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Abstract

Objectives Artifacts in clinical MRl can compromise the performance of Al models. This study evaluates how different
data augmentation strategies affect an Al model’'s segmentation performance under variable artifact severity.

Materials and methods We used an Al model based on the nnU-Net architecture to automatically quantify lower
limb alignment using axial T2-weighted MR images. Three versions of the Al model were trained with different
augmentation strategies: (1) no augmentation (“baseline”), (2) standard nnU-net augmentations (“default”), and (3)
"default” plus augmentations that emulate MR artifacts (“MRI-specific”). Model performance was tested on 600 MR
image stacks (right and left; hip, knee, and ankle) from 20 healthy participants (mean age, 23 + 3 years, 17 men), each
imaged five times under standardized motion to induce artifacts. Two radiologists graded each stack’s artifact severity
as none, mild, moderate, and severe, and manually measured torsional angles. Segmentation quality was assessed
using the Dice similarity coefficient (DSC), while torsional angles were compared between manual and automatic
measurements using mean absolute deviation (MAD), intraclass correlation coefficient (ICC), and Pearson’s correlation
coefficient (r). Statistical analysis included parametric tests and a Linear Mixed-Effects Model.

Results MRI-specific augmentation resulted in slightly (yet not significantly) better performance than the default
strategy. Segmentation quality decreased with increasing artifact severity, which was partially mitigated by default and
MRI-specific augmentations (e.g., severe artifacts, proximal femur: DSCpaseline = 0.58 + 0.22; DSCyefaurr = 0.72 + 0.22;
DSChiri-specific = 0.79 £ 0.14 [p < 0.001]). These augmentations also maintained precise torsional angle measurements (e.g.,
severe artifacts, femoral torsion: MADpaseline = 20.6 + 23.5% MADgefauir = 7.0 = 13.0° MADyRspecific = 5.7 £ 9.5° [p < 0.001];
ICChaseline = —0.10 [p = 0.63; 95% Cl: —061 t0 047]; ICCyetau = 038 [p=0.08; —0.17 t0 0.76]; ICCy1 specific = 0.86

[p < 0.001; 062 t0 095]; Mpaseiine = 0.58 [p < 0.001; 044 t0 0.69]; ryefaui = 0.68 [p < 0.001; 0.56 10 0.77]; Ty speciic = 086
[p <0.001; 0.81 to 09]).

Conclusion Motion artifacts negatively impact Al models, but general-purpose augmentations enhance robustness
effectively. MRI-specific augmentations offer minimal additional benefit.

Key Points
Question Motion artifacts negatively impact the performance of diagnostic Al models for MRI, but mitigation methods
remain largely unexplored.
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Graphical Abstract

Findings Domain-specific augmentation during training can improve the robustness and performance of a model for
quantifying lower limb alignment in the presence of severe artifacts.

Clinical relevance Excellent robustness and accuracy are crucial for deploying diagnostic Al models in clinical practice.
Including domain knowledge in model training can benefit clinical adoption.

Keywords Lower limbs, Magnetic resonance imaging, Artificial intelligence, Torsion abnormality, Artifacts

Al in motion: the impact of data augmentation strategies
on mitigating MRI motion artifacts

Can domain-specific data augmentation increase an Al model's robustness against motion artifacts
compared to a generic augmentation scheme?
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Domain-specific data augmentation outperforms generic augmentation in presence of severe artifacts
and can benefit clinical adoption of Al.
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Introduction

Automated image processing has become a focus of sci-
entific and clinical attention in radiology and beyond [1].
Modern computer vision methods may aid clinicians in
their work by automating time-intensive and repetitive
tasks. Diagnostic artificial intelligence (AI) models are
often developed under well-controlled (“laboratory”)
conditions, where the training data is carefully curated,
the image quality is consistent, and variability regarding
image contrast, resolution, noise, patient position, and
artifacts is low. Although widely perceived as the ultimate
imaging modality of contemporaneous clinical medicine
[2] due to its excellent soft tissue contrast and absence of
ionizing radiation, MRI is a complex technology suscep-
tible to artifacts [3]. Artifact-ridden imaging studies can
seriously hamper diagnostic accuracy and make images
non-diagnostic [4]. One of the most common artifact
types is motion artifacts secondary to (in)voluntary
patient motion during image acquisition, which present as

blurring, ghosting, or smearing of image parts or entire
images in the phase-encoding direction. Motion artifacts
affect up to a third of clinical MRI sequences, and
approximately 20% of MRI studies require repetition of a
scan due to motion corruption of the image, which
increases scan times, reduces patient comfort, and causes
additional costs [5, 6]. Artifact-induced image degradation
also negatively affects the performance of diagnostic Al
models. Consequently, considerable effort has been
directed at reducing artifacts prospectively during image
acquisition, for example, by employing radial sampling
(commonly known by proprietary sequence names
PROPELLER, BLADE, or MULTIVANE). In some
instances, motion artifacts are present despite using pro-
spective motion correction, while in others, these tech-
niques are not available or feasible. Thus, other efforts
focused on artifact mitigation during image reconstruc-
tion using deep learning models to remove artifacts from
degraded images, for example, by utilizing generative
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adversarial networks [7, 8]. However, this approach has
several drawbacks, e.g., poor generalizability to other use
cases or increased complexity due to the combination of
multiple models. A less explored alternative focuses on
improving diagnostic AI models’ robustness when dealing
with artifacts during image analysis, for example, by using
data augmentation techniques to enhance the training
data in volume, quality, and diversity.

In musculoskeletal imaging, AI models are used for
various tasks, including automatically segmenting ana-
tomic structures such as bones [9]. Segmentation models
are frequently combined with computational post-
processing techniques [10], such as quantification of
lower limb alignment [11-13], which is critical for clinical
management. Aberrant femoral and tibial alignment is
associated with numerous pathologies and symptoms,
including pain and dysfunction, femoroacetabular
impingement, and hip osteoarthritis [14, 15]. In the clinic,
the physician manually identifies specific anatomic land-
marks on cross-sectional images, constructs reference
lines connecting these landmarks, and quantifies the
torsional angle [16, 17]. Due to substantial intra- and
inter-reader variability, ranging up to 11° and 16° [18], and
challenges associated with inconsistent measurement
levels and methods [16, 19], scientific efforts have been
directed at automating the quantification procedure
[11-13]. Nonetheless, little is known about how diag-
nostic AI models are impacted by motion artifacts or how
data augmentation strategies, i.e., using different techni-
ques to enhance the training data’s volume, quality, and
diversity, may mitigate these artifacts to increase clinical
robustness. Our objective was to systematically study the
accuracy of lower limb segmentation and quantification as
a function of artifact severity and data augmentation
strategy. We hypothesized that a dedicated AI model’s
performance would decrease with increasing artifact
severity but could be stabilized by domain-specific data
augmentation during training.

Materials and methods

Study design

Following approval by the local Ethics Committee (Ethics
Committee of the medical faculty of RWTH Aachen Uni-
versity, EK 058/22), informed consent from the test set
participants was obtained in written form, while this
requirement was waived for the training set patients. This
study was designed as a comparative evaluation of the
impact of three different data augmentation strategies on the
performance of an Al model that automatically segments the
lower limbs and quantifies their alignment. We used image
data from a previous study [13] for the training and valida-
tion sets and prospectively acquired data for the test set.
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Training and validation sets

This study builds upon previous work by Schock et al,
where we developed and validated an AI model to
measure lower limb alignment [13]. The present study
used the identical axial T2-weighted non-fat-saturated
2D turbo-spin echo sequences—the clinical standard
sequence for the MR-based assessment of torsional
alignment [20]—acquired on a clinical 3.0-T MRI
scanner (Achieva, Philips). The scans came from the
clinical routine and included bilateral stacks of the hips,
knees, and ankles of 93 patients (mean age, 13 + 5 years;
52 males; for date range and in/exclusion criteria, refer
to the original publication). Along with the MRI data,
expert-checked manual segmentation outlines of the
femur, tibia, and fibula were available. A U-net con-
volutional neural network was trained to segment these
bones, followed by a post hoc algorithmic identification
of anatomic landmarks, definition of reference lines, and
quantification of torsional alignment (Fig. 1). The
patients were allocated to a training (n=74) and vali-
dation set (n=19). Altogether, 186 lower limbs, each
consisting of three joint-level image stacks and manual
segmentation outlines of the proximal and distal femur,
the proximal and distal tibia, and the distal fibula, were
available for training and validation.

Test set

The test set was compiled by prospectively acquiring MRI
studies of 20 healthy participants (aged 23 + 3 years, 17
men, acquired between 04/2023 and 09/2023) on a clin-
ical 3.0-T MRI scanner (Elition X, Philips). The partici-
pants were imaged supine with extended knees and
patellae facing anteriorly, supported by a dedicated flex-
ible footrest. Axial T2-weighted non-fat-saturated 2D
turbo-spin echo sequences were acquired over the hips,
knees, and feet in separate stacks, using the inbuilt body
coil and without repositioning (refer to Supplementary
Text for sequence details). This sequence was acquired
five times per participant as follows (Fig. 2):

e In the resting position with participants as still as
possible ([i] reference),

* Under breath-synchronized repetitive foot motion
(from maximum dorsiflexion during inspiration to
maximum plantarflexion during expiration) at high
frequency (one complete motion amplitude
completed with every breath cycle [ii]) or at low
frequency (with every third breath cycle [iii]),

* Under breath-synchronized repetitive maximum
tensioning of the gluteal muscles, i.e., gluteal
contraction during inspiration and relaxation
during expiration and alternating between right
and left, at high frequency [iv] or low frequency [v].
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Fig. 1 Diagnostic Al model for quantifying lower limb torsion. The model inputs are axial MR images of the hips (a), knees (a,, az), and ankles (a4) (only
the patient’s right side is shown). Using a convolutional neural network, the model outputs segmentation outlines of the femur (yellow; by, by), tibia
(green; bs, by), and fibula (blue; b,). Algorithmic post-processing then identifies anatomic landmarks based on these segmentation outlines and defines
reference lines (red) according to the method by Lee et al (¢;, ¢3) and the ellipses method (cs, €4). Femoral and tibial torsion are then quantified based on
these reference lines. White circles indicate accessory geometric structures to identify the centers of the femoral head and neck (cq)

Fig. 2 Standardized motion patterns for generating motion artifact-degraded MR images for the test set. Five axial T2-weighted non-fat-saturated 2D
turbo-spin echo sequences were acquired consecutively under different conditions: with participants lying as still as possible (a), performing breath-
synchronized repetitive (unilateral, yet alternating) gluteal contractions and relaxations (b) and breath-synchronized repetitive dorsiflexion (c4) and

plantarflexion (c,). Red arrows indicate the direction of motion

Following the acquisition of these five series per parti-
cipant, i.e., 100 series in total, the axial stacks of each joint
level, i.e., 600 image stacks in total, were evaluated by two
clinical radiologists (M.S.H. and R.M.S., with 4 years of
experience in musculoskeletal MRI) who assessed the
severity of artifact-induced image degradation using the
method of Kohli et al [21]. Each stack was classified as

displaying no, mild, moderate, and severe motion arti-
facts (Fig. 3) independently by each reader. Image stacks
with differing artifact severity scores were discussed
until a consensus score was agreed on. The clinical
radiologists also compared in silico augmented MR
images with artifact-degraded MR images from the test
set, rating the in-plane and through-plane similarity
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using a Likert scale (1 [no similarity] to 5 [maximum
similarity]).

An a-priori sample size estimation that was performed
using G*Power (v3.1.9.7, F tests, repeated-measures
ANOVA within factors, f=0.25 [medium effect size;
suggests

prior research limited clinical relevance],

Fig. 3 Representative MR images showing motion artifact-induced image
degradation. Axial T2-weighted non-fat-saturated images of the pelvis,
displaying both hips in different participants, are shown. The images were
evaluated for motion artifact-induced degradation and categorized as
showing no (a), mild (b), moderate (c), and severe (d) degradation

. Convolutional Layer
RelU Layer
Instance Norm Layer
Pooling Layer

Upsampling Layer

Softmax Layer
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a=0.05, power =0.80, corr=0.6 [correlation among
repeated measures]) indicated that approximately 17
participants would be needed.

Model description

An updated AI model based on the one from Schock et al
[13] was trained using three different augmentation stra-
tegies during training, resulting in three versions that used
the same model architecture. Figure 4 illustrates the
network architecture and the modified training pipeline.

Preprocessing including data augmentation

Preprocessing was performed using functionality provided
by the nnU-Net Python package (version 2.3.1). Briefly,
images were cropped to their non-zero regions, normal-
ized using z-scoring, and resampled to a common shape
and voxel spacing using nearest neighbor interpolation
due to the anisotropic nature of the images. Parameters
for these preprocessing steps were dynamically derived
from a dataset fingerprint; therefore, no fixed values were
specified. The target voxel spacing was determined by
analyzing the dataset’s voxel spacings and computing their
statistics, as described for the nnU-net methodology [22].
Three model versions with different augmentation stra-
tegies were implemented:

Training Data

Fig. 4 Schematic of neural network architecture and model pipeline for automatic bone segmentation using different augmentation strategies. During
training, the original MR images (a) were either left unchanged (b, “baseline”), augmented with default nnU-Net augmentations (c, “default”), or
augmented with additional MRI-specific augmentation (d, “MRI-specific”). The neural network's topological characteristics to delineate the femoral
segmentation outlines (yellow) are shown. For illustrative purposes, “default” augmentations are shown as mirroring and contrast transformations, while
“MRI-specific” augmentations include additional random motion, ghosting, and spiking. The blue box on the right details the steps not visualized in the
blue box on the left. Here, “nnU-Net Preprocessing w/o Augmentation” refers to the standard preprocessing steps applied by nnU-Net, such as
resampling, normalization, and cropping/padding, while excluding any data augmentation
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1. “Baseline”: Without augmentations.
“Default”: With default nnU-Net augmentations
[22, 23], including rotation, rescaling, mirroring,

Gaussian  noise  addition,  brightness/contrast
changes, resolution reduction, and gamma
adjustments.

3. “MRI-specific”: With default nnU-Net augmentations
plus MRI-specific augmentations, including random
blurring, Herringbone-artifact-like stripes (spiking),
signal intensity variations, structural rotation/
translation (due to patient motion), and ghosting
artifacts, ie., displaced and superimposed duplicate
structures in the image [24]. These artifacts were
modeled in silico using the Torchio Python library [25]
and the parameters listed in Supplementary Table 1.
Each artifact was employed with a probability of 50%,
except for spikes (probability of 2%). Exemplary images
of these augmentations are presented in
Supplementary Fig. 1.

Segmentation model

Reflecting current developments in the field, we updated
the earlier AI model from Schock et al [13] as follows.
First, we incorporated the state-of-the-art 3D nnU-Net
architecture (version 2.3.1) [22], replacing the conven-
tional U-net architecture [26]. The nnU-Net builds on the
well-studied U-Net convolutional neural network but
automates various aspects of model configuration and
training [22]. It uses an encoder-decoder architecture to
enable precise localization while adapting to different
datasets without requiring manual tuning. Additional
adjustments include limiting the batch size to allow for
larger patch sizes, replacing batch normalization with
instance normalization, and using leaky linear units
instead of standard rectified ones. Individual models use a
common template that is automatically configured based
on the properties of the training data. Specifically, we used
an adapted trainer class, implementing TorchlO trans-
forms for data augmentation and default hyperparameters
for model training, except for an increased number of
epochs (=500 from an original » =150 [in version
2.3.1]). This increase was necessary to handle the
increased complexity introduced by additional augmen-
tations. The final model was selected based on the vali-
dation set’s highest Dice Similarity Coefficient (DSC).

Post-processing

Automated quantification of torsional alignment followed
the implementation of Schock et al [13]. Based on com-
puted segmentation outlines, reference lines and angles
were calculated using an algorithmic approach. Briefly,
the algorithm automated the Lee method [27] for calcu-
lating femoral torsion and the Ulm method [28] for tibial
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torsion. A least-squares fit was used to identify the centers
of the femoral head and neck. In contrast, the posterior
femoral and tibial condyles (of the knee) were identified
by iteratively shifting a line in the anterior direction, and
the centers of the distal tibia and fibula were identified by
computing the centroids of the respective segmentation
outlines. Supplementary Table 2 provides further details
on the definition of the reference lines. The original
publication by Schock et al provides an in-depth expla-
nation of the algorithm. The code is available at https://
github.com/swestfechtel/paper-augmentation.

Evaluation of model performance

The impact of the augmentation strategies during training
was assessed on the test set. Since nnU-Net prioritizes the
DSC as its evaluation metric, we measured segmentation
quality using the DSC for each bone—the femur, tibia,
and fibula—in every image stack. This metric quantifies
the similarity between manual and automatic segmenta-
tion outlines as a measure of segmentation quality.
Manual reference segmentation outlines were produced
by a pre-graduate medical student trained by an experi-
enced musculoskeletal radiologist (S.N. with ten years of
experience) on the resting-position series. Quality and
consistency checks were performed by M.S.H., RM.S,,
and S.N.

During axial MR image acquisition, repetitive gluteal
contraction and relaxation primarily caused in-plane
motion artifacts, typically manifesting as blurring, ghost-
ing, or streaking. In contrast, repetitive foot dorsiflexion
and plantarflexion caused additional through-plane
motion artifacts, manifesting as misaligned and dis-
continuous anatomy between slices. Consequently, image
stacks of the feet graded as compromised by motion
artifacts were registered to their corresponding reference
stacks using a 2D similarity transform [29], determined
via regular step gradient descent to maximize mutual
information between images.

M.S.H. and R.M.S. independently determined femoral
and tibial torsion on the test data using standard angle
measurement functionalities provided in the in-house
PACS (Philips, IntelliSpace, v4.4553.35).

Statistical analysis

The statistical analysis was performed by S.D.W. using
Python (v3.11.5) and the pandas (v2.1.4) library and R
(v4.4.0) with its packages afex (v1.3-1) and emmeans
(v1.10.1). A linear mixed-effects model was fit to quantify
the coefficients (and p-values) for each contributing
variable: participant (random), joint level (fixed), and
artifact severity (fixed), and their effects on segmentation
quality based on augmentation strategy. Coefficients are
given as means with 95% confidence intervals.
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For each joint level and artifact severity, repeated-
measures ANOVA was used to assess whether DSC values
differed significantly between the augmentation strategies,
following normality testing using the Shapiro—Wilk test.
Post hoc pairwise comparisons were conducted using
Tukey’s Honest Significant Difference test.

The significance level was set to p <0.05 and further
stratified as 0.01 <p <0.05 (*), 0.001 <p<0.01 (**), and
p<0.001 (***). The inter-rater reliability of the two radi-
ologists’ manual measurements was evaluated using the
Intraclass Correlation Coefficient (ICC). Furthermore,
repeated-measures ANOVA of Mean Absolute Deviation
(MAD), the ICC, and Pearson’s Correlation Coefficient r
were computed to compare automated and manual tor-
sion measurements and used as an additional gauge for
model performance.

Results

Study sample

Ninety-three patients (mean age 13 +5 years, 52 male)
were included in the training and validation sets, and 20
participants (23 3 years, 17 male) in the test sets. Arti-
fact severity was close to equally distributed in the test set
(Supplementary Table 3).

Augmentation quality

While the in-plane similarity between in silico augmented
and real MR image datasets was consistently high across
all joints and artifact severities (mild artifacts: 3.6 + 0.6;
moderate artifacts: 3.6 + 0.5; severe artifacts: 3.8 + 0.2), the
through-plane similarity was only modest (mild artifacts:
2.6 + 0.5; moderate artifacts: 2.7 + 0.6; severe artifacts:
3.1£0.5). In real MR image stacks, motion-induced
artifacts varied in location and intensity between slices,
while the in silico-generated artifacts were constant
across all slices, leading to reduced through-plane
correspondence.

Segmentation quality
Segmentation quality was quantified for each joint level
and bone. It was affected by artifact severity, anatomic
region, and augmentation strategy (Table 1, Fig. 5). The
associated post hoc test results are detailed in Supple-
mentary Tables 4-8.

On reference images, segmentation quality was excel-
lent for all anatomic regions if augmentation was used
during training, with mean DSC values ranging between
0.83 and 0.97. In contrast, the baseline model was char-
acterized by highly variable mean DSC values ranging
from 0.33 (proximal tibia) to 0.92 (proximal femur).
Increasing artifact severity led to lower DSC values,
indicating reduced segmentation accuracy. Augmentation
partially mitigated this deterioration in segmentation
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accuracy. More specifically, although the augmented
models demonstrated improved performance compared
to the baseline on artifact-degraded images, their seg-
mentation accuracy did not reach the levels achieved on
artifact-free images.

The baseline model demonstrated lower DSC values
compared to default and MRI-specific augmentations.
Around the knee and ankle, these differences were sig-
nificant for all levels of artifact severity, while at the hip
(proximal femur), these differences were significant only
for severe artifacts. MRI-specific augmentation showed
slight but non-significant improvements in segmentation
quality compared to default augmentation for severe
artifacts in the proximal femur (0.79 + 0.14 vs. 0.72 + 0.22
[p=0.18]) and in the distal tibia (0.75+0.12 wvs.
0.71+0.20 [p=045]). For other regions, default and
MRI-specific augmentations produced similar DSC
values.

When quantifying each variable’s contribution to seg-
mentation quality (Table 2), we found that:

(i) Segmentation outlines of the proximal femur had
significantly higher DSC values than those of other
joint levels, except for the distal femur.

(i) MR images without artifacts had significantly
higher-quality segmentation outlines than those
with artifacts.

(iii) Training with default and MRI-specific augmentations
improved segmentation quality significantly compared
to the baseline model.

Torsional angle measurements

Manual torsional angle quantification was a reliable
reference standard for inter-method comparisons; the two
radiologists demonstrated excellent inter-reader reliability
with an ICC of 0.94 (95% CI: 0.93 to 0.95).

Automatic angle quantification had variable success
rates (Table 3). In this context, “success” is defined as the
termination of the model without error and computation
of a result. For femoral torsion, the success rate was
excellent following default and MRI-specific augmenta-
tions, regardless of artifact severity. MRI-specific aug-
mentation delivered measurements in all instances, while
default augmentation failed in one. For tibial torsion, the
baseline model had substantially lower success rates,
particularly with moderate and severe artifacts. For
femoral torsion, however, the baseline model delivered
largely successful measurements, even with severe arti-
facts. Exemplary images representing instances where the
model failed are presented in Fig. 6.

Accuracy was similarly affected by artifact severity and
augmentation strategy (Table 4), with post hoc details
provided in Supplementary Tables 9-12. The baseline
model yielded substantially higher torsional angles across



Westfechtel et al. European Radiology

Table 1
and anatomic region
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Quantification of segmentation quality (dice similarity coefficients) as a function of artifact severity, augmentation strategy,

Anatomic region

Artifact severity Augmentation strategy Proximal femur Distal femur Proximal tibia Distal tibia Distal fibula
Reference Baseline 0.92 £0.03 0.78 £0.05 033+0.23 063 +0.15 0.70+0.17
Default 0.96 £0.01 0.97 £0.01 0.97 £0.01 0.92 £0.08 083+0.19
MRI-specific 0.96 £0.01 0.97 £0.01 0.97£0.01 0.92 £0.09 083+0.19
p-value ns . P - s
Mild Baseline 0.86 £0.05 0.70+0.06 030+0.20 052+0.23 059+0.24
Default 0.89+0.05 0.87+0.07 0.86+0.08 082+0.14 0.69+0.21
MRI-specific 0.89+0.05 0.87+0.07 0.86+0.08 082+0.14 0.69+0.21
p_vame ns *R% *R% *%% *R%
Moderate Baseline 0.83£0.07 0.71£0.06 033+£0.21 039£0.21 049+0.23
Default 0.88 £ 0.05 0.86 +0.06 0.85+0.07 0.82+0.11 0.70+0.16
MRI-specific 0.88+0.05 0.86+0.07 0.85+0.08 082+0.11 071+0.16
p—value ns FRK FRK KHK FRK
Severe Baseline 058 £0.22 0.71£0.08 042 +0.28 0.13£0.16 0.08+0.17
Default 0.72£0.22 0.85+0.03 0.82+0.04 0.72£0.20 058+0.19
MRI-specific 0.79£0.14 0.84 £ 0.04 0.82+0.04 0.75£0.12 059+0.19
p-value . s P . s

Dice Similarity Coefficients are indicated as means + standard deviation. One-way ANOVA was used to compare the Dice Similarity Coefficients across different
augmentation strategies for each anatomic region and artifact severity. The corresponding p-values are organized row-wise. p-value coding: [***], p < 0.001; [ns], non-
significant. Details of post hoc pairwise tests are indicated in Supplementary Tables 4-8

all conditions than default and MRI-specific augmenta-
tions and manual measurements. These differences were
significant for femoral torsion (left) with moderate and
severe artifacts and tibial torsion (right) with mild and
moderate artifacts (p <0.001 each). Notably, torsional
angles determined based on default or MRI-specific aug-
mentations did not significantly differ from each other or
manual measurements. When considering radiologists’
inter-reader means, MAD between manual and automatic
measurements were 10.7°, 5.0°, and 4.0° (baseline model,
default, and MRI-specific augmentations) for femoral
torsion and 19.1°, 4.3° and 3.7° for tibial torsion. ICCs
between manual and automatic measurements (each vs.
manual measurements) were 0.28 (p=0.11; 95% CI:
—0.17 to 0.63 [baseline]), 0.73 (p <0.001; 0.45 to 0.88
[default]), and 0.88 (p < 0.001; 0.73 to 0.95 [MRI-specific])
for femoral torsion, and 0.03 (p=0.45; —0.41 to 0.46
[baseline]), 0.92 (p < 0.001; 0.81 to 0.97 [default]), and 0.95
(p <0.001; 0.87 to 0.98 [MRI-specific]) for tibial torsion.
Similarly, Pearson’s r values between automatic and
manual measurements were 0.58 (p < 0.001; 0.44 to 0.69
[baseline]), 0.68 (p < 0.001; 0.56 to 0.77 [default]), and 0.86
(p <0.001; 0.81 to 0.9 [MRI-specific]) for femoral torsion,
and 0.06 (p=0.64; —0.19 to 0.3 [baseline]), 0.80
(p <0.001; 0.73 to 0.86 [default]), and 0.83 (p < 0.001; 0.76
to 0.88 [MRI-specific]) for tibial torsion.

Discussion

This study evaluated the impact of different data aug-
mentation strategies on an Al model’s performance in
segmenting and quantifying lower limb alignment, with
and without motion artifacts. Using three augmentation
strategies, we trained an nnU-Net-based segmentation
model and assessed segmentation accuracy and torsional
alignment measurements. Our findings indicate that
default and MRI-specific augmentations significantly
improved model performance compared to no augmen-
tation, particularly in images with moderate or severe
artifacts. However, MRI-specific augmentation only
marginally (and non-significantly) outperformed default
augmentation in severe artifacts. This finding aligns with
literature reports indicating that basic augmentation
techniques such as flipping, rotating, and transformations
significantly enhance diagnostic performance [30, 31]. For
automatic whole-prostate segmentation on MRI, Zhang
et al investigated the variation in model performance on
different external test sets following training with single
augmentations. In their study, individual basic augmen-
tations improved model performance by up to 47%, with
contrast, brightness, sharpening, and scaling being the
most efficient in boosting model performance [32]. Yet,
generic one-size-fits-all approaches to data augmentation
may not be appropriate. Based on hematologic morphology
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Ground Truth Baseline Default MRI-Specific

Reference

Mild
Artifacts

Moderate
Artifacts

Severe
Artifacts

Fig. 5 Segmentation quality as a function of augmentation strategy and artifact severity. MR images with overlaid segmentation outlines of the hip are
shown. The reference image is unaffected by artifacts, while the other images are affected by varying degrees of artifact severity, from mild to severe.
Color coding and image overlays as in Fig. 1. Absence of reference lines (d5) indicates that no reference line could be computed. Improved segmentation
and post hoc processing were observed with more extensive augmentation during training when fewer artifacts were present. For these images, the
Dice Similarity Coefficients (DSC) were as follows. Reference image: 0.91 (a,), 0.96 (az), 0.96 (a4). Image with mild artifacts: 0.58 (by), 0.85 (bs), 0.84 (by).
Image with moderate artifacts: 0.51 (c3), 0.65 (c3), 0.82 (c4). Image with severe artifacts: 0.84 (d), 0.89 (ds), 0.89 (ds). Manual and computed femoral
torsional values (R/L []) were as follows. Reference image: 9.5/12.4 (a,), 12.9/12.7 (@,), 12.7/12.0 (a3), 10.6/11.8 (a4). Image with mild artifacts: 6.0/—0.3 (by),
5.1/—05 (by), 5.3/—04 (bs), 5.7/—0.3 (bs). Image with moderate artifacts: —0.9/—1.5 (¢q), —0.1/—6.0 (c3), —0.1/=5.5 (c3), —0.9/—1.2 (c4). Image with severe
artifacts: 10.3/12.2 (d), 11.5/NA (dy), 11.5/16.0 (d3), 11.5/13.6 (da)

Table 2 Quantitative evaluation of variables affecting segmentation quality

Variable Reference Coefficient 95% confidence interval p-value
Distal femur Proximal femur —0.025 [—0.060, 0.010] 0.06

Proximal tibia Proximal femur —0.162 [-0.187, —0.137] < 0.001
Distal tibia Proximal femur —0.167 [—0.192, —0.142] < 0.001
Distal fibula Proximal femur —0.233 [—0.258, —0.208] < 0.001
Mild artifacts No artifacts —0.101 [-0.125, —0.077] < 0.001
Moderate artifacts No artifacts —-0.117 [-0.141, —0.093] < 0.001
Severe artifacts No artifacts —0222 [—-0.247, —0.197] < 0.001
Default Baseline 0.281 [0.261, 0.301] < 0.001
MRI-specific Baseline 0.287 [0.267, 0.307] < 0.001

The contributions of the different variables to segmentation quality, measured as Dice Similarity Coefficients (DSC), were quantified using a linear mixed-effects
model. The table lists variables, references, coefficients, confidence intervals, and p-values. Coefficients are reported relative to their reference, i.e., they indicate the
relative increase or decrease in DSC values compared to the corresponding reference. For example, a coefficient value of +0.281 for “default augmentation” means
that the mean DSC value is 0.281 higher with default augmentation than without augmentation. Significant differences are indicated in bold type

recognition, Nozaka et al reported that the augmentation Surprisingly, domain-specific augmentations in MRI
strategy needs to be tailored to the specific imaging task to  (random blurring, spiking, signal intensity variations,
be effective [33]. structure rotation/translation, ghosting [25]) only slightly
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Table 3 Success rates in quantifying femoral and tibial torsion as a function of artifact severity and augmentation strategy

Artifact severity Augmentation strategy

Femoral torsion Tibial torsion

Baseline
Default
MRI-specific
Mild Baseline
Default
MRI-specific

Reference

Baseline
Default
MRI-specific

Moderate

Baseline
Default
MRI-specific

Severe

100% (20/20) 80% (16/20
100% (20/20) 100% (20/20
100% (20/20) 100% (20720

(

(

(
100% (6/6)

(

(

(

( )

( )

( )

65% (11/17)

100% (6/6) 100% (17/17)

100% (6/6) 100% (17/17)

100% (47/47) 58% (18/31)

100% (47/47) 100% (31/31)

100% (47/47) 100% (31/31)
89% (24/27) 3% (1/32)

96% (26/27) 88% (28/32)

100% (27/27) 94% (30/32)

The table provides relative values and absolute counts of completed torsional measurements. If artifact severity of the proximal and distal bone were rated differently,

the more severe category would be used to categorize the entire bone

Baseline

Default

MRI-Specific

Fig. 6 Examples of failed automatic torsion measurement. MR images of the proximal femur (a) and distal tibia (b) with a high grade of artifact

degradation. Computed segmentation outlines and reference lines are overlaid. Color coding and image overlays as in Fig.

1. The quality of the

segmentation outlines computed by the baseline model (@, and b;) was too poor for the model to determine any reference lines. In contrast, the
models enhanced with default (a; and by) and MRI-specific (a3 and bs) augmentation produced segmentation outlines of sufficient quality for
determining reference lines. There were no instances in the test data where the model failed to determine the knee reference lines

improved over default augmentations. Segmentation of
the proximal femur and the distal tibia slightly, yet non-
significantly, benefited from MRI-specific augmentation
in the presence of severe artifacts. In our study, motion
artifacts were induced by repetitive gluteal muscle con-
traction/relaxation and foot flexion/extension, predis-
posing the hips and feet to more severe artifacts and
enhancing the effectiveness of MRI-specific augmenta-
tion. Moreover, the DSC is sensitive to segmented volume
size and tends to yield higher values with increasing

volumes. This sensitivity may explain higher DSC values
for the proximal femur. Nonetheless, this benefit is
questionable as visual image quality checks by the radi-
ology technologist during image acquisition may prompt
re-acquisition of the sequence or study abortion. Pro-
spective motion correction techniques like PROPELLER,
BLADE, and MULTIVANE are widely used clinically to
mitigate motion artifacts during image acquisition by
compensating for patient motion in real time. These
sequence variants have limitations, such as longer scan
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Table 4 Femoral and tibial torsional angles as a function of artifact severity, measurement method, augmentation strategy, and

laterality

Artifact severity Augmentation strategy Femur right Femur left Tibia right Tibia left

Reference Baseline 11.8+103 133+8.1 48.1+278 353£286
Default 88+6.7 11.0+69 372+80 333+72
MRI-specific 86+68 103+73 374+81 333+74
Radiologist #1 65+77 82+78 389+89 375166
Radiologist #2 56x77 85+70 381+£94 36.5+6.7
p-value ns ns ns ns

Mild Baseline 225+179 253+£175 54.6 £266 37.7+£15.1
Default 10.7+58 174+£6.8 32755 292+46
MRI-specific 114+72 170+£70 333163 289+47
Radiologist #1 71+£73 127171 349+73 299+175
Radiologist #2 59+65 1M2+74 366+ 7.1 331+70
p-value ns ns ol ns

Moderate Baseline 109+93 164+136 563+27.5 388+ 176
Default 93485 100+£11.7 42.1+£96 366+82
MRI-specific 87+72 107 £6.2 420+10.0 374+69
Radiologist #1 64+78 9.1+80 410+£129 403 +65
Radiologist #2 39+79 71+£78 425+8.1 40.1+6.7
p-value ns xex xex ns

Severe Baseline 13.2+330 2534242 543 525
Default 934192 128+95 388+98 355+ 143
MRI-specific 103+163 100+£6.8 396+ 100 33779
Radiologist #1 73+67 73482 3804106 362+69
Radiologist #2 45+78 58+8.1 394490 355+6.7
p-value ns *x% ns ns

Torsional angles were compared for specific anatomic regions, sides, and levels of artifact severity between automatic measurements (i.e., different augmentation
strategies) and manual measurements (i.e., radiologists #1 and #2) using one-way ANOVA. The corresponding p-values are indicated below. p-value coding: [***],
p <0.001; [ns], non-significant. Data are means + standard deviation [°]. If no standard deviation is indicated, only one measurement was available. Details of post hoc

testing can be found in Supplementary Tables 9-12

times and incompatibility with certain imaging protocols
or patient populations. Focusing on post-acquisition
strategies, our study assessed the value of robust data
augmentation during Al model training to enhance seg-
mentation performance when motion artifacts are present
despite utilizing prospective motion correction techni-
ques or when such techniques are not feasible. Therefore,
data augmentation strategies serve as a valuable “second
line of defense” against motion artifacts, complementing
prospective techniques by improving image analysis cap-
abilities, salvaging otherwise suboptimal studies, and
reducing the need for re-scans.

Despite these marginal improvements, MRI-specific
augmentation can provide an additional boost in model
performance compared to an elaborate but generalized
augmentation approach like the nnU-Net. Its inherent
augmentations include rotation, rescaling, and bright-
ness/contrast changes, and it seems sufficient to handle
all but the most extreme artifacts. While not specifically
tailored and still effective across various imaging mod-
alities such as CT, MRI, and ultrasound, nnU-Net’s

generic augmentations may not fully address severe
artifacts.

Software packages for in silico data augmentation are
widely available (e.g., the batchgenerators, Torchio, and
Rising Python libraries [25, 34, 35]) and cover a wide
spectrum of standard and specialized image transforms.
While we found the artifacts simulated by the augmen-
tation methods employed in our study to emulate real-
world artifacts, alternative approaches like generative
adversarial networks might be utilized to generate syn-
thetic training images and develop specifically tailored
augmentations. However, these approaches are challen-
ging because of high computational demands, the need for
large training datasets, and complexities in simulating
specific artifacts such as motion artifacts.

The literature on domain-specific versus conventional
augmentations is limited but suggests potential benefits
from incorporating domain knowledge. For example,
training on motion-corrupted data improved the perfor-
mance of lesion segmentation on brain MRI [36], and
myocardial infarction-specific data augmentation improved
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segmentation accuracy in cardiac MRI studies [37]. Similar
to our results, Arega et al noted only marginal improve-
ments, though without statistical validation [38]. In con-
trast, generating additional training samples based on a
shape model did not enhance bone and cartilage segmen-
tation in MRI, underscoring the competitive performance
of standard augmentations [39].

Accurate segmentation is essential for accurate quanti-
fication of lower limb torsion. Consequently, it is plausible
that data augmentation enhanced the model’s robustness
(i.e., rate of successful quantifications) and precision (i.e.,
deviation from manual measurements). In line with the
findings above, MRI-specific augmentation provided only
marginal improvements over default augmentation in
severe artifacts, and the measurements of both augmen-
tations closely matched manual measurements. In con-
trast, the baseline model significantly overestimated
torsional angles.

Our study has limitations. First, our training/validation
dataset (n =93 patients) and test dataset (n =20 partici-
pants) are relatively small. However, recent studies sug-
gest that even smaller sample sizes of 10—15 are sufficient
for bone segmentation using MRI and nnU-Net [39].
Second, we included only data from a single institution,
which does not capture the variability in scanners, pro-
tocols, sequences, and post-processing routines. However,
the nature of this study necessitated a tailored dataset to
systematically evaluate the different augmentation stra-
tegies on images with varying artifact severity. Never-
theless, our findings lack external validation using datasets
from different institutions and imaging setups. True
validation is only possible on actual clinical datasets with
naturally occurring motion artifacts. Achieving this level
of evidence is challenging in a controlled experimental
setting; therefore, any augmentation strategy’s robustness
remains to be confirmed in real-world settings. Third, our
standardized artifact induction method via gluteal and
foot motion may not fully represent the less directional
motion artifacts encountered in the clinic. By using
healthy volunteers and standardized motion induction
protocols, we precisely manipulated the type and severity
of motion artifacts to ensure consistency. However, the
standardization came at the cost of a weaker resemblance
to naturally occurring motion artifacts seen in clinical
practice. Despite our efforts, motion artifact severity was
variable nonetheless, affecting some joints more than
others. Overall, our induction method helped realize
“standardized variability”. Fourth, we focused only on
MRI- and motion-specific artifacts, but other artifacts
such as metal, chemical shift, Gibbs, field inhomogeneity,
or aliasing artifacts were not considered in this study.
Fifth, while the data augmentation strategies effectively
improved bone segmentation for quantitative assessment
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of lower limb alignment, it is important to realize that the
Al model does not assess intra-articular pathologies. The
imaging protocol is optimized for bone visualization at the
hip, knee, and ankle levels for subsequent lower limb
alignment quantification. Consequently, its application is
limited to these clinical situations, which are often chal-
lenging because of motion artifacts. Sixth, the in silico
data augmentation may not capture the complex nature of
all possible artifacts arising from various patient motions
and scanner settings in clinical practice. Simulated
motion-induced artifacts only partially resembled real-
world artifacts, leading to reduced through-plane corre-
spondence between in silico-generated and real MR image
datasets. Still, these augmentations served as effective
proxies to help the model learn to recognize anatomy
despite motion artifacts. Lastly, the segmentation model
was trained on images from pediatric patients but tested
on images from adult study participants.

In conclusion, motion artifacts negatively impact the
segmentation accuracy and torsional alignment quantifi-
cation of a diagnostic AI model. Comprehensive general-
purpose augmentation strategies, as implemented in nnU-
Net, effectively enhance robustness and mitigate motion
artifacts. While domain-specific augmentations may pro-
vide slight additional performance benefits, models can
generally achieve substantial robustness against motion
artifacts by utilizing default augmentation configurations.
Therefore, we recommend training models using these
default comprehensive strategies for most applications,
reserving domain-specific augmentations for situations
where specialized expertise is available or specific data
challenges necessitate a tailored approach.

All procedures performed in studies involving human
participants were in accordance with the ethical standards
of the institutional and/or national research committee
and with the 1964 Helsinki Declaration and its later
amendments or comparable ethical standards.
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