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Zusammenfassung 

Die Porosität eines Flussbetts ist eine zentrale strukturelle Eigenschaft, die sich aus der 

Packung von Flusssedimenten unterschiedlicher Größe und Form ergibt. Sie wird als das 

Verhältnis des Porenvolumens zum Gesamtvolumen definiert und ist für nahezu jede 

Untersuchung des Flussbetts von Bedeutung. Morphologisch bestimmt die Porosität die 

Sedimentkonzentration im Flussbett und somit die Geschwindigkeit von Änderungen des 

Sohlenprofils. Ökologisch beeinflusst sie den interstitiellen Raum der hyporheischen 

Zone, der für aquatische Lebensräume entscheidend ist. Geologisch dominiert die 

Bedeutung der Porosität die nutzbaren Reserven von Öl, Gas und Grundwasser, die in 

den Hohlräumen fluvialer Ablagerungen gespeichert sind. 

Trotz ihrer wichtigen Rolle sind Informationen über die räumliche Variabilität der 

Porosität im Flussbett selten verfügbar. Stattdessen wird die Porosität oft als räumlich 

konstant angenommen, was zu systematischen Fehlern in morphologischen, 

ökologischen und geologischen Studien führen kann. Dies liegt teilweise an den hohen 

Kosten und dem Aufwand für In-situ-Messungen der Porosität. Als Alternative erweisen 

sich mathematische Porositätsprädiktoren als effektives Mittel, um die Porosität 

basierend auf beeinflussenden Faktoren wie Korngröße, Kornform und Packungszustand 

zu schätzen. Bisher konnte jedoch kein Modell zufriedenstellende Ergebnisse hinsichtlich 

Universalität, Genauigkeit und Effizienz liefern. Regressionsbasierte Modelle sind zwar 

einfach anzuwenden, aber oft unzureichend, wenn sie außerhalb des ursprünglichen 

Datensatzes verwendet werden. Bestehende analytische Modelle sind trotz ihrer 

allgemeinen Nützlichkeit komplex zu berechnen und unterschätzen systematisch die 

Porosität aufgrund ihrer grundlegenden Annahmen. 

In dieser Arbeit wurde ein neuartiger mathematischer Porositätsprädiktor entwickelt, 

der allgemein, genau und einfach anzuwenden ist. Als erster Schritt wurde der Einfluss 

der Korngröße auf die Porosität untersucht, wobei die Sedimentform als sphärisch 

angenommen wurde. Im Gegensatz zu traditionellen analytischen Modellen, die 

typischerweise aus der Analyse binärer Mischungen von Kugeln abgeleitet und dann zu 

komplexen Modellen für beliebige Kugelpackungen erweitert werden, kehrt diese Studie 

diesen Prozess um, indem sie beliebige Kugelpackungen in eine binäre Kugelmischung 

konzeptualisiert. Dies wurde durch das neu vorgeschlagene Konzept der binären Einheit 

erreicht, das besagt, dass jede multi- oder kontinuierlich größenverteilte Kugelmischung 

durch identische Korngrößenstatistiken (Mittelwert, Standardabweichung und Schiefe) in 

eine äquivalente binäre Kugelmischung umgewandelt werden kann. Die erhaltene binäre 

Mischung stellt die elementarste Kugelpackungseinheit dar, die die Vielfalt der 

intrapartikulären Wechselwirkungen in den ursprünglichen Kugelmischungen d. h. die 
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Misch- und Entmischungseffekte äquivalent repräsentiert. Mit diesem Konzept kann das 

Modell, das als binäres Einheitspackungsmodell (BUC) bezeichnet wird, die Porosität 

komplexer Kugelpackungen allein durch die Nutzung von Modellen zur Vorhersage der 

Porosität binärer Kugelpackungen schätzen. Das Westman-Gleichungsmodell wird 

hierfür empfohlen. Die Validierung anhand von 85 digitalen Kugel-Flussbetten, die durch 

einen validierten nicht-glatten Granulardynamik-Algorithmus (NSGD) erzeugt wurden, 

zeigte, dass das BUC-Modell sehr genaue Porositätsvorhersagen mit einem mittleren 

quadratischen Fehler (RMSE) von 0,01 liefert. 

Anschließend wurde der Einfluss nicht-sphärischer Kornformen in das BUC-Modell 

integriert, um die Porosität fluvialer Sedimente vollständig zu erfassen. Zunächst wurde 

eine ideale regelmäßige Form verwendet, um die komplexen Kornformen zu 

vereinfachen. 241 Sedimentpartikel wurden hochauflösend gescannt und mit vier 

Kandidaten regelmäßiger Formen verglichen: Quader, elliptische Scheibe, abgestumpftes 

Oktaeder und Ellipsoid. Es wurde festgestellt, dass das Ellipsoid die beste 

Formähnlichkeit zu fluviatilen Sedimenten aufweist und somit als angemessener Ersatz 

dient. Nach dem Konzept des äquivalenten Packungsdurchmessers kann eine nicht-

sphärische (ellipsoide) Sedimentmischung in eine Kugelpackung mit einem äquivalenten 

Größeneffekt auf die Porosität umgewandelt werden. Diese kann gut vom BUC-Modell 

behandelt werden in Kombination mit einer Anfangsporosität, die den isolierten Effekt 

der nicht-sphärischen Form in einem bestimmten Packungsstadium erfasst. Die drei 

theoretischen Transformationen - von Sediment zu Ellipsoidpackung, von Ellipsoid zu 

Kugelpackung und von Kugel- zu binärer Kugelpackung - bilden die Grundlage des 

integrierten BUC (IBUC)-Modells. 

Das IBUC-Modell erfordert nur zwei Eingaben: die Korngrößenverteilung (GSD) 

der transformierten Kugelpackung und die Anfangsporosität. Es wurde gezeigt, dass die 

GSD der Kugelpackung gut mit der gemessenen GSD der ursprünglichen 

Sedimentpackung approximiert werden kann. Für praktische Zwecke wurde die 

Verwendung einer gemessenen mittleren Anfangsporosität als allgemeine Repräsentation 

für einen untersuchten lokalen Standort vorgeschlagen. Trotz dieser Vereinfachung 

erreichte das IBUC-Modell immer noch genaue Porositätsvorhersagen mit einem RMSE 

von 0,03, validiert anhand von 138 Porositätsmessdaten aus vier verschiedenen 

Flussbetten: Rhein, Bès, Galabre und Kuqa. 

Insgesamt positioniert sich das IBUC-Modell aufgrund seiner Allgemeingültigkeit, 

Einfachheit und Vorhersageleistung als ein hochmodernes Werkzeug zur Untersuchung 

der räumlichen Variabilität der Porosität im Flussbett. Darüber hinaus wird erwartet, dass 

das Konzept der binären Einheit, ein Schlüsselbestandteil des IBUC-Modells, über die 

Porositätsschätzung hinausgeht, da intrapartikuläre Wechselwirkungen eine Reihe 

anderer Faktoren beeinflussen. Potenzielle Anwendungen umfassen die Schätzung der 

Permeabilität in Sedimentmischungen, die Bestimmung der Grenzkorngröße für 

morphologische Veränderungen und sogar die Vorhersage des Beginns des 

Sedimenttransports. 
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Abstract 

The porosity of riverbed is a key structural property arising from the packs of fluvial 

sediments in varied sizes and shapes, which is defined as the ratio of pore volume to total 

volume. It is significant to nearly every investigation related to riverbed. For instance, 

morphologically, porosity determines the sediment concentration in the river bed and 

hence the rate of bed level changes. Ecologically, porosity governs the interstitial space 

of the hyporheic zone for aquatic habitats. Geologically, porosity dominates the 

exploitable reserve of oil, gas, and groundwater stored in the voids of fluvial deposits.  

 Despite its important role, information regarding the spatial variations in porosity is 

rarely available in riverbed. Instead, porosity is often simply assumed to be spatially 

constant, which could cause a systematic error in morphological, ecological, and 

geological studies. The reason for this is partly due to the costly and arduous effort for in-

situ measurements on porosity. As an alternative, mathematical porosity predictors turn 

out to be an effective way to estimate porosity based on porosity-controlling factors, such 

as grain size, grain shape and packing state. However, so far, no such a model can provide 

satisfactory results in terms of universality, accuracy, and efficiency. Regression-based 

models, while simple to use, is often insufficient when utilized in regions outside the 

original dataset. On the other hand, existing analytical models despite their general 

usefulness, are complex to compute and have been found to systematically underestimate 

porosity due to their intrinsic assumptions. 

 In this thesis, the objective was to develop a novel mathematical porosity predictor 

that is general, accurate, and simple to apply. As a first step, the grain size effect on 

porosity was explored by assuming sediment shape as spherical. Unlike traditional 

analytical models that are typically derived from the analysis of binary mixtures of 

spheres, and then extended into complex models for arbitrary spherical packings, this 

study reverses such process by conceptualizing arbitrary spherical packings into a binary 

spherical mixture. This was achieved based on a newly proposed binary-unit concept, 

which states that any multi-sized (or continuous) spherical mixture can be transformed 

into an equivalent binary-unit mixture of spheres through the link of identical grain size 

statistics of mean, standard deviation and skewness. The obtained binary mixture is 

actually the most elementary spherical packing unit that can equivalently represent the 

diversity of intraparticle interactions in the original spherical mixtures, i.e., the mixing 

and unmixing effects. With this concept, the model, namely the binary-unit conceptual 

(BUC) packing model, can be readily implemented to estimate the porosity of complex 

spherical packings solely by leveraging models capable of predicting the porosity of a 
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binary spherical packing. The Westman-equation model is recommended for this purpose. 

Validation against 85 digital riverbeds of spheres generated through a validated non-

smooth granular dynamics (NSGD) algorithm suggested that the BUC packing model is 

able to provide very accurate porosity predictions, producing a root-mean-square error 

(RMSE) of 0.01.  

Next, the non-spherical grain shape effect was integrated into the BUC packing 

model in order to fully resolve the porosity of fluvial sediments. Initially, an ideal regular 

shape was employed to simplify the complex grain shapes of fluvial sediments. 241 of 

sediment particles were scanned in high quality, and then compared to four candidate 

regular shapes: cuboid, elliptic disk, truncated octahedron, and ellipsoid. And it was found 

that the ellipsoid renders the best shape similarity to fluvial sediments, allowing it as a 

reasonable surrogate. Following the concept of equivalent packing diameter, a non-

spherical (ellipsoid) sediment mixture can then be converted into a spherical packing with 

an equivalent size effect on porosity that can be well handled by the BUC model, 

alongside an initial porosity capturing the isolated non-spherical shape effect at a specific 

packing stage. The three theoretical transformations, i.e., from sediment to ellipsoid 

packing, from ellipsoid to spherical packing, and from spherical to binary-unit spherical 

packing, form the foundation of the integrated BUC (IBUC) packing model.   

As a result, the IBUC packing model requires only two inputs: the grain size 

distribution (GSD) of the transformed spherical packing, and the initial porosity. It 

demonstrated that the GSD of the spherical packing can be well approximated with the 

measured GSD of the original sediment packing. For practical purposes, the use of a 

measured mean initial porosity has been proposed as a general representation for a local 

site being investigated. Despite this simplification, the IBUC packing model still achieved 

accurate porosity predictions with RMSE of 0.03, when validated against 138 porosity 

measurement data across four diverse riverbeds: the Rhine, Bès, Galabre, and Kuqa.   

Overall, the generality, simplicity, and prediction performance of the IBUC packing 

model positions itself as a state-of-the-art tool for investigating the spatial variability in 

riverbed porosity. In addition, as a key component of the IBUC model, the binary-unit 

concept is expected to go beyond porosity estimation, as intraparticle interactions impact 

a range of other factors. The potential applications involve estimation of permeability in 

sediment mixtures, determination of the cut-off grain size for morphological alterations, 

and even prediction of the incipience of sediment transport. 
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1 Introduction 

 

 

 

 

 

 

Somewhere, something incredible is waiting to be known. 

- Carl Sagan 
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1.1 Backgrounds 

Riverbed porosity, defined as the ratio of pore volume to total volume in fluvial sediments, 

is a fundamental structural property that emerges from the natural arrangement of 

sediments. It plays a critical role in various riverbed studies, serving as a key input for 

calculating sediment density, hydraulic conductivity, and thermal conductivity. 

Understanding porosity is also essential for assessing riverbed mobility, evaluating 

environmental hazards, and guiding economic resource development, such as in 

groundwater management and mining operations.  

Despite its significance, knowledge about spatial variations in riverbed porosity is 

still limited. This gap largely stems from the difficulties of conducting direct in-situ 

measurements, as riverbeds are frequently submerged by flowing water, making the 

process labor-intensive, time-consuming, and expensive. Although alternative methods 

such as laboratory measurements and numerical simulations can provide direct porosity 

estimates for specific cases, these approaches are also impractical for large-scale 

assessments. Laboratory studies require extensive sediment sampling, while numerical 

simulations demand precise information about sediment properties, both of which are 

challenging to obtain on a broad scale.  

Given these constraints, mathematical porosity predictors have emerged as an 

effective alternative. These models estimate porosity based on factors that influence 

sediment packing, such as grain size, grain shape, and depositional environment that can 

result in either loose or dense packing states. Current porosity predictors can be broadly 

categorized into regression-based models and analytical models.  

Regression-based models are developed through statistical analysis, fitting 

mathematical formulas to specific datasets. These models are often straightforward, 

requiring minimal input data, which makes them easy to implement. However, their 

simplicity comes at a cost; they may not perform well when applied to regions or 

conditions outside the scope of the original dataset. 

Analytical models, in contrast, are grounded in theoretical frameworks that 

conceptualize the sediment packing system as an ensemble of different particle classes. 

These models simulate the interactions between particles to estimate the overall porosity 

of the system. While analytical models offer greater generality and can be applied to a 

wider range of conditions, they are often computationally intensive. More importantly, 

due to the assumptions inherent in these models, they tend to underestimate porosity, 

especially in complex or heterogeneous sediment packings.    

In this thesis, the IBUC packing model is developed, i.e., the Integrated Binary-Unit 

Conceptual packing model, to fully resolve the porosity of fluvial sediments in a manner 

that is general, simple, and accurate. The basic principle of this model is to compress an 

arbitrary sediment packing into a binary-unit spherical mixture that embodies the 

equivalent size effects between particles, together with an initial porosity capturing all 
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other porosity-influencing factors, such as the grain shape and packing state. This work 
provides a new perspective on estimating riverbed porosity variations across different 
spatial scales and may also help in understanding other sediment-related issues in fluvial 
systems and hyporheic zone.  

1.2 Outline 

The main contents of this thesis are structured into six chapters that partially build on top 
of each other (Fig. 1.1).  

 

Figure 1.1. A visual representation of the thesis content, with each chapter stacked on top 
of the chapters they build upon. The size of each box is approximately proportional to the 
length of the corresponding chapter.  

Chapter 2 reviews various methodologies in the estimation of packing porosity, 
including field and laboratory measurements, numerical simulations, as well as 
mathematical porosity predictors, and discusses their shortcomings.   

Chapter 3 develops a novel porosity predictor for arbitrary spherical sediment 
packings, namely the binary-unit conceptual (BUC) packing model. The core of the BUC 
model is based on a newly proposed binary-unit concept, which enables to transform any 
multi-sized (or continuous) sphere mixture into an equivalent binary-unit mixture through 
the link of identical grain size statistics of mean, standard deviation and skewness. The 
obtained binary-unit mixture can be viewed as the most elementary packing unit that 
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embodies the equivalent interparticle interactions in the original mixture. With this 

concept, the porosity of spherical sediment packings, no matter how labyrinthine their 

grain size distributions are, can be readily computed through the utilization of models 

capable of predicting the porosity of a binary spherical packing.  

Chapter 4 introduces a stochastic digital packing algorithm, which provides an 

innovative way to pack fluvial sediments of arbitrary shapes and sizes based on 

digitization of both particles and packing space. The purpose is two-fold: first, to test the 

applicability of this packing algorithm in predicting fluvial sediment porosity by 

comparing its predictions with outcomes obtained from laboratory measurements, and 

second, to demonstrate that apart from grain size, grain shape also has a clear impact on 

porosity.   

Chapter 5 addresses the challenges associated with shape measurement, 

characterization, and control for the complex fluvial sediments, by employing an 

idealized regular shape that could approximate the overall form of fluvial sediments. Four 

potential candidate shapes are carefully selected: cuboid, elliptic disk, truncated 

octahedron, and ellipsoid. A comparison with high-resolution scans of sediment particles 

indicates that the ellipsoid shape can render the closest approximation of fluvial sediment 

shape in terms of surface area, volume, and sphericity. Further testing demonstrates that 

ellipsoids also exhibit similar packing behavior when utilized as surrogates for fluvial 

sediments.   

Chapter 6 proposes a new ellipsoid diagram capable of describing the full range of 

ellipsoids using two well-defined parameters, Wadell’s sphericity and Zingg’s intercept 

ratio, which can be directly computed from semi-axis lengths. A non-linear programming 

algorithm (NLP) is presented to quantify the relationship between porosity and mono-

sized ellipsoidal geometry, identifying three distinct porosity trends as functions of 

sphericity and intercept ratio. These trends have been formulated into a piecewise 

equation.   

Chapter 7 establishes the fully integrated binary-unit conceptual (IBUC) packing 

model, an enhanced version of the original BUC model by integrating all other porosity-

influencing factors, such as the effects of non-spherical grain shape and packing state. 

The IBUC packing model is formulized through three theoretical transformations, i.e., 

from sediment to ellipsoid packing, from ellipsoid to spherical packing, and from 

spherical to binary-unit spherical packing. The IBUC model’s capacity to account for all 

porosity-controlling factors, along with its conversion into a binary packing unit, ensures 

both generality and ease of application. Validation against diverse porosity measurement 

data demonstrates that the model reliably estimates porosity in complex fluvial sediment 

mixtures.   

Chapter 8 concludes all the work in this thesis and proposes some possible future 

research directions.  



 

 

 

 

 

2 
2 Literature Review 

 

 

 

 

 

 

The chapter provides a short overview of various methodologies used for estimating 

packing porosity, including direct field measurements, controlled laboratory experiments, 

advanced numerical simulations, and mathematical porosity predictors, while also 

addressing their limitations. 
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2.1 Relevance  

Riverbed porosity, defined as the ratio of pore volume to total volume, is a key structural 

property emergent from the natural packs of fluvial sediments. It plays a vital role in 

morphological, ecological, and geological applications.     

Morphologically, porosity dictates the sediment concentration in a riverbed, thereby 

affecting the rate of bed level changes over time (Coleman & Nikora, 2009; Frings et al., 

2008; Lokin et al., 2023; Núñez-González et al., 2016). The significant costs associated 

with using gravel to fill scour holes in waterways are also directly linked to the porosity 

of the gravel (Frings et al., 2014). Additionally, porosity impacts the onset of sediment 

movement and figures as a parameter in various sediment transport equations (Ackers & 

White, 1973; Rettinger, et al., 2022a; Vollmer & Kleinhans, 2007; Wilcock, 1998). It also 

plays a role in the dissipation of wave energy along riverbanks and groynes (Chanda et 

al., 2023; Chwang & Chan, 1998; Ting et al., 2004), as well as in the internal friction 

angle (and steepness) of morphological features like dunes (Allen, 1985).       

Ecologically, porosity determines the amount of void space within the hyporheic 

zone, which serves as a habitat for aquatic organisms. It plays a critical role in shaping 

the physical structure and ecological function of the hyporheic zone. By influencing the 

permeability of this zone, porosity controls the rate at which water flows through 

sediments, thereby affecting the delivery of oxygen and nutrients essential for biological 

processes (Boulton et al., 1998; Noack et al., 2017; Ping et al., 2020; Sawyer & Cardenas, 

2009).    

Geologically, porosity defines the economic value of gravel resources deposited by 

Quaternary rivers, while also determining the exploitable volumes of oil, gas, and 

groundwater stored within the pore spaces of sediments left by Mesozoic and Paleozoic 

rivers (e.g., Athy, 1930).  

In riverbed-related research, sediment porosity is frequently assumed to be spatially 

uniform, a simplification that may not accurately reflect reality. Overlooking spatial 

variations in porosity could introduce systematic errors or biases in morphological, 

ecological, and geological analyses.    

2.2 Porosity-controlling Factors  

To understand or predict spatial variations in porosity along a riverbed, it is essential to 

identify the factors that control it. Insights into the porosity of sediment mixtures can be 

gained from studying artificial packings of spheres (Allen, 1985). These packings, which 

have been extensively explored in material science and chemistry (Nolan & Kavanagh, 

1992; Scott, 1960; Song et al., 2008; Torquato et al., 2000; Yu & Standish, 1991), reveal 

that porosity is influenced by both material properties and packing methods. Similarly, 

the porosity of fluvial sediment mixtures must depend on (1) sediment properties and (2) 

depositional conditions.   



Porosity Measurements 

 7 

Among sediment properties, grain size and shape are the most critical factors 

influencing porosity. Uniform sediments composed of nearly spherical grains typically 

have a porosity between 0.36 and 0.40 (Frings et al., 2011). However, mixing with 

different sized grains usually reduces pore space, with the degree of reduction depending 

on the mixing effect (joint interactions among particles) and the unmixing effect (filling 

or occupation) (Yu & Standish, 1991). Grain shape also plays a clear role on porosity. For 

instance, a slight deviation from a spherical shape can reduce the porosity of random 

packing, while a greater deviation in shape can lead to an increase in porosity (Chaikin et 

al., 2006; Delaney et al., 2011; Donev et al., 2004; Man et al., 2005; Williams & Philipse, 

2003; Zou & Yu, 1996). Despite this, the effect of shape on porosity has received 

significantly less attention compared to grain size, mainly due to the challenges of 

measuring, characterizing, and controlling the complex shapes of fluvial sediments.     

Depositional conditions are fundamental in determining whether a sediment mixture 

forms a loose or dense packing. When sediments are initially deposited, they are typically 

in a loosely packed state. However, various factors, such as vibrations occurring during 

or immediately after deposition, can induce the packing to become denser, leading to a 

significant decrease in porosity (Scott, 1960). While the exact mechanisms driving these 

changes are too a large degree unknown, the key variables appear to be sedimentation 

rate and flow velocity. The sedimentation rate influences the time and space available for 

grain rearrangement after initial deposition, with higher sedimentation rates typically 

resulting in lower porosity. The flow velocity also affects porosity by influencing the 

kinetic energy imparted to the grains during deposition. Higher flow velocities can 

provide more energy to the grains, promoting a more turbulent settling environment that 

may prevent optimal packing and result in increased porosity. On the other hand, lower 

flow velocities allow grains to settle more gently, reducing the kinetic energy available 

for agitation and thus facilitating closer grain packing.       

2.3 Porosity Measurements 

2.3.1 In-situ measurement 

The primary reason for the limited knowledge about the spatial variations in porosity lies 

in the challenging of measuring porosity in fluvial sediment mixtures. Generally, in-situ 

porosity measurement techniques can be categorized into direct and indirect methods.   

To directly measure the in-situ porosity of fluvial sediment mixtures, defined as (𝑛 =

1 − 𝑉𝑠/𝑉𝑡), it is necessary to separately determine both the sediment volume (𝑉𝑠) and the 

total volume (𝑉𝑡 ) of a sediment sample. A traditional approach involves collecting a 

sample, measuring the volume of the sample pit (𝑉𝑡), and then transporting the sample to 

a laboratory to determine the grain volume (𝑉𝑠) using the water replacement method (Bear, 

1972). The most challenging part of this process is accurately measuring 𝑉𝑡. A standard 

method, as proposed by the American Society for Testing and Materials (ASTM, 2021), 
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requires covering the sample pit with a plastic liner and measuring the amount of water 

needed to fill the pit (Fig. 2.1a&b). However, this method is time-consuming, labor-

intensive, and prone to errors due to potential punctures in the liner caused by sharp 

sediment edges (Frings et al., 2011).    

With technological advancements, modern techniques such as 3D scanning (Frings 

et al., 2012) and photogrammetry (e.g., Han & Endreny, 2014; Seitz et al., 2018) have 

been developed to measure 𝑉𝑡  more efficiently. The structure-from-motion (SfM) 

photogrammetric method, in particular, has shown promise in estimating 𝑉𝑡 due to its 

capability for high-resolution topographic reconstruction (Tabesh et al., 2019). This 

method involves creating two high-resolution digital elevation models (DEMs) before 

and after sediment excavation using multiple overlapping photographs and advanced 

tracking algorithms. The difference between the two DEMs provides the total volume of 

the sediment sample (Fig. 2.1c).  

 

 

 

Figure 2.1. In-situ measurements of porosity: (a) sample pit and excavated sediments, (b) 

volume measurement of the pit using water, (c) digital elevation models before and after 

sediment excavation. Adapted from Frings et al. (2011) and Tabesh et al. (2019).  

Indirect methods for determining porosity relate it to more easily measurable 

sediment properties, such as pore water content and wet sediment density, from which 

porosity can be calculated. Examples of such methods include nuclear density gauging 

(Tabesh et al., 2022), neutron probes, and gamma-gamma probes (Hallenburg, 1998). 

Typically, a Caesium-137 source that emits gamma radiation is used to measure the total 

wet sediment density based on the number of gamma particles passing through the 

sediment; denser sediments result in fewer gamma particles reaching the detector tubes. 

In addition, an Americium-241 source emitting neutron particles detects sediment 

moisture content based on the number of neutrons scattered back by hydrogen-containing 

sediment. Higher neutron counts indicate higher moisture content. While these techniques 

a b

Before excavation 

After excavation 

c 
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are fast and relatively easy to implement, their accuracy is highly sensitive to 

environmental conditions, such as the chemical composition of the water and the 

elemental composition of the sediments. Consequently, neutron- and gamma-like probes 

require field calibration before measurements, a process that is quite challenging.  

It is also important to note that in-situ measurements, whether by direct or indirect 

methods, are often impractical or prohibitively expensive (e.g., using a diving bell) when 

sediments are submerged beneath river water. As a result, their use is typically restricted 

to conditions where the riverbed surface is accessible, such as during periods of low flow 

(e.g., Tabesh et al., 2022).  

2.3.2 Laboratory measurement  

Several methods are available for measuring porosity in laboratory settings. Notable 

examples include the gas pycnometer, which is based on Boyle’s law of volume-pressure 

relationships (e.g., Yan et al., 2018), the water desorption method, which involves 

saturating a sediment sample with water and then gradually desorbing the water while 

measuring the loss in weight (Klute, 1986), and the water replacement method (WRM) 

(Bear, 1972).  

Among these, the WRM is frequently used for measuring the porosity of sediment 

samples. Sampled fluvial sediments, normally after drying in an oven, are added to a 

container (e.g., a cylindrical container) partially filled with a known volume of water (𝑉𝑤), 

which is greater than the expected pore volume of the sediment to be added. The ultimate 

water level is recorded to determine the total accumulated volume (𝑉𝑎), where 𝑉𝑎 = 𝑉𝑤 +

𝑉𝑠  (with 𝑉𝑠  being the volume of the solid fraction). The total sediment volume (𝑉𝑡 ), 

including pores, is obtained by measuring the height of the sediment packing. The 

porosity 𝑛  (= 𝑉𝑝 𝑉𝑡⁄  ) is then calculated, where 𝑉𝑝  (= 𝑉𝑡 − (𝑉𝑎 − 𝑉𝑤 )) represents the 

pore volume of the particle packing (Fig. 2.2).          

In WRM, errors associated with reading water levels and packing heights are the 

primary factors affecting accuracy (Liang et al., 2015). Additionally, a common issue in 

this method is the disturbance of packing near the container walls, resulting in larger pore 

spaces near the walls (Ridgway & Tarbuck, 1968). This wall effect is particularly evident 

in uniform sediment packings but less pronounced in multi-sized mixtures (Frings et al., 

2011), as the open spaces near the container walls tend to be filled by finer grains from 

the size distribution. 
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Figure 2.2. Schematic illustration of the water replacement method for measuring the 

porosity of fluvial sediment mixtures.  

2.4 Porosity Simulations 

In the past decades, numerical techniques have become more popular in the study of 

particle packing systems, advanced by robust computational algorithms and 

developments in the computer hardware industry. Accurate modeling of particle packing 

systems helps in understanding properties such as porosity. Packing simulation methods 

are classified into physics-based methods and non-physics-based methods.    

2.4.1 Physics-based Method   

Physics-based methods (PBMs) provide a way to model the packing systems by 

simulating particle interactions and capturing the underlying physics governing these 

interactions. The discrete element method (DEM) is perhaps the most widely used 

numerical method for studying particle packing systems, originally developed by Cundall 

and Strack (1979). DEM requires a certain overlap of particle geometries to determine 

the contact force explicitly. Intraparticle forces, such as normal and tangential contact 

forces, are calculated using a given penetration-force contact model, such as the Hertz-

Mindlin model for normal contacts or the Mindlin-Deresiewicz model that computes 

tangential force. Particle motion is resolved by explicitly solving Newton’s second law 

for translational (Eq. (2.1)) and rotational dynamics (Euler’s Eq. (2.2)), with integration 

methods such as Verlet, velocity-Verlet or predictor-corrector.   

  

𝑉𝑤 

𝑉𝑡 

𝑉𝑎 

𝑛 =
𝑉𝑝

𝑉𝑡
=
𝑉𝑡 − (𝑉𝑎 − 𝑉𝑤ሻ

𝑉𝑡
= 1 −

𝑉𝑠
𝑉𝑡

 

        

Sediment mixtures 
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𝑚𝑖

𝑑𝑣𝑖
𝑑𝑡

= 𝑓𝑖
𝑒𝑥𝑡 +∑𝑓𝑖𝑗

𝑐𝑜𝑛𝑡𝑎𝑐𝑡                                           (2.1ሻ 

𝐼𝑖
𝑑𝜔𝑖
𝑑𝑡

= 𝑇𝑖
𝑒𝑥𝑡 +∑𝑇𝑖𝑗

𝑐𝑜𝑛𝑡𝑎𝑐𝑡                                            (2.2ሻ 

where 𝑚𝑖 is the mass of particle 𝑖, 𝑣𝑖 is the translational velocity, 𝐼𝑖 is the moment of 

inertia, 𝜔𝑖 is the angular velocity, 𝑓𝑖
𝑒𝑥𝑡 and 𝑇𝑖

𝑒𝑥𝑡 are external forces and torques, and 

𝑓𝑖𝑗
𝑐𝑜𝑛𝑡𝑎𝑐𝑡 and 𝑇𝑖𝑗

𝑐𝑜𝑛𝑡𝑎𝑐𝑡 are contact forces and torques between particles 𝑖 and 𝑗. 

In DEM, particles are typically modeled as spheres or ellipsoids (e.g., An et al., 2011; 

Gan et al., 2016; Gan & Yu, 2020; Mori & Sakai, 2022), but more complex shapes can 

also be considered (Rettinger, et al., 2022b; Zhao et al., 2017). DEM requires small time 

steps to maintain numerical stability primarily due to the nature of the explicit time 

integration schemes and the need to accurately resolve particle interactions. While large-

scale simulations involving millions of spherical particles have been performed, such as 

those by Horner et al. (2001), they are computationally very expensive. This is 

particularly true for simulations with large grain size ratios, where the timestep size often 

restricts both the spatial and temporal scales of the simulation.  

Unlike DEM, which is based on the continuous integration of contact forces, non-

smooth granular dynamics (NSGD) method, originally developed by Moreau (1977) and 

later Jean (1999), focuses on solving the problem in terms of contact constraints, making 

it particularly suitable for simulating systems with a large number of particles and rigid 

body dynamics. In NSGD, the contact between two particles 𝑖 and 𝑗 is governed by non-

penetration and frictional constraints. For non-penetration:  

𝑔𝑖𝑗(𝑞ሻ ≥ 0                                                            (2.3ሻ 

where 𝑔𝑖𝑗(𝑞ሻ represents the gap distance between particles 𝑖 and 𝑗. If 𝑔𝑖𝑗(𝑞ሻ = 0, the 

particles are in contact.  

The contact force 𝑓𝑖𝑗
𝑐𝑜𝑛𝑡𝑎𝑐𝑡 must satisfy a Signorini condition:  

0 ≤ 𝜆𝑖𝑗
𝑁 ⊥ 𝑔𝑖𝑗(𝑞ሻ ≥ 0                                               (2.4ሻ 

where 𝜆𝑖𝑗
𝑁   is the normal contact force, and ⊥  denotes the complementarity condition: 

either there is a gap with zero force, or the particles are in contact with a force acting 

normally.  

Frictional constraints are governed by Coulomb’s friction law, which imposes a limit 

on the tangential force 𝑓𝑖𝑗
𝑇:  

∥ 𝑓𝑖𝑗
𝑇 ∥≤ 𝜇𝜆𝑖𝑗

𝑁                                                        (2.5ሻ 



Literature Review 

 12 

where 𝜇 is the coefficient of friction. This inequality constraint is also formulated as a 

complementarity problem.  

 NSGD does not explicitly resolve contact forces at every time step. Instead, it 

updates particle velocities to satisfy all constraints at each time step. A numerical solution 

algorithm is employed to ensure that all inequality constraints are met at the end of a time 

step, which involves solving a non-linear, and potentially over-determined, 

complementarity problem. Gauss-Jacobi and Gauss-Seidel methods are the preferred 

iterative solvers for this type of problem. Due to its implicit integration schemes, and non-

smooth handling of collisions and contacts, NSGD allows for large time steps to maintain 

numerical stability. More details about the NSGD method can be found in Chapter 3.   

Despite its more complex mathematical formulations in comparison to DEM, the 

NSGD approach is particularly well-suited for parallel processing, achieving high parallel 

efficiency (Preclik & Rüde, 2015). Similar to DEM, NSGD can accommodate a wide 

range of particle interactions, including dry friction, cohesive forces, cemented contacts, 

and compliant interactions (Radjaï & Dubois, 2011).  

The PBMs, including both DEM and NSGD, have demonstrated great accuracy in 

reproducing the porosity of particle packing systems (e.g., Gan & Yu, 2020; Rettinger, et 

al., 2022b; Schruff et al., 2018).      

2.4.2 Non-physics-based Method 

While PBMs are commonly employed for modeling particle packing systems due to their 

ability to capture realistic interactions, non-physics-based methods (NPBMs) offer 

alternative approaches that are often more computationally efficient and conceptually 

simpler. Stochastic-based packing algorithms represent a typical class of NPBMs that 

utilize randomness and probabilistic processes to determine particle placement and 

arrangement. Examples of such methods include random sequential addition (RSA), 

ballistic deposition (BD), and Monte Carlo (MC) techniques. Among these, the random-

walk algorithm proposed by Jia and Williams (2001) is one of the popular stochastic-

based packing methods. This algorithm is designed to accommodate particles of arbitrary 

sizes and shapes within confined spaces of varying geometries.    

In the random-walk algorithm, both the particles and the container are digitized and 

represented as a coherent collection of voxels. Unlike PBMs, the motion of particles in 

this method is not governed by physical forces; rather, it is entirely random. At each time 

step, a particle randomly moves one voxel in one of 26 possible translational directions, 

6 orthogonal and 20 diagonal. This is followed by a rotational movement within a 

specified angular range until the rotation is impeded by the presence of another particle. 

Because both the container and the particles are voxelized, collision and overlap detection, 

normally the most time-consuming part of packing simulations, becomes significantly 

simplified. It can be efficiently performed by checking whether two particles occupy the 

same voxel sites at any given time. This voxel-based representation reduces 
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computational complexity and enables faster simulations for complex packing scenarios 

(see more in Chapter 4).   

    Another category of NPBMs for particle packing is optimization-based methods, 

which focus on finding optimal or near-optimal arrangements of objects within a given 

domain. These methods encompass a range of optimization techniques, including linear 

programming (LP), mixed-integer linear programming (MILP), and the nonlinear 

programming (NLP) algorithms (see Chapter 6). The optimization-based approach to 

packing problems requires the formulation of an objective function, such as maximizing 

packing density or minimizing potential energy, alongside a set of constraints that must 

be satisfied, such as non-overlapping conditions, boundary restrictions, or stability 

requirements.  

The optimization problem is then solved using various techniques that can handle 

both the linear and nonlinear aspects of the objective functions and constraints. 

Commonly employed solvers include gradient-based approaches, interior-point methods, 

and sequential quadratic programming. These methods systematically explore the 

solution space to identify the most effective configurations that satisfy all imposed 

constraints. Optimization-based methods can address a wide range of packing problems, 

from arranging simple 2D and 3D geometric shapes such as rectangles, circles, and 

spheres, to dealing with more complex scenarios involving irregular shapes and mixed-

size packing challenges (Birgin et al., 2016; Birgin & Lobato, 2019). However, they can 

be computationally expensive, especially for large-scale problems or problems with 

highly nonlinear constraints.    

 Unlike PBMs, NPBMs generally produce looser packings, which indicates higher 

porosity in particle packing simulations. This is particularly evident in stochastic-based 

methods (Liang et al., 2015; Sherwood, 1997).    

2.5 Porosity Predictions 

In-situ measurements, laboratory measurements, and numerical simulations all share the 

ability to directly evaluate porosity for specific cases, making them valuable sources of 

porosity data. However, field and laboratory studies require extensive sediment sampling, 

while numerical simulations need precise information about sediment properties, both of 

which are difficult to obtain on a large scale.    

Given these constraints, mathematical porosity predictors have become an effective 

alternative. These predictors estimate porosity based on factors controlling sediment 

packing, such as grain size, grain shape, and depositional environment (leading to a loose 

or dense packing state). Current porosity predictors are generally classified into two 

categories: regression-based models and analytical models.   
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2.5.1 Regression-based Model 

Regression-based models are created through statistical analysis by fitting mathematical 

formulas to specific datasets. Komura and Colby (1963) was the first to establish a 

relationship between median grain size (𝐷50, considered the characteristic parameter) and 

porosity (𝑛) using fluvial sediments from various Japanese rivers. Similarly, Carling and 

Reader (1982) identified a clear correlation between 𝐷50 and porosity while studying 

the sedimentological properties of upland gravel-bedded streams in the U.K. Wu and 

Wang (2006) improved the correlation with 𝐷50 by modifying and adapting Komura and 

Colby’s approach, based on existing literature data along with data from different 

reservoirs in China. Wooster et al. (2008) developed a relationship between logarithmic 

standard deviation (𝜎𝜑 ) and porosity for unimodal sand-gravel mixtures using an 

exponential function. Frings et al. (2011) measured the porosity of fluvial sediment 

mixtures from the Rhine River and established a multivariate regression function 

involving 𝜎𝜑, the percentage of fines smaller than 0.5 mm (𝑓<0.5), and porosity. Table 2.1 

lists the above-mentioned regression-based porosity predictors.   

Table 2.1. Regression-based models for porosity prediction of fluvial sediment mixtures. 

Ref Statistical model Application range  

Komura and Colby (1963) 𝑛 = 0.245 +
0.0864

(0.1𝐷50ሻ
0.21

 0.01 <  𝐷50 < 1000 mm 

Carling and Reader (1982) 𝑛 = −0.0333 +
0.4665

(𝐷50ሻ
0.21

 5 <  𝐷50  < 200 mm 

Wu and Wang (2006) 𝑛 = 0.13 +
0.21

(𝐷50 + 0.002ሻ
0.21

 10−3 < 𝐷50  < 100 mm 

Wooster et al. (2008) 𝑛 = 0.621𝑒−0.457𝜎𝜑 0.26 <  𝜎𝜑  < 1.80 

Frings et al. (2011) 𝑛 = 0.353 − 0.068𝜎𝜑 + 0.146𝑓<0.5  D =  0.02 − 125 mm 

 

While regression-based models are easy to apply due to their simple structure, their 

predictive accuracy is often unreliable outside the original study area. Research has 

indicated that the relationship between median grain size (𝐷50 ) and porosity fails to 

capture the observed variation in porosity. Although models based on logarithmic 

standard deviation (𝜎𝜑) tend to perform better than those based on 𝐷50, they still cannot 

account for the wide range of porosity values associated with a single 𝜎𝜑 value, resulting 

in inaccurate porosity predictions for specific locations (Frings et al., 2011).   

2.5.2 Analytical Model 

Analytical models, in contrast, are established via theoretical frameworks that simulate 

the pairwise interactions among distinct particles and then combine them to obtain an 

estimation of the packing system’s porosity. These methods mostly originate from 

industrial and engineering applications. Although some have been applied to packings 
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with distinct grain shapes, such as sphere-cylinder systems (Yu et al., 1996), the majority 

depend on grain size to differentiate the particles.   

 In general, analytical models are built up from an idealized binary mixture of spheres, 

where the size ratio (𝑟 ∈ (0 − 1ሻ ) between fine and coarse particles approaches zero, 

pioneered by Westman and Hugill (1930) and Furnas (1931) (see Fig. 2.3). In an ideal 

binary packing, small and large particles can be subject to two effects: filling and 

occupation. The filling effect occurs when fine particles percolate through the voids 

created by load-bearing coarse particles (seen on the right side in Fig. 2.3), while the 

occupation effect happens when coarse particles are scattered within a fine-grained matrix 

(seen on the left side in Fig. 2.3). Since neither interaction alters the structure of the 

mixture, they are later described as the unmixing effect (Yu & Standish, 1991). During 

the filling or occupation process, the porosity (𝑛) of the ideal packing, i.e., the specific 

volume 𝑉  (= 1 (1 − 𝑛ሻ⁄  , representing the reciprocal of packing density) to be more 

precise, decreases linearly as a function of the volume fraction of fine and coarse grains. 

Both linear functions provide an estimate for 𝑉, but only the higher estimate is correct 

(i.e., the solid lines in Fig. 2.3). A minimum porosity is achieved when the pore spaces 

among large grains is fully filled by fine particles.  

 

 

Figure 2.3. Schematic illustration of the ideal binary packing of spheres. 

Given the linear relationship between 𝑉 and 𝑋 in an ideal two-fraction mixture, 

researchers assumed that the relationship between 𝑉  and 𝑋  in actual two- or multi-

fraction mixtures would also be linear, which led to the development of linear packing 

models (LPMs) (e.g., Chang et al., 2015; Stovall et al., 1986; Yu & Standish, 1987). In 

LPMs, for each grain size fraction, a specific volume (𝑉) value for its pairwise interaction 

with another grain is calculated iteratively, and the highest of these values is considered 

the correct one. During each iteration, the selected grain size is assumed as the dominant 

size forming the skeleton of the mixture. Grains larger than the dominant size fraction are 
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considered to have an occupation effect, reducing 𝑉 (and porosity), while grains smaller 

than the dominant size faction are treated to reduce 𝑉  through a filing effect. LPMs 

further evolved into non-linear packing models (NLPMs) when researchers realized that 

as the size ratio (𝑟 ) between two components increases, the introduction of another 

particle can join the controlling component (the mixing effect) rather than simply filling 

or occupation. Such joint action causes the fabric of the original skeleton to change in a 

non-linear manner. Even with small size ratios, non-linear changes may still occur, such 

as by wedging of small particles between the large ones or by inducing a wall effect over 

the small particles (Dias et al., 2004; Kwan et al., 2013). The main difference from LPMs 

lies in the type of intraparticle interaction functions utilized, such as the quadratic and 

cubic terms introduced by Yu and Standish (1988), to account for the complex non-linear 

packing behavior.     

 However, most of these models are designed for binary (Chang & Deng, 2017; 

Kamann et al., 2007; Koltermann & Gorelick, 1995; Roquier, 2017; Westman, 1936; Wu 

& Li, 2017; Zhang et al., 2011) and ternary (Esselburn et al., 2011; Kwan et al., 2015; 

Perera et al., 2022) packing, with only a few capable of addressing large-component 

packing systems, such as those found in fluvial sediment mixtures (Chang & Deng, 2018; 

De Larrard, 1999; Liu et al., 2019; Yu & Standish, 1991). Among them, the linear-mixture 

packing model (LMPM) is the most popular one used for estimating the porosity of fluvial 

sediment mixtures (Yu & Standish, 1991). The LMPM takes into account both the linear 

and non-linear (mixture) interparticle interactions according to a critical-entrance ratio 

(𝑟𝑐), typically set at 0.154. Above this ratio, particles experience a mixing effect, while 

below it, they undergo filling and occupation. The model has shown significant potential 

in estimating porosity for unimodal gravel deposits. However, for more complex sediment 

packings, such as bimodal gravel mixtures, this model tends to underpredict porosity 

(Frings et al., 2011; Rettinger et al., 2023), probably due to the rigid transition between 

mixing and unmixing interactions at the 𝑟𝑐 value (more on this in Chapter 3).        

While analytical models provide broader generality than the regression-based ones, 

there is a clear trend toward underestimation of porosity for complex or heterogeneous 

sediment packings. Besides, they are computationally rather complex, with the number 

of equations to be solved proportional to 4ℎ2, with ℎ being the number of grain size 

fractions.  

2.6 Conclusions 

Porosity is a fundamental property that remains poorly known on a large scale over the 

spatial variation of riverbeds. This chapter briefly reviews the endeavor that lasts almost 

a century aimed at the understanding of packing porosity. Various methods have been 

developed, each with its own cons and pros. Direct methods, including in-situ and 

laboratory measurements, as well as numerical simulations, can provide first-hand 
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estimates on porosity but are impractical for large-scale applications. Existing 

mathematical methods, on the other hand, struggle to produce accurate predictions due to 

the locality embedded in regression-based models and inappropriate assumptions 

underlying analytical ones. Nevertheless, mathematical models remain an appealing 

approach and have the potential to be leveraged on a broad scale. This leads to the main 

objective of this thesis: to establish an accurate, general, and simple porosity predictor, as 

explored in the following chapters.  
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The porosity of fluvial sediments is significant to virtually every inquiry into the riverbed. 

In this study, we propose a novel porosity predictor, namely the binary-unit conceptual 

(BUC) packing model, that is both simple and general to use. The core of the BUC model 

is based on a newly proposed binary-unit concept, which enables to transform any multi-

sized (or continuous) sediment mixture into an equivalent binary-unit mixture through the 

link of identical grain size statistics of mean, standard deviation and skewness. It was 

found that the binary-unit mixture can be viewed as the most elementary packing unit that 

embodies the equivalent particle-particle interactions in the original mixture. With this 

concept, the porosity of fluvial sediments, no matter how labyrinthine their grain size 

distributions are, can be readily computed through the utilization of models capable of 

predicting the porosity of a binary particle packing. The Westman equation is highly 

recommended as the prime option for this purpose. Remarkable outcomes were achieved 

in the validation against a range of sediment mixtures generated through numerical 

simulations and laboratory experiments, producing a root-mean-square error of 0.01 ~ 

0.03. In comparison to other analytical models, the BUC model surpassed them with both 

efficiency and accuracy.  
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3.1 Introduction  

Porosity, a key property of fluvial sediments, is defined as the ratio of pore volume to 

total volume. The porosity of fluvial sediments is significant to many investigations 

associated with riverbeds. At surface riverbeds, porosity acts as a critical input in the 

computation of sediment concentration, dictating the rate of bed level changes (Coleman 

& Nikora, 2009; Frings et al., 2008; Núñez-González et al., 2016). Additionally, porosity 

affects the mobility of particles, as being a parameter in various sediment transport 

equations (Ackers & White, 1973; Rettinger et al., 2022a; Vollmer & Kleinhans, 2007). 

Sub-surface riverbeds, on the other hand, present a different set of challenges, where 

porosity governs the void space of the hyporheic zone that harbors aquatic organisms. It 

also exerts significant control on the permeability of the hyporheic zone, which, in turn, 

regulates the rate of water exchange, oxygen, nutrient supply, and pollutant removal, 

crucial factors for the sustainability of a healthy aquatic environment (Boulton et al., 1998; 

Noack et al., 2017; Sawyer & Cardenas, 2009).   

The current information of riverbed porosity is scarce, despite its important role in 

riverbed-related research. The primary reason is that riverbeds are often inundated by 

surging waters of the river itself, hampering the use of remote monitoring techniques, and 

rendering direct field measurements both costly and arduous. In order to obtain the 

porosity of sediment packings, researchers have proposed an alternative method that 

relies on estimates from a host of factors governing porosity. These factors are mainly 

identified as grain size, grain shape, and depositional condition (leading to a loose or 

dense packing state) (Chang et al., 2018; Fraser, 1935; Gaither, 1953; Liang et al., 2015; 

Rettinger, et al., 2022b; Tabesh et al., 2019, 2022). At present, the available porosity 

predictors can be broadly sorted into two categories: regression-based models and 

analytical models.     

Regression-based models are a mere outcome of statistical analysis via the fitting 

process on a specific dataset. These models usually take on the form of a concise 

mathematical formula, requiring a minimal amount of information regarding the system, 

thus making them easily implementable. As demonstrated by Carling and Reader (1982), 

Wu and Wang (2006), and Wooster et al. (2008), porosity is formulated with either 

median grain size or logarithmic standard deviation. Similarly, Frings et al. (2011) 

developed a porosity predictor that combines two grain size characteristics: logarithmic 

standard deviation and the percentage of fine grains smaller than 0.5 mm. Despite the 

apparent simplicity of these models, their predictive quality is often insufficient when 

utilized in regions outside of the original dataset (Frings et al., 2011).      

On the other hand, analytical models emerge through a theoretical framework that 

conceptualizes the packing system as a finite ensemble of distinct particle classes. These 

models, in turn, simulate the interclass pairwise particle interactions which are 

amalgamated to infer the system’s porosity. These models are typically derived from the 
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study of binary mixtures of spheres, and then extrapolated to encompass arbitrary 

mixtures (Chang & Deng, 2018; De Larrard, 1999; Liu et al., 2019; Stovall et al., 1986; 

Yu & Standish, 1991). Although such models are endowed with greater generality and 

flexibility than the regression-based ones, their implementation requires a considerable 

number of parameters as input, making them difficult to apply and computationally 

burdensome.    

In this context, the objective of this study was to develop a novel porosity predictor 

that is both straightforward and generally applicable. To achieve this, the Westman 

equation (Westman, 1936), developed to estimate porosity for binary mixtures of spheres, 

was employed as a solid foundation for establishing our model, namely the binary-unit 

conceptual (BUC) packing model. Unlike the traditional analytical models that expand 

into complex models to suit multi-component mixtures, our approach reverses this 

process by compressing the multi-component mixture into a binary-unit packing. 

Following a description of the Westman equation in section 3.2, we explicate how to 

develop the binary-unit conceptual packing model based on the Westman equation in 

section 3.3. Then, we validate our model using datasets from different sources in section 

3.4, followed by discussion and conclusions (sections 3.5 & 3.6).    

3.2 The Westman Equation 

The Westman equation is a simple conic equation that possesses the ability to provide a 

broad estimation of porosity for binary packing systems of spherical particles (Westman, 

1936). It is worth mentioning that the use of specific volume, which represents the 

reciprocal of packing density, in its expression is a numerically convenient tactic that 

streamlines the governing equations into linear forms at extreme cases, shown below:  

(
𝑉 − 𝑉𝑐𝑋𝑐

𝑉𝑓
)

2

+ 2𝐺 (
𝑉 − 𝑉𝑐𝑋𝑐

𝑉𝑓
) (
𝑉 − 𝑋𝑐 − 𝑉𝑓𝑋𝑓

𝑉𝑐 − 1
) + (

𝑉 − 𝑋𝑐 − 𝑉𝑓𝑋𝑓

𝑉𝑐 − 1
)
2

= 1   (3.1ሻ 

Where 𝑉 represents the total specific volume, which can be easily converted to the total 

porosity (𝑛) by 𝑛 = 1 − 1 𝑉⁄ . 𝑉𝑐 and 𝑉𝑓 are the initial specific volume of the coarser 

and finer particles separately, with 𝑋𝑐, 𝑋𝑓 being the volume percentage of the coarser 

and finer components that satisfy the constraint 𝑋𝑐 + 𝑋𝑓 = 1.  

The coefficient 𝐺 in Eq. (3.1) is the only unknown parameter, which was later found 

to be dependent solely on the size ratio 𝑟 (= 𝑑𝑓 𝑑𝑐⁄ ) between finer and coarser particles 

(Yu et al., 1993):  

1

𝐺
= {

1.355 𝑟1.566     (𝑟 ≤ 0.824ሻ           
1             (𝑟 > 0.824ሻ

                                 (3.2ሻ 
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Then, the Westman equation can be solved analytically by rewriting it in the form of 

a quadratic equation with its positive square root being the solution:     

𝑉 =
−𝐵 + √𝐵2 − 4𝐴𝐶

2𝐴
                                                   (3.3ሻ 

Where  
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𝑉𝑓
)

2
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1

(𝑉𝑐 − 1ሻ2
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𝑉𝑓(𝑉𝑐 − 1ሻ
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Figure 3.1. Graphical representation of the Westman equation. 

Fig. 3.1 shows the Westman equation visually by setting the initial specific volume 

of each component to be equal to 1.56, i.e., 𝑛 =  0.36, representing a random dense 

packing state of spheres (Song et al., 2008). It should be noted that the initial specific 

volume of each component remains unchanged during the entire mixing process, which 

is the underlying assumption in the Westman equation. 



The Binary-Unit Conceptual Packing Model 

 27 

When 𝐺 = 1, i.e., the two components have the same diameter, the Westman equation 

resolves itself into a linear equation (line 𝑉𝑓𝑉𝑐), showing no shrinkage on mixing.   

𝑉 = 𝑉𝑐𝑋𝑐 + 𝑉𝑓𝑋𝑓                                                     (3.4ሻ 

When 𝐺 = ∞, i.e., the coarse particles with a diameter infinitely larger than that of 

the fines, the Westman equation simplifies into the linear form: 

𝑉 = 𝑋𝑐 + 𝑉𝑓𝑋𝑓                                                         (3.5ሻ 

𝑉 = 𝑉𝑐𝑋𝑐                                                               (3.6ሻ 

Eq. (3.5) represents the line connecting 𝑉𝑓  to the right corner of the diagram. It 

reflects the occupation process when adding coarse particles into a matrix of fines, the 

coarse particles are immersed in the fines, reducing the specific volume (or porosity) by 

occupying with solid volumes. Eq. (3.6) indicates the line connecting 𝑉𝑐 to the origin 

point at the left side of the diagram. It reflects the filling process when adding fine 

particles into a framework of coarse particles, the fines percolate through the pores, 

reducing the specific volume (or porosity) by filling the voids among large particles. The 

intersection point, 𝑉𝑙, of the two straight lines produces the lowest value of the specific 

volume (or porosity) when the fines fully fill in the voids of the coarse particles. The 

shape triangle, 𝑉𝑓𝑉𝑙𝑉𝑐 , forms the boundary (limiting cases) for the entire packing 

scenarios of binary mixtures.       

When 1 < 𝐺 < ∞ , i.e., for size ratios intermediate within the above limits, the 

Westman equation takes its whole form, exhibiting a festoon-like curve across the values 

of specific volume. As 𝐺  becomes larger, or the size ratio 𝑟  gets smaller, the curve 

becomes steeper, suggesting more shrinkage on mixing as shown in Fig. 3.1.     

3.3 The Binary-Unit Conceptual Packing Model 

In this section, we show how to establish the binary-unit conceptual (BUC) packing 

model with the foundation of the Westman equation. To do so, we re-evaluated the three 

dominant factors that govern the specific volume of a binary mixture: initial specific 

volume, coefficient 𝐺 , and fractional solid volume. These factors were originally 

proposed to depict only binary components, which cannot be directly applied to multiple 

or continuous components. Therefore, a hypothesis was proposed that if the three factors 

could be revamped in connection with arbitrary components, the Westman equation 

should be empowered to estimate the porosity of arbitrary mixtures in a general manner.       

To tackle this task, we viewed the three factors from a different perspective. The initial 

specific volume, which mirrors the initial packing state of each component, essentially 

depicts the final packing state of a binary mixture since it remains unchanged throughout 
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the mixing process (underlying assumption). The coefficient 𝐺, which is influenced by 

size ratio, roughly indicates the degree of dispersion of the two components’ sizes, while 

the fractional solid volume highlights the asymmetry (or imbalance) of the two 

components in terms of volume content. After reconsidering these factors, it was expected 

that the coefficient 𝐺  and fractional solid volume could be substituted reasonably by 

standard deviation and skewness, which statistically reflect the dispersion and asymmetry 

of any grain constituents involved in a packing.  

With this in mind, we proceeded to perform the statistical calculations with respect to 

the coefficient 𝐺  and the fractional solid volume, and subsequently visualized our 

findings (Fig. 3.2). The outcome shows that the logarithmic skewness (𝑆𝐾𝜙 ) is only 

determined by the percentage of the coarser particle (𝑋𝑐 ) with no impact from the 

coefficient 𝐺  (i.e., the grain size ratio), providing a one-to-one corresponding 

relationship where as 𝑋𝑐  varies from 0 to 1, 𝑆𝐾𝜙  traverses from negative infinity to 

positive infinity (Fig. 3.2a). Taking nine 𝑆𝐾𝜙 values from -2.67 to 2.67 for illustration 

(corresponding to 𝑋𝑐  values from 0.1 to 0.9, at 0.1 step), the coefficient 𝐺  depicts a 

discernable correlation with the logarithmic standard deviation (𝜎𝜙) under various 𝑆𝐾𝜙 

settings. Specifically, the 𝜎𝜙  value increases as the coefficient 𝐺  increases, with 

identical absolute values of 𝑆𝐾𝜙  (i.e., ±𝑆𝐾𝜙 ) resulting in identical 𝜎𝜙  values (Fig. 

3.2b).  

The logarithmic method of moments (Blott & Pye, 2001) was used to calculate the 

statistics shown as:  

𝜇𝜙 =∑𝑓𝑥𝜙                                                           (3.7ሻ 

𝜎𝜙 = √∑𝑓(𝑥𝜙 − 𝜇𝜙ሻ2                                               (3.8ሻ 

𝑆𝐾𝜙 =
∑𝑓(𝑥𝜙 − 𝜇𝜙ሻ

3

(𝜎𝜙ሻ3
                                              (3.9ሻ 

Where 𝜇𝜙  is the logarithmic mean. 𝑓  represents the weights, i.e., the factional solid 

volume in this case, while 𝑥𝜙 denotes the particle size in phi unit.    
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Figure 3.2. Relationship between (𝑎 ) coarse volume fraction (𝑋𝑐 ) and logarithmic 

skewness (𝑆𝐾𝜙), (𝑏) the coefficient 𝐺 and logarithmic standard deviation (𝜎𝜙).  

It is noteworthy that we employed logarithmic statistical measures of mean, standard 

deviation and skewness, the commonly used scale for characterizing natural sediments. 

However, the application of other statistical scales, such as the arithmetic or geometric 

ones, is also viable, providing commensurate trends with their respective calculations. 

Realizing the existence of such relationships, the Westman equation scheme can be 

reconfigured. Fig. 3.3 (a) replots the Westman equation using 𝑆𝐾𝜙 as the x-axis, with 

vertical dotted lines indicating the change of specific volume as 𝜎𝜙 shifts. Fig. 3.3 (b & 

c) show exactly how the specific volume (or porosity) shift with 𝜎𝜙 along these vertical 

dotted lines. It is thus convinced that initial specific volume, logarithmic standard 

deviation, and logarithmic skewness can be viewed as the equivalent factors controlling 

the specific volume (or porosity) for any binary mixture of spheres.    
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Figure 3.3. An equivalent graphical representation of the Westman equation delineating 

how specific volume or porosity varies in terms of logarithmic standard deviation (𝜎𝜙) 

and logarithmic skewness (𝑆𝐾𝜙).  

Specifically, as shown in Fig. 3.3 (c), all the curves exhibit a decrease trend in porosity 

with an increase of 𝜎𝜙, which is not surprising, since 𝜎𝜙 determines the width of the 

grain size distribution and hence, the intensity of the joint action among particles (i.e., the 

mixing effect). Although the correlation between 𝜎𝜑  and porosity is quite 

straightforward, their relation with 𝑆𝐾𝜙  is considerably more complex. When 𝑆𝐾𝜑 

possesses the same absolute value, negatively skewed (+𝑆𝐾𝜙) grain size distributions 

generally exhibit a lower porosity than their positively skewed counterparts. This is 

because the former encompasses a greater quantity of coarse particles, where the filling 

effect is dominating that diminishes the pore volume more efficiently than the occupation 
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effect, which is predominant in the latter. However, when 𝑆𝐾𝜙  has different absolute 

values, this trend dissipates, as porosity does not vary linearly with 𝑆𝐾𝜙. For instance, 

the curve with a 𝑆𝐾𝜙 of 2.67 that should rightfully occupy the base of the other curves 

within the trend, instead resides in the third place. This observation signifies that a grain 

size distribution with a more substantial proportion of larger particles does not necessarily 

guarantee a higher degree of filling effect, due to the paucity of smaller particles that are 

required to facilitate introduction. In fact, the order of the curves of different 𝑆𝐾𝜙 values 

follow roughly with the order of their distance to the particular value of 𝑆𝐾𝜙 (= 1.067 

in this case) producing the lowest porosity where the particle-particle interactions are 

most intensive (Fig. 3.3a&c)).   

According to the aforementioned hypothesis, the Westman equation should be 

applicable to arbitrary mixtures, with an assumption that all the components in the 

ultimate mixture are packed at the same level. In other words, the initial specific volume 

(or porosity) for each component should be taken equally to reflect the average packing 

level.   

In the quest to compute the porosity of arbitrary mixtures, one may attempt to 

establish the explicit mathematical form of the relationship shown in Fig. 3.3 (c), but this 

endeavor is far from straightforward and may prove infeasible due to the interdependence 

of many parameters. Alternatively, a binary-unit concept is proposed here. It refers to that 

any multi-sized (or continuous) spherical packing system can be transformed into an 

equivalent binary spherical packing system, through the link of the identical grain size 

statistics of mean, standard deviation and skewness. By inverting Eqs. (3.7-3.9), one can 

derive the sizes of the equivalent binary-unit mixture as well as their respective 

proportions from the input data on mean, standard deviation, and skewness of the original 

mixture. Again, there is no restrictions on the scales used for statistics. Analytical solution 

of these equations is theoretically possible, but numerical analysis may be more 

straightforward, requiring specification of rational initial values for the sizes of the two 

components and one of their proportions, as well as a termination tolerance which is 

normally set as 1𝑒−8 to ensure highly accurate outcomes. More details on the binary-

unit concept are discussed in section 3.5.2.     

With the proposed binary-unit concept, alongside the Westman equation, the so-called 

binary-unit conceptual (BUC) packing model has been established that should be able to 

estimate the porosity of any arbitrary mixtures of spherical particles.  

3.4 Validation of the BUC Packing Model   

3.4.1 Validation against Binary Mixtures 

As the BUC packing model is built upon the Westman equation, it is essential to verify 

the Westman equation in the first place. Through a search of literatures reporting datasets 
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related to binary packings of spherical particles, we found a considerable amount of 189 

experimental measurements to verify the Westman equation. Specifically, these datasets 

(extracted from Dias et al., 2004; Mcgeary, 1961; Mota et al., 2001; Westman & Hugill, 

1930; Yerazunis et al., 1965; Yu et al., 1992) cover binary packings with a wide range of 

size ratios, containing diverse materials, and varying in stage from loosely to densely 

packed.    

To evaluate porosity estimates quantitatively, the squared Pearson correlation 

coefficient (𝑅2) and the root-mean-square error (𝑅𝑀𝑆𝐸) are calculated as follows:  

𝑅2 = (
∑(𝑥𝑖 − 𝑥̅ሻ(𝑦𝑖 − 𝑦̅ሻ

√∑(𝑥𝑖 − 𝑥̅ሻ2√∑(𝑦𝑖 − 𝑦̅ሻ2
)

2

                                    (3.10ሻ 

𝑅𝑀𝑆𝐸 = √
∑(𝑥𝑖 − 𝑦𝑖ሻ2

𝑁
                                                     (3.11ሻ 

Where 𝑁 is sample size. 𝑥𝑖, 𝑦𝑖 are the individual sample points, i.e., the measured and 

estimated porosity values in this case while 𝑥̅ , 𝑦̅  are the means of sample 𝑥𝑖  and 𝑦𝑖 

respectively.  

The metric 𝑅2 normally spanning from 0 to 1, reflects the magnitude of the linear 

correlation between two datasets. A greater value of 𝑅2  stands for a stronger linear 

correlation between the two sets. Meanwhile, 𝑅𝑀𝑆𝐸, a non-negative quantity, measures 

the dissimilarities between predicted and actual values. In evaluating models, a lower 

𝑅𝑀𝑆𝐸 value is superior, as it suggests better overall performance.   

Upon visualization of the comparison results (Fig. 3.4), the Westman equation is 

remarkably successful at estimating porosity of binary packings of spherical particles, 

boasting a high 𝑅2 score of 0.947 and a low 𝑅𝑀𝑆𝐸 value of 0.012. 

 

 



Validation of the BUC Packing Model 

 33 

 

Figure 3.4. Comparison of the measured and estimated porosity for 189 spherical binary 

packings. 

3.4.2 Validation against Multi-component Mixtures 

3.4.2.1 Dataset from Numerical Simulations 

In this study, multi-component mixtures of digital sediment deposits were simulated, with 

the aim of comparing their porosity values against those estimated by the BUC packing 

model. The numerical simulations were conducted using the non-smooth granular 

dynamics (NSGD) algorithm, following the pioneering work of Schruff et al. (2018), who 

had extensively validated the NSGD algorithm by producing promising results in porosity 

prediction of large granular systems. Here, we merely provide a brief summary of the 

features and particulars of the numerical method and the simulation setup, and direct the 

reader to peruse the original work for a comprehensive discussion of all components 

thereof.  

NSGD Algorithm 

The NSGD algorithm used herein is implemented in the open-source waLBerla 

framework for multi-physics simulations (Bauer et al., 2021). The basic principle of the 

NSGD method can be viewed as a global numerical treatment of non-smooth and multi-

contact granular systems at the scale of particle rearrangements in which their micro-

dynamics are neglected. Interactions between particles are modeled with hard contact 

laws that are subject to inequality constraints in order to eliminate the necessity of 

resolving small elastic responses. Consequently, reaction forces from collisions are 

impulsive, resulting in velocity discontinuities or jumps during time-stepping evolution. 

For such a non-smooth motion, second or higher order integrators for smooth (continuous) 
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motions are unhelpful, and instead first order integrators of the discrete-time Newton-

Euler equations of dynamics are applied. Solving the multi-contact dynamical granular 

system entails the simultaneous fulfillment of inequality constraints given by all potential 

contacts at each time step. This is an incredibly complex mathematical task that requires 

the use of iterative methods. In the present work, the non-linear block Gauss-Seidel 

algorithm (Preclik & Rüde, 2015) was utilized to solve this challenging problem. The 

algorithm uses a mild under-relaxation value (0 < 𝑤 < 1) to calculate a weighted mean 

between the approximation of the previous and new iteration. A value of 0 means only 

the approximation of the previous iteration is taken into account, while a value of 1 means 

the current approximation is of consideration. Each iteration procedure yields an updated 

set of contact reaction impulses and velocities that may give rise to new violations of 

inequality constraints at all potential contacts. Iterations proceed until the violations are 

less than a prescribed precision threshold or the maximum number of iterations is 

surpassed.       

Simulation Setup 

The formation of digital packings was simulated by rain-dropping a certain number of 

particles at a certain height into a box container with periodic boundaries along the lateral 

x and y axes (𝑧 axis pointing upward) and a solid plane at the bottom (at 𝑧 = 0). To 

ensure the complete randomness of the process, the particles, with varying sizes, were 

systematically introduced at regular intervals, each possessing a small range of velocities 

along with randomized directions and orientations. These particles were then subject to 

the force of gravity and eventually deposited within the container box. After the requisite 

particles needed for the formation of packings were added, a certain period of time was 

allotted for the stabilization of the entire packing to occur. During this period, no further 

particles were introduced, leading to the formation of a dense and random packing 

structure.   

The simulation parameters used are similar to those tested by Schruff et al. (2018) 

(see Table 3.1). A total of eleven parameters are present, which are classified into three 

distinct groups. The “General” parameters offer a sweeping overview of the simulation 

environment: gravity, which was reduced to 6.11 m/s2, aimed to incorporate the buoyancy 

effect of water, according to 𝑔′ = 𝑔(1 − 𝜌𝑤 𝜌𝑝ሻ⁄ , where 𝑔, 𝑔′are the default gravity and 

reduced gravity, 𝜌𝑤 , 𝜌𝑝  are the density of water and particle respectively. Damping 

coefficient was set to 0.001 in order to simulate the energy loss stemming from collisions 

between particles or particle-water interactions during the packing process. Simulation 

length is the parameter that dictates the real-time duration, expressed in seconds, taken 

for the formation of packings, which is equal to the single timestep (in seconds) multiplied 

by the total timesteps. The “Solution” parameters, the second group, are used to resolve 

multi-contact issues numerically as previously mentioned. Finally, the third group, the 

“Material” parameters, describe the particle material properties used in the simulation. 
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Here, only the particle density and friction coefficient are required since the microscopic 

collision processes are not explicitly modeled in the hard-contact approach. The particle 

density was set to 2650 kg/m3, mimicking the mineral density of quartz.    

The width of box containers for all simulations was set at least 25 times larger than 

the size of a representative particle to mitigate the so-called “relative size effect” that 

likely leads to an overestimation of the total packing porosity (Schruff et al., 2018). In 

this case, the geometric mean of the grain size distributions was employed as the 

representative particle size.    

Table 3.1. An overview of the set-up parameters used in the NSGD simulations. 

 

3.4.2.2 Evaluation 

Packing simulations become increasingly challenging for larger size ratios as the 

number of particles grows cubically. To mitigate the computational cost, we limited our 

validation study to a narrow size range that corresponds solely to gravels. The discrete 

size classes used for constructing multi-sized sediment mixtures were 2, 2.83, 4, 5.66, 8, 

11.31, 16, 22.63, 32, 45.25 and 64 mm, sorted by a width of 0.5 phi, with the grain shape 

assumed to be spherical. Overall, we generated a total of 85 digital sediment deposits, 

ranging from ternary to 11 muti-sized mixtures (Fig. 3.5). These deposits spanned from 

well sorted to poorly sorted (0.35 ≤𝜎𝜙≤ 1.72), and from very coarse skewed to very fine 

skewed (-1.34 ≤ 𝑆𝑘𝜙 ≤ 1.34) based on the descriptive terminology proposed by Blott and 

Pye (2001).         

As detailed in Schruff et al. (2018), the bulk porosity of the digital packings was 

determined through a voxelization approach as the ratio of the number of empty voxels 

(voids) to the total number of voxels and calculated for the lower 90% of the mixture to 

discount surface irregularities. It should be noted that the digital packings contained a few 

instances of particle overlap, but since the impact on bulk porosity was so minuscule and 

thus overlooked.   

Category Parameters Opted values 

General  Gravity  

Reduced gravity  

Water density                                                

9.81 m/s2 

6.11 m/s2 

1000 kg/m3 

Damping coefficient  0.001 

Timestep  10-3 s 

Total timesteps  10,000-200,000 

Simulation length  10 - 200 s 

Solution Relaxation  0.75 

Maximum iterations  10-50 

Material Solid density  2650 kg/m3 

Friction coefficient  0.5 
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Figure 3.5. Examples of generated digital sediment deposits composed of (a) six-size 

fractions, and (b) nine-size fractions.  

In order to evaluate the BUC packing model, we first performed a calculation of the 

logarithmic mean, standard deviation and skewness of the 85 grain size distributions. 

Based on which, we obtained the equivalent binary-unit mixtures. Finally, we employed 

the Westman equation to directly calculate the porosity of the obtained binary-unit 

mixtures. The initial porosity of each component was set equal to 0.36, indicating a 

random dense packing state present in these simulations.    

The outcome is visualized in Fig. 3.6, showing the BUC model is able to produce 

accurate porosity values for multi-component packings of spherical particles, exhibiting 

a high 𝑅2 score of 0.824 and a low 𝑅𝑀𝑆𝐸 value of 0.014, despite involving the absolute 

errors (around ±0.01) in estimating porosity with the NSGD algorithm (Schruff et al., 

2018).             

 

Figure 3.6. Comparison of the simulated and estimated porosity for the generated 85 

digital sediment mixtures.  

a b 
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3.4.3 Dataset from the Rhine River 

At the final step, the BUC packing model was validated against laboratory measurement 

data of fluvial sediment mixtures. Frings et al. (2011) executed 46 laboratory 

measurements on sediment samples sourced from sub-surface layers of the channel bed 

and river bank in the Rhine River. The sediment’s dimensions range from 0.02 up to 200 

mm, spanning from silt to cobbles, thus signifying a significant extension of the size range 

in comparison to the previous validation. The sediment’s shape generally takes on a sub-

spherical form, exhibiting an average of intercept sphericity hovering around 0.74 

according to Liang et al. (2015). The measured sediment mixtures spread from well sorted 

to very poorly sorted (0.40 ≤ 𝜎𝜙 ≤ 2.97), from very coarse skewed to very fine skewed 

(-2.33 ≤ 𝑆𝑘𝜙 ≤ 6.35), underscoring the striking heterogeneity of the samples. Porosity of 

the sediment mixtures was measured using the water displacement method (Bear, 1972).                

To evaluate the BUC model, again, the equivalent binary-unit mixtures were first 

obtained based on the statistics of mean, standard deviation and skewness calculated from 

the 46 samples, after which their porosity values were acquired using the Westman 

equation. The initial porosity was taken as 0.37 for all size classes, based on the average 

of the laboratory measurements conducted with uniform packings with analogous 

sediments (Frings et al., 2011).       

The comparison is shown in Fig. 3.7, where the outcome is not up to par with previous 

estimations, exhibiting a relatively low 𝑅2 score of 0.692 and a relatively high 𝑅𝑀𝑆𝐸 

value of 0.032.     

 

Figure 3.7. Comparison of the measured and estimated porosity for the 46 Rhine 

sediment mixtures. 
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Given the remarkable precision of the BUC model in gauging the porosity of spherical 

particle packings, the relatively sizeable disparities for fluvial sediment mixtures can be 

attributed to two primary factors, namely (1) measurement inaccuracies, and (2) grain 

shape effect. Within laboratory settings, the reading errors associated with water levels 

and packing heights dominate the accuracy of outputs, yielding an absolute error of ~0.01 

for porosity measurements (Liang et al., 2015). The grain shape effect remains evident 

since the shape of sediment is not entirely spherical. The impact of this can be assessed 

by plotting measured porosity against the theoretical limits of random packing of spheres. 

To accomplish this, the initial porosity was fixed at 0.36 and 0.4 (Allen, 1985), 

corresponding to the state of random loose packing and dense packing of spheres, 

respectively. In the hypothetical scenario that sediment shape was truly spherical, the 

measured porosity values should lie within the range demarcated by the two limiting 

values, or at least, close to this region, taking into account the errors introduced by 

measurements. However, as Fig. 3.8 clearly illustrates, certain measurements, for 

example, IDs 5, 20, 21, 40 and 42, stray far beyond the limiting bounds, indicating the 

grain shape effect becomes marked for situations where grain shape is likely much 

deviated from spherical.      

 

 

Figure 3.8. Measured against estimated porosity for different packing states of the 46 

Rhine sediment mixtures. 
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3.5 Discussion 

3.5.1 Performance over Other Analytical Models  

In the present analysis, we focus on the BUC model’s comparison to the generally 

applicable models, i.e., the analytical porosity predictors as mentioned in section 3.1. A 

recent paper from Rettinger et al. (2023) sheds light on the evaluation of several universal 

models predicting porosity for multi-sized mixtures of fluvial sediments. Within their 

evaluation, two of the models were scrutinized using the same dataset of the Rhine 

sediment, thereby providing an opportunity to discern the performance of the BUC model 

in comparison. Specifically, the two packing models being evaluated were the linear 

mixture packing model (LMPM) (Yu and Standish, 1991), and the compressible packing 

Model (CPM) (De Larrard, 1999).  

In Table 3.2, the comparative performance of the BUC model against the LMPM and 

CPM is presented. From the results, it can be clearly seen that our model outperforms the 

other two models in porosity prediction accuracy. A careful inspection of their data reveals 

that both LMPM and CPM models have consistently underestimated the porosity of the 

packings, despite using the same initial porosity value of 0.37 as the BUC model. The 

underlying reason for the poor performance of these models can be attributed to their 

fundamental principles.   

Table 3.2. Comparison of porosity estimation performance of packing models for the 

Rhine sediment mixtures. 

The central idea of the LMPM is to category the particles of a packing into three 

groups, each lined to a different packing mechanism (Fig. 3.9). The central group consists 

of particles that form the skeleton of a packing, in which the size range of the particles 

are relatively small, thus reducing porosity by occupying each other’s pore space (mixing 

effect). The first and the third groups, on the other hand, include particles that are either 

too small or too large, respectively, when compared to the middle size of the central group, 

namely the dominant size (𝑑𝑖). These particles reduce porosity by either filling into the 

pores in the skeleton of a packing, or completely occupying them with solid volumes. 

Since both mechanisms reduce porosity without changing the skeleton of a mixture, they 

are referred to unmixing effect (Yu and Standish, 1991). Normally, the critical size ratio 

𝑟 of 0.154 is used in the LMPM to separate the three particle groups.   

 

Packing model 
 Original  With cohesion model 

     𝑹𝟐 RMSE MAEa      𝑹𝟐 RMSE MAEa 

LMPM  -0.023 0.068 0.180  0.384 0.053 0.094 

CPM  0.356 0.054 0.187  0.689 0.038 0.096 

BUC  0.692 0.032 0.080     
a maximum absolute error MAE 
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Figure 3.9. Schematic diagram showing the mechanism of the LMPM in estimating 

porosity of multi-size mixtures. 

The defect of the LMPM is apparent, since it takes into account solely the interactions 

between the dominant size and one of the other sizes, while casting aside the interactions 

among more than two size fractions at once. Reality, however, proves to be markedly 

different. Tiny particles, for instance, which per the LMPM ought to percolate through 

the pores of the skeleton of group 2 mixture, instead mix with them to a significant extent, 

as group 2 particles encompass numerous smaller-than-the-dominate-size particles with 

sizes closely aligned with those of the tiny particle. Similarly, with regards to the 

occupation effect, larger particles cannot occupy a position with ease without 

transforming the structure of group 2 mixture, given that many larger-than-the-dominate-

size particles are present. The LMPM’s underlying assumption treats the supposed mixing 

effect wrongly as the unmixing one, thus inevitably introducing systematic 

underestimation of porosity, a phenomenon observed elsewhere as well (e.g., Frings et al., 

2011).    

The CPM distinguishes itself from the LMPM by classifying all particles within a 

mixture as belonging to one group. This model considers solely the unmixing effect 

between particle interactions. Once more, the CPM merely accounts for two-fraction 

interactions between the dominant size and a single other size. However, the CPM 

incorporates a relaxation-like parameter, denoted as 𝐾 ∈ (0,∞ሻ, that serves to lessen the 

effect of unmixing interactions that lead to the reduction of porosity. The magnitude of 

the relaxation effect is inversely related to the 𝐾  value; a higher 𝐾  value implies a 

weaker relaxation effect. In general, a 𝐾 value of 4 is advised for dealing with loose 

packing, whereas a 𝐾 value of 9 is preferable for dense packing (De Larrard, 1999). The 

addition of the relaxation parameter 𝐾  might plausibly account for why the CPM 

underpredicted the porosity to a lesser extent than the LMPM for the Rhine sediment 

mixtures.   

The systematic underestimation of porosity introduced by the two packing models led 

those authors to speculate that such an issue was likely attributable to the oversight of the 
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cohesion effect among fine particles, which might augment porosity by means of van der 

Waals or electrostatic forces between diminutive grains (Yu et al., 2003; Zou et al., 2011). 

Consequently, they reexamined the two packing models, this time incorporating the 

influence of cohesion by elevating the initial porosity of small particles and redefining 

the size ratio according to Yu et al. (1997) and Zou et al. (2011). The size of 0.5 mm was 

identified as the demarcation threshold, below which fine grains were presumed to be 

affected by the cohesion effect based on the laboratory measurements of uniform packings 

of Rhine sediments (Frings et al., 2011). Unsurprisingly, this approach yielded marked 

improvements in the results (see Table 3.2), as increasing the initial porosity was bound 

to increase the final porosity.        

The query that demands scrutiny is whether the influence of cohesion is truly vital in 

those arbitrary packings. We can delve into this by using the equivalent binary-unit 

mixtures derived from our BUC packing model. The binary-unit mixtures not only 

facilitate the computation of the final porosity but can also reflect the attribute of the 

multi-sized packing system with the binary (small and large) size fractions representing 

all the fine and coarse particles involved in a packing, respectively. The assessment of the 

46 binary-unit mixtures reveals the presence of 12 mixtures containing fine grains that 

are smaller than the 0.5 mm threshold size (Fig. 3.10). We then compare the measured 

and estimated porosity values of these 12 sediment packings (Fig. 3.11). The outcome 

indicates that the cohesion effect is not a significant factor in these packings. The 

measured porosity is only notably greater than the estimated value when the content of 

fine grains is approximately 30%. As the fine grain fraction increases, the disparity 

between them shrinks to near equivalence, which is contrary to what would be expected 

if the cohesion effect were operative.  

The query that remains unresolved is why the cohesive effect was only observed in 

the uniform packings but not significant in the multi-sized mixtures. One possibility is 

that the cohesive force is most effective among like-sized particles with similar 

composition. When different-sized particles of varying compositions are mixed, the 

microscopic interaction force weakens and may eventually dissipate. However, this is 

merely a hypothesis that requires further investigation, which surpasses the scope of this 

study.     
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Figure 3.10. The obtained equivalent binary-unit mixtures for the 46 Rhine sediment 

mixtures. 

 

Figure 3.11. Comparison of the measured and estimated porosity for the 12 Rhine 

sediment mixtures consisting of the representative fines smaller than the size of 0.5 mm. 

3.5.2 Flexibility and Limitation of the BUC Packing Model  

The BUC packing model, while originating from the Westman equation, is not dependent 

on it, for the essence of the BUC model lies in the binary-unit concept. The idea of 

utilizing equivalent binary-unit mixtures to represent original mixtures extends beyond a 

mere interface for porosity calculation. Given the high precision in estimating porosity 

for spherical packing systems (see section 3.4.2), it demonstrates that the grain size 
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statistics of mean, standard deviation, and skewness are the fundamental factors that 

control the porosity of arbitrary spherical packings, including binary mixtures. 

Specifically, the standard deviation, which measures the spread of grain sizes around the 

mean, primarily reflects the mixing effect between particles. Skewness, which measures 

the asymmetry of grain sizes about its mean, mainly captures the unmixing intraparticle 

interactions. The mean, however, merely plays a role in determining the specific values 

within the grain size distribution. Therefore, the obtained binary mixture can be viewed 

as the most elementary packing unit that equivalently represents the diversity of particle-

particle interactions in multi-component (or continuous) mixtures. This theoretical 

foundation is what makes binary-unit mixtures highly useful for evaluating complex 

mixtures.  

With the binary-unit concept, the BUC packing model possesses the flexibility to 

make use of any other existing models able to predict the porosity of spherical binary 

mixtures, such as the mentioned analytical models and many others (e.g., Dias et al., 2004; 

Koltermann & Gorelick, 1995). However, the Westman equation is still our 

recommended option, due to its ability to consider all possible interparticle interactions 

in an implicit manner. This feature allows the Westman equation to deliver promising 

predictions, as demonstrated in section 3.4.1. Furthermore, the binary-unit concept 

transcends the realm of porosity estimation, as the interparticle interactions exert a far-

reaching impact than mere porosity. Accordingly, the binary-unit concept has the 

potential to gauge solutions for numerous problems associated with particle packing 

systems, such as the estimation of permeability in sediment mixtures (Masch & Denny, 

1966), determination of the cut-off grain size for morphological changes (Frings et al., 

2008), and even prediction regarding the onset of sediment transport (Wilcock & 

Kenworthy, 2002).     

The BUC model’s limit is apparent due to its incapacity to capture the effect of 

complex grain shape, which has a marked influence on porosity as evident in this study 

and others (e.g., Liang, et al., 2015; Rettinger et al., 2022b). So far, the BUC packing 

model is only suitable for estimating packings with spherical or sub-spherical particles. 

Therefore, incorporating the non-spherical grain shape effect into the BUC model is a 

future necessity to enhance its functionality, which will enable accurate porosity 

estimation for fluvial sediment mixtures.    

3.6 Conclusions 

The BUC packing model has been established from the re-analysis of the conic Westman 

equation. The core of the BUC packing model lies in the newly proposed binary-unit 

concept, which states that any arbitrary mixture can be transformed into an equivalent 

binary-unit mixture for spherical packings, through the link of identical statistics of mean, 

standard deviation and skewness. The BUC model’s versatility stems from the binary-

unit mixture’s ability to capture all the feasible particle-particle interactions that impact 
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porosity in arbitrary packing systems. Leveraging the Westman equation, the BUC model 

can provide general and precise porosity estimation for arbitrary sediment mixtures of 

spherical or sub-spherical shapes. Not only does the BUC model surpass other analytical 

packing models in terms of efficiency and accuracy, but it also highlights the negligible 

role of the cohesion effect in multi-sized packings. Besides, the binary-unit concept 

makes it possible to tackle other particle-related issues beyond porosity estimation. The 

next phase entails integrating the non-spherical grain shape effect into the BUC packing 

model to offer comprehensive porosity prediction for fluvial packing systems.   
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4 
4 Validation of A Stochastic Digital 

Packing Algorithm 

 

Porosity as one of the key properties in sediment mixtures is poorly understood. Most of 

the existing porosity predictors based upon grain size characteristics have been unable 

to produce satisfying results for fluvial sediment porosity, due to the lack of consideration 

of other porosity-controlling factors like grain shape and depositional condition. 

Considering this, a stochastic digital packing algorithm was applied in this work, which 

provides an innovative way to pack particles of arbitrary shapes and sizes based on 

digitization of both particles and packing space. The purpose was to test the applicability 

of this packing algorithm in predicting fluvial sediment porosity by comparing its 

predictions with the outcomes obtained from laboratory measurements. Laboratory 

samples examined were two natural fluvial sediments from the Rhine River and Kall River 

(Germany), and commercial glass beads (spheres). All samples were artificially combined 

into seven grain size distributions: four unimodal distributions and three bimodal 

distributions. Our study demonstrates that apart from grain size, grain shape also has a 

clear impact on porosity. The stochastic digital packing algorithm successfully 

reproduced the measured variations in porosity for the three different particle sources. 

However, the packing algorithm systematically overpredicted the porosity measured in 

random dense packing conditions, mainly because the random motion of particles during 

settling introduced unwanted kinematic sorting and shape effects. The results suggest that 

the packing algorithm produces loose packing structures, and is useful for trend analysis 

of packing porosity.  

 

http://dict.youdao.com/w/applicability/
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4.1 Introduction 

Porosity prediction of sedimentary deposits is of interest in a fluvial environment. 

Previous studies have shown that porosity, as a key structural property, plays an important 

role in the morphological, ecological and geological characteristics of fluvial systems. 

Morphologically, porosity governs the initiation of sediment motion and bank collapse 

(e.g., Wilcock, 1998; Vollmer & Kleinhans, 2007). Ecologically, porosity determines the 

interstitial space of the hyporheic zone for aquatic habitats (e.g., Boulton et al., 1998). 

Geologically, porosity dominates the exploitable reserve of oil, gas, and groundwater 

stored in the voids of fluvial deposits (e.g., Athy, 1930). To date, existing porosity 

predictors can generally be classified into two types: (1) empirical predictors; and (2) 

theoretical predictors. Most efforts to predict porosity have been empirically driven, to a 

large extent based upon median grain size D50  (e.g., Carling & Reader, 1982; Wu & 

Wang, 2006), sorting coefficient σ  (e.g., Wooster et al., 2008), or a combination of 

different grain size characteristics (e.g., Frings et al., 2011; Desmond & Weeks, 2014). 

Theoretical predictors such as geometrical models (e.g., Ouchiyama & Tanaka, 1984; 

Suzuki & Oshima, 1985) or analytical models (e.g., Yu & Standish, 1991; Koltermann & 

Gorelick, 1995; Esselburn et al., 2011) relate porosity to the full grain size distribution of 

perfect spheres. The performance of these predictors has been investigated by comparing 

porosity values measured in situ with those computed by the predictors (e.g., Frings et al., 

2008, 2011). Unfortunately, these predictors produced unsatisfying results in predicting 

fluvial sediment porosity (Frings et al., 2011), probably because such predictors mainly 

focused on grain size characteristics, ignoring other porosity-controlling factors such as 

depositional environment and grain shape.            

Effects of grain shape on porosity have received less attention, due to the complexity 

of arbitrary shapes of natural particles. Over the past decade, the application of computer 

simulations for the study of granular particle packings has become more popular, 

supported by developments in the computer hardware industry. However, most of the 

computer simulations have been limited to simple analytical geometries such as cylinders 

(Zhang et al., 2006), disks (Desmond & Weeks, 2009), ellipsoids (Donev et al., 2007; 

Zhou et al., 2011) and spherocylinders (Abreu et al., 2003; Williams & Philipse, 2003; 

Zhao et al., 2012). The major reason is the practical difficulty of representing and 

handling irregular shapes using vector-based approaches. Traditional ways to construct 

an irregular particle require the user to place spherical elements within a meshed 

polyhedral body (e.g., Wang et al., 2007; Matsushima et al., 2009; Ferellec & McDowell, 

2010; Fukuoka et al., 2013), which consumes high computational costs with large 

numbers of components (spheres) involved (Hubbard, 1996; Song et al., 2006). Although 

techniques using 3D polyhedral (Latham et al., 2001) or continuous superquadric 

functions (Williams & Pentland, 1992; Lu et al., 2012) provide a straightforward way to 

generate irregular particle shapes, complex contact-detection algorithms are needed, 
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leading to deterioration in simulation speed as particle complexity increases (Johnson et 

al., 2004).      

In order to overcome these difficulties, a stochastic digital packing algorithm was 

developed (Jia & Williams, 2001). The packing algorithm is distinguished from the 

traditional vector-based packing models by digitization of both particles and packing 

space, allowing for a much easier and computationally efficient way to pack particles of 

irregular shapes with no more than an ordinary PC. These advantages make it attractive 

to create packings of complex fluvial deposits, and to study the grain shape effects on 

porosity. Applications of this stochastic digital packing algorithm have proven to provide 

relatively accurate porosity predictions for both fine powders (Jia et al., 2007) and large 

spheres (Caulkin et al., 2006, 2007) in the fields of material science and engineering 

chemistry. Nevertheless, the packing algorithm has not yet been used for generating 

packings of fluvial deposits. Therefore, the primary purpose of this work was to test the 

applicability of the stochastic digital packing algorithm in predicting fluvial sediment 

porosities. In this study, we focused on fluvial gravel mixtures and did so by comparing 

the predicted porosities with those obtained from laboratory measurements.          

4.2 Materials and methods 

4.2.1 Particle acquisition and analysis 

The particles employed for this study came from three different sources: (1) fluvial 

gravels from the Rhine River (Germany), (2) fluvial gravels from the Kall River 

(Germany), and (3) commercial glass beads. The Rhine sediments were collected from 

the channel bed between the barrage of Iffezheim and the German-Dutch border between 

July 2008 and April 2011. Quartz is the dominant lithology. The Kall sediments were 

collected from the channel bed near the river mouth in June 2014. Slate is the dominant 

lithology.        

After acquisition, the fluvial sediments were carefully cleaned by flushing with fresh 

water, dried in an oven at 105 °C for 48 h and sieved into seven size fractions: 2.8-4 mm, 

4-5.6 mm, 5.6-8 mm, 8-11.2 mm, 11.2-16 mm, 16-22.4 mm, 22.4-31.5 mm. Subsequently, 

these fractions were combined into seven grain size distributions: four unimodal ones 

with logarithmic standard deviations (𝜎𝜑) of 0.00, 0.32, 0.49 and 0.71, and three bimodal 

ones, with the finer mode, making up either 𝑘 = 30, 𝑘 = 50 or 𝑘 = 70 percent of the 

distribution (Fig. 4.1). The glass beads with seven size fractions of 3, 4, 6, 8, 11, 16 and 

22 mm were also combined into the same distributions as above.    

For the fluvial sediments, nine representative particles were chosen based on visual 

judgments from each of the seven sieve fractions, and digitized (Fig. 4.2) using a 

nonmedical X-ray computed tomography (CT) scanner. Shape analysis was done 

according to the classic Zingg diagram (Zingg, 1935), which categorizes particle shape 

into sphere, disc, blade and rod categories on the basis of the elongation ratio (𝑏/𝑎) and 

http://dict.youdao.com/w/applicability/
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flatness ratio (𝑐/𝑏), where 𝑎, 𝑏 and 𝑐 are the long, intermediate and short orthogonal 

axes respectively of the smallest volume imaginary box that can contain the particle (Blott 

and Pye, 2008). It can be seen in Fig. 4.3 that most of the Rhine sediments locate within 

the sphere area while the Kall sediments are dominated by disks and blades. According 

to Krumbein’s (1941) equation (4.1), the intercept sphericity (𝜓) for each selected particle 

was calculated, with an average intercept sphericity of 0.74 gained for the Rhine 

sediments and 0.55 for the Kall sediments.         

𝜓 = √
𝑏 ∗ 𝑐

𝑎2

3

                                                                 (4.1ሻ 

 

 

 

Figure 4.1. Grain size distributions used for the porosity measurements and simulations. 
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Figure 4.2. Nine representative digitized particles in the 22.4-31.5 mm fraction of (A) 

Rhine sediments and (B) Kall sediments represented at a resolution of 0.5 mm/voxel.  

 

 

 

Figure 4.3. Shape properties of (A) Rhine sediments and (B) Kall sediments in the Zingg 

classification.                                                    
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final water level was visually read to obtain the whole accumulated volume 𝑉𝑎 (𝑉𝑎 = 𝑉𝑤 

+ 𝑉𝑠, where 𝑉𝑠 is the volume of the solid fraction). The jagged surface of the particle 

packing caused by the wide range of sizes and shapes was then smoothed by hand and the 

total volume of the particle packing 𝑉𝑡 (including pores) was obtained through reading 

the height of the particle packing. Eventually, the porosity was computed as 𝑛 = 𝑉𝑝 𝑉𝑡⁄ , 

where 𝑉𝑝 (= 𝑉𝑡 − (𝑉𝑎 − 𝑉𝑤)) is the pore volume of the particle packing.       

In total, 42 laboratory porosity experiments were performed as a basis for the 

validation of the stochastic digital packing algorithm: 14 experiments with the sub-

spherical Rhine sediments (7 distributions, each two times), 14 experiments with low-

sphericity Kall sediments (again 7×2) and 14 experiments with the spherical glass beads 

(again 7×2).                  

4.2.3 Porosity simulation 

The stochastic digital packing algorithm of Jia and Williams (2001) is designed to pack 

particles of arbitrary sizes and shapes in a confined space of arbitrary geometry. In this 

packing algorithm, every element is digitized: each particle as a coherent collection of 

voxels, the packing space (in a container) as a lattice grid, and the movements take place 

in units of grid cells. During the simulation, the movements of particles, both translational 

and rotational, are random. In 3D, there are 26 possible translational directions: 6 

orthogonal and 20 diagonals. The diagonal moves are treated as a combination of two 

orthogonal moves. To ensure particles settle while still make use of every available space, 

a rebounding probability is used. An upward movement (which may be an orthogonal 

move or part of a diagonal move) is only realized with this probability. After translation, 

a trial rotation follows, and it is accepted if the rotation does not result in overlaps. 

Compared with vector-based approaches and for complex shapes, this digital approach is 

advantageous in several respects. First, there is no conversion or parameterization 

required, since objects digitized by modern imaging devices, such as X-ray tomography 

(e.g., Richard et al., 2003) or nuclear magnetic resonance imaging (e.g., Kleinhans et al., 

2008), are already in the digital volumetric format required by the packing algorithm. 

Secondly, collision and overlap detection (normally the most computationally expensive 

part of packing simulations) is much easier to implement as computer code, and usually 

faster to execute for complex shapes. Thirdly, the number of voxels used to represent 

objects, and hence to a large extent the simulation runtime, does not necessarily increase 

with shape complexity. The reverse is also true: it does not necessarily reduce with shape 

simplification either. Further details on the stochastic digital packing algorithm can be 

found elsewhere (Jia & Williams, 2001; Caulkin et al., 2006, 2007).       

In order to produce porosity results comparable to those aforementioned 

measurements, simulation conditions need to be set up to resemble the laboratory 

experiments, with respect to the packing space, the particle mixtures and the packing 

process. The digital objects (i.e., packing space and particles) were prepared with 
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DigiUtility, which is a bundled tool for viewing, manipulating and preparing digital files 

for this packing algorithm. In DigiUtility, a cylinder (packing space) with solid boundary 

was built with the size of 104 mm in diameter, and 300 mm in height, which is slightly 

higher than the largest real packing heights (about 250 mm) to ensure all the particles 

would drop into it. The particle mixtures (i.e., number of particles in each of the fractions) 

employed in these simulations were derived on a weight-to-weight basis. For glass beads, 

the numbers of particles in each fraction were determined as the ratio of the real mass of 

each fraction to the single particle mass (density of 2500 kg/m3 used for glass beads). The 

regular spherical shapes with different sizes were directly created in digital formats using 

DigiUtility. In the case of the fluvial sediments, we used nine digitized typical particles 

to represent each fraction and repeated them as many times as needed to make up the 

feedstock according to the required grain size distributions. The density of fluvial gravels 

was set to 2650 kg/m3. Resolution of 0.5 mm/voxel for the digital objects was assigned 

as it offers relatively precise representation of the real particles in both dimension and 

shape, and also limits the computational cost to a feasible amount.  

Table 4.1. Set-up conditions applied in simulations. 

Parameters Values 

Resolution  0.5 mm/voxel 

Container diameter 104 mm 

Dropping height 300 mm 

Sediment density 2650 kg/m3 

Glass density 2500 kg/m3  

Adding source Rain-dropping mode 

Rotation Complete random 

Rebounding probability 0.35 

Addition rate  1 particle/every 50 timesteps 

Windup timesteps 2000  

Having the digital objects created, a range of options and parameters was set to mimic 

the packing process. The source was set to “rain-dropping” mode to let the particles 

randomly drop from a circular area above the cylinder. In addition to the translational 

movements, particles were also allowed to rotate randomly during the simulation. 

Optimized values of the parameters (rebounding probability, addition rate and number of 

time steps) that control the generated packing structures were chosen such as to create the 

densest possible packings. By doing so, simulation conditions (Table 4.1) matched the 

experimental setups as close as possible. Finally, the porosity of the digital packings was 

determined as the ratio of the number of empty voxels to the total number of voxels within 

the corresponding packing space. Porosity was calculated for the lower 90% of the 

mixture to exclude effects of surface irregularities. Each simulation was also done twice 

and 42 simulations were achieved in total. 
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4.3 Results  

4.3.1 Measured porosity 

The porosity measured in the laboratory experiments is shown in Fig. 4.4. For the 

unimodal particle mixtures, porosity decreases with increasing logarithmic standard 

deviations, while the bimodal particle mixtures generally have lower porosity than the 

unimodal mixtures. This variation in porosity reflects the mixing effect between small 

and large particles.  

Porosity comparisons between the three different particle sources show the low-

spherical Kall sediments and the spherical glass beads produced higher porosity than the 

sub-spherical Rhine sediments, which confirms that there is a decrease and then increase 

in porosity as particle shape varies from spherical to platy (Tickell & Hiatt, 1938; Zou & 

Yu, 1996). On the other hand, in the case of the bimodal particle mixtures, different 

tendencies toward the porosity are appreciable (Fig. 4.4B), suggesting grain shape exerts 

a quite complicated influence on porosity, not merely in variation of amount but in 

variation of trend.    

It should be noted that the dense sediment deposits packed by hand in the laboratory 

experiments are not fully representative of natural situations where grain arrangement is 

determined by depositional conditions, such as flow impact (with near-bed turbulence 

playing an important role) and burial depth (compaction mechanism). This topic is 

beyond the current effort. Nonetheless, based on the comparisons between field 

measurements of porosity in the River Rhine (28 measurements on the channel bed and 

18 measurements on the river banks, focusing on subsurface sediments) and 

measurements in the laboratory (Frings et al., 2011), it was found that in most cases (59%), 

the difference between is less than 0.03 (Fig. 4.5), with an average porosity of 0.24 

obtained ex situ and 0.22 in situ.  

 

Figure 4.4. Measured porosity for the Rhine sediments, Kall sediments and glass beads 

over the four unimodal distributions represented by logarithmic standard deviation (A) 

and three bimodal distributions represented by percentage of fine mode (B). 
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Figure 4.5. Porosity difference between field measurements and laboratory 

measurements, based on the porosity data set provided by Frings et al. (2011). The study 

area was the 520 km long river reach between the barrage of Iffezheim (Rhine kilometer 

334) and the German-Dutch border (Rhine kilometer 865). 

4.3.2 Algorithm behavior  

The behavior of the stochastic digital packing algorithm is presented in Fig. 4.6. In order 

to validate the packing algorithm, comparisons were made between the measured and 

simulated porosity outcomes. Fig. 4.7 clearly shows that the packing algorithm 

successfully captures the measured variation in porosity due to grain size distributions for 

each particle source. While the packing algorithm also seems to be able to mimic the 

measured variation due to grain shape for a given grain size distribution, providing that 

the glass beads (spheres) are not taken into account (Fig. 4.8).   

However, nearly all simulated porosities were systematically overestimated compared 

to the experimental measurements. To easily recognize these discrepancies, relative errors 

between the measured and simulated porosities were calculated (Table 4.2). The average 

relative error is 29.4% for the Rhine sediments, 21.7% for the Kall sediments and 6.6% 

for the glass beads, indicating that the packing algorithm predicted relatively higher 

porosities when it comes to fluvial sediments with irregular shapes. Fig. 4.9 shows the 

comparison between these discrepancies over the seven grain size distributions. For the 

unimodal particle mixtures, the discrepancies are growing as logarithmic standard 

deviation increases (Fig. 4.9A). For the bimodal particle mixtures, with the finer mode 

increasing from 30% to 70%, the discrepancies for fluvial sediments decrease while the 

discrepancies for glass beads increase (Fig. 4.9B). 
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Figure 4.6. Generated digital packings for (A) Rhine sediments, (B) Kall sediments, and 

(C) glass beads. From left to right, the packings represent the four unimodal distributions 

(1, 3, 5, 7 fractions), and three bimodal distributions (30%, 50%, 70% proportion of fine 

mode).  
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Figure 4.7. Measured versus simulated porosities for the Rhine sediments, Kall sediments 

and Glass beads over the four unimodal distributions represented by logarithmic standard 

deviation and three bimodal distributions represented by percentage of fine mode. 

 

Figure 4.8. Comparison of model predictions with experimental data between the three 

different particle sources (i.e., the spherical glass beads, the sub-spherical Rhine 

sediments and the low-spherical Kall sediments) for a given grain size distribution. A to 

G represents the four unimodal distributions (1, 3, 5, 7 fractions), and three bimodal 

distributions (30%, 50%, 70% percentage of fine mode).   

 

 

Figure 4.9. Comparisons between relative errors over the four unimodal distributions (A), 
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Table 4.2. Porosity outcomes attained from laboratory measurements and simulations. 

ID Description of grain size distribution 
Laboratory Measurements   Simulations Relative errors 

(%) 1# 2# Mean SDa   1# 2# Mean SDa 

1 

Rhine 

sediments 

Unimodal 

distributions 

1 Fraction 0.370 0.372 0.371 0.001  0.435 0.434 0.434 0.000 17.1  

2 3 Fractions 0.359 0.353 0.356 0.003  0.431 0.428 0.429 0.002 20.5  

3 5 Fractions 0.346 0.342 0.344 0.002  0.424 0.425 0.424 0.001 23.4  

4 7 Fractions 0.317 0.313 0.315 0.002  0.416 0.424 0.420 0.004 33.3  

5 
Bimodal 

distributions 

30%b  0.272 0.267 0.270 0.003  0.384 0.380 0.382 0.002 41.7  

6 50%b 0.284 0.294 0.289 0.005  0.392 0.393 0.392 0.000 35.8  

7 70%b 0.300 0.297 0.299 0.002  0.400 0.402 0.401 0.001 34.3  

8 

Kall 

sediments 

Unimodal 

distributions 

1 Fraction 0.383 0.380 0.382 0.002  0.447 0.448 0.448 0.001 17.4  

9 3 Fractions 0.385 0.380 0.383 0.003  0.464 0.460 0.462 0.002 20.8  

10 5 Fractions 0.368 0.364 0.366 0.002  0.453 0.456 0.454 0.002 24.1  

11 7 Fractions 0.331 0.324 0.328 0.004  0.427 0.420 0.424 0.004 29.3  

12 
Bimodal 

distributions 

30%b  0.325 0.315 0.320 0.005  0.401 0.400 0.401 0.001 25.2  

13 50%b 0.316 0.317 0.317 0.001  0.371 0.376 0.374 0.003 18.0  

14 70%b 0.314 0.312 0.313 0.001  0.370 0.365 0.368 0.003 17.4  

15 

Glass 

beads 

Unimodal 

distributions 

1 Fraction 0.365 0.362 0.364 0.002  0.357 0.353 0.355 0.002 2.3  

16 3 Fractions 0.383 0.377 0.380 0.003  0.395 0.395 0.395 0.000 4.0  

17 5 Fractions 0.368 0.368 0.368 0.000  0.383 0.384 0.384 0.000 4.3  

18 7 Fractions 0.353 0.344 0.349 0.005  0.369 0.370 0.369 0.000 6.0  

19 
Bimodal 

distributions 

30%b  0.317 0.314 0.316 0.002  0.339 0.340 0.340 0.001 7.6  

20 50%b 0.314 0.310 0.312 0.002  0.344 0.345 0.345 0.001 10.4  

21 70%b 0.330 0.324 0.327 0.003   0.364 0.366 0.365 0.001 11.7  

a, standard deviation; b, percentage of fine mode.
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4.4 Discussion   

The purpose of determining the porosities of the samples was twofold: first, to point out 

that apart from grain size, grain shape also has a clear impact on porosity (shown in 

section 4.3.1), and second, to serve as a basis of comparison for the porosities predicted 

from the stochastic digital packing algorithm. It is shown in section 4.3.2 that although 

the packing algorithm is able to follow the experimental trend, systematic overestimation 

of the porosity is noticeable, especially for the fluvial sediments. The remarkable 

discrepancies between can be caused by (1) measurement inaccuracies, and/or (2) 

simulation inaccuracies.  

4.4.1 Measurement inaccuracies 

For the laboratory measurements, the reading errors related to the water levels and 

packing heights dominate the accuracy of outputs. The water levels were visually read to 

obtain the whole accumulated volumes Va with a deviation of about 1 mm, and readings 

of the packing heights for gaining the total volume of particle packing Vt  (including 

pores) were achieved with an accuracy of ~3 mm. These inevitable reading errors can 

lead to the absolute error of the porosity to be ~0.01 for the measurements. However, 

measured inaccuracies are small compared to the apparent differences between the 

measured and simulated porosities, particularly for fluvial sediments. 

4.4.2 Simulation inaccuracies 

4.4.2.1 Digitization inaccuracy  

As can be seen in Fig. 4.10, the arrangements of particles leave unexpected pore spaces. 

One reason for this may be the digitization errors of digital objects represented at a 

resolution of 0.5 mm/voxel. The effect can be supported by the fact that the porosity of 

0.355 simulated for glass beads is less than the limit of 0.36 in a random dense packing 

of spheres (Scott, 1960; Allen, 1985; Yu & Standish, 1991; Weltje & Alberts, 2011). This 

is probably because the spherical shape of glass beads is not perfectly described at such 

a resolution (0.9% digitization error), causing a reduction of porosity. Korte and Brouwers 

(2013) also observed the same effects in the simulation of packing 3D digitalized spheres 

under different resolutions. For this reason, a test for the ID 5 case (see Table 4.2) was 

carried out with a higher resolution of 0.25 mm/voxel to decrease the digitized errors, 

especially for smaller particles. This gave a slightly lower porosity of 0.37 instead of 0.38 

at 0.5 mm/voxel resolution, indicating that effects of digitization errors are not too 

significant when compared to the discrepancies between measured and simulated 

porosities.  

Another error arises from the strict non-overlap requirement in the algorithm. Imagine 

two large objects side by side. If for any reason, there is a voxel protruded from either of 
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the objects, this single voxel can stop the two objects from coming closer, thus leaving a 

large gap. In reality or in DigiDEM simulations, where forces instead of probabilities are 

used to determine in which direction and by how much each object moves in the next 

time step, this would not have happened.     

 

       

       

       

 

    

Figure 4.10. Cross section images of the generated digital packings for (A) Rhine 

sediments, (B) Kall sediments, and (C) glass beads. From left to right, the packings 

represent the four unimodal distributions (1, 3, 5, 7 fractions), and three bimodal 

distributions (30%, 50%, 70% percentage of fine mode).  
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4.4.2.2 Process control parameters 

Another cause of simulation inaccuracy is the settings of process control parameters that 

affect the simulated packing structures, which are rebounding probability, addition rate 

and number of time steps. We did a sensitivity analysis to define the effects of these 

parameters on porosity. This was done by running a number of simulations in which one 

of the parameters was varied while keeping the others constant. To perform these 

simulations, 750 spherical particles (6.4 mm in diameter) and a cylinder (64mm in both 

diameter and height) were used. Resolution was set to 0.4 mm/voxel, giving a slight 

difference (<1% digitization error) between the digital volumes and real volumes.  

Rebounding probability, designed to allow particles to move upwards, provides a non-

physical way to generate vertical vibrations. The original intention of having a rebounding 

probability is to make it possible for particles to escape from their cramped places and 

continue to explore more suitable space to fit in, thereby simulating sediment compaction. 

The rebounding probability can be set between 0 and 1. A value of 0 means no rebounding 

and hence no vertical vibration applied. A value of 1 means particles having the same 

probability to move up or down, and hence kept suspended. To investigate its effects on 

porosity, seven rebounding probabilities varying from 0.1 to 0.7 were tested, while the 

addition rate and number of time steps remained the same (Table 4.3). The sensitivity 

analysis shows that bulk porosities vary parabolically as a function of the rebounding 

probability (Fig. 4.11A). The lowest porosity values appear at rebounding probabilities 

of 0.3-0.5, while lower and higher rebounding probabilities give higher porosities.  

Addition rate controls the speed of introduction of particles into the packing space. 

Simulations with seven fixed addition rates were performed with the same sets of 

rebounding probability, and number of time steps (Table 4.4). Slower addition rates tend 

to generate denser packing structures, with bulk porosities decreasing from 0.46 to 0.42 

(Fig. 4.11B). This effect is because with slower addition rates, particles have more time 

to find a better fitting position before being locked-in by new additions, resulting in denser 

packing structures.  

In the packing algorithm, three types of time steps are defined: normal time steps, 

extra time steps and wind up time steps. Normal time steps are those during which 

particles drop into the packing space. They are closely related to the addition rate. For 

example, if the addition rate is chosen such that one particle drops down every 10 time 

steps, 1000 normal time steps are needed to introduce 100 particles into the packing space. 

In the case that a previously introduced particle still remains on top of the container, the 

next particle might be prevented from being introduced. In this instance, the next particle 

has to “wait” and extra time steps are needed to finish the packing. Wind up time steps 

are time steps at the end of a simulation during which no more particles are added and the 

rebounding probability is set to zero. These time steps enable the whole packing structure 

to consolidate. During the sensitivity analysis, only the effect of wind up time steps on 

porosity was assessed, since the effect of normal and extra time steps is directly related 
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to the addition rate. The number of wind up time steps was varied between 0 and 32000 

(Table 4.5), and shows no systematic effect on porosity (Fig. 4.11C).  

The sensitivity analysis confirms that the settings we chose for the validation of the 

stochastic digital packing algorithm (Table 4.1) result in the densest possible packings. 

This shows that the overestimation of porosity by this packing algorithm cannot be solved 

by choosing different settings for the simulations.  

 

  

 

Figure 4.11. Sensitivity analysis of process control parameters on porosity, including (A) 

Rebounding probability, (B) Addition rate and (C) Windup timesteps. Each simulation 

was conducted three times and the error bar shows 95% confidence interval for the 

simulated porosities.
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Table 4.3. Simulated porosity with varied rebounding probabilities (a, standard deviation)    

ID 
Rebounding 
 Probability 

Addition Rate 
Extra  
Timesteps 

Windup  
Timesteps 

Simulated porosity 

Amount 
Every   
Timesteps 

Normal 
Timesteps 

1# 2# 3# Mean SDa 

1 0.1 1 10 7500 0 500 0.437 0.440 0.441 0.439 0.002 

2 0.2 1 10 7500 0 500 0.433 0.436 0.436 0.435 0.002 

3 0.3 1 10 7500 0 500 0.434 0.429 0.432 0.432 0.002 

4 0.4 1 10 7500 0 500 0.434 0.429 0.430 0.431 0.002 

5 0.5 1 10 7500 0 500 0.434 0.438 0.434 0.435 0.002 

6 0.6 1 10 7500 0 500 0.433 0.433 0.438 0.435 0.002 

7 0.7 1 10 7500 0 500 0.446 0.447 0.443 0.445 0.002 

Table 4.4. Simulated porosity with varied addition rates (a, standard deviation)    

ID 
Rebounding 
 Probability 

Addition Rate 
Extra  
Timesteps 

Windup  
Timesteps 

Simulated porosity 

Amount 
Every   
Timesteps 

Normal 
Timesteps 

1# 2# 3# Mean SDa 

1 0.25 1 2 1500 0 500 0.460 0.463 0.457 0.460 0.002 

2 0.25 1 5 3750 0 500 0.446 0.448 0.441 0.445 0.003 

3 0.25 1 10 7500 0 500 0.434 0.432 0.434 0.433 0.001 

4 0.25 1 20 15000 0 500 0.424 0.427 0.428 0.427 0.002 

5 0.25 1 30 22500 0 500 0.423 0.421 0.422 0.422 0.001 

6 0.25 1 40 30000 0 500 0.421 0.421 0.420 0.421 0.001 

7 0.25 1 50 37500 0 500 0.420 0.420 0.421 0.420 0.000 

Table 4.5. Simulated porosity with varied windup timesteps (a, standard deviation)    

ID 
Rebounding 
 Probability 

Addition Rate 
Extra  
Timesteps 

Windup  
Timesteps 

Simulated porosity 

Amount 
Every   
Timesteps 

Normal 
Timesteps 

1# 2# 3# Mean SDa 

1 0.25 1 10 7500 500 0 0.434 0.435 0.437 0.435 0.001 

2 0.25 1 10 7500 500 1000 0.432 0.432 0.434 0.433 0.001 

3 0.25 1 10 7500 500 2000 0.434 0.431 0.433 0.433 0.001 

4 0.25 1 10 7500 500 4000 0.435 0.432 0.435 0.434 0.002 

5 0.25 1 10 7500 500 8000 0.432 0.434 0.432 0.432 0.001 

6 0.25 1 10 7500 500 16000 0.434 0.433 0.436 0.435 0.001 

7 0.25 1 10 7500 500 32000 0.431 0.432 0.430 0.431 0.001 
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4.4.2.3 Random walk-based algorithm 

The reasons why the simulations failed to yield random dense packing structures can be 

explored in the random walk-based packing algorithm, by which the translational and 

rotational movements of particles during the simulation are completely random. Looking 

at the cross sections of the digital packings (Fig. 4.10) closely, the mixing of the particles 

is not uniform as smaller particles are more likely to concentrate at the bottom layer, 

particularly for the bimodal distributions with percentage of small particles increasing 

from 30% up to 70%. The phenomenon can be interpreted by kinematic sorting (i.e., 

segregation) effects. This is because particles kept moving randomly throughout the 

simulation, thus giving more chances for smaller particles to move through the pore 

spaces between larger particles and reach the bottom layer. Observations from Fig. 4.10 

also suggest that shape effects strongly affect the simulated packing structures of fluvial 

sediments compared to the packings of glass beads. Because of random rotational motions 

during the simulation, the arrangements of particles with irregular shapes lead to create 

larger voids, especially between larger particles. For the simulations of glass beads, shape 

effects are inconsequential because the rotation of a sphere has no impact on particle 

packing. Therefore, kinematic sorting can fully explain the growing discrepancy trend for 

glass beads over the seven grain size distributions, while shape effects are the dominant 

reason that causes the porosity to be significantly overestimated for fluvial sediments (Fig. 

4.9).   

4.5 Conclusions     

The applicability of a stochastic digital packing algorithm in predicting porosity of fluvial 

gravel deposits was validated. The conclusions are summarized as follows: (1) Apart from 

grain size, grain shape has a clear impact on porosity. (2) The packing algorithm provides 

an innovative way to simulate fluvial sediment mixtures with arbitrary shapes. (3) The 

packing algorithm correctly reflects the mixing effect on porosity for unimodal particle 

mixtures and also reproduces the differences in porosity for bimodal particle mixtures. 

However, in all cases, the packing algorithm systematically overestimates porosity 

mainly due to the unwanted kinematic sorting effects as well as shape effects introduced 

by the random motion of particles. (4) The packing algorithm is useful for trend analysis 

of packing porosity; but for a quantitative match a more rigorous model such as Discrete 

Element Method (DEM) where particle motion is physics-based may be needed.        
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5 
5 Grain Shape Approximation of 

Fluvial Sediments 

 

Grain shape is a fundamental property of fluvial sediments and vital for various sediment 

processes. However, investigating the intricate role of grain shape in these processes 

remains difficult, due to the challenges associated with shape measurement, 

characterization, and control for the complex fluvial sediments. This study aimed to 

address these shape-related challenges by introducing an idealized regular shape that 

could approximate the overall form of fluvial sediments. To achieve this, we initially 

performed a comprehensive shape analysis of 241 digitized fluvial sediments, including 

104 bulky Rhine sediments (Germany) and 137 platy Kall sediments (Germany). 

Subsequently, we selected four potential candidate shapes: cuboid, elliptic disk, truncated 

octahedron, and ellipsoid. The objective was to determine which candidate shape offered 

the closest approximation of sediment shape in terms of surface area, volume, and 

sphericity. In our investigation, we found that cuboid and elliptic disk shapes drastically 

overestimated the particle surface area and volume relative to the authentic shapes of the 

Rhine and Kall sediments, and thus were discarded. On the other hand, the truncated 

octahedron and ellipsoid shapes were able to provide reasonable estimates of particle 

surface area, volume, and sphericity, with mean ratios closely approaching unity. 

However, considering the prevalence of partially rounded forms in fluvial sediments as 

well as other factors such as the range of sphericity and numerical efficiency, we 

proposed the adoption of the ellipsoid shape as the idealized regular shape for 

approximating fluvial sediments. Furthermore, we conducted tests to assess the packing 

behavior when using ellipsoids as surrogates for fluvial sediments. The result revealed 

that ellipsoids, with sphericity values below 0.97, closely replicated the packing behavior 

of actual sediments in terms of both trend and accuracy.      
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5.1 Introduction 

Grain shape, a fundamental property of fluvial sediment particles, has been demonstrated 

to influence packing porosity and permeability (Fraser, 1935; Frings et al., 2011; Liang 

et al., 2015; Rettinger et al., 2022; Rezaei et al., 2021), impact settling velocity (Komar 

and Reimers, 1978; Trunk et al., 2021), modify sediment transport rates and channel 

stability (Cassel et al., 2021; Deal et al., 2023; Jain et al., 2021; Komar & Li, 1986) 

amongst a host of others. The particle shape produced by physical processes, such as 

abrasion, selective transport, can also provide insights into the transport and depositional 

history and provenance of sediment grains (Bodek & Jerolmack, 2021; Novák-Szabó et 

al., 2018). Grain shape can be described by various parameters, among which three shape 

parameters, namely roughness, roundness (or angularity), and form (or sphericity), are 

considered to be of particular importance (Barrett, 1980; Clayton et al., 2009; Ulusoy, 

2023; Yingst et al., 2008). The term roughness refers to the amount of surface 

irregularities or bumps on a grain surface. Roundness relates to the degree of curvature 

of the grain edges and corners. Sphericity, on the other hand, measures how closely a 

particle approximates a sphere in shape. Sphericity is dependent on roundness, as a 

perfect sphere indicates a constant radius of curvature (Blott & Pye, 2008). In this study, 

our focus is on the large-scale of form factor, i.e., sphericity.  

Although it plays a prominent role in those aforementioned sediment processes, the 

effect of grain form has rarely been investigated systematically due to several challenges. 

The first challenge lies in the quantification of the sphericity for complex sediment shapes. 

By definition, sphericity is the ratio of the surface area of a sphere having the same 

volume as the grain to the surface area of the grain itself (Wadell, 1935). Such measures 

require information on both grain volume and surface area, which are difficult to obtain. 

While 3D scanning techniques such as scanning electron microscopy (SEM) (Bagheri et 

al., 2015), computed tomographic (CT) scanning (Voepel et al., 2019), and laser scanning 

(LS) (Anochie-Boateng et al., 2013) can provide detailed information about grain shape, 

they are cost-intensive and thus not feasible to large scale analysis. The second challenge 

is the confusion in charactering the form of grain shapes. Due to the difficulty in directly 

measuring sphericity, researchers have attempted to estimate it using simpler form terms 

that are practical to measure (e.g., Aschenbrenner, 1956; Blott & Pye, 2008; Corey, 1949; 

Folk, 1955; Janke, 1966; Krumbein, 1941; Wentworth, 1923). These terms describe grain 

form by combining the three size dimensions (length, breadth, and thickness) in various 

mathematical ways. However, each proposed shape index results in different values for 

the same object, leading to the confusion about which form term should be used for which 

type of investigation. The third challenge is the task of ensuring the reliability and 

reproducibility of results in shape-focused sediment studies. Natural sediment grains take 

on diverse shapes, due to various mechanical properties of their source rocks and transport 

conditions. Conventional experiments with actual sediments struggle to obtain a 
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sufficient number of identical-sized grains with uniform shapes (Fraser, 1935). 

Nonetheless, with the advent of digital scanning techniques, modern numerical 

simulations can now use replicated digital sediments to conduct shape-focused 

investigations (e.g., Coetzee, 2016; Liang et al., 2015; Rettinger et al., 2022; Wang et al., 

2022; Zhao et al., 2020). However, the grain shape effect derived from a limited selection 

of digital sediments may not be universally representative, given the inherent variations 

in natural grain shapes. Thus, the validity of using a few instances of digital sediments to 

study the effect of sediment grain shapes remains a subject of question.  

In this context, the objective of this paper was to approximate or substitute the 

intricate shape of fluvial sediments with an idealized regular shape. This approach can 

potentially overcome the challenges of shape measurement, characterization, and control, 

and facilitate a systematic comprehension of how grain shape impacts a range of 

sediment-related processes. To address this issue, we collected and analyzed two typical 

shape types of fluvial sediments, bulky and platy, using advanced scanning technologies. 

Subsequently, we selected four representative regular shapes to assess which shape 

renders the best approximation of the sediment particles, in terms of particle surface area, 

volume, and sphericity, as compared to those obtained through scanning.   

5.2 Samples and Method 

5.2.1 Samples 

Two typical fluvial sediment samples were collected: (1) bulky sediments from the Rhine 

River (Germany), (2) platy sediments from the Kall River (Germany). The Rhine 

sediments were collected from the channel bed between the barrage of Iffezheim and the 

German-Dutch border. Quartz is the dominant lithology. The Kall sediments were 

collected from the channel bed between Simonskall and Zerkall. Slate is the dominant 

lithology.  

The sampled sediments were then carefully cleaned, dried in an oven at 105°C for 

48h and sieved with a width of 0.5 phi at the Krumbein scale: Rhine sediments (sieved 

from 1.4 to 31.5 mm) and Kall sediments (sieved from 0.25 to 63 mm). From each sieve 

fraction, 10~15 particles were randomly picked, leading to a total selection of 104 bulky 

Rhine sediments and 137 platy Kall sediments. These selected particles were later 

scanned via a nonmedical X-ray computed tomographic (CT) scanner. The scanning 

resolution was adjusted based on the size of particles being scanned. Specifically, 

resolutions of 0.0421~0.1478 mm/pixel were used for the Rhine sediments and 

0.0025~0.2 mm/pixel were used for the Kall sediments. Such resolutions enabled high 

quality of the scanned 3D particles with examples shown in Fig. 5.1.    
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Figure 5.1. Examples of the scanned (a) bulky Rhine sediments and (b) platy Kall 

sediments, using the nonmedical X-ray computed tomographic (CT) technique. Noting 

that the scanned particles are shown in the surface-smoothed version described in section 

5.2.2.2.  
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5.2.2 Shape Approximation 

To obtain the idealized regular shape in analogue of arbitrary fluvial sediment shapes, 

four regular shapes were introduced as candidates, and each was compared to the scanned 

fluvial particles to determine the closest shape approximation in terms of particle surface 

area, volume, and sphericity.   

5.2.2.1 Candidate Shapes  

Four regular candidate shapes were chosen based on their shape similarities commonly 

found in natural sedimentary grains. These shapes include cuboids reminiscent of blocky 

fragments birthed from the intersection of fracture planes, elliptic disks dictating platy 

grains originating from layered or foliated rock formations, truncated octahedrons 

implying grains with faceted mineral surfaces, and ellipsoids representing partially 

rounded grains. The four candidate shapes are shown in Fig. 5.2. In geometry, both cuboid 

and truncated octahedron shapes are representations of convex polyhedrons, in which a 

cuboid is composed of three pairs of equal and opposite quadrilateral faces, while a 

truncated octahedron is bounded by three pairs of equal and opposite quadrilateral faces, 

and four pairs of equal and opposite hexagonal faces. The truncated octahedron is 

constructed from a regular octahedron by removing six right square pyramids. An elliptic 

disk resembles a solid disk but with an elliptical base instead of a circular one. It is formed 

by extending an ellipse along a straight line perpendicular to its plane. An ellipsoid is a 

quadric surface and can be derived from a sphere by deforming it by means of directional 

scalings.     

 

 

Figure 5.2. Four candidate shapes used to mimic the shape of fluvial sediments. 

https://en.wikipedia.org/wiki/Sphere
https://en.wikipedia.org/wiki/Scaling_(geometry)
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Calculations regarding the surface area, volume, and sphericity of the four candidate 

shapes are summarized below, in which 𝐿 , 𝐼 , 𝑆  represent the long, intermediate, and 

short dimensions, measured along three orthogonal axes respectively. 

For a cuboid 

Surface area: 

𝐴𝑐 = 2(𝐿𝐼 + 𝐼𝑆 + 𝐿𝑆ሻ                                            (5.1𝑎ሻ 

Volume: 

  𝑉𝑐 = 𝐿𝐼𝑆                                                         (5.1𝑏ሻ 

 

For an elliptic disk 

Surface area: 

𝐴𝑑 = 𝐵𝑆 +
𝜋

2
𝐿𝐼                                                  (5.2𝑎ሻ 

where 𝐵 is the circumference of an ellipse calculated using Ramanujan’s approximation: 

𝐵 ≈
𝜋

2
(𝐿 + 𝐼ሻ (1 +

3𝜆2

10 + √4 − 3𝜆2
)                             (5.2𝑏ሻ 

where 𝜆 =
(𝐿−𝐼ሻ

(𝐿+𝐼ሻ
 , the error is on the order of 𝜆 to the 10th power, i.e., 𝑂(𝜆10ሻ.   

Volume: 

𝑉𝑑 =
𝜋

4
𝐿𝐼𝑆                                                        (5.2𝑐ሻ 

 

For a truncated octahedron  

Surface area: 

𝐴𝑡 =
1

4
(𝐿𝐼 + 𝐼𝑆 + 𝐿𝑆ሻ +

3

2
√(𝐿𝐼ሻ2 + (𝐼𝑆ሻ2 + (𝐿𝑆ሻ2               (5.3𝑎ሻ 

Volume: 

𝑉𝑡 =
1

2
𝐿𝐼𝑆                                                        (5.3𝑏ሻ 
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For an ellipsoid 

Surface area: 

𝐴𝑒 ≈ 𝜋 [
(𝐿𝐼ሻ𝑝 + (𝐿𝑆ሻ𝑝 + (𝐼𝑆ሻ𝑝

3
]

1 𝑝⁄

                                (5.4𝑎ሻ 

with 𝑝 ≈ 1.6075 yielding a relative error of at most ±1.061%. 

Volume: 

𝑉𝑒 =
𝜋

6
𝐿𝐼𝑆                                                           (5.4𝑏ሻ 

For all the candidate shapes, the term sphericity is calculated as the ratio of the surface 

area of a sphere that has the same volume as the given shape to the surface area of that 

shape (Wadell, 1935), expressed as:  

𝛹 =
𝐴𝑠
𝐴𝑝

=
𝜋
1
3(6𝑉𝑝)

2
3

𝐴𝑝
                                                  (5.5ሻ 

where 𝐴𝑆 is the surface area of the sphere of the same volume as the given particle. 𝐴𝑝 

and 𝑉𝑝 denote the surface area and the volume of that given particle separately.  

5.2.2.2 Shape Analysis  

To compare with fluvial sediment shapes, shape analysis was performed on each scanned 

particle, with a focus on the characterization of 1D variables, i.e., form dimensions: 𝐿, 𝐼, 

𝑆 , respectively the length of long, intermediate, and short orthogonal axes, and 3D 

variables, i.e., particle surface area 𝐴𝑝, solid volume 𝑉𝑝, and sphericity 𝛹.  

With respect to the measurement of 1D variables, we applied the protocol of Blott and 

Pye (2008), which defines the 𝐿 , 𝐼 , and 𝑆  dimensions being equivalent to the side 

lengths of the smallest imaginary box enclosing the particle, so-called the Minimal 

Bounding Box (MBB) here calculated using the MATLAB toolbox of Korsawe (2023) 

(Fig. 5.3).  
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Figure 5.3. Schematic illustration of the protocol of the Minimal Bounding Box (MBB) 

used to measure form dimensions. 

In order to focus solely on the overall form of the grain shape when measuring 3D 

variables, we initially applied a surface smoothing treatment to the original scanned 

particles. To achieve this, we introduced the Remesh method, which involves generating 

a new manifold mesh for the current geometry. By carefully tuning the resolution of this 

new mesh, we were able to smooth out the small-scale surface irregularities (roughness) 

while minimizing the impact on the large form of irregular shapes (Fig. 5.4). In doing so, 

we simplified the complexity of the particle surface by transforming it into a smooth solid 

that could be more easily approximated.   

To obtain the surface area and volume of the smoothed grains, we utilized the 3D 

Print Toolbox, an add-on bundled with Blender, and subsequently calculated the 

sphericity of the grains based on Eq. (5.5). It is noteworthy that all of these operations 

were carried out in Blender (v. 3.3), a free and open-source software known for its 

versatility and capabilities in the field of 3D modeling and rendering.  
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Figure 5.4. Comparison of the original grain geometry to the smoothed version (shown 

in shade smooth mode) after applying the Remesh modifier in Blender. In this specific 

case, the surface area decreased by approximately 18.25% after smoothing, while the 

volume only reduced by about 1.23%. However, for most cases with less extreme surface 

irregularities, the surface area decreased within 10%, and the volume decreased by less 

than 1%.  

5.3 Results 

5.3.1 Measured Characteristics of Fluvial Sediments 

The relationship between the measured 𝐼𝜙 , intermediate size in phi unit, transformed 

using the expression 𝐼𝜙 = −𝑙𝑜𝑔2𝐼, where 𝐼 in millimeters, and the surface area, volume 

and sphericity of Rhine and Kall grains is shown in Fig. 5.5. The scanned fluvial 

sediments are characterized by a large size range from 0.29 mm up to 54.3 mm (-5.76-

1.77 in phi scale), thus from medium sand to very coarse gravel. In general, as the 

intermediate size of fluvial sediment increases, the surface area and volume also tend to 

increase, exhibiting an exponential growth trend formulated as follows (Fig. 5.5a&b):  

𝐴𝑝 = 𝑎𝑒
𝑏𝐼𝜙                                                                (5.6𝑎ሻ 

𝑉𝑝 = 𝑐𝑒
𝑑𝐼𝜙                                                                (5.6𝑏ሻ 

where coefficients 𝑎 = 2.87, 𝑏 = -1.38, 𝑐 = 0.33 and 𝑑 = -2.04, yielding the mean 

absolute percentage error (MAPE) of around 21% and 49% for the estimation of particle 

surface area and volume respectively.  

While the general trend suggests that an increase in intermediate size corresponds to 

an increase in surface area and volume, variations can occur due to the fact that the surface 

area or volume for fluvial sediments could be influenced by numerous factors, such as 

the sediment source, hydraulic conditions, and transport processes. This explains the 

relatively high MAPE estimated by Eq. (5.6).     
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However, no relationship between intermediate size 𝐼𝜙 and sphericity 𝛹 was found, 

suggesting that the sphericity of a fluvial grain can vary independently of the grain’s 

intermediate size (Fig. 5.5c). This is in accord with the observation of Gale that there is 

no evidence of any variation in 𝛹  as a function of size (Gale, 2021). And this study 

suggests that values of 𝛹 for sands and gravels from fluvial environments lies in the 

range of 0.46 ~ 0.96, with the mean 𝛹 of 0.86 for the bulky Rhine sediments and 0.71 

for the platy Kall sediments.    

 

 

 

Figure 5.5. Relationship between the intermediate size 𝐼𝜙 (phi unit) and the (a) surface 

area 𝐴𝑝, (b) volume 𝑉𝑝, (c) sphericity 𝛹 of fluvial sediments. As noted, the exponential 

growth trend is actually displayed in linear forms under the logarithmic scale of 𝐴𝑝 and 

𝑉𝑝 (shown in gray line). 

 

(a) (b)

(c)
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5.3.2 Approximation of Fluvial Sediments 

To compare and determine which regular shape best approximates fluvial sediments, we 

calculated ratios of the surface area, volume, and sphericity between the four candidate 

shapes and the smoothed sediments illustrated in Fig. 5.6. Each boxplot provides a 

comprehensive overview of the distribution of data through their quartiles. The actual box 

itself represents the first and third quartiles, while the band inside represents the second 

quartile (the median). The whiskers extend to the lowest and highest data points that are 

still within 1.5 times interquartile range of the lower and upper quartiles, respectively. 

Any outliers that fall outside the whiskers are featured as circles, and the mean of each 

distribution is also displayed.  

As shown in Fig. 5.6, the cuboid and elliptic disk shapes exhibit significantly larger 

ratios (measuring 1.45~2.21 times greater, on average) in terms of surface area and 

volume when compared to the authentic shapes of Rhine and Kall sediments, suggesting 

that they are not qualified for approximating fluvial sediments. In contrast, both truncated 

octahedron and ellipsoid shapes manifest ratios that are substantially closer to unit and 

display a narrower degree of dispersion. Specifically, for fluvial sediments, the ellipsoid 

offers a superior estimation of particle surface area (mean ratio of 1.04) compared to the 

truncated octahedron (mean ratio of 1.12), while the truncated octahedron is more adept 

at particle volume estimation (mean ratio of 1.11) than the ellipsoid (mean ratio of 1.16). 

As a result, according to Eq. (5.5), the ellipsoid yields a slightly higher ratio of particle 

sphericity (mean ratio of 1.06) than the truncated octahedron (mean ratio of 0.95).    

While both truncated octahedron and ellipsoid shapes provide reasonable 

representations for fluvial sediments in terms of surface area, volume and sphericity, the 

ellipsoid shape might be a more suitable choice to mimic the shape of fluvial sediments. 

In general, fluvial sediments are often rounded or semi-rounded, and the ellipsoid shape 

can closely mimic this feature. Moreover, an ellipsoid can represent the full range of 

particle sphericity from 0 to 1, providing a wider range of applicability compared to a 

truncated octahedron, which can only represent the particle sphericity up to 0.91 when 

the three orthogonal dimensions are set equal. In addition, an ellipsoid might be more 

numerically efficient than a truncated octahedron. This is because the equations that 

describe an ellipsoid are simpler and more symmetrical, which can make computations 

involving the shape faster and less prone to numerical errors. Conversely, a truncated 

octahedron, with its more complex shape and less symmetry, might require more complex 

and time-consuming computations.    

In sum, while ellipsoids may not be capable of capturing the full complexity of real-

world sediment particles, they still offer advantages in approximating fluvial sediments. 

Ellipsoids can serve as an idealized, tractable model-input solid body for better 

understanding the crucial role of grain shape in sediment-related physical processes and 

properties.   



Grain Shape Approximation of Fluvial Sediments 

 82 

 

Figure 5.6. Box plot representing the ratios of surface area, volume, and sphericity 

between the four candidate shapes and the smoothed (a) Rhine sediments (𝑁 = 104), (b) 

Kall sediments (𝑁 = 137), and (c) Rhine and Kall sediments (𝑁 = 241). Labels C, D, T 

and E represent cuboid, elliptic disk, truncated octahedron, and ellipsoid shapes separately.  

5.4 Discussion 

5.4.1 New Definition of Sphericity 

Sphericity is a concept introduced by Wadell (1935) to describe the degree to which a 

particle approaches a perfect sphere in shape. According to Wadell’s definition, sphericity 

is the ratio of the surface area of a sphere having the same volume as the particle to the 

surface area of the particle itself. However, we argue that a more appropriate definition 

of sphericity should be based on the smoothed surface area of the particle, rather than the 

(a)

(b)

(c)
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actual surface area. This is due to the fact that small-scale surface irregularities do not 

have a significant impact on the overall form of a particle.    

Consider, for example, a nearly perfect sphere with extreme surface irregularities, 

such as blocky surfaces (Fig. 5.7). According to the general geometry of the shape, this 

particle should have a sphericity close to 1. However, the result shows that such a particle 

actually has a sphericity of only about 0.66 based on the definition of Wadell, resulting in 

a 33% decrease in the true sphericity value. While such extreme deviations in sphericity 

may not be common in reality, our findings suggest that sphericity deviations for fluvial 

sediments can be up to 18%, which is still unacceptable.  

 

Figure 5.7. General form comparison between (a) a sphere with extreme surface 

roughness and (b) the same sphere after applying a surface smoothing treatment.   

To address this issue, we propose the actual surface area as in the Wadell’s definition 

of sphericity should be replaced by the smoothed surface area of the particle. With this 

new definition, more accurate and reliable measurements of sphericity can be derived, 

especially for particles with complex surface morphology.   

5.4.2 Behavior of Using Ellipsoids on Behalf of Fluvial Sediments 

While ellipsoids have been posited as an idealized shape to approximate fluvial sediments, 

the intricacies of their behaviors necessitate thorough testing prior to any sediment-related 

applications. Here, we demonstrate, as an example, the packing behavior of fluvial 

sediments approximated by ellipsoids, based on the pioneering work of Rettinger et al. 

(2022).    

In the work, 63 digitized grains, sourced from the Rhine River, were utilized to 

generate random dense packings with the discrete element method. Each simulation 

featured only one single grain. The size of each single grain was rescaled to match the 

desired sizes for three grain size distributions used for the simulations (Table 5.1), while 

retaining the general form of the original grains. Afterwards, 63 form-equivalent 

ellipsoids were also conducted for the same set of simulations. This resulted in a total of 
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189 simulations for both digital sediments and their corresponding ellipsoids, with 63 

simulations done for each of the three grain size distributions.     

Table 5.1. Mass-based grain size distributions used for the simulation studies. 

Case 
2.8-4 

mm 

4-5.6 

mm 

5.6-8 

mm 

8-11.2 

mm 

11.2-16 

mm 

16-22.4 

mm 

22.4-31.5 

mm 

U1 .0 .0 1. .0 .0 .0 .0 

U7 .04 .11 .22 .26 .22 .11 .04 

B50 .13 .21 .13 .06 .13 .21 .13 

U1, U7 represent unimodal distributions, with the numeral denoting the number of size fractions, while B50 represents the bimodal 

distribution, with the numerical indicating the mass percentage of finer grains.  

We use the comparison of generated porosity as a metric for assessing the packing 

behavior of using ellipsoids as a surrogate for fluvial sediments (Fig. 5.8). Our findings 

point to the general similarity between the ellipsoid shape and the actual sediment shape, 

with a root-mean-square difference of around 0.008 across all three distributions. 

However, we observe a marked deviation when the ellipsoid shape approaches a sphere, 

as indicated by sphericity values exceeding approximately 0.97. Specifically, the 

ellipsoids evince a minimum porosity followed by an abrupt increase, a trend that stands 

in stark contrast to the further decrease of porosity exhibited by actual sediments. This 

intriguing behavior is particularly pronounced in the case of unimodal distributions, 

whilst being comparatively less marked in the bimodal distribution.  

Such abrupt turning behavior of ellipsoids was also observed in other studies, which 

likewise obtained a comparably shaped curve featuring a minimum porosity located at 

aspect ratios of approximately 1.5 (prolate) or 0.67 (oblate), corresponding to the 

sphericity value of approximately 0.97 (see Delaney and Cleary, 2010; Donev et al., 2004; 

Zhou et al., 2011). The reason for this distinct behavior in this region is likely due to the 

heightened sensitivity of particle arrangement to the irregularities or blockiness of the 

actual geometry as it approaches a spherical form (Rettinger et al., 2022).  

To sum up, in most cases, ellipsoids with sphericity values less than 0.97 are capable 

of closely approximating the packing behavior of actual sediments in both trend and 

accuracy. However, for ellipsoids that exhibit a sphere-like form, with sphericity values 

exceeding 0.97, the packing behavior is strikingly altered, implying the potential for 

similar effects to occur in other sediment-related processes. This example serves to 

highlight the efficiency of ellipsoids as a reliable approximation shape, but meanwhile 

emphasizes the critical importance of validating their behavior prior to utilizing them.  
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Figure 5.8. Comparing the packing behavior of fluvial sediments and equivalent 

ellipsoids using simulated porosity values as a function of sphericity, for (a) U1 

distribution, (b) U7 distribution, (c) B50 distribution. Note that the sphericity values 

shown here are calculated based on the equivalent ellipsoids.    

5.5 Conclusions  

In this study, we explored the possibility of employing regular shapes to approximate the 

intricate shapes of fluvial sediments. Four potential candidate shapes were chosen, 

namely the cuboid, elliptic disk, truncated octahedron, and ellipsoid, to approximate the 

surface area, volume, and sphericity of fluvial sediment shapes. The result reveals that 

both the truncated octahedron and ellipsoid shapes are able to deliver reasonable 

accuracies. Nevertheless, taking into account the typical partially round forms that fluvial 

sediments often exhibit, as well as other factors such as the range of sphericity and 

numerical efficiency, we recommend the ellipsoid shape as a better option for 

(a) (b)

(c)
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approximating fluvial sediments. The general similarity of the packing behavior between 

ellipsoids and actual sediments demonstrates the reliability of using the ellipsoid 

approximation. However, it must be emphasized that validating the behavior of ellipsoids 

is critical prior to any sediment-related applications.    
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6 
6 Characterization of Ellipsoids and 

The Porosity-Shape Relation  

 

The packing of ellipsoids has been extensively investigated to elucidate the grain shape 

effect on properties of non-spherical packing systems, such as porosity or packing 

fraction. However, most studies have engaged spheroids, as their research subjects, thus 

overlooking the majority of ellipsoidal geometries. This likely stems from the convenient 

characterization of spheroids by a single shape factor, the aspect ratio (𝛼), whereas no 

comparable general metric exists to describe the varied shapes of general ellipsoids. In 

this study, the shape of general ellipsoids was characterized based on two well-defined 

parameters, Wadell’s sphericity (𝛹𝑒) and Zingg’s intercept ratio (𝐹), which can be directly 

computed from semi-axis lengths. Sphericity (𝛹𝑒 ) quantifies the extent to which an 

ellipsoid approximates a spherical form, while the intercept ratio (𝐹), a more advanced 

version of aspect ratio (𝛼), captures the combined effects of flatness and elongation. Next, 

we employed the non-linear programming algorithm (NLP) to simulate random dense 

packings across 63 distinct ellipsoid geometries. The resultant porosity was related as a 

function of 𝛹𝑒 and 𝐹, yielding three distinct relationships. Initially, as 𝜓𝑒 reduced from 

1 to 0.97, a parabolic decrease of porosity to a minimum occurred, with 𝐹  exerting 

negligible influence (relation 1). As 𝛹𝑒 further decreased from 0.97 to 0, porosity sharply 

ascended towards 1, where the influence of 𝐹 became significant. In this region, for a 

given 𝛹𝑒, porosity initially declined to a minimum (relation 2) and subsequently went up 

with increasing 𝐹 (relation 3), with the transition occurring at 𝐹 = 0.33, distinguishing 

the two separate relations. A piecewise formula illustrating these relations was developed 

and verified, demonstrating good agreement in both trends and values. 
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6.1 Introduction  

Particle packing system is vital and widely encountered in nature and industries. For 

instance, the porosity of fluvial sediment packings serves as a critical input for calculating 

bed level (Frings et al., 2008; Núñez-González et al., 2016) and provides spaces for 

retention of water, nutrients, and oxygen needed by aquatic organisms (Boulton et al., 

1998; Noack et al., 2017; Sawyer & Cardenas, 2009). Many attempts have been made to 

predict the properties of particle packing systems, such as porosity or packing fraction, 

on spherical particles (An et al., 2009; Bernal & Mason, 1960; de Ryck, 2023; Li et al., 

2011; Schruff et al., 2018; Wang et al., 2021; Weitz, 2004). However, actual particles 

found in nature and industries are normally aspherical, such as fluvial sediments with 

arbitrary shapes. Ignoring the grain shape effect can cause significant deviations in the 

prediction of properties for non-spherical particle packing systems.     

Integrating the grain shape effect into particle packing systems is hard, particularly 

when dealing with particles that possess irregular shapes. This is mainly due to the 

difficulties in describing the shape of irregular particles (Szabó & Domokos, 2010). As a 

result, studies investigating the grain shape effect have primarily focused on analytical 

regular shapes, such as cubes (Fraige et al., 2008; Xie et al., 2019), cylinders (Gan & Yu, 

2020a; Qian et al., 2018; Yu et al., 2023), disks (Yoshida et al., 2021; Zou & Yu, 1996), 

ellipsoids (Chen et al., 2021; Li et al., 2021), and other regularly shaped particles (Zhang 

et al., 2019; B. Zhao et al., 2017). Among these shapes, the ellipsoid has gained significant 

attention due to its ability to represent a wide range of different shapes, from very platy 

to highly elongated. Owing to this unique feature, ellipsoids have been often utilized as a 

surrogate to resemble irregularly shaped particles (Džiugys et al., 2001; Hu et al., 2023; 

Jain et al., 2021; Lu et al., 2023; Rettinger et al., 2022; Rothenburg & Bathurst, 1991).   

The packing of ellipsoids has been extensively studied in material science and 

engineering chemistry (e.g., Gan & Yu, 2020b; Gan et al., 2016; Li et al., 2020; Mori & 

Sakai, 2022). A major focus of these studies involves examining the dependence of 

packing fraction (= 1-porosity) on the shape of ellipsoids. For example, Donev et al. 

(2004) utilized the so-called Lubachevsky-Stillinger (LS) simulation approach to analyze 

the packing of mono-sized ellipsoids and discovered a distinct “M-type” relationship 

between packing fraction and aspect ratio (α). Similar trends have also been observed 

from other researchers employing alternative simulation techniques (Sherwood, 1997; 

Zhao et al., 2017; Zhou et al., 2011). However, the majority of these studies have 

exclusively utilized spheroids, either oblate or prolate, as the feedstock in simulations, 

neglecting most ellipsoidal geometries. This is likely because spheroids can be readily 

characterized by a single shape factor, the aspect ratio (α), whereas no analogous general 

metric is available to describe the diverse shapes of general ellipsoids.   

In this context, the objective of this study was to characterize the shape of general 

ellipsoids and establish a comprehensive quantitative relationship between porosity and 
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ellipsoidal geometry. In the following sections, first, we present a novel ellipsoid diagram 

capable of representing all possible ellipsoidal shapes. Next, we introduce a nonlinear 

programming algorithm for generating random dense packings of ellipsoids. Finally, we 

show how to establish the relationship between porosity and the full range of ellipsoid 

shapes describable within the proposed diagram.     

6.2 Characterization of General Ellipsoids 

An ellipsoid is a quadric surface that can be defined by three mutually orthogonal 

principal axes of differing lengths, the major axis (2𝑎), intermediate axis (2𝑏), and minor 

axis (2𝑐). An ellipsoid in its simplest form becomes a sphere when the three principal 

axes are of equivalent length (𝑎 = 𝑏 = 𝑐 ). Through directional scalings via an affine 

transformation, a sphere can be deformed into spheroidal shapes, specifically prolate 

spheroids (𝑎 > 𝑏 = 𝑐 ) and oblate spheroids (𝑎 = 𝑏 > 𝑐 ). Further transformations can 

generate the most general triaxial ellipsoids (𝑎 > 𝑏 > 𝑐 ). While the volume of an 

ellipsoid (𝑉𝑒 ) can be readily calculated with the semi-axes 𝑎 , 𝑏  and 𝑐  through the 

formula:     

𝑉𝑒 =
4

3
𝜋𝑎𝑏𝑐                                                            (6.1ሻ 

Calculating the surface area of an ellipsoid (𝐴𝑒 ) is rather complex. Instead, an 

approximate formula is usually used to estimate:   

𝐴𝑒 ≈ 4π [
(𝑎𝑏ሻ𝑧 + (𝑏𝑐ሻ𝑧 + (𝑎𝑐ሻ𝑧

3
]

1 𝑧⁄

                                (6.2ሻ 

with 𝑧 ≈ 1.6075 producing a relative error of at most 1.061%. 

In order to characterize the shape of ellipsoids, two geometric shape factors were 

commonly used in previous studies, namely the aspect ratio (α ) and sphericity (𝛹𝑒 ). 

However, the term aspect ratio (α) is of limitation in describing arbitrary ellipsoids, as it 

represents only certain ellipsoidal sub-types. Specifically, the aspect ratio delineates 

prolate spheroids (α = 𝑎 (𝑏 𝑜𝑟 𝑐ሻ⁄ > 1 ) and oblate spheroids (α = 𝑐 (𝑎 𝑜𝑟 𝑏ሻ⁄ < 1 ), 

along with a narrow subset of triaxial ellipsoids defined by semi-axes 𝑎 = 𝛼−1, 𝑏 = 1, 

and 𝑐 = 𝛼. Here, 𝛼 measures the asphericity as elucidated by Donev et al. (2004).    

The term sphericity indicates how closely a non-spherical particle approaches a 

perfect sphere, based on the ratio of the surface area of a sphere that has the same volume 

as the given particle to the surface area of that particle (Wadell, 1935). For ellipsoids, the 

term sphericity (𝛹𝑒) can be expressed as:     
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𝛹𝑒 =
𝐴𝑠
𝐴𝑒
                                                                  (6.3ሻ 

where 𝐴𝑠 is the surface area of the sphere of the same volume as the given ellipsoid.  

However, ellipsoids expressed by sphericity is not unique, as Krumbein (1941) first 

noted that particles of different flatness and elongation can also have the same sphericity. 

Thus, characterizing the full range of ellipsoids requires incorporation of an additional 

shape factor to capture aspects of both elongation and flatness. To achieve this, we 

introduce the shape factor, so-called the intercept ratio (𝐹) proposed by Zingg (1935). 

Following Zingg’s terminology, the intercept ratio (𝐹 ) can be expressed as the ratio 

between short to intermediate length (𝑐 𝑏⁄ ) and intermediate to long length (𝑏 𝑎⁄ ): 

𝐹 =
𝑐 𝑏⁄

𝑏 𝑎⁄
=
𝑝

𝑞
=
𝑎𝑐

𝑏2
                                                (6.4ሻ 

where 𝑝  and 𝑞  are the measures of the flatness and elongation of an ellipsoid 

respectively.  

Using Eqs. (6.1-6.3) and substituting 𝑝 and 𝑞 for 𝑐 𝑏⁄  and 𝑏 𝑎⁄ , we can express the 

sphericity of an ellipsoid (𝛹𝑒) as (see Appendix):   

𝛹𝑒 = (𝑝
2𝑞ሻ1 3⁄ [

3

(1 + 𝑝𝑧(1 + 𝑞𝑧ሻ)
]

1 𝑧⁄

                           (6.5ሻ 

In view of the concept of the intercept ratio 𝐹 (= 𝑎𝑐 𝑏2⁄ ), i.e., the measure of flatness 

and elongation combined, it actually can be considered as an extended version of the 

aspect ratio metric. The intercept ratio 𝐹 can naturally transform into α = 𝑎 (𝑏 𝑜𝑟 𝑐ሻ⁄ , 

when 𝑎 > 𝑏 = 𝑐  to express prolate spheroids, or α = 𝑐 (𝑎 𝑜𝑟 𝑏ሻ⁄   to express oblate 

spheroids, when  𝑎 = 𝑏 > 𝑐 . Moreover, using 𝛼  as a measure of fully aspherical 

ellipsoids with axes 𝑎 = 𝛼−1, 𝑏 = 1, and 𝑐 = 𝛼, however, turns out to be just a sub-type 

of general ellipsoids with 𝐹 = 𝛼−1𝛼 12⁄ = 1.   

By combining the two geometric shape factors, sphericity (𝛹𝑒) and intercept ratio (𝐹), 

a novel characterization diagram can be constructed for visualizing the full spectrum of 

ellipsoids (Fig. 6.1). This two-parameter representation spans the full range of 𝛹𝑒 from 

0 to 1 and 𝐹 from 0 to +∞, delineating a one-to-one mapping between shape metrics 

and ellipsoidal geometries. The upper and right boundaries of the diagram correspond to 

the oblate and prolate spheroid subclasses respectively, with the point on the top-right 

corner denoting the simplest form of ellipsoids, the sphere. In between, the diagram 

illustrates the vast majority of triaxial ellipsoids. 

Overall, the novel characterization diagram developed here provides a complete 

description of general ellipsoids in terms of Wadell’s sphericity (𝛹𝑒) and Zingg’s intercept 

ratio (𝐹) that can be directly calculated from the semi-axes of 𝑎, 𝑏 and 𝑐.    
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Figure 6.1. A novel ellipsoid diagram characterizing the full range of ellipsoids in terms 

of sphericity (𝛹𝑒) and intercept ratio (𝐹), in which 𝜓𝑒 values of 0.1-0.9 (- line) and 𝐹 

values of 0.33-3 (-- line) are drawn. The intersection points marked in gray circles are the 

selected ellipsoidal shapes for this study (𝑁 = 63).   

6.3 The Non-linear Programming Algorithm 

In the past decades, numerical techniques have become more popular in the study of 

particle packing systems, advanced by robust computational algorithms and 

developments in the computer hardware industry. In particular, with respect to the 

problem of packing ellipsoids, several simulation techniques have emerged, such as the 

random sequential addition algorithm (RSA) (Sherwood, 1997), the stochastic digital 

packing algorithm (SDP) (Jia & Williams, 2001), the Lubachevsky-Stillinger algorithm 

(LS) (Donev et al., 2004), and the discrete element method (DEM) (Zhou et al., 2011), 

each linked to a different packing mechanism. In this work, we introduced the non-linear 

programming algorithm (NLP) (Birgin et al., 2016; Birgin & Lobato, 2019) to simulate 

packings of ellipsoids and explored their shape relationship with porosity. Below, we 
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present a brief summary of the features of the numerical method, and direct the reader to 

the original work for a more detailed and mathematical description of the NLP algorithm.    

The NLP algorithm implements two strategies to generate random dense packings of 

ellipsoids. The first aims to maximize the number of non-overlapping ellipsoids packed 

within a defined container. Three constraints are imposed: (1) ellipsoids must have 

specified semi-axis lengths (with major semi-axis normalized to unity); (2) ellipsoids 

must not intersect; and (3) ellipsoids must be enclosed by the container. The packing 

process proceeds iteratively. In each iteration, one ellipsoid is positioned within the 

container. The ellipsoid’s location is restricted to an isolation box, with randomly selected 

(x, y) center coordinates, encouraging uniform spatial distribution. The ellipsoid’s center 

and rotation are adjusted until no overlap occurs with existing ellipsoids (satisfying the 

non-intersection constraint), while its z-coordinate is minimized to maximize packing 

density. Once positioned, the ellipsoid’s parameters are fixed. Packing terminates when 

the algorithm cannot place an additional ellipsoid after a set number of attempts. Overlap 

detection utilizes a linear transformation that, for every pair of ellipsoids, converts one of 

the ellipsoids into a unit sphere. An ellipsoid with its center outside the transformed 

sphere, separated by at least one radius, guarantees no intersection. The non-intersection 

constraints localize overlap detection between the new and nearby existing ellipsoids. 

This decomposition into low-dimensional subproblems enables large-scale packing of 

thousands or millions of ellipsoids.    

The second strategy aims to minimize container volume for packing a specified set of 

ellipsoids. Unlike the first approach which maximizes ellipsoid count for a fixed container, 

this strategy seeks the minimum bounding container to enclose a predefined number of 

ellipsoids. The process comprises constructing initial solutions then iteratively optimizing 

them. An initial packing can be imported from solutions generated by the first strategy. 

An optimization subproblem then iteratively minimizes the container volume, subject to 

keeping all ellipsoids inside and non-intersecting. The optimized subproblem solution 

becomes a candidate for the overall minimum-volume packing problem. This candidate 

is randomly perturbed and re-optimized until reaching either a maximum iteration count 

or time limit. As before, detecting overlap relies on the linear transformation technique. 

Since the subproblem optimizes the full packing at each iteration, with variables and 

constraints growing linearly with ellipsoid count, computational complexity escalates 

rapidly. Consequently, this approach is limited to packing hundreds, rather than thousands 

or millions, of ellipsoids.  

6.4 Sensitivity Analysis 

Prior to implementing the NLP algorithm, we performed a sensitivity analysis to assess 

the behavior of involved parameters on porosity for two representative ellipsoid shapes. 

The first was a more spherical ellipsoid with semi-axis lengths of 1, 0.75, and 0.5 (𝛹𝑒 = 

0.94, 𝐹 = 0.89). The second was a more elongated ellipsoid with semi-axis lengths of 1, 
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0.11, and 0.03 (𝛹𝑒 = 0.4, 𝐹 = 3). Simulations were conducted using cubic containers 

with side lengths (𝐿) of 30 and 5 for the near-spherical and elongated cases, respectively. 

Note that all data is given in relevant units.   

For the first packing strategy, three parameters were identified as potentially exerting 

influence on the packing process and thus porosity, i.e., the number of attempts, the side 

length of the isolation box in the 𝑥 and 𝑦 directions, and the height of the isolation box 

in the 𝑧 direction. The number of attempts (𝜏) tells how many attempts must be made to 

pack the next ellipsoid. If the next ellipsoid cannot be packed after 𝜏  attempts, the 

method terminates. The side length and the height of the isolation box are given by the 

side length factor (𝜂) and the height factor (𝛾) multiplied by the length of the major semi-

axis of the current ellipsoid (which is normalized to unity). The greater the values of these 

parameters, the harder the subproblem becomes and it is expected that the solution quality 

improves (i.e., leading to a denser packing). However, if these values are given too great, 

the subproblem may become too hard to solve, returning bad quality solutions instead.    

To test the effect of these parameters on porosity, we performed a number of 

simulations in which one of the parameters was varied while keeping the others constant. 

The packing porosity (𝑛) is computed according to:     

𝑛 = 1 − [
𝑁(4 3⁄ ሻ𝜋𝑎𝑏𝑐

𝐿3
]                                               (6.6ሻ 

where 𝑁 is the total number of the ellipsoids being packed.  

Fig. 6.2 reveals the packing porosity (representing solution quality) to be invariant to 

𝜏  beyond values of 10, for both near-spherical and elongated ellipsoidal shapes. This 

indicates that if the next ellipsoid cannot be packed within 10 attempts, adding more extra 

attempts appears not helpful. Regarding the remaining parameters, the findings accord 

with a priori expectations. Packing porosity improves with increasing side length factor 

𝜂  for both morphologies, up to a critical value of 10, beyond which solution quality 

degrades. For the height factor 𝛾, the optimum point occurs at 𝛾 = 5 for near-spherical 

particles and 𝛾 =  2 for elongated ones. The deterioration in solution quality due to 

overlarge 𝜂 and 𝛾 values suggests that the associated packing subproblems exceed the 

solving capacity of the algorithm.  
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Figure 6.2. The effects of the number of attempts (𝜏), the side length factor (𝜂), and the 

height factor (𝛾 ) on porosity for the (a) near-spherical ellipsoid, and (b) elongated 

ellipsoid, with the first packing strategy. 

For the second packing strategy, the sole parameter governing the packing process 

and thus porosity is the perturbation magnitude (𝛿). This parameter defines the maximum 

degree to which the current solution is randomly altered, with a perturbation of 1% 

signifying that the rotation angles and centers of an ellipsoid, and container dimensions 

may individually be perturbed by up to 1% of their original values.   

To investigate the influence of perturbation magnitude, initial packings comprising 

376 near-spherical and 499 elongated ellipsoids were first generated via the first packing 

strategy. These configurations were then utilized to seed the perturbed packing approach, 

with the aforementioned container size supplying the initial bounds. Simulations were 

performed for a fixed duration of 72 ℎ. The porosity was also calculated using Eq. (6.6), 

where 𝐿  denotes the side length of the minimum bounding container. The outcome 

reveals that improved solutions were achievable for both ellipsoid shapes under small 

perturbations (Fig. 6.3).    

(a)

(b)
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Figure 6.3. The effect of the degree of perturbation (𝛿) on porosity for both near-spherical 

and elongated ellipsoids, with the second packing strategy.   

6.5 The Porosity-Shape Relationship 

To elucidate the relationship between ellipsoid shape and packing porosity, 63 distinct 

ellipsoid geometries were selected as representatives from the newly introduced diagram. 

These selections, denoted by gray circles in the diagram (see Fig. 6.1), comprised 42 

triaxial ellipsoids, 11 oblate spheroids, and 10 prolate spheroids, representing a diverse 

range of shapes from very platy to highly elongated. Employing the two packing 

strategies of the NLP algorithm, large-scale (≈10000 particles) and medium-scale (≈400 

particles) random dense configurations were generated for each shape. The algorithm 

parameters were chosen based on the preceding sensitivity analysis and are tabulated in 

Table 6.1. This comprehensive investigation aims to systematically map the influence of 

particle shape on packing porosity across the full spectrum of ellipsoidal geometries.      

Table 6.1. Parameter values used in the NLP simulations. 

Packing Strategies Parameters Values 

1 Number of attempts (𝜏) 100 

Side length factor (𝜂) 10 

Height factor (𝛾) 5, when 𝛹𝑒 ≥ 0.9;  

2, when 𝛹𝑒 < 0.9 

 Fixed container size (𝐿) 10-30 

   

2 Perturbation (δ) 0.5 % 

 Initial container size (𝐿) 5-15 

 Execution time (𝑇) 120 ℎ 



Characterization of Ellipsoids and The Porosity-Shape Relation 

 100 

 

Figure 6.4. The packing porosity produced by the two strategies of the NLP algorithm 

for each of the 63 ellipsoidal shapes. 

A comparison of the packing porosities (𝑛) produced by the two algorithmic strategies 

across the 63 ellipsoid shapes is presented in Fig. 6.4. While both protocols exhibit a 

similar qualitative trend (𝑅2 = 0.99), strategy 2 consistently yielded denser packings than 

strategy 1 for most morphologies examined (≈ 76%). This suggests that despite their 

common objective of generating random dense configurations, the precise packing 

porosities are sensitive to the procedural details intrinsic to each approach. Notably, the 

present implementation was not designed to guarantee maximal random dense states, 

unlike some past work (e.g., Donev et al., 2004; Torquato, 2018). Instead, the focus herein 

was to empirically depict general tendencies in packing density as a function of ellipsoid, 

i.e., the sphericity (𝛹𝑒 ) and intercept ratio (𝐹 ). To mitigate confounding effects from 

packing protocol variations, only the denser configurations generated by each approach 

were analyzed further. Examples of the generated random dense packings of ellipsoids 

are exhibited in Fig. 6.5.    
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Figure 6.5. Examples of the simulated random dense packings of ellipsoids, showing 
ellipsoidal shapes from very platy to highly elongated. The data below each packing 
denotes the porosity, sphericity, and intercept ratio, separately. 

The filtered packing porosities (i.e., the denser ones) are plotted as a function of 
sphericity (𝛹௘) and intercept ratio (𝐹) in Fig. 6.6. Several salient correlations emerge. For 
fixed intercept ratio (Fig. 6.6a), the porosity exhibits a slight initial decline as sphericity 
is reduced to 𝛹௘ ≈ 0.97, followed by a steep porosity increase as sphericity is further 
diminished. At fixed sphericity (Fig. 6.6b), the porosity decreases with increasing 
intercept ratio until 𝐹 =  0.33, beyond which the porosity rises. Overall, the intercept 
ratio 𝐹  exerts a marked influence on packing porosity for 0.1 ≤ 𝛹௘ ≤  0.9, but a 
negligible impact for highly stretched (𝛹௘ < 0.1) or sub-spherical (𝛹௘ > 0.9) particles, 
as evidenced by the porosity spread at a given sphericity in this regime (Fig. 6.6a).      

The results further confirm that slight deviations from perfect sphericity can enable 
denser particle packings compared to ideal spheres. This phenomenon appears universal, 
being observed not only for ellipsoids but also other non-spherical shapes like cylinders 
and disks (Zou & Yu, 1996). Ellipsoids with 𝛹௘ ≥ 0.9 produced porosities below 0.36, 
the theoretical minimum for random sphere packs (Song et al., 2008). A minimum 
ellipsoidal particle porosity of 0.33 was obtained at 𝛹௘ ≈ 0.97 (corresponding to aspect 
ratio 𝛼 =  0.67 for oblate and 1.5 for prolate spheroids). As 𝛹௘  further decreases, 
porosity dramatically increases (Fig. 6.6a), likely because restricted particle 
rearrangements in packs of low-sphericity particles impede densification. An analogous 
effect also occurs for the intercept ratio 𝐹, with porosity increasing towards very platy 
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shapes at low 𝐹 and highly elongated shapes at high 𝐹, yielding a relative minimum 

around 𝐹 = 0.33 (Fig. 6.6b).  

For the purpose of prediction, using the present data, a piecewise formula was 

developed below:  

for 0 < 𝛹𝑒 < 0.97:   

𝑛 =

{
 

 𝐴 +
1 − 𝐴

[1 + 𝑄1 𝑒𝑥𝑝(𝐹ሻ 𝑒𝑥𝑝(𝐵𝛹𝑒ሻ]𝛹𝑒
, 0 < 𝐹 < 0.33                  (6.7𝑎ሻ

𝐴 +
1 − 𝐴

[1 + 𝑄2𝐹−1 𝑒𝑥𝑝(𝐵𝛹𝑒ሻ]𝛹𝑒
, 𝐹 ≥ 0.33                           (6.7𝑏ሻ

 

for 0.97 ≤ 𝛹𝑒 ≤ 1: 

𝑛 = 𝐴 +
𝐶 − 𝐴

(1 − 0.97ሻ2
(𝛹𝑒 − 0.97ሻ

2                                           (6.7𝑐ሻ 

where 𝐴  represents the minimum porosity of ellipsoids in random packings (0.33 

obtained in this study), and 𝐶 =  0.36 represents the theoretical minimum porosity of 

spheres in random packings, with coefficients of 𝑄1 ≈ 1.664, 𝑄2 ≈ 0.769, 𝐵 ≈ 6.133. 
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Figure 6.6. The relationship between packing porosity and ellipsoidal shape, 

characterized by sphericity (𝛹𝑒) and intercept ratio (𝐹). Note that some of the data are not 

displayed herein just for clarity and concision. 

The piecewise formula describes the three distinct porosity trends as a function of 

sphericity and intercept ratio observed in Fig. 6.6. Formula 8 describes the pure porosity 

increase with diminishing sphericity from 𝛹𝑒 = 0.97 (the minimum porosity point) down 

to 𝛹𝑒 →  0 (Fig. 6.6a). Specifically, Formula 6.7𝑎  represents the decreasing porosity 

region for 0 < 𝐹 < 0.33, while Formula 6.7𝑏 describes the increasing porosity region 

for 𝐹 ≥ 0.33 (Fig. 6.6b). Formula 6.7𝑐 captures the initial porosity decline as sphericity 

is reduced from 𝛹𝑒 = 1 to 0.97, where the intercept ratio effect becomes negligible (Fig. 

6.6a). To elucidate this region further, three additional shapes with identical 𝛹𝑒 = 0.985 

 b 

 a 
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but varying 𝐹 = 0.75, 1, and 1.35 were simulated, exhibiting nearly identical porosities 

around 0.34 as expected. Overall, the established formula explains 98% of the total 

porosity variance with a root mean square error (RMSE) of approximately 0.03, 

representing good agreement with the data (Fig. 6.7).   

 

Figure 6.7. Comparison of the simulated porosity to the porosity predicted by the 

established piecewise formula. 

It should be noted that the parameters 𝐴 and 𝐶, representing the minimum porosity 

for ellipsoids and spheres in random packings respectively, can be treated with some 

flexibility as indicators of the packing state. Different packing states (e.g., loose versus 

dense) are known to primarily influence absolute porosity values rather than porosity 

trends (e.g., Liang et al., 2015; Zou & Yu, 1996), and thus such effect may be captured 

by modifying 𝐴  and 𝐶 . Specifically, increasing 𝐴  and 𝐶  (implying looser packs) 

elevates predicted porosities uniformly without altering trends, and vice versa. To 

demonstrate this, the formula predictions were compared with four published datasets on 

random ellipsoidal particle packs. As shown in Fig. 6.8, the data of Donev et al. (2004), 

Zhou et al. (2011), and Zhao et al. (2017) reflect relatively dense packings, while 

Sherwood (1997) represents loose packings, attributed to the distinct simulation 

techniques. Despite different absolute values, the trends are similar. Using 𝐴 =  0.30, 

𝐶 =  0.36 for dense packs and 𝐴 =  0.59, 𝐶 =  0.62 for loose packs, the formula 

accurately captures the trends in both cases. Good agreement is observed, except for 𝐹 < 

0.5 where porosities are slightly underestimated.   
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Figure 6.8. Comparison of the four porosity datasets to the porosity predicted by the 

established piecewise formula. 

6.6 Conclusions  

In this work, we characterized the shape of general ellipsoids based on Wadell’s 

sphericity (𝛹𝑒) and Zingg’s intercept ratio (𝐹), which can be directly computed from the 

lengths of the semi-principal axes. The sphericity (𝛹𝑒) quantifies the degree to which an 

ellipsoid approaches to a spherical form, while the intercept ratio (𝐹 ) expresses the 

combined effects of flatness and elongation. By combining the two well-defined shape 

factors, the ellipsoidal form can be uniquely delineated, as visualized on a constructed 

sphericity-intercept ratio diagram. Next, we employed the non-linear programming 

algorithm (NLP) to simulate random dense packings of ellipsoids and related the resulting 

porosity as a function of 𝛹𝑒 and 𝐹. Three distinct relationships were found. First, as 𝛹𝑒 

decreased from 1 to 0.97, porosity declined parabolically, with negligible influence of 𝐹 

(relation 1). As 𝛹𝑒 further diminished from 0.97 to 0, porosity increased dramatically, in 

which the effect of 𝐹  became significant. Here, at a certain 𝛹𝑒 , porosity initially 

decreased to a minimum (relation 2) and then increased (relation 3) with increasing 𝐹, 

the transition occurring at 𝐹 = 0.33, separating the two distinct relations. A piecewise 

formula describing these relations was derived and verified, exhibiting good agreement 

in both trends and values. 
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Appendix 

The approximation for the surface area of an ellipsoid is: 

𝐴𝑒 = 4π [
(𝑎𝑏ሻ𝑧 + (𝑏𝑐ሻ𝑧 + (𝑎𝑐ሻ𝑧

3
]

1 𝑧⁄

 

By definition 𝑝 = 𝑐 𝑏⁄  , 𝑞 = 𝑏 𝑎⁄  . Substituting 𝑝  and 𝑞  for 𝑐 𝑏⁄   and 𝑏 𝑎⁄  , the 

expression for the surface area of an ellipsoid then becomes:  

𝐴𝑒 = 4π [
(𝑏2 𝑞⁄ ሻ𝑍 + (𝑏2𝑝ሻ𝑍 + (𝑏2𝑝 𝑞⁄ ሻ𝑍

3
]

1 𝑧⁄

 

which reduces to: 

𝐴𝑒 = 4𝜋(𝑏2 𝑞⁄ ሻ [
(1 + 𝑝𝑧(1 + 𝑞𝑧ሻ)

3
]

1 𝑧⁄

 

Let 𝑟 be the radius of a sphere having the same volume of an ellipsoid, then: 

4

3
𝜋𝑎𝑏𝑐 =

4

3
𝜋𝑟3 

and solving for 𝑟: 

𝑟 = (𝑎𝑏𝑐ሻ1 3⁄  

So, the surface area of a sphere of the same volume as an ellipsoid is: 

𝐴𝑠 = 4𝜋(𝑎𝑏𝑐ሻ
2 3⁄  

Substituting 𝑝 and 𝑞 for 𝑐 𝑏⁄  and 𝑏 𝑎⁄ , the expression becomes: 

𝐴𝑠 = 4𝜋𝑏2(𝑝 𝑞⁄ ሻ2 3⁄  

Then, the sphericity of an ellipsoid is calculated by: 

𝛹𝑒 =
𝐴𝑠
𝐴𝑒

 

=
4𝜋𝑏2(𝑝 𝑞⁄ ሻ2 3⁄

4𝜋(𝑏2 𝑞⁄ ሻ [
(1 + 𝑝𝑧(1 + 𝑞𝑧ሻ)

3 ]

1 𝑧⁄
 

This reduces to: 

𝛹𝑒 =
𝐴𝑠

𝐴𝑒
= (𝑝2𝑞ሻ1 3⁄ [

3

(1+𝑝𝑧(1+𝑞𝑧ሻ)
]
1 𝑧⁄
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7 
7 An Integrated Binary-Unit 

Conceptual Packing Model 

 

Porosity prediction for fluvial sediment packings is vital in many ecological, 

morphological, and geological applications. The binary-unit conceptual (BUC) packing 

model has shown its generality and simplicity in predicting the porosity of fluvial 

sediments with spherical shapes (or sub-spherical), outperforming other existing models. 

However, the BUC model is still struggling to apply for poorly-spherical sediment 

packings. In this context, the objective was to enhance the BUC model by coupling the 

influence of non-spherical shapes, leading to the development of an integrated BUC 

(IBUC) packing model for universal application. We did this by introducing the concept 

of equivalent packing diameter, with which a non-spherical sediment mixture can be 

transformed into a spherical packing with an equivalent size effect on porosity that can 

be well handled by the established BUC model, alongside an initial porosity that 

embodies the isolated non-spherical shape effect at a specific packing stage. As a result, 

only two inputs are required in the IBUC model: the grain size distribution (GSD) of the 

transformed spherical packing, and the initial porosity. It turns out that the GSD of the 

spherical packing can be reasonably substituted with the measured GSD of the original 

packing. Furthermore, instead of individually measuring the initial porosity for each 

sample, which is often impractical, we proposed the use of a mean initial porosity for an 

approximate characterization of a field site. Despite this simplification, the IBUC model 

still yielded accurate porosity predictions with a root-mean-square error (RMSE) of 0.03 

when validated against 138 porosity measurement data across four diverse rivers: the 

Rhine, Bès, Galabre, and Kuqa. This positions the IBUC model as an efficient tool for 

investigating the spatial variability in riverbed porosity.
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7.1 Introduction  

Riverbeds are natural packing systems composed of fluvial sediments with varying sizes 

and shapes. Quantifying the porosity of fluvial sediments is vital in various ecological, 

morphological, and geological applications related to riverbeds (Ackers & White, 1973; 

Boulton et al., 1998; Coleman & Nikora, 2009; Frings et al., 2008; Liang et al., 2015; 

Mulatu et al., 2018; Noack et al., 2017; Núñez-González et al., 2016; Rettinger, et al., 

2022a; Sawyer & Cardenas, 2009; Schruff et al., 2018; Tabesh et al., 2019, 2022; Vollmer 

& Kleinhans, 2007). However, directly measuring porosity in situ is an arduous and costly 

task, which has led to the development of porosity prediction models as a more feasible 

alternative. Existing porosity predictors can be generally categorized into two types: 

regression-based models and analytical models. While simplistic, regression-based 

models suffer from limited applicability stemming from their localized nature (e.g., 

Carling & Reader, 1982; Frings et al., 2011; Wooster et al., 2008; Wu & Wang, 2006). On 

the other hand, analytical models, such as the linear-mixture packing model (Yu & 

Standish, 1991) or the compressible packing model (De Larrard, 1999), despite their 

general usefulness, are complex to compute and have been observed to systematically 

underestimate porosity due to underlying assumptions (Frings et al., 2011; Rettinger et 

al., 2023).      

Chapter 3 addressed these problems by proposing a novel porosity predictor named 

the binary-unit conceptual (BUC) packing model, which combines the simplicity of 

regression models with the generality of analytical models. The core of this model is 

based on the newly proposed binary-unit concept, which states that any multi-sized 

spherical packing can be conceptualized into a binary-unit spherical packing, i.e., the 

most element packing unit that is capable of capturing the equivalent particle-particle 

interactions of multi-component (or continuous) mixtures of spheres. Upon this concept, 

the porosity of arbitrary sediment mixtures can be easily estimated by models being able 

to predict the porosity of spherical binary mixtures, such as the Westman equation 

(Westman, 1936). However, the BUC packing model focuses primarily on the effect of 

grain size on porosity by assuming spherical sediment shapes, disregarding the other 

important porosity-influencing effect of non-spherical grain shape.   

The non-spherical grain shape has also a significant impact on porosity, which can be 

readily demonstrated by modeling mono-sized packings of regular non-spherical shapes 

(Gan & Yu, 2020; Qian et al., 2018; Rettinger et al., 2022b; Xie et al., 2019; Zhang et al., 

2019; Zhao et al., 2017). However, the investigation of the non-spherical shape effect on 

sediment porosity is challenging, due to the difficulty in precisely describing the irregular 

shapes of sediment particles given their inherent variability. Considering this, Chapter 5 

introduced an idealized regular shape to approximate the arbitrary morphologies of fluvial 

sediments. By comparing a large number of scanned fluvial sediments to candidate 

regular shapes, it was found that the ellipsoidal shape provided the closest shape similarity 
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to natural sediments in terms of solid volume, surface area, and sphericity. Building on 

this work, Chapter 6 systematically investigated the packing porosity of mono-sized 

fluvial sediments (with ellipsoidal geometry), deriving correlations between porosity and 

two shape factors, namely the Wadell’s sphericity and Zingg’s intercept ratio, that 

characterize general ellipsoid morphology.   

Nevertheless, the non-spherical shape effect has not been taken into account for multi-

sized sediment mixtures. Therefore, the objective of this study was to incorporate the non-

spherical grain shape effect into the BUC packing model to develop an integrated BUC 

(IBUC) packing model for general applications. One potential approach is to conduct a 

series of packing experiments using various sized and shaped ellipsoids to empirically 

determine the combined effect of grain size and shape. However, this method appears 

cumbersome due to the numerous variables involved. In contrast, in this study, we 

introduced the concept of equivalent packing diameter proposed by Yu et al (1993a), 

enabling to transform a non-spherical packing system into an equivalent spherical 

packing system, such that the porosity can then be directly predicted using the established 

BUC model in Chapter 3. In section 7.2, we introduce the equivalent packing diameter 

concept. Then, we explain how to establish the IBUC packing model in section 7.3. Next, 

we validate the IBUC model against datasets obtained from four different rivers in section 

7.4, followed by discussion and conclusions (sections 7.5 & 7.6).         

7.2 The Concept of Equivalent Packing Diameter 

The concept of equivalent packing diameter (EPD) proposed by (Yu & Standish, 1993a) 

aims to convert the size of a non-spherical particle into an equivalent spherical diameter 

that has the same size-dependent packing property as the non-spherical particle. Since the 

particle-particle interaction within a packing depends upon the relative but not absolute 

particle sizes, the evaluation of the EPD of a non-spherical particle can be directly made 

from the analysis of binary mixtures of the considered particle and spheres of different 

diameters, based on the similarity between the packing systems of spherical and non-

spherical particles as explained below. 

For a spherical binary packing system, it is well known that a mixture of two different 

sized spheres will lead to lower porosities than for mono-sized spheres, due to the particle-

particle interaction. Therefore, the maximum porosity should be gained when the dimeter 

of the sphere equals to that of the considered spherical particle. In other words, the EPD 

of a spherical particle should be its own diameter producing the maximum porosity. 

Similarly, when this consideration is extended to a non-spherical binary packing system, 

the EPD of a non-spherical particle should also be identical to the diameter of a sphere 

giving the maximum porosity. In general, the EPD of a non-spherical particle can be 

determined as the diameter of a sphere which, when combined with the non-spherical 

particle at a given fractional solid volume, gives maximum porosity (Yu & Standish, 

1993a).   
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By conducting packing experiments for binary mixtures of various non-spherical 

particles and spheres of different diameters, an empirical equation was initially 

established by Yu and Standish (1993a) and further improved by Zou and Yu (1996), given 

below: 

𝑑𝑝 =
𝑑𝑣

𝛹2.785𝑒𝑥𝑝[2.946(1 − Ψሻ]
                                      (7.1ሻ 

Where 𝑑𝑝 is the EPD of the given non-spherical particle. 𝑑𝑣 is the equivalent volume 

diameter, the dimeter of the sphere having the same volume of the non-spherical particle. 

𝛹 is the sphericity of the non-spherical particle, defined as the ratio of the surface area 

of a sphere having the same volume as the particle to the surface area of the particle itself 

(Wadell, 1935).   

Since the ( 𝑑𝑝 − 𝑑𝑣, 𝛹 ) relation is ono-to-one correspondence, the established 

equation to determine EPD should be generally applied for any shaped particles (Zou & 

Yu, 1996).       

7.3 The IBUC Packing Model 

Here we introduce the IBUC packing model, by coupling the non-spherical grain shape 

effect into the original BUC packing model. This evolution unfolds through a four-step 

process as follows:  

(1) Turn an arbitrary sediment packing into an equivalent ellipsoidal packing.  

(2) Turn the ellipsoidal packing into an equivalent spherical packing.  

(3) Turn the spherical packing into an equivalent binary-unit spherical packing.  

(4) Predict the porosity of the equivalent binary-unit spherical packing.  

The four processes are also visualized in Fig. 7.1.    

The first transformation leverages the intrinsic shape similarities between fluvial 

sediments and ellipsoids, as outlined in Chapter 5. Demonstrating that ellipsoids offer the 

closest geometrical approximation to fluvial sediments in terms of solid volume, surface 

area and sphericity, this transformation takes a straightforward approach. It involves 

mapping the three dimensions of an irregular sediment particle, long (𝐿), intermediate (𝐼), 

and short (𝑆), directly onto the three orthogonal major axes of an approximated ellipsoid, 

major axis (2𝑎), intermediate axis (2𝑏), and minor axis (2𝑐). During this conversion, the 

porosity of the resulting ellipsoidal packing (Fig. 7.1) remains virtually unaltered from 

the original sediment packing, with Chapter 5 reporting an absolute porosity deviation of 

less than 1%.    
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Figure 7.1. Two-dimensional illustration of the four processes applied for the 
establishment of the integrated BUC (IBUC) packing model. 

The second transformation is based on the concept of equivalent packing diameter 
(EPD) introduced in section 7.2, which converts an ellipsoidal particle size into an 
equivalent spherical diameter preserving size-dependent packing properties using Eq. 
(7.1). Through this conversion, the non-spherical shape effect on porosity is isolated, 
resulting in a packing only subject to the particle-particle interactions between spheres. 
As illustrated in Fig. 7.1, the equivalent spherical packing shrinks to some degree due to 
the isolation of the ellipsoidal grain shape effect. To properly estimate the porosity of the 
equivalent spherical packing, the initial porosity range of 0.36 to 0.4, indicating whether 
a random packing of spheres is in a loose or dense state (Allen, 1985), must be adjusted 
to incorporate the isolated non-spherical shape effect. As a simple example, consider a 
uniform ellipsoidal packing with a known porosity of 0.5. Applying EPD yields a uniform 
spherical packing, whose porosity is constrained between 0.36 and 0.4 without accounting 
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for the isolated shape effects. Therefore, to correctly predict porosity, the initial porosity 

must be modified to 0.5, reflecting the isolated influence of ellipsoidal geometry under a 

certain packing state.   

The third transformation capitalizes on the binary-unit concept, which is central to the 

established binary-unit conceptual (BUC) packing model in Chapter 3. The binary-unit 

concept refers to that any multi-sized (or continuous) spherical packing system can be 

conceptualized into an equivalent binary spherical packing system, through the link of 

identical grain size statistics of mean, standard deviation and skewness. Detailed in 

Chapter 3, this transition ensures the preservation of the original porosity value, as the 

resulting binary-unit mixture (Fig. 7.1) maintains the equivalent particle-particle 

interactions inherent in the original packing. Porosity estimation in the derived binary-

unit packing can be done using available models that have the capability to predict the 

porosity of mixtures containing binary spheres (e.g., Dias et al., 2004; Koltermann & 

Gorelick, 1995). Here, we employ the Westman equation (Westman, 1936), a key 

component of the BUC packing model, for this purpose, as outlined in procedure 4.          

The fourth procedure summarizes the complete explicit mathematical equations 

embedded in the three fundamental transformations for predicting the porosity of the 

equivalent binary spherical packing, which in turn refers to the porosity of the original 

sediment mixture.  

Transformation 1 

For each individual sediment particle, apply: 

𝐿, 𝐼, 𝑆 = 2𝑎, 2𝑏, 2𝑐                                             (7.2ሻ 

Transformation 2 

First, calculate the sphericity (𝛹𝑒) and the equivalent volume diameter (𝑑𝑣
𝑒) of the 

approximated ellipsoid: 

𝛹𝑒 =
𝐴𝑠
𝐴𝑒
=
𝜋
1
3(6𝑉𝑒ሻ

2
3

𝐴𝑒
=
4𝜋(𝑎𝑏𝑐ሻ

2
3

𝐴𝑒
                             (7.3ሻ 

where 𝐴𝑆 is the surface area of the sphere having the same volume as the ellipsoid. 𝐴𝑒 

and 𝑉𝑒 denote the surface area and the volume of the ellipsoid separately, in which:  

𝐴𝑒 = 4𝜋 [
(𝑎𝑏ሻ𝑝 + (𝑎𝑐ሻ𝑝 + (𝑏𝑐ሻ𝑝

3
]

1 𝑝⁄

                       (7.3𝑎ሻ 

with 𝑝 ≈ 1.6075 producing a relative error of at most ±1.061%. 

𝑉𝑒 =
4𝜋

3
𝑎𝑏𝑐                                                    (7.3𝑏ሻ 
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𝑑𝑣
𝑒 = (

6𝑉𝑒
𝜋
)

1
3
= 2(𝑎𝑏𝑐ሻ

1
3                                          (7.4ሻ 

Then, the equivalent packing diameter (𝑑𝑝
𝑒) of an ellipsoid can be obtained using Eq. 

(7.1). 

Transformation 3 

Initially, compute the statistical mean (𝜇), standard deviation (𝜎) and skewness (𝑆𝑘) 

of the equivalent multi-sized spherical packing. This can be done with the method of 

moments (Blott & Pye, 2001) or the Folk and Ward (1957) graphical measures. Here, we 

only show the former method as an example:   

𝜇𝜙 =∑𝑓𝑥𝜙                                                        (7.5ሻ 

𝜎𝜙 = √∑𝑓(𝑥𝜙 − 𝜇𝜙ሻ2                                             (7.6ሻ 

𝑆𝑘𝜙 =
∑𝑓(𝑥𝜙 − 𝜇𝜙ሻ

3

𝜎𝜙3
                                              (7.7ሻ 

Where 𝜇𝜙 , 𝜎𝜙 , 𝑆𝑘𝜙  represent the logarithmic statistical measures of mean, standard 

deviation and skewness. 𝑓 represents the weights (%) and 𝑥𝜙 denotes the particle size 

in phi unit. It is worth mentioning that we employ the logarithmic statistics, a commonly 

used scale to characterize the size of natural sediments. Nevertheless, alternative 

statistical scales can be leveraged as well, including arithmetic or geometric scales.    

Next, derive the equivalent binary-unit spherical packing using the same logarithmic 

statistics of the multi-sized spherical packing:    

𝜇𝜙 = 𝑓𝑑𝑑𝜙 + 𝑓𝐷𝐷𝜙                                                   (7.8ሻ 

𝜎𝜙 = √𝑓𝑑(𝑑𝜙 − 𝜇𝜙ሻ2+𝑓𝐷(𝐷𝜙 − 𝜇𝜙ሻ2                               (7.9ሻ  

𝑆𝑘𝜙 =
𝑓𝑑(𝑑𝜙 − 𝜇𝜙ሻ

3+𝑓𝐷(𝐷𝜙 − 𝜇𝜙ሻ
3

𝜎𝜙3
                              (7.10ሻ 

Where 𝑑𝜙, 𝐷𝜙 represent the size of smaller and larger spherical particle (phi unit) in the 

binary-unit mixture respectively, while 𝑓𝑑, 𝑓𝐷 reflect the percentage of the smaller and 

larger components that satisfies the constraint 𝑓𝑑 + 𝑓𝐷 = 1. Note that to calculate the 𝑑𝜙, 

𝐷𝜙 , and 𝑓𝑑  (or 𝑓𝐷 ) from the three Eqs. (7.8-7.10) is analytically possible, but not 

straightforward. Instead, we suggest using a numerical solver, such as the hybrid Powell 

and Newton method, to perform this task. To initialize the algorithm, rational initial 
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values should be specified for the sizes of the two components and one of their 

proportions, along with a termination tolerance, which is conventionally designated as 

1𝑒−8 to ensure highly accurate outcomes. The solver iteratively refines the solution until 

convergence based on the prescribed tolerance. Subsequently, the logarithmic sizes of the 

two components (𝑑𝜙, 𝐷𝜙) should be converted back into the corresponding arithmetic 

sizes, denoted 𝑑 and 𝐷, to obtain the equivalent binary spherical packing according to:    

{𝑑 = 2
−𝑑𝜙

𝐷 = 2−𝐷𝜙
                                                            (7.11ሻ 

Once the equivalent binary spherical packing is derived, the conic Westman equation 

as employed in the BUC packing model can then be utilized to predict the porosity, 

written as:  

(
𝑉 − 𝑉𝐷𝑓𝐷

𝑉𝑑
)
2

+ 2𝐺 (
𝑉 − 𝑉𝐷𝑓𝐷

𝑉𝑑
) (
𝑉 − 𝑓𝐷 − 𝑉𝑑𝑓𝑑

𝑉𝐷 − 1
) + (

𝑉 − 𝑓𝐷 − 𝑉𝑑𝑓𝑑
𝑉𝐷 − 1

)
2

= 1       (7.12ሻ 

where 𝑉 represents the specific volume of the binary spherical packing. 𝑉𝑑 and 𝑉𝐷 are 

the initial specific volume of the smaller and larger particles separately. The specific 

volume represents the reciprocal of packing density, which can be easily converted to 

porosity (𝑛) by 𝑛 = 1 − 1 𝑉⁄ . The coefficient 𝐺 was found to be dependent solely on 

the size ratio 𝑟 (= 𝑑 𝐷⁄ , in arithmetic scale) between finer and coarser particles (Yu et 

al., 1993b):  

1

𝐺
= {

1.355 𝑟1.566     (𝑟 ≤ 0.824ሻ           
1             (𝑟 > 0.824ሻ

                          (7.13ሻ 

Note that the initial porosities for the two imaginary components, i.e., 𝑛𝑑 (= 1 −

1/𝑉𝑑ሻ and 𝑛𝐷 (= 1 − 1/𝑉𝐷), are set to be equal here, denoted as 𝑛0, by assuming that 

any component within the original mixture is packed at the same level, thus the two 

components within the equivalent binary spherical packing. As mentioned earlier, 𝑛0 

should not be appropriated from the typical range of 0.36 to 0.4 as for spherical packings. 

Rather, 𝑛0  must be specified appropriately to reflect the isolated non-spherical grain 

shape effect subject to a specific packing state.      

Finally, we can figure the porosity (𝑛 ) analytically by rephrasing the Westman 

equation in a quadratic form with its positive square root being the solution:      

𝑉 =
−𝐵 + √𝐵2 − 4𝐴𝐶

2𝐴
                                              (7.14ሻ 
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where    

𝐴 = (
1

𝑉𝑑
)
2

+
2𝐺

𝑉𝑑(𝑉𝐷−1ሻ
+

1

(𝑉𝐷−1ሻ2
                 (7.14𝑎ሻ 

𝐵 = −
2𝑉𝐷𝑓𝐷

(𝑉𝑑ሻ
2 +

2𝐺

𝑉𝑑(𝑉𝐷−1ሻ
(𝑉𝑑𝑓𝐷 − 𝑉𝑑 − 𝑓𝐷 − 𝑉𝐷𝑓𝐷ሻ +

2(𝑉𝑑𝑓𝐷−𝑉𝑑−𝑓𝐷ሻ

(𝑉𝐷−1ሻ2
        (7.14𝑏ሻ 

𝐶 = (
𝑉𝐷𝑓𝐷

𝑉𝑑
)
2

−
2𝐺

𝑉𝑑(𝑉𝐷−1ሻ
𝑉𝐷𝑓𝐷(𝑉𝑑𝑓𝐷 − 𝑉𝑑 − 𝑓𝐷ሻ + (

(𝑉𝑑𝑓𝐷−𝑉𝑑−𝑓𝐷ሻ
2

(𝑉𝐷−1ሻ2
) − 1    (7.14𝑐ሻ 

Overall, the development of the integrated binary-unit conceptual (IBUC) packing 

model consists of three theoretical transformations delineated through Eqs. (7.1-7.14). 

Evidently, the prior two transformations pose practical implementation challenges, since 

measuring the three dimensions of each individual sediment particle is infeasible. To 

overcome such limitation, we directly utilize the measured grain size distribution (GSD) 

of the original sediment mixture as a reasonable approximation for the GSD of the 

equivalent spherical packings (discussed in section 7.5). In doing so, the calculation 

procedure is simplified as:   

(1) Input measured GSD of the fluvial sediment packing. 

(2) Calculate 𝜇, 𝜎 and 𝑆𝑘 of the GSD for the equivalent spherical packing.  

(3) Derive 𝑑, 𝐷, and 𝑓𝑑 (or 𝑓𝐷) of the equivalent binary-unit spherical packing.  

(4) Predict 𝑛 based on 𝑑, 𝐷, 𝑓𝑑 (or 𝑓𝐷) and 𝑛0.  

Upon simplification, the IBUC packing model narrows its input requirements to 

solely the grain size distribution (GSD) and the initial porosity (𝑛0) of a fluvial sediment 

mixture. Although the GSD of a sediment mixture can be easily measured via sieve 

analysis, the measurement of 𝑛0 is less straightforward, as it serves as a comprehensive 

indication of the averaged or collective impact of non-spherical grain shapes within a 

specific packing state. The determination of 𝑛0 is a critical aspect that requires careful 

consideration, which is extensively discussed in sections 7.4 and 7.5.            

7.4 Validation of the IBUC Packing Model  

7.4.1 Porosity Datasets Obtained from Literature 

Through the search of literatures, we have identified three laboratory datasets that exhibit 

suitability to validate the IBUC packing model. The first dataset is from Frings et al. 

(2011), who conducted 46 porosity measurements for the Rhine River in Germany. 

Sediment samples were collected from sub-layers of the channel bed and river bank along 

a 520 km stretch of the river between the Iffezheim barrage and the German-Dutch border. 

To emulate the original packing conditions in the laboratory, random mixing and 

compaction procedures were employed, followed by porosity determination with the 

water displacement method (Bear, 1972).   
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The second dataset, created by Tabesh et al. (2021), comprises 35 porosity 

measurements for the Bès River and 16 porosity measurements for the Galabre River 

within the Rhône-Alpes region of France. After the removal of the armor layer, sediment 

samples were taken at three distinct sites along the Bès River and one site along the 

Galabre River, featuring varying sediment characteristics. The laboratory procedure for 

porosity determination remained consistent with the aforementioned Rhine sediments.  

Lastly, Yan et al. (2019) presents the third dataset, encompassing 41 porosity 

measurements undertaken in the Kuqa River of western China. Sediment samples were 

obtained from the surface layer of a braided channel and mid-channel bars at an upstream 

location of the Kuqa River. Instead of using the water displacement method, their porosity 

was analyzed in the laboratory by gas pycnometer, which utilizes Boyle’s law (Bonnar, 

1956) to determine the volume of a sample by measuring the pressure change of a gas 

(usually helium or nitrogen) displaced by the sample.   

The grain size distributions within the sampled sediments exhibited a wide range, 

extending from 0.02 mm to 200 mm for the Rhine, Bès and Galabre sediments, and 

approximately 0.09 mm to 11.2 mm for the Kuqa sediments. These distributions displayed 

a mix of unimodal and multi-modal patterns, contributing to the complexity of the 

sediment compositions. Morphologically, the Rhine sediments showcased a 

predominantly sub-spherical grain shape, while the Kuqa sediments exhibited a poorly-

spherical morphology. Unfortunately, no details regarding the shape characteristics of the 

Bès and Galabre sediments were provided. In terms of packing states, the Rhine, Bès and 

Galabre samples were subject to random dense packing states, while the Kuqa sediments 

were subject to a random loose packing state, based on the corresponding measurement 

strategies adopted.  

7.4.2 Validation against Porosity Datasets 

As mentioned in section 7.3, the IBUC packing model requires two parameters for the 

porosity prediction of a fluvial sediment mixture, i.e., the grain size distribution (GSD) 

and the initial porosity (𝑛0). The available grain size distributions of the three porosity 

datasets (Rhine, Bès and Galabre, Kuqa) were directly used as inputs for calculating the 

grain size statistics of mean, standard deviation and skewness of the corresponding 

equivalent spherical packings, upon which the equivalent binary spherical packings were 

obtained.    

In contrast to the grain size distributions, the initial porosities, however, remained 

unknown. In its essence, the initial porosity of a sediment packing embodies the averaged 

grain shape effects subject to a certain packing state. Although a direct laboratory method 

for measuring the initial porosity is possible (elucidated in section 7.5), individually 

measuring each sediment sample would be a very laborious undertaking. Therefore, a 

good estimation of the mean initial porosity, serving as an optimized surrogate for a 

sampling region, is necessary. In fact, by taking a certain number of measurements, an 
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informed approximation of the mean initial porosity can be derived, enabling a general 

characterization of a specific site (detailed in section 7.5). 

In this validation study, as no information regarding the initial porosity for the three 

porosity datasets exists; to address this limitation, we fed the measured porosity values as 

inputs into the model. Through the utilization of the numerical hybrid Powell and Newton 

method, we performed a reverse calculation to obtain the individual initial porosity value. 

Next, the mean initial porosity was computed as a comprehensive indicator, reflecting the 

combined effects of grain shape and packing state across the four distinct sediment groups 

obtained from the rivers Rhine (𝑛0 = 0.38), Bès (𝑛0 = 0.44), Galabre (𝑛0 = 0.47), and 

Kuqa (𝑛0 = 0.49). These calculated mean values were then used to evaluate the behavior 

of the IBUC packing model.       

We quantify the model’s prediction accuracy with two skill metrics: the coefficient 

of determination (𝑅2) and the root mean square error (RMSE). The comparison in Fig. 

7.2 shows that the IBUC packing model achieves a remarkable performance in porosity 

estimation of the fluvial sediments, explaining 79% (𝑅2) of the total variance in porosity 

and the prediction error (RMSE) is only 0.03.  

 

Figure 7.2. Comparison of the measured porosity (Rhine, Bès, Galabre, and Kuqa 

sediments) to the porosity predicted by the IBUC packing model. The grey line indicates 

a perfect fit, while the dotted grey lines represent a deviation of 0.03 from the perfect 

correlation.  

While certain predicted points exhibit deviations from the true values far beyond 0.03 

(with a maximum absolute error of up to 0.11), these discrepancies are inevitable due to 

the inherent limitations of employing mean initial porosity, which may not adequately 

capture extreme cases (discussed in section 7.5). Nevertheless, the IBUC model 

outperforms the original BUC model developed in Chapter 3, with a significant 
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improvement around 167% in RMSE skill score (i.e., the normalized RMSE difference 

between model A (the original model) and model B (the integrated model) defined as 

(RMSEA - RMSEB)/RMSEB). The original BUC model yields a 𝑅2 score of 0.63 and a 

RMSE score of 0.08 when provided with an initial porosity input of 0.36 for the Rhine, 

Bès, and Galabre sediment groups, and 0.4 for the Kuqa sediment group, according to 

their respective packing state mentioned earlier.  

7.5 Discussion  

In this section, we investigate the uncertainties associated with the IBUC packing model. 

In general, three main uncertainty sources were identified that cause errors in porosity 

prediction: (1) approximation of the equivalent spherical packing, (2) the Westman 

equation, and (3) the use of mean initial porosity.    

7.5.1 Approximation of the Equivalent Spherical Packing 

Converting into an equivalent spherical mixture during the first two transformations 

presents a challenge since measuring the three dimensions of each sediment particle 

becomes impractical. To overcome this hurdle, an alternative approach was adopted. It 

involves utilizing the standard sieve-measured grain size, which represents the geometric 

mean size between two adjacent sieve meshes, as a direct representation of the 

corresponding equivalent spherical diameter. This substitution, however, introduces some 

uncertainties when estimating porosity.    

In order to assess the degree of uncertainties caused by such proxy, a comparison 

analysis was made between the standard sieve-measured grain size and the calculated 

equivalent spherical diameter, based on a dataset containing a total of 241 high-resolution 

scanned sediments sampled from the rivers Rhine and Kall (from Chapter 5). These 

scanned sediments spanned from 0.29 mm to 54.3 mm, thus from medium sand to coarse 

gravel, representing a good portion of fluvial sediments.   

In undertaking this comparison, we combined the scanned particles into seven 

distinct size fractions, ranging from 0.25-0.5 mm to 16-32 mm, each with a width of 1 

phi on the Krumbein scale. This ensures that each fraction contains a sufficient number 

of particles (around 30 grains) for a good estimate of the mean equivalent spherical 

diameter. Noteworthy is the exclusion of particles exceeding 32 mm in size from the 

analysis. This deliberate choice was necessitated due to the absence of sizes larger than 

54.3 mm, essential for maintaining the integrity of the size interval of 32-64 mm. 

Employing the measured three dimensions of the scanned sediments, we computed the 

equivalent spherical diameter for each individual particle, using Eqs. (7.1-7.4). The 

subsequent step involved deriving the mean value for each of the seven size intervals. 

The results, as illustrated in Fig. 7.3, demonstrate a commendable consistency, with the 

deviation between the standard measured grain size and the corresponding equivalent 

spherical diameter maintained at levels generally below 10%.  
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Figure 7.3. Comparison between the standard sieve-measured grain size and 

corresponding equivalent spherical diameter based on a dataset provided by Chapter 5. 

All grain size values are normalized with respect to the standard measurement. Error bars 

represent bootstrapped 95% confidence intervals for the mean equivalent spherical 

diameter of each size interval.  

To quantify the error of porosity estimation, we conducted a sensitivity analysis. This 

involved systematically adjusting each grain size by 10% to gauge its impact on the 

porosity values. To streamline the complexities inherent in multi-component spherical 

packings, we opted for equivalent binary spherical packings as the analytical framework. 

In our exploration, we tested seven size ratios (𝑟 = 𝑑/𝐷) spanning from 0.01 to 0.9. 

Each ratio underwent eight unique uncertainty scenarios, as outlined in Table 7.1. To 

amplify the grain size effect, we allocated equal percentages for each component (𝑓𝑑 =

𝑓𝐷 = 50%). The initial porosity was set to 0.5.   

The results, summarized in Table 7.1, reveal that in the majority of cases (90%), the 

absolute porosity error remains below 1%. Negligible porosity estimation errors are 

observed with size ratio either minuscule (below 0.05) or approached unity (exceeding 

0.9). The most substantial influences manifest within the intermediate size ratios (0.3-

0.7), in which the particle-particle interactions exhibit heightened intensity.  
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Table 7.1. Porosity estimation error using approximation of the equivalent spherical 

packing. 

ID 
Uncertainty scenarios Absolute porosity error at different size ratios 𝒓 (𝒅 𝑫⁄ )  

𝑑 𝐷 0.01  0.05  0.10  0.30  0.50  0.70  0.90  

1 ↑ ↑ 0.000  0.000  0.000  0.000  0.000  0.000  0.000  

2 ↓ ↓ 0.000  0.000  0.000  0.000  0.000  0.000  0.000  

3 ↑ – 0.000  0.001  0.003  0.008  0.008  0.007  0.000  

4 ↓ – 0.000  0.001  0.003  0.008  0.009  0.008  0.000  

5 – ↑ 0.000  0.001  0.003  0.007  0.008  0.007  0.000  

6 – ↓ 0.000  0.002  0.004  0.008  0.008  0.007  0.000  

7 ↑ ↓ 0.000  0.003  0.008  0.016  0.016  0.014  0.000  

8 ↓ ↑ 0.000  0.002  0.006  0.015  0.016  0.015  0.000  

“↑, ↓” denote a 10% increase or decrease of the grain size, respectively, while “–” represents the grain size keeps unchanged. 

7.5.2 The Westman Equation 

The other potential porosity prediction error lies in the application of the Westman 

equation for estimating the porosity of equivalent binary-unit spherical packings. To 

evaluate the accuracy of the Westman equation, a total of 189 experimental measurements 

on spherical binary packings were gathered (data from Dias et al., 2004; Mcgeary, 1961; 

Mota et al., 2001; Westman & Hugill, 1930; Yerazunis et al., 1965; Yu et al., 1992). 

These binary packings encompassed a broad spectrum of size ratios, featured diverse 

materials, and spanned packing stages from loosely to densely packed.    

The porosity comparison results shown in Fig. 7.4 confirm the reliability of the 

Westman equation in predicting the porosity of binary packings of spherical particles. 

The evaluation yielded a remarkable 𝑅2 score of 0.95 and a low RMSE score of 0.01.  

  

 

Figure 7.4. Comparison of the measured porosity to the porosity predicted by the 

Westman equation, for 189 spherical binary packings.  
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7.5.3 The Use of Mean Initial Porosity  

In light of the relatively low porosity estimation errors (~1% deviation) arising from the 

previously discussed sources, the use of mean initial porosity in the IBUC packing model 

must account for the atypically high prediction errors shown in Fig. 7.2. Specifically, the 

degree of the model error associated with mean initial porosity heavily depends on the 

spatial variability of initial porosity within a given environment.   

The initial porosity distribution across the four sampled environments is depicted in 

Fig. 7.5. Notably, the standard deviation of the initial porosity varies across these 

environments, standing at 0.04 for both the Rhine and Bès sites, 0.05 for the Galabre site, 

and 0.02 for the Kuqa site. The overall standard deviation across all four environments 

stands at 0.04. These standard deviation values serve as indicators of the spatial variability 

in the initial porosity, with higher values suggesting a broader dispersion relative to the 

mean initial porosity. This dispersion, especially in extreme cases, contributes to elevated 

model errors.   

Despite the spatial variability, relying on mean initial porosity proves to be a viable 

strategy, yielding reasonable porosity estimates within ±0.03 for the majority of cases 

(79% in this study). The result aligns with expectations, given that the sediment 

characteristics (size and shape) and depositional conditions (packing state) typically 

cluster around the population mean for a given local environment with a shared sediment 

transport history (Deal et al., 2023; Novák-Szabó et al., 2018). Such concentration effect 

is evident in Fig. 7.5 (a, b&d) for the Rhine, Bès, and Kuqa sites, but less obvious for the 

Galabre site (Fig. 7.5c), likely attributable to the smaller sample size (𝑁 =16) collected 

for this area.   

     

 

     

 

Figure 7.5. Distribution of the initial porosity for the sampled (a) Rhine sediment, (b) 

Bès sediment, (c) Galabre sediment, and (d) Kuqa sediment. The width of the bins was 
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selected based on the interquartile range and the number of samples at each environment 

following the Freeman-Diaconis rule. 

Therefore, a good estimate of the mean initial porosity is vital in determining the 

model’s predictive capacity. It becomes apparent that the accuracy of a mean initial 

porosity is dependent on the spatial variability of initial porosity in an environment (i.e., 

the standard deviation of the initial porosity 𝜎) as well as the number of samples (𝑁), 

which can be effectively assessed by calculating the standard error of the mean (SEM) 

using the following expression: 

𝑆𝐸𝑀 =
𝜎

√𝑁
                                                                (7.15ሻ 

In this context, the SEM measures the standard deviation of the mean initial porosity 

for a given sample size. A lower SEM value indicates higher accuracy in estimating the 

mean initial porosity. However, achieving a low SEM necessitates a large number of 

sampling points for a given environment. Considering practical constraints, a SEM value 

of 0.01 is suggested. This value strikes a balance between maintaining a good estimate of 

the mean initial porosity and keeping the sample size within feasible limits. For instance, 

taking into account the average standard deviation of the initial porosity observed in this 

study (𝜎 = 0.04), obtaining an accuracy level of 0.01 for the mean initial porosity would 

require only 16 samples. However, pursuing uncertainty levels below 0.01 triggers a rapid 

increase in sampling effort. For estimates with an uncertainty as low as 0.005, at least 64 

samples would be required, which may pose practical challenges in the context of river 

management studies.   

The laboratory procedure for measuring the initial porosity closely resembles the 

method for porosity measurement in sediment samples. The key difference lies in the need 

to divide the sediment sample into multiple uniform size classes where the size effect on 

porosity is considered negligible. Averaging the porosity measured for each uniform 

sediment at a predefined packing state gives the initial porosity for that specific sample.    

However, obtaining the mean initial porosity through this procedure is still 

cumbersome. For instance, if 16 samples are collected from a local environment, and each 

sample contains 10 identical uniform size classes, a total of 160 measurements would be 

required to determine the mean initial porosity, which is still infeasible. To fix this, a more 

refined method is to merge identical uniform size factions present in all samples and 

subsequently measure the porosity for this well-mixed uniform size fraction. This 

approach provides an equivalent but more effective way to determine the mean initial 

porosity. With this strategy, only 10 measurements would be necessary instead of the 

previously required 160.        

An illustrative example can be found in Frings et al. (2011). In addition to 

contributing the first dataset for this study, the researchers also conducted porosity 
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measurements for uniform sediment packings derived from the same samples from the 

Rhine River. They obtained 18 well-mixed uniform classes, each with a width of 0.5 phi 

and spanning from 0.09 mm to 45 mm, based on the general range of grain sizes present 

in those sediment samples. The porosity of each uniform class was measured at a dense 

packing state using the water replacement method. Such measurements align precisely 

with the proposed principle for measuring the mean initial porosity. The computed mean 

porosity of the 18 classes was 0.37, remarkably matching the mean initial porosity of 0.38 

calculated for the Rhine sediments.   

 In regions without any measurements about the mean initial porosity, the values 

obtained from this study can be considered as a first recommendation. Specifically, for 

environments akin to the Rhine characterized by sub-spherical shapes and densely packed 

conditions, a recommended range of 0.37-0.39 is proposed for the mean initial porosity, 

taking into account a bootstrapped 95% confidence interval. Conversely, for 

environments resembling the Kuqa, marked by poorly-spherical shapes and loosely 

packed conditions, a range of 0.48-0.50 for the mean initial porosity is advised. Notably, 

as porosity generally increases with the departure from spherical grain shapes as 

elucidated in Chapter 6, these two environments could be perceived as representing 

extreme cases. Consequently, a comprehensive mean initial porosity range spanning from 

0.37 to 0.50 is recommended to encompass all possible situations in diverse environments, 

including the Bès (𝑛0 = 0.44±0.01) and Galabre (𝑛0 = 0.47±0.02) locales.         

7.6 Conclusions  

The present work has provided a general framework for the development of an integrated 

binary-unit conceptual (IBUC) packing model that considers key porosity-controlling 

factors including grain size, grain shape, and packing state. The IBUC model operates by 

conceptualizing an arbitrary sediment packing as a fusion of two distinct components: an 

equivalent spherical packing that holds crucial size-dependent information, and an initial 

porosity that conveys valuable insights into the effect of shape and packing state. The 

grain size distribution (GSD) of the equivalent spherical packing can be reasonably 

approximated by the measured GSD of the original packing. Due to the infeasibility of 

measuring the initial porosity for each sediment packing, the use of a mean initial porosity 

as an approximate representation for a local sampling region is suggested. The mean 

initial porosity can be simply obtained through the averaging of measured porosity values 

across well-mixed uniform size classes present within sampled sediments. A minimum of 

16 samples (equivalent to 16 GSDs) is recommended to obtain a reliable estimate of the 

mean initial porosity with an accuracy of 0.01. Despite the use of mean initial porosity, 

the IBUC model is still able to generate accurate porosity predictions with a root-mean-

square error (RMSE) of 0.03 on 138 validation targets due to the concentration effect. 

Given the ubiquitous availability of grain size distribution data, the IBUC model emerges 

as a user-friendly tool for quantifying the spatial variability in riverbed porosity.          
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In this thesis, several achievements have been made, involving two major innovations and 

five minor discoveries. Two major innovations include developments of the Binary-Unit 

Conceptual (BUC) packing model and the Integrated Binary-Unit Conceptual (IBUC) 

packing model. Five minor discoveries comprise assessments of numerical methods, 

sediment shape approximation using ellipsoid, a new definition of sphericity, a general 

description of ellipsoids, and a general porosity-ellipsoid relation.  
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8.1 Two Major Innovations 

The BUC packing model has been developed to predict the porosity of spherical packing 

systems. The key part of this model lies in the proposed binary-unit concept. It 

demonstrates that arbitrary spherical mixtures can be transformed into a binary unit 

spherical mixture that possesses the equivalent intraparticle interactions as the original 

mixture. Such transformation is achieved via the link of identical grain size statistics of 

mean, standard deviation and skewness, which are the basic elements describing the 

diverse intraparticle interactions from binary to large-component spherical packings. 

Using this concept, the porosity of arbitrary spherical packings can be easily estimated 

with models capable of predicting the porosity of spherical binary mixtures, such as the 

Westman equation. The BUC model offers highly accurate porosity predictions for 

spherical packings and also provides reasonably accurate results when applied to sub-

spherical sediment packings.  

 

The IBUC packing model has been established to enhance the functionality of the BUC 

model by integrating all other factors influencing porosity. Three theoretical 

transformations constitute the core architecture of the IBUC model, i.e., from sediment 

to ellipsoid packing, from ellipsoid to spherical packing, and from spherical to binary-

unit spherical packing. As a result, a non-spherical sediment mixture can be treated as a 

spherical mixture with equivalent size interactions between particles, alongside an initial 

porosity capturing all other porosity-controlling effects, such as isolated grain shape and 

packing state. It shows that the grain size distribution (GSD) of the transformed spherical 

packing can be directly approximated with the measured GSD of the original sediment 

packing. Instead of measuring each of the sediment mixture’s initial porosity, which is 

impractical, the use of a mean initial porosity is suggested for a general representation of 

a particular site being investigated. Despite this, the IBUC packing model is still able to 

achieve satisfied porosity predictions for complex fluvial sediment mixtures across 

various sedimentological environments. The IBUC packing model, due to its generality, 

simplicity, and accuracy, stands out as a state-of-the-art tool for examining spatial 

variability in riverbed porosity.   

8.2 Five Minor Discoveries 

Three numerical methods have been employed to generate digital riverbeds. The results 

indicate that both the physics-based non-smooth granular dynamics (NSGD) and the 

optimization-based non-linear programming (NLP) algorithms can produce random 

dense packings. In contrast, the stochastic digital packing algorithm tends to create 

random loose packings due to kinematic sorting effects and shape influences introduced 

by the random motion of particles. 
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The ellipsoidal shape has been identified as the best match to fluvial sediments in terms 

of solid volume, surface area, and sphericity. Additionally, the packing behavior of 

ellipsoids closely resembles that of fluvial sediments in both trend and accuracy. 

A new definition of sphericity has been proposed, improving upon Wadell’s definition. 

This new definition states that sphericity is the ratio of the surface area of a sphere with 

the same volume as the particle to the smoothed surface area of the particle itself. 

Ellipsoids have been generally characterized using two well-defined parameters: Wadell’s 

sphericity and Zingg’s intercept ratio. Sphericity measures how closely an ellipsoid 

approximates a spherical shape, while the intercept ratio, an advanced version of the 

aspect ratio, captures the combined effects of flatness and elongation. 

A general relationship between porosity and ellipsoids has been established. Three 

distinct trends are identified that show how porosity varies as a function of sphericity and 

intercept ratio. A piecewise formula describing these relationships has been derived and 

verified, showing good agreement in both trends and values.  

8.3 Outlook 

The binary-unit concept proposed in this thesis is anticipated to extend beyond just 

estimating porosity, as particle-particle interactions influence a wide range of other 

factors. This concept has the potential to address various challenges in particle packing 

systems, such as estimating permeability in sediment mixtures, determining the cut-off 

grain size for morphological changes, and even predicting the onset of sediment transport.  

Permeability is another key property of fluvial sediment mixtures, reflecting their ability 

to allow fluids (gas or liquid) to flow through. It is influenced by both porosity and the 

connectivity of pores. Using the binary-unit concept, a transformed binary mixture could 

offer a clearer understanding of fluid flow through porous media and, consequently, 

permeability, by simplifying the complex pore size distributions found in heterogeneous 

sediment mixtures.  

The cut-off size acts as a threshold that distinguishes between pore-filling load and bed-

structure load. Particles smaller than this threshold typically fill the spaces between larger 

grains without altering the overall bed structure, as pore-filling load. In contrast, particles 

larger than the cut-off size interact with surrounding grains, leading to morphological 

changes as bed-structure load. By applying the binary-unit concept, the fine grain derived 

from the transformed binary mixture could provide direct insights into determining the 

value of this cut-off size. 
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Predicting the onset of sediment transport is a long-standing problem. Traditional 

methods often track transport rates for a single grain size, such as the median, which is 

straightforward but fails to capture the diversity of real sediment mixtures. Alternatively, 

estimating transport rates for each individual grain size fraction is theoretically accurate 

but impractical due to the complexity and labor involved. A more effective solution is the 

two-fraction approach, where transport rates for a binary bed composition are measured. 

This method simplifies the process while still accounting for the different transport 

behaviors of fine and coarse particles, which tend to move at varying rates. Using the 

binary-unit concept, the transformed binary mixture could serve as a representative model 

of the full grain size distribution, capturing the essential dynamics of both fine and coarse 

particles without needing to consider every grain size in the distribution.   
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