crust and viscous lower crust and stress interactions,
are discussed to explain the out-of-phase and simultaneous slip behaviour.

1. Introduction with periods of rapid slip lasting multiple millennia alternating with
periods with less rapid slip, or even no slip. The periods of rapid slip are

Understanding the temporal behaviour of active faults is crucial in associated with surface displacements that are too large to be produced
deciphering the mechanisms that control continental deformation. It is by a single earthquake slip (e.g. Wells and Coppersmith, 1994; Wes-
now recognised that slip rates on active faults fluctuate through time, nousky, 2008), suggesting the existence of temporal clusters of surface
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faulting earthquakes (>Ms 6.0) (Mechernich et al., 2018, 2023; Iezzi
et al., 2021; Mildon et al., 2022; Roberts et al., 2024; Dolan et al. 2007,
2024; Dolan and Meade, 2017). Conversely, relatively low slip rate pe-
riods indicate temporal earthquake anticlustering, where a lack of large
magnitude surface-faulting earthquakes in given time periods produces
a slip rate that falls below the background long-term slip rate (e.g.
Mechernich et al., 2018; Iezzi et al.,, 2021; Mildon et al., 2022;
Mechernich et al., 2023; Roberts et al., 2024).

It has been shown that the periods of rapid slip associated with the
temporal clustering of surface faulting earthquakes can be out-of-phase
on faults located across strike from one another (across-strike faults).
Such out-of-phase behaviour has been documented on faults spaced
100s of kilometres apart across strike, such as the Los Angeles-region
faults and the eastern California shear zone in USA (Dolan et al.,
2007; Scholz, 2010), Garlock, San Andreas and Eastern California Shear
Zone fault system in USA (Dolan et al., 2016), and North Anatolian,
Kunlun and Denali Faults (Dolan and Meade, 2017). The behaviour has
also been identified on faults spaced 10s of kilometres across strike, such
as the Milesi, Malakasa and Fili Faults in Greece (lezzi et al., 2021), the
Mt. Vettore and Leonessa Faults (Mildon et al., 2022) and the Maiella,
Scanno and Pescasseroli Faults in Italy (Roberts et al., 2024), and the
Wairau, Awatere, Clarence and Hope Faults in New Zealand (Dolan
et al., 2024). Microstructural evolution, including annealing and
strain-hardening, and interaction through stress transfer have been
invoked to explain such behaviour. However, little is known about
whether active across-strike faults spaced only a few kilometres apart
exhibit similar out-of-phase slip relationships, and what mechanism(s)
might be operating to produce these slip rate fluctuations. This unknown
is important because many examples exist where faults spaced only a
few kilometres apart have ruptured simultaneously or closely-spaced in
time (e.g. the 1915 Pleasant Valley, 1959 Hebgen Lake, 1954 Dixie
Valley and Fairview Peak, and 1981 Gulf of Corinth earthquakes; Wal-
lace et al., 1984; Doser, 1985; Slemmons, 1957; Scholz, 2010; Jackson
et al., 1982).

For examples spaced 100s of kilometres apart across strike, it has
been suggested that out-of-phase slip may be explained by cycles of
strain hardening and annealing within shear zones in the middle to
lower crust beneath the brittle active faults (Dolan et al., 2007; Dolan
and Meade, 2017). An example of such out-of-phase slip at this scale has
been identified between the Los Angeles-region faults and the eastern
California shear zone (USA), where faults are too far apart to be inter-
acting through static stress transfer (Dolan et al., 2007; Ganas et al.,
2006; Papadopoulos et al., 2017). The activation of a temporal earth-
quake cluster is suggested to occur when annealing of a viscous shear
zone, through the introduction of new strain-free grains, weakens the
shear zone to an extent that causes deformation to migrate to that
location. Strain hardening during slip then develops and increases
resistance to deformation through microstructural evolution on the
shear zone. Strain hardening continues until deformation migrates to a
shear-zone across strike that has become annealed, initiating a temporal
cluster of surface faulting earthquakes in that new location (Dolan et al.,
2007; Dolan and Meade, 2017). Thus, the across-strike shear-zones have
differing microstructural histories.

For examples spaced 10s of kilometres apart across strike, it has been
suggested that out-of-phase slip may be explained by fault interactions
where slip induces differential stress changes on neighbouring across-
strike fault/shear-zones which result in the switching between periods
of temporal clustering and anticlustering (Mildon et al., 2022; Roberts
et al., 2024). Examples of this have been reported for active normal
faults in the central Apennines, Italy (Mildon et al., 2022; Roberts et al.,
2024). It is suggested that fluctuations in differential stress on
shear-zones during interaction induce changes in viscous strain rate,
quantified by flow laws linking stress and strain-rate (e.g. Hirth et al.,
2001). These changes in viscous strain-rate at depth on shear-zones then
produce changes in the slip rates on overlying brittle faults. Mildon et al.
(2022) and Roberts et al. (2024) showed that the magnitudes of
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differential stress changes calculated for periods of increased and
decreased slip rate were sufficient to explain observed fluctuations in
slip rates constrained with in situ °Cl cosmogenic dating on fault planes.
Thus, the across-strike shear-zones have differing stress transfer
histories.

However, for examples of faults spaced only a few kilometres apart,
it is likely that they share the same underlying shear-zone, because
envisaged shear-zone thicknesses of a few kilometres at most are similar
to across strike fault spacing (Moore and Parsons, 2015; Cowie et al.,
2013; Fossen and Cavalcante, 2017). This may imply that it is unlikely
that individual faults have differing annealing, strain-hardening or dif-
ferential stress histories for viscous deformation at depth. Thus, the
question arises as to whether such closely-spaced faults show
out-of-phase behaviour, prompting this study.

In this study, we investigate slip relationships between two active
normal faults spaced only 1-2 km across strike in central Greece, the
Skinos and Pisia Faults, which ruptured within hours of each other
during the 1981 eastern Gulf of Corinth earthquake sequence (Ms 6.7
and Ms 6.4) (Fig. 1). To achieve this, we (1) reconstruct the slip rate
histories of both faults over the last ~20 kyr using in situ >°Cl cosmo-
genic exposure dating, (2) examine their temporal slip relationships,
revealing alternating periods of high and low slip rates as well as both
out-of-phase and simultaneous slip relationships, and (3) explore the
mechanisms driving these interactions and their implications for seismic
hazard. By understanding the slip behaviour of closely spaced faults, this
study provides critical insights into single and multi-fault earthquake
scenarios through identifying periods in which one fault ruptures or
periods in which both across-strike faults rupture simultaneously or
closely spaced in time. These findings are essential for improving seismic
hazard assessments in regions with complex fault networks, particularly
where closely spaced faults may interact and potentially trigger multiple
earthquakes.

2. Background
2.1. Geological background

Extension in Greece occurs in crust thickened by Alpine thrusting
alongside slab-roll back of the north-dipping Hellenic subduction zone
between the African and Eurasian Plates (Jolivet et al., 1994; Jolivet,
2001) and dextral motion of the North Anatolian strike-slip Fault
(Kelletat et al., 1976; Le Pichon and Angelier, 1979; Westaway, 1991;
Jackson, 1994; Jolivet et al., 1994, 2013; Le Pichon et al., 1995). This
tectonic setting is associated with extension throughout Greece for the
past ~5 million years, predominantly in a north-south orientation,
resulting in the formation of normal faults (Billiris et al., 1991; Jackson,
1994; Armijo et al., 1996; Clarke et al., 1998; Roberts and Ganas, 2000;
Goldsworthy et al., 2002; Vassilakis et al., 2011). Extension in the
Corinth rift is accommodated by normal faults predominantly striking ~
E-W and producing extension in a N-S direction (e.g. McKenzie, 1972;
Taymaz et al., 1991; Billiris et al., 1991; Jackson, 1994; Roberts and
Ganas, 2000; Bell et al., 2009; Nixon et al., 2016; Evelpidou et al., 2023).
GNSS-derived extension rates in the eastern region of the gulf, the region
we study, indicate a rate of 5-6 mm/yr, contrasting with a higher rate of
10-11 mm/yr in the western region (see Briole et al., 2021, their Fig. 7
for the regional GNSS vectors) (Fig. 1a). The footwalls of the normal
faults consist predominantly of Mesozoic limestones, with Neogene
sediments found in some areas, along with rare outcrops of ultrabasic
ophiolitic rocks and deep-sea cherts in places (Roberts and Jackson,
1991; Papanikolaou, 2009, 2013; Walker et al., 2010; Ford et al., 2013;
Whittaker and Walker, 2015). The hanging walls are occupied by sedi-
ments formed from the erosion of footwall rocks, consisting of
Neogene-Holocene fluvio-terrestrial sediments, including alluvium,
colluvium and marine deposits at coastal sites (Roberts and Jackson,
1991; Goldsworthy and Jackson, 2000; Leeder et al., 2005; Rohais et al.,
2007; Sakellariou et al., 2007; Taylor et al., 2011; Ford et al., 2013;
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Papanikolaou et al., 2015; Gawthorpe et al., 2018; Gawthorpe et al.,
2022).

Seismicity in central Greece and the Peloponnese due to normal
faulting is widespread, with examples known from as far back as at least
464 BC, documented by the ancient Greek philosopher Plutarch who
reported a devastating earthquake in the Sparta region (Guidoboni et al.,
1994). More recent historical records have shown frequent,
moderate-to-large destructive earthquakes (<~Ms 6.7; Ambraseys and
Jackson, 1990). The most recent and well documented destructive
earthquakes in the eastern Gulf of Corinth region were in Februar-
y-March 1981 (Fig. 1b).

During the 1981 eastern Gulf of Corinth earthquake sequence, slip on
the Pisia, Skinos and Kaparelli normal faults was associated with surface
rupturing during three earthquakes on the 24th and 25th February, and
4th March with Ms = 6.7, 6.4 and 6.4, respectively, causing 22 fatalities
(Fig. 1b) (Jackson et al., 1982; Vita-Finzi and King, 1985; Stewart and
Hancock, 1991). Following detailed analyses of the surface ruptures and
seismicity produced by the 1981 earthquakes, the 24th and February 25,
1981 earthquakes were attributed to the Pisia and Skinos Faults
(Jackson et al., 1982; Taymaz et al., 1991; Abercrombie et al., 1995;
Mitchell et al., 2024). The approximately 25 km long Pisia Fault is ar-
ranged in a left-stepping, across-strike and en echelon geometry relative
to the approximately 30 km long Skinos Fault, which is likely connected
along strike to the Psatha Fault (Jackson et al., 1982). The Pisia, Skinos
and Psatha Faults are considered to be part of the ~40 km-long South
Alkyonides Fault System (Roberts, 1996; Morewood and Roberts, 1997,
1999, 2001; Morewood and Roberts, 1997; Roberts et al., 2009)
(Fig. 1¢). In the zone of overlap, the Pisia and Skinos Faults are separated
by less than 1-2 km across-strike, with both faults displacing a thrust
sheet containing ophiolite by ~450 m each (Fig. 1d and e). At depth, the
geometry and arrangement of the faults are unknown, and it is unclear if
the faults link at depth (Roberts, 1996; Mitchell et al., 2024).
Along-strike to the east from this fault system, the 4th March earthquake
occurred on the south-dipping Kaparelli Fault (Fig. 1b). For the Pisia and
Skinos Faults, determining which ruptures were associated with each of
the earthquakes is challenging, because both earthquakes occurred
within hours of each other overnight, at 20:53 and 02:35 local time
(Jackson et al., 1982). The ruptures were mapped in the days and weeks
after the earthquakes (Jackson et al., 1982; IGME Kaparellion Geological
Map Bornovas et al., 1984; IGME Perachora Geological Map Bornovas
et al.,, 1984). Ruptures on the Pisia and Skinos Faults were partially
re-mapped in 1994 and 1995 (Roberts, 1996), and then mapped in more
detail in 2022, revealing semi-continuous surface ruptures that extended
~8-10 km on each fault within the en echelon zone of overlap (Fig. 1fi)
(Mitchell et al., 2024). The ruptures produced a single maximum
asymmetric profile on the Pisia Fault with a maximum coseismic throw
of 223 cm, and a double maxima profile on the Skinos Fault with a
maximum throw of 109 ecm and 130 cm (Mitchell et al., 2024).
Comparing the two sets of ruptures across-strike revealed that the faults
were spatially anticorrelated which implies interaction between the
faults, because coseismic slip deficits on one fault are compensated by
slip maxima on the other fault, and vice versa (Fig. 1fii,iii) (Mitchell
et al., 2024). Summing the two throw profiles from the 1981 ruptures
across strike in the zone of overlap revealed a single maximum sym-
metric bell-like profile (combined discretised maximum displacement of
~2 m) implying that the two faults worked together during the 1981
earthquake sequence (Fig. 1fiv) (Mitchell et al., 2024). However, ex-
amination of earlier ruptures preserved as a 2nd lichen stripe higher on
the exhumed fault planes show that the along strike displacement pro-
files differed in previous earthquakes on the two faults implying
non-characteristic earthquakes (Mitchell et al., 2024; see also Roberts,
1996).

Although no other along-strike profiles for previous ruptures exist for
the Skinos and Pisia Faults, paleoseismological analysis of the two faults
has revealed multiple earthquakes on both faults during the Holocene
(Collier et al., 1998; Mechernich et al., 2018). Cosmogenic 36¢1 exposure
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analysis of a carbonate fault scarp on the Pisia Fault suggests the
occurrence of six to eight moderate to large paleoearthquakes during the
Holocene with more slip back to ~30 ka (Mechernich et al., 2018).
Modelling by Mechernich et al. (2018) revealed an average slip rate of
0.5-0.6 mm/yr over the last ~7.3 kyrs, and a period of higher slip rate of
up to 0.8-2.3 mm/yr between ~7 and 10 ka. It is worth noting that the
sampled scarp of the Pisia Fault in Mechernich et al. (2018) began to
form earlier than the widely accepted view for the timing of the demise
of the high erosion rates that characterised the Last Glacial Maximum
(LGM) at 15 + 3 ka (Giraudi and Frezzotti, 1986, 1997; Allen et al.,
1999; Palumbo et al., 2004). Since scarp preservation could only begin
once erosion rates no longer exceeded fault slip rates, the scarp age of
~30 ka being older than the age of the end of the high erosion rates
suggests that regional variations influenced the timing of the end of the
high erosion rates. For example, lezzi et al. (2021) suggested that dif-
ferences in latitude and elevation may have caused the colder, high
erosion rate conditions of the LGM to cease earlier at some fault scarp
sites, allowing scarp formation and preservation to commence sooner.
The slip rate variations determined by Mechernich et al. (2018) on the
Pisia Fault have been verified by mapping elevations of
radiocarbon-dated Holocene coastal notches which were deformed
along the strike of the fault associated with earthquake clusters and
quiescence implied by in situ *°Cl on the Pisia Fault (Robertson et al., in
review). For the Skinos Fault, palaeoseismic trenching and associated
radiocarbon ages on ruptured sediments of the Vamvakies fan, also
known as Bambakies fan, situated on the Skinos Fault (e.g. Collier et al.,
1998) suggest up to six previous paleoearthquakes which were compa-
rable to the displacements produced during the 1981 earthquakes
(Collier et al., 1998). An average throw rate was calculated to be
0.7-2.5 mm/yr on the Skinos Fault over the last ~1.5 kyrs with a sug-
gested earthquake recurrence of 330 years (Collier et al., 1998). How-
ever, this paleoseismic record for the Skinos Fault is less complete or
absent prior to 6-8 ka, or possibly as far back as 12.4 ka, due to the
Vamvakies fan only forming when rising Holocene sea level achieved its
current elevation, thus no earthquakes prior to this are likely to be
recorded in its stratigraphy (Fairbanks, 1989; Leeder et al., 1991; Collier
et al., 1998; Peckover et al., 2019). This highlights the need for a record
of slip on the Skinos Fault that can be compared with that of the Pisia
Fault whose record stretches back possibly as far as 30 ka (Mechernich
et al., 2018), prompting this study.

2.2, In situ %°Cl cosmogenic exposure dating of limestone fault scarps

Measuring %°Cl concentrations can help us understand the slip his-
tory of a fault because, after the demise of high erosion rates associated
with the LGM, fault scarps began to accumulate and preserve 2°Cl
through interactions between calcium atoms and cosmic radiation. As a
result, higher concentrations of 3°Cl are found at the top of exposed fault
planes within fault scarps because the higher parts have been exposed
for a longer duration (Benedetti et al., 2002, 2003; Schlagenhauf et al.,
2010) (illustrated in Fig. 2a and b). 36¢] begins to form in carbonate at
depths of up to 10 m or more beneath the surface due to exposure in-
teractions between the carbonates at depth and incoming muons
(Fig. 2¢) (Zreda et al., 1991; Davis and Schaeffer, 1955; Stone et al.,
1998; Zreda and Noller, 1998; Gosse and Phillips, 2001; Dunai, 2010).
However, overall the rate of production of °Cl increases towards the
surface where the spallation of calcium atoms due to interactions with
incoming neutrons becomes the dominant 3°Cl production process
(Gosse and Phillips, 2001; Schlagenhauf et al., 2010). In general, below
a depth of 2 m, the rate of production is below ~5 at(atoms)/g/yr due to
shielding by, for example, surrounding bedrock and colluvium (Stone
etal., 1996; Schlagenhauf et al., 2010). Again, in general, at the surface,
the 36Cl production rate in limestone is ~48 at/g/yr (e.g. Schlagenhauf
et al., 2010), but varies with elevation and latitude (Stone et al., 1998;
Dunai, 2010). The values stated above are approximate and more
detailed production rate scenarios need to be calculated for individual
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Fig. 2. Evolution of post-glacial scarps and the production of 3°Cl on fault
planes due to exposure through slip. Illustration (a) demonstrates no fault scarp
preservation above the surface during the last glacial maximum (adapted from
Roberts and Michetti, 2004); (b) demonstrates fault scarp preservation above
the surface during/after the demise of the last glacial maximum (adapted from
Roberts and Michetti, 2004). Graph (c) shows the contribution of the various
cosmogenic and radiogenic sources to the production of in situ *°Cl in the first
10 m below the ground surface (modified from Schlagenhauf et al., 2010).

sites using knowledge of production scaling with latitude and elevation
produced by global and temporal variations in the Earth’s magnetic field
and local atmospheric thickness above mountainous topography (Lal,
1991; Stone, 2000; Dunai, 2000). One way to deal with uncertainties in
the above in the absence of measured cosmogenic production rates is to
iterate the production values during modelling, for example, as imple-
mented in the code by Beck et al. (2018). The modelling attempts to
replicate the measured 3°Cl derived from Accelerator Mass Spectrometry
and attempts to constrain the exhumation history of the rock samples as
they were exhumed up through the sub-surface 3¢Cl production zone.
Additional considerations include the site shielding due to topographic
slopes, rock densities, the elemental composition of the rock targets and
the colluvium through which some cosmic radiation passes, variations in
the geomagnetic field over time, assumptions about production rates
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with depth (as shown in Fig. 2¢), and other parameters, along with the
inherent uncertainty associated with all these factors. The model results
must then be interpreted by considering quantitative results such as the
least squares solution for the comparison between the measured and
modelled 3°Cl concentrations, the ensemble of top least squares solu-
tions, and the posterior distribution of highest likelihood solutions. As-
pects of such modelling are explained in the next section.

We note that while 2°Cl dating is valuable for identifying changes in
slip rates on faults over multiple millennia (e.g. Palumbo et al., 2004;
Schlagenhauf et al., 2011; Benedetti et al., 2013; Tesson et al., 2016;
Pousse-Beltran et al., 2022), there are a range of other methods available
for analysing fault activity, such as paleoseismic trenching (e.g. Galli
et al., 2008; Galli et al., 2022) and U-Pb dating of fault zone cements (e.
g. Curzi et al., 2021). However, the advantage of °Cl cosmogenic
exposure dating of limestone fault scarps is that it provides temporal
coverage lasting 10s of millennia with the resolution of timing of slip of
+0.5 kyrs (Beck et al., 2018).

3. Methods

We sampled the carbonate Skinos fault plane for in situ *°Cl cosmo-
genic dating to provide a dataset that can be compared with the dataset
for the Pisia Fault, sampled by Mechernich et al. (2018) (Fig. 3). The
Skinos Fault site was selected because, like the Pisia site, it lies within
the zone of overlap between the two faults and is situated less than 2 km
from the Pisia Fault site (Fig. 1c). The exact site was ultimately chosen
based on exhibiting the distinct geomorphic characteristics of a
tectonically exhumed fault scarp, as required for a®°Cl sample site
(Cowie et al., 2017). These observations include confirming that the
scarp offsets a slope that has not been affected by erosion or sedimen-
tation. In detail, this means that we do not sample unless it can be
confirmed that there are no incised gullies in the immediate footwall or
the hanging wall, the lower slope to fault plane contact is horizontal and
not prone to along-strike mass wasting, and no landsliding is present in
the immediate vicinity of the sample sites. These observations confirm
the scarp was exposed through surface faulting, rather than ero-
sion/sedimentation or mass wasting.

As per other previous examples (e.g. lezzi et al., 2021; Mildon et al.,
2022), we collected multiple samples up the free face in the orientation
of the fault slip vector, with sample spacing of 23-40 cm and greater
towards the top of the fault, with 50 and 60 cm spacing for the two
highest samples (Fig. 3aii). We also excavated an ~80 cm deep trench
and sampled the carbonate fault plane in the sub-surface. Site charac-
teristics used to model the 3°Cl data are shown in Fig. 3 and tabulated in
Electronic Supplement Sla. The magnetic field scaling parameters for
the sample site, determined using Stone et al. (1996), and based on
latitude and altitude, are provided in Electronic Supplement S1b. Sam-
ple preparation and measurement procedures on Cologne AMS, and
including the relevant major and trace element chemistries of the sam-
ples are given in Electronic Supplement S1c alongside elemental data
from ICP-OES. The composition of the colluvium used in our study is
derived from the average chemical composition of colluvium samples
collected in central Italy that have similar provenance (Cowie et al.,
2017). The Italian Apennines have comparable climate conditions and
parental Mesozoic carbonate rocks and volcanic inputs with those found
in central Greece.

Following previous papers (lezzi et al., 2021; Mildon et al., 2022;
Mechernich et al., 2023; Roberts et al., 2024, 2025; Sgambato et al.,
2025), we utilised the Beck et al. (2018) code to model the slip history of
the Skinos Fault and re-model the slip history of the Pisia Fault. This
code is designed to recover slip rate variations on faults from continuous
or discontinuous sampling. The code is provided with the site charac-
teristics and knowledge and uncertainties associated with 36Cl produc-
tion, and proposes fault slip histories, calculates the implied 361 profiles
for the proposed slip histories, and compares these with the measured
36Cl1 concentrations using a Bayesian Markov Chain Monte Carlo
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Fig. 3. 36¢1 sample sites and fault scarp field measurements on the (a) Skinos Fault and (b) Pisia Fault (see Mechernich et al., 2018, their sample site P6). (a.i,b.i)
Limestone fault plane site photographs of (a) the Skinos Fault before sampling, and of (b) the Pisia Fault after sampling with an along-strike view. (a.ii,b.ii) Site
photographs of the sample ladder on the fault planes and clear lichen-free stripes of the 1981 earthquake rupture with the view facing the free-face. (a.iii,b.iii)
Topographic scarp profiles parallel to the slip vectors recorded in (a) the study herein and (b) Mechernich et al. (2018). (a.iv) Along-strike profile of the hanging wall

cut-off. Note the preserved freeface is larger at the Pisia site than the Skinos site.

(MCMC) approach (Beck et al., 2018). The code operates iteratively,
conducting simulations of slip histories hundreds of thousands to mil-
lions of times. The reader should bear in mind that 3°Cl production
factors are not precisely known, so we chose to use the Beck et al. (2018)
code in order to iterate these values rather than selecting single values
(compare with Schlagenhauf et al., 2010; Tikhomirov et al., 2019;
Tesson and Benedetti, 2019). The code iterates colluvial density, pro-
duction rates, and attenuation lengths associated with spallation and
muonogenic >°Cl production and displays the results as histograms from
the posterior distributions (Fig. 6). The code accounts for uncertainties
in input parameters and model set-up, and tests for convergence onto a
stable result using two parallel Markov chains (see Beck et al., 2018 for
more details). Unlike methods which predefine the number of slip events
and displacement sizes (e.g. Schlagenhauf et al., 2010; Tikhomirov et al.,
2019; Tesson and Benedetti, 2019), the Beck et al. (2018) code itera-
tively searches for these parameters. The iterative approach facilitates
identification of periods of high or low slip rates, potentially associated
with temporal earthquake clustering, rather than individual

earthquakes. Additionally, proposed slip histories are drawn from a
Brownian-passage-time model (BPT) of earthquake recurrence over a
time period set by the user. We have chosen 120 ka for the start of the
model runs, with the code choosing the time when erosion rates
decreased associated with the demise of the last glaciation through
iteration of this value guided by the fit of predicted 3°Cl concentrations
to measured 2°Cl concentrations. The BPT model allows the possibility
of both constant and fluctuating pre-LGM slip rates to generate possible
36C1 concentrations from this time, rather than using a single value for
pre-exposure or glacial period slip rate (see Schlagenhauf et al., 2010;
Tesson and Benedetti, 2019). The modelling ranks slip-histories using
the fit of proposed 3°Cl concentrations to the measured values, using the
least squares solution, an ensemble of the top 1000 least squares solu-
tions (or another number of choice), and the posterior distribution of
highest likelihood solutions, showing the median and 90 % confidence
bands after a 50 % model run burn-in. Full model results for the two sites
are presented in Electronic Supplement S2ab and S2bb. The age of the
fault scarp is not required to be pre-defined in the Beck et al. (2018) code
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and we do not force the code to constrain the slip history to be only after
the LGM because it has been shown that the age of different fault scarps
likely vary based on factors such as elevation and latitude (Iezzi et al.,
2021).

Once the two parallel Markov chains in the Beck code have
converged, as quantified using the Gelman-Rubin test (see Electronic
Supplement S2ab and S2bb), we then interpret the initiation and
termination of each cluster or anticluster from model output (compare
Figs. 4 and 5). These interpretations are based on the consideration of
three indicators from the modelled 3°Cl slip history (e.g. see Roberts
et al., 2024). Increases (cluster initiation) and decreases (cluster termi-
nation) in slip rate are identified using the following: (1) steepening and
shallowing staircase patterns in the least squares solution, which offers
the best fit to the data; (2) concave-up and concave-down inflections in
the 90 % confidence lines derived from the full posterior distribution; (3)
the density of models derived from, for example, the top 10000, 2000
and/or top 100 least squares solutions, to be chosen by the user. The
interpretation of the duration of a period of clustering or anticlustering
and the amount of slip in a cluster is therefore somewhat subjective due
to the possible bias of the user, but we argue that clear signals of fluc-
tuating slip rate can be identified within the results, accepting a likely ~
+0.5 kyrs of uncertainty associated with the timing of our
interpretations.

Also, we only interpret periods of rapid slip as earthquake clusters
where the slip accumulated is too large to be accommodated by single
earthquakes (lezzi et al., 2021), defined by the maximum expected
coseismic slip for a given fault as per length-displacement scaling (Wells
and Coppersmith, 1994). Anticlusters are periods of relatively low to no
slip between clusters, and these periods have slip rates that are lower
than that defined by the total slip since slip was preserved, as defined by
the modelling of the 36Cl data. It is challenging to calculate the exact slip

[a] Skinos Fault

x10°
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rates implied by our modelling because of the subjective choice of how
to weight the (1) least squares slip history, (2) the ensemble of least
squares slip histories or (3) the median slip history from the posterior
distribution. To address this, we used a combination of all three statis-
tical solutions to aid our interpretations of the slip rates through time. To
aid visualization of the results, we show representative gradients of
different slip-rates as part of the key in Fig. 4aii, bii, and 5ai, bi. The slip
rate uncertainty we assign of 0.5 mm/yr was constrained by iterative
adjustments of pixel dimensions in the least squares models during
visualization. Since pixel size is a subjective choice, the uncertainties
themselves are subjective.

4. Results
4.1. Field site characteristics of the Skinos Fault

The 3°Cl sampling site on the Skinos Fault was chosen from the
structural mapping of the fault zone and 1981 ruptures conducted by
Mitchell et al. (2024); their site 324. The key field measured parameters
used for modelling include a fault dip of 59°, a post-glacial slip of 14.6
m, a trench depth of 0.73 m, and lower and upper slope dips of 35°.

The chosen site meets the *Cl sample site selection criteria of Cowie
etal. (2017), confirming that the scarp was exhumed by surface faulting
rather than sedimentation, erosion, and post-depositional disturbance.
The chosen site exhibits the following attributes: (1) The hanging wall
cut-off is horizontal and un-incised, lacking sediment cones, which rules
out burial by sediment supply from the footwall; (2) the fault plane
forms a sub-horizontal contact with the lower slope, so this excludes
localised mass movement both perpendicular to the fault and along
strike; (3) the lower slope is free of incised gullies, so this excludes the
possibility of erosion or sedimentation contributing to exhumation or
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burial through time; and (4) similarly, the upper slope is preserved and
planar with no incised gullies so as to exclude movement of material
from the footwall to the hanging wall after scarp formation. These
characteristics confirm that fault plane exposure resulted from surface
faulting after slope stabilisation, with slope stabilisation occurring due
to the reduction of free-thaw action associated with the climatic con-
ditions associated with the LGM (Piccardi et al., 1999; Roberts and
Michetti, 2004; Cowie et al., 2017; Iezzi et al., 2021; Mildon et al., 2022)
(Fig. 2a and b and Fig. 3aiv).

4.2. 38Cl concentrations of the Skinos Fault

The concentrations of *°Cl increase up the dip and slip vector azi-
muth of the fault planes and this is due to more >°Cl being formed
through longer exposure up the fault scarp as the fault slips (Fig. 4ai,bi).
Disturbances in this trend can be produced by variations in the Ca
concentrations, as well as changes in slip rates. However, we measure
the Ca concentration for each sample and the code is provided with this
information. The concentration profiles differ for the Pisia and Skinos
sites with the highest measured values at the Pisia site reaching 4.75 x
10° at/g, whereas the topmost samples from the Skinos site exhibit
lower concentrations of 2.1 x 10° at/g. This is due to a combination of
the different extents of the preserved and hence sampled fault planes,

but also due to differing exposure histories and we show the results of
modelling in Fig. 4aii and 4bii and our temporal cluster interpretations
in Fig. 5ai and 5bi. Note that we did encounter one anomalously low Cl
measurement at +118 m on the Skinos Fault (see Electronic Supplement
S1c). Examination of this sample showed that the anomalously low 36Cl
in this sample is coincident with local fractures. It is likely that the local
fractures contain low 2°Cl because fractures are pathways for the influx
of meteoric water which might precipitate a young calcite vadose
cement (mineral precipitate from infiltrating water in the unsaturated
zone above the water table). This would lead to lower overall 3°Cl
concentration in the overall bulk sample. As this sample was probably
altered in its 36Cl concentration by non-tectonic causes, we excluded it
from the modelling.

4.3. 35Cl modelling results and slip rate interpretations

The results of the MCMC modelling, shown in Figs. 4 and 5, reveal
fluctuations in slip rate through time and Fig. 6 shows the parameters
that were iterated during the modelling. The results show that surface
slip has progressively produced growth of the fault scarps. Slip rates on
both faults were variable over multiple millennia and some constraints
have been resolved on the timing of when slip started to be preserved,
that is, the age of the preserved scarp (Figs. 4 and 5). Surface slip has



S. Mitchell et al.

[a] Skinos Fault

Journal of Structural Geology 198 (2025) 105445

90% confidence ~ === median = = least squares = = 1981 earthquakes

0.4
0.2

i)

0.1 0.2

0.05

200

Slow muon capture
production at
surface (a/glyr) ¥,

| vii)

Frequency

02 — 02 F— 0.4
v) vi)

1 01 0.1 0.2

0 0 0

300 1200 1400 1600 1800 -5000 -3000 -1000 ‘\00000 600® oqot°
Muonic attenuation Tinit (yr)
length (g/cm?) A,

Trecent (yr)

0 0 0 0
12 14 16 1.8 40 45 50 55 180 200 220 100
Colluvial density Spallogenic Spallation attenuation
(g/cm?®) production at surface length (g/cm?) A,
. (a/glyr) s
[b] Pisia Fault
I 0.1
1 2 0.2
0.2 0.2
0.1 0.1 0.1
0 0 0 0
12 14 16 18 40 45 50 55 180 200 220 100
Colluvial density Spallogenic Spallation attenuation
(g/em®) production at surface length (g/cm?) Agp

(a/glyr) ¥

iVj V)' g | l| 0.5
0

0.1
0
200 300
Slow muon capture
production at
surface (a/glyr) ¥,

Frequency

0
6000030000 5000
Tinit (yr)

1300 1500 1700
Muonic attenuation
length (g/cm?®) A,

-2000
Trecent (yr)

-1000 0

Fig. 6. Parameters iterated in the MCMC modelling of the 36Cl data on the (a) Skinos Fault and (b) Pisia Fault. Medians and 90 % confidence from the posterior
distributions after 50 % burn-in for (i) colluvial density, (ii) spallogenic production, (iii) spallation attenuation length, (iv) slow muon capture, (v) muonic atten-
uation length, (vi) age of last earthquake (Trecent) and (vii) age from which production is preserved (Tinit), and the values for the least squares solution. The 1981

earthquakes are indicated on (vi).

been preserved since at least ~20 ka (see Electronic Supplement S2af
and S2bf) but the certainty of older slip history is limited by the avail-
ability of preserved fault plane exposures. The upper part of the fault
plane was eroded, so no sampling was possible of its earliest exposed
surfaces, as indicated by the measured scarp profiles (Fig. 3aiii, biii). The
Skinos Fault site has a preserved free-face of only 4.2 m, compared to
8.45 m at the Pisia site, which may contribute to the less clear early slip
history on the Skinos Fault. However, the older part of the slip history is
also constrained to a degree by the overall shape of the 3°Cl profile and
hence the exhumation history of the younger samples. Thus, in Figs. 4
and 5 we mainly concentrated our interpretations on the younger parts
of the slip histories which are likely to be better constrained. In addition,
while the Pisia samples were extracted with closely-spaced samples, and
the Skinos samples were less closely spaced, this and previous studies
(see Electronic Supplement S2c¢ and lezzi et al., 2021, their supple-
mentary material S3c) show that degrading the number of samples up to
a point does not affect the overall slip history, confirming the robustness
and reliability of the results.

The slip rate histories inferred from 2°Cl modelling suggest that the
two faults have experienced different alternating periods of rapid slip
and little or no slip over the last ~20 ka (Fig. 5ai,bi). Based on the
modelled results, we interpret that the Pisia Fault had a low slip rate of
~0.5-0.75 mm/yr from ~20 ka to 9.6 + 0.5 ka, which was followed by a
relatively high slip rate of ~1.25 mm/yr from 9.6 + 0.5 ka to 5.2 = 0.5
ka (Fig. 5bi). At 5.2 + 0.5 ka, the Pisia Fault slows to a low slip rate of
~0.25 mm/yr or less, maintaining this relatively low slip rate until 2.0
+ 0.5 ka. Subsequently, from 2.0 + 0.5 ka to the present day, the slip
rate on the Pisia Fault sees an increase to ~1.25-1.5 mm/yr from its
previously lower slip rate. Regarding the Skinos Fault, we observe a very
low slip rate of ~0.25 mm/yr or less from ~20 ka to 6.4 + 0.5 ka
(Fig. 5ai). At 6.4 + 0.5 ka to the present day or possibly around ~1.0 +
0.5 ka, the Skinos Fault accelerates to a very high slip rate of ~2.0-3.0
mm/yr. These values on the Skinos Fault are consistent with throw rate
estimates from a paleoseismic trenching site located 8 km along the
strike of the Skinos Fault on the Vamvakies fan (0.7-2.5 mm/yr over the
last ~1.5 kyrs; Collier et al., 1998), which closely align with the throw
rate derived in this study (~1.7-2.6 mm/yr over the same period,

converted from a slip rate of ~2.0-3.0 mm/yr and a fault dip of 59°).

A notable observation we make from comparing the slip rate his-
tories of the two faults is that, at times, specifically from ~9.4 ka to ~6.4
ka and ~5.2 ka to ~2.0 ka, their patterns of alternating periods of slip
are out-of-phase with each other; one fault has high slip rates whilst the
other fault has low slip rates and vice versa (Fig. 5). This out-of-phase
relationship seems to dominate and is especially clear in the pattern of
slip rates displayed by the median of the posterior distribution of highest
likelihood solutions (Fig. 5aii,bii) at ~4.0 ka as the Skinos Fault had a
maximum slip rate of ~2 mm/yr whilst the Pisia Fault had a minimum
slip rate of near 0 mm/yr. At other times, we observe periods of
simultaneous slip of the two faults, for example from 6.4 + 0.5 ka to 5.2
+ 0.5 ka and 2.0 £ 0.5 ka to the present day or possibly ~1.0 + 0.5 ka
(Fig. 5ai,bi); both faults have relatively high slip rates at the same time.
During the first instance of simultaneous slip, the Pisia Fault seems to be
slowing down whilst the Skinos Fault seems to accelerate. Conversely,
during the second instance of simultaneous slip from 2.0 + 0.5 ka to
possibly the present day whereby the Skinos Fault appears to be slowing,
whilst the Pisia Fault appears to be accelerating. Overall, these results
suggest a long-term alternation between periods of out-of-phase slip and
periods of simultaneous slip, and during the latter, their slip rates switch
in opposite directions, with the faults exhibiting either acceleration or
deceleration.

Note the exact values for slip rate in Fig. 5aii and 5bii are challenging
to interpret because this figure only shows the results from the posterior
distribution which will include results from immediately after reverse
jumps in the Markov chains, so the exact values are difficult to extract
but generally the pattern shows that the faults are out-of-phase at ~4.0
ka.

The slip rate patterns can also be visualised with regard to best fit
between the measured and modelled *°Cl concentrations using the least
squares solutions and ensembles of least squares solutions (Figs. 4 and
5).

5. Discussion

Our overall finding is that sampled parts of the Pisia and Skinos
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Fig. 7. Summary of slip relationships between the Skinos and Pisia Faults. (a) 3D tectonic map of the Perachora peninsula showing the Pisia and Skinos Fault traces
and locations of the 3°Cl sample sites from our study and Mechernich et al. (2018). (b) Schematic cross-section across the Gerania Mountains simplified from Fig. 1d
showing the two north-dipping faults producing two half grabens with both faults displacing a thrust-derived ophiolite fragment by ~450 m each and the dis-
placements that we presently observe likely developed over the million(s) years timescale. (c) Schematic scarp profiles of the Pisia and Skinos Faults simplified from
Fig. 3aiii and 3biii showing both faults have 14.6 m of post-glacial slip each over 20-30 kyrs. (d) Slip rate histories and slip rate changes of the Skinos and Pisia Faults
simplified from Fig. 5 showing the changes in slip rate on both faults and their out of phase and simultaneous slip relationships. Blue rectangles show periods of high
slip rate (temporal cluster). Grey rectangles show periods of relatively slow slip rate (temporal anticluster). Purple rectangles indicate periods when one fault is
experiencing a high slip rate while the other is in a low slip rate. Green rectangles indicate periods when both faults are experiencing relatively high slip rates (same
as Fig. 5). Only the least squares solutions are displayed on the slip vs time plots. (e) The discretised coseismic throw profiles from the 1981 earthquakes on the Pisia
and Skinos Faults in the zone of overlap between the faults simplified from Fig. 1fii-iv showing the anti-correlated relationship of the along-strike throw profiles
between the Pisia and Skinos Faults and the combined throw profile displaying a symmetrical shape (Mitchell et al., 2024). (For interpretation of the references to
Eolour in this figure legend, the reader is referred to the Web version of this article.)

Faults show temporal periods of alternating out-of-phase or simulta-
neous slip on a multi-millennial timescale. This alternating slip behav-
iour through time exists alongside knowledge that both faults (a)
ruptured in the 1981 earthquake sequence with spatially out-of-phase
slip (Fig. 1f; Mitchell et al., 2024), (b) share very similar total offsets
of Alpine thrust sheets that developed on the millions of years timescale
(Fig. 1e), (c) share similar offsets across post-demise of the LGM faults
scarps that developed over the last few tens of millennia (Fig. 3aiii and
3biii), and (d) share the same regional stress and velocity fields (Fig. 1;
Billiris et al., 1991; Briole et al., 2021) (Fig. 7). The close proximity of
the two faults, which form an en echelon arrangement with an
along-strike overlap of ~8-10 km and an across-strike spacing of 1-2 km
(Fig. 1), together with spatially out-of-phase slip on the timescale of a
single earthquake sequence and the temporally out-of-phase slip over
multiple millennia, suggest interactions between the two fault struc-
tures. Below we discuss the possible reasons for this complex fault
behaviour.

We have documented, periods of temporally out-of-phase slip on the
Skinos and Pisia Faults, and, as mentioned above, this phenomenon has
been reported by other authors (e.g. Dolan et al., 2007; lezzi et al., 2021;
Mildon et al., 2022; Roberts et al., 2024). However, unlike other ex-
amples whereby the across-strike faults are likely to have separate shear
zones at depth due to across-strike distances of 100 s km (Fig. 8a; e.g.
Dolan et al., 2007) or 10 s km (Fig. 8b; e.g. Mildon et al., 2022; Roberts
et al., 2024) between the faults, the proximity of the closely spaced (less
than 1-2 km of across-strike separation) Skinos and Pisia Faults implies
that it is unlikely that they have separate shear zones. Thus, it is unlikely
that the out-of-phase slip on the Skinos and Pisia Faults can be explained
by different overall conditions for their shear zones, such as annealing
versus strain-hardening (Dolan et al., 2007) or differential stress changes
inducing changes in strain rate (Mildon et al., 2022; Roberts et al.,
2024); another mechanism(s) must be at work to produce the
out-of-phase slip (Fig. 8c).

We suggest that the out-of-phase slip relationship and periods of
simultaneous slip on both faults imply that the faults are working
together as one on a millennial timescale, so that the overall slip rate is
shared between the faults to accommodate the regional strain rate. Both
faults can slip at the same time, perhaps with slip dispersed through an
anastomosing network of brittle faults above the brittle-viscous transi-
tion which connects the Skinos and Pisia Faults (Fig. 8cii-vi). In other
words, at times it appears that the slip rate on the underlying shear-zone
makes its way upwards through the interconnected anastomosing
network of brittle faults at the brittle-viscous transition, and eventually
separates upwards onto the discrete Skinos and Pisia Faults (Fig. 8civ,
vii). At other times, the faults slip separately, perhaps because slip
through an anastomosing network targets the weaker fault, causing the
Contrasts in strength could be caused by, for example, heterogeneities in
the fault gouges in the upper crust or perhaps even fluid involvement. If
there is low frictional resistance on both faults due to the gouge having
undergone strain-softening during its microstructural evolution, both
faults may slip during the same time period. Alternatively, if there is
relatively high frictional resistance due to strain-hardening of one fault’s
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gouge, the other fault might slip. Changes in the frictional resistance in
gouges may result from microscale processes such as crystallographic
orientation changes, grain-size variations, or fluid content changes (e.g.
Cladouhos, 1999; Roberts et al., 1993; Ohl et al., 2021; Angevine et al.,
1982; Di Toro et al., 2011; Zhu et al., 2020), or the influence of rate and
state friction (Biemiller and Lavier, 2017). While our study does not
include microscale analyses, similar frictional processes have been
observed on multiple faults in the Corinth Rift including the Skinos
Fault. For example, carbonate fault rocks on these faults have been
shown to undergo cyclic grain-size reduction and induration phases, and
cyclic production of crystallographic preferred orientations leading to
grain-boundary migration and annealing, influencing frictional resis-
tance over time (Roberts et al., 1993; Ohl et al., 2021). In other fault
zones, grain-size reduction and grain attrition has been suggested to
reduce stress concentration at grain-to-grain contacts, which can lead to
gouge to lock-up and hence strain-hardening (Cladouhos, 1999). In
contrast, introduction of new grains plucked from the damage zone can
re-set the grain-size distribution, increasing stresses at grain boundaries,
which can lead to strain-softening (Cladouhos, 1999). Additionally, the
introduction of fluids can either lubricate the slip by reducing normal
stresses (e.g. Di Toro et al., 2011; Zhu et al., 2020) or promote cemen-
tation or diffusive mass transfer, potentially locking or unlocking slip
(Angevine et al., 1982). The influence of rate and state friction can also
produce pulses of alternating slip rate due to changes in the smoothing
factor (see Biemiller and Lavier, 2017, their Fig. 4e). We suggest that
these complex changes in fault zone rheology may influence how slip is
distributed within the anastomosing network of faults that includes the
Pisia and Skinos Faults.

Another scenario may be that, although a single relatively narrow
shear zone ~1-2 km wide is likely to exist at depth beneath the brittle-
viscous transition under the Pisia and Skinos Faults, perhaps at times
different portions of this shear zone are at different stages of the dislo-
cation creep and annealing cycle. Dislocations piling up at grain
boundaries in one portion of the shear zone could promote strain-
hardening, whilst elsewhere within the same shear zone annealing
could produce new strain-free grains that promote renewed dislocation
creep (Knipe, 1989; compare with Dolan et al., 2007); this may activate
either the Pisia Fault or Skinos Fault at any one time. At other times the
rheology of the shear-zone might be uniform across its extent promoting
simultaneous slip on both the Pisia and Skinos faults.

Whatever the cause of the alternating slip behaviour on the 10°-10*
years timescale, in the case of the Skinos and Pisia Faults, shared growth
is implied by the fact that both faults have slipped by similar amounts
over several million years evidenced by the similar ~450 m offsets of
features in the pre-rift geology such as the thrust carrying the ophiolite
(Figs. 1e and 7b). The faults also share the same post slope stabilisation
slip of 14.6 m which has developed over the last few tens of millennia
(Fig. 3aiii, biii and Fig. 7c; Electronic Supplement S2af and S2bf). On the
coseismic timescale of a single earthquake sequence, shared fault growth
has been evidenced by the spatially out-of-phase throw profiles from the
1981 earthquakes, where slip deficits in the set of ruptures from one
fault seem to be filled in by slip maxima in the set of ruptures from the
other fault, immediately across-strike, and vice versa (Figs. 1f and 7e)
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(slipping faults marked by a thick red line) on one of the faults (differential stress contours redrawn from Mildon et al., 2022, their Fig. 2). All three fault spacings
have been shown to exhibit out-of-phase fault behaviour (adapted from ideas in Dolan et al., 2007; Mildon et al., 2022; Roberts et al., 2024; this study). (a) 100 km
spacing is too large for stress interactions to explain out-of-phase behaviour, which may instead be produced by competing rates of rapid viscous slip, strain
hardening and annealing, with the weakest shear zone at any given time localising coseismic slip above it (Dolan et al., 2007). (b) 20 km spacing allows stress
interactions to change viscous strain rates on shear zones because strain rate is proportional to the differential stress raised to the power “n” (Hirth et al., 2001), and
this has been shown to be consistent with out-of-phase behaviour for this fault spacing (Mildon et al., 2022; Roberts et al., 2024). (c) 2 km fault spacing (this study)
implies that the viscous roots of both faults will share similar stress histories because of their close spacing, and hence may also share similar microstructural
evolution. The reason for the out-of-phase and simultaneous slip behaviour documented in this study is unclear, yet fault spacings as low as 2 km are common
worldwide, so this requires further study. (i) Possible arrangements of closely spaced faults at depth, either separated or joined. The stress patterns are schematic and
not re-calculated for the exact slip distribution as we only seek to show the relative across-strike length scales of the fault spacing and stress changes. (ii), (iii) and (iv)
are slip scenarios for separated faults, and (v), (vi) and (vii) are slip scenarios for joined faults located in the left and right boxes of (i), respectively. (ii) to (vii) show
how slip can take alternative routes through a mesh of closely spaced faults and thus share similar overall imposed stresses. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this article.)

(Mitchell et al., 2024). Thus, over timescales of a few seconds to hours different timescales are important because other examples of normal
during single earthquake sequences, over timescales of a few tens of faults with similar structural geometries exist worldwide, and they may
millennia since slope stabilisation, and over timescales of a few million show similar complexity in behaviour. For example, in the Basin and
years associated with offsets or pre-existing thrusts, neither fault seems Range Province of the US, the Pleasant Valley Fault (Wallace et al.,
to dominate slip. Combining this evidence, we suggest that the two 1984), Hebgen Lake Fault (Doser, 1985) and Dixie Valley and Fairview
faults may, in general, share slip through being connected at depth by a Peak Faults (Slemmons, 1957; Scholz, 2010) all experienced historical
shared shear zone and an anastomosing network of faults. In other earthquake rupture of across-strike faults spaced by distances of just a
words, the Skinos and Pisia Faults appear to be acting as a single com- few kilometres, similar to that for the Skinos and Pisia Faults. We have
bined fault-zone/shear-zone. discussed possible reasons for the complexity of slip over different time

These complexities in the temporal and spatial patterns of slip over periods, but clearly further work is required to constrain the reasons for
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out-of-phase and simultaneous slip on faults that are so closely spaced
across strike that they are likely to share the same underlying shear
zone. In particular, such research could help better understand the
probability of across-strike faults co-rupturing and help identify the fault
configurations that could either increase or decrease the likelihood of
subsequent earthquake ruptures occurring on closely spaced
across-strike faults.

Multi-fault ruptures, as implied by our hypothesised mechanism(s)
and identification of simultaneous slip on both faults, may suggest that
the faults could rupture individually or both rupture together. The latter
would likely produce a higher magnitude of earthquake shaking. In
addition, in terms of determining the nature of segment boundaries for
the assessment of seismic hazard, it has been suggested that some
segment boundaries may either be persistent, meaning they always stop
the migration of ruptures, or non-persistent, meaning they sometimes
allow ruptures to jump across them (Wheeler et al., 1989; Crone and
Haller, 1991; Zhang et al., 1991; DuRoss, 2008; DuRoss et al., 2016;
Philibosian and Meltzner, 2020). For example, one estimate suggests
that a segment boundary of 3-4 km across will be persistent, with ex-
amples with smaller dimensions being non-persistent (Wesnousky,
2006). Indeed, it has since been proposed that specific size parameters,
such as these dimensions of fault segment boundaries, determine
whether ruptures can jump from one fault across a segment boundary
onto a neighbouring fault (Field et al., 2009, 2014). However, for the
Pisia and Skinos Faults, our findings indicate that at times ruptures can
jump between the two faults, separated in time by just a few hours,
whilst at other times they do not, indicating that the structure can
alternate between being persistent or non-persistent.

Another critical factor highlighted by our work that should be
considered for the assessment of seismic hazard, is that while the
regional extension rate is probably constant through time, it is likely to
be partitioned differently between individual structures through time (e.
g. Jackson, 1987). This is evidenced by our finding that slip rates fluc-
tuate over multi-millennial timescales. For example, using inferred
average slip rates for the Skinos Fault (0.25 mm/yr, 2.5 mm/yr, and
1.38 mm/yr) and the Pisia Fault (1.25 mm/yr, 0.25 mm/yr, and 1.38
mm/yr) across time slices of 10-6 ka, 6-2 ka, and 2-0 ka, and applying
fault dips of 59° and 62°, respectively, we calculated combined heave
rates of 0.72 mm/yr (10-6 ka), 1.40 mm/yr (6-2 ka), and 1.35 mm/yr
(2-0 ka). These results reveal significant temporal variability in heave
rate, and thus extension rates, with the combined rate nearly doubling
from 0.72 mm/yr (10-6 ka) to 1.40 mm/yr (6-2 ka), before a slight
decrease to 1.35 mm/yr in the most recent time slice. We argue that
these heave-rate changes reflect changes in local strain accumulation
and shifts in activity between faults. These combined heave rates are
significantly lower than the GNSS-derived extension rate of 5-6 mm/yr
for the eastern Gulf of Corinth (Briole et al., 2021), indicating that the
Pisia and Skinos Faults alone cannot account for the full extension
measured by GNSS, implying that multiple other active faults, probably
offshore, contribute to the total strain budget of this region. However,
our findings of slip rates varying through time suggests that faults in
seismically active regions likely experience temporal changes in slip
rates. These findings underscore the importance of incorporating tem-
poral variability in local extension rates into probabilistic seismic hazard
models to better capture the seismic hazard posed by fault systems with
complex, time-dependent behaviour.

Overall, our work provides new insights into the seismic hazard
represented by closely-spaced en echelon faults and highlights the need
for further studies of earthquake recurrence on such structures over
multi-millennial timescales.

6. Conclusions
This study analysed the multi-millennia slip rate histories of the

closely spaced Skinos and Pisia Faults in Greece using in situ 3°Cl
cosmogenic exposure dating. Our findings reveal a relationship of
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alternating out-of-phase slip and simultaneous slip, indicating interac-
tion between these faults over millennial timescales.

(1) The Pisia Fault exhibited variable slip rates, with an initial low
slip rate of ~0.5-0.75 mm/yr from ~20 ka to 9.6 + 0.5 ka, fol-
lowed by an increase to ~1.25 mm/yr until 5.2 + 0.5 ka. After a
subsequent decrease to ~0.25 mm/yr or less until ~2.0 + 0.5 ka,
its slip rate accelerated again to ~1.25-1.5 mm/yr to the present
day.

(2) The Skinos Fault maintained a low slip rate of ~0.25 mm/yr or
less until ~6.4 + 0.5 ka, after which it accelerated to ~2.0-3.0
mm/yr, a rate that persisted until the present or slightly earlier,
~1 ka.

(3) Comparison of these slip histories reveals alternating periods of
out-of-phase and simultaneous slip. Out-of-phase behaviour was
observed between ~9.6 ka and ~6.4 ka, as well as from ~5.2 ka
to ~2.0 ka, and simultaneous slip occurred from ~6.4 ka to ~5.2
ka and from ~2.0 ka to the present or ~1 ka. This pattern may
suggest that the faults interact through a shared underlying shear
zone and are connected by a network of faults above the brittle-
ductile transition. The slip on the faults may be dictated by
changes in frictional resistance within the fault gouge in the
network of faults.
These findings have broader implications for fault systems glob-
ally, as similar interactions may occur in other regions with
closely spaced across-strike faults. Further studies integrating
36C1 cosmogenic dating are needed to identify slip relationships
over millennial timescales.
These findings contribute to seismic hazard assessment by
demonstrating that slip may be shared between across-strike
faults within the evolving South Alkyonides Fault Zone. Future
research should investigate how fault rheology and stress in-
teractions influence rupture propagation and earthquake clus-
tering, ultimately refining models of fault behaviour and seismic
risk.

(€]

)

We recommend similar studies of fault behaviour over different
timescales should be conducted on other examples of closely spaced
across-strike faults. Analysing slip relationships between across-strike
faults using fault slip histories over multi-millennia, as demonstrated
herein, may prove crucial for understanding earthquake activity, the
faulting process and the potential seismic hazard associated with such
complex fault systems.
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