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1. Introduction

In earlier work [8] we initiated a program to systematically study interrelationships 
between representations of finite groups and arithmetic-geometric invariants. We also 
took a first step in this program by revealing families of such relationships for the cyclic 
groups of prime order. Since the cyclic groups of prime order are the simplest simple 
groups, it is natural to ask if the module structures of [8] extend to larger groups, and 
if so with what consequences for arithmetic. In this work we answer these questions in a 
special case.

1.1. Motivation

Relationships between a distinguished representation of the sporadic simple group ON
of O’Nan and the arithmetic of certain elliptic curves were illuminated in [18] (see also 
[14,16]), and an analogous story for the sporadic simple group Th of Thompson was told 
in [23]. This motivated us to initiate a program to study such phenomena systematically, 
and our first contribution [8] to this program is an analysis of the case that we cast the 
cyclic simple groups in the roles played by ON and Th in [18] and [23]. As a result we 
obtain arithmetic relationships between distinguished infinite-dimensional virtual graded 
modules for cyclic groups of prime order and imaginary quadratic twists of the modular 
Jacobians of prime conductor.

To put this more concretely we note that Theorem 4.1.1 of [8] guarantees the existence 
of an infinite-dimensional virtual graded Z/NZ-module

W =
⊕
D

WD, (1.1.1)
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for each prime N , with the property that

dimWD = 12 num
(
N + 1

6 

)
h(D) (1.1.2)

when D < 0 is a fundamental discriminant (i.e. the discriminant of Q(
√
D)), where 

num(α) denotes the numerator of a rational number α and h(D) denotes the class num
ber of Q(

√
D). Theorem 4.2.1 of [8] translates this property (1.1.2) into a congruence 

condition on dimWD that obstructs the existence of infinite-order rational points on the 
D-twist of the Jacobian J0(N) of the modular curve X0(N), for suitably chosen D.

For example, J0(19) is the elliptic curve defined by the equation y2 = x3 − 12096x−
544752 (see e.g. [25]), and the D-twist of J0(19) is the elliptic curve defined by

y2 = x3 − 12096D2x− 544752D3. (1.1.3)

Taking N = 19 in Theorem 4.2.1 of [8] we obtain that if D < 0 is a fundamental 
discriminant such that 19 is inert in the ring of integers of Q(

√
D), and

h(D) �≡ 0 mod 3, (1.1.4)

then the curve (1.1.3) has only finitely many rational points. (Cf. Corollary 4.2.2 of [8], 
which is a counterpart to this statement for N = 11.)

The reader may be interested to know how this compares to the results of the moti
vating works [18] and [23]. With this in mind we point out the following consequence of 
Theorem 1.3 of [18]: If D < 0 is a fundamental discriminant such that 19 is inert in the 
ring of integers of Q(

√
D), and

dimWON
D �≡ −24h(D) mod 19, (1.1.5)

where WON =
⊕

D WON
D is the ON-module considered in [18] (with WON

D here denoted 
by W−D there), then the curve (1.1.3) again has only finitely many rational points.

By a similar token Theorem 1.3 of [23] tells us that if D < 0 is a fundamental 
discriminant such that 19 is inert in the ring of integers of Q(

√
D), and

dimWTh
D �≡ 0 mod 19, (1.1.6)

where WTh =
⊕

D WTh
D is any of the Th-modules considered in [23] (with WTh

D here 
denoted by W−D there), then the curve (1.1.3) yet again has only finitely many rational 
points.

Note that the class number h(D) does not appear in (1.1.6). Tracing through the 
arguments of [23] we see that this is because the graded dimension∑

D≤5
dimWTh

D q−D = 6q−5 + O(q3) (1.1.7)
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has vanishing constant term. In (1.1.4) we have the other extreme: We can omit dimWD

from (1.1.4) because it is a fixed multiple (1.1.2) of h(D) by construction.
Theorem 4.2.1 of [8] furnishes obstruction statements similar to those of (1.1.4)-(1.1.6) 

for each prime N . This demonstrates that the results of [18,23], involving the sporadic 
simple groups of O’Nan and Thompson, are part of a more expansive picture.

It is natural to ask now how expansive this picture is. To explore this general question 
we formulate the following more specific ones:

1. Are the cyclic group module structures on the W of (1.1.1)-(1.1.2) restrictions of 
module structures for more sophisticated groups?

2. If so, do these more sophisticated group-module structures on the W of (1.1.1)-(1.1.2) 
entail more sophisticated relationships to arithmetic geometry, than those formulated 
in (1.1.4)-(1.1.6) above?

In this work we answer these questions positively in the ``simplest'' non-trivial case, 
by which we mean the case that N = 11, since this is the smallest prime N for which 
J0(N) is not just a point.

1.2. Methods

As in [8] our focus is on virtual graded G-modules W =
⊕

D WD, for G a finite group, 
with the property that the McKay–Thompson series

φW
g (τ, z) :=

∑
n,s∈Z

tr(g|Ws2−4n)qnys (1.2.1)

defines an optimal holomorphic mock Jacobi form of weight 2 and index 1 and level 
o(g) for each g ∈ G, once we set q = e2πiτ and y = e2πiz. We recall holomorphic 
mock Jacobi forms, and our notion of level, in § 3.2. The most important requirement 
is optimality, which we explain in detail in § 3.3. In short it is the condition that the 
associated McKay–Thompson series φW

g (1.2.1) have a common fixed constant term, 
and have theta-coe˙icients hW

g,r (see (3.2.7) and (3.3.4)-(3.3.6)) that vanish away from 
the infinite cusps of their invariance groups (cf. (3.3.1)). As we explain in § 1 of [8], it is 
a generalization of the notion of Hauptmodul—instrumental in monstrous moonshine�-
from modular functions to more general modular settings. In addition to [8] the reader 
may consult § 6.3 of [5], §§ 1.5--1.6 of [13] or [16] for expository discussions of optimality.

A key tool in this work with no counterpart in [8] is a connection between meromorphic 
Jacobi forms in weights 1 and 2, which, via the methods of [11], may be used to connect 
suitable mock Jacobi forms in weights 1 and 2. The McKay–Thompson series of umbral 
moonshine (see [4--6]) are naturally packaged as mock Jacobi forms of weight 1, so there 
is a chance that we can use this connection to translate umbral moonshine into the 
setting of this work. As we demonstrate in § 4.1, this works out especially well in the 
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� = 3 case of umbral moonshine, in that it yields for us a virtual graded module for the 
unique non-trivial double cover 2.M12 of the sporadic simple Mathieu group M12, with 
McKay–Thompson series that have weight 2 and index 1, and that are optimal in the 
sense just sketched. Moreover, by restriction we recover from this optimal 2.M12-module 
an optimal module for Z/11Z, such as in (1.1.1)-(1.1.2).

As a result, through consideration of the specific case that N = 11, we obtain a 
positive answer to the first question we formulated at the end of § 1.1: The cyclic group 
module structure on the W of (1.1.1)-(1.1.2) can arise as the restriction of something 
more intricate.

It is a curious fact that M12 contains two conjugacy classes of subgroups isomorphic to 
the smallest sporadic simple group, M11. To distinguish them, fix a non-trivial permuta
tion representation M12 → S12 of M12 on 12 points. Then one of the classes is composed 
of the 12 subgroups of M12 that fix one of the 12 points. The 12 copies of M11 in the 
other class each act transitively on these 12 points. The group M11 has trivial Schur 
multiplier (cf. e.g. [10]), so each of the 24 copies of M11 in M12 pulls back to a direct 
product 2 × M11 in 2.M12.

Thus there are essentially two ways to restrict the optimal module for 2.M12 in weight 
2 and index 1 that comes to us from umbral moonshine to an optimal module of weight 2
and index 1 for M11. Since umbral moonshine naturally equips the umbral group 2.M12 at 
� = 3 with a permutation representation 2.M12 → S12, it is natural to refer to these two 
optimal modules for M11 as transitive and intransitive, according as the corresponding 
composition 

M11 → 2.M12 → S12 (1.2.2)

is transitive or not. From this perspective the transitive optimal module is distinguished 
by associating McKay–Thompson series with non-trivial characters to elements of order 
4 and 8 in M11, while φW

g is a mock Jacobi form for ΓJ
0(o(g)) for all the g arising from 

the intransitive optimal module. Thus the smallest sporadic simple group fits naturally 
into our framework in two different ways. We elucidate this further by making it our 
focus in §§ 4.2-4.3.

1.3. Results

In § 4.1 of [8] we classified optimal virtual graded G-modules of weight 2 and index 1, 
for G a cyclic group of prime order. In § 4.2 of this work we carry out a directly similar 
classification but for G the sporadic simple Mathieu group M11. In fact we establish two 
such classifications, corresponding to the two optimal modules for M11 that come to us 
from umbral moonshine, as we have just discussed.

More specifically, we first determine the constant copt
2,1 (G) and the lattice Lopt

2,1 (G) for 
G = M11, where copt

2,1 (G) and Lopt
2,1 (G) are as defined in § 3.3 (this being the same as the 

definition in [8]). This classification includes the intransitive optimal module for M11, 
and is the content of Theorem 4.2.1.
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We then determine copt
2,1 (G,α) and Lopt

2,1 (G,α), again for G = M11, but with α encoding 
the multiplier systems that arise from the transitive optimal module for M11. As we 
explain in § 3.3, we define the constant copt

2,1 (G,α) and the lattice Lopt
2,1 (G,α) analogously 

to copt
2,1 (G) and Lopt

2,1 (G), respectively, but take into account the multiplier system data of 
α. The determination of copt

2,1 (G,α) and Lopt
2,1 (G,α) here is the content of Theorem 4.2.5, 

and the classification this implies includes the transitive optimal module for M11.
It develops that copt

2,1 (G) and copt
2,1 (G,α) coincide for G = M11 and α as arising from the 

transitive module. It is significant that this common value also coincides with copt
2,1 (G)

for G = Z/11Z, since this means that every optimal module for G = Z/11Z extends to 
an optimal module for M11, and extends in two essentially different ways, depending on 
the triviality or not of the multiplier systems.

It is at least as significant that Lopt
2,1 (G) is the same for G = M11 and G = Z/11Z, but 

differs from Lopt
2,1 (G,α) for G = M11 and α as in the transitive optimal module. Indeed, it 

turns out that the latter lattice properly contains the former, because there is a non-zero 
cuspidal Jacobi form of weight 2 and index 1 for ΓJ

0(8) that is consistent with α as in 
the transitive optimal module. It is the involvement of this cusp form that allows us to 
draw out a new kind of connection between groups and geometry in this work.

To explain this recall that a positive integer n is called congruent if it occurs as the 
area of a right triangle with rational side lengths. That is, n is congruent if there exist 
a, b, c ∈ Q such that a2 + b2 = c2 and n = 1

2ab. The problem of determining which 
positive integers are congruent goes back to Diophantus, and remains unsolved to this 
day. We refer to [29] for a recent review. In § 4.3 we show that the representation theory 
of the transitive optimal module for M11 obstructs the existence of congruent numbers. 
Specifically, it follows from Theorem 4.3.1 that if W =

⊕
D WD is the transitive optimal 

module for M11, and if n is square-free and congruent to 3 modulo 24, then n is not a 
congruent number whenever W−n contains the unique 55-dimensional irreducible M11
module (cf. Table 1) with non-zero multiplicity.

Thus we also answer in the affirmative, at least for N = 11, the second question that 
we formulated the end of § 1.1: More intricate group-module structures on the W of 
(1.1.1)-(1.1.2) can entail more intricate relationships to arithmetic geometry, than those 
formulated in (1.1.4)-(1.1.6).

To conclude we mention that we obtain further positive answers to the questions of 
§ 1.1 in the forthcoming work [7], by showing that 1) the optimal Z/NZ-modules of 
(1.1.1)-(1.1.2) extend to modules for the second largest sporadic simple Mathieu group 
M23 in the case that N = 23, and 2) these modules entail interdependencies between 
arithmetic-geometric invariants of elliptic curves with coprime conductors.

1.4. Overview

The structure of this article is as follows. We present a guide to the specialized notation 
that we use in § 2. Then in § 3 we prepare for the statements and proofs of our main 
results. Specifically, we review generalized Hurwitz class numbers, and some related 
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notions, in § 3.1, and review mock and meromorphic Jacobi forms in § 3.2. We discuss 
the notion of optimality we use, in general weight and index, in § 3.3, and describe it in 
more detail in the special case of weight 2 and index 1 in § 3.4. Our main results appear 
in § 4. We first explain the connection between class numbers and umbral moonshine in 
§ 4.1. We then use this to classify optimal modules of weight 2 and index 1 for M11, in 
two different ways, in § 4.2. Finally we use the optimal modules of § 4.2 to relate the 
representation theory of M11 to the congruent number problem in § 4.3.
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2. Notation

Av(m) The averaging operator of index m. See (3.2.25).
α An assignment of discrete groups Γg < GJ and characters ρg : Γg → C∗ to 

the elements g of a finite group G. See (3.3.3) and cf. (3.3.11).
c The negative of the constant term of a holomorphic mock Jacobi form. See 

(3.3.2).
copt
k,m(G) A shorthand for copt

k,m(G,α), for the default choice (3.3.11) of α.
copt
k,m(G,α) An invariant we attach to a finite group G and choice of α in § 3.3. See 

(3.3.10).
CN (D) A shorthand for C(M11,α)

g (D), when o(g) = N , in the proof of Theorem 4.3.1.
Cϕ8|4(D) A coefficient in the Fourier expansion of ϕ8|4. See the proof of Theorem 4.3.1.

δN The class function on a group G defined by setting δN (g) := 1 in case 
o(g) = N , and δN (g) = 0 otherwise. Cf. (4.2.6) and (4.2.15).

e The identity element of a finite group G. See § 3.3.
e(·) We set e(x) := e2πix.
E The elliptic curve over Q defined by y2 = x3 − x. See the proof of Theo

rem 4.3.1.
E ⊗D The D-twist of the elliptic curve E. See the proof of Theorem 4.3.1.

φW
g The McKay–Thompson series associated to the action of g on W . See (3.3.5) 

and (3.4.3).
ϕ11 A certain cuspidal Jacobi form of weight 2 and index 1 for ΓJ

0(11). See 
(4.2.1).
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ϕ8|4 A certain cuspidal Jacobi form of weight 2 and index 1 for ΓJ
0(32). See 

(4.2.9).
g An element in a finite group G. See § 3.3.
G A finite group. See § 3.3.

GJ The Jacobi Group. Cf. (3.2.2).
Γ A subgroup of GJ. Cf. (3.2.3).

ΓJ
0(N) A group of the form Γ0(N) ⋉ Z2. Cf. (3.2.3).
hW

g The vector-valued function that takes the hW
g,r as its components. See (3.3.5).

hW
g,r The theta-coe˙icients of φW

g . See (3.3.6).
HHur(D) The Hurwitz class number of discriminant D. See (3.1.3).

HHur
N (D) The generalized Hurwitz class number of level N and discriminant D. See 

(3.1.2)-(3.1.5).
HCoh

N (D) A coefficient of the Cohen–Eisenstein series H Coh
N . Cf. (3.1.8)--(3.1.9).

H Hur A shorthand for H Hur
1 . Cf. (3.1.6).

H Hur
N A holomorphic mock Jacobi form defined by the HHur

N (D). See (3.1.6).
H Coh

N A holomorphic Jacobi form defined by the HCoh
N (D) for N prime. See (3.1.9).

ι(N) The index of Γ0(N) as a subgroup of Γ0(1) = SL2(Z). Cf. (3.1.5).
Jk,m(Γ, ρ) The holomorphic Jacobi forms of weight k and index m for Γ with character 

ρ. See § 3.2.
Jk,m(Γ, ρ) The holomorphic mock Jacobi forms of weight k and index m for Γ with 

character ρ. See § 3.2.
Jwh
k,m(Γ, ρ) The weakly holomorphic mock Jacobi forms of weight k and index m for Γ

with character ρ. See § 3.2.
Lk,m(G) A certain lattice. See (3.3.9).
Lopt
k,m(G) A shorthand for Lopt

k,m(G,α) for the default choice (3.3.11) of α.
Lopt
k,m(G,α) The lattice of 0-optimal virtual graded modules of weight k and index m

for (G,α). Cf. Proposition 3.3.1.
ψF The finite part of a meromorphic Jacobi form ψ. See (3.2.22).
ψP The polar part of a meromorphic Jacobi form ψ. See (3.2.22).
ψ(1) A certain meromorphic Jacobi form of weight 2 and index 1. See (3.2.19) 

and (4.1.5).
ψ

(1)
g A certain meromorphic Jacobi form of weight 2 and index 1, generally with 

level and character, for g ∈ 2.M12. See (4.1.6).
ψ(3) A certain meromorphic Jacobi form of weight 1 and index 3. See (4.1.3).
ψ

(3)
g The meromorphic Jacobi form of weight 1 and index 3 attached to g ∈ 2.M12

by umbral moonshine at � = 3. See (4.1.6).
q We set q := e(τ) for τ ∈ H.

QN (D) A set of binary quadratic forms with integer coefficients. See § 3.1.
R(G) The Grothendieck group of finitely generated CG-modules. Cf. (3.3.9).

R(G)(N) The subgroup of R(G) composed of virtual G-modules V such that tr(g|V ) =
0 unless o(g) = N . Cf. (4.2.5) and (4.2.14).

ρ A character of a subgroup Γ of GJ with level. Cf. (3.2.5).
�m A certain unitary representation of S̃L2(Z). Cf. (3.2.14).
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Sk,m(Γ, ρ) The cuspidal Jacobi forms of weight k and index m for Γ with character ρ. 
See § 3.2.

Sk,m(Γ, ρ)Z The φ ∈ Sk,m(Γ, ρ) with rational integer Fourier coefficients. See § 3.2.
S̃L2(Z) The metaplectic double cover of SL2(Z). Cf. (3.2.14).

θm The vector-valued function that takes the θm,r as its components. Cf. 
(3.2.14).

θm,r The theta series defined by the positive-definite even lattices of rank 1. See 
(3.2.8).

ϑj(τ, z) A Jacobi theta function. See (3.2.20) and (4.1.1).
Wopt

k,m(G) A shorthand for Wopt
k,m(G,α) for the default choice (3.3.7) of α.

Wopt
k,m(G)c A shorthand for Wopt

k,m(G,α)c for the default choice (3.3.7) of α.
Wopt

k,m(G,α) The set of optimal virtual graded modules of weight k and index m for 
(G,α). Cf. (3.3.8).

Wopt
k,m(G,α)c The set of c-optimal virtual graded modules of weight k and index m for 

(G,α). Cf. (3.3.8).
χj An irreducible character of M11. See Table 1.
y We set y := e(z) for z ∈ C. 

3. Preparation

This section is a counterpart to § 3 in [8], and offers preparation for the arguments 
that will appear in § 4. We briefly review generalized Hurwitz class numbers in § 3.1. 
The Jacobi forms we consider here are more general than those that appear in [8], as 
we discuss in § 3.2. The notion of optimality is correspondingly more general, and we 
explain it in § 3.3. We work with Jacobi forms of general weight and index in §§ 3.2-3.3, 
for the sake of future applications. We specialize to the situation of weight 2 and index 
1, being the setting of our main results, in § 3.4.

3.1. Class numbers

As in [8] we let QN (D) denote the set of integer coefficient binary quadratic forms 
Q(x, y) = Ax2 + Bxy + Cy2 of discriminant D := B2 − 4AC with A ≡ 0 mod N . We 
equip each QN (D) with a right action by the group

Γ0(N) :=
{(

a b
c d

)
∈ SL2(Z) 

∣∣ c ≡ 0 mod N
}

(3.1.1)

in the usual way, and we write Γ0(N)Q for the stabilizer in Γ0(N) of a particular Q ∈
QN (D).

Note that QN (D) is non-empty if and only if D is a quadratic residue modulo 4N . 
Say that D ∈ Z is a discriminant if Q1(D) is not empty (i.e. D is congruent to 0 or 
1 modulo 4), and say that D is a fundamental discriminant if D is the discriminant of 
the number field Q(

√
D). (This is the same as saying that either D ≡ 1 mod 4 and D is 

square-free, or D = 4d where d is square-free and not a quadratic residue modulo 4.)
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We restrict to negative discriminants in this work. For D a negative fundamental 
discriminant write h(D) for the class number of Q(

√
D). Then h(D) is just the number of 

orbits of Γ0(1) = SL2(Z) in its action on Q1(D). The generalized Hurwitz class numbers, 
denoted HHur

N (D), are defined for D < 0 by setting

HHur
N (D) :=

∑
Q∈QN (D)/Γ0(N)

1 
#Γ0(N)Q

(3.1.2)

when QN (D) is not empty, and HHur
N (D) := 0 otherwise. Therefore, the HHur

N (D) are 
closely related to the usual class numbers h(D). Indeed, the Hurwitz class number

HHur(D) := HHur
1 (D) (3.1.3)

coincides with h(D) if D is fundamental and less than −4, while for the remaining 
negative fundamental discriminants we have HHur(−3) = 1

3 and HHur(−4) = 1
2 . For a 

more general statement we note from Lemma 3.1.2 of [8] that

HHur
N (D) =

(
1 +

(
D

N

))
HHur(D) (3.1.4)

for D negative and fundamental when N is prime, where 
( ·
·
)

denotes the Kronecker 
symbol (see e.g. p. 503 of [21] for the definition). In particular HHur

N (D) = 2h(D) when 
D < −4 and D is a square modulo 4N .

As in [8] our main motivation for the definition (3.1.2) is that it gives rise to holo
morphic mock Jacobi forms (cf. Proposition 3.4.1). With this in mind we define

HHur
N (0) := − 1 

12 ι(N) (3.1.5)

where ι(N) := [Γ0(1) : Γ0(N)], and set HHur
N (D) := 0 when D > 0. We also define 

q := e(τ) for τ in the upper half-plane, H := {τ ∈ C | �(τ) > 0}, and y := e(z) for 
z ∈ C, where e(x) := e2πix. The generating functions

H Hur
N (τ, z) :=

∑
n,s∈Z

HHur
N (s2 − 4n)qnys (3.1.6)

and H Hur := H Hur
1 will play an important role in what follows.

In § 4.3 we will also employ Cohen–Eisenstein series, whose coefficients furnish a 
further variation on the class numbers h(D) (cf. [9]). To define these series recall that 
for D an arbitrary discriminant we have D = f2D0, where D0 is the discriminant of 
Q(

√
D) and f is the conductor of the order

OD := Z

[
D +

√
D

2 

]
. (3.1.7)
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Next choose a prime N , and for D = f2D0 as above let f ′ be the largest factor of f
that is coprime to N , and set D′ := (f ′)2D0. Then we may follow § 1 of [22] in defining 
HCoh

N (D) for N prime and D a negative discriminant by setting

HCoh
N (D) :=

⎧⎪⎪⎨⎪⎪⎩
0 if N splits in OD′ ,
1
2H

Hur(D′) if N is ramified in OD′ , 
HHur(D′) if N is inert in OD′ .

(3.1.8)

For convenience we also set HCoh
N (0) := N−1

24 , and set HCoh
N (D) := 0 when D is positive, 

or a negative integer that is not a discriminant. The Cohen–Eisenstein series of (prime) 
level N are now defined by setting

H Coh
N (τ, z) :=

∑
n,s∈Z

HCoh
N (s2 − 4n)qnys, (3.1.9)

where q and y are as in (3.1.6).
For N prime the Cohen–Eisenstein series H Coh

N is related to the generalized Hurwitz 
class number generating functions H Hur and H Hur

N by the formula H Hur = H Coh
N +

1
2H Hur

N . This is the content of Lemma 3.1.1 of [8]. Lemma 3.1.2 of [8] also gives us a 
counterpart

HCoh
N (D) = 1

2

(
1 −

(
D

N

))
HHur(D), (3.1.10)

for D negative and fundamental, to (3.1.4).

3.2. Jacobi forms

Here we explain our conventions on mock Jacobi forms. We assume some familiarity 
with the basic definitions, suggest § 3.1 of [3] and [19] for more on Jacobi forms, and 
suggest § 3.2 of [3] and § 7.2 of [11] for more on mock Jacobi forms. We will also make use 
of meromorphic Jacobi forms. We refer to § 2 of [2] and § 8 of [11] for more background 
on these.

In § 4.1 we will require a notion of level for discrete subgroups of the Jacobi Group,

GJ = SL2(R) ⋉ (R2 · S1). (3.2.1)

To explain what we mean by this we first realize GJ as the set of triples (γ, (λ, μ), ς), 
where γ ∈ SL2(R), and (λ, μ) ∈ R2, and ς ∈ C satisfies |ς| = 1. The multiplication in GJ

is then given by

(γ, (λ, μ), ς)(γ′, (λ′, μ′), ς ′) =
(
γγ′, (λ, μ)γ′ + (λ′, μ′), ςς ′ e

(
det

(
(λ, μ)γ′

(λ′, μ′)

)))
. 

(3.2.2)
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So in particular, the subgroup {(I, (0, 0), ς)} = S1 is central. We write GJ for the quotient 
of GJ by this copy of S1.

Next, for N a positive integer, let ΓJ
0(N) denote the subgroup of GJ composed of the 

triples (γ, (λ, μ), 1) with γ ∈ Γ0(N) and (λ, μ) ∈ Z2. We tacitly identify ΓJ
0(N) with its 

image in GJ = SL2(R) ⋉ R2 under the natural projection when convenient, and let ΓJ
∞

denote the intersection of the groups ΓJ
0(N), so that

ΓJ
∞ =

{((
1 n
0 1

)
, (λ, μ), 1

)∣∣∣∣n, λ, μ ∈ Z

}
. (3.2.3)

Finally we say that Γ < GJ has level N if the image of Γ in GJ under the natural 
projection contains ΓJ

0(N) to finite index for some N , and if N is the minimal positive 
integer for which this is true. We also assume that Γ contains ΓJ

∞ = Z ⋉ Z2 (3.2.3). A 
subgroup Γ < GJ with level is a subgroup with level N for some N .

We will require a notion of cusp for subgroups of GJ with level in the above sense. To 
formulate this we consider the usual transitive action of SL2(R) on the real projective 
line P 1(R) = R ∪ {∞}, and obtain from this an action of GJ on P 1(R) by letting the 
normal subgroup {(I, (λ, μ), ς)} = R2 · S1 (cf. (3.2.2)) act trivially. Thus an arbitrary 
subgroup Γ < GJ acts naturally on P 1(R) by restriction. If Γ = ΓJ

0(N) for some N
then this action preserves the subset P 1(Q) = Q ∪ {∞} of rational points, and by our 
definitions, this statement holds true also for Γ < GJ a subgroup with level (cf. e.g. 
Proposition 1.10.2 of [15]). So given Γ < GJ with level we may consider the set

Γ\P 1(Q) = {Γ · α | α ∈ Q ∪ {∞}} (3.2.4)

of orbits of Γ on P 1(Q). We call these orbits (3.2.4) the cusps of Γ, and we refer to the 
orbit Γ · ∞ containing ∞ as the infinite cusp of Γ.

For Γ a subgroup of GJ with level, a character of Γ will mean a morphism of groups 
ρ : Γ → C∗ that is trivial when restricted to ΓJ

∞ (3.2.3). For such Γ and ρ, and for 
integers k and m, we now define the weight k, index m and character ρ action of Γ on 
a smooth function φ : H×C → C by setting

(φ|k,m,ρ(γ, (λ, μ), ς))(τ, z) := (φ|k,m(γ, (λ, μ), ς))(τ, z)ρ(γ, (λ, μ), ς) (3.2.5)

for (γ, (λ, μ), ς) ∈ Γ, where φ �→ φ|k,m(γ, (λ, μ), ς) denotes the usual weight k and index 
m action of GJ (as in e.g. Theorem 1.4 in [19]).

To formulate the notion of Jacobi form for a group Γ < GJ as above say that a smooth 
function φ : H×C → C is elliptic of index m for Γ with character ρ if it is invariant for 
the restriction of the action (3.2.5) to the intersection of Γ with the normal subgroup 
R2 · S1 of GJ. This restricted action is given explicitly by

(φ|k,m,ρ(I, (λ, μ), ς))(τ, z) := e
(
m(λ2τ + 2λz + λμ + ς)

)
φ(τ, z + λτ + μ)ρ(I, (λ, μ), ς).

(3.2.6)
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In particular, it is independent of k.
Given our assumptions on ρ, an elliptic function of index m for Γ with character ρ

admits a theta-decomposition

φ(τ, z) =
∑

r mod 2m
hr(τ)θm,r(τ, z), (3.2.7)

where the theta-coe˙icients hr are smooth functions on H, and where the theta series 
θm,r are defined for integers m and r, with m positive, by setting

θm,r(τ, z) :=
∑

s≡r mod 2m
q

s2
4m ys. (3.2.8)

Suppose now that φ is a holomorphic function on H × C that is elliptic of index m
for Γ with character ρ. In this work we say that φ is a mock Jacobi form of weight k
and index m for Γ with character ρ if there exist holomorphic functions gr : H → C, for 
r mod 2m, such that if we set

ĥr(τ) := hr(τ) + g∗r (τ), (3.2.9)

where g∗r is the weight k − 1
2 Eichler integral of gr (see e.g. (7.2) of [11]), then the 

real-analytic function φ̂, given by

φ̂(τ, z) :=
∑

r mod 2m
ĥr(τ)θm,r(τ, z), (3.2.10)

is invariant for the weight k, index m and character ρ action (3.2.5) of Γ. For completeness 
we note that if

gr(τ) =
∑
D≥0

B(D, r)q D
4m (3.2.11)

is the Fourier expansion of gr, then g∗r in (3.2.9) may be expressed explicitly as

g∗r (τ) = B(0, r) (4π�(τ))−k+ 3
2

k − 3
2

+
∑
D>0

(
D

4m

)k− 3
2

B(D, r)Γ(3
2 − k, 4π D

4m�(τ))q− D
4m ,

(3.2.12)

where Γ(3
2 − k, x) :=

∫∞
x

t−k+ 1
2 e−tdt is the incomplete gamma function.

For φ a mock Jacobi form, with theta-coe˙icients hr as in (3.2.7), we call ĥr as in 
(3.2.9) the completion of hr, and call φ̂ as in (3.2.10) the completion of φ. Under our 
hypotheses on ρ the theta-coe˙icients hr of a mock Jacobi form for Γ with character ρ
admit Fourier series expansions of the form
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hr(τ) =
∑

D≡r2 mod 4m
Cφ(D, r)q− D

4m . (3.2.13)

We write the theta-decomposition (3.2.7) compactly as φ(τ, z) = h(τ)tθm(τ, z) or φ =
htθm when convenient, taking h = (hr) to be the vector-valued function with the theta
coe˙icients hr (3.2.13) as its components, taking θm = (θm,r) to be the vector-valued 
function whose components are the theta series θm,r (3.2.8), and using the superscript 
in h(τ)t and ht to denote matrix transposition.

We write S̃L2(Z) for the metaplectic double cover of the modular group, and realize 
it as the set of pairs (γ, υ), where γ ∈ SL2(Z) and υ : H → C is either of the two 
holomorphic functions such that υ(τ)2 = cτ + d when (c, d) is the lower row of γ. 
We also recall the index m Weil representation �m : S̃L2(Z) → GL2m(C), defined by 
requiring that

�m(γ, υ)θm
(
aτ + b

cτ + d 
,

z

cτ + d

)
1 

υ(τ) e
(
− cmz2

cτ + d

)
= θm(τ, z) (3.2.14)

when γ =
(
a b
c d

)
, for (γ, υ) ∈ S̃L2(Z), and use this to define weakly holomorphic, holo

morphic, and cuspidal mock Jacobi forms as follows. For φ = htθm a mock Jacobi form 
of weight k and index m for Γ with character ρ we say that φ is weakly holomorphic if 
there exists a constant C > 0 such that

�m(γ, υ)(ĥ|k− 1
2
(γ, υ))(τ) = O(eC	(τ)) (3.2.15)

as �(τ) → ∞, for all (γ, υ) ∈ S̃L2(Z), where ĥ = (ĥr), and where ĥ �→ ĥ|k− 1
2
(γ, υ)

denotes the usual weight k− 1
2 action of the metaplectic group on vector-valued functions 

on H (see e.g. § 3.2 of [8]). We say that φ is holomorphic if the exponential bound (3.2.15) 
can be replaced with boundedness,

�m(γ, υ)(ĥ|k− 1
2
(γ, υ))(τ) = O(1) (3.2.16)

as �(τ) → ∞, for all (γ, υ) ∈ S̃L2(Z), and say that φ is cuspidal if boundedness (3.2.16) 
can in fact be replaced with vanishing,

�m(γ, υ)(ĥ|k− 1
2
(γ, υ))(τ) → 0 (3.2.17)

as �(τ) → ∞, for all (γ, υ) ∈ S̃L2(Z). Note that a cuspidal mock Jacobi form necessarily 
has vanishing shadow, so there are no cuspidal mock Jacobi forms that are not actually 
Jacobi forms. This can be seen by using the pairing introduced by Bruinier–Funke in 
Proposition 3.5 of [1]. (See Proposition 3.2.1 of [3] for a formulation of the Bruinier–Funke 
pairing in terms of Jacobi forms.)

With the above definitions in place we let Jwh
k,m(Γ, ρ) denote the space of weakly 

holomorphic (3.2.15) mock Jacobi forms of weight k and index m for Γ with character 
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ρ, and write Jk,m(Γ, ρ) for the subspace of mock Jacobi forms that are holomorphic 
(3.2.16). The holomorphic Jacobi forms of weight k and index m for Γ with character 
ρ are the forms φ = htθm in Jk,m(Γ, ρ) for which the g∗r in (3.2.9) all vanish, so that 
ĥ = h, &c. We denote the space they comprise by Jk,m(Γ, ρ), and write Sk,m(Γ, ρ) for 
the subspace comprised of Jacobi forms that are cuspidal. We suppress the character ρ
from these notations when it is trivial.

In the remainder of this section we offer a quick review of some of the meromorphic 
Jacobi form theory that appears in § 8 of [11]. Briefly, a meromorphic Jacobi form of 
weight k and index m for Γ with character ρ is a function that is invariant under the 
corresponding action (3.2.5) of Γ, but is allowed to have poles in the z variable. A classic 
example is the Weierstrass elliptic function,

℘(τ, z) := 1 
z2 +

∑
(a,b)∈Z2

(a,b) 
=(0,0)

1 
(aτ + b− z)2 − 1 

(aτ + b)2 , (3.2.18)

which has weight 2 and index 0 for ΓJ
0(1) = SL2(Z) ⋉ Z2 (with trivial character), and 

a double pole at z = aτ + b, for all a, b ∈ Z. An example of particular relevance in this 
work is

ψ(1)(τ, z) := 1 
12

(
9 

4π2℘(τ, z)2 − E4(τ)
)

ϑ1(τ, z)2

η(τ)6 , (3.2.19)

where E4 is the weight 4 Eisenstein series for SL2(Z), normalized so that E4(τ) = 1+O(q)
as �(τ) → ∞, and where the Jacobi theta function and Dedekind eta function are defined 
by setting

ϑ1(τ, z) := −θ1,1(1
2τ,

1
2 (z + 1

2)), (3.2.20)

η(τ) := q
1 
24

∏
n>0

(1 − qn), (3.2.21)

respectively, for τ ∈ H and z ∈ C, where θ1,1 is as in (3.2.8). Similar to ℘, the function 
ψ(1) has a double pole at every lattice point z ∈ Zτ+Z, but in contrast to ℘ it transforms 
with weight 2 and index 1 under the action of ΓJ

0(1), rather than weight 2 and index 0.
Observe now that, because of its poles, a meromorphic Jacobi form generally does not 

admit a theta-decomposition as in (3.2.7). A solution to this problem is proposed in [11], 
following earlier work [30] of Zwegers. Under suitable conditions on the meromorphic 
Jacobi form ψ, the authors of [11] introduce a canonical decomposition

ψ = ψP + ψF , (3.2.22)

where ψP and ψF are called the polar and finite parts of ψ, respectively. Here the polar 
part ψP may be realized as an average over the local behavior of ψ(τ, z) as z approaches 
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its poles (within a fundamental domain for Zτ + Z), and the finite part ψF is defined 
by setting

ψF (τ, z) =
∑

r mod 2m
hr(τ)θm,r(τ, z) (3.2.23)

(cf. (3.2.7)), where the hr(τ) are computed by imposing certain choices on the (otherwise 
ambiguous) integral expression

hr(τ)q r2
4m =

z0+1∫
z0

ψ(τ, z) e(−rz)dz. (3.2.24)

In particular, the finite part of a meromorphic Jacobi form admits a theta-decomposition 
(3.2.23) by construction.

Note that (3.2.24) unambiguously recovers the theta-coe˙icients of ψ, for any choice 
of z0 ∈ C, and any path from z0 to z0 + 1, if ψ is holomorphic in z and elliptic of index 
m (cf. (3.2.7)). We refer to § 8 of [11] for details on how to interpret (3.2.24) in the 
meromorphic case.

We conclude by detailing the decomposition (3.2.22) in the special case that ψ = ψ(1)

is as in (3.2.19). For this we follow [11] in defining the averaging operator of index m, by 
setting

Av(m)(F (y)) :=
∑
s∈Z

y2msqms2F (yqs) (3.2.25)

for m a non-negative integer and F (y) a function of polynomial growth. We are then 
able to identify the polar part ψ(1),P of ψ(1) as

ψ(1),P (τ, z) = −12 Av(1)(y(1 − y)−2), (3.2.26)

and from the discussion of Example 5 in § 8.5 of [11] we obtain that the finite part ψ(1),F

satisfies

ψ(1),F (τ, z) = 24H Hur(τ, z), (3.2.27)

where H Hur = H Hur
1 is the Hurwitz class number generating function, as defined in 

(3.1.6).

3.3. Optimality

In this section we explain optimality for holomorphic mock Jacobi forms of arbitrary 
integer weight and positive integer index. The exposition is similar to that of § 3.3 of [8] 
except that here we allow for forms that are automorphic for more general subgroups of 
the Jacobi group, as described in § 3.2, and also consider characters.
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To begin we fix an integer k and a positive integer m. Then for Γ and ρ as in (3.2.5) 
we say that φ ∈ Jk,m(Γ, ρ) is optimal if(

�m(γ, υ)ĥ|k− 1
2
(γ, υ)

)
(τ) → 0 (3.3.1)

as �(τ) → ∞ (cf. (3.2.17)), whenever (γ, υ) ∈ S̃L2(Z) is such that γ · ∞ does not 
belong to the infinite cusp of Γ (cf. (3.2.4)). We then refine this notion by saying that 
φ ∈ Jk,m(Γ, ρ) is c-optimal, for a given constant c, if φ is optimal (3.3.1) and satisfies

φ(τ, z) = −c + O(q), (3.3.2)

for every z ∈ C, as �(τ) → ∞.
As in [8] we are interested in situations whereby collections of optimal mock Jacobi 

forms are organized by finite groups. To setup for this we let G be a finite group, and 
consider an assignment

α : [g] �→ α(g) = (Γg, ρg) (3.3.3)

of pairs to the conjugacy classes [g] of G, where for each g ∈ G the first component Γg
of α(g) is a subgroup of GJ with level N = o(g) in the sense of § 3.2, and the second 
component ρg is a character of Γg as in (3.2.5). Also, given a virtual graded G-module 
W of the form

W =
⊕

r mod 2m

⊕
D≡r2 mod 4m

Wr, D
4m

(3.3.4)

we define the associated McKay–Thompson series φW
g , for each g ∈ G, by requiring that

φW
g (τ, z) =

∑
r mod 2m

hW
g,r(τ)θm,r(τ, z) (3.3.5)

(cf. (3.2.10)), where hW
g,r is defined, for each integer r modulo 2m, by setting

hW
g,r(τ) :=

∑
D≡r2 mod 4m

tr
(
g|Wr, D

4m

)
q−

D
4m . (3.3.6)

As in [8] we use the term virtual G-module to refer to an integer combination of irreducible 
ordinary characters of G, and use the term virtual graded G-module to refer to an indexed 
collection of such things. See § 3.3 of [8] for more detail.

With this setup in place we say that W as in (3.3.4) is c-optimal (mock Jacobi) of 
weight k and index m for (G,α) if

φW
g ∈ Jk,m(Γg, ρg), (3.3.7)
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and if φW
g also satisfies the c-optimality conditions (3.3.1)-(3.3.2), for every g ∈ G, and 

we say that W as in (3.3.4) optimal for (G,α) if it is c-optimal for some c.
We are interested in classifying the optimal virtual graded modules of a given weight 

and index for a pair (G,α), where G is a finite group and α is as in (3.3.3). With this 
in mind we let Wopt

k,m(G,α) denote the set of optimal virtual graded modules of weight k
and index m for (G,α), and for each c ∈ Z let Wopt

k,m(G,α)c denote the subset of modules 
that are c-optimal. As in [8] we note that Wopt

k,m(G,α) and Wopt
k,m(G,α)0 are naturally free 

abelian groups (cf. (3.3.11) of [8]), and

Wopt
k,m(G,α) =

∑
c∈Z

Wopt
k,m(G,α)c (3.3.8)

is a decomposition of the former into modules for the latter. We also write Lopt
k,m(G,α)

for the lattice structure on Wopt
k,m(G,α)0 that we obtain by embedding it in

Lk,m(G) := Sk,m(#G)Z ⊗Z R(G) (3.3.9)

in the natural way. (Here R(G) denotes the Grothendieck group of the category of finitely 
generated G-modules, which we identify with the free Z-module generated by the irre
ducible ordinary characters of G. We refer to (3.3.12-3.3.14) of [8] for the lattice structure 
on Lk,m(G), and refer to (3.3.15-3.3.19) of [8] for the map that identifies Wopt

k,m(G,α)0 as 
a sublattice.)

Define copt
k,m(G,α) to be the minimal positive integer for which a c-optimal virtual 

graded module of weight k and index m for (G,α) exists,

copt
k,m(G,α) := min

{
c ∈ Z+ | Wopt

k,m(G,α)c �= ∅
}
. (3.3.10)

Then we have the following counterpart to Proposition 3.3.1 of [8], by exactly the same 
argument.

Proposition 3.3.1. The sets Wopt
k,m(G,α) and Lopt

k,m(G,α) are naturally free abelian groups 
of finite rank. If c ≡ 0 mod copt

k,m(G,α) then Wopt
k,m(G,α)c is naturally a Lopt

k,m(G,α)-torsor. 
If c �≡ 0 mod copt

k,m(G,α) then Wopt
k,m(G,α)c is empty.

Motivated by Proposition 3.3.1 we refer to the determination of copt
k,m(G,α) and 

Lopt
k,m(G,α), for a fixed choice of G and α, as the classification problem for optimal virtual 

graded modules of weight k and index m for (G,α).
To conclude this section we define the default choice for α as in (3.3.3) to be the 

assignment α(g) = (Γg, ρg) for which

Γg = ΓJ
0(o(g)) (3.3.11)
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and ρg is trivial, for each g ∈ G. We indicate this default choice of α by suppressing 
it from notation, writing Wopt

k,m(G) for Wopt
k,m(G,α), and writing Lopt

k,m(G) for Lopt
k,m(G,α), 

&c., when α is as in (3.3.11).

3.4. Our main focus

Having discussed mock Jacobi forms with arbitrary integer weight and positive integer 
index in §§ 3.2-3.3, we now review some of the special features that arise when the weight 
is 2 and the index is 1, since this is the situation upon which we mostly focus in the 
remainder of this work.

To begin we note that for a mock Jacobi form φ with index m = 1 we may unambigu
ously write Cφ(D) for the Fourier coefficient Cφ(D, r) (cf. (3.2.13)), because the latter 
depends only on D and the parity of r (cf. (3.2.7)), and the relation D ≡ r2 mod 4 forces 
the parity of D and r to match. With this convention we have a Fourier expansion

φ(τ, z) =
∑

n,s∈Z
Cφ(s2 − 4n)qnys (3.4.1)

when φ has index 1 (cf. (3.1.6), (3.1.9)). (More generally we may drop the r from Cφ(D, r)
whenever the index m of φ is not composite, for in this case r2 ≡ s2 mod 4m implies 
r ≡ ±s mod 2m.)

By a similar token, for W as in (3.3.4) with m = 1, there is no loss in considering 
W̌ =

⊕
D W̌D in place of W , where W̌D := WD,D4 . As in [8] we adopt this simplification, 

and also drop the accents from W̌ and W̌D henceforth. Thus, from now on we write 
simply

W =
⊕
D

WD (3.4.2)

for the grading of a virtual graded G-module W as in (3.3.4) when m = 1, where each WD

in (3.4.2) is taken to be WD,D4 in (3.3.4). With this convention the McKay–Thompson 

series φW
g associated to W (see (3.3.5)-(3.3.6)) may be defined by setting

φW
g (τ, z) :=

∑
n,s∈Z

tr(g|Ws2−4n)qnys (3.4.3)

(cf. (3.4.1)).
The main significance for us of the weight k = 2 is that it plays host to the generalized 

Hurwitz class number generating functions H Hur
N of (3.1.6), and the Cohen–Eisenstein 

series H Coh
N of (3.1.9). We put this precisely as follows.

Proposition 3.4.1. For N a positive integer the function H Hur
N belongs to J2,1(ΓJ

0(N)). 
For N prime the function H Coh

N belongs to J2,1(ΓJ
0(N)).
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See Proposition 3.4.1 in [8] for the proof of Proposition 3.4.1 above.
To construct optimal mock Jacobi forms we take a positive integer N and set

H Rad
N := 12 

φ(N)
∑
M |N

μ

(
N

M

)
M

ι(M)H Hur
M , (3.4.4)

where φ(N) denotes the Euler totient function, μ(N) is the Möbius function, and ι(N)
is as in (3.1.5). Then, as explained in § 3.4 of [8], the H Rad

N are optimal.

Proposition 3.4.2. For any positive integer N the function H Rad
N is a 1-optimal element 

of J2,1(ΓJ
0(N)).

Note that the Fourier coefficients of H Rad
N are generally not integers. For example, 

c = 2 is the smallest positive integer for which cH Rad
5 has integer coefficients. (Cf. the 

proof of Theorem 4.2.1.) Also, J2,1(ΓJ
0(1)) is spanned by H Rad

1 = 12H Hur according to 
Proposition 3.4.4 of [8]. Thus for any finite group G, and for any choice of α in (3.3.3) 
such that Γe = ΓJ

0(1) and ρe is trivial, a c-optimal virtual graded module W =
⊕

D WD

of weight 2 and index 1 for (G,α) (cf. (3.4.2)) satisfies

φW
e (τ, z) =

∑
n,s∈Z

dim(Ws2−4n)qnys = cH Rad
1 (τ, z) = 12cH Hur(τ, z) (3.4.5)

(cf. (3.4.3)), where e denotes the identity element of G.

4. Results

In this section we present concrete examples of the classification problem formulated 
in § 3.3 (cf. Proposition 3.3.1), in the special setting described in § 3.4, and also explore 
some arithmetic consequences. Specifically, we first explain the connection between class 
numbers and the � = 3 case of umbral moonshine in § 4.1. Then we use this as a 
springboard to classify optimal modules for the smallest sporadic Mathieu group M11, 
for two different assignments of characters, in § 4.2. Finally, in § 4.3 we demonstrate a 
connection between the M11-modules of § 4.2 and the congruent number problem from 
antiquity.

4.1. Umbral moonshine

In this section we use the proof of the � = 3 case of umbral moonshine (see [4--6] 
and [17]) to establish the existence of a 2-optimal module for the unique non-trivial 
double cover 2.M12 of the Mathieu group M12 (cf. [10]), and a particular assignment 
α : [g] → (Γg, ρg) (cf. (3.3.3)).

To get started let us first formulate the relevant function from umbral moonshine. For 
this we recall the Jacobi theta function ϑ1 (3.2.20) and Dedekind eta function η (3.2.21) 
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from § 3.2, and define three more Jacobi theta functions, ϑj(τ, z) for j ∈ {2, 3, 4}, by 
setting

ϑ2(τ, z) := θ1,1(1
2τ,

1
2z),

ϑ3(τ, z) := θ1,0(1
2τ,

1
2z),

ϑ4(τ, z) := θ1,0(1
2τ,

1
2 (z + 1

2)),

(4.1.1)

for τ ∈ H and z ∈ C, where θ1,0 and θ1,1 are as in (3.2.8). We use these functions to 
specify a weakly holomorphic Jacobi form Z(3) of weight 0 and index 2 for ΓJ

0(1) (cf. 
§ 2.5 of [4]) by defining

Z(3)(τ, z) := 4
(
ϑ2(τ, z)2

ϑ2(τ, 0)2
ϑ3(τ, z)2

ϑ3(τ, 0)2 + ϑ3(τ, z)2

ϑ3(τ, 0)2
ϑ4(τ, z)2

ϑ4(τ, 0)2 + ϑ4(τ, z)2

ϑ4(τ, 0)2
ϑ2(τ, z)2

ϑ2(τ, 0)2

)
. 

(4.1.2)
Then the meromorphic Jacobi form of weight 1 and index 3 attached to the � = 3 case 
of umbral moonshine (cf. § 4.3 of [5]), denoted ψ(3), may be defined by the formula

ψ(3)(τ, z) := i
ϑ1(τ, 2z)η(τ)3

ϑ1(τ, z)2
Z(3)(τ, z). (4.1.3)

(We remark that the factor in front of Z(3) in (4.1.3) is a meromorphic Jacobi form of 
weight 1 and index 1 for ΓJ

0(1), with a simple pole at each lattice point z ∈ Zτ + Z.)
The connection between (4.1.3) and umbral moonshine is that the finite part of ψ(3), 

denoted ψ(3),F (cf. (3.2.22)), satisfies

ψ(3),F (τ, z) =
∑

r mod 6
H(3)

r (τ)θ3,r(τ, z), (4.1.4)

where H(3) = (H(3)
r ) is the McKay–Thompson series attached to the identity element of 

the umbral group at � = 3, which is none other than 2.M12.
We now consider the quotient of Z(3) (4.1.2) by the weakly holomorphic Jacobi form 

ϑ2
1η

−6 (cf. (3.2.20)-(3.2.21)), the latter having weight −2 and index 1, and a double zero 
at each lattice point z ∈ Zτ + Z, and compare to the meromorphic Jacobi form ψ(1)

of (3.2.19). After an elementary manipulation of the expressions involved we arrive at a 
precise coincidence,

ψ(1)(τ, z) = −i
η(τ)3

ϑ1(τ, 2z)
ψ(3)(τ, z) = η(τ)6

θ1(τ, z)2
Z(3)(τ, z). (4.1.5)

That is to say, we recover (a rescaling of) the Hurwitz class number generating function 
H Hur = H Hur

1 (cf. (3.1.6)) by taking the finite part (cf. (3.2.27)) of a suitable multiple 
(4.1.5) of the meromorphic Jacobi form (4.1.3) whose finite part (4.1.4) captures umbral 
moonshine at � = 3.
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Equipped with (4.1.3)-(4.1.5) we now attach a meromorphic Jacobi form of weight 2
and index 1 (with level and generally with non-trivial character) to each g ∈ 2.M12 by 
setting

ψ(1)
g (τ, z) := −i

η(τ)3

ϑ1(τ, 2z)
ψ(3)

g (τ, z), (4.1.6)

where ψ(3)
g (τ, z) is the meromorphic Jacobi form of weight 1 and index 3 (with level and 

generally with non-trivial character) attached to g ∈ 2.M12 by umbral moonshine. We 
define H (2.M12,α)

g for g ∈ 2.M12 to be the finite part of ψ(1)
g in (4.1.6), so that

H (2.M12,α)
g := ψ(1),F

g . (4.1.7)

To make (4.1.6) more explicit let χ12 be the sum of the first two irreducible characters 
of 2.M12, according to the ordering in [4,5] (which is the same as the ordering given by 
[20], for example), and let χ12 denote the unique faithful irreducible character of 2.M12
of degree 12. Then we have

ψ(3)
g (τ, z) = −χ12(g)μ(3),0(τ, z)−χ12(g)μ(3),1(τ, z)+

∑
r mod 6

H(3)
g,r (τ)θ3,r(τ, z) (4.1.8)

where μ(3),k and the H(3)
g,r are as specified in § 4.3 of [5] (cf. also § B.3.2 of [12]).

Correspondingly, we now define a mock Jacobi form H (2.M12,α)
g for each g ∈ 2.M12

by requiring that

ψ(1)
g (τ, z) = −χ12(g)μ(1),0(τ, z) − χ12(g)μ(1),1(τ, z) + H (2.M12,α)

g (τ, z) (4.1.9)

where μ(1),k(τ, z) := 1
2

(
Av(1)( y

(1−y)2 ) + (−1)k Av(1)( −y 
(1+y)2 )

)
(cf. (3.2.25)-(3.2.26)).

It follows from the construction (4.1.6)-(4.1.9), and the � = 3 case of the main result 
of [12], that the H (2.M12,α)

g arise as the graded trace functions attached to a virtual 
graded 2.M12-module.

Proposition 4.1.1. There exists a virtual graded 2.M12-module W =
⊕

D WD such that 
φW

g = H
(2.M12,α)

g for g ∈ 2.M12.

It also follows from (4.1.6)-(4.1.9) that the H (2.M12,α)
g are optimal, and have the 

same characters as those of the meromorphic Jacobi forms ψ(3)
g . We have H (2.M12,α)

g =
−2+O(q) as �(τ) → ∞ for all g ∈ 2.M12 so Proposition 4.1.1 implies that copt

2,1 (G,α) ≤ 2
for G = 2.M12 and α as above. On the other hand the inequality copt

2,1 (G,α) ≥ 2 holds 
because the function H (2.M12,α)

g belongs to J2,1(ΓJ
0(5)) in case o(g) = 5, the unique-up

to-scale optimal form in this space is H Rad
5 , and c = 2 is the smallest positive integer 

such that cH Rad
5 has integer coefficients. Thus we have proved the following result.

Theorem 4.1.2. For G = 2.M12 and α as above we have copt
2,1 (G,α) = 2.
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4.2. Modules

Here we consider the smallest sporadic simple group M11, which has order 7920 =
24.32.5.11 (cf. [10]). Our first objective is the following classification (cf. Proposition 3.3.1) 
of optimal modules for M11 (i.e. optimal modules for (M11,α) with the default choice 
(3.3.11) of α). To formulate it let ϕ11 denote the unique element of S2,1(ΓJ

0(11)) such 
that

ϕ11(τ, z) = (y−1 − 1 + y)q + O(q2) (4.2.1)

as �(τ) → ∞, let χi denote the i-th irreducible ordinary character of M11 (as displayed 
in Table 1), and recall the definition (3.3.9) of the lattice L2,1(G).

Theorem 4.2.1. For G = M11 we have copt
2,1 (G) = 2, and Lopt

2,1 (G) is the rank 2 sublattice 
of L2,1(G) generated by

ϕ11 ⊗ (χ1 − χ2 − χ3 − χ4 − χ6 + χ9),

ϕ11 ⊗ (χ1 − χ2 − χ3 − χ4 − χ7 + χ9).
(4.2.2)

Remark 4.2.2. Let N11 denote the norm of ϕ11 with respect to the Petersson inner 
product. Then from Theorem 4.2.1 we see that Lopt

2,1 (G) is a copy of the lattice structure 
on Z2 for which the associated quadratic form is Q(x1, x2) = N2

11(3x2
1 + 5x1x2 + 3x2

2).

Our main task in proving Theorem 4.2.1 is establishing that a 2-optimal module for 
M11 exists. To this end we define a holomorphic mock Jacobi form H M11

g for each g ∈ M11
by setting

H M11
g :=

{
2H Rad

o(g) for o(g) < 11,
2H Rad

11 − 11
5 ϕ11 for o(g) = 11.

(4.2.3)

Here H Rad
N is as in (3.4.4) and ϕ11 is as in (4.2.1). The first few Fourier coefficients of 

each of the H M11
g are given in Table 2.

The H Rad
N are optimal for all N according to Proposition 3.4.2, so the H M11

g (4.2.3) 
are all optimal by construction. By the 1-optimality of H Rad

N (see Proposition 3.4.2) we 
have H M11

g (τ, z) = −2 + O(q) for all g ∈ M11. In light of this the next result amounts 
to the statement that Wopt

2,1 (G)2 is not empty when G = M11.

Proposition 4.2.3. There exists a virtual graded M11-module W =
⊕

D WD such that 
φW

g = H M11
g for g ∈ M11.

Proof. Recall from § 1.2 that we say that a subgroup M11 in 2.M12 is intransitive if its 
image under the composition (1.2.2) fixes a point. We verify the existence of the M11
module of the statement of the proposition by restricting the 2.M12-module structure 
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of Proposition 4.1.1 to an intransitive copy of M11 in 2.M12. We require to determine 
how the assignment α : [g] → ρg of characters to 2.M12 restricts to such a subgroup. 
These characters are described explicitly in § 4.8 of [5]. From this description we check 
that ρg is trivial for every g in an intransitive copy of M11. So W as in Proposition 4.1.1
restricts along an intransitive copy of M11 to an M11-module with the same characters 
as in Proposition 4.2.3. This completes the proof. �
Remark 4.2.4. Since the coefficients of the H M11

g are rational numbers by construction, 
they must in fact be rational integers for all g ∈ M11, and in particular for o(g) = 11, in 
order for Proposition 4.2.3 to be true. This particular consequence of Proposition 4.2.3
may be compared to the N = 11 case of Theorem 4.1.1 in [8]. (See also Corollary 4.2.2 
in [8].)

The character table of M11 is given in Table 1. For χ an irreducible character of M11
define the multiplicity generating function

H M11
χ (τ) :=

∑
n,s∈Z

mχ(Ws2−4n)qnys (4.2.4)

where WD is as in Proposition 4.2.3, and mχ(WD) is the multiplicity of χ in the M11
module WD. The first few Fourier coefficients of each of the resulting holomorphic mock 
Jacobi forms H M11

χ are given in Table 4.

Proof of Theorem 4.2.1. We have copt
2,1 (G) ≤ 2 according to Proposition 4.2.3. To see that 

copt
2,1 (G) ≥ 2 we note, for example, that the space of optimal holomorphic mock Jacobi 

forms of weight 2 and index 1 for ΓJ
0(5) is one-dimensional, spanned by H Rad

5 (τ, z) =
−1 + O(q) (cf. (3.4.4)), and c = 2 is the smallest positive integer such that cH Rad

5 has 
integer coefficients. So copt

2,1 (G) = 2.
It remains to compute Lopt

2,1 (G). For this we note that if W ∈ Wopt
2,1 (G)0 then, be

ing optimal and having vanishing constant term, φW
g must belong to S2,1(ΓJ

0(o(g))) for 
every g ∈ G. We have S2,1(ΓJ

0(o(g))) = {0} for g ∈ M11 except when o(g) = 11, and 
S2,1(ΓJ

0(11))Z is generated by ϕ11 (as in (4.2.1)), so Wopt
2,1 (G)0 is identified with the 

sublattice

Zϕ11 ⊗Z R(G)(11) (4.2.5)

of L2,1(G), where R(G)(11) denotes the Z-module of virtual characters of M11 that are 
supported on elements of order 11.

To compute R(G)(11) let δ11 be the class function on G such that δ11(g) = 1 when 
o(g) = 11, and δ11(g) = 0 when o(g) �= 11. Then by applying Thompson’s reformulation 
of Brauer’s theorem on virtual characters (see e.g. [26]) to the character table of G (see 
Table 1) we may deduce that if x is a class function in R(G)(11) with rational values then 
x is an integer multiple of 11δ11. To understand the rest of R(G)(11) we observe that 
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χ6 and χ7 (as in Table 1) are the only characters of G that have non-rational entries 
on elements of order 11. Also, χ6 − χ7 vanishes away from elements of order 11 so is 
contained in R(G)(11). Thus R(G)(11) is composed of the (possibly rational) combinations 
of 11δ11 and χ6 − χ7 that are integer combinations of the irreducible characters χj. A 
computation with Table 1 reveals that 

11δ11 = 2χ1 − 2χ2 − 2χ3 − 2χ4 − χ6 − χ7 + 2χ9, (4.2.6)

so R(G)(11) is generated, as a Z-module, by 

11
2 
δ11 −

1
2χ6 + 1

2χ7 = χ1 − χ2 − χ3 − χ4 − χ6 + χ9,

11
2 
δ11 + 1

2χ6 −
1
2χ7 = χ1 − χ2 − χ3 − χ4 − χ7 + χ9.

(4.2.7)

Thus we have confirmed the description (4.2.2) of Lopt
2,1 (G) that appears in the statement 

of the theorem. This completes the proof. �
Our next objective is a classification of optimal M11-modules for a particular non

trivial assignment of characters. For this define α : [g] �→ (Γg, ρg) by setting Γg =
ΓJ

0(o(g)), and 

ρg (γ, v, ς) :=

⎧⎨⎩1 if o(g) �∈ {4, 8},
e
(
− 2cd 

o(g)2

)
if o(g) ∈ {4, 8},

(4.2.8)

for (γ, (λ, μ), ς) ∈ ΓJ
0(o(g)) (cf. (3.2.2)), when γ =

(
a b
c d

)
. Also let ϕ8|4 denote the unique 

element of S2,1(ΓJ
0(32)) such that 

ϕ8|4(τ, z) = (y−1 + y)q + O(q2) (4.2.9)

as �(τ) → ∞. Then actually ϕ8|4 belongs to S2,1(ΓJ
0(8), ρg) for g ∈ M11 an element of 

order 8 (cf. (4.2.8)), and the statement of the classification of optimal modules for (G,α)
is as follows.

Theorem 4.2.5. For G = M11 and α as in (4.2.8) we have copt
2,1 (G,α) = 2, and Lopt

2,1 (G,α)
is the sublattice of L2,1(G) generated by

ϕ8|4 ⊗ (χ3 − χ4),

ϕ8|4 ⊗ (χ1 − χ5 − χ9 + χ10), (4.2.10)

ϕ11 ⊗ (χ1 − χ2 − χ3 − χ4 − χ6 + χ9),

ϕ11 ⊗ (χ1 − χ2 − χ3 − χ4 − χ7 + χ9).
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Remark 4.2.6. Let N8|4 denote the norm of ϕ8|4 with respect to the Petersson inner 
product, and let N11 be as in Remark 4.2.2. Then from Theorem 4.2.5 we see that 
Lopt

2,1 (G,α) is a copy of the lattice structure on Z4 for which the associated quadratic 
form is Q(x1, x2, x3, x4) = N2

8|4(x2
1 + 2x2

2) + N2
11(3x2

3 + 5x3x4 + 3x2
4).

To compute copt
2,1 (G,α) we first seek a suitable counterpart to Proposition 4.2.3. For 

this we define

H (M11,α)
g :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2H Rad

o(g) for o(g) �∈ {4, 8, 11},
−2θ0

1,0
(
θ0
4,0 − θ0

4,4
)2

θ1,0 for o(g) = 4,
−2θ0

1,0
(
θ0
16,0 − θ0

16,16
)2

θ1,0 − 4ϕ8|4 for o(g) = 8,
2H Rad

11 − 11
5 ϕ11 for o(g) = 11,

(4.2.11)

where H Rad
N is as in (3.4.4), and θ0

m,r(τ) := θm,r(τ, 0) for θm,r as in (3.2.8), and ϕ8|4
and ϕ11 are as in (4.2.9) and (4.2.1), respectively. The first few Fourier coefficients of 
each of the H (M11,α)

g are given in Table 3.
We may check directly that the H (M11,α)

g of (4.2.11) are all optimal. So the next result 
states that Wopt

2,1 (G,α)2 is not empty, for G = M11 and α as in (4.2.8).

Proposition 4.2.7. There exists a virtual graded M11-module W =
⊕

D WD such that 
φW

g = H
(M11,α)

g for each g ∈ M11.

Proof. As in the proof of Proposition 4.2.3 we verify the existence of the M11-module 
in question by restricting the 2.M12-module structure of Proposition 4.1.1 to a suitable 
subgroup M11 < 2.M12, but in this case we choose a copy of M11 that maps to a transitive 
subgroup of S12 under the composition (1.2.2). (Such a copy of M11 is called transitive 
in § 1.2.) Again using the explicit description of the characters ρg for g ∈ 2.M12 that 
appears in § 4.8 of [5] we find that ρg is trivial for every g in a transitive copy of M11
except for when o(g) ∈ {4, 8}. Moreover, the ρg for g in a transitive copy agree with the 
specification (4.2.8). So W as in Proposition 4.1.1 restricts along a transitive copy of M11
to an M11-module with the same characters as in Proposition 4.2.7. Inspecting further 
we find that the trace functions obtained by restriction agree with those in (4.2.11) 
except when o(g) = 8, in which case the difference is 4ϕ8|4 (cf. (4.2.9)). We finish the 
proof of Proposition 4.2.7 by noting that the coefficients of ϕ8|4 are rational integers, 
and observing that

χ1 − χ5 − χ9 + χ10 (4.2.12)

is a virtual character that takes the value 4 on elements of M11 of order 8, and vanishes 
on all other elements. (Cf. Table 1.) �

For χ an irreducible character of M11 define the multiplicity generating function 
H

(M11,α)
χ by the right-hand side of (4.2.4) but with WD as in Proposition 4.2.7. The 
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first few Fourier coefficients of each of the resulting holomorphic mock Jacobi forms 
H

(M11,α)
χ are given in Table 5.

Proof of Theorem 4.2.5. Comparing (4.2.11) with (4.2.3) we see that H M11
g = H

(M11,α)
g

for o(g) �∈ {4, 8}. We have already seen that the H M11
g are 2-optimal, so the H (M11,α)

g are 

2-optimal for o(g) �∈ {4, 8}. The 2-optimality of H (M11,α)
g for o(g) �∈ {4, 8} follows from 

an explicit calculation using the known modular transformation properties of the theta 
series θm,r (cf. (3.2.8)). We also check directly that H (M11,α)

g transforms according to 
the characters specified in (4.2.8) for o(g) ∈ {4, 8}. So we have copt

2,1 (G,α) ≤ 2 according 
to Proposition 4.2.7. The inequality copt

2,1 (G,α) ≥ 2 holds for the same reason we gave 
that copt

2,1 (G) ≥ 2 in the proof of Theorem 4.2.1, so copt
2,1 (G,α) = 2.

The computation of Lopt
2,1 (G,α) is similar to the computation of Lopt

2,1 (G) that appears 
in the proof of Theorem 4.2.1, with the main difference being that S2,1(Γg, ρg)Z is now 
non-zero also when o(g) = 8. Specifically, we have 

S2,1(Γg, ρg)Z =

⎧⎪⎪⎨⎪⎪⎩
Zϕ8|4 for o(g) = 8,
Zϕ11 for o(g) = 11,
0 else,

(4.2.13)

where ϕ8|4 and ϕ11 are as in (4.2.9) and (4.2.1), respectively.
To proceed with the determination of Lopt

2,1 (G,α) suppose that x is a class function on 
M11 that vanishes on g unless o(g) ∈ {8, 11}. In this case Thompson’s result on virtual 
characters (cf. the proof of Theorem 4.2.1) tells us that x has integer values if and only if 
x ∈ Z4δ8 +Z11δ11, where δ11 is as in (4.2.6) and δ8 is defined analogously. Now the only 
irreducible characters of G that are non-rational on elements of order 8 or 11 are χ3 and 
χ4, being non-rational only on elements of order 8, and χ6 and χ7, being non-rational 
only on elements of order 11. From this much we may conclude that Wopt

2,1 (G,α)0 is 
identified with the sublattice 

Zϕ8|4 ⊗R(G)(8) + Zϕ11 ⊗R(G)(11) (4.2.14)

of L2,1(G), where R(G)(11) is as in (4.2.5), and R(G)(8) is defined analogously.
We have already computed R(G)(11) in the proof of Theorem 4.2.1. To compute 

R(G)(8) we use Table 1 to compute 

4δ8 = χ1 − χ5 − χ9 + χ10 (4.2.15)

(cf. (4.2.12)) and to see that χ3 − χ4 vanishes away from elements of order 8. Thus 
R(G)(8) is generated (as a Z-module) by 4δ8 and χ3 − χ4, and thus we have verified the 
description of Lopt

2,1 (G,α) that appears in the statement of the theorem (see (4.2.10)). 
Thus the theorem is proved. �
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4.3. Congruent numbers

Our objective in this section is to establish a result that relates congruent numbers to 
the M11-modules of § 4.2. For the statement we note from Table 1 that M11 has a unique 
irreducible representation of dimension 55. Also, we take G = M11 in what follows, and 
we call to mind the optimal M11-modules Wopt

2,1 (G,α) that are classified, according to 
Proposition 3.3.1, by Theorem 4.2.5.

Theorem 4.3.1. Let D < 0 be square-free and satisfy D ≡ 21 mod 24. If there exists 
an M11-module W =

⊕
D WD in Wopt

2,1 (G,α) such that WD contains an irreducible 55
dimensional submodule with non-zero multiplicity then |D| is not a congruent number.

Proof. Recall the mock Jacobi forms H (M11,α)
g of (4.2.11). Define C(M11,α)

g (D) for g ∈
M11 by requiring that H (M11,α)

g (τ, z) =
∑

n,� C
(M11,α)
g (�2−4n)qny�, and to ease notation 

set CN (D) := C
(M11,α)
g (D) when o(g) = N . Also define C8|4(D) so that ϕ8|4(τ, z) =∑

n,� C8|4(�2 − 4n)qny� where ϕ8|4 is as in (4.2.9).
Let W ∈ Wopt

2,1 (G,α) and D < 0, and write m55(WD) for the multiplicity of the 
55-dimensional irreducible representation in the M11-module WD. Then the description 
(4.2.10) of Lopt

2,1 (G,α) together with a computation with Table 1 yields that m55(WD) is 
given explicitly by

1 
144C1(D) − 1 

48C2(D) + 1 
18C3(D) − 1

8C4(D) − 1
6C6(D) + 1

4C8(D) + 1
4�(λ8|4)C8|4(D)

(4.3.1)

for some λ8|4 ∈ 4Z + 2a2Z (where a2 is as in Table 1).
Now C4(D) and C8(D) vanish for odd D, and the remaining CN (D) in (4.3.1) may 

be expressed explicitly in terms of Hurwitz class numbers. For example, C1(D) =
24HHur(D) according to (4.2.11), because H Rad

1 = 12H Hur (cf. (3.4.4)). For g of order 
N = o(g) ∈ {2, 3} the mock Jacobi form H M11

g is a linear combination of H Hur and 
the Cohen–Eisenstein series H Coh

o(g) (cf. (3.1.9)), because these two forms span the space 
J2,1(ΓJ

0(N)) in each case. So the formulas (3.1.4) and (3.1.10) allow us to write CN (D) in 
terms of class numbers, for N ∈ {2, 3}. For N = 6 we achieve an expression for C6(D) in 
terms of class numbers by observing that J2,1(ΓJ

0(6)) is spanned by H Hur, H Coh
2 , H Coh

3 , 
and the Jacobi form 

∑
n,� C

′
6(�2−4n)qny�, where C ′

6(D) := HHur(36D)−HHur(D). Not
ing that

C6(D) =
(

1 − 2
(
D

8 

)
− 3

(
D

3 

)
+ 6

(
D

24

))
HHur(D) (4.3.2)

for D fundamental, we ultimately obtain from (4.3.1) that

m55(WD) =
(
D

3 

)(
1 −

(
D

8 

))
HHur(D) + 1

4�(λ8|4)C8|4(D), (4.3.3)
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which simplifies to m55(WD) = 1
4�(λ8|4)C8|4(D) because D ≡ 0 mod 3 by hypothesis. 

So for the discriminants D in question, the multiplicity m55(WD) depends only on the 
contribution from ϕ8|4.

Let E denote the elliptic curve over Q defined by y2 = x3 − x, and let E ⊗D denote 
the D-th quadratic twist of E, defined by y2 = x3 − D2x. Then, as explained in the 
introduction of [27], for example, |D| is a congruent number if and only if E ⊗ D has 
positive rank (i.e. infinitely many rational points). Define a(n) ∈ Z for n ≥ 1 by requiring 
that

η(4τ)5η(16τ)
η(2τ)2η(8τ) =

∑
n 

a(n)qn, (4.3.4)

where η is as in (3.2.21). Then, by Theorem 3 of [27] we have that L(E⊗D, 1) = Ca(|D|)2
for some non-zero constant C. Also, a(|D|) = 2C8|4(D) for D ≡ 5 mod 8, because a(3) =
2C8|4(−3) = 2 (cf. (4.2.9)), and because the plus-space projection 

∑
n≡3 mod 8 a(n)qn

is a cusp form of weight 3
2 with the same level and character as 

∑
D C8|4(D)q|D|, and 

there is a unique such form up to scale. So for the discriminants D under consideration, 
if m55(WD) is non-zero then L(E ⊗D, 1) is non-zero, and this implies that E ⊗D has 
finitely many rational points according to [24]. So |D| is not a congruent number in this 
case. This completes the proof. �
Remark 4.3.2. The proof of Theorem 4.3.1 shows that, for D ≡ 21 mod 24, the mul
tiplicity m55(WD) is proportional to the Jacobi form coefficient C8|4(D) for any W ∈
Wopt

2,1 (G,α), where the constant of proportionality depends only on W . Inspecting Table 5
we see that m55(W−3) �= 0 for W as in Proposition 4.2.7, so the constant of proportion
ality is non-zero for this choice of W , and thus there is no loss in applying Theorem 4.3.1
only to the module W of Proposition 4.2.7. We note also that there are infinitely many 
D satisfying the hypotheses of the theorem for which m55(WD) is non-zero, because the 
C8|4(D) with D ≡ 21 mod 24 are the coefficients of a non-zero Jacobi form.

Remark 4.3.3. If the Birch–Swinnerton-Dyer conjecture were known to be true (cf. [28]) 
we would be able to prove a converse to Theorem 4.3.1, and use the M11-module 
W to identify congruent numbers. Indeed, the proof of Theorem 4.3.1 (together with 
Remark 4.3.2) shows that, for D as in the statement of the theorem and W as in Propo
sition 4.2.7, the multiplicity m55(WD) is zero if and only if L(E ⊗ D, 1) is zero, where 
E ⊗D (defined by y2 = x3 −D2x) is the elliptic curve whose rank controls whether |D|
is congruent or not. For example, D = −219 satisfies the conditions of Theorem 4.3.1, 
and one can compute that the 55-dimensional irreducible representation has vanishing 
multiplicity in W−219. This is consistent with the fact that 219 is congruent. (We have 
219 = ab

2 when a = 264
13 and b = 949

44 , for example.)

Theorem 4.3.1 begs the question of what methods are available to compute the mul
tiplicities m55(WD), for W ∈ Wopt

2,1 (G,α). It is also natural to seek out counterparts to 
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Theorem 4.3.1 that involve other irreducible M11-modules. In this work we have only 
implicitly identified optimal M11-modules in terms of (mock) Jacobi forms, so we can 
only compute multiplicities like m55(WD) in terms of Jacobi form coefficients. The up
shot of this is that we have not, in this work, produced a practical improvement upon 
the congruent number criteria that appear in Tunnell’s work [27]. However, it is possible 
that an explicit algebraic construction of one or another W ∈ Wopt

2,1 (G,α) could furnish 
algebraic control, of some kind, over m55(WD) and other multiplicities. We could then, 
via Theorem 4.3.1, or one of its possible counterparts, obtain a new practical approach 
to determining which numbers are congruent.

The task of extending Theorem 4.3.1 to other irreducible M11-modules, and the chal
lenge of finding explicit algebraic constructions of optimal M11-modules, remain problems 
for future work.

Appendix A. Characters and coefficients

In Table 1 we give the character table of the sporadic group M11. In Tables 2-5 we give 
some coefficients of the McKay–Thompson series and multiplicity generating functions 
for the graded infinite-dimensional virtual modules for this group that feature in § 4. In 
Table 1 we use the notation an :=

√
−n and bn := −1

2 + 1
2
√
−n.

Table 1
Character table of M11.

[g] 1A 2A 3A 4A 5A 6A 8A 8B 11A 11B
χ1 1 1 1 1 1 1 1 1 1 1
χ2 10 2 1 2 0 −1 0 0 −1 −1
χ3 10 −2 1 0 0 1 a2 −a2 −1 −1
χ4 10 −2 1 0 0 1 −a2 a2 −1 −1
χ5 11 3 2 −1 1 0 −1 −1 0 0
χ6 16 0 −2 0 1 0 0 0 b11 b11
χ7 16 0 −2 0 1 0 0 0 b11 b11
χ8 44 4 −1 0 −1 1 0 0 0 0
χ9 45 −3 0 1 0 0 −1 −1 1 1
χ10 55 −1 1 −1 0 −1 1 1 0 0
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Table 2
McKay--Thompson series H M11

g .

|D| 1A 2A 3A 4A 5A 6A 8AB 11AB 
0 −2 −2 −2 −2 −2 −2 −2 −2
3 8 −8 −1 0 −2 1 0 −3
4 12 −4 −6 −4 2 2 0 1
7 24 8 −12 0 −6 −4 0 2
8 24 −8 6 −8 −6 −2 0 2
11 24 −24 6 0 4 −6 0 2
12 32 0 −4 0 −8 0 −8 −1
15 48 16 −6 0 −2 −2 0 −7
16 36 4 −18 4 6 −2 −4 −8
19 24 −24 −12 0 4 12 0 2
20 48 −16 12 −16 −2 −4 0 −7
23 72 24 18 0 −18 6 0 −5
24 48 −16 −6 −16 8 2 0 4
27 32 −32 5 0 −8 −5 0 −1
28 48 16 −24 16 −12 −8 8 4
31 72 24 −36 0 12 −12 0 −5
32 72 8 18 8 −18 2 −8 6
35 48 −48 12 0 −2 −12 0 4
36 60 −20 6 −20 10 −2 0 −6
39 96 32 −12 0 16 −4 0 8
40 48 −16 −24 −16 −2 8 0 4
43 24 −24 −12 0 −6 12 0 2
44 96 0 24 0 16 0 −24 −3
47 120 40 30 0 −30 10 0 −12
48 80 16 −10 16 −20 −2 0 −8
51 48 −48 −6 0 8 6 0 4
52 48 −16 −24 −16 −12 8 0 4
55 96 32 −48 0 −4 −16 0 −3
56 96 −32 24 −32 16 −8 0 −14
59 72 −72 18 0 12 −18 0 −5
60 96 32 −12 32 −4 −4 16 −3
63 120 40 12 0 −30 4 0 10
64 84 20 −42 20 14 −10 4 −4
67 24 −24 −12 0 −6 12 0 −9
68 96 −32 24 −32 −24 −8 0 8
71 168 56 42 0 28 14 0 −19
72 72 −24 18 −24 −18 −6 0 6
75 56 −56 −7 0 6 7 0 −10
76 96 0 −48 0 16 0 −24 8
79 120 40 −60 0 20 −20 0 10
80 144 16 36 16 −6 4 −16 −10
83 72 −72 18 0 −18 −18 0 6
84 96 −32 −12 −32 16 4 0 8
87 144 48 −18 0 −36 −6 0 12
88 48 −16 −24 −16 −12 8 0 4
91 48 −48 −24 0 8 24 0 4
92 144 48 36 48 −36 12 24 −21
95 192 64 48 0 −8 16 0 16
96 144 16 −18 16 24 −2 −16 12
99 72 −72 18 0 12 −18 0 −5
100 60 −20 −30 −20 10 10 0 −6
103 120 40 −60 0 −30 −20 0 −12
104 144 −48 36 −48 24 −12 0 −10
107 72 −72 18 0 −18 −18 0 6
108 128 0 20 0 −32 0 −32 −15
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Table 3
McKay--Thompson series H (M11,α)

g .

|D| 1A 2A 3A 4A 5A 6A 8AB 11AB 
0 −2 −2 −2 −2 −2 −2 −2 −2
3 8 −8 −1 0 −2 1 −4 −3
4 12 −4 −6 4 2 2 −4 1
7 24 8 −12 0 −6 −4 0 2
8 24 −8 6 8 −6 −2 0 2
11 24 −24 6 0 4 −6 4 2
12 32 0 −4 −16 −8 0 0 −1
15 48 16 −6 0 −2 −2 0 −7
16 36 4 −18 −12 6 −2 4 −8
19 24 −24 −12 0 4 12 4 2
20 48 −16 12 16 −2 −4 16 −7
23 72 24 18 0 −18 6 0 −5
24 48 −16 −6 16 8 2 0 4
27 32 −32 5 0 −8 −5 0 −1
28 48 16 −24 0 −12 −8 0 4
31 72 24 −36 0 12 −12 0 −5
32 72 8 18 −24 −18 2 8 6
35 48 −48 12 0 −2 −12 8 4
36 60 −20 6 20 10 −2 −20 −6
39 96 32 −12 0 16 −4 0 8
40 48 −16 −24 16 −2 8 0 4
43 24 −24 −12 0 −6 12 −12 2
44 96 0 24 −48 16 0 0 −3
47 120 40 30 0 −30 10 0 −12
48 80 16 −10 −16 −20 −2 −16 −8
51 48 −48 −6 0 8 6 −8 4
52 48 −16 −24 16 −12 8 16 4
55 96 32 −48 0 −4 −16 0 −3
56 96 −32 24 32 16 −8 0 −14
59 72 −72 18 0 12 −18 −4 −5
60 96 32 −12 0 −4 −4 0 −3
63 120 40 12 0 −30 4 0 10
64 84 20 −42 −12 14 −10 −12 −4
67 24 −24 −12 0 −6 12 4 −9
68 96 −32 24 32 −24 −8 −32 8
71 168 56 42 0 28 14 0 −19
72 72 −24 18 24 −18 −6 0 6
75 56 −56 −7 0 6 7 4 −10
76 96 0 −48 −48 16 0 0 8
79 120 40 −60 0 20 −20 0 10
80 144 16 36 −48 −6 4 16 −10
83 72 −72 18 0 −18 −18 −4 6
84 96 −32 −12 32 16 4 32 8
87 144 48 −18 0 −36 −6 0 12
88 48 −16 −24 16 −12 8 0 4
91 48 −48 −24 0 8 24 8 4
92 144 48 36 0 −36 12 0 −21
95 192 64 48 0 −8 16 0 16
96 144 16 −18 −48 24 −2 16 12
99 72 −72 18 0 12 −18 −4 −5
100 60 −20 −30 20 10 10 −20 −6
103 120 40 −60 0 −30 −20 0 −12
104 144 −48 36 48 24 −12 0 −10
107 72 −72 18 0 −18 −18 12 6
108 128 0 20 −64 −32 0 0 −15
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Table 4
Multiplicity generating functions H M11

χ .

|D| 1 10 10′ 10′ 11 16 16 44 45 55
0 −2 0 0 0 0 0 0 0 0 0
3 −1 0 1 1 −1 0 0 0 0 0
4 0 −2 0 0 0 1 1 0 0 0
7 −2 0 −2 −2 −2 0 0 2 0 0
8 −2 −2 0 0 0 −2 −2 0 0 2
11 0 0 0 0 0 0 0 −4 2 2
12 −4 0 0 0 0 −1 −1 2 2 −2
15 −2 2 0 0 0 1 1 2 −2 0
16 −2 2 0 0 0 4 4 0 0 −2
19 2 −4 2 2 −2 2 2 0 2 −2
20 −4 −2 2 2 2 −1 −1 −2 −2 4
23 −2 2 2 2 0 −5 −5 6 −2 0
24 0 −6 0 0 2 2 2 −2 0 2
27 −3 0 1 1 −3 −2 −2 −2 2 2
28 0 4 −4 −4 −8 0 0 4 0 0
31 −2 2 −4 −4 0 7 7 0 −2 0
32 −2 2 0 0 0 −6 −6 4 4 −2
35 −2 0 0 0 −2 −2 −2 −6 4 4
36 −2 −4 2 2 4 2 2 −4 −2 4
39 4 0 −4 −4 4 4 4 0 0 0
40 −2 −8 0 0 −2 2 2 2 0 0
43 0 −4 2 2 −4 0 0 2 2 −2
44 −2 2 2 2 12 1 1 −4 6 −4
47 −4 4 4 4 0 −8 −8 10 −4 0
48 −4 6 0 0 −6 −2 −2 6 0 −2
51 2 −4 2 2 −2 2 2 −4 4 0
52 −4 −8 0 0 −4 0 0 4 0 0
55 −6 2 −6 −6 −4 5 5 4 −2 0
56 −4 −4 4 4 8 2 2 −8 −4 8
59 −2 2 2 2 0 1 1 −12 4 6
60 6 10 −2 −2 −8 1 1 4 −2 0
63 −2 0 −2 −2 −2 −8 −8 10 0 0
64 2 6 −4 −4 −4 8 8 0 0 −2
67 −2 −2 4 4 −4 1 1 2 0 −2
68 −8 −8 0 0 0 −8 −8 0 0 8
71 8 6 6 6 14 3 3 0 −6 0
72 −6 −6 0 0 0 −6 −6 0 0 6
75 −1 −2 5 5 −3 3 3 −4 2 0
76 −4 −4 −4 −4 4 8 8 0 8 −8
79 0 0 −10 −10 0 10 10 0 0 0
80 −2 8 4 4 6 −4 −4 2 4 −4
83 −6 0 0 0 −6 −6 −6 −6 6 6
84 0 −12 0 0 4 4 4 −4 0 4
87 −6 0 −6 −6 −6 −6 −6 12 0 0
88 −4 −8 0 0 −4 0 0 4 0 0
91 4 −8 4 4 −4 4 4 0 4 −4
92 6 18 6 6 −12 −9 −9 12 −6 0
95 8 0 0 0 8 −8 −8 8 0 0
96 4 2 −4 −4 6 6 6 −2 8 −6
99 −2 2 2 2 0 1 1 −12 4 6
100 −2 −8 2 2 0 6 6 0 −2 0
103 −14 4 −6 −6 −10 2 2 10 −4 0
104 −4 −8 4 4 12 2 2 −12 −4 12
107 −6 0 0 0 −6 −6 −6 −6 6 6
108 −16 4 4 4 4 −7 −7 6 6 −6
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Table 5
Multiplicity generating functions H (M11,α)

χ .

|D| 1 10 10′ 10′ 11 16 16 44 45 55
0 −2 0 0 0 0 0 0 0 0 0
3 −2 0 1 1 0 0 0 0 1 −1
4 0 0 0 0 0 1 1 0 2 −2
7 −2 0 −2 −2 −2 0 0 2 0 0
8 0 2 0 0 −2 −2 −2 0 2 0
11 1 0 0 0 −1 0 0 −4 1 3
12 −4 −4 0 0 0 −1 −1 2 −2 2
15 −2 2 0 0 0 1 1 2 −2 0
16 −2 −2 0 0 0 4 4 0 −4 2
19 3 −4 2 2 −3 2 2 0 1 −1
20 4 6 2 2 −6 −1 −1 −2 −2 4
23 −2 2 2 2 0 −5 −5 6 −2 0
24 4 2 0 0 −2 2 2 −2 4 −2
27 −3 0 1 1 −3 −2 −2 −2 2 2
28 −4 0 −4 −4 −4 0 0 4 0 0
31 −2 2 −4 −4 0 7 7 0 −2 0
32 −2 −6 0 0 0 −6 −6 4 −4 6
35 0 0 0 0 −4 −2 −2 −6 2 6
36 −2 6 2 2 4 2 2 −4 8 −6
39 4 0 −4 −4 4 4 4 0 0 0
40 2 0 0 0 −6 2 2 2 4 −4
43 −3 −4 2 2 −1 0 0 2 5 −5
44 −2 −10 2 2 12 1 1 −4 −6 8
47 −4 4 4 4 0 −8 −8 10 −4 0
48 −12 −2 0 0 2 −2 −2 6 0 −2
51 0 −4 2 2 0 2 2 −4 6 −2
52 4 0 0 0 −12 0 0 4 0 0
55 −6 2 −6 −6 −4 5 5 4 −2 0
56 4 12 4 4 0 2 2 −8 4 0
59 −3 2 2 2 1 1 1 −12 5 5
60 −2 2 −2 −2 0 1 1 4 −2 0
63 −2 0 −2 −2 −2 −8 −8 10 0 0
64 −6 −2 −4 −4 4 8 8 0 0 −2
67 −1 −2 4 4 −5 1 1 2 −1 −1
68 −8 8 0 0 0 −8 −8 0 16 −8
71 8 6 6 6 14 3 3 0 −6 0
72 0 6 0 0 −6 −6 −6 0 6 0
75 0 −2 5 5 −4 3 3 −4 1 1
76 −4 −16 −4 −4 4 8 8 0 −4 4
79 0 0 −10 −10 0 10 10 0 0 0
80 −2 −8 4 4 6 −4 −4 2 −12 12
83 −7 0 0 0 −5 −6 −6 −6 7 5
84 16 4 0 0 −12 4 4 −4 0 4
87 −6 0 −6 −6 −6 −6 −6 12 0 0
88 0 0 0 0 −8 0 0 4 4 −4
91 6 −8 4 4 −6 4 4 0 2 −2
92 −6 6 6 6 0 −9 −9 12 −6 0
95 8 0 0 0 8 −8 −8 8 0 0
96 4 −14 −4 −4 6 6 6 −2 −8 10
99 −3 2 2 2 1 1 1 −12 5 5
100 −2 2 2 2 0 6 6 0 8 −10
103 −14 4 −6 −6 −10 2 2 10 −4 0
104 8 16 4 4 0 2 2 −12 8 0
107 −3 0 0 0 −9 −6 −6 −6 3 9
108 −16 −12 4 4 4 −7 −7 6 −10 10
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