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Verbesserung von techno-6konomischen Bewertungen im Bereich der
Produktentwicklung der Luftfahrt mittels systematischem Unsicherheitenmanagement
Rheinisch-Westfalische Technische Hochschule Aachen

Diese Dissertation untersuchte die Steigerung der Transparenz und Reproduzierbarkeit von
techno-6konomischen Bewertungen (TEAs) in der Entwicklung von Luftfahrtprodukten unter
Einbeziehung von Parameterunsicherheiten. Das Hauptziel war es, identifizierte Barrieren bei
der EinfUhrung einer systematischen Unsicherheitsmanagementmethodik zu Gberwinden. Diese
umfassten Methoden zur Separation von relevanten und vernachlassigbaren Unsicherheiten, zur
Anwendung der Dempster-Shafer-Theorie der Evidenz (DSTE) unter Datenknappheit sowie zur
kombinierten  Berlcksichtigung epistemischer (wissensbasierter) und aleatorischer
(variabilitatsbasierter) Unsicherheiten. Durch die Verknipfung dieser Barrieren mit
systematischen und vergleichenden Analysen bieten die Erkenntnisse dieser Dissertation einen
robusten Rahmen fiir das effektive Management von Unsicherheiten in TEAs, fordern das Feld
der Entwicklung von innovativen Luftfahrtprodukten und verbessern Entscheidungsprozesse
unter Unsicherheit.

Zur Veranschaulichung der entwickelten Unsicherheitsmanagementmethodik wurde eine
wiederkehrende Fallstudie zur lebenszyklusbasierten TEA der Hybridlaminarhaltung (HLFC)
herangezogen, fur die auf Informationen aus zwei Europaischen Projekten zurtckgegriffen
werden konnte. Diese Fallstudie diente als realistisches und interdisziplindres Beispiel, um die
Quantifizierung von Eingangs- und Ausgangsunsicherheiten sowie die Anwendung weiterer UQ
Methoden dieser Arbeit zu demonstrieren.

Ein wesentlicher Beitrag dieser Dissertation war die Untersuchung der Starken und Schwachen
verschiedener Techniken der Globalen Sensitivitdtsanalyse (GSA), welche die individuelle
Kritikalitdt von Parameterunsicherheiten quantifizieren. Im Gegensatz zu konventionellen
Ansatzen, die GSA-Methoden haufig ohne klare Kriterien auswahlen, bewertete diese Forschung
systematisch deren Fahigkeiten, Interpretierbarkeit und Recheneffizienz. Die dabei identifizierten
und teils signifikanten Unterschiede unterstreichen die Notwendigkeit einer informierten und auf
den spezifischen Kontext der Bewertung abgestimmten Auswahl von GSA Techniken.

Zusatzlich wurde das Python-Paket dste entwickelt, um den Bedarf an benutzerfreundlichen
Programmierumgebungen zur Behandlung von DSTE-basierten UQs zu adressieren. Zugehorige
Analysen demonstrierten die Fahigkeiten des Pakets und diskutierten den Einsatz von DSTE mit
Hilfe von systematischen Experteninterviews sowie theorie-spezifischen UQ Metriken. Dartber
hinaus wurden die damit verbundenen Interpretationsschwierigkeiten, insbesondere im Hinblick
auf die Adressaten der TEA, sowie die Herausforderungen in Bezug auf die Recheneffizienz
untersucht.

Die Forschung untersuchte auch Methoden zur Kombination epistemischer und aleatorischer
Unsicherheiten und schlug einen neuartigen Ansatz vor, der DSTE-basierte und probabilistische
UQ Ansatze mittels verschachtelten Monte-Carlo-Simulationen kombiniert. Dieser Ansatz
verbessert die Interpretierbarkeit und rechnerische Effizienz im Vergleich zu einem rein
evidenztheoretischen Ansatz und bietet eine nuancierte Darstellung von Unsicherheiten.
Entscheidungstrager profitieren von klareren Einblicken durch verstandliche Visualisierung und
einfache Interpretation, wahrend Nutzer malgeschneiderte Empfehlungen aufgrund der
deutlichen Trennung von epistemischen und aleatorischen Effekten ableiten kdnnen. Dariber
hinaus bietet dieser Ansatz Wiederholbarkeit, sodass UQ wahrend des gesamten
Produktentwicklungsprozesses konsequent angewendet und wiederholt werden kann, wenn
neue Informationen zur Verfligung stehen.
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This thesis investigated the enhancement of transparency and reproducibility in technoeconomic
assessments (TEAs) for aeronautical product developments when input parameter uncertainties
are present. The primary objective was to overcome identified barriers in the adoption of a
systematic uncertainty management methodology. These included methods for the separation of
relevant and negligible uncertainties, the application of Dempster-Shafer Theory of Evidence
(DSTE) under data scarcity, as well as the combination of epistemic (knowledge-based) and
aleatory (variability-based) uncertainties. By linking these barriers with systematic and
comparative analyses, the findings of this dissertation provide a robust framework for effective
uncertainty management in TEAs, promote the field of innovative aeronautic product
development, and improve decision-making processes under uncertainty.

To illustrate the developed uncertainty management methodology, a recurring case study on the
lifecycle-based TEA of Hybrid Laminar Flow Control (HLFC) was utilized, drawing on information
from two European projects. This case study served as a realistic and interdisciplinary example
to demonstrate the quantification of input and output uncertainties, as well as other UQ methods
addressed in this thesis.

A significant contribution of this dissertation was the investigation of the strengths and
weaknesses of various Global Sensitivity Analysis (GSA) techniques, which quantify the
individual criticality of parameter uncertainties. Unlike conventional approaches that often select
GSA methods without clear criteria, this research systematically assessed their capabilities,
interpretability, and computational efficiency. The identified and partially significant differences
underscore the necessity for an informed and context-specific selection of GSA techniques.

Additionally, the Python package dste was developed to address the need for user-friendly
programming toolboxes for handling DSTE-based UQ. Related analyses demonstrated the
capabilities of the package and discussed the application of DSTE through systematic expert
interviews and theory-specific UQ metrics. Furthermore, the associated interpretation difficulties,
particularly concerning the recipients of the TEA, and the challenges related to computational
efficiency were examined.

The research also explored methods for combining epistemic and aleatory uncertainties and
proposed a novel approach that integrates DSTE-based and probabilistic UQ approaches using
nested Monte Carlo simulations. This approach enhances interpretability and computational
efficiency compared to a purely evidence-theoretic approach and provides a nuanced
representation of uncertainties. Decision-makers benefit from clearer insights through
understandable visualization and straightforward interpretation, while users can derive tailored
recommendations due to the clear separation of epistemic and aleatory effects. Additionally, this
approach offers repeatability, allowing UQ to be consistently applied and repeated throughout
the product development process as new information becomes available.



Abstract

This thesis investigated the enhancement of transparency and reproducibility in techno-
economic assessments (TEAs) for aeronautical product developments when input parameter
uncertainties are present. The primary objective was to overcome identified barriers in the
adoption of a systematic uncertainty management methodology. These included methods for
the separation of relevant and negligible uncertainties, the application of Dempster-Shafer The-
ory of Evidence (DSTE) under data scarcity, as well as the combination of epistemic (knowledge-
based) and aleatory (variability-based) uncertainties. By linking these barriers with systematic
and comparative analyses, the findings of this dissertation provide a robust framework for
effective uncertainty management in TEAs, promote the field of innovative aeronautic product
development, and improve decision-making processes under uncertainty.

To illustrate the developed uncertainty management methodology, a recurring case study on
the lifecycle-based TEA of Hybrid Laminar Flow Control (HLFC) was utilized, drawing on
information from two European projects. This case study served as a realistic and interdisci-
plinary example to demonstrate the quantification of input and output uncertainties, as well
as other UQ methods addressed in this thesis.

A significant contribution of this dissertation was the investigation of the strengths and weak-
nesses of various Global Sensitivity Analysis (GSA) techniques, which quantify the individual
criticality of parameter uncertainties. Unlike conventional approaches that often select GSA
methods without clear criteria, this research systematically assessed their capabilities, inter-
pretability, and computational efficiency. The identified and partially significant differences
underscore the necessity for an informed and context-specific selection of GSA techniques.

Additionally, the Python package dste was developed to address the need for user-friendly
programming toolboxes for handling DSTE-based UQ. Related analyses demonstrated the
capabilities of the package and discussed the application of DSTE through systematic ex-
pert interviews and theory-specific UQ metrics. Furthermore, the associated interpretation
difficulties, particularly concerning the recipients of the TEA, and the challenges related to
computational efficiency were examined.

The research also explored methods for combining epistemic and aleatory uncertainties and
proposed a novel approach that integrates DSTE-based and probabilistic UQ approaches using
nested Monte Carlo simulations. This approach enhances interpretability and computational
efficiency compared to a purely evidence-theoretic approach and provides a nuanced represen-
tation of uncertainties. Decision-makers benefit from clearer insights through understandable
visualization and straightforward interpretation, while users can derive tailored recommenda-
tions due to the clear separation of epistemic and aleatory effects. Additionally, this approach
offers repeatability, allowing UQ to be consistently applied and repeated throughout the prod-
uct development process as new information becomes available.






Kurzfassung

Diese Dissertation untersuchte die Steigerung der Transparenz und Reproduzierbarkeit von
techno-6konomischen Bewertungen (TEAs) in der Entwicklung von Luftfahrtprodukten unter
Einbeziehung von Parameterunsicherheiten. Das Hauptziel war es, identifizierte Barrieren
bei der Einfiihrung einer systematischen Unsicherheitsmanagementmethodik zu iiberwinden.
Diese umfassten Methoden zur Separation von relevanten und vernachldssigbaren Unsicher-
heiten, zur Anwendung der Dempster-Shafer-Theorie der Evidenz (DSTE) unter Datenknap-
pheit sowie zur kombinierten Beriicksichtigung epistemischer (wissensbasierter) und alea-
torischer (variabilitdtsbasierter) Unsicherheiten. Durch die Verkniipfung dieser Barrieren mit
systematischen und vergleichenden Analysen bieten die Erkenntnisse dieser Dissertation einen
robusten Rahmen fiir das effektive Management von Unsicherheiten in TEAs, férdern das Feld
der Entwicklung von innovativen Luftfahrtprodukten und verbessern Entscheidungsprozesse
unter Unsicherheit.

Zur Veranschaulichung der entwickelten Unsicherheitsmanagementmethodik wurde eine wieder-
kehrende Fallstudie zur lebenszyklusbasierten TEA der Hybridlaminarhaltung (HLFC) herange-
zogen, fiir die auf Informationen aus zwei Europédischen Projekten zuriickgegriffen werden
konnte. Diese Fallstudie diente als realistisches und interdisziplinédres Beispiel, um die Quan-
tifizierung von Eingangs- und Ausgangsunsicherheiten sowie die Anwendung weiterer UQ-
Methoden dieser Arbeit zu demonstrieren.

Ein wesentlicher Beitrag dieser Dissertation war die Untersuchung der Stiarken und Schwéchen
verschiedener Techniken der Globalen Sensitivitdtsanalyse (GSA), welche die individuelle Kri-
tikalitdt von Parameterunsicherheiten quantifizieren. Im Gegensatz zu konventionellen An-
sdtzen, die GSA-Methoden hédufig ohne klare Kriterien auswihlen, bewertete diese Forschung
systematisch deren Fihigkeiten, Interpretierbarkeit und Recheneffizienz. Die dabei iden-
tifizierten und teils signifikanten Unterschiede unterstreichen die Notwendigkeit einer in-
formierten und auf den spezifischen Kontext der Bewertung abgestimmten Auswahl von GSA-
Techniken.

Zusétzlich wurde das Python-Paket dste entwickelt, um den Bedarf an benutzerfreundlichen
Programmierumgebungen zur Behandlung von DSTE-basierten UQs zu adressieren. Zuge-
horige Analysen demonstrierten die Fihigkeiten des Pakets und diskutierten den Einsatz
von DSTE mit Hilfe von systematischen Experteninterviews sowie theorie-spezifischen UQ-
Metriken. Dariiber hinaus wurden die damit verbundenen Interpretationsschwierigkeiten,
insbesondere im Hinblick auf die Adressaten der TEA, sowie die Herausforderungen in Bezug
auf die Recheneffizienz untersucht.

Die Forschung untersuchte auch Methoden zur Kombination epistemischer und aleatorischer
Unsicherheiten und schlug einen neuartigen Ansatz vor, der DSTE-basierte und probabilis-
tische UQ Ansédtze mittels verschachtelten Monte-Carlo-Simulationen kombiniert. Dieser
Ansatz verbessert die Interpretierbarkeit und rechnerische Effizienz im Vergleich zu einem
rein evidenztheoretischen Ansatz und bietet eine nuancierte Darstellung von Unsicherheiten.
Entscheidungstrager profitieren von klareren Einblicken durch verstandliche Visualisierung
und einfache Interpretation, wahrend Nutzer mafigeschneiderte Empfehlungen aufgrund der
deutlichen Trennung von epistemischen und aleatorischen Effekten ableiten konnen. Dartiber
hinaus bietet dieser Ansatz Wiederholbarkeit, sodass UQ wéhrend des gesamten Produk-
tentwicklungsprozesses konsequent angewendet und wiederholt werden kann, wenn neue
Informationen zur Verfiigung stehen.
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1 Introduction

“It is trivial to note that the future is
uncertain. It is, however, far from
trivial to analyze that uncertainty.”

Maler et al., 2005 [154, p. 574]

For profit-driven businesses, the assessment of a product’s performance is a crucial step in
the development process. Performed periodically at the end of each design phase, Integrated
Product Assessments (IPAs)! are used to reduce the number of potential candidates to be
developed in more detail at the next stage [277, p. 20]. This is also referred to as “survival of
the fittest” [108, 169] and is illustrated in Fig. 1.1. The earlier stages are typically characterized
by a lack of information about the final product design and the predicted market demand.
Simultaneously, the decisions made in these earlier stages define the majority of the program’s
cost, as Fig. 1.2 shows. While the amount and quality of information in the later phases of
the design process is much higher, the leverage of improving economic performance is much
lower, and, depending on the sector, a significant amount of money has already been spent [77,
p- 13f].

design phase a design phase b design phase ¢
create select design select develop select
ideas feasible concepts promising products best

Figure 1.1 Alternating divergence and convergence during product development.

The aeronautics sector, for instance, is facing an ever-increasing economic pressure while
operating in a highly complex and competitive environment [46, 65]. Strategic decisions for
or against a product typically involve immense investment cost [187, p. 33], often offer low
profit margins for operators IATA [113, p. 3], and can impact businesses for decades to come.
Therefore, economic assessments of aircraft concepts, operational strategies, or technologies,
hereafter referred to as products, have to be thorough, objective, and trustworthy in order
to be accepted [153, 301]. As these assessments predict the product’s performance in the

IThe term integrative in IPA describes the approach where tools and inputs of various disciplines and domains are combined
to estimate the product’s performance. It is an essential part of the engineering field of integrated product development.
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A committed cost

share of lifecycle cost

< ,
P reduction
- T opportunity
phase 1a phase 1b phase 1c phase 2 phase 3 phase 4 g
planning & preliminary detailed design  production & operation & disposal or
conceptual design design & system & development acquisition maintenance retirement
integration

lifecycle phases
Figure 1.2 Committed lifecycle cost, reduction opportunity, and knowledge over time [77, p.13].

future, the results are prone to a variety of uncertainties, especially when considering the long
lifetimes of aircraft. However, there is little to no guidance regarding a systematic inclusion
of uncertainties [243, p. 1]. This can lead to a lack of adequate consideration for uncertainty,
which in turn negatively impacts transparency [86, p. 435], undermines trust in analyses [235,
p- 484], and significantly contributes to the recent reproducibility crisis in mathematical and
computational modeling [213, p. 7-8]. Furthermore, it impedes businesses and investors from
understanding the true potential of a product [260, pp. 113-115], which is one of the key reasons
why two out of three products developed globally never make it from a research project to
commercialization® [2, p. 2]. Therefore, a proper inclusion of uncertainties can help to bridge
the so-called “valley of death” [300, p. 90], illustrated in Fig. 1.3, and spur the innovation that
the aerospace sector is in dire need of in order to meet both economic and environmental
challenges [75, p. 8-9].

« | research

¢ [ funding

3 "valley of death”

2

]

-

research level of development business
institutions community

Figure 1.3 The valley of death bridging the gap between research and commercial application [24, p. 371]

2This ratio can vary significantly and may exceed 90 %, depending on the phase in the development cycle at which a product
idea or concept begins to be recognized as such [257, p. 17].

3A phrase coined by Marczewski [156] describing the gap between the stage of research technologies and market entry.



While a variety of sources and types of uncertainties exist* and potentially affect the IPA results,
the work in this thesis is devoted to uncertainties in the input variables and model parameters
rather than uncertainties regarding the model itself or its technical implementation. Due
to the recurring nature of IPA in the product development process, it is argued that the
input uncertainties are more likely to change during the product development process, e.g.,
when new information arise, whereas the underlying model and its structure are more likely
to remain as is for fair comparison purposes. To facilitate the management of these input
uncertainties in aeronautic IPA, a systematic approach is proposed, in which said uncertainties
are identified, classified, quantified, combined, propagated, and interpreted in a repeatable
manner, as illustrated in Fig. 1.4. This methodology is intended to be used in the intermediate
stages of the Integrated Product Development Process (IPDP), where concept or preliminary
designs are available and uncertainties about the product and its intended environment are
known and quantifiable to some degree.

The methodology begins with
defining a model for the as-
sessment, the scope of which * Set up a model for the simulation/evaluation
should be delineated in consul- e Delineate scope with customer/recipient

tation with the customer or re- l

cipient. This is followed by the 2. Uncertainty Identification
identification of uncertainties, * Review assumptions to select, classify, and organize uncertainties [

where assumptions are care- e Distinguish source, nature, and extent of selected uncertainties
fully reviewed in order to se- l

lect, classify, and organize un-

certain parameters for reference
and overview purposes. In o Use literature, databases, and/or expert elicitation to model selected
this st ep the source, nature input uncertainties considering their nature and data availability

7 7 7

and extent of these are distin- l
guished, which is commonly re- 4. Uncertainty Propagation

ferred to as uncertainty classifi- , e

. ) ) e Define a setup for propagation with original model or surrogate
cation. The third step involves e Sample from input uncertainties, execute model, and record outputs
the quantification of input un- l

certainties. This is achieved by
utilizing literature, databases,
and - where needed - expert e Analyze output distribution including sensitivity analysis
elicitation to model the selected e Calculate input uncertainty criticality for step 6

input uncertainties, taking into l

account their classification and 6. Uncertainty Reduction

the availability of data. Subse- . . . .

Iv. th H fun- * Revise sources and reduce uncertainty where possible and suitable
quenjf Yr - € prqpaga 1on or un ® Repeat steps 3 to 5 with reduced input uncertainty
certainty is carried out. A setup l

for repeated model execution is
defined, either with the origi-
nal model or a surrogate. The * Summarize, visualize, and interpret the output uncertainty
fifth step involves the quantifi- e Formulate recommendations for future work

cation of output uncertainty. It
includes an analysis of the sta-
tistical moments and a calculation of input parameter criticality to guide future uncertainty
reduction efforts. This leads to the sixth step, where sources are revised and uncertainty is
reduced wherever possible and suitable. Steps three to six are repeated until the desired accu-
racy is met or all reduction options are exhausted, marked by the “minor iteration” loop. The
final step of the methodology is the expression of uncertainty and addresses the recipients of

1. Model Setup

3. Input Uncertainty Quantification

major iteration

5. Output Uncertainty Quantification

ki minor iteration —}

7. Uncertainty Expression

Figure 1.4 Proposed uncertainty management methodology.

4Gee Section 2.2.1 for further details on definitions and distinctions of uncertainty.
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the study, who are likely not experts in Uncertainty Quantification (UQ). Therefore, the output
uncertainty is summarized and visualized, and interpretation aids are given. Recommenda-
tions for future work are then formulated based on these findings. In cases of major product
changes, steps 2-7 can be repeated, possibly resulting in a new set of selected uncertainties to
quantify, propagate and interpret.

This approach assists practitioners in determining where to invest more research and decision-
makers in understanding and correctly interpreting the study results, facilitating the transition
of promising technologies from research to successful commercial application. It is posited
here that the additional effort of uncertainty inclusion is outweighed by its merit, as it enhances
the quality of research [243, p. 3] and addresses the shortcomings of the conventional approach,
where decision-makers often rely on their gut feelings [85, p. 55], influenced by past experiences
and emotion [248, p. 35], which is neither objective nor reproducible [255, p. 1393].

The research performed here seeks to pave the way for the uncertainty management method-
ology’s successful application by identifying, reviewing, organizing, and comparing different
mathematical theories and engineering techniques for UQ, ultimately culminating in informed
recommendations throughout this thesis. In order to guide the research and develop a research
design, some background information on IPA in aerospace and UQ is given next, followed by
a description of the state of the art in both fields in Section 1.2.

1.1 Background

research area

This Section provides some background
on the two topics of fundamental inter-
est for this thesis, illustrated in Fig. 1.5:
(a) integrative product assessments in
aeronautics; and (b) uncertainty quan-
tification, both probabilistic and non-
probabilistic. The intention is to create a
basic understanding of relevant concepts,
definitions, techniques, and key publica-
tions to facilitate the identification of the
research gap that is intended to be closed
by this study, which is detailed further in Figure1.5 The research area as the union of IPA and UQ
Section 1.2. A more detailed literature review can be found in Chapter 2.

(non-)probabilistic
uncertainty
quantification
theories & methods

1.1.1 Economic Assessments in Aerospace

In product assessments, new aircraft, technologies, processes, or new products in general are
typically compared to a well-defined reference. The outcome is either an absolute or relative
difference, indicating the superiority of one product over another. The reference may represent
an investment in a conventional or competing product, or describe the status quo alternative,
e.g., in a business sense, not investing in one of the products of interest but in the business
itself instead.

Cost Estimation Relationship Methods

Historically, IPAs in aerospace have been performed using Direct Operating Cost (DOC) meth-
ods. These methods are based on sets of Cost Estimation Relationships (CERs), which correlate
certain aircraft characteristics (e.g., the operating empty weight) or operational parameters (e.g.,
the average flown distance) with the airline’s DOC. These CERs are often based on regres-
sion analyses of airline finance databases, which are usually not publicly available, rendering
this approach rather non-transparent. Due to their simple and fast evaluation, DOC meth-
ods have been widely used and integrated into tools for aircraft design (e.g., in Hansen et al.
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[96]), technology evaluation (e.g., in Kyprianidis et al. [143]), and operations assessment (e.g.,
in Xu et al. [292]). Often enough, this approach is used outside of its scope of applicability,
such as in Martinez-Val et al. [158] or Cuerno-Rejado et al. [51], where aircraft designs that
are highly unconventional are evaluated®, even though the underlying regression of the DOC
methods arguably does not include the substantial data basis for said applications, which is
an inevitable symptom of the lack of method transparency. With the overarching topic of
quantifying uncertainties in IPA in mind, it should be noted that most of the DOC methods
do not provide any information on the accuracy, error, degree of explained variance (i.e., R?),
or any other indicative parameter for UQ. This lack of consideration for the unknown is not
unique to the aerospace sector, but rather a common problem throughout most engineering
science endeavors [30, p. 669].

(Whole) Lifecycle based Methods

With the increase in available computational power and a more integrative approach to product
development, a shift towards a more holistic and lifecycle-driven approach has been observ-
able [1, 77]. In the aviation sector, these typically take one of two forms®:

¢ Lifecycle-Based Methods which focus on the long operational phase of aircraft, where the
impacts of aging, wear and tear, and other degradation mechanisms on the overall economic
performance are investigated. Thereby, the evaluation perspective is usually fixed to one
stakeholder, i.e., the operator (e.g., Justin et al. [128] and Pohya et al. [197]).

* Whole Lifecycle-Based Methods which aim to include all lifecycle phases with a “cradle
to grave” approach. These expand the operator’s perspective by manufacturing cost and
end-of-life cost (e.g., Curran et al. [56] and Marx et al. [159]).

Like DOC methods, lifecycle-based tools have been used to assess various aircraft design alter-
natives (e.g., Johnson [122]), technologies (e.g., Wicke et al. [286]), or operations (e.g., Langhans
etal. [146]). However, there seems to be no industry- or research-wide accepted tool or method-
ology, with most contributing institutions using some form of custom method. As for the whole
lifecycle-based approach, some more established (albeit outdated) methods include Roskam
[221] or Aircraft Lifecycle Cost Analysis (ALCCA) [80, 160], which both use CERs to calculate
Whole Lifecycle Cost (WLCC) and are useful for early-stage estimations.

In other words, the (whole) lifecycle-based methods differ from the DOC methods in their
scope and less in the nature of how the method itself calculates the costs. With respect to
UQ, it can be concluded that conventional (whole) lifecycle considering methods, due to their
prevalent CER-based nature, are often just as non-transparent as their DOC counterparts.

1.1.2 Uncertainty Quantification

Dealing with what is not known is not a trivial task. Even defining it is difficult, as there is
no one kind of uncertainty. Earlier publications refer to it as “ignorance” [60, p. 206], some
call it “that what is not precisely known” [30, p. 670], and more elaborate definitions are, for
instance, “any deviation from the unachievable ideal of completely deterministic knowledge of the
relevant system” [281, p. 5]. Considering this, it is no surprise that there is neither a commonly
shared terminology nor an agreement on a generic typology of uncertainties. Instead, some
researchers use different terms for the same kind of uncertainty, while others use the same term
to refer to different kinds [281, p. 5-6]. However, a frequently used classification distinguishes
aleatory” and epistemic® uncertainty. This attribute is often referred to as the nature of uncertainty.

5 A blended wing body in Martinez-Val et al. [158] and a joined-wing aircraft in Cuerno-Rejado et al. [51].

The nomenclature of “lifecycle-based” and “whole lifecycle-based” approaches is inspired by other sectors such as in civil
engineering [1, 278] as well as in general cost engineering [15].

7Stemming from the Latin term alea which translates to dice or chance.
8Stemming from the Greek term epistéme which translates to knowledge or understanding.
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As it plays a major role in the uncertainty management methodology, a brief description follows,
with a more elaborate introduction provided in Section 2.2.1.

The term “epistemic” is used to categorize uncertainties that exist due to a lack of knowledge,
i.e., epistemic uncertainty may be reduced by further research and empirical efforts’. If, for
instance, the weight of a product can only be estimated with a range between 100 and 200 kg,
this uncertainty is epistemic in nature. With more information, this range can be reduced and
finally replaced by a deterministic value, e.g., 155 kg, once it has been developed, manufactured,
and physically put on a scale.

The term “aleatory” is used to categorize uncertainties that exist due to their inherent variability
and hence cannot be reduced by incremental effort. For example, the frequency of how often
aircraft surfaces are cleaned by precipitation can be obtained by statistics to a certain degree,
but it is impossible to reduce this forecast to a single, invariably true value, e.g., every three
days.

Each engineering endeavor, whether it is an experiment, simulation, or design, deals with
an individual set of uncertain parameters. These may originate from various sources, such
as an imprecise sensot, an uncontrollable environment, or model inputs and assumptions. It
is up to the analyst to decide which uncertainties are pertinent to the engineering endeavor.
Once identified, the next question the analyst needs to answer is how to model these uncer-
tainties. Thereby, one can distinguish between the mathematical theory and the engineering
application.

Mathematical Theories for Uncertainty Quantification

There have been numerous developments in mathematical uncertainty representation. It shall
be mentioned right away that there is no method that fits all cases [256, p. 3] and different
uncertainties are best described by different theories [243, p.3]. The most straightforward
distinction foresees a separation between conventional Probability Theory (Prol) and non-
probabilistic theories.

Probability Theory is one of the best-known theories among engineers. The general term
“probability” describes the area of study predicting the relative likelihood of various outcomes.
With respect to UQ, the field of Prol provides several metrics, for instance, the Probability
Density Function (PDF) (out of which the mean, standard deviation, skew, and curtosis can
be obtained), or the closely linked Cumulative Distribution Function (CDF) (out of which the
Interquartile Range (IQR) can be used as UQ). These metrics are primarily useful when the
uncertainties at hand have a numerical character and the number of samples is sufficiently high.
Additionally, many authors describe Prol as being suitable to cover only aleatory uncertainties,
such as Agarwal et al. [3].

Non-Probabilistic Theories include evidence theory, possibility theory, and fuzzy set theory.
The former two are typically used as an alternative to classical Prol, especially for epistemic
uncertainties. While ProI uses only one function to characterize uncertainty, i.e., the probability
function, it is broken down into two functions in evidence theory: belief and plausibility. These
provide bounds on the probability of an event and are especially useful when information
from independent sources have to be combined. Possibility theory was developed to deal
with imprecision and vagueness in information. Similarly to evidence theory, it distinguishes
uncertainty with two functions: Possibility and necessity. Fuzzy set theory takes a different
approach by extending the Boolean logic of classical set theory by a membership function,
enabling membership values in the closed interval of [0, 1], i.e., values between true and
false. Fuzzy theory is particularly useful in control systems or when dealing with the lack of
confidence in sensor data.

9Note that Walker et al. [281, p. 13] correctly conclude that further efforts on reducing epistemic uncertainties may reveal new
uncertainties which formerly have been “deep uncertainties”.
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Prevalent Techniques for Uncertainty Quantification
The process of systematically dealing with uncertainties has different names, e.g., “uncertainty

quantification”, “uncertainty analysis”, “uncertainty assessment” or “uncertainty management”. In
addition to the inconsistent terminology, there seems to be no universal methodology available
to define each process step, starting from acknowledging their existence over modeling them
appropriately up to representing them in an understandable manner. Few authors have made
an effort in this direction, such as Booker et al. [30], but applied studies following a compre-
hensive methodology are rarely seen. Instead, engineers and researchers typically use one of

the following techniques to deal with uncertainty [90]:

Treat uncertainties as assumptions: A large portion of studies acknowledge the presence of
uncertain parameters but treat them as assumptions. That is, a value or scenario is assumed
to be true and fixed for the analysis. These values are often educated guesses but can include
intentional or unintentional bias. The set of assumptions as a whole may be either conservative,
progressive, or a mixture of both. In the latter case, it can be difficult for the recipient to correctly
interpret the likelihood of the results.

Sensitivity Analysis: A typical first step when aiming for uncertainty-enabled studies is to
perform sensitivity analyses, which can be classified into Local Sensitivity Analysis (LSA) and
Global Sensitivity Analysis (GSA). LSA provides design insights by calculating the change of
an output variable for a change of an input variable. Thereby, a lower, intermediate, and
upper value is defined for each uncertainty. The model is then executed repeatedly for each
value. GSA is rather performed to gain overall insights by analyzing the output behavior (e.g.,
variance or other statistical moments) with respect to the entire range of input values, usually
represented by PDFs. A possible outcome of a GSA would be that certain input uncertainties
barely matter and may be neglected for complexity reduction. In the context of UQ, GSA is
often used to apportion the output uncertainty to each input constituent.

Monte Carlo Simulations: MCSs refer to computational algorithms that use iterative random
sampling techniques to produce a large number of numerical outcomes. In the domain of UQ,
MCSs are employed to capture the inherent variability of a system resulting from uncertain
input parameters. By conducting multiple iterations of the model, each time using a different
set of randomly selected inputs, a distribution of possible outcomes is generated. The distri-
bution is subsequently examined in terms of its mean and standard deviation, which serve
as indicators of the level of uncertainty in the output. Nevertheless, the Monte Carlo method
has several limitations. One significant obstacle pertains to the computational intensity that
arises when dealing with high-dimensional problems or models characterized by intricate de-
pendencies. Such scenarios often necessitate a substantial number of calculations to obtain
accurate estimates. Moreover, the dependability of the approach is intrinsically linked to the
Law of Large Numbers (LLN), a principle that asserts that as the number of experiments in-
creases indefinitely, the outcomes tend to converge towards the anticipated value. Dealing with
epistemic uncertainties is an additional difficulty when using MCSs. Epistemic uncertainties
frequently exhibit a lack of clearly defined probability density functions, primarily attributable
to the limited availability of data. In such cases, researchers often use a uniform distribution
between a lower and an upper bound. As MCS outcomes heavily depend on the input distri-
butions, this approach may prove inadequate, highlighting the need for alternative approaches
to quantify uncertainty in such scenarios.

Surrogate Models: As an effect of MCS execution times quickly reaching and exceeding
acceptable computational budgets, recent research has focused on mitigating this issue by
substituting the original model with a more computationally efficient surrogate. Techniques
such as Polynomial Chaos Expansion (PCE) and Stochastic Collocation (SC) are commonly
employed for surrogate model generation [59, 71]. PCEs approximates the model response
using a series of orthogonal polynomials, specifically chosen to align with the probability
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distribution of the input random variables. Conversely, SC interpolates the original output at
carefully selected collocation points, chosen to optimize model accuracy by aligning with key
statistical properties of the input space, such as using the roots of orthogonal polynomials for
Gaussian quadrature. However, while surrogate models offer computational efficiency, they
also introduce new uncertainties. These include model approximation errors, which arise from
the difference between the surrogate and the original model, and uncertainties related to the
choice of the surrogate model, such as the selection of basis functions in PCE or the collocation
points in SC [213, p. 9].

Further techniques for and related to UQ include, but are not limited to:

¢ Interval Analysis, in which uncertain inputs are assigned a lower and upper bound but the
distribution of the inputs within these bounds is unknown. The model’s response to these
input uncertainties is then evaluated by assuming uniform distributions, sampling from
these and finding the output values of interest, e.g., minima and maxima. Alternatively,
optimization techniques such as bound constrained Newton methods [11, 259] can be used
to obtain the model’s optima response given the bounded input intervals.

* Scenario Analysis, which involves creating and analyzing detailed models of different pos-
sible future states to assess the effects of varying uncertainties and decisions. This technique
allows engineers to explore how changes in input variables might impact outcomes, using a
set of defined scenarios, each representing a plausible future environment. This method is
particularly useful in strategic planning and complex decision-making where uncertainties
are high.

* Non-Probabilistic Techniques, which include Fuzzy Inference System (FIS) from fuzzy
set theory or make use of the concepts of belief and plausibility (from evidence theory) or
possibility and necessity (from possibility theory).

Now that some background information on the available theories and engineering techniques
for UQ has been given, the state of the art of uncertainty-enabled IPA in aerospace is discussed
next.

1.2 State of the Art and Key Barriers

This Section briefly reviews relevant literature from Techno-Economic Assessments (TEAs)
and related aeronautics fields, focusing on the incorporation of uncertainties. First, interdisci-
plinary tools are examined, followed by increasingly discipline-specific studies where the use
of mathematical theories and employed UQ techniques are discussed.

Within the product-agnostic TEA environment, the first framework to highlight is the Inte-
grated Cost and Revenue Estimation (i-CARE) tool, developed by Justin et al. [126-128]. By
combining different modules with a commercial mission simulation tool, i-CARE computes all
aircraft related costs and revenues, integrating the effects of flights, maintenance, and degra-
dation. This approach values new aircraft concepts and engine maintenance strategies from
an airline’s perspective, addressing valuation uncertainties with probabilistic methods such
as MCS for Real Option Analysis (ROA). ROA extends traditional methods from discounted
cash-flow analysis by incorporating options theory to handle uncertainty and decision-making
with a focus on flexibility [84, p. 431], contrasting with input parameter UQ, which primarily
assesses the impact of parameter variability on economic Key Performance Indicators (KPIs)™.
ROA evaluates managerial flexibility and strategic options, such as delaying, expanding, or
abandoning projects under different scenarios [127].

10Supplemental information about ROA can be found in A.1.
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A tool with a similar objective is the economic framework from Thokala et al. [266, 267], which
uses a Discrete Event Simulation (DES) to model the complex interactions in aeronautics and
calculate the lifecycle cost of different aircraft focusing on the operational phase. Uncertainties
within acquisition module are mentioned to be dealt with MCS, but their overall framework is
deterministic, resulting in point estimates of the economic KPIs.

ALCCA, which resulted from the combined effort of NASA and GeorgiaTech’s Aerospace Sys-
tems Design Lab (ASDL), not only models the operator’s cash flow, but also the manufacturer’s
and calculates overall economic metrics such as the Return on Invest (ROI) [163]. In contrast to
the aforementioned techno-assessment tools, ALCCA has frequently been used in combination
with aircraft design tools such as Flight Optimization System (FLOPS) [174]. This combination
allowed for a vast number of technology selection investigations, in which multiple potential
technologies are evaluated with respect to their combined impact the overall aircraft design
and its predicted efficacy"'.

This TPS process has often been embedded in the Technology Identification, Evaluation and
Selection (TIES) methodology [165], which deals with uncertainties using sensitivity analyses
and MCS. Following the selection phase managed by TIES, the Technology Impact Forecasting
(TIF) methodology takes over to assess the future impacts of the chosen technologies [166].
Due to its forecasting nature, it deals with significant uncertainties about future conditions
and technological performance [250]. Typical techniques to model these uncertainties rely
on probability theory and comprise scenario analysis and sophisticated sensitivity analyses
including non-linear interaction effects [134, 164, 165]. It has since been applied in various
contexts [35, 109, 132, 161, 162], commonly focusing on identifying which subset of technologies
from a larger pool should be incorporated into overall aircraft design. For a comprehensive
overview of TIF and TIES, refer to Soban et al. [250].

Another research stream worth highlighting is the work from Akram and Mavris [7, 8, 10,
11], which stands out for its use of evidence theory in addressing the complexities of UQ in
technology selection. They effectively integrate this theory into three critical tools: the Technol-
ogy Impact Matrix (TIM), Technology Compatibility Matrix (TCM), and Technology Synergy
Matrix (TSM). These matrices serve as analytical frameworks that enable a comprehensive
evaluation of combining potential technologies. The TIM assesses the effects of different tech-
nologies on organizational goals, considering both direct and indirect impacts [133]. The TCM
examines how well new technologies integrate with existing systems, ensuring that the se-
lected technologies are compatible with one another [224]. Meanwhile, the TSM identifies and
evaluates the synergistic effects of combining multiple technologies, highlighting potential en-
hanced benefits or unintended negative interactions [9, 299]. Their methodological innovation
lies in how these matrices, underpinned by evidence theory, allow decision-makers to navigate
the uncertainties of technological advancements with greater confidence, thereby optimizing
strategic technology adoption and integration.

Focusing more on aircraft design and performance evaluation and less on the overall TEA is the
work by Pfeiffer et al. [190-192] and Krosche et al. [138]. Pfeiffer et al. uses the Remote Control
Environment (RCE) from DLR to connect the various disciplines involved in aircraft design.
The authors developed an interface where non-intrusive MCS are automatically performed
on parameters which have previously been defined as uncertain by the responsible experts.
However, these simulations only allow for normal distributions and do not discern the nature of
uncertainty nor their effect on the result. Krosche et al., in contrast, does discern the uncertainty
nature in their aircraft design study and focused on those that are epistemic. These were treated
with probability theory and propagated using a Monte-Carlo setup, resulting in a robust low-
noise cruise-efficient short takeoff and landing transport aircraft.

B Supplemental information about Technology Portfolio Selection (TPS) can be found in Appendix A.2.
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Similar approaches to uncertainty inclusion can be observed in the aircraft noise assessment
studies by Bertsch et al. [27] and June et al. [125]. Bertsch et al. investigated the influence of un-
certain aircraft design parameters, which are likely to be epistemic, and varying environmental
boundary conditions, which are likely to be aleatory, while assuming normal distributions and
using MCS for propagation. However, no explicit discernment of the uncertainty nature was
provided. Consequently, the different impact epistemic and aleatory uncertainties have on
the overall result was not discussed. June et al. focused on the installed aircraft systems (e.g.,
the main and nose landing gear or the Kruger flap) for the noise assessment. In this study;,
uncertainties were categorized based on their effect (e.g., whether they are a source for noise
or a represent a possibility to reduce noise) for overview purposes. Similarly to Bertsch et al.,
they quantify uncertainty with probability theory and use MCS, but do not differentiate the
uncertainty nature nor its nuanced impact on the assessment outcome.

While the previous integrative and /or multidisciplinary studies almost exclusively use prob-
ability to deal with uncertainties, there are a number of intradisciplinary aerospace studies in
the that use non-probabilistic approaches. Structural designs under uncertainty through Finite
Element Analysis (FEA), for instance, is provided by Chowdhury et al. [45] and Rezaei et al.
[216]. Both make use of fuzzy logic as an alternative to probability theory and utilize MCS
to design an aircraft wing and T-Tail, respectively. Another example is given by Chen et al.
[41], who quantify model uncertainties by applying FIS to predict aircraft taxi times. Further
uses of fuzzy set theory can be found in Hawer et al. [100] and Reinhart et al. [214], applied
to factory evaluations. The authors combine artificial neural networks with FIS to quantify
linguistic input uncertainty and subsequently translate these into PDFs.

Evidence theory has also been used in some intradisciplinary studies to deal with situations
where data is limited and experts area available. Worden [287], for example, discussed its
use in an evidence-based damage classification study for aircraft structures. Similarly, Bae et
al. [22, 23] investigated the structural response of an intermediate complex wing using evidence
theory. Agarwal et al. [3] investigated the applicability of evidence theory for an aircraft sizing
problem. This type of evidence-based approach to optimization under uncertainty, however,
is rarely seen in literature.

Sensitivity analysis is a standard method used to distinguish critical uncertainties from negli-
gible ones, which is essential for targeting uncertainty reduction efforts effectively. However,
the methodologies employed in sensitivity analysis differ widely, as documented in the review
by Roelofs et al. [220]. For example, the range of methods within the LSA subset includes
one-at-a-time parameter variations, as seen in the UQ study of a constrained aircraft design by
Xie et al. [289], and extends to more complex approaches that account for interaction effects,
such as those reported in the aircraft subsystem design studies by [37, 38]. GSA are also applied
in various contexts, such as in the variance-based uncertainty decomposition approach used in
the aircraft conceptual design study by Opgenoord et al. [184]. Other notable methods include
the entropy-based approach to GSA proposed by Curran et al. [55] in a high pass filter control
design, and the application of the Sobol” method in a compressor simulation model by Bilal
[28]. Despite the development of new and diverse methods, as highlighted by [212, 213], the
choice of methodology often remains unexplained, which may impede their broader adoption
in GSA.

Table 1.1 summarizes the key UQ characteristics of the previously mentioned studies. The
12 column-wide attributes cover the theory and technique chosen to deal with uncertainties,
and what the nature of the considered uncertainties are. The individual literature entries are
clustered into those of the TEA domain, TPS, aircraft design studies and related fields such as
aircraft noise assessment, and studies from a more monodisciplinary domain such as aircraft
structural design.
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Table 1.1 Key UQ characteristics of key publications from various aeronautic fields.
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Q
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Krosche et al. [138] o [ ([
Bertsch et al. and June et al. [27, 125] o o ([
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*The  symbol indicates that these publications mention the different uncertainty natures but do not treat them differently
and consequently do not quantify their nuanced impact on the overall result.

This brief review of UQ in aeronautics underscores the prevalence of probability theory, es-
pecially in multidisciplinary and integrative contexts. In contrast, fuzzy set theory is mainly
applied in monodisciplinary studies to manage linguistic uncertainties and model develop-
ment via FIS, but it finds limited use in wider assessment frameworks. Although evidence
theory is recognized for addressing epistemic uncertainties, its application is infrequent and
limited to specific areas such as single-discipline studies, complex aircraft design, and technol-
ogy portfolio management. Despite its robust mathematical base and noted potential, evidence
theory’s integration into TEA frameworks is almost entirely absent. Applied techniques for
UQ within probability theory are MCS as well as local and global sensitivity analysis. The lat-
ter is found more frequently in the monodisciplinary domain, whereas tools and frameworks
from the TEA area and TPS field tend to rely on LSA. The discussed literature tends to either
overlook the specific nature of uncertainties - epistemic versus aleatory - or concentrate on
one type only, without adequately exploring their distinct impact on the results and potential
future uncertainty reduction efforts.

Building on these insights, the following barriers to a structured inclusion of input UQ in TEAs
can be formulated:

1. UQ, an active research area, offers a variety of mathematical and engineering methods.
While monodisciplinary studies often integrate non-probabilistic approaches, the techno-
economic sector predominantly utilizes probability theory, MCS, and LSA. This reliance
on traditional methods might stem from the greater familiarity of both practitioners and
recipients of TEAs with probabilistic concepts and UQ metrics, such as the mean value
+ a standard deviation [220, p. 9]. The preference for conventional approaches may also



12 Chapter 1: Introduction

be attributed to the scarcity of practical tools and interpretive aids for alternative non-
probabilistic theories and techniques.

2. UQ efforts are typically demanding in terms of time, budget, and computational resources.
Consequently, it is impractical and often unnecessary to address all uncertainties with equal
depth. Sensitivity analyses, particularly GSA, help in breaking down output uncertainty
into its input parameter components, pinpointing key parameters, and efficiently directing
efforts to reduce future uncertainties. Despite their significant potential in uncertainty
addressing TEAs, the adoption of GSA in such frameworks remains limited. This may
be due to the wide variety of GSA methods available, which differ substantially in their
approaches, compounded by the lack of discussion among researchers about their specific
choice of GSA technique.

3. Recognizing the nature of uncertainty and its influence on outputs is pivotal in TEAs. When
epistemic uncertainties dominate the output, it suggests that further research and devel-
opment could effectively reduce uncertainties. In contrast, a predominance of aleatory
uncertainties often calls for more robust design solutions, if viable. Despite its impor-
tance, this systematic differentiation between epistemic and aleatory uncertainties is rarely
addressed in assessment literature. This oversight may stem from a general lack of aware-
ness and challenges associated with combining and propagating these different types of
uncertainties in a way that is both manageable and interpretable.

With these barriers in mind, the following Section presents the overall research objective as
well as the guiding research questions and corresponding hypotheses.

1.3 Research Objective, Research Questions, and Hypotheses

The structure of this thesis, including the design of the conducted studies, is driven by an over-
arching research objective and three guiding research questions, each with its own hypothesis.
The former can be formulated as:

The objective of this research is to enhance the transparency of prospective TEAs in aero-
nautics by overcoming key barriers that impede the implementation of an uncertainty
management methodology that is discerning of uncertainty nature, efficient in application
for practitioners, and comprehensible for recipients.

In this context, the term transparency is central, particularly in light of the aforementioned
reproducibility crisis and its potential to undermine the credibility of prospective TEAs. En-
hancing transparency is crucial for addressing concerns about the reliability of the assessment
studies, especially given the challenges in validating these assessments, particularly when pre-
dictive modeling and long-term forecasts are involved. The phrase discerning uncertainty nature
underscores the critical importance of recognizing and differentiating the nuanced impacts of
epistemic and aleatory uncertainties on the interpretation of outputs. Efficient in application
encompasses both uncertainty modeling efforts and considerations of computational require-
ments. Finally, the phrase comprehensible for recipients ensures that the results and implications
of the assessments can be readily understood and utilized by decision-makers, thus facilitating
the adoption of the methodology.

The Research Questions (RQs), which aim to guide the research and overcome the aforemen-
tioned barriers, are thus formulated as follows:

RQ1 How can the adoption of global sensitivity analysis in uncertainty-addressing TEAs
be facilitated or promoted, given the variety of available techniques and the lack of discussion
among researchers about their specific choice?
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RQ2 How can non-probabilistic theories, such as evidence theory, be more widely adopted
in TEAs, given the challenges in interpreting their concepts and metrics and the lack of
comparative studies with prevalent probabilistic methods?

RQ3 How can the systematic differentiation between epistemic and aleatory uncertainties
be effectively addressed in TEAs, considering the challenges associated with combining
and propagating these different types of uncertainties in a manageable and interpretable
manner?

The first RQ is dedicated to the improvement of UQ efficiency and subsequent uncertainty
reduction efforts by addressing current challenges with the wide-spread adoption of GSA
methods. The corresponding hypothesis specifies the approach further and can be formulated
as follows:

HYP1 Through a comprehensive evaluation of the capabilities, interpretability of sensi-
tivity, and computational efficiency of various GSA techniques on an example problem,
followed by the demonstration of the selected method’s effectiveness in a case study, it is
anticipated that the insights gained will contribute to facilitating the adoption of GSA
in uncertainty-addressing TEAs, informing future research directions and methodological
choices in the field.

The second RQ guides investigations in the domain of non-probabilistic theories, more specifi-
cally, evidence theory. Thereby, it addresses the limitations of probability theory to adequately
model epistemic uncertainties, especially in data scarce situations. Practical aspects hinder-
ing a more frequent adoption of evidence theory are further specified in the corresponding
hypothesis:

HYP2 The development of publicly accessible and user-friendly tools for non-probabilistic
UQ, such as for evidence theory, is expected to aid in the adoption of these methods in TEAs.
Through demonstration, comparison with prevalent probabilistic methods, and analysis of
key aspects such as interpretability, traceability, and computational efficiency, such tools
have the potential to enhance decision-making processes in practical applications.

The third and final RQ addresses a critical aspect of UQ in TEAs and subsequent decision-
making processes. As highlighted in the discussion of the third key barrier, the nature of
uncertainty can play a decisive role in the formulation of future recommendations. More
specifically, if decision-makers are capable of assessing not only the overall uncertainty in the
outputs but also of distinguishing between the influences of epistemic and aleatory uncertain-
ties, their subsequent actions can be influenced in the following ways:

* When high epistemic uncertainties dominate a TEA, they indicate a significant potential for
enhancing internal knowledge. Decision-makers should consider allocating more resources
to research and development to deepen understanding of the epistemic input parameters,
thereby effectively reducing the output uncertainty. This strategy is advisable only if the
assessment’s overall output - reflected, for instance, in its mean value - is sufficiently positive
to justify the potential returns on such investments. Conversely, if the overall outcome is
low or negative, further investments are dispensable.

* In scenarios dominated by high aleatory uncertainties, which represent inherent and
product-specific risks, additional investment in knowledge acquisition does not typically
mitigate these uncertainties. If the assessment’s overall outcome is positive yet accom-
panied by considerable output uncertainty, the strategic response should pivot towards
developing more robust product designs that mitigate these uncertainties. This approach
is warranted only when the economic stakes are significant. However, if the overall output
is low or the uncertainty negligible, pursuing such efforts would not be cost-effective as
they are unlikely to deliver proportional benefits.
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The corresponding hypothesis can be formulated as follows:

HYP3 By systematically differentiating between epistemic and aleatory uncertainties in
TEA using evidence-theoretic methods and nested Monte Carlo simulations, it is anticipated
that enhanced interpretability and actionable insights will enable more informed resource
allocation and risk mitigation strategies. Specifically, this approach is expected to identify
dominant uncertainty types and guide strategic decisions on research investments or robust
product designs.

With the research questions and hypotheses formulated, the next Section presents the research
plan, which shows what studies and analyses are used in this thesis to meet the research objec-
tive and overcome the challenges that researchers may face when incorporating the uncertainty
management methodology.

1.4 Research Plan and Thesis Structure

The research plan for this dissertation is depicted in Figure 1.6, which outlines the foundational
Chapters 2 and 3, followed by the three main analytical chapters, Chapters 4 through 6. A
description of the research plan is provided next.

Chapter 2 Chapter 3
techno-econoimc uzrcjirftiig:zn definition of demonstration of
assessmen qu assessment model deterministic
fundamentals & fundamentals &
| - 3 ; & case study assessment
literature review literature review
Chapters 4, 5, and 6 l
comparative study of epistemic comparative study of
global sensitivity uncertainty quantification uncertainty nature
analysis techniques with evidence theory combination methods
(RQ1/HYP1) (RQ2/HYP2) (RQ3/HYP3)
* review of GSA techniques o development of Python package e development of Belief-based
* comparison using surrogate model e demonstration on case-study combination method
* demonstration on case-study ® comparison with probabilistic o development of hybrid
* analysis of traceability, interpreta- uncertainty quantification combination method
bility, and computational expense o analysis of traceability, interpreta- ® demonstration on case study

bility, and computational expense analysis of traceability, interpreta-

bility, and computational expense

Figure 1.6 Overview of the research plan and thesis structure.

Chapter 2 comprehensively examines the fundamental theories and relevant literature associ-
ated with UQ and TEAs within aeronautic practice. This chapter establishes a solid foundation
for subsequent analyses by detailing key mathematical concepts and their applications in engi-
neering, focusing on techniques such as Prol' and evidence theory. Additionally, it explores the
basic principles of TEAs to enhance comprehension and define the scope of the evaluation.

Chapter 3 presents the use case of Hybrid Laminar Flow Control (HLFC)'?, including a de-
scription of the newly developed assessment framework, the aircraft under investigation, and

121t should be noted that the majority of the data for this use case were obtained from two Clean Sky 2 projects: LPA WP1.4.1
and LPA WP1.4.4. The goal of these projects was to mature the HLFC technology for the next generation of large passenger
aircraft. Supplemental information about these projects can be found in Appendix A.3.
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how the technology’s impact is modeled. This chapter also details the boundary conditions
and assumptions. It concludes with a deterministic assessment of HLFC, serving both as a
traditional technology evaluation and as a baseline for subsequent uncertainty analyses.

Chapter 4 is dedicated to GSA, addressing the first research question and hypothesis. It explores
various GSA methods, evaluating them in terms of their capabilities (e.g., (in)dependence of
inputs), convergence behavior, and ease of interpretation. The most suitable GSA method is
then applied to the case study, serving as a practical demonstration of its effectiveness.

Chapter 5 advances the discussion to the second RQ and hypothesis. More specifically, a
Python package for evidence theory has been developed, tested, and verified on the HLFC ex-
ample. This Chapter further examines aspects such as convergence behavior and the difficulty
of interpretation. Additionally, a verification analysis is conducted, which includes hypothet-
ical uncertainty reduction (e.g., due to new information becoming available), to discuss the
traceability of the evidence-theoretic UQ method.

Chapter 6 addresses the third and final research question and hypothesis by comparing two
techniques for nested MCSs. The first technique is based on evidence theory, while the second,
though incorporating elements of evidence theory, stays within the probabilistic framework.
The comparison focuses on their interpretability, convergence behavior, and utility in scenarios
where new uncertainty-reducing information becomes available.

The thesis concludes in Chapter 7 with a comprehensive summary of conclusions and a reflec-
tion of the limitations of this work, alongside an outlook for further research in this field.






2 Fundamentals and Literature Review

This Chapter discusses the topics of TEA and UQ, addressing both their theoretical foundations
and practical applications. It aims to provide readers from each discipline with essential
knowledge of the other. The exploration begins with Section 2.1, which classifies various scopes
and techniques of TEA and introduces the key terminology. Following this, Section 2.2 presents
the mathematical theories and practical techniques prevalent in the UQ field. Section 2.3 offers
a thorough literature review that complements the initial overview provided earlier. This
Chapter concludes with a summary in Section 2.4.

2.1 Techno-Economic Assessment Fundamentals

TEA is used to evaluate the technical performance and economic feasibility of new technologies,
particularly in the context of industrial applications. This methodology integrates engineering
analysis with financial modeling to determine the viability of technologies under consideration.
By examining both technical metrics, such as an improvement in operating performance, and
economic factors, such as direct operating cost, TEA provides a holistic view of both the
operational and economic implications of technology deployment. The insights gained from
TEA are crucial for stakeholders in making informed decisions about technology investment,
development, and implementation, ensuring that both technical and financial requirements
are addressed effectively.

In the IPDP, early TEAs typ-
ically rely on qualitative tech- _ Product Cost
niques due to limited initial Estimation Techniques
knowledge. As the process ad- |

vances, more quantitative ap- v v
proaches become feasible. Con- qualititative quantitative
sequently, there is no universal (top-down) (bottom-up)

TEA process or metric that fits | |

all purposes [77, p. 45]. Fig. 2.1 v v v v
illustrates a widely recognized intuition- analogy- parameter- analysis-
classification of cost estima- based based based based

t?on t'ec}.miques [15, p : 3]’. dis_ Figure 2.1 Classification of product cost estimation techniques in
tinguishing between intuition-  the general engineering domain, based on Niazi et al. [177, p. 569].
based and analogy-based ap-

proaches for qualitative methods, and parametric and detailed analysis-based techniques for
quantitative methods.

Qualitative, or top-down, techniques are characterized by their minimal information require-
ments but often lack precision due to their reliance on historical data and expert judgment.
It is essential to evaluate their relevance carefully in each specific situation. On the other
hand, quantitative, or bottom-up, methods involve more complex modeling, ranging from
regression-based CERs to discrete event and/or agent-based models. While requiring expert
knowledge, these methods generally provide a broader scope of evaluation.

In the field of aeronautical engineering, practitioners and researchers utilize a broad spectrum
of cost estimation methods with a variety of temporal and content scope. For nomenclature
clarity purposes, a classification based on three overall groups is suggested and shown in
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Figure 2.2 Categorization of TEA practices in aeronautics based on temporal and content-specific scope.

Fig. 2.2. Here, existing assessment approaches are categorized into: (a) short-term and static;
(b) mid-term and dynamic; or (c) long-term and cross-stakeholder methods. The former
two focus on estimating the economic impact for the customer, i.e., airlines, whereas the
latter encompasses the perspective of the aircraft manufacturer. This classification, though
not exhaustive, seeks to represent the TEA application practice where customer integration
is focused on. It furthermore provides the structure of the subsequent discussion, where
techniques within each TEA category are described further.

2.1.1 Short-Term and Static Methods

The first category of TEA methods comprises DOC and Cost Benefit Analysis (CBA) ap-
proaches. They are named short-term since they typically consider shorter periods of time,
such as one representative year or one representative mission. The static nature combines two
aspects. The first has an economic background and addresses the fact that the temporal effect
of the payments is not accounted for. The second aspect deals with the methods themselves.
Many DOC and CBA methods tend to have a fixed parametric nature, which prohibits flexibility
in terms of considering alternative, e.g., technology-specific parameters in the equation.

Direct Operating Cost

DOCs revolve around cost elements that are directly affected by the aircraft and can be broken
down into Cash Operating Cost (COC) (comprising, for instance, fuel, maintenance, and op-
erating various fees) and Cost of Ownership (COO) (including, but not limited to, insurance
cost and interest charges). Together with Indirect Operating Cost (IOC), DOC represent the
Total Operating Cost (TOC) of an airline, as shown in Fig. 2.3. As it is common for operators
to compare different aircraft based on their associated DOCs, parametric techniques have been
developed that predict these costs based on early accessible information about an aircraft [241,
275]. These techniques are known as DOC methods and are the predominant approach in
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DOC 10C

direct operating cost
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- insurance

- loan payments
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- fuel and oil
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- engine maintenance

- flight and cabin crew

- airport and navigation fees

Figure 2.3 Common breakdown of total operating cost, based on Clark [46, p.251]

aeronautical practice for the evaluation of aircraft designs, technologies, and sometimes oper-
ational procedures [199]. Thus, the term DOC can be interpreted as both a cost element and a
cost estimation method.

As a cost estimation technique, DOC methods utilize regression-based CERs, resulting in a
set of equations that take, for instance, the aircraft’s weight to calculate the expected average
maintenance cost. The process of creating these was first developed by the U.S. Department of
Defense [270] and consists of the following steps:

1. Collect input and output data from com-
pany databases, libraries, or contractors.

2. Evaluate and normalize the data for com-
parison.

3. Select a subset of easily accessible input pa-
rameters, especially useful in early stages.

4. Qualitatively analyze correlations, e.g.,, us-
ing data plots or correlation matrices.

5. Identify potential equations for regression
and curve fitting.

6. Test predictions and determine the best-
fitting equations.

Known for their simplicity and quick computational evaluation, DOC methods are frequently
incorporated into programming environments, e.g., for Design of Experiences (DOEs). De-
spite their practicality, however, DOC methods have several limitations that require careful
consideration [84, p. 428]. Because different DOC methods typically have different sets of
input parameters, changes in the Object of Interest (Ool) may or may not be reflected by the
CERs of the selected method. It is imperative to remember that “. .. hypotheses, common sense,
and engineering knowledge should precede, and then the association should be verified with statistical
analysis” (Roy et al. [225, p. 3]). Equally significant is that the same input parameters can yield
disparate outcomes based on the chosen DOC method, as shown in Langhans [145] and Pohya
et al. [199], which highlights the importance of the selection process. Therefore, it is suggested
to confirm the selection and discuss the limitations of the selected DOC method with the
customer or recipient of the study.

As outlined in Section 1.1.1, DOC methods typically fall short in terms of UQ as they often fail to
provide the underlying dataset and the goodness of fit measures of the regression. This practice
could potentially cloud the accuracy of the prediction, thereby compromising the transparency
of these methods. Moreover, the inherently static and short-term nature of DOC methods places
temporal and context-specific constraints on their usage, restricting factors such as the period
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under consideration, the operational content evaluated, the object of interest, and the level of
temporal detail'. Consequently, while DOC methods offer a seemingly streamlined approach
to cost estimation in aeronautical engineering, their successful implementation requires the
understanding and navigation of these constraints.

Cost Benefit Analysis: Extension of DOC by Revenues

The previously described DOC methods are capable of indirectly capturing the revenue poten-
tial if the outcome is divided by the number of seats and/or the traveled distance, assuming
that the passenger load factor is identical among the alternatives. With the help of a revenue
model, it is possible to enhance the TEA by estimating how many tickets are sold for which
price while considering the seating class (i.e., economy, premium economy, business, and first)
in conjunction with the flown distance and other factors (e.g., the airline’s service level and
reputation). This explicit benefit quantification allows for the calculation of basic metrics of
static investment budgeting, such as the Benefit Cost Ratio (BCR) and the Profit Before Tax
(PBT). However, CBAs of this kind are virtually nonexistent in TEA, presumably due to the
Ool impact being sufficiently described by DOC methods only (often using the aforemen-
tioned normalization to the number of seats or traveled distance). If, however, the product
under investigation affects the utilization of the aircraft (e.g., due to a shorter turnaround time
or increased cruise speed), an explicit inclusion of revenues allows for quantifying the revenue
loss or gain expected by employing said product. This, in turn, enables a more comprehensive
picture of the IPA.

2.1.2 Mid-Term and Dynamic Methods

In the second TEA category, the focus shifts to the entire operational phase of aircraft. Here, the
methods typically encompass a broader period and a more detailed environmental context for
the product, employing a combination of parametric-based and analysis-based approaches.
Consequently, they tend to offer a more flexible input space compared to the static DOC
methods. Notable techniques in this mid-term and dynamic cluster include the Lifecycle Cost
(LCC) and Lifecycle Cost Benefit Analysis (LCBA), which are described next.

Lifecycle Costing

Lifecycle costing is crucial in the aeronautic sector for evaluating the economic viability of new
technologies adopted by airlines. It encompasses various dynamic elements that influence
the overall economic performance of the airline, from initial acquisition to disposal. LCC for
airlines go beyond the TOC. They include various dynamic elements that can significantly
impact the overall economic performance of the airline. Transitioning from the initial acqui-
sition to disposal, these costs evolve, influenced by factors such as learning curves and aging
processes.

Learning curves depict the improvement of task efficiency over time as experience accumulates.
The increasing expertise of technicians and maintenance personnel leads to reduced mainte-
nance costs per unit over time. For example, while initial costs may rise with the adoption of
new materials such as novel composites, they tend to decrease as best practices emerge. Aging
processes, as illustrated by the “bathtub curve”, impact operational costs, initially showing
higher failure rates, stabilizing, and eventually increasing. Aircraft structures, for instance,
are susceptible to risks such as fatigue and corrosion towards the end of their operational
lifespan.

Depending on the technology, seasonal and geographical effects can significantly influence
performance and, consequently, cost-effectiveness. The operational environment in which an
aircraft operates throughout the year can subject, for instance, its engines to varying levels of
wear and tear. In harsh, cold conditions, engines may encounter challenges associated with

1Suppler)nen’cal information about the limitations of DOC methods can be found in Appendix B.1.
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cold starts, increased icing risks, and heightened thermal stresses. Conversely, in contrasting
environments such as hot and dusty climates, engines face challenges related to abrasion and
contamination from airborne particles. A technology aimed at improving engine efficiency
may exhibit its own susceptibility to seasonal and climatic factors. This intricate interplay
of seasonal, geographical, and technological factors in aircraft operations underscores the
importance of comprehensive LCC frameworks. By accounting for environmental variables
and temporal effects, such frameworks facilitate a more accurate assessment of a technology’s
impact on performance and cost-effectiveness. Nevertheless, it’s crucial to acknowledge the
considerable effort required to capture and integrate these factors into analyses, especially
when their influence on the study’s outcome is limited.

LCBA: Extension of LCC by Revenues

Similar to short-term CBA, LCBA is relatively uncommon in aeronautic TEA. It necessitates
an explicit model of the aircraft’s revenue streams, allowing for the direct capture of the
cost of missed opportunities. Consequently, LCBA facilitates the calculation of additional
economic metrics through discounted cash flow analysis, a technique commonly employed in
investment decision-making. These metrics encompass the Net Present Value (NPV), Internal
Rate of Return (IRR), and Break-Even Period (BEP) [89]. The subsequent paragraphs introduce
these economic metrics alongside the concept of the time value of money. For further insights,
consider McCrary [167, pp. 57-69] for an economist’s perspective or Clark [46, pp. 303-313] for
an aviation perspective.

The Time Value of Money concept describes the tie between the value of money and the time
it is spent or earned, as evident from the commonly known phrase “a dollar today is worth more
than a dollar tomorrow”. The two underlying principles of this concept are earnings potential
and inflation. The former essentially describes the opportunity cost of not being able to invest
today but at a later point in time. Similar to the earnings potential, the impact of inflation
increases with longer time periods. The underlying formula to calculate the Future Value (FV)
of an investment made today, i.e., the Present Value (PV), is:

1 + 7interest

FV=PV-(1+rrea) with 7y =
1 + 7inflation

-1 (2.1)

where 7., is the real interest rate, and ¢ is the number of years considered. The real interest
rate combines the expected inflation rate rinfation and the nominal interest rate 7interest. In other
words, a higher interest rate leads to a higher FV given the same PV, whereas a higher inflation
rate decreases the FV for a given PV.

The Net Present Value is a measurement of the profitability of a potential investment project,
i.e., it indicates how much value can be added to the investor. NPV is part of the discounted
cash flow analysis and is a standard method for using the time value of money to evaluate
long-term projects [32] and is commonly used in aircraft fleet planning [46]. To calculate the
NPV, all (future) cash flows related to the aircraft have to be discounted to a reference year.
Equation 2.2 can be directly inferred from Eqn. (2.1) and discerns whether the future cash flows
Ct are inflation-corrected or not.

T
NPV = Cp + Z
t=1

Ct with {r = Treal if C; excludes inflation 22)
r

(1+7) = Tinflation if C; includes inflation

Based on a reference case and a similar risky alternative, the difference in NPV represents
the economic advantage, i.e., if ANPV > $0, the investment project (e.g., aircraft with new
technology) leads to an overall economic benefit, whereas ANPV < $0 indicates an economic
disadvantage (see Fig. 2.4 (a)). The used discount rate is a central element in the NPV calculation
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Figure 2.4 Schematics of the NPV, IRR, and BEP.

and represents the rate of return to which the investment project is compared to. Since investors’
discount rates are usually unknown, a common procedure is to use the Weighted Average Cost
of Capital (WACC), generally published in the respective yearly reports [46, 167].

The Internal Rate of Return is directly derivable from the NPV. It is equivalent to the
discount rate r for which the NPV equals zero and represents the annual percentage gain or
loss of the investment project (see Fig. 2.4 (b)). When multiple investments are compared,
the Incremental Internal Rate of Return (IRRincr) can be used to determine the superiority of an
alternative [44]. The IRRjn¢r is computed in a similar way to the standard IRR, but instead
of using the cash flow of each project, the difference in cash flow (i.e., the cash flow of the
standard investment subtracted by the cash flow of the proposed project) is used. To assess the
economic advantage, it is common to compare the IRRnr with the WACC of the investor, i.e.,
if IRRjner > WACC, the proposed investment is favorable, whereas IRRjnor < WACC indicates
an economic loss. IRR and NPV can be used in a complementary way to capture a more
comprehensive outlook on the investment potential.

The Break-Even Period describes the time period (e.g., month or year) where the cumulated
and discounted revenues exceed the cumulated and discounted costs, as shown in Fig. 2.4 (a).
The supporting rationale is that the earlier the BEP occurs, the better it is for the investor (due
to the aforementioned time value of money). A frequently mentioned disadvantage of the BEP
is that cash flows after the BEP are not considered at all.

2.1.3 Long-Term and Cross-Stakeholder Methods

The third and last category considers cash flow elements throughout the aircraft’s whole
lifecycle. To do so, the different stakeholder perspectives have to be brought together. Such
analyses are usually conducted by the manufacturer, who incorporates the airline’s operating
costs in order to optimize the pricing strategy and/or design a cost-effective and competitive
product.

WLCC: The Manufacturers’ Point of View

The whole lifecycle cost approach was first introduced by the US Department of Defense after
realizing that the majority of product costs incurred during operations and maintenance are
defined earlier in the design phase [94]. WLCC are typically composed of CERs due to their
quick evaluation while attempting to incorporate relevant aspects and cost drivers of each
lifecycle phase from “cradle to grave”. Depending on the sector, the “cradle” begins with an
idea (e.g., for general studies), a design (e.g., for Design for X studies), or the collection of raw
materials (e.g., for environmental Lifecycle Analysis (LCA)). A common lifecycle breakdown
from an economics perspective considers four phases: (1) design, (2) production, (3) usage,
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and (4) end of life [19, 77]. Figure 2.5 lists the specific work for each respective phase and gives
an indication of the share of WLCC spent.

Phase 1 Phase 2 Phase 3 Phase 4
design (< 10%) i production (= 30%) i usage (~ 60%) - end of life (< 5%)
- planning and - production planning - operation and - phase-out/retirement
conceptual design - manufacturing and maintenance - recycle/disposal
- preliminary design and part acquisition - support
system integration - sale/acquisition - upgrades/modifications

- detailed and final design

Figure2.5 Phases of an aircraft’s lifecycle (based on Fabrycky [77, p. 13]), their corresponding cost elements
and an indication of their share (based on Raymer [211, p. 504] and US Department of Defense [274, p. 5]).

Phase 1, Design: This phase initiates with research to define product needs and future aircraft
capacity, progressing through conceptual, preliminary, and detailed design stages. Ground
and flight tests are conducted throughout to validate design choices. Non-recurring costs,
predominantly Research, Development, Test, and Evaluation (RDTE), occur here, constituting
less than 10 % of the WLCC, despite shaping 70 to 80 % of it [211].

Phase 2, Production: Once the design is finalized, the production phase commences. This
phase entails meticulous planning and manufacturing or acquisition of inventories, materials,
tooling, and other production-related elements. Some elements are recurring (e.g., materials),
while others are non-recurring (e.g., manufacturing machines).

Phase 3, Usage: The third phase begins with the sale of the product to the operator. It
primarily involves operating, maintaining, and, if applicable, modifying the product to meet
evolving requirements. For aircraft, this phase can extend over 30+ years and constitutes the
majority of the WLCC.

Phase 4, End of Life: Eventually, the physical life of the product concludes, marking the
beginning of the end-of-life phase. For aircraft, this phase typically entails engaging a third
party for disassembly, (partial) recycling, and disposal. Despite its environmental significance,
this phase often holds negligible economic relevance.

WLCBA: Extension of WLCC by Revenues

With the inclusion of stakeholder-specific revenues, the WLCC becomes a WLCBA, enabling
a direct and simultaneous profitability assessment for the manufacturer and operator. Here,
the main link between both stakeholders is the aircraft price. If it is too high, the customer
is unlikely to buy the product. If it is too low, the manufacturer will likely not offer the
product, as the internal efforts outweigh the revenue. This simultaneous consideration of both
parties represents the essential added value of WLCBA, allowing for a product design that
is feasible for both the manufacturer and operator. While WLCBAs provide interesting and
useful insights, they require an integrated model of each stakeholder, which entails a thorough
level of understanding of all relevant processes and interconnections. Some manufacturers,
such as Airbus, are known to simulate fleet operations and feed the insights back into the
design [288]. However, studies of this kind are rare in aeronautic research.

2.1.4 Assumptions, Bias, and Cost Benchmarking

After reviewing the available methods in TEA and their purposes, some practical aspects are
discussed next. These include the distinction between assumptions and uncertainties as well
as a description of the general TEA process, including the cost benchmarking approach.
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Assumptions and Uncertainties include parameters, scenarios, circumstances, or modeling
details and occur naturally in all types of simulations as they imitate a real-world system,
which is impossible to model perfectly. In integrative and complex analyses, their number,
reason, limitation, and potential impact can quickly become confusing and seriously limit
correct interpretation. Depending on which question the analysis is supposed to answer, the
choice of assumptions may or may not be appropriate and justified. The distinction between an
assumption and an uncertainty depends strongly on the definition of the assessment’s system
boundary. Thus, a specific parameter may be an assumption in one study but treated as an
uncertainty in another. Deterministic IPAs are those that consider only assumptions, whereas
a perfect probabilistic analysis would perform an uncertainty analysis on all assumptions. This
is, however, prohibitive in terms of human and computational effort. Therefore, probabilistic
IPAs have both assumptions and uncertainties. To differentiate between them, the following
guidelines are given:

Consider an aspect X that is initially classified as an assumption. If, to the best of one’s
knowledge, a change in X does not affect the design or performance of the Ool, X can likely
be treated as an assumption, i.e., assigned a deterministic value. An example would be the
airframe maintenance cost if an engine-specific technology is being assessed. If, however, the
Ool has some form of physical or other connection with X, it is more appropriate to treat it
as an uncertainty, e.g., the fuel cost development for a fuel saving technology. A subsequent
sensitivity analysis can then prove whether this assignment is appropriate or not. In practice,
this distinction is not always easy to make, especially when dealing with highly complex
models.

Intentional and Unintentional Bias add another layer of complexity when dealing with
assumptions and uncertainties. Intentional biases, where individuals might prefer certain
alternatives over others, can affect the choice of assumptions and skew the analysis in favor
of the individual’s interests. While this type of bias is generally easier to identify and sub-
sequently mitigate, unintentional bias is more difficult to detect [107, pp. 2-3]. Thus, in both
deterministic and probabilistic IPA, it is crucial not only to differentiate between assumptions
and uncertainties but also to account for and mitigate the effects of biases (e.g., by following a
well-documented and transparent process as well as verifying and validating the models) to
ensure the reliability of the analysis.

Cost Benchmarking describes a method where a prospective TEA, which may be difficult
or impossible to validate directly, can still yield meaningful results by comparing outputs
to a reference case. For instance, consider the economic valuation of an aircraft with a newly
developed technology. The absolute NPV depends on various factors such as company policies,
political dynamics, and global economic conditions, making nearly every input parameter
uncertain and reducing the practical value of the TEA. By simulating a reference aircraft under
identical boundary conditions, the effects of technology-independent uncertainties offset each
other. This not only enhances the robustness of the resulting outputs but also reduces the
number of elements requiring assessment for assumptions or uncertainties.

2.2 Uncertainty Quantification Fundamentals

In Chapter 1, UQ was briefly introduced, laying the initial groundwork by outlining founda-
tional concepts and introductory methodologies. However, the complexity inherent in this
subject necessitates a more thorough investigation, particularly regarding the multifaceted na-
ture of uncertainty in engineering endeavors. Scholars have grappled with defining and char-
acterizing uncertainty, using terms such as “ignorance” (Dempster [60, p. 206]), “that what is not
precisely known” (Booker et al. [30, p. 670]), and the “intrinsic absence of necessary knowledge” (Lo-
hweg et al. [151, p. 193]). This diversity of terminology underscores the various sources from
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which uncertainty arises, including flawed assumptions, lack of knowledge about input pa-
rameters, measurement errors, and the inherent variability of physical events. Building upon
the introductory discussions, this Section aims to expand and enrich our understanding of
uncertainty by delving deeper into its definition, exploring potential sources, and examining
mathematical representations and engineering techniques for modeling it.

2.2.1 Definitions and Distinctions

In the context of this thesis, the following definition of uncertainty from Walker et al. [281] is
used:

Uncertainty is any deviation from the unachievable ideal of completely deterministic
knowledge of the relevant system.

In other words, everything that prevents a situation where one single value fully represents
the truth is considered an uncertainty. This definition is fairly general, as it is based on
the distinction from deterministic knowledge. For further categorization purposes, the three
dimensions proposed by Walker et al. [281] are explained next, i.e., the nature, location, and level
of uncertainty.

Nature of Uncertainty

As briefly described in Chapter 1, a common classification of uncertainties involves a differen-
tiation between aleatory and epistemic uncertainty. The class of deep uncertainties completes
this breakdown, as shown in Fig. 2.6.

uncertainty

any deviation from the unachievable ideal of com-
pletely deterministic knowledge of the relevant system

aleatory epistemic deep
irreducible and due reducible and due unknown or not yet
to natural variability to lack of knowledge identified uncertainty

Figure 2.6 The nature of uncertainty according to Walker et al. [281].

Aleatory Uncertainty (also called irreducible, stochastic, or variability uncertainty) is used
to categorize uncertainties that exist due to their inherent variability and are in principle not
reducible with more effort [249]. For example, the frequency of how often aircraft surfaces
experience rain can be obtained by statistics to a certain degree, but it will never be possible
to reduce this forecast to a single, invariably true value, e.g., every three days. Another,
more general example is a manufacturing process producing a part with a nominal length
of 0.5m. Due to the imperfection in the process, the actual length of any given part varies,
which is known as manufacturing tolerances Roy et al. [225, p.2132]. With a sufficiently
large number of measured parts, a frequency distribution can be obtained, describing this
uncertainty. For a given set of process settings, this uncertainty is considered irreducible, i.e.,
aleatory. Aleatory uncertainties are typically unbiased and more naturally represented in
probability theory [249].

Epistemic Uncertainty (also called reducible, ignorance-based, or knowledge uncertainty) is
used to categorize uncertainties that exist due to a lack of knowledge, i.e., epistemic uncertainty
may be reduced by more research and empirical efforts. For instance, the impact of a fuel-saving
technology may be estimated using a low-level method such as the Breguet Range Equation.
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This estimation can then be improved upon with respect to its uncertainty by using a more
sophisticated tool that is ideally validated with real aircraft performance data. Alternatively, in
the above mentioned example of a part with a nominal length of 0.5 m, epistemic uncertainty
would exist if only one or two parts were measured. Additional effort (without changing the
process settings) in terms of measuring more parts would reduce this uncertainty. Epistemic
uncertainties can be biased and are less naturally represented in probability theory [249].

Deep Uncertainty describes the situation where, for instance, a parameter not only has a
deviation from the ideal deterministic true value but where the analyst “does not even know
what he does not know” (Walker et al. [281, p. 13]) about that parameter. An example is coding
mistakes in a simulation (which are usually corrected once identified). It should be noted that
the efforts spent to reduce epistemic uncertainties may reveal deep uncertainties, potentially
increasing total uncertainty.

It should be noted that this distinction is not mutually exclusive, i.e., uncertainties may be
purely aleatory, purely epistemic, purely deep, or a mixture of any of these.

Location of Uncertainty

An overview of potential sources of uncertainty can help identify which parameters, attributes,
assumptions, or, more generally, which pieces of information are prone to uncertainty. Liter-
ature provides many different classifications depending on the context of the analysis. If, for
instance, measurement processes are the focus, the consideration of systematic and random
errors in the test setup may prove to be sufficient. In other cases, a specific list of sources with
respect to the involved process is compiled, as shown in Wen et al. [283]. A less structured but
more comprehensive approach from Booker et al. [30] lists “observation, measurement, recording,
poorly understood initial conditions, random effects, uncontrollable effects, unknown effects, incomplete
information, lack of knowledge, vagueness, ambiguity, (imperfect) physical, mathematical, statistical,
and computational models, (imperfect) decisions, interpretations, extrapolation, interpolation, predic-
tion, inferences being made, and conflicts among data, models, tests, and experiments” as potential
sources. The following categorization is loosely based on Ewing et al. [76] and Walker et al.
[281] and aims to fit the nature of integrative TEA without being restrictive towards other ap-
plications. It should be noted that these clusters are not necessarily mutually exclusive either,
as one uncertainty can be located in multiple places.

Model Inputs can be either (a) the parameters fed to the model, e.g., information about the
product such as its price or the number of units sold, or (b) other submodels that are connected
to the TEA tool. These submodels are either introduced as is (e.g., if the TEA framework
has a modular structure) or via surrogate models (e.g., via response surfaces, lookup tables,
regression functions, etc.). The uncertainties within these models have their own classes, i.e.,
model context and model form (see below).

Assumed Scenarios and Predictions involve a variety of parameters. In aircraft IPA, for
instance, the fuel price’s often plays a major role. Predicting the fuel price development over
the course of the next few decades is inevitably uncertain. Another example is the simplification
of boundary conditions, such as the aircraft’s utilization or operating environment.

Model Context represents the scope of the chosen model and whether (and to what extent)
it is suitable to capture all relevant aspects of the real world that it intends to simulate. This
is comprised of the inclusion of all relevant stakeholders as well as the temporal and spatial
dimensions of the model. An ill-chosen model context may falsely neglect relevant parameters
and effects and hence require well-documented and accepted simplifications.



Section 2.2: Uncertainty Quantification Fundamentals 27

Model Form deals with the structure of the model and whether the level of detail in the system
mapping is sufficient for the analysis. A lack of interrelationship modeling or system behavior
representation may ultimately lead to ill-advised decision-makers and is hardly compensated
by mentioning the simplifications made. Compared to the model context domain, the model
form focuses on interaction modeling, whereas the context deals with the completeness of the
model input space.

Technical Implementation of the Model refers to the accuracy of software and hardware,
e.g., discretization errors, floating point errors, and sensor accuracy. Depending on the scale of
the uncertainty and its propagation, the effect on the output uncertainty can range from being
negligible to significantly altering the result.

Level of Uncertainty

The level dimension essentially describes how high the uncertainty is. Various classifications
exist, aiming to aid researchers in qualitatively categorizing the current state of uncertainty.
Therefore, they do not intend to prescribe an exact methodology to assign a specific state
but rather promote effective communication by handling and expressing uncertainty in a
transparent way. The following description is loosely based on the definition from Walker
et al. [281] and its extension by Kwakkel et al. [142].

Level 1 (shallow uncertainty): The lowest level of uncertainty is present if data is plentiful
and probability distributions can be assigned with high confidence. Uncertainties at this level
are usually dealt with using probability theory. An example would be a sensor recording of
thousands of landings, out of which a PDF can be created and a probability for the next flight
to experience a harsh landing can be calculated.

Level 2 (medium uncertainty): Parameters can be classified as having medium uncertainty
if their probabilities cannot be expressed with a continuous function but can only be ranked,
e.g., from unlikely to likely to very likely. This is often used in scenario-based analyses and
is best quantified with non-probabilistic theories, although probability theory provides some
methods for modeling these to some degree.

Level 3 (high uncertainty): When uncertainties cannot be ranked but are only listed, their
level is considered to be high. This often occurs when the understanding of the problem is very
limited [205]. These uncertainties are hard, if not impossible, to quantify. Instead, researchers
facing high uncertainties are advised to analyze the sensitivity of the model to these parameters
and, if necessary and possible, acquire new knowledge to reduce the level of uncertainty to
medium.

Level 4 (recognized ignorance): The highest level of uncertainty exists if no parameter al-
ternatives can be listed. This classification is valid when researchers know that uncertainty is
present but cannot describe it further. An indication for this would be if a future change in
this parameter is not considered a surprise. Uncertainties at this level cannot be quantified
without a transfer to lower levels, e.g., through basic research. Basic research refers to scientific
inquiry aimed at understanding fundamental principles and phenomena without immediate
application in mind. In the context of uncertainty, basic research may involve exploring the
underlying causes of uncertainty, developing new theories or methodologies for characterizing
uncertainty, or conducting experiments to gain deeper insights into the factors contributing to
uncertainty.

Depending on the comprehensiveness of the study, some authors include deep uncertainty
as a final level. As these cannot be listed and thus do not serve the intended purpose of
communication and transparency, they have been omitted from this list.
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2.2.2 Theories and Techniques

Uncertainty can be expressed in various ways. In everyday life, uncertain information is ex-
pressed linguistically and often (but not necessarily) accompanied by indicator words such as
about or roughly. In more technical areas, a numerical representation is often found, typically
using a nominal value and an interval, e.g., 88 kg+1.8kg. Mechanical engineers are familiar
with asymmetric tolerances such as 4203'5 mm, and typical scientific uncertainty represen-
tation involves statistical parameters such as the mean and standard deviation. This Section
discusses some fundamentals of mathematical theories and techniques dealing with uncer-
tainty, covering conventional probabilistic approaches as well as non-probabilistic ones. It
should be noted right away that these presented theories are not necessarily competitive but
(depending on the subject) complementary [223].

Probability Theory: Theoretical Aspects

There is no doubt that the most frequently used theory for coping with uncertainties in science
is ProT [302]. This is not surprising, as it is the one with the longest history and the only one
being taught in most educational systems.

In ProT, the uncertainty of an event A is represented by a single value measuring the probability
of its occurrence, P(A). Thereby, P(A) can be interpreted in different ways. The two main ones,
causing somewhat of a philosophical debate [223, pp. 57-63], are: (a) the relative Frequentist
perspective and (b) the subjective Bayesian perspective. Their fundamentals are introduced
next, followed by a discussion of common techniques stemming from ProT.

The Frequentist Interpretation defines the probability P(A) as the fraction of times that the
event A occurs if the situation is repeated an infinite number of times [151, 302], i.e.,

P(A) = lim M)

n—oo n

(2.3)

Consider, for example, the punctuality of a flight, which represents hypothesis A. In the
Frequentist perspective, past data would show that n(A) = 87 out of n = 100 flights were
on time, resulting in an on-time probability for the next flight of P(A) = 87%. P(A) is
interpreted as a frequency generated by some process and is considered “...a measure of an
empiciral, objective, and physical fact of the external world, independent of human attitudes, opinions,
models, and simulations” (Ross [223, p. 58]). Predictions of the future state of an event are made
using only the data from the current experiment. Transferred to the types of uncertainty, the
Frequentist interpretation is generally linked to the aleatory type (given that a representative
sample size is available [151]). The Central Limit Theorem (CLT) and LLN are pivotal to this
interpretation. Although highly interrelated and often used interchangeably, these are two
different theorems. The CLT states that the distribution of the mean of a sample tends to be
normal as the sample size increases, regardless of the variable’s distribution in the population.
This is commonly accepted for sample sizes greater than 30 [222]. The LLN also describes
the sample behavior with increasing size, i.e., it states that the mean value of the sample
approximates the mean value of the population. Both theorems are utterly important for the
inference of information obtained by a sample onto the population. Recalling the information-
sparse environment of economic studies in aeronautics, the sample size requirements of the
CLT and LLN are not always met, which has to be considered when choosing appropriate UQ
metrics [243].

The Bayesian Interpretation, known as the subjective approach, defines the probability P(A)
as the degree of belief regarding the occurrence or truth of event A. [25]. Hence, it is usually
associated with epistemic uncertainties. The subjective assignment is based on the available
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background knowledge and is be updated as soon as new evidence becomes available. The
basis of this interpretation is the Bayes’ theorem:

P(B|A)-P(A)

P(A|B) = o]

(2.4)

where

A is the event or hypothesis in question,
B is additional information,
P(A) is the prior, i.e., how likely the event A is, regardless of evidence,
P(B) is the evidence, or how likely the B is, regardless of A,
P(B | A) is the likelihood, i.e., assuming A occurred, how likely is B, and
P(A | B) is the posterior, i.e., the probability of A occurring given that B has occurred.

Using the same flight punctuality example, suppose the prior probability P(A) = 87 %. With
new information B, such as unfavorable weather, this belief can be dynamically updated.
Assuming that past weather data analysis results in P(B) = 10 % and further flight data analysis
shows that among the on-time flights, 5% experienced severe weather, i.e., P(B | A) = 5%.
This results in a posterior of

0.05-0.87
P(A|B) = o1 " 0.435 . (2.5)
In other words, the updated belief of an on-time flight, given the new information of severe
weather, is now 43.5 %.

It should be noted that neither interpretation is inherently superior to the other; each has its
contexts where itis more applicable. The Frequentist approach is favored when data is plentiful,
allowing for reliable frequency-based inferences, and is generally easier to implement, which
makes it better understood by decision-makers and analysts [220, p. 7]. However, it tends to
produce less conservative results and may give a false sense of exactness, particularly when
underlying assumptions are not met [22, 101]. Conversely, the Bayesian perspective is suggested
when data are sparse [91, p. 32], allowing for the integration of prior knowledge and continual
updating of beliefs as new evidence becomes available. This adaptability can make Bayesian
methods appear more subjective but provides significant advantages in contexts where prior
information is crucial or when data acquisition is challenging. Ultimately, the choice between
these approaches should be guided by the specific needs of the analysis, the availability of
prior information, and the analytical context.

Probability Theory: Techniques for UQ

Prol provides a plethora of techniques to deal with uncertainties. The following descriptions
focus on those that are either most commonly used or are fundamental for understanding the
later analyses.

Expressing Uncertainty in Prol is, in its simplest form, an error term € [78, 207], i.e.,
x=X+e¢ (2.6)

where x is the observed value and X is the true value [129, p. 171]. Thereby, € is often bro-
ken down to systematic (bias) error and random effects. While this approach is useful for
many applications such as laboratory experiments and measurement uncertainty, it cannot
capture the diversity of uncertainties in more complex engineering applications. More elabo-
rate alternatives include visual ones such as histograms or kernel density estimations as well
as quantitative measures such as the standard deviation or variance. The latter is a measure
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of the average degree to which each point (e.g., measurement) differs from the mean. More
specifically, it is calculated via

1 v 1 v
?= - ) i o=y -t (27)
i=1 i=1

Here, 62 is the variance, o the standard deviation, x; represent the observed values, i is the
mean of the population, and # is the total number of observations®.

Histograms and statistical distribution functions allow for a qualitative and quantitative
interpretation of the results and the underlying uncertainty. Histograms, for example, are
used to visualize the outputs y of an experiment that is repeated n times, where the abscissa
represents the range of i, divided into bins of the width Ay, and the ordinate shows the number
of results falling within each bin, i.e.,

favs(i) = n(y € [yi,yi +dy]) and  fre(i) = faps(i)/n . (2.8)

Here, faps and fre describe the absolute and relative frequency, respectively. The shape of
the histogram allows for an estimation of the spread, symmetry, and outliers of the data. An
example is shown in Fig. 2.7 (a). Provided that the data is continuous in nature, a more
enhanced view on the distribution is accessible via PDFs. PDFs describe the likelihood of a
random variable taking on a particular value or being in a particular interval of interest. The
latter is represented by the area under the PDF curve, i.e.,

Yupper

P(y € [Yiower, Yupper]) = / Fody (2.9)

Ylower

The CDF, which is essentially the integral of the PDF, allows for a quantification of the proba-
bility of the output being greater or less than a threshold value. An example PDF and CDF are
shown in Fig. 2.7 (b).
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(a) absolute and relative histogram. (b) PDF and CDF.

Figure 2.7 Histogram and statistical distribution functions for a fictive dataset on aircraft on-time perfor-
mance.

Conventional Sensitivity Analysis, also called local sensitivity analysis, is used to gain
insights regarding a model’s response when one or a few input parameters deviate from a
nominal value. Consider a (mathematical or numerical) model

y=f(x1,x2,...,xn), (2.10)

2Supplemen’cal concepts and definitions from ProT can be found in Appendix B.2.
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where one or more input parameters are uncertain, e.g., may take any value within a particular
range,

Xj € [xi,min/ xi,max] . (2.11)

In LSA, the sensitivity of the model output is calculated by sampling an array of n equally
spaced values for x; and evaluating the model n times, once for each sample. The sensitivity
of the model towards a change in x; can then be calculated using the derivative, typically
evaluated at a nominal value x7 (e.g., its mean):

_ f(xi,upper) — f(Xi Jower) (2.12)

Xi,upper ~ Xi lower

of Ay

(5x1' xizx;f Axi

For more than one uncertain parameter, LSA typically follows a one-at-a-time approach, i.e., it
varies one input while keeping the others fixed. This is often accompanied by an Aoutput vs.
Ainput visualization, as illustrated in Fig. 2.8.

While LSA are highly computation-
ally efficient, requiring only a min- - Q.

A xq varied, x, fixed © x, varied, x; fixed

imal number of model evaluations, L0l .

they present several shortcomings. RSN

The sensitivity measure is signifi- - Q R

cantly dependent on the choice of £ Om |

the nominal value xlf. For instance, % +0 i ':u"" ",

as demonstrated in Fig. 2.8, the sen- 3 i

sitivity for x1, whose effect on the

output is linear, is straightforward. -10F 3
Conversely, the sensitivity for xp i o

may be nearly negligible if x7 is ' ' ' '
chosen, but considerable for other 20 ~10 _ +0 +10 20
nominal values. Another limitation A input, [%]

concerns the bounds for input vari-
ations, typically set symmetrically,
e.g., £15%. This symmetric approach does not account for the likelihood that parameters will
actually vary within these bounds, as some ranges may be more plausible than others, or even
unrealistic. This limitation underscores why the analysis is termed local: it only considers
variations near a nominal value, thereby restricting its applicability to this specific region [232,
p- 1509]. Furthermore, LSA is restricted to analyzing additive effects when multiple uncertain
variables are involved. By keeping other parameters at their nominal values, it is impossible to
examine interactions between high and low values across different uncertainties, thus missing
out on potential non-additive interactions. This is especially problematic when considering
variables like x7, where the output’s response is nonlinear. The sensitivity analysis might differ
substantially if only the extremes are considered compared to a more granular analysis within
the interval [-20 %, +20 %], as illustrated by the varying dotted lines in Fig. 2.8. Despite these
flaws, LSA remain widely used, often without recognition of their limitations. As Saltelli et al.
suggest, this widespread but uninformed usage can lead to underestimating uncertainties and
inaccurately estimating sensitivities, illustrating a misapplication of sensitivity analysis [232,
238].

Figure 2.8 Example of LSA of a two parameter model.

Global Sensitivity Analysis can be described as “how uncertainty in the output of a model (nu-
merical or otherwise) can be apportioned to different sources of uncertainty in the model input” (Saltelli
[239]). As mentioned by Helton et al. [102], GSA “should be a fundamental part of any analysis that
involves the assessment and propagation of uncertainty”. In contrast to the one-at-a-time approach
of LSA, GSA considers all uncertain parameters simultaneously. Furthermore, instead of sam-
pling equally distanced vectors, the probability distributions of the input parameters are taken
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into account in GSA. This renders them more realistic, as likely samples of x; occur more fre-
quently than unlikely ones. Lastly, it should be mentioned that GSA does not assume linearity
in the output vs. input behavior. Depending on the method, either the entire distribution or
selected statistical moments (e.g., variance) are used.

The goal of GSA is to break down (x1,%2,%3) (x2,x3)
the total output uncertainty into
its constituents, i.e., to quantify
what share of the uncertainty is
caused by each parameter x1, x2, total
their interaction (x1, x2), and so
on. This is shown illustratively
in Fig. 2.9. Provided sensitivity
measures in GSA are therefore in-
terpreted as how critical the uncer-

tainty per variable is, whereas LSA Figure 2.9 Example of a breakdown of total uncertainty into its

S?HSlthltleS quantify how SENS- first, second and third order effects for a function with three uncer-
tive the output reacts to a predefined  tain parameters.

change in the inputs.

uncertainty
(100 %)

A more in-depth investigation into the actively researched field of GSA reveals that there
are a wide variety of different techniques, some of which are developed based on differing
theoretical definitions of sensitivity. As a consequence, using different methods on the same
problem may lead to significantly different, even conflicting, sensitivity results [64, p.2]. A
number of studies have been devoted to discuss GSA methods from different perspectives,
e.g., Pianosi et al. [193], Razavi et al. [212, 213], and Saltelli et al. [236]. Considering that GSA
have a yet untapped potential [213, p. 6], Chapter 4 will deal with this topic in the context
of uncertainty-enabled TEA in more detail, which is why further details are omitted at this
point.

Monte Carlo Simulations (MCSs) MCSs are widely used to propagate uncertainties through
a system [243]. They are classified as non-intrusive methods, i.e., they do not interfere with the
inner part of a model as they are defined on the outer level, making them particularly popular
in black-box systems [220]. The idea is to draw random input samples from probability
distributions and feed them to the model at hand in a sequential manner, as schematically
shown in Fig. 2.10. Consider a general function or model y = f(x1,x2,...,x,), where two
parameters x; and x j are considered to be uncertain. As a first step, the distributions of these
uncertainties need to be defined. For simplicity reasons, assume that x; and x; follow a uniform
and normal distribution, respectively, i.e.,

Xi ~ U (X min, Ximax) and xj~N (yxj,ax].) ) (2.13)
In step two, scalar samples are drawn from these distributions and fed to the model. This
ensures that the model itself is, in a figurative sense, unaware that some variables are uncertain,
i.e., it only receives deterministic values. The model execution is repeated n times in step three
(with a new sample being each time) until the output converges. Here, convergence is defined
by the analyst, as the true value is often unknown and can only be calculated if n approaches
infinity. In practice, n is rarely chosen systematically. Instead, it is chosen based on the available
computational budget. Once (assumed to be) converged, the output distribution is analyzed in
terms of the mean value, standard deviation, and occasionally additional statistical moments
in step four. The output analysis is typically visualized by a histogram and an empirical
cumulative distribution function.
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3. repeat until converged
Figure 2.10 Schematics of a monte-carlo simulation.

Modifications of the Monte Carlo Method include, but are not limited to, quasi-random
sampling techniques, nested MCSs, second-order probabilities, and the Markov Chain Monte
Carlo (MCMC) method. The former aims to lessen the computational expense of MCS since
the CLT and LLN require a large number of samples to be drawn and propagated through the
model in order to achieve statistically reliable results [220]. Quasi-random sampling techniques
such as Latin Hypercube Sampling (LHS) can improve the efficiency and convergence of
the MCS by distributing the drawn samples more evenly across the input space compared
to purely random sampling. This can reduce the overall number of required samples and,
consequently, execution time. Nested MCS, on the other hand, are useful for solving problems
with multiple layers of uncertainty. This makes them invaluable in hierarchical systems or
multistage problems, enhancing the representation of system behaviors and the interaction of
risk variables. Second-order probabilities can be seen as an extension of MCS as they deal
with uncertainty in the PDFs, e.g., when the mean and variance of a normally distributed input
variable are uncertain themselves. This process, essentially a “simulation within a simulation”,
yields a distribution of outcomes for each iteration, providing a deeper understanding of
variability. MCMC simulations use a process where a Markov chain is utilized to sample
effectively from complex probability distributions, with the samples becoming representative
of the distribution after many chain transitions. This approach is particularly useful in high-

dimensional spaces, commonly seen in Bayesian statistics and machine learning Richardson
[217].

Evidence Theory: Theoretical Aspects

The first non-probabilistic theory discussed here is evidence theory, which was first introduced
by Dempster [61] and later extended to a mathematical theory by Shafer [245], which is why it
is often referred to as Dempster-Shafer Theory of Evidence [135]. Compared to Prol, evidence
theory is relatively new, and techniques using it are rare. Furthermore, it should be noted that
evidence theory may be more difficult when communicating results with decision-makers due
to its limited applications [30, 101, 180].

Essentially, DSTE is a generalization of Prol' and aims to explicitly model the lack of knowledge [ 26,
pp- 477-479]. Itis related to the Bayesian interpretation of Prol in the sense that both deal with
subjective beliefs [287] rather than objective frequencies. The theory’s primary premise is that
information (or evidences) for a given hypothesis can be split into those that support it and
those that contradict it. The supporting evidence is termed Belief whereas all evidences that
do not contradict the hypothesis are called Plausibility®. These two concepts form the theory’s
representation of uncertainty, as illustrated in Fig. 2.11.

3To differentiate the usage of the terms “Belief” and “Plausibility” as key concepts in DSTE from their use in common parlance,
these terms are capitalized throughout this thesis.



34 Chapter 2: Fundamentals and Literature Review

plausibility
I N
N 71
belief uncertainty doubt
(VA A VA A VA Nl
N 7N 7N 71
L V/srsrsssssssssosss | |
I N I 1
0 1

Figure 2.11 The Dempster-Shafer uncertainty interval, based on Worden [287].

In order to quantify Belief and Plausibility for a given hypothesis, one prior step needs to be
taken. That is, all possible hypotheses are assigned a so-called mass. This mass, denoted as
m, is subjective and can represent the belief, confidence, or trust that this hypothesis is true.
Its assignment is a function formally defined on 29, in which Q is the frame of discernment
representing the universe of all possible and mutually exclusive events ®;. The power set 2
describes all possible hypotheses that can be made with respect to . Say, for example, ()
contains two elements ®1 = on and ©; = off, its power set would be:

Q = {on, off} (2.14)
= 29 = {0, {on}, {off}, {on V off}} . (2.15)

Now, the function which assigns a value between 0 and 1 to each element A in 29 je,
m: 2% —10,1], (2.16)
is called mass assignment function, provided that the following two requirements are met:

m(@) =0 ,i.e., the null hypothesis receives no mass, and (2.17)

Z m(A) =1 ,i.e., the sum of all masses equals one. (2.18)
Ae2Q

If, for example, the overarching problem is to determine the state of a computer (matching
the frame of discernment in Eq. (2.15)), one can assign masses to each element as specified in
the second column of the table in Fig. 2.12. Note that the null hypothesis is given no mass by
definition, and the last hypothesis, i.e., “on V oft”, represents the “indeterminate” answer, i.e.,
the system could be either on or off. The Belief and Plausibility columns of the table in Fig. 2.12
are a result of this mass assignment, and the underlying concept is explained next.

hypothesis | mass Bel Pl on V off
0 0 0 0
on 06 06 07
off 03 03 04
on V off 01 1.0 1.0
(a) Mass assignment and resulting Belief and Plausibility (b) Visualization of possible sets within €.

Figure 2.12 Tabular summary and visualization of the frame of discernment € as specified in Eq. (2.15).

The Belief Function represents the support for a hypothesis A € 2. Tt is calculated as the
sum of all masses of B € 222 which are a subset or are equal to A, ie.,:

Bel(A) = Z m(B) (2.19)

0+BCA
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Considering Fig. 2.12 (b), the hypothesis "on" has no other subsets within the elements of 2,
so the Belief for it is simply Bel(A = on) = m(A = on) = 0.6. The same principle applies for the
hypothesis “off”. The Belief for the hypothesis “on V off”, however, does have subsets present
in 22, namely "on" and “off” with the masses 0.6 and 0.3, respectively. Thus, the supporting
evidence for this hypothesis is

Bel(A = {on V off}) = m(A = on) + m(A = off) + m(A = {on V off}) (2.20)
=0.6+03+01=1.0 (2.21)

The Plausibility Function answers the question to what extent the evidence is consistent with
the proposition. It is formally defined as:

PI(A) = Z m(B) (2.22)
BNA#0

Here, the sum is taken over all masses of B € Q) which intersect the hypothesis in question, i.e.,
A. For the hypothesis "on", the Plausibility is thus calculated as the sum of masses of its own
hypothesis (being 0.6) as well as of the hypothesis "on V off" (being 0.1). The same principle is
applied for the Plausibility of the hypothesis "off". For the Plausibility of the last hypothesis,
all three masses need to be added, as all sets intersect "on V off" (see Fig. 2.12 (b)).

In a way, Belief and Plausibility form the lower and upper bounds of the conventional prob-
ability for a hypothesis [152, p.250f]. Uncertainty in this probability exists, if Belief and
Plausibility differ, as shown in Fig. 2.11. In other words, if there is no (knowledge) uncertainty;,
DSTE converges to ProT*

Evidence Theory: Techniques for UQ

Although evidence theory’s use in engineering is relatively rare [243], there are some notewor-
thy techniques that are described briefly next.

Combination Rules are a useful tool within DSTE. Often times, multiple pieces of evidence
have to be considered to evaluate a proposition. For example, multiple experts can rate their
Beliefs on how valid an assumption is. To do so, different combination rules can be used. The
most common one is formally defined as:

ZBmC:A m1(B)m(C)
1 = Y pnc=p m1(B)m2(C)

and yields the combined evidence of two experts (1 and 2) that support A, which is composed
of the intersection of B and C [107]. While this general combination rule is useful for simple
cases, it tends to ignore conflict existing within the evidence due to the normalization in the
denominator [3, p. 286]. To overcome this, additional combination rules have been developed,
e.g., the one from Hester [107], which specifically deals with the credibility of different experts.
A comprehensive guide on combination rules, including advantages and disadvantages, can
be found in Sentz et al. [244].

mia(A) = (2.23)

4Supplemen’cal interpretation aids for Belief and Plausibility are provided in Appendix B.3.
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Complementary Cumulative Belief
and Plausibility Functions represent
DSTE’s main technique for UQ and can
be seen as an alternative to sampling
input values from PDF, passing them
to the model, and analyzing the out-
put with respect to its statistical mo-
ments. The DSTE approach requires a
modified sampling mechanism where,
instead of generating PDFs from data,
expert elicitation is used to create Be-
lief spaces, which are then used to sam-
ple from. Additionally, a more complex L L
post-processing analysis foresees using 0-5 1.0 15 20
these Belief spaces, the drawn samples, y=fa,b)=@+b),[]

and the results of the repeated model  Fjgyre 2.13 Calculated CCXFs of an exemplary function
execution to calculate so-called Com- with evidences taken from Helton et al. [101, p- 52].
plementary Cumulative Belief Functions

(CCBFs) and Complementary Cumulative Plausibility Functions (CCPFs) alongside the Com-
plementary Cumulative Distribution Functions (CCDFs), as exemplified in Fig. 2.13. These
functions, hereafter abbreviated as CCXFs, provide uncertainty bounds over the entire range
of outputs and allow for statements that are threshold-driven, e.g., quantifying the probability
as well as a lower and upper bound (represented by the Belief and Plausibility measure) of the
output being greater than a threshold value y*. For the shown example threshold, one inter-
pretation of the CCXFs would be that the probability of exceeding y* = 1.5 is 3.5 %, bounded
on the lower and upper ends by a Belief of 0 % and a Plausibility of 33 %, respectively. While
the computational expense has been mentioned as a limiting factor [101, 104], this DSTE-based
UQ approach has been mentioned to be helpful when data is scarce but expert knowledge is
available. As this can be the case for uncertainty-enabled IPA efforts, Chapter 5 is dedicated
to this technique, aiming to understand its potential and added value in comparison to the
Prol-based approach.
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Possibility Theory and Fuzzy Set Theory: Fundamentals

Possibility Theory (PossT) is an alternative to Prol' and was first introduced in 1978 by Zadeh
[297]. Contrary to ProI, where uncertainty is rather interpreted as “randomness”, PossT treats
uncertainty as “vagueness” and is used when information is incomplete, imprecise, or inconsis-
tent, which makes it difficult to assign a precise probability to an event.

Similarly to evidence theory, PossT uses two measures for uncertainty: possibility and necessity.
The possibility measure describes the degree of feasibility of event occurrence, whereas the ne-
cessity measure describes to what degree the available evidence necessitates event occurrence.
Both measures are explained below.

The Possibility Measure of a A (a subset of the universe of discourse® X) is defined as:
IT(A) = sup {n(x) : x € A} (2.24)

where sup is the supremum operator, x isan elementin A, and 7(x) is the possibility distribution
7 : X — [0, 1]. In other words, the possibility of A is equal to the greatest possibility assigned
to any element within A. Two extreme possibility states can be differentiated:

5The universe of discourse X is conceptually similar to the frame of discernment Q used in DSTE. One fundamental difference
is that the elements in X are not necessarily mutually exclusive.
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e Complete knowledge: If the possibility of one element x( within A is one while the possi-
bilities of all other elements within A are zero, i.e., m(xg) = 1 and (x) = 0 Vx # xg, no
uncertainty exists. In other words: If only one outcome is possible, it will happen.

e Complete ignorance: If every element x in A is possible, i.e.,, m(x) =1 Vx € A, thereis a
complete lack of knowledge regarding the outcome.

The Necessity Measure of A C X is defined as:
N(A)=inf{l -7(x): x € X \ A}, (2.25)

where inf is the infimum operator and x € X \ A describes those set elements that are part
of the universe of discourse but are not part of the subset A. As an example, consider the
universe of discourse X = {sunny, cloudy, rainy} describing the future weather and a subset

A= {sunny, cloudy} representing a “not rainy” event. Now suppose a hypothetical possibility
distribution of
n(sunny) = 1.0, n(cloudy) = 0.6, and m(rainy) = 0.2. (2.26)

These values are typically assigned subjectively, which is usually accepted in light of data
scarcity and the consequential inability to use Prol. Note that this possibility distribution is
normalized, meaning that there is at least one element with a Possibility of 1, which is typically
done to reflect the idea that at least one event must occur, aligning the approach with our
intuitive understanding of possibility. With this Possibility distribution, the possibility and
necessity measures of A can be calculated as

T1(A) = sup {1.0,0.6} =1.0 and N(A)=inf{1-02} =08 . (2.27)

Therefore, there is a high possibility of a non-rainy day. Because of the low possibility value
for x = rainy, the necessity of having a non-rainy day is high as well. If the possibility of rainy
weather had been higher, e.g., m(x = rainy) = 0.6, the Necessity of A (non-rainy day) would
intuitively decrease to N(A) =1-0.6 = 0.4.

While PossT provides a framework for handling vague and imprecise information, its appli-
cation in the engineering domain is relatively scarce. Instead, the closely related fuzzy set
theory is used®. Fuzzy set theory, first introduced by Zadeh [298] in 1965, is a mathematical
framework that extends classical set theory to handle cases where information is incomplete,
uncertain, or imprecise by using the concept of partial memberships. Fuzzy set theory ad-
dresses uncertainties that do not originate from randomness but from the “absence of sharply
defined criteria of class membership” (Zadeh [298]).

Fuzzy Sets sets can be interpreted as an extension of the classical boolean sets (sometimes
called crisp sets), which have the following characteristic or membership function pc:

1 forweA

:Q 1 h = 2.2
te Q- {0,1) sothat pc(w) {0 o (2.28)

or in other words, an element w out of a frame of discernment ) does or does not belong to
the set A, i.e., there is no inbetween. The membership pc of w to A can therefore only have a
value of either 0 or 1. In fuzzy sets, this membership function is allows values between 0 and 1,
ie.,:

prp:Q—[0,1] . (2.29)

6For further information on possibility theory, consider the work from Dubois et al. [66-69].
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To illustrate this difference, consider the fol- 10 H — crisp
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tion. However, if the question is answered
from a less legal and more societal or bio-
logical standpoint, the fuzzy set approach

age a, [years]

Figure 2.14 Crisp and fuzzy memberships of age to

proves to be a more a useful concept. One  the set of adulthood
potential and fuzzy membership function is:
1 fora > 21
pr(a) =3(a—-16)/5 forl6 <a <21 (2.31)
0 fora <16

So while a 17 year old individual is not an adult in the crisp set, the fuzzy set states that
this person is an adult to a degree of 0.2 (or 20 %). This is illustrated as a ramp function in
Fig. 2.14. The shape of the fuzzy membership function in this example was chosen to be a
simple ramp. Depending on the user and problem at hand, other shapes such as triangular,
gaussian, trapezoidal, or piecewise linear may be more suitable.

Possibility Theory and Fuzzy Set Theory: Techniques for UQ

Following the structure of Sections 2.2.2 and 2.2.2, the techniques for UQ related to PossT and
fuzzy set theory are discussed briefly here.

Complementary Cumulative Necessity T

and Plausibility Functions are the T 10} - ! — CCPosF
equivalent of evidence theory’s CCXFs = ~| |— CCDF
and have been explored in Helton et £ L: — CCNecF
al. [101] as an alternative and PossT- 2 i !

based approach for UQ. Similarly to the & Nec(> y) !

DSTE technique, this method foresees = (5| |

a modification of the sampling space % ! Poss(> y)
as well as a post-processing step to £ !

calculate the Complementary Cumula- < [ !

tive Necessityy Function (CCNecF) and 2 |
Complementary Cumulative Possibility & (4| !

Function (CCPosF) alongside the CCDF. ! | : !

Fig.2.151llustrates the CCNecF, CCPosF, 0.5 1.0 1.5 2.0
and CCDF using the same inputs and y=fla,b)=(@+b) [-]

f}lndlon as Fig. 2.13. _Whﬂe l.t 15 men- Figure 2.15 Possibilistic measures of an exemplary func-
tioned that und?r specific conditions .thls tion with values from Helton et al. [101, p. 55].

approach can yield the same uncertainty

results as the DSTE counterpart [101, p. 66], there are some drawbacks of the PossT-based tech-
nique. If, for instance, the input sets are not consistent, the possibility distribution functions
need to be scaled to meet the definition of possibility spaces. This can be done in either an
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additive or multiplicative manner, leading to different results. Additionally, the uncertainty
definition using Possibility and Necessity is more diffuse and cannot be directly interpreted
as bounds of probability [101]. These limitations and aspects may be the reason why there is
virtually no application of this method in the literature.

Fuzzy Inference Systems are
an approach to solving vari-
ous problems in the fields of
control, data classification, or

uzzy inference system
fuzzy infe Y Step 0

rule basis (if-then)

decision-making. The main i 7 !

idea is to make use of ex- Step 1 Step 2 Step 3
pert knowledge and experi- — | fuzzy | ————— | fuzzy | ———
ence to replace (almost) ex- fuzzification > inference > defuzzification
act but highly complex math- i I
ematical models. A FIS is a crep crep
system that takes crisp inputs, Input Output
processes them based on spec- environment controlled
ified rules using fuzzy mea- parameters variable

sures, and produces crisp out-
puts. Figure 2.16 illustrates the
basic steps of one of the most
common approaches for FIS, called the Mamdani FIS.

Figure 2.16 Steps of mamdani type Fuzzy Inference System

An example often given when introducing FIS is the restaurant tipping problem, where a
question is asked about how much tip should be given based on the food and service quality.
The core idea here is that human behavior can be modeled in a reproducible manner. Here,
the input parameters (which are rated between 1 and 10) are fuzzified with a membership
function (poor, good, and excellent for the service quality and rancid and delicious for the food).
In step 1, the memberships for the inputs are calculated. The previously defined rule basis then
combines these memberships with AND or OR operators and results in a degree of fulfillment
of each rule. After the combination of each rule’s fulfillment, a fuzzy output in terms of cheap,
average, or generous is created. In the final defuzzification step, the fuzzy output is converted to
a crisp value, e.g., 16 % tip. For a detailed description of this example, consider the Mathworks
tutorials [265].

To conclude this Section, Table 2.1 summarizes the uncertainty measures, preferred utilization
conditions, advantages, and disadvantages of the four discussed theories for UQ.

7Named after Ebrahim Mamdani who introduced this FIS type as a control system for a steam engine [155].
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Table 2.1 Comparison of discussed mathematical theories for UQ.
Probability Theory Evidence Theory Possibility Theory
Frequentist Bayesian & Fuzzy Set Theory
Uncertainty Metrics
E P(B|A)-P(A
P(E) = lim # P(A|B) = % Bel(A) and P1(A) IT(A) and N(A)
1n—00

Uncertainty is deter-
mined by the frequency
of outcomes across
many identical trials,
focusing on the long-
term behavior of an
event under repeated
experimentation

Uncertainty is viewed as
asubjective degree of be-
lief, which is updated by
incorporating new evi-
dence through Bayesian
inference

Uncertainty is managed
by distributing belief
over sets of possibili-
ties, using measures of
belief and plausibility
that reflect the strength
and completeness of the
available evidence

Uncertainty is  ad-
dressed by describing
events with varying
degrees of membership
in fuzzy sets and assess-
ing the plausibility of
events given this fuzzy
information

Best used when there is
a large amount of empir-
ical data and the situa-
tion can be modeled by
repeating identical trials
under similar conditions
to estimate probabilities
directly from observed
frequencies

When to Use

Ideal for situations
where prior knowledge
is available, and the
model parameters can
be updated dynamically
as new data becomes
available, making it
well-suited for iterative
learning and decision-
making processes

Particularly useful when
dealing with incom-
plete, uncertain, or
conflicting information,
as it allows for an ex-
plicit representation of
ignorance and the ac-
cumulation of evidence
without requiring full
probabilistic models

Optimal for scenarios

where the informa-
tion is  imprecise,
vague, or linguisti-

cally described, such
as in expert systems

and  decision-making
processes involving
human-like reasoning

under uncertainty

Offers clear interpre-
tations in many real-
world situations. Ro-
bust to prior beliefs.
Ideal for reproducible
and frequent events.
Easy to implement [220]
and best understood by
decision-makers and an-
alysts [30, 220]. Pre-
ferred choice when data
is plentiful [42]

Advantages

Can provide detailed
posterior distributions,
ideal for prediction.
Works well in small
sample situations. In-
corporates prior beliefs.
Suitable for aleatory
and epistemic uncer-
tainty [22, 293]. Allows
modeling  techniques
considering a dynamic
knowledge state using
Bayesian inference

More versatile than tra-
ditional ProT. Suit-
able with scarce infor-
mation [3, 103] and
can deal with a wide
range of uncertainty lev-
els [180]. Useful when
conflicting evidence is
present [172, 220] and
does not require as-
sumptions from the ana-
lyst [220]. With increas-
ing level of information,
results approach those
from ProT [103, 171, 220]

More suitable for de-
scribing rare events
compared to probability
theory [30]. Useful for
epistemic uncertainties
with subjective vague-
ness [293]. For control
systems, FIS are easier
and faster to implement
and give better results
than conventional mod-
els [139]

Produces least conserva-
tive results [22, 220] and
may give false appear-
ance of exactness [101].
Questionable applicabil-
ity for epistemic uncer-
tainty [3]

Disadvantages

Results can vary sig-
nificantly based on the
choice of prior. Can
be computationally ex-
pensive and is less un-
derstood by decision-
makers

Assigning belief func-
tions can be subjective.
Decision-making is dif-
ficult when uncertainty
intervals are high [220,
254]. When data is
plentiful, evidence the-
ory is less suitable for
decision-making  than
ProT [254]. Propagation
can be computationally
expensive [103]

More qualitative than

quantitative, making
it less precise than
other methods. Dif-

ficult to directly use

with conventional
statistical methods.
Less understood by

decision-makers [30]
and lacks operational
definition [49]. Can
be computationally
more expensive than
conventional modeling
techniques.
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2.3 Literature Review

With the fundamentals of TEA in aeronautics and UQ explained in the previous Sections,
this Section deals with more recent literature from both fields. This list does not claim to be
exhaustive, but informative and expedient. The aim is to explore emerging research avenues
to ensure that (a) the current research is novel and (b) recently developed methods and models
from either domain are recognized and incorporated into this thesis when relevant. The
literature review begins with publications focusing on economic evaluation in Section 2.3.1,
continues with more specific UQ literature in Section 2.3.2, and finally includes those that
combine both fields in Section 2.3.3.

2.3.1 Economic and Operational Assessment Studies

The following literature primarily focuses on the aerospace sector, highlighting integrative
assessments, whether technological, economic, or both in nature. Although these publications
often neglect or oversimplify uncertainties, their inclusion is essential. It provides insight
into the prevailing status quo and identifies boundary conditions that might challenge the
uncertainty management methodology introduced earlier. The literature is clustered into:

* Valuation-Centered Publications, which represent advances in assessment methods and eval-
uation frameworks,

e [ntegrated Methods in Multidisciplinary Design Optimization, where assessment methods are
incorporated in product development frameworks, and

* Operations-Focused Studies, where assessments are performed on operational KPIs while
taking an increased level of complexity into account.

Valuation-Centered Publications

Publications centered on valuation indicate that DOC methods are still commonly used in
aeronautics, especially when evaluating aircraft designs resembling traditional models. For
example, Lee et al. [148] use a DOC method to assess and compare costs for various widebody
aircraft types. Similarly, Ali et al. [12] test and compare results from different DOC methods
on 16 transport aircraft. Xu et al. [292] apply a DOC method for analyzing formation flights in
airline operations, while Elham et al. [72] use it for winglet shape optimization. Iwaniuk et al.
[117] adopted the operating cost model from Roskam [221] for cost-optimized CS-23 aircraft
designs. Taking a more comprehensive approach, Isikveren [116] optimized flight mission
parameters, such as cruise speed schedules, incorporating not just traditional DOC elements
but also IOC and revenues. For newer DOC methods, reference can be made to Hong et al.
[111], grounded on the Form 41 database [271], and Oliveira [182], who compiled a new method
using various sources.

Given that CERs draw from historical data, they are primarily tailored for conventional aircraft
or designs that resemble traditional models. However, some studies overlook this constraint.
For example, Martinez-Val et al. [158] combine multiple DOC methods to assess a Blended
Wing Body (BWB) aircraft. This design differs considerably from conventional models, and in-
ferences from DOC methods regarding airframe and engine maintenance cost are questionable.
Another instance can be found in Cuerno-Rejado et al. [51]. In this research, an unconventional
aircraft with joined wings is designed and economically compared to a conventional counter-
part. Notably, their joined-wing model neither increased maintenance nor ownership costs®.
Remarkably, only the fuel cost differed, showcasing an improvement of nearly 6 % — a result
the authors themselves found “surprising”.

8The former is usually influenced by weight, consistent across both designs. The latter was simply omitted in the study,
though qualitative impacts were mentioned.
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Integrated Methods in Multidisciplinary Design Optimization

The benefits of CERs were touched upon earlier, emphasizing their straightforward imple-
mentation and quick evaluation, which renders them favorable for MDO frameworks. For
instance, both the Preliminary Aircraft Design and Optimization Program (PrADO) from
TU-Braunschweig [96] and the Multidisciplinary Integrated Conceptual Aircraft Design En-
vironment (MICADO) from RWTH-Aachen [219] have integrated CER-based DOC and LCC
methods into the environments.

Another MDO incorporating DOC methods is detailed by Colmenares et al. [48] from Cranfield
University, focusing on aircraft engines. Their cost calculation, which seemingly covers only
engine-associated DOC, uses a so-called “Economics Module”. This module projects the DOC
over three decades to determine the Net Present Cost (NPC) (which represents the NPV without
revenues). A similar framework was used for intercooled engines by Kyprianidis et al. [143]
and Saatlou et al. [227]. The same framework is used by Goldberg et al. [87], where the focus
shifts from aircraft engines to overall aircraft designs. The assessment itself was detailed in
a more systematic manner, factoring in metrics such as the NPV, IRR, and their version of
the NPC’. The authors also draw attention to the existing gaps in comprehensive aircraft
technology evaluation, stressing that “It is therefore vital to establish the overall economic benefits
and commercial viability of new technologies and policies, a type of study rather rarely seen.”.

Curran et al. provide additional examples of DOC method integration into multidisciplinary
structures. In Ref. [57], the authors investigate the link between the manufacturing tolerances
of an engine nacelle and increases in DOC. These increases are attributed to penalties in
fuel consumption resulting from variations in aerodynamic efficiency. In this study, the DOC
model, though not detailed in its methodology, is seamlessly integrated with a Computational
Fluid Dynamics (CFD) framework. The same theme was subsequently explored by the authors
in other works, each with its own unique central topic [36, 56, 208].

Operations-Focused Studies

Aircraft operations research is a field with substantial relevance to the subject at hand. This
expansive domain encompasses studies that tackle a diverse range of subtopics, from airline
fleet planning to management strategies. For instance, Santos et al. have contributed several
insightful papers to this domain, addressing areas like fleet planning under demand uncer-
tainty [215, 226], challenges of flight scheduling [240, 279, 280], strategies for maintenance
schedule clustering [62], and end-of-life optimization techniques [175]. While these works
detail various frameworks and methodologies tailored to resolve these problems, their central
emphasis revolves around enhancing the resilience of planning algorithms to cope with un-
foreseen disruptions or events. Their focus is more on tackling these issues than evaluating
specific aircraft or technologies. Nevertheless, the submodels introduced emphasize a critical
observation: regression-based predictions fall short in accurately representing the intricate
nature of the air transportation system. Instead, methodologies such as DES or agent-based
modeling seem better suited to address this complexity.

Conclusions and Implications

The state-of-practice in aeronautical economic valuation is still significantly dominated by
legacy DOC methods, with a few exceptions that have developed updated CERs. Applications
range from aircraft designs to specific technologies up to operational procedures. Some of
these seem to step out of the area of CER applicability, which, considering the impact of the im-
plied financial decisions, can be highly critical for aircraft manufacturers and operators. With
the recent stream of airline operations optimization, the need for a more detailed modeling

9The authors do not call the economic metric “NPC” but the “difference in aircraft purchase cost” or just “AX”. However, their
definition is equal to that of the NPC.
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approach becomes apparent. The integration of costing methods in MDO environments em-
phasizes their integrative nature, implying the need for a comprehensive and flexible valuation
tool.

2.3.2 Uncertainty Quantification Literature

This Section provides a review of more recent publications in the UQ domain. The sectors from
which these studies originate are not restricted to aerospace but extend to all domains such as
mathematics, computer engineering, and civil engineering. Their categorization is based on
the following clusters:

* Definition and Categorization Focused Publications, where studies aim to aid in the differenti-
ation of uncertainties,

e Reviews and Method-Based Studies, where relevant literature is reviewed and methods and
metrics are discussed,

* Visualization and Recipient-Considering Publications, where the proper representation of un-
certainties is dealt with.

In order to focus on general advances and theoretical developments, specific applications of
UQ have mostly been filtered out in from this list. They can be found in Section 2.3.3.

Definition and Categorization Focused Publications

The seminal work from Walker et al. [281], which was the foundation of the uncertainty def-
inition and classification discussed in Section 2.2.1, laid the groundwork for a number of
uncertainty-addressing studies, especially in the environmental domain, e.g., Petr et al. [189]
and Walling et al. [282]. Building on the three uncertainty dimensions from Walker et al.,
Janssen et al. [119] introduced two additional dimensions: the qualification of the knowl-
edge base and the value-ladeness of choices. According to Van der Sluijs et al. [276], the
first dimension pertains to the depth and support of the information, including data, the-
ories, models, methods, and argumentation used in problem assessment. This dimension
underscores methodological acceptability and the robustness of the adopted methods, knowl-
edge, and information, offering insights into their reliability. The second dimension, value-
ladenness of choices, highlights the influence of values and biases in various decision-making
processes. This encompasses framing scientific questions, selecting and interpreting data,
designing methodologies and models, and formulating explanations and conclusions.

Booker et al. [30] offer a comprehensive review of the quantification and assessment of uncer-
tainty, highlighting some essential steps aiding in uncertainty management. Additionally, they
introduce a novel classification of uncertainties, i.e., those rooted in inference. This includes,
for example, uncertainties that arise from forecasts that infer future values based on past data
or from attributes inferred about an entire population from a sample. While this extension of
inference-based uncertainties provides a valuable perspective for identification, the study did
not furnish any mathematical or engineering methodologies to address them.

Reviews and Method-Focused Studies

Schwabe et al. [243] present an extensive and excellent review of the metrics of UQ with respect
to their potential use in aerospace innovation. They analyzed the frequency of different metric
usage throughout the time, highlighting that classical metrics and procedures such as general
statistics and MCSs are slowly being replaced or at least accompanied by non-probabilistic
metrics. With respect to aerospace innovations, where the number of actual observations of
the inputs or outputs afflicted with uncertainties is relatively low, the authors explain how the
classical approach of using MCS and relying on the CLT is not always appropriate. Another
key message of this publication is that UQ is generally a snapshot of a dynamic situation, i.e.,
the same Ool may be dealt with different uncertainty metrics over time. The authors also
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highlighted that these changing uncertainty metrics should be mathematically congruent for
a consistent UQ.

In Grenyer et al. [90], a systematic literature review of multivariate UQ for uncertainty quan-
tification was conducted. In this context, the term “multivariate” refers to the combination of
quantitative and qualitative UQ, where the former describes situations where data is available
and probability theory is suitable and the latter refers to situations where data is scarce and
expert-driven knowledge or experience is utilized instead. The authors claim that the com-
bination of both will increase confidence and rigor in determining the impact of uncertainty.
Their review highlighted the predominant use of Prol, Sensitivity Analysis (SA), and MCS.
Furthermore, they conclude that evidence theory and interval analysis are suitable alternatives
for more qualitative UQ. Fuzzy set theory was mentioned as being well suited for qualitative
reasoning but not for estimating quantitative uncertainty. The study results in two research
gaps: (a) alack of frameworks to aggregate multivariate uncertainty and (b) limited approaches
for forecasting uncertainty with limited data.

Hawer et al. [100] provide a brief literature review where they pick up the work from Walker
et al. [281] and Janssen et al. [119]. Furthermore, they present a flowchart-based guideline
for practitioners who wish to decide which theory or metric is appropriate for modeling the
uncertainty of a reference object. This rather complex flowchart, however, focuses on the
choice of probabilistic distribution functions and fuzzy set theory and does not cover evidence-
theoretic approaches, nor does it provide guidelines for uncertainty propagation.

Visualization and Recipient-Considering Publications

The initial characterization from Walker et al. [281] was picked up by Viavattene et al. [278]
and applied to uncertainties regarding flood risk management. In this study, the authors
provide a qualitative method aiding the researcher in determining whether enough information
is available to conduct a viable lifecycle cost evaluation, where they utilize the uncertainty
dimensions from Walker et al. The outcome is an Uncertainty Inventory (UI), based on the
level and nature'® dimension of the uncertainties of cost elements. The authors provide a
visualization plotting the cost magnitude over the Ul, which may then be divided into regions
of feasibility for the LCC evaluation. It should be noted that Viavattene et al. acknowledge the
limitations of their methodology as being subjective in multiple facets and improvable as some
experience is required.

Spiegelhalter et al. [255] specifically discuss the visualization of uncertainty about the future
in the science journal, leading with the statement that “probabilities are notoriously difficult to
communicate effectively to lay audiences” ([255, p. 1393]) and that previous reviews have shown
that there is a lack of best practices in uncertainty visualization. They mention that commu-
nicating uncertainty can be done through tabulated summary statistics, but a greater impact
is achieved by a graphical visualization, ideally when tailored for the audience. They fur-
thermore address the fact that a suboptimal uncertainty visualization may lead to confused,
suspicious, and more risk-averse recipients [95, 204]. The authors conclude their paper with a
number of recommendations for uncertainty visualization, with the most important one being
to assess the needs and capabilities of the audience to design a visualization format suitable to
inform the recipients effectively and objectively.

Conclusions and Implications

The general categorization of uncertainties into epistemic and aleatory remains consistent
throughout most publications. Additional categories and characteristics, such as the inference
type and expert credibility, have been proposed but rarely picked up in other studies. In fact,
there is a vast spread of metrics for UQ among researchers, ranging from those provided by

10The authors do not interpret the nature dimension as covering the epistemic/aleatory attributes but the variability through-
out time, i.e., the dynamic properties of the uncertainties - a concept mentioned but not addressed by Walker et al.
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classical probability theory over non-probabilistic approaches up to data science and machine
learning-driven ones. From a comparative perspective, it can be seen that the underlying
theories are often alternatives to each other but are occasionally used in a complementary
way. The most frequently mentioned theories are (a) probability theory, (b) fuzzy set theory,
and (c) DSTE. Fuzzy set theory was, however, mentioned as being less suitable for UQ but
rather applicable for modeling systems with subjective inputs. As a final note, recipient-
focused publications are relatively rare, although several authors highlight the need for a
proper approach to communicating the complex UQ efforts to potentially lay audiences.

2.3.3 Uncertainty Addressing Design and Assessment Studies

After discussing the conventional assessment studies and general uncertainty quantification
literature, this Section is dedicated to publications in-between, i.e., design and assessment
studies that incorporate some form of UQ. The literature discussed here extends the overview
given in Section 1.2 and is not limited to the aerospace sector. The clusters for this review are:

* Monte Carlo Simulation and Surrogate Modeling Techniques, where the latter aims to reduce
the computational expense of the former,

* Global Sensitivity Analyses, for apportioning uncertainty and separating strongly contribut-
ing uncertainties from negligible ones, and

* Non-Probabilistic Techniques, where methods from DSTE and fuzzy set theory are used.

Monte Carlo Simulation and Surrogate Modeling Techniques

A large number of design and assessment studies deal with uncertainties via MCS [90, 243].
The approach is usually as follows: After uncertain parameters have been identified, they
are assigned lower and upper bounds. Then, a uniform distribution is defined within these
bounds, from which samples are drawn and propagated through the model for output dis-
tribution analysis. Applications vary and include aircraft CO; emission assessments [99],
preliminary aircraft design [191, 192], certification-driven aircraft design [289], aircraft noise
assessments [27, 125], economic assessments of biodiesel production [261], hydrogen produc-
tion [147], and nuclear energy systems [82]. A noteworthy drawback of this approach is that,
due to the lack of data, the assigned bounds are subjective in nature, and oftentimes there is
no support for the assumption of a uniform distribution.

A noteworthy modification of the MCS in the field of Prognostic Health Management (PHM)
can be found in Dewey et al. [63]. Here, epistemic and aleatory uncertainties are treated
separately using a nested MCS architecture. In the inner loop, the parameters of aleatory
uncertainties are sampled and analyzed once converged. The outer loop samples the epistemic
uncertainties, which are usually of uniform distribution, which are then fixed for the inner
loop, where the aleatory uncertainties are sampled. The output is visualized using sets of
CDFs for the probability of failure over time. The authors highlight the computational expense
of this method as a significant drawback. In addition, the same limitations with respect to
the assignment of uniform distributions apply. A similar approach can be found in West et al.
[284] for the UQ of supersonic aircraft configurations. Here, the authors acknowledge that
uniform distributions “can lead to inaccurate predictions in the amount of uncertainty in a system”
and therefore suggest using intervals, which, however, still suffer from subjectivity in the
assignment of lower and upper bounds. To improve the computational runtime, a PCE-based
surrogate model was used, and outputs were visualized using bounded CDFs.

Other applications of surrogate models in the MCS context can be found in DeGennaro et al.
[59], where the authors investigate airfoil icing situations under aleatory uncertainty. Another
example of PCE-based UQ was presented by Cheema et al. [40], who investigated the flutter
behavior of an aircraft T-tail. Both studies present and discuss the results using histograms
and statistical moments.
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Allaire et al. [13] from Massachusetts Institute of Technology (MIT) provide a new methodology
for developing a surrogate model. The authors apply their surrogate to an environmental
aircraft performance tool called AEDT. This work is then continued in Allaire et al. [14], where
their environmental tool has been further developed. Another update of this methodology was
presented in Amaral et al. [16], where the application moved from the AEDT to a combined
tool that incorporates aircraft design capabilities.

Global Sensitivity Analyses

An increasing number of studies acknowledge the potential of GSA methods to quantify and
rank the criticality of input uncertainties. For instance, Opgenoord et al. [184] use the so-
called Sobol” method to efficiently decide which input uncertainty should be reduced first.
The authors discuss an aircraft sizing problem and introduce uncertainty budgets to solve an
optimization problem. The same GSA method was also used by Sibdari et al. [246], where the
authors reviewed datasets on fuel cost, passenger demand, and unemployment rate to quantify
the impact on airline capacity (i.e., flight frequency, aircraft size, and load factor). Further
applications of the Sobol” method can be found in Gong et al. [88], where the aerodynamic
performance of a morphing-wing aircraft was optimized under geometric uncertainty of wing
sweep, span, and chord length, or in Raj et al. [209], who quantified the sensitivity of uncertain
icing shape and icing mass parameters on physical and modeling parameters of airfoils.

An alternative GSA method, namely the Fourier Amplitude Sensitivity Test (FAST), was used by
Park etal. [186], who optimize the aero-structural design of an aircraft wing. A modified version
of the FAST technique called FAST with Random Balanced Design (FAST-RBD) was utilized
and extended to non-uniform distributions in Gao et al. [81], where the authors performed a
stress analysis of aerospace rocket nozzles. Further (non-aerospace-related) applications of the
FAST-RBD method can be found in Bui et al. [33], Gaspar et al. [83], and Hong-Qi [112].

Generally speaking, the research field of GSA methods is quite active, resulting in several
newly developed techniques in the past years, some of which are tool-specific [13, 14], whereas
others are generic and treat the underlying model as a black-box [149, 194]. Considering that
some GSA methods have fundamentally different approaches to apportioning uncertainty and
provide different types of sensitivity measures, researchers should choose the GSA method
according to their needs. However, the selection is rarely explained in literature.

Non-Probabilistic Techniques

While non-probabilistic techniques are far less frequent in UQ-driven design and assessment
studies, there are some noteworthy publications. Hester [107], for example, discusses the
use of evidence theory and focuses on combining expert knowledge while accounting for
varying expert credibility. They briefly demonstrate the potential using a case study where
maintenance intervals are quantified using Belief and Plausibility measures. A more general
discussion of the potential of evidence theory in MDO is presented by Agarwal et al. [3], who
apply the methodology to an optimization problem for aircraft sizing and compute the CCXFs
over the output domain. A similar approach can be found in Bae et al. [22] on a structural
design problem for aircraft wings. Note that these publications highlight the potential of the
evidence-theoretic approach and its superiority over Prol' when data is scarce. However, they
apply the techniques to highly simplified problems since the computational expense increases
exponentially with the number of uncertain inputs. Furthermore, no distinction is made
between aleatory and epistemic uncertainties.

Fuzzy set theory is mostly used for incorporating qualitative uncertainties in design and
assessment efforts. Odedele et al. [181], for instance, compare the traditional deterministic NPV
approach within oil and gas investment decisions to one that incorporates uncertainties. Instead
of MCSs for uncertain inputs, they make use of their own predictions via “fuzzy support vector
machines”. For their final statement regarding economic viability, they incorporate a Fuzzy
Inference System (FIS) with rules based on different investment metrics. Further examples
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where fuzzy theory replaces MCSs can be found in Chowdhury et al. [45] and Rezaei et al.
[216], both dealing with aircraft flutter investigations. A quantitative attempt at dealing with
uncertainties is provided by Chen et al. [41], who predict aircraft taxi times using a mamdani-
type FIS. The authors seem to use the goodness of the defuzzification step as a means to
quantify the output uncertainty. Without providing details on the methodology, this approach
suffers from a lack of reproducibility and transparency.

Conclusions and Implications

The applied UQ studies highlight the importance of distinguishing epistemic from aleatory
uncertainties, as they have different consequences for decision-makers. Nested MCS have been
proposed, in which epistemic uncertainties are modeled wit huniform distributions or inter-
vals, which are subjective and may lead to inaccurate representations of uncertainty. Several
authors mentioned the difficulty of computational runtimes, which led to the development of
surrogate modeling techniques such as PCE. GSA methods seem to receive increasing attention
for guiding uncertainty reduction efforts. The Sobol” method is a popular GSA technique, fol-
lowed by FAST-RBD and FAST. However, the choice of GSA method is usually not explained,
although different techniques provide different capabilities. In the non-probabilistic domain,
the potential of evidence-theoretic techniques was identified but mostly applied using simpli-
fied examples due to the high computational expense. Furthermore, there seems to be a lack
of studies combining DSTE and ProT for the quantitative inclusion of uncertainties. As a final
note, fuzzy set theory is mostly used for qualitative uncertainty considerations, substantiating
the theoretic discussions from Sections 2.2.2 and 2.3.2.

2.4 Summary

This Chapter provided the basics of TEA, UQ, and the interconnection of both. To do so, the
theoretical foundations were outlined in Sections 2.1 and 2.2, complemented by a literature
review in Section 2.3, which augmented the state-of-the-art discussion from Section 1.2. By
analyzing conventional economic evaluation practices, general UQ literature, and uncertainty-
addressing design and assessment studies, the barriers that led to the research questions and
hypotheses presented in Chapter 1 were substantiated.

It is evident that, compared to the non-probabilistic domain, conventional Prol - encompass-
ing both the Frequentist and Bayesian perspective and their associated techniques - is widely
understood and utilized. Given that this thesis seeks to address challenges obstructing the ef-
fective implementation of the proposed uncertainty management methodology, the subsequent
Chapters will focus on the following aspects:

¢ The potential of GSA in attributing output uncertainty to input parameters has garnered
increasing interest, yet the rationale behind the selection of specific techniques often remains
unexplained. It is recognized that different GSA methods can vary significantly in their
theoretical foundation, applicability, and added value, depending on the problem at hand.
Consequently, Chapter 4 is dedicated to comparing the efficacy of various GSA methods
when applied to TEA, assessing their strengths and weaknesses, and providing guidance
for users. The most suitable method is then applied in the HLFC case study:.

* Quantitative non-probabilistic techniques for uncertainty, particularly those based on ev-
idence theory, have shown potential to outperform traditional probabilistic methods, es-
pecially when data is scarce and expert input is available. Despite their promise, these
methods are seldom explored extensively in existing literature. Furthermore, a detailed
comparison of evidence-theoretic methods with traditional probabilistic approaches within
the context of uncertainty quantification has yet to be conducted. Therefore, Chapter 5 pro-
vides a systematic evaluation of the effectiveness of evidence-theoretic methods against
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conventional probabilistic techniques, achieved through a novel programming package
developed specifically for this analysis.

Some scholars emphasize the importance of differentiating between epistemic and aleatory
uncertainties due to their unique impacts on decision-making. Nested MCS have been
proposed to manage these uncertainties separately, often employing probability boxes for
visualization. This method typically uses either uniform distributions or subjectively deter-
mined intervals to represent epistemic uncertainties, which can affect the accuracy of UQ
results. The advantages of using evidence theory to create expert-driven belief spaces for
epistemic uncertainties have not yet been integrated with conventional probabilistic tech-
niques for aleatory uncertainties. Therefore, Chapter 6 investigates the integration of these
methods within nested MCS, evaluating their effectiveness and clarity for decision-makers
compared to alternative approaches.

To set the stage for the above, Chapter 3 introduces the newly developed LCBA framework as
well as the HLFC case study in more detail.



3 Assessment Framework and Use Case Definition

This Chapter introduces the assessment model crafted for this thesis, aligning with the initial
step of the uncertainty management methodology detailed in Chapter 1. Subsequent sections
explore the use case of HLFC on a long-range aircraft, namely the Airbus A330-343, providing
an overview of the technology and its relevant boundary conditions. From these conditions,
assumptions and uncertainties arise, which will be discussed and tabulated for the later UQ
efforts. The Chapter concludes with an evaluation of the use case within the assessment
framework, executed in a deterministic context.

3.1 Discrete Event Simulation Framework LYFE

The framework named Lifecycle Cash Flow Environment (LYFE) aims to provide a generic (i.e.,
not project- or case-specific) environment for the LCBA of various products in aeronautics. This
Section briefly describes the program structure and some relevant capabilities. It should be
noted that, due to the multi-purpose nature of the LYFE, the framework will not be discussed
in its entirety here. For a more detailed description, consider Pohya et al. [201] (on which this
Section is based on) or LYFE's extensive documentation in Pohya et al. [203].

3.1.1 Program Structure

LYFE is a Python-based framework' that uses a modular program structure to simulate discrete
events spanning an aircraft’s lifecycle. These include, but are not limited to, the acquisition
of the aircraft, all performed flights, scheduled and unscheduled line and base maintenance
with corresponding downtimes, various non-recurring and recurring payment events (such
as insurance, interest, or leasing rate payments) as well as the eventual resale, recycling, or
disposal of the aircraft. These events are cataloged in what is called an “event calendar”.
Distinct modules (which include acquisition, operation, maintenance, end-of-life, and a custom one
that can be specified by the user) autonomously create, define, trigger, and append events to
this calendar, as shown in the overall program structure in Fig. 3.1.

The process initiates with LYFE processing user inputs and loading essential databases, such
as airport data and aircraft performance response surfaces. Next, the individual modules are
accessed. Each module typically comprises an initialization function init and a core function
main. The init function executes preparatory tasks to speed up the overall runtime where
possible. The main function, executed repeatedly in a loop, first determines if an event that
this module can create is imminent. Event triggers may, for instance, include the operational
schedule (for flight events), the aircraft’s health status (for maintenance events), or the simu-
lation’s current timestamp (for recurring payments). If no event is due, the loop progresses to
the next module in line. Conversely, if an event is due, it is created and filled with relevant
attributes such as the duration, associated costs and revenues, and other specifics such as the
calculated fuel burn. Once the designated lifetime is reached, a sequence of post-processing
measures is triggered. This part not only computes operational statistics (e.g., the average
annual utilization) but also economic metrics (e.g., the NPV, see Eqn. (2.2)). The results are
consolidated, tabulated, and visually represented in a comprehensive report.

INote that the term framework indicates that LYFE can be enriched by custom modules, allowing its application across a variety
of assessment scenarios.
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Figure 3.1 Modular program structure of LYFE with individual modules in green, their initialization and
main functions in blue, databases in orange, and optional procedures in dashed boxes.

The adoption of DES aims to capture both primary and secondary effects throughout the
lifecycle. Primary effects are those that directly influence the Ool or a stakeholder. On the
other hand, secondary effects emerge either later or due to more complex interactions. For
instance, a particular technology might decrease fuel consumption, leading to reduced fuel
costs (a primary effect). However, when maintenance for this technology extends downtime, it
can disrupt the flight schedule (a secondary effect). A thorough simulation in LYFE can consist
of 50k to 100k events, varying with the use case and lifecycle duration. Consequently, a single
execution of LYFE can take 1 to 3 minutes. Given that the cost benchmarking approach (refer
to Section 2.1.4) demands two simulations for a full assessment, the overall runtime for one
evaluation typically falls between 2 and 6 minutes.

3.1.2 Aircraft Performance Database

While LYFE makes use of a variety of databases, one of them is of particular relevance to the
later-introduced use case, namely the aircraft performance database. It contains data for 35
different Airbus and Boeing aircraft, derived from a commercially available mission calculation
tool called Piano-X [247]. For this, the tool was executed repeatedly with input values (using
a full factorial design) for the flown distance r, carried payload p, as well as three technology
factors, i.e., drag t;, mass t;; (as a change in Operating Empty Weight (OEW)), and Specific
Fuel Consumption (SFC) ts. The outputs in terms of burned fuel, required time, and emissions
(such as CO2 and NOy) were recorded and used to create response surfaces. As for the input
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Figure 3.2 Aircraft performance response surfaces with a payload-range variation (left) and the impact of
the three technology factors drag t;, SFC ts, and mass t;, (right).

space, the distance and payload were mapped from their lowest to highest values, whereas
the technology factors were covered from 0.95 to 1.05. It should be noted that some of the
input combinations cannot be reached by the aircraft because they exceed the payload-range
boundary. This is illustrated in the left plot of Fig. 3.2. The right plot shows the fuel burn
change for different values of the technology factors for a given grid point. With these response
surfaces, LYFE calculates the fuel burn, flight time, and emissions with a 5-dimensional linear
interpolation, i.e.,

Meel = f (1, ta, tm £5) : R SR 31

This performance model, which is attached to each aircraft object, allows users to quickly and
easily simulate the impact of a variety of technologies. For the use case of HLFC, however, the
performance model for the aircraft under investigation needed to be recalculated. That is, the
lower bound of the drag factor was decreased to 0.9 in order to capture the anticipated drag
reduction potential. Additionally, since the HLFC is sensitive to different speeds (explained
later in Section 3.2.2), one additional input dimension was needed, namely the cruise mach
number f.. This modification resulted in a new performance model with six instead of five
inputs to interpolate from.

Each of the fuel burn values represents the result of a detailed mission calculation, the results
of which are shown for the (later introduced) reference aircraft in Fig. 3.3 on the design and an
off-design mission. As illustrated in the upper plot, the mission simulation encompasses the
entire flight profile, starting from takeoff, continuing through cruise with several step climbs,
followed by descent, and concluding with touchdown. The resulting fuel flow is depicted
in the lower plot, showing the peaks during takeoff and each step climb. The final amount
of burned fuel for the design and off-design missions is 65.8 and 34.7 tons, respectively. The
takeoff weight for each mission includes the required contingency fuels®. For this aircraft, the
resulting passenger-specific fuel consumption is:

M fuel _ {2.69 kg/(pax-100km) for design mission 52)

Yiwel = T anin
Y npax - 100km |3 g9 kg/(pax - 100km) for off-design mission

A comment on the validity of the mission calculation tool is appropriate. Acquiring real data
on fuel consumption for commercial aircraft is challenging. Such data are not only scarce

2This includes 5% of trip fuel, a diversion to an alternate airport which is 200 NM away from the destination airport, and
allowances for taxiing, takeoff, approach
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Figure3.3 Performance of the reference aircraft for the design mission (left, 5169 NM and 100 % load factor)
and off-design mission (right, 2968 NM and 80 % load factor)

but are also influenced by various factors, often undisclosed, e.g., prevailing wind conditions.
Consequently, a comprehensive validation has not been conducted. Nonetheless, a partial
validation was undertaken by comparing results with a publication by Aircraft Commerce
[5], showing good accuracy with errors well below 0.5%?°. Therefore, the fuel calculation
within LYFE, especially for the A330-343 (the reference aircraft used in subsequent analyses),
is deemed sulfficiently accurate to exclude it as a source of uncertainty.

3.2 Hybrid Laminar Flow Control

Due to its multidisciplinary and complex character, as well as its susceptibility towards envi-
ronmental boundary conditions and lack of operational knowledge, the evaluation of HLFC
is chosen as a use case for this thesis. This Section begins with a brief introduction to the
working principles of HLFC for readers who are unfamiliar with the technology. Afterwards,
the boundary conditions are dealt with in more detail, describing how the overall efficacy is af-
fected by elements from different domains such as operations or the environment. It should be
noted that the descriptions in this Section are of a qualitative rather than quantitative nature.

3.2.1 Working Principles

While HLFC is a primarily aerodynamic technology, its overall success depends on multiple
disciplines such as systems, structures, materials, operability, and maintainability. It can be
applied to components such as the wing, Horizontal Tail Plane (HTP), Vertical Tail Plane (VTP),
and engine nacelles. The primary aim of the technology is to reduce the aircraft’s drag, and
consequently, its fuel burn by delaying the laminar-turbulent transition x; of the boundary
layer in chordwise direction as much as possible. In conventional aircraft, x; occurs relatively
close to the leading edge, whereas studies and early flight tests of aircraft with HLFC achieve
transition lengths of 40 to 60 % of chord, see Fig. 3.4. As a hybrid technology, HLFC employs
two general concepts*:

3Supplemen’cal information on this topic can be found in Appendix C.1.
4For a more comprehensive description of the technology, consider Joslin [123], Young [296], or Risse [218].
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(a) An active compressor-based suction of the boundary layer in the forward region of the
airfoil (typically up to the front spar), through a microperforated or otherwise porous
outer skin, and

(b) an airfoil geometry with specifically designed pressure distribution properties to dampen
premature turbulence-inducing mechanisms, enabling a laminar-turbulent transition x;
beyond the suction area.

xr turbulent . . laminar Xt turbulent .
B ' ' suction B '
Il I [Pl I I
Il I I | I I
o aOUVOU DY | | I |
- I .
' | —
(a) conventional airfoil with transition near the leading edge. (b) HLFC airfoil with transition at 50 % of chord.

Figure 3.4 Illustration of turbulent and laminarized airfoils with background image from Ref. [21].

In essence, the ideal chain of effect of HLFC is as follows: The delayed transition position
increases the laminarized area, which decreases aircraft drag for as long as the technology is
activated. This, in turn, improves fuel consumption (and reduces emissions), which reduces
fuel cost and ultimately operating costs, increasing the economic value for the operator. The
aircraft manufacturer benefits from either an advantage in competitiveness or an increase in
revenue (through an increase in aircraft price). The actual operation of HLFC is, however,
characterized by a number of boundary conditions that affect different aspects of the described
chain of effects. These are explained next.

3.2.2 Boundary Conditions

As several studies have pointed out, the overall efficacy of HLFC is influenced by a number of
factors (e.g., Meifarth et al. [168] or Schrauf [242] for an airline’s and manufacturer’s perspective,
respectively). Fig. 3.5 shows a diagram of effects for overview purposes, categorizing the
influencing factors into the four domains of design, operation, environment, and economics.
Before explaining their origin and repercussions on the HLFC’s performance in more detail,
some further considerations of the general domain are described.
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Figure 3.5 Diagram of effects of HLFC.
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Domain 0: General Aspects

When dealing with HLFC assessments, the first question that often arises is: Which aircraft
is it applied to? While Natural Laminar Flow (NLF) is typically investigated for short-range
aircraft, HLFC is usually chosen for medium- and long-range aircraft. This is primarily due to
aerodynamic reasons. Achieving laminarity with NLF is difficult, if not impossible, for higher
leading edge sweep angles, higher Mach numbers, and higher Reynolds numbers, but possible
with HLFC[124, 218, 242]. Additionally, the relative portion of cruise time affects fuel burn
reduction since most studies assume HLFC is activated only during cruise[296, p. 28]. This
relative time in cruise increases with distance, making long-range more operations attractive
for the technology. Another question is: On which components is the technology applied? Potential
areas include the wings, tail planes, and engine nacelles. Several aerodynamic restrictions
need to be considered. Areas close to the fuselage are difficult to laminarize due to challenging
aerodynamic conditions. On the wing, HLFC application faces further difficulties. While the
upper and lower sides of the wing can be laminarized, many studies consider only the upper
side, often with a Kruger high-lift device. This is because the conventional high-lift system
introduces steps and gaps that must meet very low manufacturing tolerances, a problem not
yet sufficiently solved [196]. The Kruger flap can also shield the sensitive laminar area near the
leading edge from insect impacts. The next question is about the degree of freedom with which
the aircraft and airfoils are (re)designed. While airfoil geometries can be changed for HLFC
design, the planform geometry may or may not be fixed. Furthermore, a final Overall Aircraft
Design (OAD) optimization may or may not be part of the study. Such optimization includes
snowball effects, e.g., reduced fuel burn allows for smaller fuel tanks and thinner airfoils, which
leads to weight decrease and further fuel burn reduction, until the design converges. However,
any decrease in airfoil thickness must be carefully managed due to its significant impact on
structural integrity. The bending stiffness of the wing is proportional to the cube of the airfoil’s
height, meaning that even minor reductions in thickness can substantially weaken the wing’s
load-bearing capacity. Therefore, a balance between aerodynamic efficiency and structural
safety must be achieved. The final question is: Who is the customer? Different airlines operate
aircraft in different regions with varying maintenance strategies, resulting in the benefit of
HLFC being different for each airline and operation. This is closely linked to the operational
and environmental boundary conditions explained later. These questions need to be answered
transparently to make a statement about the overall efficacy of HLFC.

Domain 1: Design Aspects

The design domain defines a variety of parameters. These include the system components
and their layout (e.g., one or a few centralized compressors or multiple distributed ones),
the changed structure in the leading edge region, the type of perforated skin, the resulting
steps and gaps, and many others. The knowledge about these aspects varies with the stage
of product development and, unless a large-scale prototype or demonstrator is built, remains
incomplete. At an early stage, the assumptions in the design domain can be broken down into
(a) the achieved laminar area, (b) the mass increase due to the installed systems and materials,
and (c) the SFC penalty due to the power offtake of the compressors, inverters, and control
computers. While (a) has a desired impact and is often maximized in optimization loops, (b)
and (c) worsen the efficacy of HLFC. This trade-off can be explained with the Breguet-Range

Equation:
V L 1 mo
R=—. = . 1 _
g D SFC n(mo—mt) (33)
~—— ——
(@) (© (b)

where V is the (constant) speed, g is the gravitational acceleration, L and D are the lift and
drag, respectively, myg is the initial mass of the aircraft, and m; is the mass of the burned fuel.
The extended laminar flow of HLFC increases L/D, increasing the range, while the SFC penalty



Section 3.2: Hybrid Laminar Flow Control 55

and mass increase have the opposite effect. In order to reduce fuel burn for a given range, (a)
therefore has to outweigh the combined negative impacts from (b) and (c), especially when
further degradation from other domains is taken into account. As with all assumptions, these
three design impacts can be estimated with a wide range of detail. Early methods may use
analogies and expert knowledge, whereas more advanced procedures such as CFD are used in
later stages. Full certainty can only be obtained with large-scale flight tests and the respective
instrumentation for drag, mass, and power measurement.

Domain 2: Operational Aspects

Another domain for the assumptions (later treated as uncertainties) stems from the operation of
an HLFC aircraft. The previously mentioned design parameters typically assume specific flow
conditions, e.g., specified cruise speeds and cruise altitudes. Airlines, however, operate their
aircraft at a wide range of speeds and distances with different passenger loading conditions,
creating off-design circumstances that influence the overall HLFC efficiency. Deviations from
the design speed may affect the transition position, depending on the robustness of the concept.
Flown distances and carried (passenger) loads also affect the overall savings, as HLFC is more
efficient at longer routes and higher load factors. Additionally, operators of HLFC aircraft may
choose to carry additional contingency fuel to account for potential but unforeseen losses of
laminarity. This additional weight also influences the efficacy of the technology, and a trade-off
between reliability (i.e., likelihood reaching the destination without the need to refuel) and fuel
consumption needs to be made.

Domain 3: Environmental Aspects

A particular difficulty with laminar aircraft is their susceptibility to environmental boundary
conditions [168]. Contamination of the laminar surfaces (e.g., through insect accumulation)
decreases the laminar effectivity 11, which is defined as follows [73]:

_ Alam,l _ Alam,O - Alam,loss
Alam,O Alam,O

nL , (3.4)

where A}, o is the laminar area without any contamination, Ay, 1 is the laminar area in
operation, and Ajym joss is the lost laminar area due to contamination or other effects. For
example, insect contamination can induce turbulent wedges, creating a loss of laminar area
Alam,loss- This loss generally increases with the number of insects but also depends on the
accumulation pattern, as agglomerated insects share portions of their turbulent wedges and
therefore have a smaller impact on 71, than evenly distributed ones [285].

W — =

(a) undisturbed. (b) distributed. (c) agglomerated.

Figure 3.6 Illlustration of insect contamination on laminarity.

Another degrading environmental element is the cloud encounter. At high altitudes, the
cloud particles (primarily ice crystals in cirrus clouds) move through the boundary layer and
disturb laminar flow. As flight tests in the 1970s have shown [188], laminarity decreases when
flying through and in the vicinity of clouds and is immediately restored after emergence.
Thus, the time in cloud has been selected in many studies as a key parameter to describe the
degradation [121]. Other degradation mechanisms occur due to the presence of ash, sand, dust,
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general air pollution, and other particles such as pollen, which may clog the microperforated
sheet or lead to a faster deterioration of the compressors, e.g., through fouling.

Domain 4: Economic Aspects

The last domain covered here deals with economic aspects. Asstated earlier, the ultimate goal of
the technology is to reduce operating costs, which include cost of ownership, maintenance costs
and fly-away costs (see Fig. 2.3). The economic superiority of HLFC aircraft therefore depends
on its impact on all of these elements. For instance, an increase in fuel costs is beneficial
for technology development, while an expected increase in maintenance costs due to the
introduced systems and components decreases the value. These may consist of HLFC-specific
efforts in line maintenance (such as inspections or the frequent cleaning of surfaces), base
maintenance (mostly for the mechanical systems), and unscheduled maintenance (primarily
driven by the electronic components). Additionally to the maintenance aspect, it is conceivable
that HLFC aircraft are more expensive to procure than their conventional counterparts, due
to the prior made RDTE effort of the manufacturer, the increased production cost due to
higher requirements regarding tolerances in steps and gaps, as well as the acquisition of HLFC
components and materials.

3.3 Deterministic Assessment

The first assessment performed in this thesis is of a deterministic nature, i.e., it does not attempt
to quantify any uncertainties. It is presented here to get a more practical understanding of
how the assessment framework LYFE works and also serves as a comparison point in later
uncertainty-addressing studies. First, the goal of the study is formulated, followed by a
documentation of the assumptions. Afterwards, the inputs for LYFE are described, before the
results of the deterministic analysis are presented.

3.3.1 Goal of the Study

A clear and agreed-upon goal of an analysis, study, or project is considered standard practice
and aids in the selection of appropriate models and justified assumptions. Therefore, it is
formulated first. Here, it is distinguished between the goal of the assessment itself and the
goal of the uncertainty consideration.

The goal of the assessment is to quantify the techno-economic performance of an HLFC
aircraft compared to a conventional (i.e., turbulent) Airbus A330-300 from an operator’s
point of view. The result shall aid in a fictive investment decision-making process where
an airline is confronted with choosing which aircraft types to buy in the future (or to
declare sincere interest in). Thus, the assessment is prospective, predicting the economic
performance of both aircraft under identical boundary conditions.

Complementary to this, the deterministic setting has the following intention:

The goal of the deterministic setting is to obtain two scalar outputs: Aype and ANPV.
These outputs represent the changes in technological and economic performance, respec-
tively, between the HLFC aircraft and the reference aircraft. Recognizing that some input
parameters are uncertain, point-values are used to treat these parameters as fixed assump-
tions. This choice, while potentially affecting overall outcomes and decision-making, is
made to facilitate a clearer initial discussion of KPIs. This approach makes it easier to
understand subsequent UQ and demonstrates a process commonly used in many TEAs.
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The change in fuel consumption, Ay e, is defined as

V fuelref — Y fuel hlfc
AYfuel = . (3.5)
V fuel ref

Negative values of Ay¢,e) indicate a technological success of the HLFC aircraft, as they reflect a
reduction in fuel consumption compared to the reference aircraft. More negative values signify
a greater reduction, demonstrating a stronger performance advantage of the HLFC aircraft.

In terms of economic performance, the KPI A NPV is defined as
ANPV = NPVyjc — NPV, . (3.6)

This metric measures the difference in NPV (see Eqn. (2.2)) between the HLFC aircraft and the

reference aircraft. Higher values of A NPV reflect greater economic benefits derived from the
HLEFC technology.

Assessing both Ay, and ANPV provides a comprehensive evaluation of the technological

and economic impacts of implementing HLFC on an A330-300 type of aircraft.

3.3.2 Assumptions

The explicit documentation of assumptions is vital for transparency and reproducibility [213].
The following descriptions follow the same structure outlined in Section 3.2.2, starting with
general considerations, followed by aspects from the domains of design, operation, environ-
ment, and economics.

Domain 0: General Assumptions

The following considerations answer the four questions raised in the general domain of Sec-
tion 3.2.2, namely:

1. Which aircraft type is HLFC applied on?
2. Which components of the aircraft are equipped with HLFC?
3. What is the degree of freedom with respect to the HLFC aircraft design?

4. Who is the customer?

Which aircraft type is HLFC applied to?

) ) s Table 3.1 Key parameters of the A330-343.
This question has partially been answered

in the goal of the assessment. The reference Parameter Value
aircraft is a conventional (hence turbulent) Weights
Airbus A330-300, and the HLFC aircraft will Maximum Takeoff Weight 233,000kg
be a close derivati\{e redesigp of that. As sev- I\O/II;i?rtﬁlri EZI;%’(}I;IXZF %/%/}e};[gh t %;g:ggg tg
eral A330-300 variants are in operation, an Maximum Landing Weight 187,000 kg
exploratory analysis was performed to iden- Maximum (Structural) Payload ~ 55,570kg
tify a representative (or, in other words, most Seating Layout
common) version. The result of this analysis Business Class 42
is the Airbus A330-343, which is equipped gremmm Economy Class 28
. conomy Class 185
with two Rolls-Royce Trent 772-B-60EP en- Total No. of Seats 255

gines and has 255 seats, divided into three
classes. Key parameters are summarized in
Table 3.1.
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It is important to note that this study does not employ a hypothetical baseline aircraft design
estimated to enter service alongside the HLFC model, primarily due to the scope of the re-
search projects that underpin this thesis. Moreover, HLFC technology, having been researched
for decades, is assumed to sufficiently mature to suggest that its incorporation into aircraft
design could proceed rapidly, potentially outpacing other significant developments such as
engine efficiency improvements. Consequently, both the reference and the HLFC aircraft were
assumed to benefit equally from other technological advancements, thus allowing the compar-
ative simulation to focus primarily on the impacts of HLFC itself. This approach mitigates the
influence of other variables and aims to isolate the specific contributions of HLFC technology
to aircraft performance and operational costs, as discussed in the cost benchmarking discussion
of Section 2.1.4.

Which components of the aircraft are
equipped with HLFC? The aircraft imple-
ments HLFC on the upper surfaces of the
wings, extending from the engine positions
outward. HLFC is also applied on both the
upper and lower surfaces of the HIPs and
on both the left and right sides of the VIPs.
The initiation of laminar flow on the HTPs
and VTPs does not begin directly at their
junction with the fuselage but starts with a
slight offset, addressing the complex aero-
dynamic interactions near the aft part of the
fuselage. The HLFC system includes a suc-
tion setup comprised of a microperforated
titanium sheet that replaces the conventional ~ Figure 3.7 Isometric view of the HLFC aircraft de-
aluminum skin from the leading edge to the ~ sign, based on Airbus [4].

front spar, supported by an array of com-

pressors, converters, control units, and sensors powered by the aircraft’s Integrated Drive
Generator (IDG), operational only during cruise. On the wing’s lower side, a Krueger flap,
positioned slightly ahead and below the leading edge, functions as a high-lift device during
takeoff and landing, while also serving as an insect barrier to protect the laminar areas from
debris, thus preserving the efficacy of the HLFC system throughout the flight.

What is the degree of freedom with respect to the HLFC aircraft design? As mentioned
before, the degree of freedom in the HLFC development can range from a modification (without
airfoil geometry changes) up to entire, HLFC-optimized aircraft that only share the Top Level
Aircraft Requirements (TLAR) with their conventional counterparts. In the present case, it is
assumed that the degree of freedom is somewhere in between. More specifically, the airfoil
geometries of all components with HLFC are free to change, whereas the planform is kept
fixed. The reason not to go further with the degree of freedom is as follows: An OAD-
based optimization typically assumes ideal operating conditions for the laminar flow, and then
employ expected fuel savings and their impact on the aircraft design as snowball effects. As
the actual operation of HLFC is characterized by a number of degrading elements, such an
optimized design is assessed to be too progressive’, especially considering that operators are
already concerned about the reliability of the technology [168]. The second reason is more of
a practical nature: the OAD work is not tackled by any of the research questions or hypotheses
and hence is out of scope for the present work.

5This is substantiated by several conversations with current and former Airbus employees responsible for HLFC related
research and development projects.



Section 3.3: Deterministic Assessment 59

Who is the customer? While manufacturers are more likely to think of groups of customers
and aim to develop a one-fits-all aircraft, operators are only interested in the performance
of a new aircraft on their specific route network. The assessments performed here take the
operators’ perspective rather than the manufacturers’. The assessment results can then be fed
back to the manufacturer, as it is done in both supporting research projects. The airline (or
customer) in this study is chosen to be Lufthansa, which operates 13 Frankfurt-based A330-343.
Fig. 3.8 shows the route network of this fleet, with destinations in North America, Africa, the
Middle East, and Central Asia. With an average flight time of a little above 7 hours, the A330s
in the Lufthansa fleet are considered mid- to long-range utilized.

ORD, ATL, DTW,

i YYZ; IAD, EWR, BEY, JED,
JFK, YUL, BOS RUH, KWI,
DMM, BAH,
60°N |
YVR
—_ i SEA ALA
£ 30°N |- N\ " DEL
T
£ - BOM, BLR,
= MAA
0° |
30°S |- WDH

unique origin-destination pairs: 89
| average (weighted) distance: 3067 NM
average (weighte‘d) flight time: 7:1‘9 hrs

| | |
120°W 60°W 0° 60°E 120°E
longitudes, [-]

60°S

Figure 3.8 Route network of Lufthansa’s A330-343 fleet as of 2020 shown as great circles, data taken from
Sabre Airline Solutions [228].

Additional Considerations. Apart from the aforementioned aspects, it should be noted that
this assessment will simulate only one aircraft, i.e., not a fleet. Generally speaking, simulating
fleets with LYFE is suggested when there is indication that an Ool’s performance affects or is
affected by other aircraft in the fleet. It is assumed that this is not the case for HLFC. With
respect to the TEA itself, itis assumed that itis situated at an early stage of product development.
That is, detailed information regarding, for instance, the suction chamber designs, system
layouts, and component sizing issues are assumed not to be available and have to be estimated,
introducing uncertainties in the process. Due to the deterministic setting of this study, these
uncertainties are treated as assumptions, i.e., are given point values. As a final note, the
simulation time needs to be specified. It is assumed that the entry into service of the HLFC
aircraft (as well as of the conventional A330) is in the year 2030 and will operated for 20 years.

Domain 1: Design Assumptions

The assumptions in the design domain comprise the drag reduction potential (without any
degradation), the mass increase due to the HLFC-related components and materials, and the
SFC penalty due to power requirements of the electrical components.

For this deterministic setting, the drag reduction potential is estimated using a two-dimensional
approximation based on early valuation practices from Airbus and DLR [131]. It consists of
the following steps:
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1. Given 2D technical drawings, measure the base area Ayp,¢e 0f each of the components that
are supposed to be laminarized. For the wing, for instance, Ay,s represents a polygon
that is bounded by the leading and trailing edges as well as the wing tip and position of
the engine bay.

2. Given an assumed relative transition position x; /c = 0.5, create a trapezoid that represents
the idealized laminar area. In the wing example, this results in a polygon bounded by the
wing tip, engine bay position, leading edge, and a line that is halfway between the leading
and trailing edge. For a more realistic approximation, incorporate turbulent wedges
between the leading edge segments with an opening degree of ¢ = 15° [131, p. 6] and
subtract them from the idealized laminar area. Measure the resulting expected laminar
area Ajam-

3. Given a drag breakdown from Schrauf [242], (including the assumption of the wing upper
side making up two thirds of the wing’s friction drag [218]), an estimate of the average
drag coefficient during cruise of 260 dc, and an assumption of laminarized areas having
90 % less friction drag, estimate the impact of HLFC on the overall aircraft level.

Although simplified, this procedure has provided reliable results when compared to later,
more sophisticated CFD-based studies. Fig. 3.9 visualizes the trapezoidal areas and tabulates
the results broken down per component. On an overall aircraft level, this approximation results
in a drag reduction potential of 19.3 dc (or 7.4 %), out of which the majority stems from the
application on the wing upper side (13.9 dc), followed by the HTP and VTP (3.5dc and 1.9dc,
respectively).

Unit Wing HTP VTP Sum

trapezoidal areas

total area [m2] 3047 1181 90.3 513.2

suction area [m2] 373 188 126 687

laminar area [m?] 150.0 435 240 2175
friction drag breakdown

from [242] [%] 12.0 4.0 30 16.0

savings potential
_ Adrag (absolute) [dc] 13.9 3.5 19 193
2 T T A Adrag (relative) [%] 53 13 07 74

(a) Laminar areas on the HLFC aircraft. (b) Estimated aerodynamic impact of HLFC.

Figure 3.9 Visualization and summary of HLFC application in terms of drag reduction potential, assuming
a relative transition position of 50 %.

The total suction area can be used to estimate the two remaining design parameters, i.e., mass
increase and suction power. The underlying assumption is that both parameters scale linearly
with the suction area. For this, previous studies of HLFC designs have been consulted, namely
Refs. [18, 29, 70, 218, 296], in order to plot the mentioned mass increases and suction powers
over the suction area of each aircraft design. The results are shown in Fig. 3.10. The mass
increase due to HLFC in the selected literature (top plot) ranges from 5.7 to 16kg per m?
of suction area. With the 68.7m? suction area of the present aircraft design, this translates
to a mass increase between 384 and 1104kg. Due to the deterministic nature of this study,
the intermediate value of 744 kg is chosen. The same approach yields 174 kW for the suction
power Pgyc (bottom plot). Note that this refers to the aerodynamic power needed to stabilize
the boundary layer. To calculate the power taken from the engine Py rc, the efficiency losses
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of the compressors, inverters, power lines, and generators need to be considered. For these,
recent literature has been reviewed, resulting in the ranges shown in Table 3.2.

Table 3.2 Efficiencies of electric components for the HLFC operation.

Component Symbol Range Average References
Compressors 1 comp 0.92...0.97 0.95 [110, p. 874] [144, p. 7]
Inverters Ninv 0.93...0.99 0.96 [17, p. 3] [173, p. 4399]
Generators Ngen 0.81...0.87 0.84 [264, p. 1011]
Power Lines 1PL 0.95 0.95 [137, p. 10]
As the present study is determin-
istic, i.e., does not aim to quantify i .
input or output uncertainties, the 1500 |- [29%] ,*
gver‘aged values are used, result- go | noug |77 18]
ing in: o L
@ 1000 |- 2 744k — “T
Pguc Q’O) | [296/]A/ ® o -7
Purrc = 5 . -~ 218
M compT]invT] gen’] PL A 500 b Pag ="
g // o Y- -
_ 174 kW i e o,/’[};] 384kg
0.95-0.96 - 0.84 - 0.95 == 0]
o <~
= 240 kW (3.7) | | | |
300 |- o
For the final translation to SFC R O[218] .
penalty, an estimation from a per- = i 233kW_:/ [18] 57 g
formance model of an A330 type = 2 174kW ?\" e
of engine from Young [296, p.89] (291 " "¢ S
. o z |
is used. Here, a slope of 0.5% ? /// Lo o6l
SFC penalty per 100 kW of power & 190 701" T s A Cranfield
offtake is mentioned, resultmg in E o o) & Boeing
an SFC penalty of 1.18 % (during i R © MICADO
cruise). ok &7 ¢ NASA
| | | ! I
As a last note on the design con- 0 50 100 150

siderations: In this and all upcom-
ing analyses, it is assumed that the
replacement of the conventional
high lift system of the A330 with a
Kruger device does not introduce

suction area, [m?]

Figure 3.10 Estimation of mass increase and suction power
based on HLFC studies from Young [296], Boeing [29], and the
OAD environments MICADO [70, 218] and FLOPS [18].

a change in mass, maintenance cost, or purchase price.

Domain 2: Operational Assumptions

The first operational assumption addresses the cruise speed. For this assessment, it is assumed
that the airline operates the HLFC aircraft as well as its turbulent counterpart with a constant
cruise Mach number of 0.82. Load factors are also assumed to be constant, regardless of the
route or season, at 80 % of the maximum passenger capacity, resulting in 204 carried passengers
for each flight. The passenger payload, which includes the total weight of all passengers aboard,
is assumed to be 20,400 kg, calculated with an average of 100 kg per passenger, encompassing
personal belongings and standard carry-on luggage. It is further assumed that the airline does
not carry additional cargo, focusing solely on passenger service and associated luggage for

revenue generation.
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The next assumption revolves around contingency fuels that are carried specifically for the
HLFC operation. Consider, for example, an upcoming flight of 3000 NM and 20,400 kg of
payload. The turbulent reference aircraft burns my = 32,750kg of fuel while carrying only
the reserve fuels that are required by law, i.e., 5% of the trip fuel plus reserves for flying to
an alternate airport as well as for holding patterns. These reserve fuels sum up to 6400 kg for
this mission. If the same mission is performed by the HLFC aircraft (without any additional
HLFC-specific reserve fuels), two cases can be distinguished using the state vector

c= [Adrag, Amass, ASFC] . (3.8)
The two cases are:

1. HLEC is activated and working as expected, corresponding to a state vector of ¢; =
[—7.4 %, 744 kg, 1.18 %] , which represents an operation under ideal conditions. This leads
to a fuel burn of m; = 31,000 kg, which is 5% less than the turbulent aircraft. Using the
same reserve fuel rules, this aircraft carries 6200 kg of (unburned) fuel reserves for this
mission.

2. The HLFC system is known to have a malfunction and hence turned off. The state vector
here is ¢y = [0 %,744kg, 0 %] , 1.e., there is no drag reduction and no SFC penalty (as the
system is turned off), but the mass of the system is still taken into account. This leads to a
fuel burn of my = 32,800 kg, which is almost the same as the HLFC aircraft and hence 5 %
(or 1800 kg) more than the HLFC aircraft in case 1.

As the HLFC aircraft’s malfunction in case 2 may occur after take-off, the unexpected increase in
burned fuel has to be taken from the reserves. As these reserves have their specific purpose and
have to be carried by law, operators may wish or need to carry a HLFC-specific contingency fuel.
If, for example, an additional 5 % of the trip fuel is carried in order to capture any unforeseen
HLFC-related effects, the fuel burn in the above mentioned cases changes to:

1. Ifno failure occurs, the additional HLFC contingency fuel is never burned. Its weight leads

to a increase of the fuel burn to m; = 31,150kg, slightly reducing the fuel consumption

improvement.

2. If a failure occurs, the additional HLFC contingency fuel is burned. As the take-off has

increased, the new fuel burn is m; = 33,200kg, which represents an even worse fuel
consumption at the benefit of not using the conventional reserve fuels.

This example highlights the dependencies between the additional weight of HLFC-related
reserve fuels and the expected fuel burns. If no malfunctions occur, carrying no HLFC-specific
reserves is better for the expected fuel consumption, as the additional weight will not be burned.
Considering HLFC-specific reserves increase the takeoff weight of the aircraft and hence its
fuel burn, but in case of a malfunction, this approach may be safer as the conventional reserves
remain largely untouched. For this assessment, a HLFC-specific contingency fuel of 2.5 % of
the trip fuel is carried before each mission, which is on top of the other reserve fuels. Note that
neither this nor any other study in this thesis simulate the occurrence of a malfunction due to
the lack of information on failure times.

Domain 3: Environmental Assumptions

While many HLFC design and assessment studies neglect the degrading effects of the environ-
ment in which the aircraft operates (e.g., Hartmann et al. [98]), those that do incorporate them
have shown that their effect can be significant [294]. To date, there has been no comprehensive
analysis of the environmental conditions, as long-term experience is not available. Out of the
many aspects mentioned in Section 3.2.2, the insect contamination and cloud encounter effects
are incorporated into this study. The reason for this is that their impact on the HLFC's efficacy



Section 3.3: Deterministic Assessment 63

has been somewhat studied in the past, whereas the effects of other environmental occurrences
such as ash, sand, and dust have only been dealt with qualitatively.

The insect contamination can be modeled in a wide range of detail. In fact, this field is
actively researched, significantly driven by Young et al. [295], with foci revolving around anti-
contamination devices, different insect types and the protein stains they leave behind, and
angles of impact. Their influence on laminarity has also been studied in Elsenaar et al. [73],
where an average laminar efficacy of 65 % has been reported. While seasonal variation was
observed, with peak values in summer, the assumption for this analysis is a year-round fixed
value, which is set to 11,ins = 65%. As the Kruger device is assumed to shield successfully
the upper side of the wing from any insect contamination,® this insect-induced loss of laminar
efficacy only affects the laminarity of the HTP and VTP.

The degradation of laminarity due to cloud encounter has also received some attention, e.g., in
Young [296] as well as Pohya et al. [197, 198, 202]. The modeling detail can vary from mission-
specific analyses where the fuel flow of the HLFC aircraft reacts to the current presence of
clouds to a more top-level consideration where the average time in cloud is translated to an
average loss of laminarity. The deterministic setting pursues the latter, using an average time
in cloud of 10 % and a resulting average loss of laminarity (due to clouds) of n1, g = 93 %. This
degradation affects all laminarized surfaces. The overall laminar efficacy at aircraft level is
composed of the individually degraded drag savings, scaled by their contribution mentioned
in Fig. 3.9 (b), which stated that the wing made up 72 % of the total drag savings, whereas the
tails contribute 28 %. The laminar efficacy at aircraft level is thus:

L =0.72-1p,ad +0.28 - 1, ad * NLins (3.9)
wings tails

~0.72-0.93+0.28-0.93 - 0.62 (3.10)

~ 0.82 (3.11)

Domain 4: Economic Assumptions

The last set of assumptions dis-
$1.5

cussed here are of the monetary i
nature. They comprise the fuel -
price development as well as the
increase of maintenance cost and
aircraft price due to the applica-
tion of HLFC. The fuel price de-
velopment is already modeled in
LYFE as a time series with three
different scenarios based on fore-
casts provided by the US De- s historic | forecast e
partment of Transportation [272]. [ ! . . :
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Figure3.11 Historic and projected kerosene price under the sce-
nario “base”, taken from U.S. Department of Transportation [272].

6The Kruger device specifically shields the upper side of the wing, where laminarity is primarily targeted and maintained, as
previously mentioned.
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The increase in scheduled maintenance Table 3.3 Estimation of annual scheduled mainte-
costs due to HLEC is estimated by eval- nance cost and aircraft price increase due to the HLFC
uating multiple DOC methods using the system using DOC methods.

mass increase of 744 kg derived earlier. Re- source maintenance price

sults are shown in Table 3.3, ranging from AEA [20] $15,132 ot available
$12k to $22k annually. After averaging TU-Berlin [268] $22,145 $1,172,222
these, the assumed value for the scheduled NASA [97] $12,144 $1,462,834
maintenance cost is $16.8k per year. Un- NASA [150] $17,708 not available
scheduled maintenance cost are dealt with LYFE [203] not available $1,462,834
using LYFE'’s default method, which uses average $16,782 $1,334,064

a ratio-based approach and stems from Su-

wondo [258]. The aircraft price increase is

estimated using the similar CER as before (including one from LYFE itself), resulting in a range
between $1.2M and $ 1.5M, see rightmost column in Table 3.3. The average of $1.3M is chosen
for the aircraft price increase (before discounts). It should be noted that all monetary values
are discounted to the year 2023.

Further Assumptions when using the LYFE framework

Apart from the technology-specific assumptions described previously, the assessment frame-
work requires additional parameters for each of the modules to perform the DES, which mostly
concern the reference aircraft or HLFC unrelated elements. They can be categorized into the
acquisition process and end of life behavior, as well as the flight and maintenance schedule.
These will be documented for transparency purposes next.

Acquisition Process and End of Life Itis assumed that the aircraft are purchased, not leased.
The acquisition process model is based on Marx et al. [159], where an initial downpayment
of 10 %, a final payment of 70 %, and several distributed payments accounting for 20 % of the
aircraft price are foreseen. The time between the first order and delivery is assumed to be 5
years for both aircraft. The price for the reference A330 is determined using the list price of
$264.2M (as of 2018). As airlines are known to rarely pay the list price [46, p. 1], a discount of
30 % is assumed, resulting in a purchase price of $185.5M for the reference aircraft. This also
lessens the price increase due to HLFC from the aforementioned $ 1.3M to $ 930k, resulting in
a purchase price for the HLFC aircraft of slightly over $186.4M. Other aircraft price driven
cost elements such as insurance or depreciation use LYFE’s default process described in Pohya
et al. [201]. At the end of the simulation, the aircraft is assumed to be sold, which generates
the final cash inflow. The aircraft’s value at the end of the simulation is estimated to be 10 % of
its purchase price (without discounts).

Flight and Maintenance Schedule The flight schedule is a table-based input for LYFE, spec-
ifying the origin, destination, flown distances, and factors for passenger and cargo loads.
Note that dedicated departure and arrival times are not required, as these are simulated by
LYFE. The overall network, which is the basis for the flight schedule, was already introduced in
Fig. 3.8, where 89 unique origin-destination pairs were identified. The database from which this
network was obtained provides information about the scheduled flights of an airline and/or
aircraft type, whereby the number of departures per queried time period is given. With some
minor adjustments (such as the information about the load factors), this data can be used
directly within LYFE. These routes are set to be flown in a random sequence, whereby origin
and destination compatibility is checked and local curfews’ are considered automatically®.

The next set of inputs pertains to the aircraft’s maintenance schedule. A comprehensive
tabular maintenance schedule, based on the works of Aircraft Commerce [5, 6], is utilized.

7Strict1y speaking, the curfew consideration in LYFE considers typical operational times of the airports rather than actual curfews.
These were obtained through an extensive analysis of the Sabre Airline Solutions [228] database between 2010 and 2019.

88upplemental information on the reference aircraft including the flight schedule can be found in Appendix C.2.
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This schedule includes events for line and base maintenance, heavy component maintenance,
and dedicated shop visits. Maintenance intervals are specified in Flight Hourss (FHs), Flight
Cycless (FCs), or time. The maintenance module in LYFE automatically triggers each respective
maintenance event, taking into account downtime as well as the required man-hours (MH) and
material costs.

For an overview of assumptions for this deterministic study, see Appendix C.3.

3.3.3 Results

The results of the discrete event simulation are discussed in this Section. First, the reference
aircraft is analyzed with respect to its overall economic value and a more detailed look at its
operating costs. As mentioned in the Section 2.1.4, meaningful results are only obtained in a
comparative setting, these first results only serve overview and comprehension purposes. The
actual assessment is performed afterwards, where the simulation results of the HLFC aircraft
are compared to those of the reference. A local sensitivity analysis of selected parameters
completes this Section.

Reference Case

The first set of results represents the overall economic value of operating the conventional
(turbulent) Airbus A330-343. These results are best introduced by the annual breakdown of
costs, revenues, and the development of the NPV, as shown in Fig. 3.12 (a). The years from
2025 through 2029 are non-operational, i.e., the aircraft has been ordered and the first payments
have been made, but the airline has not received the aircraft, yet. The final purchasing payment
in 2030 heralds the operational phase. Here, annual revenues (from ticket and ancillary sales)
remain fairly constant at around $ 87M except for a slightly higher value in the last year, when
the aircraft was sold for its residual value of $12.6M. The annual costs in the operational
phase range from $39M to $72M. Peaks represent expensive maintenance events (which are
discussed in more detail later). The NPV curve starts decreasing between 2025 and 2030 as no
revenues have been generated here yet. As soon as the aircraft begins to operate, the economic
value begins to increase, crossing the $0 axis after 4 years of service, which marks the BEP.
It continues to rise to its final value of $142.2M in 2049, when the simulation ends after 20
years of operation. Some complementary KPIs are summarized in the table in Fig. 3.12 (a)
including the IRR and Cumulative Direct Operating Cost (CDOC) as well as some operational
statistics. Note that the lifetime averaged y g, value is slightly higher than the one calculated
for the average mission in Eqn. (3.2). This is caused by the shorter routes of the underlying
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o +$0 NPV $142.2M
g BEP 2035-02
5 | CDOC $1098M
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year, [-]
(a) annual cost, revenues, and NPV. (b) key economic and operational metrics.

Figure 3.12 Opverall results of the (turbulent) reference aircraft in the deterministic assessment setting.
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flight schedule, where the fuel consumption of the A330 is generally worse compared to longer
routes.

Next, a closer look is taken at the operating costs and their development throughout the sim-
ulation. These are shown in Fig. 3.13. The overall cost breakdown in the top right plot reveals
that about a third of the CDOC are spent on fuel, followed by about a fifth on the ownership,
maintenance, and crew costs. The smallest contribution is allocated to navigation and airport-
related fees. As the other plots show, the cost elements (and thus their share in CDOC) vary
significantly with time. The top left plot, which depicts the ownership-related cost, shows the
acquisition process with the initial down payment, the three distributed payments, and the
final delivery payment. After that, the ownership cost reduced to interest and insurance, out
of which the expenses for the former became zero after 15 years of operation. From here on,
the aircraft is considered to be paid off. The flyaway costs in the bottom left plot are mostly
constant. Only a slight increase in fuel costs over time is observable, which originates from
the chosen fuel price scenario discussed earlier. The final plot in the bottom right shows the
highly irregular expenses for maintenance. Especially the costs for base maintenance and
heavy components (particularly engine shop visits) lead to significant peaks.

| | $140M u purchase navigation & airport fees
O interest
$40M |- M insurance fuel crow
$20M |-
_ paid off
9) E 7 maintenance
‘:_)\, $0M |- — ownership
4(7) TN T T T [N S T AT T N [N N N N N T T N
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Tg | navigation [ | airport W crew [ fuel M fees M line engine shop visits
é $40M - | I base [ h-comp
©
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2025 2030 2035 2040 2045 2050 2025 2030 2035 2040 2045 2050
year, [-]

Figure 3.13 Breakdown of annual cost of ownership (top left), fly-away (bottom left), maintenance (bottom
right) and overall share (top right) of the conventional (turbulent) reference aircraft in the deterministic
assessment setting.

Comparison between HLFC Aircraft and Turbulent Reference

Fig. 3.14 shows the comparison between the two aircraft under investigation. In subfigure (a),
the difference in annual cost and revenues is depicted, alongside the ANPV. The initial increase
in acquisition cost represents the impact of the aircraft price increase, leading to a total increase
of ownership cost of $1.58M. From 2030 onward, the annual HLFC maintenance cost start
at $36k in 2030 and increase to $68k in 2049. This increase is due to the aforementioned
unscheduled maintenance cost portion, which is implemented as an age-dependent function
in LYFE. As the Table in Fig. 3.14 (b) shows, the total amount of HLFC maintenance costis $ 1M.
Both the maintenance cost increase and ownership cost increase are outweighed by the savings
in fuel cost, which range from $540k to $671k annually. The variation stems from slightly
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different annual utilizations as well as the fuel price model shown in Fig. 3.11. In total, more
than $ 12M are saved due to the application of HLFC, which results in an increase of $2.46M in
NPV (due to the time value of money). As the progression of ANPV in subfigure (a) shows, the
HLEFC aircraft becomes economically superior to its turbulent counterpart after three years of
operation. Note how there is no change in BEP between the two simulations due to the HLFC
technology requiring an initial investment before it leads to fuel cost savings.
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(a) annual cost, revenues, and NPV. (b) key economic and operational metrics.

Figure 3.14 Comparison of overall results between HLFC aircraft and conventional (turbulent) reference
aircraft in the deterministic assessment setting.
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and 2.87kg/(pax-100km), re- assessmentsetting.

spectively. This represents a me-

dian improvement of fuel consumption of 3.4 %, as the lower plot shows. The IQR of the fuel
consumption improvement is [-3.5, =3.2]%. Since the payload has been fixed and no wind
effects have been considered, the spread in Ay, values ranging from —3.7% to —2.8 % is
solely caused by the flown distances’. Note that these values consider a fixed loss of laminarity
due to cloud encounter and insect contamination, see Eqn. (3.11).

As a final step, a LSA is performed on the three design assumptions: the drag reduction
potential, the mass increase, and the SFC penalty. Each of these parameters have been varied
by +25 % from their nominal value, while the others are kept fixed, resulting in 12 additional

9Refer to the discussion on p- 54f.
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simulations. The results are depicted in Fig. 3.16, discerning the impact on the fuel consumption
improvement Ay, and economic superiority ANPV.
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Figure 3.16 Results of the LSA in the deterministic setting
(annotations represent the difference to the nominal value)

3.4 Conclusions

In this Chapter, the LYFE assessment framework and its integrated aircraft performance models
were introduced. Subsequently, the HLFC use-case was detailed, emphasizing the technology’s
impact on and interplay with domains such as design and environment. Assumptions for each
domain were discussed, and average values were derived from literature and other references.
Using these average values, two lifecycle simulations were conducted, one for the conventional
reference aircraft and one the HLFC aircraft. Results highlighted variations in NPV, CDOC,
and other metrics, revealing an economic advantage of $2.46M for the laminar aircraft. When
compared with the reference NPV of $142M, this superiority can be described as modest. A
LSA on design parameters showed a significant sensitivity to the drag reduction potential.
Given that this parameter, along with several others detailed in Section 3.3.2, was determined
using broad estimations, the inherent uncertainties in this deterministic study are of significant
concern and should be addressed systematically. As highlighted in Chapter 2, the LSA itself,
while serving as a preliminary verification and a sanity check of the coding implementation,
is not comprehensive enough for UQ. Therefore, the next Chapter will explore GSA methods,
discussing the advantages and disadvantages of various techniques.



4 Global Sensitivity Analysis

This Chapter is driven by the first research question and hypothesis, which seeks to evaluate the
capabilities, interpretability, and computational efficiency of various GSA techniques, aiming
to facilitate their adoption in uncertainty-addressing TEAs. Specifically, the first hypothesis
posited that through a comprehensive evaluation of these aspects on an example problem,
followed by a case study demonstration, the insights gained will help promote the adoption
of GSA in TEAs, informing future research directions and methodological choices in the field.
Therefore, the practice of GSA is investigated in detail. According to Razavi et al. [213] and
Saltelli et al. [230], GSA serves the following purposes:

* Getting scientific insights of the content in question, e.g., identifying and understanding
parameter causalities and their interaction [93],

* reducing complexity by fixing or removing non-influential factors from a system [252], and

* decision support-based on the uncertainty measures, e.g., to direct future uncertainty
reduction efforts or system design improvements [92, 263].

While all three are highly useful, the uncertainty inclusion efforts benefit most from the last
aspect, especially considering the IPDP and the limited budget in RDTE. It should be recalled
from the discussion in Section 2.2.2 that a number of different GSA methods exist, each with its
own strengths and weaknesses. To investigate these and address the first hypothesis, multiple
analyses have been conducted. The first set of studies are comparative of nature. Here, multiple
GSA methods are applied on a mechanistic surrogate of LYFE that uses the same set of inputs
and outputs as the original while being significantly less expensive in computational cost. The
questions discussed in this comparative investigation are threefold:

(a) which insights are gained by each method,
(b) how are the different sensitivity measures interpreted, and
(c) how fast does the calculation of the sensitivity measures converge?

The second study in this Chapter then incorporates the most suitable GSA technique into LYFE
and applies it to the use case of HLFC. Thereby, the focus shifts from the technique itself to
the results, i.e., the sensitivity of the output uncertainty towards each input uncertainty. The
outcome of this analysis is then used in the subsequent Chapters to identify which aspects of
the TEA should receive more attention.

4.1 Investigated Methods

The comparative study performed first builds on an open source library for sensitivity analysis
that is written in Python and named SALib [105]. The available methods can be classified into
variance-based and non-variance-based ones. An overview of their characteristics is given in
Table 4.1. The column Ny represents the total number of samples that are created with each
method, which is a result of u and N. The former (u) is the number of uncertain inputs, while
the latter (N) describes the number of sample points (per variable) that are required to estimate
the mean of the model response [230, p. 89]'. The next column lists the provided sensitivity

Hn other words: If one were to run a MCS with one parameter being varied, N would be the number of samples at which the
mean of the simulation is considered to be converged.
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Table 4.1 Feature comparison of GSA methods as implemented in SALib.

method Niot sensitivity . support§M »
measures given-data correlation groups

Variance-Based

FAST [54, 229] N-u Si, St O O O

FAST-RBD [194, 262] N Sy O O O

Sobol’* [231,237,251] N(k-u+2) | S;,(Si),Sr O O [ ]

SCSA [149] N S4,56,Sc, ST o o O
Not Variance-Based

Morris [170] N(u +1) W, 1, o O O [

DMIM [31, 194] N 51,0 ([ [ O

* here, calculating Syy is optional. If Syy is of interest, then k = 2, otherwise k = 1.
“* @ capability is mentioned to be supported, O capability is not mentioned to be supported.
** refers to SALib's out-of-the-box capability as of version 1.4.7

measures. Some methods only calculate one overall measure, whereas others calculate an
entire set where each element covers a different effect such as interaction (denoted as S;j) or
correlation (denoted as Sy). The last three columns indicate further capabilities, which are
explained next.

Given-Data Capability is a crucial feature of certain GSA techniques, enabling them to
work with existing data, such as observations or measurements, without the need for the
input sampling sequence that generated them. Typically, GSA methods dissect the output
uncertainty into its components by mapping specific samples to their corresponding outputs,
which usually necessitates a defined sampling technique or sequence. This implies that the
sampling process is inherently part of the GSA. However, methods with given-data capability
bypass this requirement, allowing for the use of samples generated outside the GSA process.
This capability is particularly valuable in practical applications where the input sampling
sequence is unavailable or when using real-world observational data. A common alternative
for methods without given-data capability is to fit a PDF to the observations or measurements,
then use method-specific sampling techniques to generate samples from this distribution. This
approach allows users to circumvent the method’s limitation of not supporting given-data.
However, this may not always be feasible or accurate, especially if the data does not conform
well to a specific PDF, leading to potential inaccuracies in the GSA results. Therefore, GSA
methods with given-data capability offer a significant advantage by providing greater flexibility
and applicability in real-world scenarios.

Correlation Support is another important capability to consider when selecting an appropri-
ate GSA method. Most GSA methods assume statistically independent® input parameters, an
assumption that holds true in many cases [43, p. 876]. However, when this assumption is vio-
lated (e.g., due to the presence of correlation) the GSA results may be biased [64]. To address
this, it is recommended to use a GSA method that explicitly accounts for correlated inputs
or, depending on the researcher’s knowledge and experience, techniques such as combining
copulas and the previously mentioned given-data capability. This approach is adopted, for ex-
ample, in Kucherenko et al. [140]. For additional information on GSA and correlation support,
Jacques et al. [118], Xu et al. [290], and Chastaing et al. [39] are recommended readings.

Grouping Capability is an invaluable feature when the computational cost of a GSA method
becomes prohibitive, for example, if the model itself is computationally demanding and/or
the number of uncertain input parameters is high, e.g., greater than 100 [230, p. 92]. Grouping
enables the combination of uncertain input parameters and the calculation of a single sensitivity
measure per group. Under certain circumstances, it is possible to use the grouping feature

%It is important to note that correlation and dependence are not synonymous. Correlation is one of several measures of
statistical dependence. Statistical independence implies a correlation of zero, but the reverse is not necessarily true.
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to create “supersaturated sampling designs”, where the number of samples N is smaller than
the number of uncertain parameters u. Despite its utility, grouping is not fully established
in GSA and is not well understood by practitioners [230, p.96]. Lastly, it is worth noting that
the grouping capability indicated in Table 4.1 refers to whether the SALib package natively
supports grouped variables. Technically, every GSA method can be extended, albeit with
considerable effort, to handle groups as long as it treats the model as a black box.

While the aforementioned features are helpful for narrowing down the selection of suitable
methods, a comprehensive understanding of each method’s theory, sampling strategy (if ap-
plicable), and other characteristics is necessary for making an informed decision. Sections 4.1.1
and 4.1.2 provide a concise discussion of the variance-based and non-variance-based meth-
ods. This knowledge will equip readers with the necessary theoretical background to fully
comprehend and critically assess the analyses performed in Sections 4.2 and 4.3.

4.1.1 Variance-Based Methods

The variance-based methods use, as their name suggests, the (co)variance® of the output to
apportion the total uncertainty into its causing input constituents. Since this is one of the most
commonly mentioned techniques, the underlying concept, i.e., the High Dimensional Model
Reduction (HDMR), will be briefly described first.

Consider a square integrable function f on %, which is the u-dimensional unit hypercube
Q' = |0<x;<1;i=1,...,u). (4.1)

Assuming the inputs of the function are independently and uniformly distributed within Q¥, it
follows that f can be described as with a finite expansion into terms of increasing dimensions,
each of which is also square integrable:

fea,xa, %)= fo+ D filxi)+ > fij(xi,x) (4.2)
i=1

i<j

+ooo+ fio, o u(x1,x2,. 00, xy)

Inhere, fjyis the mean response of the model, whereas f;(x;) is the first-order univariate function
and represents the independent contribution due to the individual parameters. The bivariate
functions f;;(x;, x;) quantify the interactions between x; and x;, with similar interpretations
for higher-order interaction terms [249, p. 289]. For a function with u = 3 input variables x1,
x2 and x3, Eqn. (4.2) becomes:

fx1,x2,x3) = fo+ fi(x1) + fa(x2) + f3(x3)) + fi2(x1, x2) + fi3(x1, x3) + faz(x2,x3)  (4.3)

first order functions second order functions
+ fio3(x1, X2, x3)
[ S———

third order function
(usually neglected)

In practice, the expansion is typically approximated up to the second order functions, based
on the assumption that higher order interaction terms have no significant effect on the re-
sponse [249, p. 290]. As Sobol” proved, the terms of Eqn. (4.2) are orthogonal if each term has

3The structural and correlative sensitivity analysis presented by Li et al. [149] uses the covariance decomposition instead of
the variance decomposition as discussed later.
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a zero mean. Provided this, the terms of the functional decomposition can be expressed using
conditional expectations, i.e.:

fo=E[f(x)] (4.4)
filxi) = E[f(x) | xi] = fo (4.5)
fii(xi, x)) = E [f(x) | xi, xi| = fo— fi = f (4.6)

With this perspective, it becomes clear that first order function is equal to the effect of varying x;
only, whereas the second order functions describe the additional effect due to the simultaneous
variation of x; and x;. After squaring and integrating each term of Eqn. (4.2) over Q", the
variance decomposition can be obtained, i.e.,

/ fz(x)dx - fOZ = i i / l%mis dxil T dxis (47)

s=11i1<...<is

SVE) =D Vit D Vij+...+Via (48)
i=1

i<j

where the left and right hand side represent the total and partial variances, respectively.
Similarly to Egs. (4.5-4.6), these partial variances can be rewritten using conditional variances,
Le.

Vi=V(E(f(x) | xi)) (4.9)
Vi]' =V(E (f(x) | xi,x]')) -Vi- V] (4.10)

For the three parameter example, the full variance decomposition reads:

V(f(x)) = / fE(x1)dxg + / f(x2)dxa + / f2(x3)dxs (4.11)

141 V2 V3

+//flzz(x1,x2)dxldx2+//f123(x1,x3)dx1dx3+/ f2(x2, x3)dx2dx3

V12 V13 Vo3

+ '[/ f1223(x1/ xp, x3)dx1dxpdxs

Vizs

The Sensitivity Indices (SIs) are then obtained by dividing both sides of the variance decom-
position by the total variance V(f(x)). This leads to the first order SI:

Vi VE(S )| xi)

SEVF@) T T VER)

(4.12)

which describes the main effect of the i-th parameter, and the second order SI
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Vi VE(f@) | xi, %)) = Vi -V
T V(f(x)) '

Sij = (4.13)

captures the interaction effect between the i-th and j-th parameters. Beyond the first and
second order Sls, the total sensitivity index St is essential. It measures the overall sensitivity
of the model to a particular parameter, including all interaction effects with other parameters.
For instance, the total sensitivity index for x; is:

ST1 = 51 + 512 + 513 + 5123 . (4.14)

This means that the total sensitivity index includes the main effect of x; and its interactions
with every combination of other parameters. Consequently, while the sum of all first order and
higher order SIs equals 1, each total SI can be greater than 1 due to these interaction effects.

While all four variance-based GSA techniques mentioned in Table 4.1 use the HDMR, they
differ in their approach to sampling the input space and (numerically) computing the Sls.

Fourier Amplitude Sensitivity Test (FAST)

FAST was first introduced by Cukier et al. [52-54] and has become one of the most popular
GSA techniques [291]. Compared to other methods, FAST requires fewer samples (Ntot) to
calculate the SIs, using the ergodic theorem to simplify the computation of multi-dimensional
integrals*. In FAST, the input space is populated with N samples distributed over a periodic
curve, each assigned a distinct frequency {w1, w2, ..., wn}. These samples are sequentially
fed into the model, and the Fourier transformation of the output is performed to decompose
its variance into partial variances, as shown in Eqn. (4.7). First-order sensitivity indices are
calculated using Eqn. (4.12). An extension by Saltelli et al. [229] allows FAST to calculate the
total sensitivity index for a parameter. However, FAST does not support the calculation of
parameter-specific higher-order SIs. Additionally, transforming the input and output space
into the frequency domain precludes the use of given-data, and the method does not support
correlated inputs. FAST may become unstable and biased when the number of inputs exceeds
10 [114, 269]. FAST works by transforming the problem into the frequency domain, where the
influence of each input parameter on the output can be studied separately. By assigning unique
frequencies to each input parameter, FAST can efficiently decompose the output variance into
contributions from each input and their interactions, reducing the need for a large number of
samples. However, it cannot directly use given-data and assumes uncorrelated inputs, which
may not be practical in all scenarios. When the number of input parameters exceeds 10, the
method’s performance can degrade, leading to instability and bias.

FAST with Random Balanced Design (FAST-RBD)

FAST-RBD was introduced by Tarantola et al. [262] as a modification of FAST, where the input
space is explored using only one frequency w. This method leverages a LHS-based random
permutation to ensure sufficient input space coverage, significantly reducing the number of
required samples by a factor of 1, the number of uncertain parameters. This reduction in sample
size decreases computational effort while maintaining the efficiency of the sensitivity analysis.
Despite these advantages, FAST-RBD has limitations: it cannot calculate total SIs or interaction
effects, handle correlated input parameters, or utilize given-data situations. By combining the
strengths of the FAST method with the computational efficiency of random balance design,
FAST-RBD provides a more efficient approach to sensitivity analysis, especially in complex
models with many input parameters, but it sacrifices some of the versatility offered by the
original FAST method.

4The ergodic theorem states that, under certain conditions, the time average of a function along the trajectories of a dynamical
system will converge to the ensemble average. In FAST, this means that the average behavior observed over time (or samples)
can be used to estimate the overall behavior of the system, simplifying the computation of multi-dimensional integrals.
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Sobol’ Indices

The Sobol” method is an extension of FAST that employs a Monte Carlo-based approach [230,
p- 160], approximating the partial variances directly through a large number of model evalu-
ations [251]. To achieve this, the input space is sampled using a low-discrepancy approach,
meaning it is filled more evenly than pseudo-random sampling, utilizing the Sobol” sequence.
This high number of samples is necessary to calculate not only the first but also the second-
order Sls, as well as total effects. The computation of higher-order SIs is optional and can
be omitted if deemed unnecessary by the user. Several studies [176, 233] have demonstrated
that the Sobol” method yields more accurate results than the FAST technique. However, it is
important to note that, similar to the FAST and FAST-RBD methods, the Sobol” method does
not support given-data and input parameter correlation support in its list of capabilities.

Structural and Correlative Sensitivity Analysis

The SCSA method is one of the more comprehensive ones in terms of capabilities and provided
information. Introduced by Li et al. [149], it is able to handle input distributions that are inde-
pendent and/or correlated. To do so, the approach foresees a decomposition of the covariance
of the unconditional variance of the output. This process is essentially a generalization of the
variance decomposition and simplifies to the previously described variance decomposition if
the input variables are independent. Consequently, the provided sensitivity measures can also
be interpreted as an extension of the independence-assuming SIs in Eqn. (4.12) and (4.13). More
particularly, in SCSA, the first order, second order, and total SI distinguish three different mea-
sures, each. The first describes the non-correlative contribution and is equivalent to Eqn. (4.12)
and (4.13) and is denoted with an g, i.e., S?, S?I, and S;ﬂ. The second one describes the correlative
contribution and is analogously denoted with b. The third sensitivity measure is termed total
in the SCSA method but will be referred to as combined SI to circumvent confusions with St.
It is the sum of the non-correlative and correlative S, e.g., ST = ST + S? . A specialty of this
method is that it does not require a specific sampling strategy, as the algorithm identifies the
patterns between the input space and output space on its own. Therefore, the SCSA method is
the only variance-based method that supports given-data situations.

4.1.2 Non-Variance-Based Methods

The following methods do not use the variance to calculate the sensitivity of the output
towards its inputs. Instead, either a derivative-based or distribution-based approach is taken.
Both ideas are explained below, followed by a description of the most common GSA method
in each category.

Derivative-Based Approaches and the Method of Morris

As their name suggests, derivative-based methods use the derivative (or an approximation of it)
of a model’s output with respect to its input to calculate sensitivity measures. Their calculation
is more simple and less computationally expensive compared to the SIs of the variance-based
methods but often provide less information. Their use is frequently recommended in situations
where the number of uncertain inputs is too large to perform other GSA methods [141, 230].
A well-known representative of the screening techniques is the method of Morris [170] and its
modification by Campolongo et al. [34].

The method of Morris provides two sensitivity measures per investigated input parameter:
p and o [170]. To interpret their values, the concept of the “elementary effect” needs to be
understood first. The elementary effect is similar to the finite difference approach in numerical
differentiation where the derivative of a mathematical function or computational model is
approximated. For a model Y with 1 independent inputs X; (where i = 1,...,u) defined on
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the u-dimensional unit hypercube 0%, the elementary effect EE of the i-th parameter is defined
as follows:

— Y(X1/X2/- . -/Xi—lrxi + A/ Xi+1/- . -/XM) - Y(X1/X2/- . -/XM)

EE;
: A

(4.15)

Thereby, A denotes a small increment, which has to be chosen in a way that X; + A is still
within Q. By randomly sampling different X from (), one can obtain the distribution of
elementary effects that are associated with the i-th input factor. This distribution is named
F;, ie., EE; ~ F;. The sensitivity measures u and o describe the mean and standard deviation
of F;, respectively. A high p indicates a high influence of the parameter on the output. A
high ¢ indicates high nonlinear and/or interaction effects. A modification of Morris” u was
introduced by Campolongo et al. [34], where the modified mean p* uses the absolute values
of the elementary effects, i.e., |[EE;|. This tweak mitigates an issue with the original y when
F; contains both positive and negative values which partially cancel each other out when
estimating the mean value. Additionally, u* has been mentioned to have similarities with the
total sensitivity index St as it allows for parameter ranking, although no formal proof of the
link was given [34]. As Saltelli et al. [230, p. 111-112] suggest, it may be insightful to calculate
all sensitivity measures, i.e., i, u*, and o, especially considering the fact that the modification
does not require additional computations.

The method of Morris is typically used with a specific sampling approach which requires
several parameters to be understood and set, which may impede the usage of this method:
The approach is based on the creation of a number of trajectories r in the u-dimensional input
space. A trajectory represents a sequence where each element contains one sampled value per
input dimension u. Every subsequent element in the trajectory differs from the previous one by
an increment A in one randomly selected dimension® i € {1,2, ..., u}. The value of A depends
on the underlying grid resolution of Q2. which is called level and is usually denoted with p.
While n,, u, A, and p evidently influence the final samples, their values seem to be set based
on (potentially non-transferable) experience rather than calculated systematically [34, 230]°.

Distribution-Based Approaches and the Delta Moment-Independent Measure

In this category, the sensitivity measures are computed using more comprehensive information
given by the output distribution as opposed to only using its variance. This is especially useful
if the output has a multi-modal, highly skewed, and/or fat-tailed distribution [206] and the
variance does not sufficiently represent the statistical characteristics completely [253]. That
is also why methods from this category are often referred to as being (statistical) moment-
independent. The DMIM, introduced by Borgonovo [31], is the most popular distribution-
based method to date [253]. It “measures the difference between the unconditional distribution of
the output and its conditional counterparts” (Razavi et al. [213, p. 3]). The DMIM provides the
so-called delta-index, which is defined as

0; = Ex; [s (Xi)] = %/ [/ (W) = frix, | dy | fx; (xi)dx; (4.16)

where s is the shift (i.e., difference) between the unconditional PDF fy(y) and the conditional
PDF fy|x; of the output Y. With this approach, the method is capable of dealing with correlated
inputs, although a quantification of the actual correlative effect is not foreseen. With the update

5Which is why this sampling technique is considered to be a one-at-a-time. However, this is not to be confused with one-at-a-
time LSA. In the Morris’ sampling strategy, every parameter is varied one-at-a-time with each sequential step to obtain one
sensitivity measure, whereas in LSA the sensitivity measure of one parameter assumes all others to be fixed throughout the
sequence.

6Supplemen’cal information and illustrations on this topic can be found in Appendix D.1.
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presented by Plischke et al. [195], the DMIM is capable of treating given data and was made
independent of the sampling method.

With the theory and characteristics of the investigated GSA methods outlined, it is evident that
these techniques differ fundamentally in their theoretical foundations, the information they
use to define sensitivity, and the types of sensitivity measures they provide. Additionally, their
capabilities vary widely, highlighting that theoretical knowledge alone is not enough to select
the most appropriate GSA method. Given that this has been identified as a key barrier for a
successful adoption of the uncertainty management methodology introduced in this thesis, the
next Section focuses on a comparative analysis that will help in making an informed decision
on the most suitable method for a specific application. This analysis is aligned with the
first research hypothesis, which anticipates that through a comprehensive evaluation of these
methods, valuable insights will be gained to facilitate the use of GSA in uncertainty-addressing
TEAs.

4.2 Comparative Study of GSA Methods

The structure and setup of the analyses that make up the comparative study are presented
in Subsection 4.2.1. The results, which cover aspects regarding output consistency as well as
computational efficiency, are then discussed in Subsections 4.2.2 and 4.2.3.

4.2.1 Methodology and Use Case

The first and foremost goal of the comparative study is to gain practical knowledge about the
different GSA methods. For this, two separate analyses are conducted, which both follow the
methodology outlined in Fig. 4.1.

The process begins with input UQ, generating a PDF for each uncertain input parameter. A
GSA method is selected, and the initial sample size is set. Depending on the GSA method,
samples are drawn either randomly or using a specific sequence to define the input space.

input compare
uncertainty sensitivity
quantification measures
yes
input distribu-
tion (normal,
uniform, ...)
no yes
initiate (next) increase sensitivity
GSA method sample size N measures
l 1o ( A
set sample create input execute J MCS
size N = Npeg samples FastLYFE

:

analyze
. ogtpu’F output
“i.e. have all GSA methods been analyzed? distribution uncertainty

Figure 41 Methodology behind the comparative GSA study.
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These samples are then processed through a MCS using the a surrogate model to calculate the
KPIs for the TEA. This step is repeated across all sample sets, resulting in a distribution of
KPIs, which is then analyzed to derive method-specific sensitivity measures.

In the first analysis of this study, the focus is on the interpretation and consistency of these
sensitivity measures across different methods under identical conditions. To simplify the
comparison, the effect of increasing sample sizes on convergence behavior is investigated
separately in the second analysis, which also addresses computational expense.”.

Fast Lifecycle Cashflow Environment (FastLYFE), which is used throughout this comparative
GSA study, is a mechanistic surrogate of LYFE. It is used to approximate the estimated
economic superiority of one technology over another with significantly less computational
expense compared to LYFE®. Contrary to the DES approach of LYFE, FastLYFE is based on a
set of regression-based CERs (which are based on LYFE’s own methods). Therefore, instead of
triggering specific flight and maintenance events when they are due, the surrogate model uses
a flight hour-based estimation of the annual flight cycles and a weight-based maintenance cost
relationship.

To further reduce complexity, the use case for the comparative GSA is not HLFC, but a fictive
engine technology. This technology is assumed to reduce fuel consumption (modeled by
applying an SFC factor t; < 1 on the fuel consumption), but the exact value of ¢ is uncertain.
Similarly, the price of the technology is yet to be determined, representing the second of five
investigated input uncertainties. The remaining three are the flown distance, carried payload,
and fuel price. Table 4.2 shows the bounds of the uniformly assumed distribution for each
parameter.

Table 4.2 Summary of input distributions for the comparative GSA.

SFC factor flown distance  carried payload fuel price technology price
Abbr. ts d mpL P fuel Ptech
Unit [-] [NM] [tons] [USD/kg] [USD]

Dist. U (0.95,0.99) U (500,4000) U (15.3,23.0) U ($0.5,$1.8) U ($0,$10M)

Further assumptions for this comparative study are:

The aircraft under investigation is the same A330-343 used in Chapter 3.

The SFC factor is applied throughout the entire mission.

The assessment is performed using FastLYFE with results expressed as ANPV.
The lifetime is set to 20 years.

The maintenance cost are estimated using the DOC method from TU Berlin [268].
The discount factor for the NPV calculation is set to 10 %.

All monetary values are inflation corrected to the fiscal year 2023.

4.2.2 Comparison of Sensitivity Measures

The results of the first analysis are categorized into variance-based and non-variance-based
methods and include a discussion on the ranking of each parameter by order of criticality,
as well as a comparison of the sensitivity values assigned to each parameter by the different
methods.

7 A third and complementary analysis can be found in Appendix D.2, where the effect of correlation is investigated.

8The deterministic study discussed in Chapter 3 was executed in 3 minutes with LYFE. Using FastLYFE, the computational
time reduces to 25 seconds.
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Variance-Based Methods

Fig. 4.2 depicts the first order SIs (solid bars) and total indices (solid plus hatched bars) using
the ANPV as an output. This particular representation form explicitly shows the interaction
effects one variable has with all others (which are represented by the height of the hatched
bars).

Upon first inspection, the variance-based techniques produce consistent sensitivity measures.
The average difference among the first order indices is 1 %-point and there is no indication
that one method is generally more conservative or progressive than another. The consensus
ranking is as follows’, being (1) Ptech, (2) Pruel, (3) ts, (4) d, and, (5) mpr. The latter appears
to have virtually no effect, which is plausible from use case standpoint. Both fictitious aircraft
(i.e., with and without the SFC improving technology) carry the same payload in each mission,
and the effect of carrying more or less weight weight on the technology’s relative fuel savings
is minimal®’.

0.4} | M sobol’ M eFAST [ FAST-RBD [ scsa [ s7 - s;
~ . @(St) = 32%, ?(S1) =32%,
g [ @(Sr)=30%, @(S1) = 28% ?(S1) =31%
o ?(S1) = 26% __ —
7 03} —
] —
o]
£ | |
2
Z 02}
= ?(St) = 10%,
g | 2(S1) =13%
E\
s 0.1F
E
A @(St) = 0%,
2(51)=0%
0 [ L L L L
ts d mpL, P fuel P tech

uncertain input variables, [-]

Figure 4.2 Comparison of first order and total sensitivity measures provided by the variance-based GSA
methods.

Three out of the four variance-based methods quantify the total sensitivity St, thereby provid-
ing a measure of non-linear interaction effects represented by St — S;. For piech, and mpy, these
interaction effects are negligible. However, for t;, d, and pg,e, interaction and higher-order
effects quantified by St — S; range from 3 % to 4 %. This is expected because the efficacy of
the engine technology, represented by t; < 1, the flown distance d, and the fuel price pgye
are known to have a non-linear interactive effect on the cost savings, which in turn affects
the discussed output ANPV. More specifically, the reduction in SFC leads to a reduction in
fuel burn, but the absolute fuel savings have a non-linear dependency on the flown distance!.
The resulting fuel burn of each aircraft (with and without the investigated technology) is then
multiplied with the uncertain fuel price, which further amplifies the non-linear effects. mpr,
showing no interaction effects is self-explanatory considering that its first order sensitivity
index was also virtually non-existent.

9For this ranking, the first order sensitivity measure Sy was used.

10Note that this does not mean that the fuel consumption of either aircraft, with or without the fictive technology, is not
sensitive to the carried payload. The sensitivity measures calculated here use the ANPYV, in which the relative change in
fuel consumption between both aircraft are considered. Therefore, the statement made here is concerned with the relative
change in economic superiority and whether it is sensitive towards the carried payload.

111 ess fuel burn leads to less fuel carried, which in turn further reduces fuel burn, further reducing the carried fuel (and
hence weight), and so on. This effect is known to be stronger with longer routes, leading to the non-linear interaction effects
between tg and d.
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Sobol’ (using Sir) SCSA (using S.)
While these repercussions 3%
are relatively easy to ex- /"
plain in this example, un- - -
derstanding interaction ef- 2%
fects in more complex sit- mpL
uations might not be as - B .
straightforward. In such d 1.3% 1.0% - |
cases, the detailed and i . B .
pairwise calculated sec- fs ,1'2/°, . ,1'0/°, . 0
ond order SIs can be ts d  MPL Pruel Prech ts  d  MPL Pruel Prech ’
more useful. Among

the variance-based meth- Figure4.3 Comparison of second order sensitivity measures provided by
the variance-based GSA methods using a matrix plot.

ods, only the Sobol” and
the SCSA method provide
such. These are shown in Fig. 4.3 as a matrix plot. These plots are diagonally symmetric (as the
interaction between two parameters has no direction, i.e., the interaction effect of p¢,e) and d is
the same as between d and pe]). It can be seen that the highest interaction (about 3 %) is in fact
between pyye and ts, while d and ts as well as d and p g, make up the rest (about 1% each).
However, it should be clarified that the magnitude of the second order SIs are negligible when
compared to the first order Sls. Furthermore, it can be concluded that there is no significant
difference between the Sobol” and SCSA approach. The only rather minor mentionable aspect
would be that SCSA tends to be slightly more conservative with the interaction sensitivity.

Non-Variance-Based Methods

In contrast to the variance-based methods, the derivative-based and moment-independent GSA
techniques provide conceptually different sensitivity measures, as discussed in Chapter 4.1.2.
After some postprocessing of the results'?, the ranking and sensitivity quantification of both
methods can be compared. Fig. 4.4 shows the relative share of parameter sensitivity of each
technique.

mpr,

mpL P fuel (4%) Pfuel

(a) relative share of yi*. (b) relative share of 6.

Figure4.4 Comparison of primary sensitivity measures provided by the non-variance-based GSA methods.

The parameter ranking is not only consistent between the Morris method and the DMIM, but
also with that of the variance-based methods. Differences in the quantification are insignificant
for the three leading parameters piech, Pfuel, and ts. The lower two, however, show slightly
higher deviations from one another. The sensitivity towards the distance parameter, for ex-
ample, was consistently quantified by the variance-based methods at 10 %, whereas DMIM
and the Morris method yield 14 and 17 %, respectively. DMIM also shows a non-negligible
sensitivity towards the carried payload, albeit a rather small one. Three possible explanations

12Neither the Morris method nor the DMIM calculate a relative share of the sensitivity. Thus, the shown percentage values
were calculated by dividing the parameter specific sensitivity measures by the sum.
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include (a) numerical error, e.g., due to insufficient sample sizes and (b) the sensitivity of 4 and
mpy, does not sufficiently manifest in the output variance for the other methods to properly
quantify it.

As these deviations do not significantly alter the implications of the GSA with respect to
decision support, complexity reduction, or gathering of scientific insight, a deeper investigation
towards them is omitted at this point. Instead, the practitioner’s perspective is taken next.

The derivative-based Morris method provides its results in absolute terms as summarized
in the left side of Table 4.3 with u being the sign-specific mean, u* the modified and sign-
ignoring mean, and o the standard deviation of the distribution of the elementary effects (recall
Eqn. (4.15)). For t; and pech, 1 is negative. This can be explained by the fact that higher values
of these parameters lead to a decrease in the output metric being the economic superiority of
the technology equipped aircraft. The relationship is reversed for the other parameters, e.g., a
higher fuel price makes the fuel savings technology even more desirable. Thus, i can serve as
a sanity check regarding the implementation. Apart from this, the absolute numbers obtained
from the Morris method are of little value to users. Therefore, the relative (i.e., scaled so that
the sum equals one) numbers are computed and shown in the right side of Table 4.3. The
relative u is not meaningful and should not be interpreted. The relative modified mean u~,
however, is very consistent with SIs provided by the variance-based methods. In addition, the
relative 0 seems to capture the interaction effects correctly. That is, the highest interaction is
assigned to ts, pguel and d. It should be kept in mind that this ¢ is more of an indicator than
it is a quantification, i.e., the values of ¢ are not directly comparable to its counterpart (being
St — S1) in the variance-based methods, but the ranking is. As for DMIM, the absolute 6 is
principally sufficient for interpretation as is. The relative counterpart was only computed for
comprehensiveness reasons.

From a user’s perspective, it should be noted that the Morris method, as described earlier, may
require some level of engagement the sampling strategy and what the trajectories do in order
to determine an appropriate value for the number of levels p, as the latter has to be supplied to
the method when using SALib. In contrast, the usage of DMIM is very straightforward, as it
does not require a method specific sampler and the underlying concept is comparatively easy
to understand.

The following points conclude this first analysis:

1. The majority of investigated methods show consistent results, especially with respect to
parameter ranking.

2. Regarding the first order SIs, it makes little difference which variance-based technique
is selected. Users should consider the degree of information required to select the
most suited approach. FAST-RBD, for example, only provides the first order sensitivity,
whereas FAST additionally calculates the total sensitivity per parameter and Sobol” and
SCSA complement the analysis by quantifying pairwise interaction sensitivity.

Table 4.3 Sensitivity measures provided by the Morris method in absolute numbers (left) complemented
by the calculated relative values (right).

absolute relative
Morris DMIM Morris DMIM
g w 0 o p W 0 o
ts —-6,728,126 6,728,126 2,684,720 0.180 2.442 0.261 0.342 0.244
d 4,269,141 4,269,141 2,263,430 0.105 -1.550 0.166 0.289 0.143
mpr 199,040 211,615 180,337 0.029 -0.072 0.008 0.023 0.039
P fuel 7,034,501 7,034,501 2,715,588 0.195 -2.553 0.273 0.346 0.264
Ptech -7,529,412 7,529,412 0 0.229 2.733 0.292 0 0.310

T | —2,754855 25772,795 7,844,075 | 0737 || 1.000 1.000 1.000 | 1.000
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3. The analyzed non-variance-based methods seem to be a reasonable alternative to the
variance-based techniques. The Morris method shows some difficulty in practice as it
is based on a specific trajectory-based input sampling strategy. Outputs of this method
also require some postprocessing to be fully interpreted. The DMIM is easier to use but
provides only one sensitivity measure.

4.2.3 Analysis of Convergence

The second analysis deals with the convergence of the investigated techniques. Here, a GSA is
considered to be converged if the SIs no longer vary substantially above a certain sample size.
While this is determined primarily on a visual inspection basis, the confidence intervals, which
are calculated for each method and sample size and correspond to a confidence value of 95 %,
serve as a numerical indication of convergence. More specifically, for each sample size N, the
parameter averaged confidence interval is compared to a threshold (in this case 0.01), i.e.,:

1 < < 0.01 = indication for convergence,
= (CLNY) { § (417)
=1

> 0.01 = no indication for convergence

Aside from these, the computational time® to execute the code is recorded with each sampling
size so recommendations for practitioners can be formulated.

Input Uncertainties and Assumptions

The inputs for the convergence analysis are identical to those of the previous analysis (see
Table 4.2). Thatis, all distributions are considered to be uniform and all parameters are sampled
independently from one another. The sample size variation used here is as follows™.

N =2" with x€[9,610,...,615] (4.18)
=512,1024, . ..,32786. (4.19)

Depending on the GSA method, very different Ny are created, ranging from 512 to 393,216
(see the Nyt column in Table 4.1), which is expected to significantly affect both the convergence
and computational expense.

Results

The results of the convergence analysis for each method are depicted in Fig. 4.5. The upper
four subplots reflect the four variance-based methods, where the first order sensitivity index
S1 is depicted on the left ordinate. The lower two show the modified mean y* and the 6 of
the Morris method and DMIM, respectively. Akin to the previous analysis, both u* and 6
are quantified in relative terms for comparison purposes. Apart from these primary (relative)
sensitivity measures, the confidence intervals are depicted as error bars. Finally, the dashed
line, which the right ordinate refers to, shows the total time to compute the results. Note that,
for ease of comparison, both ordinates and the abscissa are identical throughout all subplots.

The distribution of S; in the Sobol” method (top left subplot) remains fairly constant as N
increases, suggesting an early convergence. As indicated by the magnitude of the confidence
intervals, this may be a mere coincidence, at least for small sample sizes. For N > 214 (which
equates to Nt > 393,216), the averaged confidence intervals begin to fall below the threshold
of 0.01. Thus, the total execution time till convergence for the Sobol’ method is 14 min in this
analysis. Generally speaking, this technique is computationally heavy, especially when the
number of uncertain parameters is high. However, it should be recalled that the Sobol” method

13 Executed on a laptop with a 3 GHz i7 processor, run in serial (i.e., not parallelized) mode.

4 While the values of x have been chosen heuristically, using a power of two is suggested by SALib [105] for the Sobol’
sequence.
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provides not only the sensitivity measures of first order, but also those of second order as well
as total sensitivities.

The FAST method (top right subplot) seems to converge relatively early. According to the
confidence intervals, a sample size of N = 210 = 1024 (which corresponds to Niot = 5120) is
already sufficient. With an execution time of 22 sec at this sample size, this technique is one of
the fastest. However, recall that the computation of higher order SIs is not computed by this
method.

Also appearing to converge rather quickly is the SCSA (center left subplot), which provides
the most comprehensive set of sensitivity measures (including correlation). The sample size of
N =212 = 4096 = N, is where the confidence intervals begin to dip below 1%. Taking only
about 20 sec to compute (at this N), this method is exceptionally efficient, especially due the
fact that Nyt is always equal to N, regardless of the number of uncertain input parameters.

The last variance-based method (center right subplot), being FAST-RBD, shows relatively large
confidence intervals for most N. The distribution seems to have settled in only at the highest
sample size of N = 215 = 32,768 = Ny, which is also where the confidence intervals begin to
drop below the threshold. However, with a computational time of 136s at this sample size,
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Figure 4.5 Analysis of convergence of all investigated GSA methods.
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this method is moderately quick to execute, although it should be recalled that FAST-RBD
calculates the first order sensitivity index, only.

The Morris method (bottom left subplot) seems to converge with the lowest sample size. There
does not appear to be any discernible change in the distribution right from the start. This is also
indicated by the small confidence intervals, which are hardly visible for sample sizes above
N > 22. With an execution time of less than 20s, this method is the fastest method of all.

DMIM (bottom right subplot) appears to be slightly indecisive with the distribution at first,
mostly for the parameters d and mpr. Values seem to settle in at sample sizes of 2!* and above,
for which the computational expense is still moderate, i.e., 1.5 min.

Table 4.4 summarizes the execution time and sample sizes for which each GSA method has
been considered to be converged, showing that the Sobol” method is by far the slowest. The
fastest three (with comparable times) are: Morris, FAST and SCSA. Taking the comprehensive
set of provided sensitivity measures into account, the SCSA technique performed best in this
analysis.

Table 44 Overview of converged sample sizes (per variable N and in total Nt) for each GSA method.
Unit | Sobol’ FAST FAST-RBD SCSA  Morris DMIM

N [_] 214 210 215 212 29 214
Niot [-] 196,608 5120 32,768 4096 3072 16,384
execution time [s] 850 22 136 20 16 87

The convergence analysis of the GSA methods aimed to shed some light on their overall
efficiency. The following aspects can be concluded:

1. There are large differences when it comes to convergence. The Sobol’ method, for example,
is more than 40 times slower than the SCSA, which provides more sensitivity measures.

2. The method specific translation from input sample size N to required sample size Niot
(shown in Table 4.1) can only be used as an indication for the computational expense. For
FAST-RBD, for instance, Nt is equal to N, which suggests it being one of the fastest, which
is not the case.

3. When in doubt, the consideration of confidence intervals can be a good indicator for
convergence. The threshold to define convergence, however, depends on the required
accuracy and is ultimately a choice for the user to make.

4.2.4 Conclusions

The comparative study, comprising analyses, shed some light on the actively researched field
of GSA and aimed to answer some fundamental, practice oriented questions. The following
conclusions can be summarized:

¢ Different GSA methods build on different theories and definitions of sensitivity, rendering
their comparison non-trivial. Recommendations heavily depend on what the users are
interested in, as the different techniques quantify different aspects.

* Despite these conceptual differences, the ranking (i.e., the sequence of input parameter crit-
icality) was fully consistent throughout all techniques for the assessment example analyzed
here.

* The quantification of (primary) sensitivity measures and their relative share was mostly
consistent throughout the methods, with minor differences between the variance-based
ones and the non-variance-based techniques.
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* The primary sensitivity measures of most variance-based methods are easy to interpret, i.e.,
quantifying the percentage of the output variance which is caused by the input uncertainty.

* Among the non-variance-based methods, the Morris’ method requires a few postprocessing
steps and a minimal knowledge of the technique’s algorithm for the interpretation.

¢ Interaction-based sensitivity, which is only provided by the Sobol” method and SCSA, is
consistent. However, there is a significant difference in computational expense between
these two methods with a clear recommendation towards the latter.

¢ Convergence speeds vary greatly among the methods. FAST, SCSA, and the Morris method
are the quickest to converge.

Finally, it should be said that these insights may be different in situations where the number
of uncertain input parameters is significantly higher and/or the use case and model are fun-
damentally different. A general recommendation cannot be made, as the usefulness of each
method depends on the requirements and boundary conditions of the analysis. For TEA,
which are in the center of attention of this thesis, the SCSA method appears to be a good choice
due to its comprehensive set of sensitivity measures and relatively quick convergence.

4.3 Global Sensitivity Analysis using the Original Model

The second part of the overall GSA investigation is subject of this Section. Building on the
insights gained by the previous study, GSA is now applied to a more complex example, i.e., the
HLFC use case. The goal of this study is to demonstrate a GSA application starting from the
input UQ and finishing with the recommendations for the decision making regarding where
to invest future efforts.

4.3.1 Input Uncertainty Identification

Revisiting the methodology Table 4.5 Identified input uncertainties in the HLFC case study.
presented in Chapter 1, the

first steps include the model
creation and uncertainty iden- D1 drag reduction potential &1 insect contamination

tification. Because LYFE has gﬁ rsri:aéi;:rf;ﬁ;se &  cloud encounter
already been selected as the

Design Domain | Environmental Domain

LCBA simulation framework, Operational Domain Economic Domain

the model creation phase is 01 cruise speed M future fuel price
complete. The identification O, extra contingency fuel M, HLFC maintenance cost
of uncertainties, i.e., deciding O3 carried payload M3 aircraft price increase

which parameters to vary and

calculate sensitivity measures for in the GSA, builds on the assumptions discussed in Chap-
ter 3. Here, several aspects that may have an impact on the TEA of HLFC have been explored
and grouped as general, design, operational, environmental, and economic issues. This results
in the eleven identified uncertainties shown in Table 4.5.

4.3.2 Input Uncertainty Quantification

The next step of the methodology foresees the a quantification of the uncertain input parame-
ters. In this analysis, which remains in the probabilistic realm, this entails that each uncertainty
is assigned a PDF using either literature and past research, or general estimation methodolo-
gies. Since this can be done with a wide range of detail, it is helpful to recall the purpose of
this study, which is to direct future research efforts more efficiently by distinguishing crucial
from negligible uncertainties. Therefore, the input UQ performed here remains rather cursory,
with each parameter receiving roughly equal attention.
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For the assignment of PDFs when plentiful data is available, a Python-based distribution fitter
was developed and used. This tool, which is aimed at practitioners, takes a dataset (e.g., a
vector x where each entry represents one observation) and automatically fits all distributions
that are available from the Python package scipy. For each, a goodness of fit test is performed,
the residuals are calculated, and the fit itself is visualized alongside the original data. Users
may then choose the most appropriate one based on their needs. If only few data are available,
a uniform distribution ranging from the lowest to the highest value is assumed.

To avoid repetitions of the fundamentals discussed in Chapter 2 and the more parameter
specific information introduced in Chapter 3, the following explanations put the uncertainty
that is involved in the parameter estimation into focus.

Drag Reduction Potential

In Chapter 3, where an area-based estimation method was used to quantify the drag reduction
potential, it was assumed that the transition position x7/c is 0.5 throughout the span and
for all laminarized areas. In this analysis, this assumption is treated as an uncertainty. As
Fig. 4.6 shows, the relative transition position is now xt/c € [0.4,0.6], which, using the same
estimation method, results in a total drag reduction between 6.0 and 8.6 %. With no additional
detailed aerodynamic information available, the distribution of this uncertainty is assumed to
be uniform. In alignment with all other uncertain parameters in this GSA, the drag reduction
potential is sampled on a lifecycle simulation basis, i.e., is constant for one lifecycle simulation.
Finally, it is considered to be of epistemic nature, as said information would arguably help to
reduce this uncertainty.

Unit Wing HTP VTP Sum

laminar area
atxp/c =04 [m2] 1224 354 199 177.6
atxr/c =05 [m?] 150.0 435 240 2175
atxp/c=0.6 [m2] 1751 51.1 27.8 2539

absolute drag savings potential
atxr/c=04 [de] 113 28 16 157
atxy/c=05 [de] 139 35 19 192
atxr/c=06 [dc] 162 41 22 225

relative drag savings potential
atxy/c =04 [%] 44 11 06 6.0
atxr/c =05 [%] 53 13 07 74
atxr/c=0.6 [%] 62 16 08 86

z o

(a) laminar areas at different transition positions. (b) aerodynamic impact of estimated laminar areas.

Figure 4.6 Visualization and summary of HLFC application with a transition position xt/c € [0.4,0.5, 0.6]
resulting in a uniform distribution of the drag reduction potential ;.

Mass Increase and SFC Penalty

As discussed in Section 3.3.2, the total suction area can be used as to estimate the mass increase
and required suction power. With the help of aircraft designs from other studies, a mass
increase between 384 and 1104 kg and a suction power between 115 and 233 kW was estimated,
see Fig. 3.10. While the previous study used the median value of these ranges, they are now
treated as uniformly distributed and epistemic uncertainties. To translate the range for the
suction power to a distribution of SFC penalties, which is shown in Fig. 4.7, the efficiencies of
the electric components from Table 3.2 are used.
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In order to keep the effort of UQ man- >~ 118%
ageable, a manual grouping strategy ' SFC results
is proposed with which the number — fitted PDF
of uncertain inputs is reduced. To do
so, the SFC penalty distribution is ob-
tained through a MCS, where the in-
tervals for the power offtake as well
as for the various electrical efficiencies
are treated as lower and upper bounds
of uniform distributions. Now, the
“model” in Eqn. (4.20), which calcu- 0 ,
lates the SFC penalty, is executed re- TR YT AT T
peatedly with a new set of sampled SEC penaltv. [9

. penalty, [%]
values. The resulting values have
been fitted with a general normal dis-  Figure 4.7 Histogram and fitted PDF for the SFC penalty
tribution for the later GSA. The data uncertainty 9.
range from 0.73 to 1.73 % and show an
average value of 1.2 %.
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Mach Number during Cruise

This parameter’s integration takes two stages. First, the fluctuation of cruise speeds needs to
be obtained. Second, the impact of this fluctuation on the laminarity has to be quantified.
For the first stage, representative flight trajectories from FlightRadar24 [79] were analyzed. As
these only provide the current time, altitude, latitude, and longitude (and hence the ground
speed) of an aircraft, the cruise Mach number is not readily accessible. Therefore, these
trajectories were coupled with the weather database from the European Centre for Medium-
Range Weather Forecasts (ECMWF) [106] to calculate the present wind speed, temperature,
pressure, and speed of sound that the aircraft experiences. The resulting Mach number
variation is depicted in Fig. 4.8 (top), alongside a fitted PDF of the general normal distribution.
From this distribution, it can be observed that the A330 flies with an average cruise Mach
number close to 0.82. However, with a standard deviation of ¢ = 0.013 there is considerable
variation from this value, which is expected to affect the laminarity noticeably. The non-hatched
area between Ma= 0.79 and Ma= (.85 represents the bounds of the sampled cruise speeds.

For the second step, i.e., the impact of different cruise speeds on the laminarity, a CFD sim-
ulation of a highly similar aircraft with HLFC on the wing upper side was used, where the
span- and chordwise transition location was calculated with the DLR-TAU code [200]. For the
laminarity on the tailplanes, it is assumed that the behavior is similar. These data were used
to create a regression that translates the sampled cruise Mach number to a laminar efficacy of
the form

NLmac = f(x) = —4833x% + 11,909x2 — 9763x + 2664, (4.21)

which is shown in the bottom left plot of Fig. 4.8. Note how deviations from the design point of
Ma = 0.82 change the laminar effectivity depending on the direction of the deviation. Speeds
below the design point decrease the efficacy by up to 38 % (i.e., 1, mac = 62 %). Speeds above
0.82 positively affect the laminarity, increasing the effectivity up to 32 %. This effect is primarily
caused by the effect of the transition position x/c, which has been evaluated throughout the
span for each CFD simulation, as shown in the right plot of Fig. 4.8. As no information about
the laminarity at a cruise Mach above 0.84 is available, 1)1, mac is capped to the highest observed
value.
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Figure 4.8 Histogram and fitted PDF of (calculated) cruise Mach number O; of an Airbus A330-343
(Registration D-AIKI) based on trajectories from FlightRadar24 [79] and weather data from ECMWF [106]
(top left), CFD-Tau results of an A330 similar aircraft design with a laminarized upper wing, color coded by
the skin friction coefficient [200] (right), and the regression model obtained from it (bottom left).

Although there are aspects where additional information could reduce the uncertainty of this
parameter (such as directly measured Mach numbers obtained from Airlines), the influence
of cruise speed on boundary conditions that cannot be changed is estimated to dominate this
uncertainty. These include the weather conditions as well as tactical decisions of the airline.
Therefore, this parameter is classified to be aleatory in this analysis.

Extra Contingency Fuel

As described in the operational considerations Section of of Chapter 3, operators of HLFC
aircraft may wish to include some additional contingency fuel to account for unforeseeable
losses of laminarity, e.g., due to system malfunctions. Depending on the operator’s preferences,
these additional fuel reserves can vary substantially from risk-affine to risk-averse. While the
deterministic study in the previous Chapter used 2.5% of the trip fuel as a HLFC-specific
contingency fuel, this study uses a more detailed fuel planning approach. First, an interpolant
c € [0,1] is sampled on lifecycle simulation level. Before each mission, the expected fuel burn
of the HLFC aircraft is estimated twice: one without any malfunctions m; and one with a
malfunction directly after takeoff my, i.e., mp > mj. The HLFC-related contingency fuel is then
determined using

Oz : Moy = €+ (M1 — my). (4.22)

Thus, low values of the interpolant c represent a more risk-affine operator whereas high values
indicate a risk-averse fuel planning strategy. The distribution of the c is assumed to be uniform
and the uncertainty itself is classified as epistemic.

Carried (Passenger) Payload

The load factor is often averaged to 80 % but is known to vary with the airline, route, season,
and other conditions. For the current study, the published data from the US Department of
Transportation (Dol is used [273], where the load factor is defined as the ratio of revenue
passenger miles and available passenger miles. The distribution of data from 2002 to 2019%
is shown in Fig. 4.9, showing a range of 66 to 90%. The PDF fitted to the data is of the

15The year 2020 was excluded due to the impact that Covid-19 had on the air transportation system.
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general logistics distribution type. With more data and more sophisticated models which take
seasonal effects into account, the load factor prediction could theoretically be improved upon.
Therefore, this parameter is treated as an epistemic uncertainty.

@ ~ 80.3%
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Figure 4.9 Histogram and fitted PDF of average load factors O3 based on data from the US DoT [273].

Impact of Insect Contamination

Insect contamination can be modeled with a significant variation in level of detail. For instance,
it is known that the insect population density is correlates with season, wind speed, temper-
ature, precipitation, and altitude as well as local flora and fauna [50, 136]. And for a given
insect population density, the impact on laminarity is not deterministic, either. It depends on
the impact position, angle, mass, and type of the insect, which determine the pattern of lost
laminar areas, resulting in a decreased laminar efficacy. For this study, the impact of insect
contamination is simplified. The model builds on the devoted study of Elsenaar et al. [73], who
counted the number of insects on several aircraft surfaces over the course of one year and used
the data to calculate the loss of laminar efficacy. While the data shown in Fig. 4.10 shows a
seasonal trend, there is a significant variation, which the authors trace back to potential natural
cleaning events, i.e., rain.

100

50

insect contamination-driven
laminar efficacy 11 ins, [%]

week of the year, [-] density, [-]

Figure 410 Weekly distribution of laminar efficacy from Elsenaar et al. [73] with equally spaced arrays
between minimum and maximum fitted curves representing &1 .

For modeling the insect contamination effect in this study, a Bayesian ridge regression of the
third order was used, resulting in the predicted mean u(t) as well as the standard deviation
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o(t). The u + 20 curves serve as bounds the sampling process, which works as follows. Before
each simulation, an interpolant ¢ € [0, 1] is sampled and used to calculate a time series of
N1,ins(t) that is fixed for that simulation, i.e.,

NLns(c, t) = T]L,ins(t)|worst tc- (UL,ins(t)lbest - T]L,ins(t)|worst) . (4.23)
Here, the worst and best curves of the laminar efficacy are represented by u — 20 and u + 20,
respectively. As some of the curves evidently exceed 11, ins = 100 % as well as fall below of
NL,ins = 0%, which is not possible, the resulting arrays are capped for values above and below
100 % and 0 %, respectively. The distribution from which c is sampled from is assumed to be
normal, as the A-A cut in the right plot of Fig. 4.10 shows, resulting in more samples being
drawn in the vicinity of the predicted mean compared to the extremes.

It should be noted that this model is applied only on the laminarity of the tail planes, as
the Kruger high lift device is assumed to successfully shield the wing upper side from insect
contamination. To account for this, the relative contribution of component’s HLFC application
on the overall drag reduction potential is used. With two thirds of the total drag reduction
caused by the application on the wing and one third by the HTP and VTP combined, the overall
insect contamination-driven laminar efficacy is:

MNLinstotal = 166 % + 11 ins * 22 % + 11 ins - 11%.. (4.24)
————

wing HTP VTP

Due to the strong simplifications regarding seasonality and climate aspects in this model, this
parameter is categorized as epistemic as well.

Impact of Cloud Encounter

For the second environmental un- - .
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ulation and fed to the linear transla- i
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Figure 4.11 Histogram and fitted PDF for average time in
cloud en route &; (top, data from [120]) and its impact on lam-
inar efficacy (bottom, data from [58]).

eled in an multiplicative nature.
Consider, for example, an overall in-
sect contamination-driven laminar
efficacy of 85% and a cloud encounter-driven laminar efficacy of 90 %, the resulting overall
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laminar efficacy on aircraft level is

nL =1 = (L ins tot * NL,cld) (4.25)
=1—(0.85-0.9) = 0.765. (4.26)

Fuel Price

With HLFC being a technology aiming to reduce fuel burn and consequently fuel cost, the un-
certainty regarding the fuel price development needs to be addressed appropriately. However,
predictions of future price developments are inherently uncertain, especially considering the
long periods of the prediction. The source of the fuel price developments was already intro-
duced in the economic assumptions of Section 3.3.2, where the “base” scenario was chosen. For
this analysis, a time-series sampling approach is chosen that is similar to that of the laminar
efficacy in Eqn. (4.23). That is, an interpolant c € [0, 1] is sampled on lifecycle level and used
to calculate the fuel price development array using the “low” and “high” as lower and upper
bound, respectively:

Pract(t) = Proct Ol + ¢ Prel Olpigh = Proet Ol ) (427)

To shift the array sampling slightly towards the base scenario (which is considered to be the
most likely development), the interpolant ¢ is drawn from a skewed normal distribution with
a =26,u =019 and o = 0.39. This distribution is shown in the A-A cut on the right plot
of Fig. 4.12 and has been fitted so that the highest density matches the relative position of the
base scenario within the interval.

A-A

— historic — - high —-— base - - low -
$1.5 A

$1.0

fuel price, [USD/kg]

$0‘0I\\\\\\\\\I\\\\\\\\\I\\\\\\\\\I\\\\\\\\\I\\\\\\\\\I\ | |
2000 2010 2020 2030 2040 2050

year density, [-]

Figure 4.12 Historic and projected kerosene price under “low”, “base” an “high” scenario (data taken from
U.S. Department of Transportation [272]) with linearly spaced arrays between minimum and maximum
prices representing M.

HLFC Maintenance Cost

The expected increase in maintenance cost due to the HLFC system is treated as an epistemic
uncertainty. It comprises a scheduled and an unscheduled portion. The scheduled HLFC
maintenance cost uncertainty is derived in a similar manner to the method outlined in Ta-
ble 3.3, utilizing various DOC methods with the previously established mass increase range of
[384,1104] kg. While this is a reasonable assumption, considering that heavier HLFC systems
likely correlate with larger areas of application, resulting in more HLFC-specific maintenance
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needs, this does not imply that the two parameters (mass increase and maintenance cost in-
crease) are modeled in a correlative manner. In fact, for simplicity, all parameters in this study
are sampled independently from one another, although it should be noted that the GSA method
used is capable of quantifying the correlative sensitivity effect®.

It should be noted that the main-

tenance increase uncertainty is con-
sidered to be epistemic, as more de-

—_
o

- ®z$40k:

data
— fitted PDF

tailed approaches (e.g., a comprehen-
sive analysis involving a parts list
with reliability values, failure mode
and effect analyses, etc) will likely im-
prove the parameter’s UQ. However,
such information was not available
during the course of the two under-
lying projects, which is why the pre- 0
viously described and simplified ap-

proach was used. The result of the

input UQ, along with the fitted PDF

of the Nagasaki type, is dePiCted in Figure 4.13 Histogram and fitted PDF of total HLFC mainte-
Fig. 4.13. nance cost My with data obtained from different CERs.

The data indicates an annual HLFC-

related maintenance cost varying between $ 14k and $ 82k, with an average at $40k. It is
important to note that this data combines both scheduled and unscheduled maintenance
costs, the latter of which is integrated using the methodology proposed by Suwondo [258].
This method delineates the unscheduled to scheduled maintenance cost ratio as a time series
bounded within [1.24, 1.50] over a 20-year simulated operation period. Assuming a uniform
distribution within this range, a Monte Carlo-based technique similar to that employed for the
SFC penalty uncertainty was utilized to calculate the total HLFC-related maintenance cost.
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HLFC Aircraft Price
The last uncertainty to quantify is
L. . . . - P ~$1IM !
the potential increase in aircraft price ! data
due to the development of the HLFC ok — fitted PDF
system.  Analogous to the ap-

proach adopted for estimating the
rise in maintenance costs, the air-
craft price increase is projected by
leveraging the mass increase uncer-
tainty, coupled with the DOC meth-
ods outlined in Table 3.3. Given the
complex nature of aircraft pricing, 0
which encompasses potential devia- ' ' ' ' '
tions from the list price, the MCS- 30 $0.5M $1M $1.5M $2M $2.5M
based methodology previously ap- increase in aircraft price due to HLFC, [USD]
plied to the (un)scheduled mainte- Figure 4.14 Histogram and fitted PDF of the aircraft price
nance cost uncertainty is employed increase M3 due to HLFC with data obtained from different
here as well. Consequently, the air- CERs.

craft price distribution illustrated in

Fig. 4.14 not only reflects the CER-based outcomes but also accounts for the existing knowledge
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16 A detailed inclusion of input correlation in GSA requires the discernment of S;, Sy, and S for each sensitivity measure
(i.e., first order, second order, and total SI). This increases the complexity when discussing the results, especially for the
higher-order effects, as the analysis in Appendix D.2 showed.
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gap concerning the potential discount range, presumed to uniformly span the [0, 50]% interval.
The data conforms to a Nagasaki type distribution, ranging between $ 300k and $2.1M, with a
mean value of $ 1IM.

Alongside a list of assumptions for this study, all uncertain parameters fed to the GSA are
summarized in Appendix D.4 including their type (i.e., nature), fitted distribution, lower
and upper bound, as well as the parameters for recreating the distribution with the Python
package scipy. With eight epistemic and three aleatory elements, the input uncertainties are
dominated by lack of knowledge rather than natural variability. Note that this is, however, not
only a categorization that is somewhat subjective, but also one that can change when models
are improved upon. The load factor, for instance, was modeled in a very simple manner,
leaving significant room for improvement. If these improvements were to be implemented, the
parameter’s variation might decrease but is unlikely to be eliminated. Instead, the remaining
variability would be exclusively aleatory. Another note worth to make deals with truncation.
For those distributions that are not uniform, a modification of SALib was required, where the
inverse probability integral transformation was used. It ensures proper probability density
scaling as well as a more efficient sampling approach'.

4.3.3 Analysis and Results

With all uncertain inputs described and assigned a distribution, the results of the GSA can now
be discussed. To recall, the comparative study performed in Chapter 4.2 revealed the SCSA
method to be both comprehensive (in the sense of provided sensitivity measures), quick to
converge, and relatively easy to interpret. Therefore, this method is selected for the present
GSA. The number of samples per variable, N, has been set to 215 = 32 768, leading to 65,536
lifecycle simulations with a total number of n > 840M individual flights'®. The upcoming
discussion of results are organized as follows. First, the overall output distribution of the
two investigated metrics, namely the ANPV and the fuel consumption Ay, are analyzed.
Afterwards, the output uncertainty is broken down to its constituents, discerning the primary
effects from the secondary and correlation induced effects.

Output Distribution

Like most GSA methods, the SCSA method requires repeated executions of the model to
calculate the sensitivity measures. Given a sufficiently large N, these repeated executions
are equivalent to a conventional MCS, which allow to calculate the statistical moments of the
output distribution. This helps to understand how large the uncertainty in the overall study is
and should be part of any GSA.

Fig. 4.15 depicts the overall distribution in four plots. The left two deal with the technological
metric Yf,e], Whereas the right two show the NPV representing the economic KPI. The upper
plots show the aircraft-specific results using boxplots, while the lower plots visualize the A
values using histograms and the empirical CDF. Before diving into the discussion of the
results, it should be noted that the fuel consumption metric in this GSA is calculated on a
lifecycle simulation basis. That is, one lifecycle simulation (which comprises more than ten
thousand flight events) yields one lifetime averaged value for y ). While the flight individual
Vtuel Values are technically available, the GSA process requires one model execution of LYFE
to result in one scalar value for the variance decomposition.

As the boxplots of yg,e in Fig. 4.15 show, the laminar (LAM) aircraft is more fuel effi-
cient than the reference (REF) aircraft. The latter shows yg, values ranging from 2.75 to

17 As opposed to, for example, repeating the sampling process if a sample falls out of the bounds specified by the truncation.
Supplemental information is provided in Appendix D.3.

18 This campaign was run on a workstation with 60 logical cores in parallel and took 27 hours to complete.
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Figure 415 Monte-Carlo results of the GSA with fuel efficiencies on the left, NPVs on the right, aircraft
design-specific results at the top, and histograms and empirical CDFs of A values at the bottom.

3.6 kg/pax - 100km with an IQR of [3.06,3.29]. The median and average values for this tur-
bulent aircraft are 3.16 and 3.19 kg/pax - 100km, respectively. The laminar aircraft’s fuel con-
sumption values range from 2.7 to 3.46 kg/pax - 100km and shows an IQR of [3.0,3.18]. The
median and average values are 3.07 and 3.10kg/pax - 100km, respectively. This represents
a fuel consumption improvement of 2.74 %, which is in line with the expected value of the
histogram of Ay, in the lower left plot. The deterministic value of 3.06 % shown in Fig. 4.15
refers to the analysis of Chapter 3. It being close to the expected value of 2.74 % indicates that
(a) the mean values of the uncertain inputs in the GSA are close to the assumption values of
the deterministic analysis, and (b) the sample size of the MCS part of the GSA is sufficiently
large. This histogram shows the spread of fuel consumption changes in more detail, revealing
Ay tye1 values as low as —6 %. With 95 % of data being within the interval of [-5.6, —0.9] and the
standard deviation being 1.2 %, the histogram highlights that uncertainties are not negligible.
One interesting aspect is that in a small number of simulations, the laminar aircraft turns out
to be less fuel efficient than the turbulent reference (i.e., Ayl > 0%). In these cases, the set
of parameter samples is highly unfavorable for the technology, e.g., low cruise Mach, low drag
reduction potential, high SFC penalty, and so on. It should be noted that such designs are not
likely to be actually pursued in the product development process.

The economic metric (right plots) substantiates the overall superiority of the HLFC aircraft,
albeit with a smaller lead. Considering the aircraft specific boxplots, the advantage of LAM over
REF is existent, but difficult to discern. The ANPV depiction at the bottom right allows a more
detailed view, showing a spread of values between —$3M to +$12M (and 95 % of data being
in the interval $[700k, 800M]). The expected economic superiority is quantified with +$2.5M,
which is fairly close to the deterministic result of the analysis in Chapter 3. The share of results
where the laminar aircraft performs worse than the turbulent counterpart is noticeably higher
when considering the ANPV metric over Ayg,e]. The reason for this is that the calculation of
the NPV encompasses more variables including the additional maintenance and aircraft price
increase, which are relevant for a comprehensive assessment, but do introduce less favorable
conditions. Overall speaking, the output distribution of either metric indicate a superiority
of HLFC, but the involved uncertainty (measured as the spread or the standard deviation) is
too high to accept a deterministic result, only. And with the uncertainty breakdown of a GSA,
which is discussed next, it becomes possible to pinpoint what affects this output uncertainty
to what degree.
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Uncertainty Breakdown

With the output uncertainty discussed, the next set of results focus on its breakdown. The
overall goal is to understand which uncertain input parameter has the highest influence on the
output (and with that deserves the most attention in subsequent uncertainty reduction efforts)
and which ones can easily be fixed to a mean value without oversimplifying the model.

The primary effect, which is represented rest

by the S sensitivity measure of the SCSA

method, is shown in Fig. 4.16 (a) and (b)

for Aysel and ANPYV, respectively. In

both, the cruise Mach speed (O) is by

far the most dominant parameter. As

this is an aleatory uncertainty, there are

limited options with respect to input un-

certainty reduction and/or submodel im- O
. . cruise Mach

provement. It is, however, possible and

even advisable to communicate these re-

sults back to the design, emphasizing the (a) Breakdown for Ay fyel-

need for a more robust and less suscepti-

ble design. For Ay e, the other mention-

able sensitivities are towards drag reduc-

tion potential uncertainty 9 and the time

in cloud uncertainty &, with S = 10%

and 5 %, respectively. All other parameter

sensitivities were less than 5% and have

thus been subsumed to the entry rest. The

small portion which is left unfilled rep-

resents the amount of output uncertainty

that cannot be explained by the primary (b) Breakdown for ANPV.

effects, i.e., are caused by interaction or

even higher order effects.

&, : cloud encounter

D3 : SFC penalty
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Vfuel Dy : drag reduction
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Figure 4.16 Uncertainty breakdown using S..

The breakdown of the ANPV is similar, albeit slightly more balanced. The cruise Mach speed
sensitivity, which is at 55 %, is still the most sensitive parameter, followed by the future fuel
price development with S, = 18 %, which is aleatory in nature as well. This leads to the
overall conclusion that the output uncertainties of both metrics are dominated by aleatory
uncertainties, although only three out of the eleven investigated uncertainties were aleatory to
begin with.

As the SCSA method provides more than just one sensitivity measure, a more detailed analysis
allows for additional insights. Fig. 4.17 shows the direct effect, correlation, and interaction
via S;, S¢ = S4 + Sp and ST, respectively, for each uncertain parameter. Note that correlation
and interaction effects are not depicted explicitly, but can be measured as follows. If, for a
given parameter X, the combined sensitivity measure S. is noticeably higher or lower than the
non-correlative sensitivity measure S;, a noticeable positive or negative correlation has been
identified by the method. The same concept applies for the interaction, where an increase in
St (X;) over S (X;) indicates a noticeable interaction sensitivity of this parameter.

Starting with the correlative effect, there is no significant change of S; over S, observable
for any of the uncertainties, as expected (since all parameters were provided to the model
independently). The interaction effects do not seem to affect most parameters, either. The only
two parameters for which the St is visibly larger than S. are the cruise Mach speed O; and the
fuel price M; (for the ANPV metric), indicating that these two have a non-additive combined
effect.
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Figure 4.17 Breakdown of Ay e (top) and ANPV (bottom) uncertainty using S, S¢, and St.

For completeness reasons, the interaction map illustration introduced in the comparative GSA
is discussed next. Fig. 4.18 shows these for the two considered metrics. Here, the interaction
effects of S. were used. The highest value for SIT for Aytuel (left plot) is less than 0.5 %,
rendering any interpretation efforts meaningless. For ANPV (right), the previous indication
of O1 (cruise speed) and M (fuel price) is substantiated by this interaction map, although the
interpretability of a maximum interaction effect of 3 % is questionable at best.
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Figure 4.18 Second order sensitivities for Ay g1 (left) and ANPV (right).

Improved Off-Design Behavior

The previous GSA has shown that the expected fuel consumption improvements as well as
the economic superiority are dominated by the uncertainty in cruise Mach speeds. Due to its
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aleatory nature, there is little room for uncertainty reduction. Itis, however, possible to improve
the HLFC design by making it less susceptible towards off design speeds. In this last analysis,
a hypothetical improvement of this kind is introduced and, for conciseness reasons, discussed
using only the economic metric. The goal is to demonstrate how the product development
process could react to such insights provided by the GSA. The improvement is shown in the
top left plot of Fig. 4.19, showing the (hypothetically) updated datapoints next to the original
(and previously used) ones'. The updated regression uses the third degree polynomial

NLmac = f(x) = —2417x% + 5954x2 — 4882x + 1333 (4.28)

which is, consistently with the previous implementation®, capped at the 1 mac value at the
cruise speed of 0.84. The top right plot of Fig. 4.19 shows the Monte-Carlo results of the
updated HLFC design (in gray) next to the original results (light green), alongside the empirical
CDFs of both simulations. The updated results are visibly less spread, which is reflected by
the reduction of the standard deviation from originally onpy = $2.3M to onpy = $1.9M.
The expected value of E[ANPV] ~ $2.5M did not change significantly, which, due to the
symmetrical improvement of 71, mac, is not surprising. The reduced spread, combined with
the positive expected value, did slightly improve the probability of success from P(A NPV >
0) = 83 % to 89 %. The final comparison of the uncertainty breakdown of both simulations is
depicted in the lower plot of Fig. 4.19 with the original S; in green and the updated sensitivity
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Figure 4.19 Effect of a hypothetical improvement of maintaining laminarity at off design speeds including
the polynomial fit (top left), Monte-Carlo-based results (top right) and uncertainty breakdown using S,
(bottom).

9The updated data were created by taking half of the distance to 771, mac, resulting in a symmetrical behavior, i.e., an improved
performance at lower Mach speeds, but also leads to a lower laminar efficacy at cruise Mach speeds above 0.82.

20Recall Fig. 4.8 on page 87.
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measure in gray. The sensitivity towards the cruise Mach speed uncertainty reduced from
previously 55 % to 35%. This loss of 20 percentage points is now proportionally distributed
over the remaining uncertainties. The sum of S; over each parameter is > 95 %, indicating only
insignificant interaction effects.

4.4 Conclusions

This Chapter revolved around the first RQ and hypothesis which deals with differentiation of
relevant and irrelevant uncertainties using GSA. To do so, the theory and application of GSA
were investigated in a two part approach. In the first part, a comparative study of multiple GSA
methods was performed on a mechanistic surrogate of the LCBA framework called FastLYFE.
Goals of this study included gaining practical knowledge regarding convergence, easiness of
interpretation, and capability fulfillment. Considering the characteristics of the investigated
techniques, the SCSA method from Li et al. [149] revealed itself to be most suitable for the
underlying use case. This method was then applied in the second part of this Chapter, where
the original LYFE model was executed on the HLFC use case. Here, literature was reviewed
and simplified methods and models were developed and/or used to quantify the uncertainties
of 11 input variables from 4 different domains. This input UQ is expressed as a PDFs for
each parameter, from which the subsequent GSA repeatedly draws samples from. The output
distribution, which is available as a byproduct when performing SCSA, was analyzed first.
Whilst indicating superiority of the HLFC aircraft over the conventional counterpart when
using averaged values, the distribution revealed a substantial spread in the economic and
technological KPIs, which were the ANPV and Ay, respectively. Thus, the necessity of a
UQ enabled assessment approach was highlighted. Results of the GSA have shown the cruise
speed to be the dominant input uncertainty as it is responsible for more than half of the output
uncertainty. It is followed by the fuel price (= 19 %) and the drag reduction potential (=7 to
10 %, depending on the KPI). Negligible uncertainties include the HLFC related maintenance
cost, the increase in aircraft price, as well as the load factor. Correlation and interaction effects
were also quantified by the SCSA method but are negligible for this use case. As a final analysis
in this study, a hypothetical improvement of the HLFC aircraft’s off-design performance was
introduced, which served as a verification step. Results showed the expected decrease of the
sensitivity towards Oy, which is the cruise Mach number, while the sensitivity measures of the
other parameters increased proportionally due to the relative breakdown nature of the GSA.






5 Non-Probabilistic Uncertainty Quantification

This Chapter addresses the second research question, focusing on DSTE as a promising non-
probabilistic method for quantifying epistemic uncertainty. The goal is to explore how DSTE’s
concepts, techniques, and metrics can complement or even replace traditional uncertainty
quantification methods, such as those used in ProI. The research hypothesis guiding this
investigation posits that a systematic demonstration of DSTE’s capabilities will reveal its po-
tential advantages. The Chapter begins with an introduction in Section 5.1, explaining how
DSTE’s metrics can be integrated into MCS-based uncertainty analyses using a newly devel-
oped Python package. Section 5.2 then outlines the methodology for conducting systematic
investigations into DSTE-based uncertainty quantification, detailing the overall study design
and the expert elicitation process. In Section 5.3, describes the selection, quantification, and
preparation of HLFC-related epistemic input uncertainties for the simulations specified in the
methodology. The results of these simulations are presented and compared to their probabilis-
tic counterparts in Section 5.4. Note that all analyses in this Chapter have been performed with
a PCE-based surrogate model of LYFE!, as the computational expense of the DSTE-enabled
MCS is too high to be performed with either the DES version or the mechanistic surrogate of
LYFE.

5.1 Integration of DSTE in Monte-Carlo Simulations

As mentioned in Chapter 2, DSTE revolves around the concepts of Belief and Plausibility,
which aim to complement the conventional concept of probability by providing a lower and
upper bound. To compute these in MCSs, a new sampling process is needed, which is based
on prior expert elicitation. In addition, an additional posterior calculation is required to obtain
(complementary) cumulative functions of Belief and Plausibility over the output y in order
to construct statements about the uncertainty of the results®. These elements are described
in this Section, beginning with some theoretical aspects in Section 5.1.1, followed by practical
guidelines discussed in Section 5.1.2, including a description of the developed Python package
for DSTE-based UQ.

5.1.1 Theoretical Aspects

This Subsection extends the fundamentals around DSTE described in Chapter 2 and is based
on the work from Helton et al. [101-104] and Oberkampf et al. [179, 180], complemented by
notional examples and illustrations. The modified sampling strategy is explained first, followed
by a description of the (complementary) cumulative function calculation.

Belief-Based Sampling Strategy

The Belief-based sampling strategy is a useful alternative when little to no data is available
and PDFs other than a uniform distribution cannot be obtained. It is based on the Basic Belief
Assignments (BBAs) provided by Subject Matter Experts (SMEs), for which an expert elicitation
process is recommended. For demonstration purposes, consider a simple model

y = f(a,b) =100(a* + b*)*" (5.1)

1Supplemen‘cal information on the PCE-surrogate development can be found in Appendix E.1.
2Gee the discussions on pp- 36.
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where both inputs a4 and b are uncertain. Some information (either obtained through literature
or expert elicitation) about 2 and b is available. Assume that one source provided three intervals
for a being a; = [0.5,0.7], a2 = [0.6,0.9], and a3 = [0.4, 1.0] and three for b being by = [2.0,2.5],
by =[2.2,2.3] and b3 = [2.2,2.4]. This yields the following input sample spaces:

ng np
A = U a; =[04,1.0] and B= U b; = [2.0,2.5] . (5.2)
i=1 i=1
Now, each of the evidences provided in A and 4F

B is assigned a BBA. It reflects the Belief of
the expert in this interval. Say, for example, that
the expert is more confident in the interval of a1,
whereas less Belief exists that the true value of a
lies within the intervals of a, or a3. A possible
BBA assignment for a could then be m(a;) = 0.5
and m(ay) = m(az) = 0.25. For b it is assumed 2
that no interval is weighted more than the others,
yielding m(b1) = m(by) = m(b3) = 1/3. With these |
defined, the next step is to calculate the general 7|

density functions D,(a) and Dy(b) defined on A _
and B, respectively. These are -
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Hereby, d,; and d;,, represent the evidence-specific (a) uncertainty 4.
density functions defined ona € A and b € B.

These can be calculated, for instance, using the = ¢ b2
width of theinterval, i.e., to assign higher densities .& [ -
when small intervals are given and vice versa: s 2r f b
s | b
< ( 1
=
m(a;) . = | ¢
facea; $0
dg;(a) = { max(a;) — min(a;) ! : (54) © ' ' '
0 otherwise oL
and accordingly for b. For a1, this results in z
m(aq) 1t
dg,(a1) = 55) R
m (@) max(aq) — min(ay) (5-5) i
0.5
=——— =25.
0.7-0.5 00— ; ! ! :
2 2.2 2.4

Consequently, the other evidence-specific densi-
ties are dg, (a2) = 0.83, day(az) = 0.416, dy, (b1) = _
0.6, dy,(b2) = 3.3, and dj,(b3) = 1.6. With (b) uncertainty b.

Eqn. (5.3), the density functions shown in Fig. 5.1  Figure 5.1 Density functions for a and b cre-
can be calculated. For each variable, the upper ated for the Belief-based sampling process.
plot shows the individual densities and the bottom subplot depicts respective general density
functions. Note how the interval [0.6, 0.7] in a is the highest as all interval statements a; contain
it. The same applies to the interval [2.2,2.3] in b.

br [_]

These density spaces can now be used to sample from, e.g., by using the inverse probability
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integral transformation method described in Appendix D.3, and fed to the model through
a MCS. The combined samples of a and b for this sampling strategy are shown in the top
left subplot of Fig. 5.2, whereas the output of a conventional sampling strategy (with uniform
distributions) is shown in the top right subplot. The bottom two subplots depict the results of
the MCS for each strategy. The results show that the standard deviation (highlighted in light
gray around the mean) for the Belief-based approach is 40 % lower due to the incorporation
of weights instead of using uniform distributions. This highlights how the conventional ap-
proach of assuming uniform distributions can misrepresent the ‘true’ uncertainty that human
knowledge provides, as elicited by the hypothetical SMEs and represented by DSTE.

These density spaces can now be used for sampling, e.g., by using the inverse probability inte-
gral transformation method described in Appendix D.3, and then fed into the model through
a MCS. The combined samples of a and b for this strategy are shown in the top left subplot of
Fig. 5.2, whereas the output of a conventional sampling strategy (with uniform distributions)
is shown in the top right subplot. The bottom two subplots depict the results of the MCS for
each strategy. The results show that the standard deviation (highlighted in light gray around
the mean) for the Belief-based approach is 40 % lower due to the incorporation of weights
instead of using uniform distributions. This highlights how the conventional approach of as-
suming uniform distributions can misrepresent the “true” uncertainty that human knowledge
provides, as elicited by the hypothetical SMEs and represented by DSTE.

The strengths of the Belief-based sampling process lie in its ability to deal with multiple
evidences, especially when given in intervals. Deterministic evidence (i.e., experts being sure
that a parameter has exactly one value) can be considered as well by using a dirac-delta function
to transform it to an (infinitesimal) interval. However, it should be noted that the foundations
of DSTE and consequently of the sampling strategy revolve around intervals, and deterministic
evidence is generally the exception (see examples discussed in Helton et al. [101]).
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Figure5.2 Samples (top) and monte carlo results (bottom) for the evidence-based sampling process example
(left) and a simple uniform sampling (right).
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Complementary Belief/Plausibility Functions

The concept of using CCBF, CCDF, and CCPF (which are referred to as CCXFs) for quantifying
uncertainty has been briefly outlined in Section 2.2.2. To recall, they enrich the results of a
Belief-based sampling-driven MCS by providing a distribution of Belief and Plausibility over
the output range. From these, uncertainty-addressing statements can be constructed. While
the CCDF is simply obtained by taking the complement of the conventional (empirical) CDF,
the CCBF and CCPF calculations foresee retracing which input evidences lead to which values
of the output distribution and then calculating the supporting and contradicting evidences over
the output space. As such, it is performed after the results of the MCS have been gathered.
As the process is quite complex, the following paragraphs dive deeper into the calculation of
CCBFs and CCPFs while picking up the previous example model from Eqn. (5.1).

Starting with some preparation work, the first step is to pairwise combine the input evidences
a; and b; to create a list of all k possible combinations of evidence intervals E;. These are
shown in the first few columns of Table 5.1. Next, a combined BBA need to be calculated for
each of these combined intervals, which is the product of the individual BBAs. For k = 2, for
instance, the individual BBAs are m(a1) = 12 and m(by) = 1/3, resulting in a combined BBA of
mr=p = 1/2-1/3 = 1/6. The next step requires creating a subset of the output space yi for each
k for which the input samples in a and b are in the corresponding evidence interval E(a) and
E (D), respectively.

Table 5.1 Preparations for the calculation of the CCBF and CCPF.

Evidence Intervals BBA Yk = (a € Ex(a) Ab € Ex(b))
Combination Er(a) Ex(b) My min(yy) max(yx)
k=1:a1,b0 [0.5,0.7] [2.0,2.5] lh-1f3=1[ 2.376 14.133
k=2:a1,b [0.5,0.7] [2.2,2.3] lh-1f3=1[ 4.609 8.106
k=3:a1,b3 [0.5,0.7] [2.2,2.4] lh-1f3=1[ 3.320 8.106
k=4:a,b [0.6,0.9] [2.0,25] la-ls=1/12 2.774 17.614
k=5:a,bp [0.6,0.9] [2.2,2.3] la-ls=1/12 5.270 10.485
k=6:ap,b;3 [0.6,0.9] [2.2,24] Ya-l3=1/12 3.843 10.485
k=7:a3,b [0.4,1.0] [2.0,25] la-l3=1/12 2.050 19.769
k=8:a;3,by [0.4,1.0] [22,23] Ya-l3=1/12 4.015 12.005
k=9:as3,b;3 [0.4,1.0] [2.2,24] Ya-l3=1/12 2.884 12.005

Out of these subsets vk, the minimum and maximum values need to be found, which are shown
in the last two columns. In other words, for each of the possible evidence input combinations,
the corresponding bounds in the output space needs to be calculated. This is illustrated
in Fig. 5.3 for k = 6, where the highlighted sample space subset lies with a> € [0.6,0.9]
and b3 € [2.2,2.4] (left subplot) and the corresponding output space for these samples is
Yk € [3.843,10.485] (right subplot).
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Figure 5.3 Highlighted DSTE sample space (left) and corresponding output space (right) for k = 6.
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With the preparatory work done, the CCBF and CCPF can be calculated according to:
CCBF = {yi, 1- Z mk} Vi for which min(yx) <y; Vk (5.6)
CCPF = {yi, > mk} Vi forwhich max(ye)>y; Vk . (5.7)

The first value in the braces y; represents the abscissa vector, and the second is the ordinate
vector. To evaluate this expression in practice, it is useful to sort the output values y, loop
through them, evaluate the condition and calculate the abscissa and ordinate values for both
functions. Consider, for example, the output value y; = 3.6. Comparing this value with the
last two columns of Table 5.1, the CCBF conditional statement min(yx) < y; is true for the rows

k=1,3,4,7,and 9, leading to the CCBF of
CCBE(y; = 3.6) = {yi =361~ mk} for k=1{1,3,4,7,9} (5.8)
={17,1-(2-/6+3-1/12)} = {1.7,0.416} . (5.9)

For the CCPF, all rows fulfill the condition of max(yx) > v; = 3.6, leading to:

CCPE(y; = 3.6) = {yi =36,y mk} for k=1{1,2,...,9} (5.10)
= (3.6,3-1/o+6-1/12} = {3.6,1.0} . (5.11)
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greater than y = 3.6 as cal-

culated before. Meanwhile, the CCPF (in red) at this value is 1, indicating that the hypothesis
(y > 3.6) is entirely plausible (i.e., there is no contradicting evidence). For further clarity, the
upper plot of Fig. 5.4 illustrates the bounds for each k (i.e., row in Table 5.1). The evidence
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intervals for which the current y; value is inside are highlighted in blue. As y; values increase,
the model encounters more lower bounds, leading to a stepwise decrease in the CCBF. In a
similar manner, exceeding more upper bounds results in a stepwise decrease in the CCPF. It
is important to recognize that the number of evidence intervals increases exponentially with
the number of input statements, contributing to the high computational cost of this method.

5.1.2 Application

Building on the second research hypothesis, a publicly available Python package named dste
was developed to facilitate evidence-theoretic UQ studies. This package provides a compre-
hensive and practical tool for researchers and practitioners, aiming to make non-probabilistic
UQ more accessible and user-friendly. To illustrate its usage, a notional evidence-based quan-
tification of input uncertainties is presented. Code E.1 shows a minimal example of how to use
dste, comprising four steps which are described in detail.

Code 5.1 Minimal example for using the DSTE package.

import dste
import numpy as np

def blackboxmodel(a, b):
return 100*(a**2 + b**2)**(a-b)

st_al = dste.Statement (0.5, 0.7, 0.50)
st_a2 = dste.Statement(0.6, 0.9, 0.25)
st_a3 = dste.Statement (0.4, 1.0, 0.25)
ev_a = dste.Evidence([st_al, st_a2, st_a3])
st_bl = dste.Statement (2.0, 2.5, 1/3)
st_b2 = dste.Statement (2.2, 2.3, 1/3)
st_b3 = dste.Statement(2.2, 2.4, 1/3)
ev_b = dste.Evidence([st_bl, st_b2, st_b3])

n = 10000
evidences = [ev_a, ev_b]
samples = dste.advanced_sampling(evidences, n_samples=n, rule=’latin_hypercube’)

y = np.zeros(n)
for idx in range(n):
y[idx] = blackboxmodel (samples[idx, 0], samples[idx, 1])

X, CCDF, CCBF, CCPF, errcnt = dste.calc_evidence_metrics(y, evidences=evidences, samples=samples)

Step 1: Define the main model or make it accessible by importing it. The first preparatory
step requires users to make the main model accessible to the code at hand. As it is treated as
a black box, modifications to the main model are not necessary. In this example, the previous
model from Eqn. (5.1) is used.

Step 2: Define statements and convert them to evidences. Based on the information gathered
from SMEs in the form of intervals and BBAs, this step foresees the definition of statements
and evidences. In this example, only one expert was interviewed, resulting in three statements
(lines 14-16 and 20-22) and one evidence object per variable (lines 17 and 23). If, alternatively,
multiple experts had provided statements, DSTE’s combination rule would be utilized, for
which a Python code example is provided in Code 5.2. Here, three experts provided one
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Code 5.2 Adjustment of Step 2 (lines 13-23 in Code 5.1) for multiple experts.

st_a_el = dste.Statement(®.5, 0.7, 1.0)
st_a_e2 = dste.Statement (0.6, 0.9, 1.0)
st_a_e3 = dste.Statement (0.4, 1.0, 1.0)
ev_a_el = dste.Evidence([st_a_el])
ev_a_e2 = dste.Evidence([st_a_e2])
ev_a_e3 = dste.Evidence([st_a_e3])

ev_a = dste.combine_evidences([ev_a_el, ev_a_e2, ev_a_e3], weights=[2, 1, 1])

st_bl_el = dste.Statement(2.0, 2.5, 0.5)
st_b2_el = dste.Statement(2.2, 2.3, 0.5)
ev_b_el = dste.Evidence([st_bl_el, st_b2_el])

st_b_e2
ev_b_e2

dste.Statement (2.2, 2.4, 1.0)
dste.Evidence([st_b_e2])

ev_b = dste.combine_evidences([ev_b_el, ev_b_e2], weights=[1, 1])

interval each for a, with a BBA of 1. These are then combined, assuming that the first expert
is twice as credible as the other two. For b, one expert provided two intervals, which are
then transformed into one evidence object. A second expert stated only one interval for b.
These statements are then combined to evidences assuming equal weights in the last line of
Code 5.2. For visualization purposes, the package provides an evidence plotting function that
depicts the so-called BBA space, which is constructed out of the general density functions
described earlier. For the adjusted example (i.e., with multiple experts interviewed), this is
shown in Fig. 5.5 for a (left) and b (right). The advantage of this depiction is that the individual
statements are discernible, and their weights are scaled considering not only the individual
BBAs of the statements but also the credibility of the experts when weighting them. Therefore,
the height of the box is denoted with st_a_el (first expert’s statement) is twice as high as
those of st_a_e2 (second expert’s statement) and st_a_e3 (third expert’s statement) due to the
weighting in line 13 of Code 5.2, while all boxes for b have the same height due to equal expert
credibility.

1 - =
= (st a_e2——j K—st_b_e2—
% - -
)
E 05 K st_a_el-) B st_b2_el
K
g i i
5 ¢ st_a_e3 S k————————st_bl_el=—————
0 = -
| | | | | | |
0.4 0.6 0.8 1 2 2.2 24

a, [_] b/ [_]

Figure 5.5 BBA space for a and b after combining statements to evidences.

Step 3: Create samples from the evidences and run a MCS. With the evidences for a and
b created, the next step is to generate a number of samples and feed them to a MCS of the
original model. The package allows random and quasi-random sampling schemes such as LHS
or the Sobol” sequence. Here, 10,000 samples are generated using LHS (see line 27 of Code 5.1).
Next, these samples are fed to the original model, recording its response y (in lines 31-33 of
Code 5.1).
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Step 4: Calculate evidence-theory-based metrics to analyze output uncertainty. In the last
step, DSTE’s key metrics, CCBF and CCPF, are calculated alongside with the CCDF. With
the developed package, all calculations described in Section 5.1.1 reduce to one function,
i.e., calc_evidence_metrics (line 37), which was used to create Fig. 5.4.

5.2 Methodology

This Section begins with an outline of the study design, which presents the overall sequence
of steps for the upcoming analyses. Afterwards, the expert elicitation process is described in
more detail.

5.2.1 Study Design

The steps performed to understand the potential of evidence-theoretic methods are illustrated
in Fig. 5.6 and are divided into two areas: (a) steps specific to DSTE, shown at the top half,
and (b) the conventional probabilistic approach, which serves as a comparison and is depicted
in the lower portion. The first step foresees a selection of epistemic uncertainties for both
domains. Criteria for this selection are, apart from the epistemic nature, data scarcity and the
availability of SMEs that are able to provide Belief statements. The next step in the evidence-
theoretic domain entails interviewing said SMEs. These interviews, which are conducted
using a common questionnaire, produce intervals and Beliefs (i.e., BBAs) in them. In an
effort to imitate such intervals and Beliefs for uncertainties for which no expert elicitation
is available, the literature sources from which the probabilistic intervals were derived are
revisited. The results from this step are used for the evidence-theory-based sampling strategy.
A subsequent MCS is performed with these samples, resulting in an output distribution that
can be compared to the conventional probabilistic counterpart. The next step in the evidence
path is to calculate the Belief and Plausibility curves of the output, which provide information
about the uncertainty in the evidence-theoretic domain. These are then compared to the
conventional uncertainty measures of Prol.

evidence theory

interview create calculate
experts evidence > belief and
and review based plausibility
literature sampling ; curves
select execute interpret
epistemic Monte-Carlo uncertainty
uncertainties simulation measures
use leul
_ | conventional calcu .atel
> uniform statistica
distributions moments

probability theory

Figure 5.6 Methodology for the evidence-theoretic uncertainty quantification study.

5.2.2 Expert Elicitation Process

Expert judgment can be defined as the educated opinion of a SME, based on their knowledge
and experience, in response to a technological problem [185]. It is essentially a snapshot of the
knowledge of an individual at the time of the elicitation [130]. Its formal elicitation is a useful
method to obtain evidences for uncertainties when data availability is too low to continue with
conventional probabilistic methods. It draws from various fields such as decision analysis,
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statistics, and knowledge acquisition. Advantages include improved rigor, defensibility of
judgments, and the capacity to alter conclusions when new information becomes available [223,
p- 105f]. The overall process can be divided into four phases, which are loosely based on the
guidelines from Ross [223, Chapter 6] and have been adjusted to be used with DSTE.

Before discussing the recommendations for the expert elicitation process, a note on potential
biasis appropriate. During elicitation, especially when conducted in an TEA setting, intentional
bias can occur when the outcome of the study is thought to potentially affect the future
research and development funding situation. Unintentional bias can occur when experts
are not interviewed independently, potentially resulting in statements being altered to match
those of other experts. While intentional bias is hard to detect and even harder to circumvent,
unintentional bias can be easily mitigated by interviewing each expert individually and by not
disclosing the answers from other interviews?.

Phase 1: Select Appropriate Experts

In the first phase, available experts need to be identified. Apart from their general willingness
to be interviewed, the individuals need to have some level of experience with the epistemic
parameters in question. Hereby, different aspects, such as the number of years worked in this
field, should be considered. However, as there is no formal definition of an expert, the final
identification is up to the responsible research party. For this thesis, which draws from the
Clean Sky 2 Projects HLFC-Win and ECHO, five individuals from industry as well as academia
have been selected. They comprise the two advisory board members Roger Taplin and Heinz
Hansen, the DLR aerodynamicist Thomas Kilian and systems engineer Alexander Bismark, as well
as the HLFC researcher Tim Effing from RWTH Aachen University. Short biographies can be
found in Appendix E.2.

Phase 2: Prepare the Interviews

In the second phase, the questions, an-
swer structure, and interview process are
designed. As it is well known that the 03

way questions are asked can affect the an- | | |
swers, this step is the most critical with 0.7
respect to mitigating bias and maximiz- [ 1 |
ing the usefulness of the outcomes. For | T ]
this study, two options were investigated:
(a) provide predefined intervals and ask | l |
for an assignment of basic Beliefs to these,

. . | ]
or (b) ask the experts to provide their own
intervals and BBAs. Due to the open na-
ture of the questions in the latter option, it
tends to be less subjected to bias (from the
interviewer), but can lead to experts pro- Figure 5.7 Visualization of interview intervals.
viding only one deterministic value (rep-
resenting what is thought to be the most likely one), or one - often large - interval with no
differentiation of BBAs within it*. In contrast, option (a) may introduce some subjective bias
(from the interviewer), depending on how the provided intervals are derived, but it motivates
the experts to think in multiple intervals and BBAs, which better fits the intended use in DSTE.
Both options were tested in a pilot interview, resulting in more differentiated results with
option (a), which is why intervals have been provided in the final interviews. These are of the
form depicted in Fig. 5.7, which shows the response from one of the experts regarding the drag

| | |
3.5% 4.5% 5.5% 6.5% 7.5%
drag reduction potential for HLFC on wings, [-]

3For a more detailed classification of bias, consider Hester [107].

4This is due to two reasons: (1) typical interview situations, or even the day to day queries, tend to look for deterministic
values, and (2) DSTE is, contrary to ProT, not widely taught, resulting in most people being more comfortable with providing
single values or at most one interval with a subjective probability of the real value falling within that interval.
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reduction potential of HLFC when applied to the upper wing portion. Here, the overall bounds
of 3.5 and 7.5 % have been defined beforehand for each parameter based on literature values
and previous studies. Next, a smallest interval width is chosen, which is 1 % in this example.
These intervals are then combined successively with their neighbors, so that all possible inter-
vals are shown as bars in one figure. At first, all intervals are inactive (shown as hatched bars).
Experts are then asked to select an interval (e.g., between 4.5 and 5.5 %) and assign a BBA (e.g.,
0.3), which activates the interval (e.g., the bar in the second row in Fig. 5.7). Figures like this
are created for each uncertain parameter before the interviews. As this representation is not
self-explanatory, the first part of the interview requires an introduction, which is part of the
next phase.

Phase 3: Conduct the Interviews

In this phase, the interviews are conducted, beginning with a short introduction in which not
only the motivation behind the interview is reiterated but also an example answer is discussed
with the experts. Furthermore, each parameter requires a proper definition to avoid the typical
“well, it depends...” answer. Once these aspects have been cleared up, the individuals are
asked if they feel comfortable giving an expert judgment on this question. If not, the interview
continues to the next question. It is important to allow this and not push the individual toward
an answer in order to ensure the evidences are, in fact, based on knowledge and expertise. As
HLEFC is a highly interdisciplinary technology, and most of the interviewed individuals have
expertise in one or a few specific disciplines, not every expert felt comfortable answering every
question, which is something that should be expected from the start. It is self-explanatory that
each interview should be documented properly.

Phase 4: Prepare the Outcomes

In the last phase, the outcomes of the interviews need to be prepared for their use in the
evidence-based study, which may include some adjustments. Consider, for example, the
expected maintenance cost of the HLFC system. While the input UQ in Chapter 4 used CERs
with the system mass as a driving parameter, resulting in maintenance cost per kg, experts
are more comfortable expressing maintenance cost per flight hour or flight cycle. Therefore,
some transformation may be needed in order to feed this parameter to the lifecycle model.
Similarly to the interviews themselves, the outcome modifications need to be well documented
as well.

5.3 Evidence Based Input Uncertainty Quantification

As outlined in the methodology of this Chapter, the first step in the DSTE-based UQ is to select
the epistemic uncertainties for which evidences are to be gathered. As per the analyses in
Chapter 4, eight of the eleven parameters are epistemic: (1) drag reduction potential, (2) mass
increase, (3) SFC penalty, (4) extra contingency fuel, (5) load factor, (6) insect contamination,
(7) maintenance cost increase, and (8) aircraft price increase. The criteria for the selection are
multifold. First and foremost, the intended acquisition of evidences should be considered. For
this analysis, the main source will be expert elicitation through interviews. As an additional
source, the literature from which the probabilistic bounds have been derived (see pp. 61f
and 86f) is revisited. Therefore, uncertainties for which no experts are available and the
literature does not seem to be sufficiently existent are not considered for the selection. This
pertains to parameter (4), i.e., the extra contingency fuel, as no airline or operations specialist
is available and literature on this topic is sparse. For similar reasons, parameter (6), i.e.,
insect contamination, is not selected either. Another criterion is concerned with the source
of epistemic uncertainty. If the lack of knowledge originates from model implementation
rather than input values, expert elicitation (in the form of asking for intervals and/or BBAs)
is not particularly useful. This pertains to the Bayesian ridge regression used for the insect
contamination as well as to the simplified load factor variation (i.e., parameter 5), albeit to a
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Table 5.2 Overview of selected epistemic uncertainties for the DSTE-based UQ.

parameter experts* notes
AB HH RT TE TK LIT
D : drag reduction O @ O @ @ O | splitintowing HTP, and VTP
D, : mass increase O O O O O @ |seeFig.5.10
D3 : SFC penalty O O O O O @ |see Fig. 5.10 and Table 3.2
My :HLFC maintenance | @ @ @ @ O O | splitinto scheduled and unscheduled
M3 : price increase ® 6 6 6 O O |-

" AB: Alexander Bismark, HH: Heinz Hansen, RT: Roger Taplin, TE: Tim Effing, TK: Thomas Kilian, LIT: literature.

lesser degree. As the latter parameter had virtually no impact on the overall uncertainty (see
GSA results in Section 4.3.3), it is left out as well. This leads to the five selected parameters
shown in Table 5.2. For three out of the five parameters, expert statements were gathered
from interviews, whereas for two, namely 9, (SFC penalty) and D3 (mass increase), available
literature was revisited and treated as hypothetical experts. As the notes column shows, the
drag reduction potential of HLFC was split into the three components wing, HTP and VTP, as
experts were more comfortable providing these individually. The same applies to the HLFC
maintenance, where Heinz Hansen provided a value only for the unscheduled part (hence the
half-filled harvey ball).

Next, the evidences and resulting sample spaces for each of these inputs are discussed. Thereby,
the expert interview-derived ones are presented first, followed by the two literature-based
evidences.

5.3.1 Drag Reduction

The drag reduction potential was estimated by three SMEs with 20 statements in total. With
experience in studies and industrial projects where HLFC was applied to individual compo-
nents, the experts were more comfortable providing BBAs for the application on the upper
wing, HTP, and VTP, individually. The drag reduction range for the upper wing application
was limited in the interview process between 3.5 and 7.5 %, whereas the bounds for the HTP
and VTP application was [1.0 %, 2.5 %] and [0.5%, 2.0 %], respectively. The latter two were
split into bins of 0.5 % and larger, while the smallest intervals of the former were 1% wide.
Fig. 5.8 shows the BBA space (top row) and the resulting sample histograms (middle row) for
each component. Here, the BBA space reflects the already combined evidence® and each fill
pattern represents the statements of a different expert. The statements for the drag reduction
potential HLFC applied on the upper side of the wing (top left plot) span the entire provided
range, with a slight favor towards the lower end. This is also discernible in the drawn samples,
which have a mean value of 5.2 %. For the HTP, the experts provided identical intervals (with
different BBAs) several times, despite being interviewed independently. The interval with the
highest Belief assignment was [1.5,2.0], resulting in samples with a mean of 1.8 %. The VTP
sample space has a similar shape, albeit with a less prominent favorite interval. Here, the mean
value computes to 1.2 %. As the overall model expects one drag factor as an input, the sample
spaces of each component needed to be summed up®. The result is shown in the bottom plot
of Fig. 5.8, with values ranging from 5 up to nearly 12 %. Compared to the previously derived
uniform distribution between 6 and 8.6 % (as shown with the dark gray overlayed histogram in
the bottom plot), this expert-based sampling process is expected to change the overall result of
the MCS noticeably. The mean and standard deviation of the evidence-theoretic samples are
8.1 % and 1.2 %, respectively, which are both higher than the respective values when using the
conventional uniform distribution, which had a mean value and standard deviation of 7.2 %
and 0.69 %, respectively.

5 As shown conceptually in Fig. 5.5.
6For this, the drag reduction values of individual components are assumed to be independent of one another.
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Figure 5.8 BBA space (top) and histograms (center and bottom) for the individual and combined drag
reduction potentials with overlayed ProI-based histogram.

5.3.2 Increase in Maintenance Cost and Aircraft Price

The next epistemic uncertainty for which the experts gave evidences for is the expected increase
in HLFC-related maintenance cost, which is split into a scheduled and an unscheduled portion.
For the former, three of the five experts gave eight statements in total, whereas the latter has
received five statements from three SMEs’. As opposed to the $/kg representation used in
Chapter 4, the pilot interview has revealed that the maintenance cost per flight hour is a more
appropriate choice of representation. Bounds for this question were derived using literature
values for component and system maintenance and were $1.0/FH and $11.5/FH, split into
bins with a minimum width of $2.5/FH. To further facilitate the elicitation, orientation values
for scheduled maintenance cost were provided, which comprise tires ($ 3.5/FH), APU ($7/FH),
thrust reversers ($11/FH), and landing gears ($ 19/FH) [5, p. 27]. The BBA spaces and sample
histograms are depicted on the left side of Fig. 5.9. As the top left plot shows, the SMEs’s
statements cover the range from $3.5 to $11.5/FH but favor the centermost interval between
$6.5/FH and $9/FH, resulting in an average value of $7.5/FH. The unscheduled portion of
HLFC maintenance was specified as a ratio of the scheduled cost, with provided intervals
ranging from 80 to 240 % in bins of 40 %®. The most favored interval lies between 120 and 160,
leading to an expected ratio of 140 %. From these two elements, the total annual HLFC-related
maintenance cost was calculated (using an expected annual utilization of 4400 FH/year; see
Fig. 3.12 (a)), for which the histogram is shown in the bottom plot of Fig. 5.9. Values range from

Note that there is no lower limit to the number of statements in evidence-driven expert elicitation. If only one statement is
given, it receives full Belief by definition, rendering the sampling approach equal to the conventional uniform distribution.
8These values stem from the bounds provided by Suwondo [258].
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Figure 5.9 BBA space (top) and histograms (center and bottom) for the (un)scheduled and total HLFC
maintenance cost (left) and aircraft price increase (right) with overlayed ProI-based histogram.

$ 30k to $ 150k and show a mean value and standard deviation of $ 79k and $ 21k, respectively.
Similar to the drag reduction parameter, the UQ of the HLFC maintenance parameter differs
significantly when using the DSTE-based technique compared to the conventional approach,
which had a lower mean value of $40k and a lower standard deviation of $ 14k.

The third and last parameter specified by the interviewed experts is the aircraft price increase.
For this, three experts have provided answers, resulting in a total of eight statements. Similarly
to the approach for the scheduled maintenance cost, comparable recurring costs have been pro-
vided, including the landing gear ($830/kg), wing ($3.3k/kg), and systems’ ($1.7k/kg) [157,
p- 67]. Input intervals ranged from $ 542 /kg to $2332/kg, with an interval width of multiples
of $380/kg. These are shown in the third column of Fig. 5.9. The majority of samples range
between $ 1260 and $2300 per kg, with only a few samples residing in the lowest interval be-
tween $900 and $ 1200 per kg. These were translated to absolute cost using the mass increase
variation (which is explained in the next Section), resulting in the histogram in the bottom
right plot of Fig. 5.9. The average value and standard deviation for this parameter are $1.3M
and $405k, respectively. Compared to the conventional approach derived for the previous
GSA (which had a mean value and standard deviation of $ 1M and $ 364k, respectively), it can
be concluded that the expert-based sampling strategy is relatively close to the conventional
technique.

N category described to contain onboard systems including avionics, fuel, flight controls, hydraulics, and others. Note that
the cost were inflation corrected from the year 2002 to 2023.
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5.3.3 Mass Increase and SFC Penalty

For the last two epistemic uncertainties, an alternative to the interview process was needed, as
no SME was able to provide BBAs for the mass increase and SFC penalty. Thus, the literature
sources from which the bounds of the GSA had been obtained in Chapter 4 were revisited.
As these sources only provided point values, a truly objective derivation of statements and
evidence proved difficult. It is technically possible to create evidences with one or a few point-
valued statements. However, creating evidences completely without intervals is contrary to
DSTE’s interval-based foundation, as described before. Therefore, a different approach to
the literature-derived evidences was taken. Here, the six literature sources were regionally
grouped into those stemming from the United States (i.e., references [18, 29], both from or for
Boeing, shown in red) and those from Europe (i.e., references [70, 218, 296], shown in blue);
see Fig. 5.10 (top row). Next, the lowest and highest values from these groups were treated as
statement intervals with an individual BBA of 1. This resulted in the intervals [384 kg, 1103 kg]

(Europe) and [530 kg, 1016 kg] (USA) for the mass increase. The suction power intervals are
[115kW, 184 kW] (Europe) and [165 kW, 242 kW] (USA). To further distinguish the groups, the
average time since their publication was considered. With the publications from the US being
more than three times older than those from Europe, a subjective credibility of three to one in
favor of Europe was implemented. This results in the BBA spaces in the center row of Fig. 5.10,
which in turn are used to draw the samples from, as depicted in the bottom row of Fig. 5.10.
Note that differences from the probabilistic counterpart in Chapter 4 are marginal, as evident
by the comparison of mean values and standard deviations in the plots in the bottom row.

In line with the process described in Section 3.3.2 (pp. 61f) and Section 4.3.2 (pp. 86), the
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suction power needs to be translated to an SFC penalty using the efficiencies of the electrical
components (including their uncertainties; see Table 3.2). Since estimating the suction power
with the DSTE approach does not differ significantly from the conventional approach, the
resulting SFC penalty shown in Fig. 5.11 is fairly close to the Prol-based sampling. The only
observable difference is a minor prioritization of lower values (i.e., < 1.3 %) when using the
evidence-based approach.

Before moving on to the next Sec-

tion, it ‘should bg poted that there DSTE: i ~ 1.13%, 0 ~ 022%
are various restrictions to consider DSTE ProT: 1 ~ 1.20%, o ~ 0.23%
when using DSTE to build samples 1o ProT
from literature-provided values as it
was done here. First, it is essential
to note that this method is only one
of many possible approaches, and al-
ternatives such as Bayesian inference
could be considered. Second, this
method is subjective due to the arbi-
trary weighting of groups, the group- 0
ing itself, and the c‘hff'lcultlf—.:s in merg- TR IRV AT
ing these uncertainties with others, SFC penalty. (90

such as those pertaining to power penalty, [%]

losses due to the electrical efficiencies ~ Figure 5.11 Histograms of resulting SFC penalty samples
of HLFC-components. When evalu-  with the DSTE and conventional approach.

ating the use of DSTE to create sam-

ples from literature-provided values, it is essential to bear these constraints in mind.

relative frequency, [%]

5.3.4 Parameter Overview

For overview purposes, the input parameter space of DSTE is compared to its probabilistic
counterpart. Table 5.3 shows the bounds, the average value, and the standard deviation for
both approaches. The aleatory parameters (namely O;, &, and M) as well as three epistemic
parameters (namely O,, O3, and &) have been fixed to their average value from Table D.1.
By doing this, the focus of this study is set on the five epistemic parameters that have been
previously identified as suitable for the evidence-theoretic sampling.

In the design domain, using DSTE for the UQ leads to a noticeable change in 9; (drag reduction)
of +13 % (or 0.9 %-points), which is beneficial for the assessment of the HLFC aircraft. However,
the DSTE-based approach led to a significant increase in the standard deviation of D1 of 71 %
(or 0.5 %-points). The other two design uncertainties, O, (mass increase) and D3 (SFC penalty),
did not change noticeably, neither in their average value nor in the standard deviation. Since
these parameters are the only varied ones that affect the fuel consumption improvement Ay e,
itis expected that the evidence-theoretic approach will show a significant improvement over the
probabilistic UQ while showing a larger spread in the output space (due to the higher standard
deviation in D;). The economic superiority ANPV, however, is more difficult to predict. Here,
the maintenance increase doubled in its average value (albeit with a lower standard deviation)
and the aircraft price uncertainty increased by 30 %. Both of these DSTE-induced changes
decrease the economic potential of the HLFC aircraft and may outweigh the benefits of the
expected improvement in fuel consumption.

5.4 Results

With the input parameters fully defined, the results of the evidence-theoretic-driven MCS are
now discussed. Section 5.4.1 begins with a comparison between the probabilistic outputs and
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Table 5.3 Summary of uncertain inputs for the DSTE-based UQ.
domain probability-based evidence-based
parameter unit type” | distribution  avg. std. source avg std.
design
D : drag reduction [%] E uniform 7.2 0.7 | experts 8.1 1.2
D» : mass increase [ke] E uniform 744 208 | literature 750 194
D5 : SFC penalty [%] E |gen. normal 118  0.23 | literature 113 0.22
operation
O : cruise mach [-] A — fixed to 0.82 — — fixed to 0.82 —
O; : extra cont. fuel® [-] E — fixed to 0.50 — — fixed to 0.50 —
O3 : load factor [-] E — fixed to 0.80 — — fixed to 0.80 —
environment
&1 : insect contamin. [-] E — fixed to 0.50 — — fixed to 0.50 —
&y : cloud encounter [-] A — fixed to 0.10 — — fixed to 0.10 —
economic
M; : fuel priceS [-] A — fixed to 0.46 — — fixed to 0.46 —
Mo : maint. increase  [USD/yr] E nagasaki $40k $14k | experts  $79k $21k
M3 : price increase [USD] E nagasaki $1.0M $364k | experts $1.3M $405k

“E: epistemic, A: aleatory; Tsee Eqn. (4.22); Fsee Eqn. (4.23); Ssee Eqn. (4.27).

those stemming from the DSTE approach. Here, the overall distributions, including their mean
values, standard deviations, and probabilities of success, are discussed. Section 5.4.2 presents
the evidence-theoretic uncertainty measures in more detail and derives statements regarding
the output using the CCXFs. For verification and sanity check purposes, the input space is
modified while monitoring the impact on the DSTE metrics in Section 5.4.3. Finally, some
insights into the convergence behavior of this approach are discussed in Section 5.4.4.

5.4.1 Comparison of the Output Distribution

The first set of results is depicted in Fig. 5.12, with the change in fuel consumption on the left
side and economic superiority on the right. For both, the upper portion shows the results
of the probabilistic sampling, whereas the lower part shows the results with the updated,
evidence-based sampling strategy. These results have been obtained with a sample size of
N = 250,000.

For Ay fue1, the probabilistic sampling leads to an average of —2.1 % and a standard deviation
of 0.6 % (visualized by the width of the light gray area around the mean). The overall shape
resembles a triangular distribution that is bound in [-3.4 %, —0.6 %]. In contrast, the updated
and evidence-based sampling strategy leads to a more tail-heavy distribution with wider
bounds, i.e., [-5.7%,—1.1%]. The updated average and standard deviation are —3.5% and
0.8 %, respectively. Thus, compared to the probabilistic approach, the expert elicitation process
resulted in a 70 % better-performing HLFC aircraft in terms of fuel consumption at the cost of
higher uncertainty.

The economic results, expressed in ANPV, lead to an average superiority of $1.2M with a
standard deviation of $905k when using the conventional probabilistic sampling. Here, the
share of samples where the HLFC aircraft is better than its counterpart (i.e., the probability of
success) is 90 %. The overall bounds are [-$1.6M, +$3.9M]. Similarly to the Ay g,e results, the
evidence-based sampling approach led to an improvement in the economic superiority of the
HLEFC aircraft. That is, the average ANPV doubled to $2.5M and the probability of success
has increased to 98 %. The standard deviation as an indicator for the output uncertainty
also increased to $1.2M, which is most likely caused by the substantial increase of the input
uncertainty of M» and M3 in the evidence-based sampling (see Table 5.3). Evidently, their
higher average values (compared to the probabilistic sampling), did not compensate for the
effect of the improved average values of D7 and Ds.
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In summary, an analysis of both the probability-based and evidence-based sampling methods’
output distributions shows that expert elicitation leads to a more favorable assessment of the
HLFC aircraft. However, this comes at the cost of heightened input parameter uncertainty,
resulting in an increased standard deviation in both outputs Ay,e] and ANPV. In the realm of
probabilistic analysis, this marks the extent of the evaluation; no further metrics or processes
are anticipated to quantify the output uncertainty. In contrast, DSTE offers additional avenues
for insight into the MCS, which will be explored in the subsequent Section.

5.4.2 Evidence-Specific Metrics

Before moving on to the discussion of the CCXFs introduced in Section 5.1.1, it is important
to first explain the necessary modification for Ayg,e). In general, CCXFs are useful for making
statements about the output being higher than a certain threshold value. For example, if the
CCDF of a ANPV value in this case at y = $0 is 0.6, it indicates a 60 % chance that the HLFC
aircraft is economically better. However, when discussing the change in fuel consumption,
using the CDF is more logical, since lower (or more negative) Ay¢,e values are preferred over
higher values, unlike the case with ANPV. Therefore, instead of using the CCXFs for Ay gy, it
is advisable to use the non-complementary versions'®. To implement this, the following points
should be considered: Firstly, the Belief in a statement S (e.g., S = y > y*) and the Plausibility
of the opposite statement S, (e.g., Sc = vy < y*) should add up to one, as mentioned by Helton
et al. [101, p. 42]. This principle is represented using the threshold notation, which is:

Bel(y >y*) + Plly <y*) =1 and Belly<y")+ Ply>y*) =1 (5.12)

ordinate of CCBF  ordinate of CPF ordinate of CBF  ordinate of CCPF

10Therefore, the references to the (complementary) cumulative functions is abbreviated as (C)CXF (when referring to all) or
(C)CBF, (C)CDF, and (C)CPF (when referring to a particular cumulative function).
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Using the definitions of the evidence-theoretic metrics (see Helton et al. [101, p. 43]), it becomes
clear that the ordinates of CBF and CPF can be calculated a posteriori from the ordinates of the
CCBF and CCPF':

CBF=1-CCPF and CPF=1-CCBF. (5.13)

With this modification for Ay f,e], the DSTE-based results shown in Fig. 5.13 can be discussed.
Starting with ANPV, the CCBF for a given value for y*, e.g., y1 = $0 (which represents the
general threshold of success), is 76%, which can be interpreted as follows:

There is a 76% Belief in the statement that the HLFC aircraft will be economically superior
to its counterpart.

Simultaneously, the CCPF of y; is equal to 1, which states that:
There is no evidence that contradicts that the HLFC aircraft is economically superior to its

counterpart.
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(a) change in fuel consumption. (b) change in economic superiority.

Figure 5.13 (C)CXFs for the DSTE-based campaign.

In other words, it is completely plausible for the HLFC aircraft to be economically superior. An
easier and more recommended interpretation for the CCBF and CCPF uses them in combination
with the CCDF, i.e.,:

The probability of the HLFC aircraft being economically superior to its turbulent coun-
terpart is 100 % (taken from the CCDF). This probability has an upper bound of 100 %
(taken from the CCPF) and a lower bound of 76 % (taken from the CCBF).

The fact that the upper and lower bounds are relatively close indicates little epistemic-based
uncertainty in this statement. If, for example, another threshold for y* is chosen, e.g., y» = $2M,
the interpretation would be as follows: The probability of the HLFC aircraft being economically
superior by at least $2M is 64 %. This probability is has a lower and upper bound of 20 % and
98 %. A statement for this threshold is thus highly uncertain (when using DSTE’s interpretation
of uncertainty, i.e., the difference between Plausibility and Belief). It follows that DSTE’s metrics

Eor brevity purposes, Eqn. (5.13) shows ordinate vectors, only. The abscissa remain the same, i.e., ; in Eqn. (5.6) and (5.7).
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assign an uncertainty to a probability, rather than treating the probability itself as the only
measure of uncertainty. This evidence-theory-based uncertainty

Upste(> y) = CCPF(y) — CCBF(y) (5.14)

can be plotted over the output space, as it is done in the upper plot of Fig. 5.13, showing a
lower value of 0.24 for the statement regarding 1 and a higher value of 0.80 for y,. The overall
progression shows that statements on the likelihood of exceeding thresholds between $ 1.8M
and $4M are highly uncertain (i.e., have an uncertainty of Upstg > 0.5) due to how the lack of
knowledge in the inputs (i.e., expert statements) are distributed.

For the change in fuel consumption Ayg,e, the modified CCXFs allow constructing similar
output statements. That is, the likeliness of the HLFC aircraft’s fuel consumption being y; =
—2.5 % or better (i.e., less) is 91 % (taken from the CCDF), with lower and upper bounds of 58 %
and 100 %, respectively. The likelihood to meet the alternative threshold of y» = —5% is 0%
and is bounded by 0 % and 15 %. The upper plot shows that statements between —4.5 % and
—2.7 % are significantly uncertain (i.e., Upstg > 0.5).

5.4.3 Results with Reduced Uncertainty

In addition to the MCS with the DSTE-based input space described before, a second set of
MCSs was performed. Here, the epistemic uncertainty in 91 (being the overall drag reduction
potential) is reduced. This hypothetical uncertainty reduction could represent a more advanced
state of knowledge, e.g., obtained through more sophisticated drag analyses. The intention
of this MCS is to understand the effect of the uncertainty reduction on DSTE’s uncertainty
metrics. Therefore, it not only aids in the understanding of the DSTE approach, but also serves
as a verification attempt.

Recall that ; was constructed by obtaining intervals and BBAs from SMEs about how much
HLFC could reduce the overall drag when applied to (a) the wing upper side, (b) both sides
of both HTPs, and (c) both sides of the VIP. For the reduced uncertainty scenario, it is
assumed that the knowledge about the drag reduction potential for the wing upper side (a) is
significantly improved. More specifically, it is assumed that it is now fixed to 5.2 % (which was
the average value when sampling from the Belief space in Fig. 5.8). Essentially, there are three
ways to implement this change for the MCS:

Case 1) Keep the number of input statements constant. As it will be described in more detail
when discussing the convergence behavior later, the number of statements affects the
total number of evidence interval combinations. Furthermore, each provided statement
affects the general density functions, as - by definition - the BBAs of each evidence have
to sum to 1. Increasing or reducing the number of statements thus scales the other
evidences. Therefore, keeping the number of statements fixed is assumed to facilitate
comparability to previous analyses. To incorporate the uncertainty reduction in this
approach, each of the six responses for 97 was hypothetically adjusted to the average
value with an infinitesimal interval around it (using the dirac-delta function). The total
number of responses, however, is not changed here.

Case 2) Reducing the number of statements. This approach represents a more intuitive
incorporation of uncertainty reduction. That is, only one statement with a single value
of 5.2 % is used, instead of six as in case 1. This reduces the number of statements and
consequently the number of evidence interval combinations drastically, but can alter the
overall Belief and Plausibility distribution due to the aforementioned repercussions.

Case 3) Replacing the evidence treatment of the parameter with a deterministic value. Here,
the drag reduction potential of the upper wing is not treated with DSTE anymore but is
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instead fixed to the single value of 5.2 %. This is similar to the previous approach but
reduces the number of epistemic input parameters dealt with DSTE by one.

Each of these alternatives has been incorporated and tested. The results are shown for Ayg,e
and ANPV in Fig. 5.14 (a) and 5.14 (b), respectively. In each subplot, the results with the
original input space from the previous Section are shown with lighter colors for comparison
purposes.

While all three approaches lead to a reduction in the overall spread in y (shown by the slope of
the (C)CDF), the shape and progression of the (C)CBFs and (C)CPFs seem to differ depending
on how the uncertainty reduction is performed. Keeping the number of statements fixed (left
column in both plots of Fig. 5.14) retains the shape of the (C)CBF and (C)CPF. That is, the
width of the gray area in the reduced uncertainty case at low ordinate values is slightly smaller
than the width at high values, which was also the case with the initial input space in Fig. 5.13.
In contrast, the other two approaches now seem to have a more constant width of the gray
area throughout the ordinate. This is, however, an arguably less important observation, as
this width is not used to construct any statements about the results'?. For a more sensible
comparison, the change in uncertainty can be analyzed for each approach.
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Figure 5.14 (C)CXFs for the DSTE-based campaign with reduced epistemic uncertainty.

12Recall that the uncertainty metrics of DSTE use a particular threshold value y* for constructing statements, which essentially
means that a value of the abscissa is followed vertically until it meets the (C)CXF curves. Thus, the mentioned width of
the gray area merely indicates which ¥ values have the same Belief and Plausibility values, i.e., are not used for output
statement construction.
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Analyzing UpsTtg, one observes that all three alternatives seem to shrink the width of the
curve, while increasing its peak near the average value of y. This is more visible for the Ay g
results due to the fact that the reduction in 9; generally has a larger relative effect on the fuel
consumption than on the ANPV. The increase of the peak of Upstg near the average values of
y, which may appear counter-intuitive, is more pronounced for the second and third case as it
is for the first. This is due to the repercussions of each uncertainty reduction approach has on
the remaining BBAs. Cases 2 and 3 suffer from a scaling effect, since, by definition, the sum
of all BBAs must equal 1, ensuring that the total belief is fully distributed across all possible
subsets of the frame of discernment. As a consequence, the remaining evidence intervals Ej
(see Fig. 5.4) receive a higher (combined) BBA throughout the entire output space v, which also
leads to the shape change of the CCXFs. This leads to scaling-based increase of Upsrg. In other
words, when less input evidences are given, the remaining ones will receive more attention in
the CCXF calculation. The peak increase in case 1, which is more concentrated with respect to
y, occurs due to the fact that the evidence intervals Ej are now shifted (and positioned near the
average value of y). As these have a higher combined BBA (compared to the original analysis)
due to the dirac-delta function, the CCBF and CCPF curves become steeper, increasing Upstg
further. The fact that cases 2 and 3 have a higher peak increase of Upstr indicates that the
scaling effect is larger than the effect of the updated evidence interval position in case 1.

To quantify this effect, the numerical integral of Upgrg for each approach was calculated,
which serves as a quantification of said overall uncertainty. These values are summarized in
Table 5.4. Only the first reduction case (where the number of statements is kept constant)
leads to a reduction in the overall uncertainty (compared to the initial results). Therefore, it is
recommended to not alter the number of statements when the comparability of the results is
important.

Table 5.4 Numerical integral of Upsrg for the reduced epistemic uncertainty campaign.

uncertainty reduction approach A tyel ANPV
initial input space 1.36%  $2.48M
keep number of statements constant 1.08 % $2.12M
reduce number of statements 1.41 % $2.73M

replace evidence treatment with deterministic value 1.37 % $2.61M

5.4.4 Insights into DSTE’s Convergence Behavior

Asmentioned before, calculating the DSTE metrics requires a large number of model executions
in order to provide stable and meaningful results, i.e., to converge. For the DSTE-based UQ,
the convergence behavior is twofold: a) the (relative) coverage of input evidence intervals and
b) the behavior of approaching a value (in this case, an array), both of which are affected by
increasing the sample size as well as other factors.

The (relative) coverage refers to combined evidence intervals described illustratively in Ta-
ble 5.1 and shown in Fig. 5.4. To recall, the CCBF and CCPF calculations foresee looping over
the output space and retracing which input samples (and more specifically, which evidence
statements) led to which output values. Subsequently, Eqns. (5.6) and (5.7) are used to consider
the individual BBAs. Note that the example shown in Fig. 5.4 was based on two parameters
and three statements for each, leading to k = 3% = 9 evidence intervals to loop through. In the
HLEFC use case, the expert and literature elicitation led to a total number of 45 statements for
a total of m = 8 parameters. The number of combined evidence intervals, which is equal to
the product of the number of statements 71; per parameter (as per the Cartesian product), can
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hence be calculated to'?:

m
k=1 |n; =376,320. (5.15)
i=1

As the algorithm loops through these k intervals, it looks for corresponding y values. For
a given combined interval, it may happen that there are no y values to be found. In this
case, the algorithm continues to the next combined interval. If this happens often enough,
the CCXFs’ informative value is reduced, as their shape changes slightly with every skipped
interval. For convergence, it is therefore recommended to ensure high coverage of combined
intervals. Three aspects affecting this coverage can be distinguished:

1) The sample size. With a larger sample size, the likelihood of drawing samples that cover
every combined interval increases.

2) The number of statements. For a given sample size, the number of input statements will
influence the number of samples per interval. This is typically difficult to influence, as it
is a result of expert elicitation.

3) The expert’s BBA. Considering a parameter for which multiple statements are given, a
strong imbalance of the BBA can lead to a distribution in which the interval with a lower
Belief is not sampled from at all.

To shed some light on the first
aspect, a convergence analy-
sis has been performed, where s ~e- random

the sampling size was var- latin hypercube
ied from N = 10* to N = ~4~ sobol sequence
10°. In addition, each sam- - \ —#- additive recursion
ple size was evaluated with halton
six different sampling schemes,
as these may have a substan-
tial effect on the representative-
ness of the drawn samples'.
For each combination of sam-
ple size and sampling scheme, 0F
the number of skipped inter-
vals was recorded and plotted
in Fig. 5.15. All schemes show
a quick reduction of skippedin-  Figure 5.15 Coverage of combined evidence intervals with increas-
tervals with increasing sample ing sample size for different quasi-random sampling schemes.

size, reaching near-zero values

at N > 10°. For sample sizes smaller than this, the hammersley scheme seems to perform the
best, followed by the halton method, whereas the conventional random sampling showed the
weakest performance.
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Approaching a final array refers to what is usually meant by convergence. That is, increasing
the sample size further does not lead to a significant change in the quantity of interest. Hereby,
it is up to the user to define an acceptable level of accuracy. With the DSTE metrics being arrays
(as opposed to scalar values), the accuracy threshold definition proves to be more difficult.
For this study, the visual development of the (C)CBF and (C)CPF with increasing sample size
has been used to investigate the convergence behavior. This is shown in Fig. 5.16, with the
distinction of Ayg,e in subplot (a) and ANPV in subplot (b). The increasing opacity of the

13This pertains to the input space without a hypothetical reduction in input uncertainty. For the cases with reduced uncertainty
mentioned in the previous Section, the number of combined evidence intervals is 376,320 (case 1) and 62,720 (cases 2 and 3).

14Supplemental descriptions of the used sampling schemes can be found in Appendix E.3.
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curves indicates an increasing sample size (the same as those in Fig. 5.15, i.e., from 10* to 10°).
For both, the (C)CDF arrays seem to have converged quite early. The (C)CBF and (C)CPF,
however, vary significantly with increasing sample size. Even when N exceeds 10° (which was
the aforementioned threshold for having nearly no skipped evidence intervals), the (C)CBF
and (C)CPF seem to drift further apart with each increasing sample size, which leads to an
increasing uncertainty curve Upgrg. This is a flaw of the DSTE-based MCS and can be traced
back to the numerical implementation of the definitions of the CCBF and CCPF in Eqns. (5.6)
and (5.7), respectively. Because the minimum and maximum of the subset of the output y are
numerically obtained, increasing the sample size increases the change of sampling inputs that
are closer to the true minimum or maximum. While this behavior is asymptotic by nature, the
sample sizes investigated here were not big enough to yield a (visually) stable set of CCXFs,
i.e., one that did not change compared to the previous, smaller sample size.
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Figure 5.16 Progression of (C)CXFs for increasing sample size N.

5.5 Conclusions

This Chapter has explored the potential of DSTE as a complementary or alternative approach
to probabilistic UQ. Theoretical and practical aspects of the DSTE approach were discussed,
followed by the implementation of expert interviews and the subsequent analysis of the ob-
tained results. A modified MCS was employed to calculate uncertainty metrics using samples
drawn from the interviews, and a comparison was made between the evidence-theoretic ap-
proach and the probabilistic counterpart. Furthermore, the verification and convergence of the
evidence-theoretic approach were investigated.

The comparison of output distributions showed that the HLFC aircraft had a better performance
when DSTE was used than when the probabilistic UQ approach was used. However, it is
worth noting that the uncertainty, when measured by the standard deviation, increased. This
indicates that while DSTE can enhance the UQ quality (by removing personal subjectivity
and utilizing expert knowledge), it may introduce a higher level of uncertainty in the results.
Despite this limitation, the evidence-theoretic approach demonstrated its value in constructing
output statements using CCXFs. Although interpreting these statements can be challenging,
they prove to be useful when assessing the probability of the output exceeding or falling below
a particular threshold value.
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The verification attempt revealed certain difficulties associated with the implementation of
uncertainty reduction strategies. It is recommended to maintain a fixed number of statements
to ensure comparability between different approaches. Additionally, the convergence analysis
highlighted that the evidence-based approach necessitates a large number of samples to obtain
a stable set of CCXFs. This finding emphasizes the computational requirements and potential
limitations of DSTE in practical applications. It was also the reason for using a PCE-based
surrogate of the lifecycle simulation framework.

One notable limitation of this approach is the difficulty of interpreting CCXFs, particularly for
inexperienced users. While the concept of lower and upper bounds of probability provides
some assistance, understanding uncertainty from the perspective of DSTE remains challenging,
especially considering the modified MCS and its impact on Upstg. Consequently, it is essential
for users to have a strong theoretical understanding of the method to avoid potential confusion
and misinterpretation of results.

Although a Python package dste has been developed to facilitate the use of DSTE, further
research and development are still needed. Specifically, attention should be given to addressing
issues related to convergence. Runtime enhancements to the package, as well as additional
studies and validation efforts, are necessary to enhance its usability and effectiveness.

In conclusion, this Chapter has demonstrated the potential of DSTE as an alternative or com-
plementary approach to probabilistic uncertainty quantification, partially verifying the third
research hypothesis. The comparison of output distributions revealed improved performance
when employing DSTE, albeit with an increase in uncertainty. The use of CCXFs provided
valuable insights into the probability of output exceeding or falling below certain thresholds.
However, challenges in interpretation and the requirement for a large number of samples
for convergence were noteworthy limitations. Nonetheless, with further research, develop-
ment, and user education, DSTE holds promise as a valuable tool in UQ and decision-making
processes.



6 Probabilistic and Non-Probabilistic Combination

This Chapter addresses the third and final research question, focusing on the integration of
epistemic and aleatory uncertainties in TEA. The guiding hypothesis posits that by systemati-
cally differentiating between these uncertainties using evidence-theoretic methods and nested
MCS, enhanced interpretability and actionable insights can be achieved. This approach is
anticipated to facilitate more informed resource allocation and risk mitigation strategies, iden-
tifying dominant uncertainty types to guide strategic decisions on research investments or
robust product designs.

To reiterate, when high epistemic uncertainties prevail in a TEA, enhancing internal knowledge
through increased research and development can effectively reduce output uncertainty. Con-
versely, if aleatory uncertainties dominate, representing inherent and product-specific risks,
further investment in knowledge acquisition is unlikely to be effective. Instead, efforts should
focus on developing robust product designs, especially when economic stakes are high.

The Chapter is structured as follows: Section 6.1 outlines the approach and methodology,
presenting the comparative approach of the study. Section 6.2 introduces the first of two com-
bination methods, namely a DSTE-based approach where evidence-based uncertainty metrics
(as discussed in the previous Chapter) are complemented by aleatory variation. In Section 6.3, a
refined modification is presented that incorporates selected techniques from DSTE but utilizes
UQ metrics originating from the probabilistic domain. Finally, Section 6.4 concludes the chapter
by highlighting the identified advantages and limitations of each approach and summarizing
the insights gained, particularly regarding the interpretation of different uncertainties. Note
that, similar to the previous study, all analyses in this Chapter have been performed with the
same PCE surrogate as in Chapter 5.

6.1 Methodology and Preparation

This Section begins with a description of the overall study design and continues with a brief
description of the selected input uncertainties.

Study Design

To address the hypothesis, this study applies an evidence-based approach and compares it to a
refined alternative in terms of uncertainty interpretation, implementation difficulty, execution
speed, and other relevant factors. Identical boundary conditions are maintained to ensure a
fair comparison. The methodology is depicted in Fig. 6.1, with the evidence-based approach
highlighted in the top half, the refined approach at the bottom, and common steps in the
center.

Initially, uncertain parameters from both epistemic and aleatory domains are selected and
prepared for sampling. For aleatory uncertainties, the PDFs derived in Chapter 4 are utilized.
Epistemic uncertainties are sampled using the Belief space obtained from expert elicitation
and literature review discussed in Chapter 5. In the second step, these samples are fed
into the simulation model, distinguishing between epistemic and aleatory uncertainties. For
the evidence-based approach (top part of Fig.6.1), the calculation of DSTE-based uncertainty
metrics is identical to the approach of Chapter 5, except for one modification: Instead of one
final CCBF, CCPF, and CCDF, a collection of these functions is calculated using a nested MCS.
Each set of CCXFs thus has its own (aleatory) uncertainty, detailed further in Section6.2. The
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Figure 6.1 Methodology for the comparative uncertainty combination study.

refined approach (bottom part of Fig.6.1) similarly employs a nested MCS setup. The inner
loop handles aleatory (or epistemic) samples, while the outer loop uses epistemic (or aleatory)
samples. A more detailed description is provided in Section6.3. In the third step, results
are converted to represent the uncertainty in an easily interpretable manner and compared
to the uncertainty interpretation from DSTE. This step considers qualitative aspects, such
as the ease of deriving investment-relevant uncertainty statements, as well as quantitative
measures, including convergence behavior with increasing sample size. Steps four to six
repeat the analyses with a hypothetically updated input uncertainty to verify and stress-test
each approach and to analyze changes in the different output uncertainty measures.

Input Uncertainty Selection

The input uncertainties for the first study are summarized in Table 6.1. In total, eight of the
eleven uncertainties have been selected to be varied. The parameters O,, O3, and &; have
been fixed to their average value since they had the lowest contribution in the GSA calculated
in Chapter 4. One might argue that M; and M3 also had a negligible contribution to the
output uncertainty (see Fig. 4.19 on page 96). However, it should be noted that the GSA results

Table 6.1 Summary of uncertainties dealt with the combinatory UQ.

domain general information theory
parameter unit type’ | distribution avg. std. | DSTE Prol
design
D : drag reduction [%] E | non-parametric 8.1 12| @ O
D» : mass increase [kg] E | non-parametric 750 194 @ O
D3 : SFC penalty [%] E | non-parametric 113 022 @ O
operation
O : cruise mach [-] A gen. normal 0.82 0013| O o
O, : extra cont. fuel? [-1 E — fixed to 0.50 — O O
05 : load factor [-1 E — fixed to 0.80 — O O
environment
&1 : insect contamin. ¥ [-] E — fixed to 0.50 — O O
&, : cloud encounter [-] A exponential 010 o010 O o
economic
M : fuel priceS [-1 A skewnormal 046 026 O o
M> : maint. increase  [USD/ yr] E non-parametric  $79k  $21k o @)
M3 : price increase [USD] E | non-parametric $13M $405k | @ O

“E: epistemic, A: aleatory; Tsee Eqn. (4.22); Fsee Eqn. (4.23); Ssee Eqn. (4.27).
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for these parameters were derived using Prol, whereas in this Chapter, their uncertainty is
modeled with DSTE as discussed in Section 5.3.

Similarly to the previous analyses, the inputs are assumed to be independent from one another,
i.e., there is no need for copula-based or any other correlation-considering approaches.

6.2 DSTE-Based Method for Combined UQ

Toreiterate, the concept of capturing output uncertainty in Evidence theory revolves around the
concepts of Belief and Plausibility. This allows for the calculation of CCBF and CCPF, which
define a lower and upper probability for a threshold-based statement. These numerically
obtained cumulative functions are designed to handle epistemic uncertainty but usually either
neglect or substantially simplify the aleatory uncertainties. The goal of this study is to examine
both types of uncertainties and their simultaneous impact on the output. To this end, a nested
and DSTE-based MCS, as illustrated in Fig. 6.2, was developed.

First, a sample set for the aleatory uncertainties is created; that is, a value is determined for
each of the three aleatory uncertain variables using their respective PDF. Subsequently, each
of the five epistemic uncertainties is assigned a value sampled from their Belief space. With
this complete sample set, the LYFE surrogate is executed once, yielding one output value for
Ay el and one for ANPV (ie., Ye;,a;s where ¢; and a j represent current iteration count in the

epistemic and aleatory loop, respectively). Next, a new set of epistemic samples is generated
and fed to the LYFE surrogate, while the aleatory sample set remains as is, producing a new
output value (e.g., ye, +1/‘1j)' Once this inner loop (or epistemic loop) is completed, which is
indicated by the respective count ¢; exceeding the limit Ng, one column of the overall output
matrix y is filled, see Eqn. (6.1). This resets the counter in the epistemic domain and initiates a
new aleatory iteration until 2; > N4.

Yey,my Yeq,az Ye1,Na
Yer a1 Yer,ar Yer, Ny
yNE,al yNE,uz ]/NE,NA
= yccpr = CCBE,, CCBF,, CCBFy, | 6.2)
= yccpr =| CCDFy, CCDF,, CCDFy, | (6.3)
= yccpr = | CCPFy CCPF,, CCPFy, | (6.4)
aj < Ny
{ e; < Ng
v
draw draw execute calculate
aleatory epistemic _ LYFE ei > N CCXFai
sample set. sample set. "| surrogate and reset
aj=a;j+1 e; =e +1 = Yeia; counter e;
p\ aj > Na
( start ) end

Figure 6.2 Flowchart for evidence-based uncertainty combination.
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In other words, the overall output y holds the model’s response to aleatory variations when
viewed from column to column while the change from row to row represents the response
to epistemic variations. Consequently, the first column of y contains the necessary data to
calculate one CCBF, one CCDF, and one CCPF, all sharing an identical aleatory sample set.
Each subsequent column of y is formulated with a new batch of aleatory samples, while
retaining the exact same sequence of epistemic samples per row. Repeating the calculation of
CCXF, ;vaj results in the output space spanning matrices shown in Eqns. (6.2-6.4)".

6.2.1 Results

The first set of outputs was obtained using a total of 100M executions of the LYFE surrogate,
resulting from Ny = Ng = 10,000 aleatory and epistemic samples. The overall results are
shown in Fig. 6.3 (a) and Fig. 6.3 (b) for the Ay¢,e] and ANPYV, respectively. Here, the bottom
three plots represent the possibility (red), density (gray), and belief curves (green). Since these
are now function collectives, they are depicted using percentiles across the aleatory domain,
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Figure 6.3 Overall result of the DSTE-based combinatory UQ showing the (C)CBF (green), (C)CDF (gray),
(C)CPF (red), and the uncertainty (blue), each depicted with the percentiles P; for i € [5, 25,50, 75,95].

1Supplemen’cal information on this matrix operation can be found in Appendix F.1.
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with the median depicted as a dashed line. The top plot shows the percentiles of the evidence-
theoretic uncertainty Upstg. Each aleatory run leads to one uncertainty curve , which is
calculated as

CPF (]/a,Ve) - CBF (]/a,\v’e) for AY fuel
UpsTg = Vael[l,2,...,N4a]. (6.5)
CCPF (ya,\v’e) — CCBF (yulvg) for ANPV

To get started with the complex interpretation of this result depiction, it is helpful to focus
on the median curves first and neglect the aleatory impact for now. For Ay, the median
uncertainty Upsrg is non-zero for output values between —1 % and —5 % and highest in the
interval between —3 % and —4 %, indicating that statements in these regions are particularly
uncertain. For the economic KPI, the median UpsTEg is nonzero for values between —$ 1M and
+$5M and highest between +$ 1M and +$ 3.5M.

The aleatory impact can be observed by the relatively large spread of the (C)CBEF, (C)CDF,
and (C)CPF percentiles in both KPIs. This spread is in fact so large that it leads to significant
overlapping of the (C)CBFs with the (C)CPFs and vice versa®. For Ay, the aleatory spread
in the CDF seems to be relatively symmetrical to the median throughout the majority of the
output range. In contrast, the aleatory spread in the CCDF of ANPV increases slightly with
higher values of y. This is likely due to the effect of the fuel price uncertainty, which has
a larger impact on the economic superiority when the epistemic parameter combination is
more favorable for the HLFC aircraft. Consider, for example, an epistemic sample set that
leads to high fuel savings (i.e., high drag reduction potential, low mass increase, and low SFC
penalty). These fuel savings are incorporated in the ANPV through the sampled fuel price.
As this parameter is modeled in a non-symmetrical manner (i.e., skewed normal distribution),
higher ANPV values show a larger aleatory spread than lower ANPV values. Because the
non-symmetrical fuel price does not affect Ay, the aleatory spread for the change in fuel
consumption remains mostly symmetrical throughout the output space.

In order to derive more tangible statements out of these results, it is useful to select specific
y values of interest and subsequently calculate the uncertainties. In line with the values of
Chapter 5 (see Fig. 5.13), the selected thresholds are y; = =2.5% and y» = —=5% and y; = +$0
and yp = +$2M for Ay and ANPYV, respectively. The results are shown in Fig. 6.4 (a) for
the change in fuel consumption and Fig. 6.4 (b) for the change in economic superiority using
boxplots. Starting with the change in fuel consumption and yo, the statement could be as
follows:

The probability of the fuel consumption improvement being greater than y* = 2.5% is

Pn?ed = 0.908:?‘;‘ and has a lower epistemic bound of Py, = 0.8282; and an upper
epistemic bound of Ppgp = 1.

Here, the following notation for P = XZ is used: x refers to the median value, a refers to

the lower quartile and b to the upper quartile of the respective function. Pp,q represents
the CDF, while Py, and Ppjgn refer to the CBF and CPF, respectively. The range between
a and b indicates the aleatory uncertainty, whereas the range between Pjoy, and Pp;gp could
be interpreted as the epistemic uncertainty. It should be noted that the choice of a and b is
not standardized and could equally be any other percentile. Alternatively, the mean value +
standard deviation could be used to construct the statements. This would, however, neglect
potential asymmetries and is thus not recommended. The corresponding statement for y is:

The probability of the HLFC aircraft to have a fuel consumption improvement of y* = 5%
or better is P g = 0.018'1. This probability is bounded by Py, = 0 and Ppjg, = 0.138'45 .

2Which is why each (C)CXF is shown in its own subplot in Fig. 6.3
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A more detailed look into the boxplots in Fig. 6.4 (a) shows that the medians and quartiles of
Upstg are somewhat similar for both thresholds y;, which indicates that the output statements
given above are comparable regarding both epistemic and aleatory uncertainty. For yi, the
aleatory uncertainty mainly affects the CBF, while the effect on the CPF is negligible. This is
reversed for y». In other words, the aleatory parameters seem to introduce some uncertainty
regarding the belief that the fuel consumption improvement will be better than 2.5 %, while
the question of whether this threshold can be reached is unaffected. On the other hand, a
fuel consumption of at least 5% is unlikely to begin with, but the aleatory parameters add
uncertainty to the plausibility of this statement, i.e., whether it could happen.

The statements regarding the economic superiority are derived similarly. Here, Py, refers to
the CCBF and Phigh represents the CCPF. The final statements for y; and y» are therefore:

The chance of the HLFC aircraft being economically superior to its turbulent counterpart

is Pyeq = 0. 981 0.89- Lhis probability has a lower bound of Pjy, = 0. 86O 96 and an upper
bound of Ppjg, = 1. Considering a threshold of at least +$2M, the respectwe values are

Piyed = 0.59055, Pl = 0.24003, and Ppig, = 0.99; ¢,

Here, it is observable that UpsTE at y1 is lower than at 7, both in its median value as well as
in the aleatory spread, indicated by the IQR. For the CCXFs of ANPYV, the IQR is also larger
at y» than at y1, which likely results from the aforementioned fuel price uncertainty that has a
larger impact on the economic superiority when ANPV values are higher.

Regarding the derivation of recommendations for future efforts with this uncertainty com-
bination technique, it is clear that the threshold value plays a significant role, especially for
ANPV. Considering a general superiority of the HLFC aircraft (i.e., y* = y; = £$0), where the
median value for Upgrg is quite low (i.e., 0.13), representing a low impact of knowledge-based
uncertainty. The IQR at this threshold (i.e., 0.37 — 0.03 = 0.36) indicates that the technology
development could benefit from a more robust design. For the higher threshold in ANPV
(e, y* = y1 = +$2M), the median value and IQR of Upgrg are quite close (i.e., 0.46 and
0.63 —0.18 = 0.45, respectively). This represents a balanced impact of the different uncertainty
types, i.e., investing in further research to improve the state of knowledge is equally advisable
as improving the design to be more robust towards boundary conditions that are aleatory in
nature.

Regarding the derivation of recommendations for future efforts with this uncertainty com-
bination technique, it is clear that the threshold value plays a significant role, especially for
ANPV. Considering a general superiority of the HLFC aircraft (i.e., y~y; = £$0), where the
median value for Upsrg is quite low (i.e., 0.13), representing a low impact of knowledge-
based uncertainty. The IQR at this threshold (i.e., 0.37 — 0.03 = 0.36) indicates that the tech-
nology development could benefit from a more robust design. For the higher threshold in
ANPV (i.e., y“y1 = +$2M), the median value and IQR of Upstg are quite close (i.e., 0.46 and
0.63 — 0.18 = 0.45, respectively). This balance indicates that both types of uncertainties have a
similar impact, meaning that investing in further research to improve the state of knowledge
is as advisable as improving the design to be more robust towards boundary conditions that
are aleatory in nature. The recommendations for Ay, are derived in a similar manner but
are less affected by the selected threshold value.
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Figure 6.4 Boxplot results of the DSTE-based combinatory UQ with two selected threshold values.

6.2.2 Results with Reduced Uncertainty

After discussing the results obtained using the original set of input uncertainties, an additional
analysis is introduced. This analysis incorporates a hypothetical reduction in one selected input
uncertainty, in line with the approach described in Section 5.4.3. That is, the drag reduction
potential on the wing’s upper side is fixed to its average value of 5.2 %”.

With less epistemic input uncertainty, one would expect the medians of the (C)CBF and (C)CPF
to move closer to each other, thereby reducing the median of the uncertainty Upstg. Further-
more, since no changes are made to uncertainties in the aleatory domain, the spread of the
(C)CXFs is not expected to change. As Fig. 6.5 shows*, this expectation holds true. The median

3The number of expert statements was kept constant, as the discussions on p. 117 showed that this approach allows for better
comparisons between the results of the reduced and non-reduced analyses.

“For overview purposes, only the lower and upper quartile as well as the median are shown in Fig. 6.5.
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Upstg of the modified campaign is slightly lower than that of the previous MCS across the out-
put range of both KPIs. However, the distance between the quartiles appears to have increased
for Upstg, suggesting a counter-intuitive increase in the aleatory domain. This behavior is
likely associated with the issues discussed in Section 5.4.3, specifically the complexity behind
the peak changes of UpsTk.
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Figure 6.5 Results of the DSTE-based combinatory uncertainty analysis with reduced epistemic uncertainty
(foreground) and the initial results without reduced uncertainty (background), each depicted with the
percentiles P; for i € [25,50,75].

Interpreting the changes in the shape and/or progression of the CCXFs requires a deep un-
derstanding of both the theory and its numerical implementation. Upon detailed review and
analysis of individual iterations from both the prior and updated MCSs, two possible (and
interlinked) reasons can be identified for the lack of this DSTE-based combination approach to
rigorously track uncertainty reduction efforts:

a) The lack of a proper mathematical foundation for interpreting Upstg in the presence of
aleatory uncertainties poses a challenge. By definition, UpgsTg serves as a measure of
knowledge-based uncertainty. Specifically, each Upstg curve in the collection of results
measures the difference between the (C)CPF and the (C)CBEF for a particular set of aleatory
samples. Using percentiles to represent the effect of aleatory uncertainty makes sense for
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one given TEA case but comparing percentiles over multiple TEAs (as done here) lacks a
proper mathematical foundation with respect to the interpretation of Upstg. While results
make sense within one TEA, the very nature of this DSTE-based uncertainty combination
only allows for indicative and/or qualitative comparison when repeating a TEA with
updated states of knowledge.

b) Even without aleatory uncertainties involved, the behavior of Upstg with reduced epis-
temic uncertainty can be counter-intuitive. As noted in Section 5.4.3, repeating an analysis
with reduced epistemic uncertainty effectively reduces the width of Upstg but can lead
to an increase in its peak due to the remaining BBAs being more concentrated within the
remaining output space. This complicates the interpretation of such verification attempts
in general. Adding the aleatory dimension further impedes the clarity of results, as it in-
troduces an additional layer of variability that must be accounted for, potentially masking
the effects of epistemic uncertainty reduction.

To conclude this verification attempt, it can be stated that while the reduction of epistemic
uncertainties generally aligns with theoretical expectations, the observed increase in quartile
spread for Upstg underscores the complexity of interpreting combined uncertainties. Future
work should focus on developing a more robust mathematical framework for Upsrg in the
presence of aleatory uncertainties and refining percentile calculation methods to better capture
the interplay between epistemic and aleatory domains. This will ultimately enhance the
interpretability and actionable insights derived from uncertainty combination techniques.

6.2.3 Convergence Behavior and Runtime Performance

Concluding the discussion on evidence-based uncertainty combination, this final Section fo-
cuses on two aspects: convergence and computational runtimes. To avoid redundancy, the
convergence analysis was conducted solely in the aleatory domain. This is because the ex-
ploration of epistemic convergence has already been covered in Section 5.4.4. The results
are illustrated in Fig. 6.6, with subplots (a) and (b) representing Ay f,e; and ANPYV, respec-
tively. These plots display the 25th, 50th, and 75th percentiles of the (C)CXFs, evaluated at
y1 = —2.5% for Ayg,e and y; = £50 for ANPV. The sample size N4 was incrementally in-
creased from 1000 to 10,000 in five steps. It should be noted that the total number of model
executions is Not = N4 - N, with the number of epistemic samples fixed at Ng = 10,000.

As the results show, the percentiles are almost constant throughout the range of varied sample
sizes, indicating that Ny = 2500 is an already sufficient size for the aleatory uncertainties.
This applies to both, Ay, and ANPV. Only a minor change is observable from N4 = 1000
to N4 = 2500. Given that the DSTE-based uncertainty combination allows for changing N4
and Ng individually, users are recommended to utilize this capability to cut computational
expenses, which can be prohibitively high as the next analysis shows.

The computational expense results, presented in Fig. 6.7, were initially obtained on a 60-core
workstation using parallel computing. To make these results more universally applicable, they
were adjusted to a single-core basis by dividing the runtimes by 60. This adjustment aims to
present the computational efficiency in a manner that is representative of environments with
varying computational resources. Additionally, the reported computational runtimes have
been adjusted to exclude the model execution time for further comparability, since both of the
uncertainty combination techniques can be used with any model utilizing discrete inputs and
outputs.

As the convergence discussion of Section 5.4.4 showed, a very large epistemic sample size N
is needed in the present case study to avoid a distortion of the CCXFs due to skipped intervals.
Combining this, even with a small aleatory sample size, results in significant computational
runtimes. Considering, for example, N4 = 5000 and Ng = 10,000 resulting in = 234h when
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Figure 6.6 Progression of percentiles Pos, Psg, and P75 of the DSTE metrics with increasing sample size
and one fixed threshold value.

executed sequentially, the need for parallel execution becomes evident. The results from the
previous sections, which were obtained with N4 = Ng = 10,000 samples took eight hours on
the workstation to compute in parallel, whereas an estimated sequential runtime would take
~20 days.

6.3 Novel Method for Combined Uncertainty Analysis

Similar to the evidence-based combinatory method, the novel technique also employs an inner
epistemic loop and an outer aleatory loop, as depicted in Fig. 6.8. The method is inspired
by the second-order probability design suggested by some authors, e.g., Dewey et al. [63]
from Northrop Grumman. Initially, an aleatory sample set is drawn using the PDFs of the
aleatory uncertain input parameters. The first of two novelties of this approach involves
drawing epistemic samples according to their Belief space, thereby combining Prol' and DSTE.
This complete set of input parameters is then used as input to the LYFE surrogate model,
yielding individual output values for Ayg,e] and ANPV. Subsequently, a new set of epistemic
samples is drawn while keeping the aleatory samples constant. The inner loop continues until
a predetermined convergence criterion, represented by a fixed number of executions N in this
analysis, is met. If e; > N, the algorithm proceeds to the next iteration of the aleatory loop,
drawing a new aleatory sample set and resetting e; to zero. The outer loop also terminates
when the number of executions 1, exceeds N. Unlike the purely evidence-based method, this
approach mandates that the convergence thresholds N for both the epistemic and aleatory
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Figure 6.7 Estimated computational runtimes of the DSTE-based uncertainty combination for a sequential
run.

loops be identical. This requirement stems from the subsequent post-processing steps, where
mean values in each uncertain dimension (i.e., epistemic and aleatory) are calculated and
visualized using a scatter plot and uncertainty contours. This marks the second novelty of this
method. This scatter plot necessitates equal-length results, thereby defining N as the common
convergence threshold for both loops.

Consequently, the output y of this approach has the same number of rows and columns, i.e.:

Yey,a1  VYey,an Ye; N
Yer a1 Yey,ap Yey N

y = : : . . : (6-6)
yN/al yN,a2 yN,N

To recall, the aleatory uncertainties vary from column to column, whereas the epistemic un-
certainties vary from row to row. For the novel uncertainty representation, two vectors y,
and vy, are calculated. These represent the variation in the epistemic and aleatory dimensions,
respectively®. They are calculated by computing the mean along the respective axis. For yg,

aj <N
{ e, <N
"
draw draw execute calculate
aleatory | epistemic -~ LYFE Ye and

sample set. | sample set. "| surrogate Ya and fit
aj=a;+1 ei =¢ +1 = Yeia KDE/ ellipsis

A

\

( start ) end

Figure 6.8 Flowchart for novel uncertainty combination approach.

55upplemental information on this matrix operation can be found in Appendix F.2.



134 Chapter 6: Probabilistic and Non-Probabilistic Combination

this is represented by the following equation:
1| N N
YE = ﬁ Zyel,ajzzyez,ajz---;Z]/eN,aj (6.7)
=1 j=1 j=1

Similarly, y4 is obtained by averaging over all epistemic effects (rows) for each aleatory state
(column), resulting in:

1 [& N N T
yA = N Zyei,alzzyei,azz---/Z]/ei,aN (68)

The next step is to plot y4 against yg. This process transforms the data into a bivariate dataset,
represented as a scatter plot, which facilitates a direct visual assessment of the variations
attributable to epistemic and aleatory factors. Each point in the plot corresponds to a pair
(YE; Y A ), illustrating the mean effects across aleatory states for a given epistemic state and

vice versa. Such plots simplify the interpretation of the complex interplay between different
types of uncertainties, aiding in the identification of the balance between epistemic and aleatory
variations as well as the overall spread of results.

To further elucidate the relationship between epistemic and aleatory variations depicted in
the scatter plot, an uncertainty ellipse is superimposed. This ellipse is centered at the point
(Lyg , ty4), where uy,. and uy, denote the mean values of yg and y 4, respectively. Note that
Hyg = py, = p due to the methodical approach wherein, for each aleatory iteration within
the nested MCS, an identical set of epistemic uncertainty samples is applied, and similarly, for
each epistemic iteration, a consistent set of aleatory uncertainty samples is used. This ensures
that across both dimensions of the matrix, the sum of all matrix elements remains invariant,
whether aggregated row-wise or column-wise. Using the standard deviations o, = o(yg) and
oy, = 0(ya) for the radii of the ellipse, its mathematical formulation is:

- 2 _ 2
X Z”y) LY 2“”) =1, 6.9)

VE Oya

o

where X and Y correspond to the coordinates on the abscissa and ordinate of the plot, respec-
tively.

The inclusion of the uncertainty ellipse in the scatter plot not only highlights the dispersion of
the data but also visually encapsulates the collective behavior of the system’s uncertainties. By
observing the placement and shape of the ellipse, we can compare the variance inherent in the
epistemic and aleatory states.

A final aid in the interpretation of the output uncertainty is provided by an additional overlay of
Kernel Density Estimate (KDE) plots. The KDE plots are particularly valuable for underlining
the shape and density of the scattered data, providing insights into the distribution that
extend beyond the symmetrical assumptions typically associated with standard-deviation-
based ellipses.

The mathematical formulation of the KDE, employing a Gaussian kernel, is as follows:

N
f(X,J/)=%ZK(X—yEi,3/—yAi), (6.10)
i=1
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where (X, Y) denotes the estimated density at the point (X, /), and K represents the Gaussian
kernel function applied to each data point (yg;, y4,), directly reflecting the pairs of epistemic
and aleatory variations in our dataset. The selection of the Gaussian kernel is motivated by its
efficacy in smoothly capturing the continuous probability density across the bivariate dataset
of yg and y4.

6.3.1 Results

The results of the novel uncertainty combination method are displayed in Fig. 6.9, where the
two outputs Ayg,e] and ANPV are distinguished as usual. In each bottom left subplot, the
ordinate represents variation in the aleatory domain, while the abscissa shows the epistemic
variation. A circle mark ("o") at the center of the plot indicates the overall average u. A black
and solid ellipsis around p illustrates the standard deviation in both the epistemic domain
(with o, as the horizontal radius) and the aleatory domain (with o, as the vertical radius).
Additionally, dashed lines represent uncertainty contours for each KPI. These contours indicate
levels of similar density, based on a Gaussian KDE fitted to the scatter data. To further aid
in interpreting these results, histograms of the marginal distributions for y. and y, are also
shown. The gray area in these histograms indicates the range of the respective average + the
standard deviation.
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Figure 6.9 Opverall result of the novel combinatory UQ.

The Ayg,e) results, as depicted in Fig. 6.9 (a), show an overall average of —3.5 %. The standard
deviations in both the epistemic and aleatory domains are very similar, resulting in a nearly
circular ellipse and uncertainty contours. This suggests that the fuel consumption KPI is not
dominated by either type of uncertainty. A closer examination of the histograms reveals that
the epistemic variation is relatively symmetrical, while the aleatory variation has a slight tail
toward lower (i.e., more negative and hence better for the HLFC aircraft) Ay, values.

For the economic KPI shown in Fig. 6.9 (b), the overall average is $2.53M. The heights of the
uncertainty contours and the standard deviation ellipse exceeds their width, indicating that
this KPI is more sensitive to aleatory uncertainties than to epistemic ones. The histograms
confirm this observation, showing that y, is relatively symmetrical, while vy, is skewed and
has a longer tail toward more positive ANPV values.
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While these visual results pro- Table 6.2 Summary of results of the novel combinatory UQ.
vide a good overview, the sum- | e Pys Pso Pys
mary in Table 6.2 allows for A ;

o Y tuel [%]
more quantifiable statements by epistemic 347 074 —4.03 -345 —291
showing the calculated statis- aleatory -347 075 -396 -345 -2.94
tics. In a direct comparison of  Anpy [USD]
the standard deviations in the epistemic $253M $1.21M $1.63M $251M $3.42M
epistemic and aleatory domains aleatory $253M $177M $1.26M $227M $3.50M

for Ayguel, both are nearly iden-
tical with a value of approximately 0.75%. On the other hand, the ANPV KPI shows a 48 %
higher standard deviation in the aleatory domain compared to the epistemic domain. The
percentiles for Ay, are relatively close to one another.

In terms of percentiles, for Ay, the 25th, 50th, and 75th percentiles are almost identical
between both uncertainty domains. For ANPYV, the percentiles differ slightly, resulting in an
IOR in the epistemic domain that is 20 % smaller than its aleatory counterpart.

With these results, it is suggested to summarize the overall results into statements as follows.

On average, the HLFC aircraft is expected to burn 3.5 % less fuel than its turbulent
counterpart. The uncertainties are balanced with +o, = 0.74% and o, = 0.75%.
Regarding the economic KPI, the HLFC aircraft is estimated to yield $ 2.53M more, with
uncertainties of o, = $1.21M and o, = $1.77M.

Thus, the key takeaway is that the fuel performance of the HLFC aircraft is expected to
outperform that of its conventional turbulent counterpart. The overall uncertainty is balanced
and relatively low, as evidenced by both ¢:/; and 9 /. being well below 1. In terms of economic
performance, although it is positive, it exhibits greater sensitivity to non-reducible (aleatory)
uncertainties compared to reducible (epistemic) ones. With an epistemic uncertainty ratio of
o /u ~ 0.47, there is significant potential for reducing uncertainty through further research and
knowledge acquisition. Conversely, the aleatory uncertainty ratio of %/u = 0.69 suggests that
design improvements could make the aircraft more robust to natural variations, such as those
related to cruise Mach number.

6.3.2 Results with Reduced Uncertainty

To verify the effectiveness of the novel method for combined UQ, a similar approach to the one
described in Section 6.2.2 is employed. Specifically, the epistemic input uncertainty 9; - which
represents the overall drag reduction - is hypothetically reduced. This is achieved by fixing the
drag reduction potential of the HLFC application on the upper wing side to its average value
of 5.2%. This modification is expected to decrease the standard deviation of both KPI in the
epistemic domain, while the aleatory domain should remain unchanged.

The results of this verification attempt are depicted in Fig. 6.10, both as scattered data points
and marginal histograms in green. Histograms from the initial campaign are also included
for the sake of comparison in blue. To maintain clarity in the overview, uncertainty contours
based on the fitted KDE are omitted. Instead, only the standard deviation ellipses for both the
initial (dashed) and updated (solid) campaigns are shown.

The Aygye results, as presented in subplot (a), show a significant reduction in epistemic
uncertainty, as indicated by a narrower ellipse around ¢ and the histogram of y.. The summary
in Table 6.3 confirms that o, has been halved, while the aleatory uncertainty remains stable.
Similar trends are observed for the economic results: the epistemic uncertainty has decreased
from an initial $1.21M to $0.56M, and the aleatory uncertainty has increased only marginally.
The mean values for both KPI remain largely unchanged, affirming that the reduction in
did not alter its overall average.
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(a) change in fuel consumption. (b) change in economic superiority.

Figure 6.10 Opverall result of the novel combinatory UQ with reduced epistemic uncertainty (green), com-
pared to the original results (blue).

Regarding percentﬂes, the Table6.3 Summary of results of the novel combinatory UQ with reduced
IQR for ANPV in the epistemic uncertainty and o values compared to the original results.

epistemic domain is now | p o Pys Ps P75
57 % smaller than in the A o

leat d R E nfugl [ 0]‘
aleatory domain.  Tor epistemic -3.50 0.40 (-46%) -3.78 -3.51 -3.24
AY fuel, the epistemic IQR aleatory -3.50 0.76 (£ 0%) —3.99 -347 298
is also now smaller by  ANPV [USD]
47 % compared to its epistemic $2.58M $0.74M (—38 %) $2.08M $2.60M $3.09M
aleatory counterpart. Both aleatory $258M $1.78M (+ 1%) $1.27M $2.33M $3.61M

of these observations align
with the expectations.

These results confirm that the novel combination method successfully captures reductions in
epistemic uncertainty, as anticipated. The scatter plot presentation, enhanced with uncertainty
contours and a standard deviation ellipse, is easy to implement and interpret. Therefore, it is
well-suited for recipients and decision-makers who may not be experts in the field of UQ.

6.3.3 Convergence Behavior and Runtime Performance

Given the computational challenges inherent in comprehensive UQ efforts, this Section investi-
gates the convergence behavior of the novel method. To achieve this, the three key metrics i, o,,
and o, are repeatedly calculated with an increasing sample size N, where N = Ny = Ng. This
leads to a total number of executions Niot = N2. To further refine the analysis, each calculation
is repeated 10 times, allowing a quantification of the variation in y, 0., and o, at each sample
size, thereby enabling a more nuanced understanding of convergence behavior. The results
are presented in Fig. 6.11, with changes in fuel consumption illustrated in subplot (a) and
economic performance in subplot (b). The “x” marks indicate the result of a single repetition
at a specific sample size N, the dash-dotted line represents the average value throughout each
repetition of N, and the dark gray and light gray areas signify the average +o(N) and +20(N),
respectively.

The convergence analysis for Ay ] reveals that all three result components y, 0,4, and o, exhibit
a relatively large spread at smaller sample sizes. For instance, at a sample size of N = 100 (or
Niot = 10k), the mean values p(y) have an absolute spread of 0.25 %-points, and the standard



138 Chapter 6: Probabilistic and Non-Probabilistic Combination

33 _ Y =AY i y = ANPV
| X $2.8M |«
— _aal R S
o\c —34 -—% wn | X x
SN e, | 2 | e
= | ¥R~ % = | x
T35 BN TR Y 3 $24Mp
[ =
| % B X
-3.6 ; | —-—avg. +20 0 $2.0M i | —-— avg. +20 o
= 0 2.0
0_\ 0.8 x D $14M |
~ B N |
SR I T T % ST = BE O T SAmmaveS—
ool N $1.0M |
S - < i
0'6:\\I [N | Ll S S| Ll Ll
=038 — X x 5 - ¥ X
08 ¥ X % = $18ME ox e e e 4
S e | ] e
S 0.7 > -
I B 5 |
© B I $1.4M |
© [ X o X
0'6:\\I [N | Ll © 7\\\I RN Ll
10? 10° 10* 102 103 10*
N:Nu:Ne/['] N:Nu:Ne/[']
(a) change in fuel consumption. (b) change in economic superiority.

Figure 6.11 Progression of y, 0, and 0, with increasing sample size N.

deviations vary within a range of 0.18 %-points. As the sample size increases, for example at
N =1000 leading to Ntot = 1M, the spread in p(y) narrows to 0.06 %-points, while the spreads
in 0, and o, reduce to 0.02 %-points and 0.05 %-points, respectively. Further increases in N
continue to narrow these spreads.

It’s important to note that the definition of convergence is contingent on the desired level of
accuracy. For this analysis, an accuracy threshold of +0.1 %-points suggests a required sample
size of N ~ 500. The convergence behavior for ANPV is similar. A potential accuracy threshold
of $100k would necessitate sample sizes of N > 5000, while N > 500 would suffice for an
accuracy of $200k.

One of the major advantages of this approach is its low computational expense. Fig. 6.12
illustrates the overall execution runtime for various sample sizes, distinguishing between the
time required for sample generation (depicted by red bars), model execution (gray bars), and the
calculation of the overall mean and standard deviations o, and ¢, (blue bars). While the time
for model execution increases exponentially, the time required for output UQ (i.e., calculating
the uncertainty contours and uncertainty-domain-specific standard deviations) grows linearly.
Importantly, the time spent on sample generation and output UQ—steps unique to this novel
method—are negligible when compared to the model execution time. This point is further
underscored by the use of the PCE surrogate model in this study, which is considerably less
computationally demanding than the original LYFE model due to its analytical nature.

6.4 Comparison and Conclusion

To conclude this Chapter, this subsection provides a detailed comparison of the two method-
ologies and discusses their inherent strengths and weaknesses.
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the aleatory impact).

The second combination method also uses the Belief spaces for the epistemic uncertainties and
PDFs for the aleatory uncertainties. The key difference to the first method lies in the post-
processing, where, instead of the time-consuming calculation of (C)CXFs, the mean values,
standard deviations, and percentiles are calculated for each of the two uncertainty domains
(i.e., epistemic and aleatory). The results are then visualized with a scatter plot, where the
two axes depict the variation in each uncertainty domain. As an additional interpretation aid,
the scatter plot is complemented by a KDE fit and an ellipsis whose shape indicates which
uncertainty domain is dominant.

Regarding the difficulty of interpreting the results, the evidence-based combination method
has several drawbacks. The overall results, which span the entire output space (see Fig. 6.3),
are comprehensive as they provide insights regarding various threshold values. This visual
expression could, however, be overwhelming due to the amount of information it contains (i.e.,
(C)CBFs, (C)CDFs, (C)CPFs, Upstg, the aleatory variation of each, shown as percentiles). In
order to construct more tangible statements, boxplots can be used, which essentially reduce
the information to be specific to a particular threshold y. A noticeable level of understanding
of DSTE and the combination methodology is required to fully understand these statements.
The uncertainty metrics of the novel modification of the second order probability method,
in contrast, are more straightforward as recipients are likely to be familiar with the concepts
and interpretation of mean values and standard deviations. The visual expression is more
easily explained (see Fig. 6.9), and the ellipses provide an immediate indication of the assess-
ment’s uncertainty, which is complemented by the tabular summary (see Table 6.2). Generally
speaking, the interpretation superiority of the novel method largely originates from the fact
that, while utilizing DSTE’s input uncertainty definition, its outputs use probabilistic concepts,
which are generally well understood by a larger community.

The traceability, which describes the capability to repeat the uncertainty combination at a
later stage where one or more epistemic uncertainties are reduced, also differs between both
methods. The evidence-based combination approach showed a behavior that is partially non-
intuitive at first glance, as the aleatory spread of Upsrg seemed to have increased for the
updated analysis, although the aleatory inputs were identical to those of the original analysis
(see Fig. 6.5). Again, a significant level of understanding of the theory as well as the implemen-
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tation of the dste package are required to make some sense of the results. In contrast, the novel
combination method showed consistent and meaningful results when repeated with less epis-
temic input uncertainty (see Fig. 6.10), rendering this approach superior to the evidence-based
one.

The last aspect to compare is computational efficiency. In this regard, the evidence-based
approach has one particular advantage over the novel method: the number of samples for the
aleatory loop and epistemic loop do not have to be equal. For the analyses performed here,
a relatively small aleatory sample size was needed to obtain a converged set of percentiles.
However, the epistemic sample size needs to be extremely large for the calculation of (C)CXFs
themselves to be converged, as the discussion in Section 5.4.4 showed. More specifically, a
sufficient sample size for this combination method and the present use case is Ng > 10° (epis-
temic) and Ny > 2500 (aleatory), resulting in at least 250 M required samples. Considering
the fact that the calculation of the (C)CXFs adds significantly to the overall execution time, this
approach is likely to be infeasible for the majority of endeavors unless a quick-to-execute sur-
rogate model and a high-performance cluster are used. The novel method, which necessitates
NE and Ny to be equal, seemed to have a converged result at Np = N4 > 5000, which results in
25M samples. While this is still a large number, it is ten times smaller than that of the previous
approach. Furthermore, the post-processing of the novel method is negligible in terms of the
execution time, as opposed to the evidence-theoretic technique.

In summary, the comparative study documented in this Chapter lead to the conclusion that
the novel modification of the second order probability technique for UQ is superior to the
evidence-based one in all investigated aspects, i.e., interpretation, traceability, and compu-
tational efficiency. Thereby, the fourth research hypothesis is verified. While some factors,
such as the number of required samples, may change for different applications, the issues
in interpretation and traceability are fundamental to the underlying theory, leading to the
recommendation to use the novel method over the evidence-based one.



7 Conclusions, Limitations, and Outlook

This final chapter offers a thorough review of the research conducted throughout this thesis. It
aims to synthesize the key findings, acknowledge the limitations, and suggest future directions
in this field. To start, the overarching research objective is revisited, setting the stage for the
discussion. Each of the three research questions and their associated hypotheses are then
examined. This examination begins with a brief summary of the work performed, highlighting
the key methodologies and results. The main conclusions drawn from the research follow,
providing insights into the effectiveness and impact of the proposed approaches. Next, the
limitations of the performed analyses are discussed, addressing the constraints and challenges
encountered during the research process. Finally, the chapter explores the implications of these
findings for uncertainty-driven techno-economic assessments in aeronautics, emphasizing the
contributions and potential future developments enabled by this research.

The primary aim of this research was to enhance the transparency and reproducibility of
prospective and lifecycle-based techno-economic assessments in aeronautics. To achieve this,
an uncertainty management methodology was introduced in Chapter 1, which encompasses
uncertainty identification, classification, combination, propagation, reduction, and represen-
tation for decision-makers. This methodology was designed to systematically address the
complexities and nuances of uncertainty in techno-economic assessments, providing a struc-
tured approach for practitioners and enhancing the credibility of the assessments.

Several barriers hinder the effective implementation of this methodology. These barriers in-
clude the selection of appropriate methods for quantifying the influence of input parameter
uncertainties, the integration of non-probabilistic theories, and the simultaneous considera-
tion of both epistemic (knowledge-based) and aleatory (variability-based) uncertainties. To
substantiate the need for overcoming these issues, a thorough review of the fundamentals of
economic assessments in aeronautics, uncertainty quantification theories and techniques, and
the prevalent literature in these fields was conducted and documented in Chapter 2.

This review highlighted that probability theory, particularly with its frequentist view, remains
the predominant approach for dealing with uncertainty, effectively utilizing Monte-Carlo sim-
ulations when ample data is available. However, when data is limited, probability theory
faces significant limitations, necessitating alternative approaches like non-probabilistic the-
ories. Among these, evidence theory emerged as a complementary or potentially superior
approach for uncertainty quantification in data-scarce situations. Despite its potential, its ap-
plication in aeronautic techno-economic assessments remains limited, highlighting the need
for demonstrative studies. The review also covered global sensitivity analysis, revealing a va-
riety of fundamentally different methods with often unexplained rationale for their selection,
indicating a need for systematic review and clearer guidelines. Additionally, most studies focus
on either epistemic or aleatory uncertainties but rarely both, underscoring the necessity for a
comprehensive method to simultaneously address and combine these types of uncertainty.

These barriers were addressed with one research question and hypothesis each, guiding the
research efforts to enhance the transparency and reproducibility of techno-economic assess-
ments in aeronautics. To demonstrate the application of the methodology, a case study was
conducted evaluating the HLFC technology on a long-haul aircraft, utilizing the prospective
and lifecycle-based techno-economic assessment framework LYFE at the preliminary aircraft
design stage.
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7.1 Efficient Uncertainty Reduction through Global Sensitivity
Analysis

The first research question and hypothesis focused on identifying influential uncertainties and
distinguishing them from negligible ones using global sensitivity analysis. For clarity and
reference, they are restated here:

RQ1 How can the adoption of global sensitivity analysis in uncertainty-addressing TEAs
be facilitated or promoted, given the variety of available techniques and the lack of discussion
among researchers about their specific choice?

HYP1 Through a comprehensive evaluation of the capabilities, interpretability of sensi-
tivity, and computational efficiency of various GSA techniques on an example problem,
followed by the demonstration of the selected method’s effectiveness in a case study, it is
anticipated that the insights gained will contribute to facilitating the adoption of GSA
in uncertainty-addressing TEAs, informing future research directions and methodological
choices in the field.

These matters were addressed in Chapter 4, where a first study began with a comparative
analysis of various GSA techniques, followed by an applied GSA of the HLFC case-study.
The comparative analysis looked at the mathematical foundations of both variance-based and
non-variance-based GSA techniques, introducing their definition of sensitivity. This analysis
comprised a discussion and comparison of the provided sensitivity measures, convergence
behaviors, computational demands, and challenges in interpretation, revealing significant dif-
ferences. In the subsequent applied analysis, the most effective GSA method was used to
apportion the uncertainty in the HLFC assessment results using LYFE. This part of the study
demonstrated in detail how to quantify input uncertainties using PDFs from existing literature
and databases. After analyzing the global sensitivities, the most influential input uncertain-
ties were identified and separated from those with minimal impact on the outcome. As the
uncertainty regarding the cruise Mach number was shown cause the majority of the output un-
certainty, a hypothetical and more robust HLFC design modification was introduced, followed
by a repetition of the global sensitivity analysis, demonstrating how sensitivity measures may
change throughout the product development process.

The key takeaways of the first research question and hypothesis are:

¢ In general, GSA techniques are highly suitable for guiding uncertainty reduction efforts, as
they systematically quantify the contribution of each input uncertainty to the output un-
certainty. This facilitates the ranking of input parameters based on their criticality, helping
to objectively identify and prioritize the most influential ones while also highlighting those
with negligible impact.

* GSA techniques differ fundamentally in their mathematical basis, definition of sensitivity,
provided sensitivity measures, computational expense, and practical aspects such as the
capability to deal with correlated inputs or given data. Therefore, the choice of the optimal
GSA technique depends on the assessment context and parameter interdependence.

¢ For the present work, the Structural and Correlative Sensitivity Analysis (SCSA) method
emerged as the most suitable GSA technique, given its comprehensive sensitivity measures
and efficient convergence. Due to its definition of sensitivity being a parameter-specific
share of the output variance, its interpretation is more intuitive than that of other techniques.

The limitations of the work revolving around the first pillar of this research are:
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* The GSA techniques assessed in this study represent only a subset of available methods.
Given the dynamic nature of the GSA research field, there are numerous techniques con-
tinually being developed. For the sake of clarity and feasibility, this study focused solely
on methods available within the Python package SALib.

* While the study delved into various characteristics of different GSA techniques, it did not
explore every intricate detail. For instance, correlated sensitivity in the HLFC use case
was not analyzed. As such, the insights and conclusions drawn from this work should be
understood as being illustrative rather than exhaustive.

* Another shortcoming of the study deals with the number of uncertain input parameters,
which was not varied within the comparative analysis nor in the applied case study. There-
fore, the recommendations for choosing the SCSA method are not universal. However, the
insights of the systematic comparison allow for a more informed selection of the global
sensitivity technique.

Equipped with the insights gained from this part of the research, users are now better equipped
to select a problem-appropriate global sensitivity analysis technique tailored to their specific
needs. This selection process optimizes efforts in uncertainty reduction, a recurring task in the
product development process. Consequently, the first hypothesis is verified, underscoring the
key message: the selection of a global sensitivity analysis technique should be deliberate and
informed, rather than arbitrary.

7.2 Epistemic Uncertainty Quantification using Evidence Theory

The second research question and hypothesis revolved around evidence theory as a potential
candidate to complement or replace conventional probability theory in data-scarce situations,
Le.

RQ2 How can non-probabilistic theories, such as evidence theory, be more widely adopted
in TEAs, given the challenges in interpreting their concepts and metrics and the lack of
comparative studies with prevalent probabilistic methods?

HYP2 The development of publicly accessible and user-friendly tools for non-probabilistic
UQ, such as for evidence theory, is expected to aid in the adoption of these methods in TEAs.
Through demonstration, comparison with prevalent probabilistic methods, and analysis of
key aspects such as interpretability, traceability, and computational efficiency, such tools
have the potential to enhance decision-making processes in practical applications.

This was addressed in Chapter 5, which begins with a discussion on the theoretical and
practical aspects of using evidence theory to quantify epistemic uncertainties. The Chapter
explains how evidence theory’s uncertainty quantification metrics - such as CCBFs, CCDFs,
and CCPFs (collectively known as CCXFs) - are derived from basic belief assignments obtained
through systematic expert interviews. These metrics are particularly useful for assessing the
likelihood of exceeding or falling below specific output thresholds of interest. To address the
need for user-friendly tools, the Python package dste was developed. This package simpli-
fies evidence-theoretic uncertainty quantification by treating the simulation model as a black
box, enabling the quantification of inputs and outputs through basic belief assignments and
CCXFs. The package was utilized in a case study evaluating the HLFC technology, where
five experts were interviewed to obtain basic belief assignments, supplemented by literature
values. The epistemic parameters were propagated through a LYFE surrogate model (due to
computational constraints), and the resulting output sample space was compared to an ap-
proach using probability theory with uniform distributions where data is scarce. The chapter
further discusses the interpretability and convergence behavior of the additional uncertainty
quantification metrics provided by evidence theory. It concludes with a verification attempt
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that hypothetically reduces one of the epistemic uncertainties, revealing limitations in using
this approach repeatedly to track uncertainty throughout the product development process.

Key findings of this work are:

¢ The design of the systematic interviews is a crucial aspect, both in terms of avoiding expert
bias and potential computational repercussions resulting from basic belief assignments. In
this work, predefined intervals were provided for the selected uncertainties. Experts were
then asked to assign a number representing their Belief that the true value of the uncertainty
lies in a certain interval. However, the large number of basic belief assignments lead to
an exponential increase of evidence intervals, which in turn heightens the computational
expense of this approach.

¢ The computational expense is, in fact, one of the biggest difficulties of the evidence-theoretic
approach. In the applied example, more than 10° model executions were needed for the
result to be considered converged. This is likely to be prohibitive for most applications
unless a surrogate model is combined with a powerful computational setup.

* Another challenge of the evidence-theoretic technique stems from the difficulty of inter-
preting the uncertainty metrics. A proper understanding of the theory as well as the coding
implementation is needed, especially when repeating the assessment when new informa-
tion arises. One example of this challenge is the novel definition of evidence-theoretic
uncertainty Upstg, which is the difference between the Plausibility and Belief at a se-
lected threshold. While it helped to visualize the epistemic uncertainty, it can change in
non-intuitive ways when repeating the analysis with updated information.

* Generally speaking, using expert-based uncertainty quantification had a significant impact
on the assessment results. While the probabilistic approach typically relies on simplified
estimation techniques, often leading to uniform distributions, the belief spaces derived
from evidence theory produced samples that resembled non-parametric probability density
functions which would otherwise require substantial amounts of data to obtain. However,
this does not imply that the true value is more accurately represented; rather, itindicates that
this approach more effectively captures the true (lack of) knowledge about the uncertainty.

As with all research, the work revolving the second research pillar has some limitations:

¢ The provided guidelines for the elicitation of expert knowledge can be improved upon.
Due to the large number of basic belief assignments, the computational expenses in this
study were too high to reach a fully converged set of CCXFs. However, it should be noted
that this convergence behavior is influenced by the very nature of the CCXFs calculation,
which foresees the calculation of the output’s minima and maxima for given evidence
intervals. With a larger sample size, each evidence interval is covered by more samples,
naturally pushing the resulting minima and maxima of the output further apart. Potential
avenues to overcome this issue include the combination of interval analysis techniques
(where extreme points are identified more efficiently) with advanced sampling methods
to optimize the balance between computational cost and the accuracy of the uncertainty
bounds.

¢ In the verification analysis, representing an assessment with updated knowledge, a specific
epistemic input uncertainty was reduced. Since evidence theory does not prescribe the tech-
nique to deal with such an update, three alternative techniques were explored. However,
these methods are not comprehensive, as the influence of different evidence combination
techniques was not investigated. As a result, the previous remarks about the challenges of
interpreting uncertainty in recurring assessments is not comprehensive.

To conclude, the investigation into evidence theory provided valuable insights into a non-
probabilistic alternative for UQ. With the developed Python package, researchers are equipped
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with a hands-on tool to explore this method in practice. The in-depth discussions and analyses
around the approach highlighted both the potential benefits and inherent challenges of using
evidence theory. While it presents a promising alternative, especially in contexts with limited
data but available expert knowledge, it also comes with its own set of difficulties. As a result,
the hypothesis can only be partially validated, highlighting the ongoing need for research and
development in this area.

7.3 Combining Epistemic and Aleatory Uncertainties with
Evidence and Probability Theory

As epistemic and aleatory uncertainties have different implications for decision-makers, their
combination and simultaneous representation were addressed in the last research question
and hypothesis, which were:

RQ3 How can the systematic differentiation between epistemic and aleatory uncertainties
be effectively addressed in TEAs, considering the challenges associated with combining
and propagating these different types of uncertainties in a manageable and interpretable
manner?

HYP3 By systematically differentiating between epistemic and aleatory uncertainties in
TEA using evidence-theoretic methods and nested Monte Carlo simulations, it is anticipated
that enhanced interpretability and actionable insights will enable more informed resource
allocation and risk mitigation strategies. Specifically, this approach is expected to identify
dominant uncertainty types and guide strategic decisions on research investments or robust
product designs.

To address these, Chapter 6 investigated and compared two alternative techniques for com-
bining epistemic and aleatory uncertainties. Both use a nested Monte-Carlo design, where
the inner and outer loop deal with the sampling of the epistemic and aleatory uncertainties,
respectively. The first of the two combination techniques remains in the evidence-theoretic
domain and can be seen as an extension of the work in Chapter 5. As such, the selected
epistemic uncertainties were sampled using the same Belief spaces obtained from expert inter-
views. Additionally, aleatory uncertainties were sampled using the PDFs derived in Chapter 4.
After executing the nested MCS, the outputs were structured in a two-dimensional matrix, out
of which complementary cumulative function collectives were calculated. This resulted in a
set of CCXFs for each aleatory sample set. After visualizing these evidence-based uncertainty
metric collectives over the output space using percentiles, statements regarding the assessment
of the HLFC aircraft were constructed, demonstrating how to interpret CCXFs when aleatory
variation is present. A verification attempt, in line with the one performed in Chapter 5, intro-
duced a hypothetically reduced epistemic uncertainty, followed by an analysis of the changes
in CCXFs. The discussion of this combination method was concluded with a convergence and
computational runtime analysis, where the respective sample sizes were varied. The second
approach to uncertainty combination represented a novel modification of the nested Monte-
Carlo simulation. It incorporates elements from evidence theory for quantifying epistemic
inputs but remains in the probabilistic domain for representing the output uncertainty. The
results, which were structured in a 2D matrix as well, were post-processed by calculating the
averages alongside the epistemic and aleatory axis. These were then visualized using scatter
plots, enriched by uncertainty contours and ellipses as well as marginal histograms. This novel
technique was verified using the same approach, i.e., reducing one selected uncertainty and
discussing the expected change in the provided uncertainty measures. A final convergence
and computational expense analysis concluded this work.

The conclusions of this last set of studies are as follows:
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* The aforementioned difficulties of interpreting Belief and Plausibility are heightened when
aleatory uncertainties are included. In this work, Belief and Plausibility were interpreted as
lower and upper bounds for probability, representing the epistemic spread in the results.
This lead to the notation of x2 notation, where the difference between a and b represent
the epistemic uncertainty. Extending the evidence-theoretic uncertainty quantification by
aleatory uncertainties introduces an additional upper and lower limit for x, a, and b.
Therefore, a complete statement regarding the likelihood of exceeding (or falling below)
a certain threshold value requires the simultaneous consideration of nine different values
to address both the epistemic and aleatory impact. This intricate notation underscores the
complexity of accurately representing uncertainty and highlights the importance of careful
interpretation.

* The visualization of the results of the evidence-theoretic combination method over the
entire output space is comprehensive, as it allows users to construct statements for all
possible threshold values. For cases where only specific thresholds are of interest, boxplots
can effectively illustrate the relevant distribution characteristics. However, to ensure that
decision-makers fully grasp the implications, either form of depiction may necessitate a
thorough explanation of the methodology. This need for detailed understanding becomes
more pronounced with recurring assessments, as the behavior of uncertainty measures can
be counterintuitive due to the interconnections among evidence intervals. Consequently, a
deep understanding of the process is essential.

* The computational expense of the evidence-theoretic combination is likely to be a chal-
lenging, if not prohibitive factor for most applications. The calculation of CCXFs, which
foresees matching each output sample to its causing evidence intervals, is computation-
ally demanding. Introducing aleatory samples in a nested Monte-Carlo design essentially
means repeating this demanding process many times. Without a quick-to-evaluate surro-
gate model and a powerful computational setup, this uncertainty combination approach
is likely not feasible, especially when the number of input uncertainties is higher than
investigated here.

¢ The novel method, which used probabilistic measures such as mean values and standard
deviations to represent the output uncertainty, was significantly easier to understand and
interpret. The scatter-plot visualization, which covers the entire output space as well, is
swiftly explained to decision-makers. Its uncertainty contours and ellipses allow for a
quick evaluation of the assessment result. Constructing statements about the results was
also straightforward, as only three values are of interest: The overall average, the standard
deviation in the epistemic domain and the standard deviation in the aleatory domain.

* The verification of the novel combination method was successful and showed intuitive be-
havior. However, this method also suffers from computational issues, albeit to a lesser de-
gree. The sample size required for convergence is roughly 10 times smaller compared to the
evidence-theoretic approach, but the computational runtime of the method-specific post-
processing is negligibly small. Total runtimes for a converged result did not significantly
exceed 30 min, rendering this technique the more appropriate one for most applications.

* In comparison to its evidence-theoretic counterpart, the novel method has a notable lim-
itation: it offers less flexibility regarding sample sizes. The evidence-theoretic approach
permits different sample sizes for epistemic and aleatory uncertainties, allowing for a more
customized Monte-Carlo design. Conversely, the novel combination method requires equal
sample sizes for both types of uncertainty. This constraint may result in a higher number
of executions than necessary for convergence, particularly if the distribution of epistemic
and aleatory uncertainties is imbalanced.

The limitations of the work revolving the last research pillar are:
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* The CCXF collectives were visualized using medians and selected percentiles for represent-
ing the aleatory output uncertainty. Alternative techniques, such as averages + multiples
of the standard deviation or a closer look into the variance, were not investigated, limiting
the takeaways regarding interpretation to the approach specifically employed in this study.

* Both approaches assume independent parameters. In situation where correlation exists,
the output uncertainty may be misrepresented. This underlines the necessity of further
research in the domain of uncertainty combination when inputs are not independent, both
in the theoretical domain as well as with respect to the development of publicly available
toolboxes.

Wrapping up the final part of the research, the introduction of a modified nested MCS has
paved the way for a comprehensive combination of epistemic and aleatory uncertainties, seam-
lessly integrating both probabilistic and non-probabilistic elements. When compared with an
alternative method, which solely relies on evidence theory for both input and output UQ,
the novel approach stands out in terms of its interpretability, traceability, and computational
efficiency. Yet, it is imperative to acknowledge the inherent computational demands of simul-
taneously addressing epistemic and aleatory uncertainties, especially when discerning their
individual impacts. This underlines the advisability of employing a surrogate model that
ensures rapid evaluations during uncertainty analyses. In summation, the final hypothesis
can be verified. Researchers can easily adopt the suggested method to quantify and visu-
alize the influence of either uncertainty nature. The incorporation of uncertainty contours
and ellipses equips decision-makers with a direct means to gauge the uncertainty inherent in
assessments. The characteristics and positioning of these graphical representations can guide
tailored recommendations, enhancing the decision-making process.

7.4 Recommendations for Future Work

As this thesis concludes, it is essential to look forward and identify potential areas for future
exploration in this domain. The following suggestions aim to inspire and guide further research
rather than provide an exhaustive list.

1. While probability theory and its techniques are well established, there is a clear need for
more research on the non-probabilistic side. This includes a deeper understanding of
evidence theory’s mathematical foundations, especially when considering the measure
for epistemic uncertainty when aleatory variations exist.

2. The dste package, a central tool in this research, could benefit from further development.
Beyond improving the computational efficiency, integrating it with the SCSA method for
GSA could be valuable, given the method’s ability to work with existing data.

3. Correlation and its impact on UQ methods remain active research areas. This is crucial, as
correlated inputs are common in integrative aeronautic cost-benefit assessments. Thus,
another potential avenue for future research is the modification of evidence theory’s
techniques for correlated inputs.

In conclusion, the research presented in this thesis has addressed many of the technical
challenges that previously hindered the effective application of the uncertainty management
methodology. This work contributes significantly to promoting transparency and trust in an
era where computer model simulations are becoming increasingly prevalent and uncertainties
are inevitable.
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A Supplemental Information for Chapter 1

This part of the appendix provides supplemental information on topics that were covered
or touched upon in Chapter 1, including the delineation of TEA with ROA and TPS and a
description of the foundational Clean Sky 2 projects.

A.1 Real Option Analysis and Techno-Economic Assessments

Uncertainty-addressing ROA and TEA are related evaluation approaches but differ in their foci
and objectives. This section provides an overview of their commonalities and differences.

TEA, as used in this thesis, models the impact of a technology from the operator’s perspec-
tive. This involves creating a detailed model of the operational environment and considering
repercussions from various domains such as design, operation, environmental, and economic
factors. This results in KPIs such as y gy for fuel consumption and NPV for economic value.
By comparing these to a reference, the A values quantify the relative inferiority or superiority
of a technology. Introducing parameter uncertainties aims to shed some light on the impact
of knowledge gaps and natural variability on the techno-economic outcomes. This can be
achieved using MCS, which produce output PDFs for Ay ,; and ANPV.

ROA also models the operator’s expected cash flow but introduces a different perspective by
emphasizing the value of managerial flexibility and strategic decision-making under uncer-
tainty [74]. Originating from financial options theory, it applies these principles to real assets,
such as aircraft, to evaluate the value of making specific decisions at various points throughout
the asset’s operational life. This approach is particularly useful given the long operational
phase of aircraft, where such flexibility can significantly impact overall value. MCSs can be
utilized here as well, but included uncertainties tend to focus on parameters affecting flexible
decision-making rather than solely techno-economic performance.

While conventional TEAs and ROA address different aspects of uncertainty and value, they
are complementary tools. TEA provides a robust foundation for understanding the baseline
performance and economic feasibility of a project under uncertainty. It offers insights into the
distribution of potential outcomes, helping identify critical risk factors and areas of uncertainty.
ROA builds on this baseline understanding to evaluate the additional value created by manage-
rial flexibility and adaptive decision-making. It helps decision-makers appreciate the strategic
value of maintaining flexibility, especially in long-term projects like aircraft operations, where
future conditions can change significantly.

A.2 Technology Selection and Economic Evaluation

Both TPS, which is often found in integrated aircraft design frameworks, and TEA, when
applied within the IPDP, quantify the performance and cost-effectiveness of technologies, but
they do so from different perspectives and with different foci. This section delineates the
application of TEA within the IPDP and TPS in aircraft design. It discusses their multi- and
interdisciplinary nature and examines relevant aspects of parameter UQ.
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Technology Portfolio Selection and Aircraft Design

TPSs involves modeling, evaluating, optimizing, and choosing from a broad set of potential
technologies that can be integrated into aircraft design. This process often considers a dozen
technologies or more, each with its own set of parameters and performance metrics. Thus,
the nature of TPS is inherently multidisciplinary. Each technology considered can influence
the overall system performance, and changes in one technology can affect the parameters and
uncertainties of others. For example, the integration of a new propulsion system can impact
the aircraft’s weight, fuel efficiency, and aerodynamics, leading to cascading effects on other
subsystems.

To select a portfolio of technologies that yield the best and most reliable outcome, the impacts
of different technologies T; on the output parameters k; are quantified first, resulting in a TIM
as shown in Tab. A.1 (a). Subsequently, the compatibility of the technologies with each other
is tabulated in a TCM, as illustrated in Tab. A.1 (b). Finally, any the expected non-linear effects
are quantified and summarized in a TSM, see Tab. A.1 (c).

Table A.1 Matrices used in TPS, based on [11].
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(a) Technology Impact Matrix (TIM)  (b) Technology Compatibility Matrix (TCM) (c) Technology Synergy Matrix (TSM)

Due to this multi-technological and multi-disciplinary approach, UQ in TPS is a challenging
task. Each technology’s performance and interactions need to be modeled accurately, consid-
ering parameter uncertainties and their repercussions on the aircraft design. However, the
complexity of these interactions and the high number of involved technologies make a detailed
lifecycle modeling difficult, often limiting the uncertainty inclusion to those from the design
domain. Detailed inclusions of lifecycle-based uncertainties and their repercussions are rarely
seen in uncertainty-enabled TPS.

TEA in IPDP

As mentioned previously, TEA focuses on evaluating the economic viability and performance
of a single technology within its operational environment. This approach integrates tech-
nical performance data with economic factors to provide a comprehensive evaluation of the
technology’s potential.

TEAs are interdisciplinary, involving inputs from various fields such as engineering, economics,
and environmental science. Unlike the multidisciplinary approach of TPS, this process focuses
on one technology at a time and its interactions with the environment. The integration of
information from various disciplines provides insights into the lifecycle performance and cost
of the technology without necessarily feeding back into the design loop. Instead, decision-
makers from industrial or academic research projects, who are faced with questions about how
to proceed with the IPDP, are the primary recipients of this information.

UQin TEA is crucial for providing reliable evaluations. Focusing on a single technology allows
for a more detailed examination of specific uncertainties, often involving experts from different
fields to quantify these uncertainties accurately. These uncertainties can include fuel price
forecasts, which impact the economic viability of the technology, weather changes that affect
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operational performance, and variations in technological performance due to manufacturing
tolerances or operational wear and tear.

In summary, TPS in aircraft design and TEA in IPDP are distinct yet complementary processes.
While the former deals with multiple technologies in a multidisciplinary context, the latter
focuses on a single technology in an interdisciplinary manner. Both approaches require careful
consideration of uncertainties to ensure robust and reliable outcomes. This thesis resides in
the domain of TEA, emphasizing the integration of UQ to provide comprehensive evaluations
of aeronautical technologies.

A.3 Foundational Clean Sky 2 Projects

The Clean Sky 2 program was a large-scale European aeronautical research initiative under
the Horizon 2020 framework, aimed at developing innovative, cutting-edge technologies to
significantly reduce aviation’s environmental footprint. This initiative brings together major
stakeholders from the aerospace industry, including manufacturers, research institutions, and
academia, to collaborate on projects that address critical challenges in aviation, such asreducing
CO;, and NOy emissions, noise pollution, and improving fuel efficiency.

Two projects, both originating from the Clean Sky 2 program, have been foundational for
the use-case and TEA described in this thesis: ECHO (from WP 1.4.1.) and HLFC-Win from
(WP 1.4.4.). Both projects focus on the development and integration of the HLFC technology,
each on different application areas of a large passenger aircraft. The consortium comprised
Industry including Airbus, Aernnova, and SONACA as well as research institutions such as
DLR, ONERA, and Fraunhofer [47].

ECHO

The project ECHO (Evaluation of a Certified HLFC Elevator Operation), conducted from July
2015 to December 2019, aimed to develop and evaluate a HLFC system for the HTP of an Airbus
A350. The main objective was to design, manufacture, and test an HLFC-equipped elevator in
a real-flight environment to achieve technology readiness level 5, supporting the Clean Sky 2
goals of reducing CO;, NOy, and noise emissions in aviation.

ECHO focused on developing a manufacturing process for HLFC purposes. This involved
advanced technologies such as micro-perforation for titanium sheets, end-to-end assembly
processes, and bonding and tolerance management for carbon fibre reinforced polymers and
titanium. These technologies were validated through the creation of a ground-based demon-
strator, a HLFC leading edge segment based on A350 geometry.

This project provided valuable parameter and modeling knowledge including, but not limited
to:

¢ Opverall aircraft lifecycle modeling
¢ Customer airline definition and information
* Modeling of insect contamination and cloud encounter degradation

¢ Incorporating cost for acquisition and maintenance



154 Appendix A: Supplemental Information for Chapter 1

HLFC-Win

The project HLFC-Win, conducted from July 2017 to December 2023, aimed to integrate all
necessary major sub modules and components such as the HLFC leading edge, the joint
between the front spar and leading edge, the high-lift system design, the HLFC system itself,
and the wing ice-protection system. In this project, HLFC was applied on the outer and upper
wing portion of an Airbus A330 similar aircraft, complementing the research on the HTP of
an A350 in ECHO. Verification and validation was conducted with a large-scale ground-based
demonstrator and large-scale wind tunnel tests as well as various sub-scale demonstrators,
resulting in a technology readiness level 4.

HLFC-Win aimed to address three main challenges: fulfilling HLFC-wing related performance
requirements through a simplified suction system, realizing this system with an appropriate
mix of materials, and developing manufacturing approaches that are cost-effective and suitable
for serial production. The project employs a interdisciplinary approach, integrating aerody-
namic, structural, and systems design to achieve a wing configuration that meets stringent
lightweight, cost, and maintainability criteria.

In addition to ECHO, the involvement in HLFC-Win provided further insights for the TEA in
this thesis, including, but not limited to:

¢ Off-design behavior when flying at different cruise speeds
¢ Additional contingency fuel carriage for HLFC
¢ Improved fuel projection UQ

¢ Use of evidence theory in combination with advisory board experts
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This part of the Appendix offers supplemental insights on topics introduced or discussed
in Chapter 2, such as the limitations of DOC methods, fundamental statistical terms, and
interpretation aids for belief and plausibility intervals.

B.1 Limitations of DOC methods

As discussed in Section 2.1.1, DOC methods are known for their simplicity and quick compu-
tational evaluation. However, it is important to understand the limitations of DOC methods to
accurately interpret their results and applicability.

The following table outlines the scope and applicability of DOC methods, highlighting the
aspects that are within the scope of these methods and those that fall outside their scope. This
table is based on the work of Schnieder [241] with additional insights.

Table B.1 Scope and applicability of DOC methods, based on Schnieder [241] with own additions.

In Scope Out of Scope

Period of Consideration

The settled state of an aircraft, i.e., between the 5 Initial and late phases as well as age-related effects,
P g

and 15% year of operation. e.g., increase of maintenance cost or decrease of
fuel efficiency.

Operational Content

One representative flight connection, character- Different routes, regions, and flight schedules.
ized by a fixed range and average utilization. Network and fleet compilation as well as common-
ality effects.
Object of Interest

Technologies or aircraft alternatives that affect the ~ Ools that do not solely affect these independent
independent variables of the CERs, e.g., maximum  variables, e.g., operational procedures and main-
takeoff weight or fuel burn. tenance strategies.

Level of (temporal) Detail

Relationship between the average flight time and  Particular and discrete temporal effects, e.g., from
average annual utilization. flight delays or unscheduled maintenance.

B.2 Fundamental Statistical Terms

This section provides definitions of key concepts in statistics and complements the foundations
given in Section 2.2.2.

Expected Value

The mean value, often referred to as the expected value, is a measure of the central tendency
of a random variable. For a discrete random variable X with possible values x1, x2, ..., x; and
corresponding probabilities p1, p2, ..., pn, the expected value E(X) is defined as:

n

E(X) = inpi (B.1)

i=1
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For a continuous random variable X with probability density function f(x), the expected value
is given by:

E(X) = /_ooxf(x)dx (B.2)

In the context of MCS, the expected value is typically approximated by the mean:
1 N
EX)= le X; (B.3)
1=

where N is the number of simulations and X; represents the outcome of the i-th simulation.

The expected value is crucial in UQ as it provides a single summary measure of the central
location of a distribution of possible outcomes. It helps in understanding the long-term average
behavior of a system under uncertainty. However, it does not provide information about the
variability or dispersion of the outcomes.

Variance and Standard Deviation

Variance is a measure of the spread or dispersion of a random variable’s values around the
mean. It quantifies the degree to which each value in the distribution differs from the mean
value. For a random variable X, the variance is defined as:

Var(X) = E[(X — E(X))?] (B.4)

For a discrete random variable:

n

Var(X) = > (x; - E(X)p; (B.5)
i=1

For a continuous random variable:

Var(X) = / oo(x — E(X))*f(x) dx (B.6)

The standard deviation is the square root of the variance:
o = y/Var(X) (B.7)

Variance and standard deviation are key metrics in UQ as they provide insights into the
variability and spread of possible outcomes. A higher variance or standard deviation indicates
greater uncertainty and dispersion around the mean value.

Covariance

Covariance is a measure of the joint variability of two random variables X and Y. It indicates
the extent to which the two variables change together. The covariance is defined as:

Cov(X,Y) = E[(X — E(X))(Y — E(Y))] (B.8)

For discrete random variables:

Cov(X,Y) = ), > (xi = ECO)y; — E(V)pi (B9)
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where pj; is the joint probability of X = x; and Y = y;.

Covariance is useful in UQ to understand the degree to which two variables influence each
other. Positive covariance indicates that the variables tend to increase or decrease together,
while negative covariance indicates an inverse relationship.

Correlation

Correlation is a normalized measure of the covariance and indicates the strength and direction
of a linear relationship between two variables. The correlation coefficient p is defined as:

_ Cov(X,Y)
B oxoy

pX,y (B.lO)

where ox and oy are the standard deviations of X and Y, respectively.

The correlation coefficient ranges from -1 to 1. A value of 1 indicates a perfect positive linear
relationship, -1 indicates a perfect negative linear relationship, and 0 indicates no linear rela-
tionship. Correlation is dimensionless, making it easier to interpret compared to covariance.
In UQ, correlation helps identify and quantify the strength of dependencies between variables,
which is crucial for multivariate risk analysis.

Law of Large Numbers

The LLN states that as the number of trials or observations increases, the sample average
converges to the expected value (mean) of the population. There are two main forms of the
LLN.

The weak LLN asserts that for a large number of trials, the sample average will be close to the
expected value with high probability. This is known as convergence in probability. Formally,
for a sequence of independent and identically distributed random variables Xi, Xp, ..., Xy
with expected value p,

n

S

i=1

n—oo

lim P(

> e) =0 (B.11)

for any € > 0. This means that as the number of observations n increases, the probability
that the sample average deviates from the population mean by at least € becomes smaller and
smaller, approaching zero.

The strong LLN provides a stronger form of convergence, known as almost sure convergence.
It states that the sample average almost surely (with probability 1) converges to the expected
value as the number of observations goes to infinity. Formally,

1w
P(JE&;Z;XZ‘—H
1=

This means that the sequence of sample averages % 1 X; will converge to the population

mean u for almost every possible sequence of outcomes (with probability 1).

=1 (B.12)

The LLN has profound implications for statistical practices. It ensures that as sample sizes
grow, the sample mean becomes a more accurate estimate of the population mean, thereby
reducing variability and underpinning the reliability of statistical inference. This principle is
foundational in constructing confidence intervals and conducting hypothesis tests, providing
a theoretical basis for using sample data to make inferences about a population.
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When data is scarce, the assumptions and limitations of the LLN become particularly signifi-
cant. Its reliability hinges on having a large number of observations. With small samples, the
sample mean may not approximate the population mean well, leading to unreliable estimates
and inferences. This increased variability can cause the sample mean to be heavily influenced
by outliers or random fluctuations, making the results less stable.

To mitigate these issues, efforts should be made to collect as much data as possible. When data
collection is challenging or expensive, acknowledging the limitations in any analysis or conclu-
sions drawn is crucial. Results derived from small samples should be interpreted with caution,
considering the potential for increased variability and bias, and avoiding overgeneralizing
findings.

Central Limit Theorem

The CLT describes the behavior of the sum (or average) of a large number of independent,
identically distributed random variables. It states that, regardless of the original distribution
of the variables, the distribution of the sample mean will approach a normal distribution as
the sample size becomes large.

Formally, let X, X>,..., X, be a sequence of independent, identically distributed random
variables with mean p and finite variance 6. The sample mean X, is given by

_ 1 &
Xn=— Z X; (B.13)
i=1
Formally, the CLT states:
X. _
N, 1) (B.14)
o/An

This means that for a sufficiently large sample size, the distribution of X, is approximately
normal with mean y and variance o2 /n.

The implications of the CLT are highly relevant for statistical practices. Because the sample

mean X , is approximately normally distributed for large 7, even if the underlying data are not,
the CLT allows for applying methods that assume normality.

Similarly to LLN, the assumptions and limitations of the CLT become significant. In situations
with limited data, the approximation to normality may be poor, especially if the original data
are heavily skewed or have heavy tails. Consequently, statistical tests and confidence intervals
based on the normal approximation may be unreliable, leading to incorrect conclusions. Small
samples may not capture the variability of the population adequately, resulting in biased
estimates.

B.3 Interpretation of Belief and Plausibility Intervals

Belief and plausibility intervals are fundamental concepts in evidence theory. To reiterate the
discussion from section 2.2.2, belief represents the minimum probability that an event will
occur based on available evidence, while plausibility represents the maximum probability that
an event is not contradicted by the evidence. The difference between these two measures
indicates the level of epistemic uncertainty.

The table below presents various example intervals of belief and plausibility, along with their
interpretations. These interpretations help in understanding how different combinations of
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Bel(A) and P1(A) reflect different levels of certainty and uncertainty about the occurrence of
event A. The examples are adapted from Worden [287] and illustrate scenarios ranging from
complete certainty to total ignorance.

Table B.2 Example uncertainty intervals in DSTE and their interpretation, adapted from Worden [287].
[Bel(A), PI(A)]  Interpretation

[0.0,0.0] It is believed with certainty that A will not occur. There is no epistemic uncertainty
since Bel(A) = PI1(A).

[1.0,1.0] It is believed with certainty that A will occur. There is no epistemic uncertainty since
Bel(A) = PI(A).

[0.8,0.8] There is a strong belief and high plausibility that A will occur. The epistemic uncer-
tainty is zero but there is a small (probabilistic) chance that A will not occur.

[0.2,0.2] There is a slight belief and slight plausibility that A will occur. The epistemic uncer-
tainty is zero but there is a high (probabilistic) chance that A will not occur.

[0.0,1.0] There is total ignorance or uncertainty regarding the occurrence of A. There is high
epistemic uncertainty due to the large difference between Bel(A) and P1(A).

[0.3,1.0] Available evidence does not contradict A from occurring. There is some epistemic
uncertainty due to the difference between Bel(A) and P1(A).

[0.0,0.6] Available evidence does not support the occurrence of A. There is also some level of
doubt due to P1(A) < 1. There exists some level of epistemic uncertainty.

[0.4,0.6] Some of the available evidence supports the occurrence of A. In addition, other pieces

of evidence contradict A from occurring. The epistemic uncertainty is moderate.
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This part of the Appendix offers supplemental information on topic from Chapter 3, including
an error estimate of underlying the mission simulation tool, the determination of the reference
aircraft, as well as a list of assumptions for the deterministic study.

C.1 Accuracy of the Mission Simulation Tool

As discussed in Section 3.1.2, LYFE utilizes response surfaces with data calculated using a
commercial mission simulation tool, namely Piano-X [247]. To estimate the accuracy of Piano-
X, particularly for the A330-343 aircraft, a comparison with literature values was performed.
These values, sourced from Aircraft Commerce [5], involve two city-pairs: Los Angeles In-
ternational (LAX) to La Guardia, New York (LGA), with a track distance of 2188 NM. The
literature accounted for a tailwind of 20 knots on the eastbound route (LAX-LGA), resulting in
an equivalent air distance of 2100 NM. Conversely, the westbound route assumed a headwind
of 50knots, yielding an equivalent air distance of 2420 NM. The second city-pair distance
involved LAX to Stockholm Arlanda airport (ARN), with a track distance of 4900 NM and
corresponding equivalent air distances of 4850 NM (LAX-ARN) and 5160 NM (ARN-LAX).
Piano-X was then executed for these missions, matching these distances and documented pay-
loads. The results of this comparison are summarized in Table C.1. The maximum discrepancy
observed across the four distances, under identical conditions, was 62 kg or 0.21 %.

Table C.1 Comparison of block fuel calculation of A330-343 between Piano-X and literature [5, p. 18].

route distance block fuel difference
literature  Piano-X  absolute  relative
[NM] [kgl (kg] [kgl [%]
LGA-LAX 2420 28840 28902 +62 +0.21
LAX-LGA 2100 25066 25105 +39 +0.15
LAX-ARN 4850 60557 60573 +16 +0.03
ARN-LAX 5160 64976 64990 +14 +0.02

C.2 Reference Aircraft Definition

This Section complements the information about the reference aircraft provided in Section 3.3.2
including the flight profile and maintenance schedule.

In order for the flight schedule to be considered representative, a profile has to be chosen, so
that the aircraft’s utilization is close to the average of all A330-300. Because it is a highly
versatile aircraft, different operators use the A330 on very different ranges. On the shorter end,
airlines such as Asia Pacific, China Airlines, and Philippine Airlines operate their aircraft with
average FH/FC times of 2 to 3h. Long-Range operators include Lufthansa, SAS, Air Canada,
and Qantas, with average FH/FC of 5 to 8h. After a selection of Lufthansa as the operating
airline, their A330 fleet was analyzed for its average flight times, yielding six potential aircraft.
Subsequently, the route networks of these six aircraft from the year 2019 were extracted'
and analyzed for compatibility with LYFE’s flight schedule input. Although all aircraft were

1 Using FlightRadar24.com
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operated on very similar routes, the tail sign D-AIKI has shown the least amount of errors in
the data (which occur, for instance, due to diversions or ADSB signal errors in certain regions).
Therefore, the route network of this aircraft, which is plotted and summarized in Fig. 3.8, was
chosen for the simulation. Due to the nature of the LYFE framework, the simulated flights are
defined by their origin, destination, and great circle distance, i.e., detailed routing procedures
are neglected. Furthermore, the flight performance is not calculated on an one by one basis, but
instead determined using the available response surfaces and the multi-linear interpolation
within it, as described in Section 3.1.2.

Furthermore, the application on an A330-300 type of aircraft defines the underlying mainte-
nance schedule, consisting of line, base, heavy component, and unscheduled maintenance,
which is also explained in Section 3.3.2. Both the flight and maintenance schedule are kept
identical for both aircraft and are needed for a realistic simulation of the operators” and aircraft-
dependent cash flow.

Table C.2 Complete flight schedule for both aircraft fed to LYFE.

o route information durations load factors
'E > ol X X o o& o
» > . : WY ;
¢ ob% be’é 8’%\ %&0» ‘&Q? \?;p & * *@j} Q?;F c&o
[-] [-] [INM]  [%] [hrs] [hrs] [hrs] [hrs] [%] [%]

1 AUS FRA 8537 110 10.42 0.5 2.0 0.5 80 0
2 FRA AUS 8537 110 10.42 0.5 2.0 0.5 80 0
3 FRA IAH 8412 388 10.27 0.5 2.0 0.5 80 0
4 IAH FRA 8412 384 10.27 0.5 2.0 0.5 80 0
5 DFW FRA 8267 158 10.10 0.5 2.0 0.5 80 0
6 FRA DFW 8267 154 10.10 0.5 2.0 0.5 80 0
7 FRA SEA 8207 357 10.02 0.5 2.0 0.5 80 0
8 SEA FRA 8207 360 10.02 0.5 2.0 0.5 80 0
9 FRA WDH 8120 1 9.92 0.5 2.0 0.5 80 0
10 | WDH FRA 8120 1 9.92 0.5 2.0 0.5 80 0
11 DEN FRA 8098 33 9.90 0.5 2.0 0.5 80 0
12 | FRA DEN 8098 33 9.90 0.5 2.0 0.5 80 0
13 | FRA YVR 8072 424 9.87 0.5 2.0 0.5 80 0
14 | YVR FRA 8072 424 9.87 0.5 2.0 0.5 80 0
15 FRA MLE 7893 42 9.65 0.5 2.0 0.5 80 0
16 | MLE FRA 7893 42 9.65 0.5 2.0 0.5 80 0
17 | FRA MIA 7772 241 9.52 0.5 2.0 0.5 80 0
18 | MIA FRA 7772 244 9.52 0.5 2.0 0.5 80 0
19 FRA MAA 7602 5 9.32 0.5 2.0 0.5 80 0
20 | MAA FRA 7602 5 9.32 0.5 2.0 0.5 80 0
21 ATL FRA 7418 223 9.10 0.5 2.0 0.5 80 0
22 | FRA ATL 7418 221 9.10 0.5 2.0 0.5 80 0
23 | BLR FRA 7410 331 9.08 0.5 2.0 0.5 80 0
24 FRA BLR 7410 280 9.08 0.5 2.0 0.5 80 0
25 FRA ORD 6979 2 8.58 0.5 2.0 0.5 80 0
26 | ORD FRA 6979 2 8.58 0.5 2.0 0.5 80 0
27 | DITW FRA 6687 133 8.25 0.5 2.0 0.5 80 0
28 | FRA DTW 6687 135 8.25 0.5 2.0 0.5 80 0
29 FRA LAD 6571 205 8.12 0.5 2.0 0.5 80 0
30 LAD FRA 6571 198 8.12 0.5 2.0 0.5 80 0
31 BOM FRA 6576 312 8.12 0.5 2.0 0.5 80 0
32 | FRA BOM 6576 234 8.12 0.5 2.0 0.5 80 0
33 FRA IAD 6558 340 8.10 0.5 2.0 0.5 80 0
34 | IAD FRA 6558 340 8.10 0.5 2.0 0.5 80 0
35 FRA NBO 6324 672 7.82 0.5 2.0 0.5 80 0
36 | NBO FRA 6324 685 7.82 0.5 2.0 0.5 80 0
37 | FRA YYZ 6351 188 7.85 0.5 2.0 0.5 80 0

(continued on next page)
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Table C.2 Complete flight schedule for both aircraft fed to LYFE (continued).

o route information durations load factors
£ & & x & & & °
> > . : WY ;
¢ ob% b“é 8”%\ ‘éem &0 & \&Q & Q’&F (;z#%
[-] (-] INM]  [-] [hrs] [hrs] [hrs] [hrs] [%] [%]
38 | YYZ FRA 6351 188 7.85 0.5 2.0 0.5 80 0
39 EWR FRA 6218 674 7.70 0.5 2.0 0.5 80 0
40 FRA EWR 6218 583 7.70 0.5 2.0 0.5 80 0
41 FRA JFK 6196 447 7.67 0.5 2.0 0.5 80 0
42 | JFK FRA 6196 358 7.67 0.5 2.0 0.5 80 0
43 DEL FRA 6127 24 7.58 0.5 2.0 0.5 80 0
44 | FRA DEL 6127 24 7.58 0.5 2.0 0.5 80 0
45 BOS FRA 5896 428 7.32 0.5 2.0 0.5 80 0
46 | FRA BOS 5896 448 7.32 0.5 2.0 0.5 80 0
47 | FRA YUL 5861 20 7.28 0.5 2.0 0.5 80 0
48 | YUL FRA 5861 20 7.28 0.5 2.0 0.5 80 0
49 | ALA FRA 5095 117 6.38 0.5 2.0 0.5 80 0
50 FRA ALA 5095 131 6.38 0.5 2.0 0.5 80 0
51 ALA TSE 952 83 1.53 0.5 2.0 0.5 80 0
52 | FRA LOS 4862 370 6.12 0.5 2.0 0.5 80 0
53 LOS FRA 4862 374 6.12 0.5 2.0 0.5 80 0
54 | DXB FRA 4849 565 6.10 0.5 2.0 0.5 80 0
55 FRA DXB 4849 599 6.10 0.5 2.0 0.5 80 0
56 | TSE FRA 4314 82 5.47 0.5 2.0 0.5 80 0
57 | ABV FRA 4569 149 5.77 0.5 2.0 0.5 80 0
58 FRA ABV 4569 150 5.77 0.5 2.0 0.5 80 0
59 BAH FRA 4445 7 5.62 0.5 2.0 0.5 80 0
60 FRA BAH 4445 4 5.62 0.5 2.0 0.5 80 0
61 DMM FRA 4372 56 5.53 0.5 2.0 0.5 80 0
62 | FRA DMM 4372 74 5.53 0.5 2.0 0.5 80 0
63 FRA TSE 4314 98 5.47 0.5 2.0 0.5 80 0
64 FRA RUH 4297 388 5.45 0.5 2.0 0.5 80 0
65 RUH FRA 4297 361 5.45 0.5 2.0 0.5 80 0
66 | FRA JED 4136 30 5.27 0.5 2.0 0.5 80 0
67 JED FRA 4136 30 5.27 0.5 2.0 0.5 80 0
68 FRA KWI 4025 346 5.13 0.5 2.0 0.5 80 0
69 KWI FRA 4025 315 5.13 0.5 2.0 0.5 80 0
70 FRA IKA 3778 18 4.85 0.5 2.0 0.5 80 0
71 IKA FRA 3778 18 4.85 0.5 2.0 0.5 80 0
72 | BEY FRA 2841 2 3.75 0.5 2.0 0.5 80 0
73 | TSE ALA 952 98 1.53 0.5 2.0 0.5 80 0
74 | LOS SSG 675 89 1.22 0.5 2.0 0.5 80 0
75 SSG LOS 675 88 1.22 0.5 2.0 0.5 80 0
76 | ABV SSG 606 1 1.13 0.5 2.0 0.5 80 0
77 | SSG ABV 606 2 1.13 0.5 2.0 0.5 80 0
78 | ABV PHC 446 122 0.95 0.5 2.0 0.5 80 0
79 PHC ABV 446 122 0.95 0.5 2.0 0.5 80 0
80 BAH KWI 421 40 0.92 0.5 2.0 0.5 80 0
81 KWI BAH 421 43 0.92 0.5 2.0 0.5 80 0
82 | BAH RUH 421 352 0.92 0.5 2.0 0.5 80 0
83 RUH BAH 421 350 0.92 0.5 2.0 0.5 80 0
84 | DMM KWI 356 125 0.83 0.5 2.0 0.5 80 0
85 KWI DMM 356 142 0.83 0.5 2.0 0.5 80 0
86 | FRA MUC 299 93 0.77 0.5 2.0 0.5 80 0
87 | MUC FRA 299 130 0.77 0.5 2.0 0.5 80 0
88 BAH DMM 86 78 0.52 0.5 2.0 0.5 80 0
89 DMM BAH 86 73 0.52 0.5 2.0 0.5 80 0
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Table C.3 Complete maintenance schedule for both aircraft (excluding HLFC maintenance), based on
Aircraft Commerce [5, 6].

general intervals fiscal total

entry | name type  downtime FH FC time year cost
[-] [-] [hrs] |  [hrs] [-]  [days] (-] [US$]

1 | Transit L 0.5 0 1 0 2008 120
2 | Daily L 1.0 0 0 1 2008 330
3 | Weekly L 2.0 0 0 7 2008 920
4 | Al L 7.5 600 0 0 2008 36,000
5| A2 L 8.1 1200 0 0 2008 39,500
6 | A3 L 9.4 1800 0 0 2008 44,750
7 | A4 L 10 2400 0 0 2008 48,250
8 | A5 L 7.5 3000 0 0 2008 36,000
9 | A6 L 8.1 3600 0 0 2008 39,500
10 | A7 L 8.8 4200 0 0 2008 43,000
11 | A8 L 10 4800 0 0 2008 48,250
12 | C1 B 72 0 0 540 2008 215,000
13 | C2 B 89 0 0 1080 2008 420,000
14 | C3 B 103 0 0 1620 2008 235,000
15 | C4 B 523 0 0 2160 2008 1,450,000
16 | C5 B 72 0 0 2700 2008 235,000
17 | Cé B 88 0 0 3240 2008 500,000
18 | C7 B 72 0 0 3780 2008 255,000
19 | C8 B 720 0 0 4320 2008 2,205,000
20 | Tire Inspect. H 2.0 0 230 0 2008 1000
21 | Tire Retreat H 21 0 300 0 2008 5700
22 Tire Replace H 2.1 0 1200 0 2008 11,600
23 | Brakes H 4.8 0 1100 0 2008 320,000
24 | Landing Gear H 10 0 7000 0 2008 900,000
25 | ThrustRevs H 5.8 0 6000 0 2008 430,000
26 | APU H 4.4 0 4000 0 2008 275,000
27 | ESV1 H 6.0 | 30,100 4300 0 2012 4,750,000
28 | ESV2 H 6.0 | 53,200 7600 0 2012 5,600,000
29 | ESV3 H 6.0 | 75,600 10,800 0 2012 4,700,000
30 | ESV4 H 6.0 | 98,000 14,000 0 2012 5,600,000

Abbreviations L: line maintenance, B: base maintenance, H: heavy component maintenance.

C.3 List of Assumptions for the Deterministic Study

For transparency and reproducibility purposes, this Section lists all assumptions for the de-
terministic study documented in Section 3.3. The assumptions are categorized into general,
design, operational, environmental, and economic.

General Assumptions

¢ TheTEA is performed with LYFE on aircraft level in a prospective and comparative manner,
using the difference in fuel consumption Ay, as a technological KPI (see Eqn. 3.5) and
the difference in NPV as an economic KPIs (see Eqn. 3.6).

* The simulation lifetime is set to 20 years, starting from the year 2030, as described in
Section 3.3.2.

* The reference aircraft is an Airbus A330-343 with Rolls-Royce Trent 772 engines as de-
scribed in Table 3.1. A novel baseline aircraft design with assumed technological improve-
ments that are expected for the considered entry into service was not used, as described
on p. 57.
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* The HLFC aircraft is a derivative of the reference aircraft without a comprehensive re-
design, as described on p. 58.

¢ HLFC is assumed to be incorporated on the upper side of the wings (outboard of the
engines) and both sides of the HTPs and VTP, as shown in Fig. 3.7.

* The customer airline is Lufthansa, which defined the operational flight profile shown in
Fig. 3.8 and tabulated in Table C.2. The maintenance schedule for both aircraft (excluding
HLFC-specific maintenance efforts) is shown in Table C.3.

* The fuel burn calculation uses a multi-linear interpolation from response surfaces as
described in Section 3.1.2.

Design Assumptions

¢ The drag reduction potential of the HLFC aircraft on overall aircraft level is 7.4 % and
includes the loss of laminarity due to turbulent wedges between the leading edge panels
as described on p. 60 and shown in Fig. 3.9.

¢ The mass difference between the HLFC aircraft and the turbulent reference is 744 kg and
was obtained with the help of literature values and scaled using the suction area as a
driving parameter, as shown in Fig. 3.10.

¢ The SFC penalty due to the operation of HLFC is 1.18 % and includes electrical efficiencies
for the compressors, inverters, generators, and power lines, as described on p. 61 and
Eqgn. 3.7.

¢ The drag reduction and SFC penalty affect only the cruise portion (including the step

climbs) only, where the HLFC system is turned on. The mass difference affects the fuel
burn throughout the entire mission.

Operational Assumptions

¢ The cruise speed is assumed to be constant at Ma = 0.82, rendering potential losses of lam-
inarity due to varying cruise speeds irrelevant for this study, as described in Section 3.3.2.

* When operating the HLFC aircraft, it is assumed that the operators carry an HLFC-specific
contingency fuel of 2.5 % of the trip fuel, as derived in Section 3.3.2.

* For both aircraft, it is assumed that the payload is comprised of passengers only (i.e., no

additional cargo other than the personal belongings of the passengers), with a passenger
load factor of 80 %, as described in Section 3.3.2 and listed in Table C.2.

Environmental Assumptions
¢ The HLFC aircraft is assumed to lose 35 % of its laminar efficacy on the tails due to insect
contamination, while the efficacy on the wing application remains unaffected, as described

in Section 3.3.2.

* Cloud encounter is assumed to degrade the HLFC efficacy by 7 % for all HLFC application
areas. This results in an overall laminar efficacy of 82 %, as described in Eqn. (3.11).

* The turbulent reference aircraft not affected by insect contamination or cloud encounter.
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Economic Assumptions

* The future fuel price is considered using time-series projections, ranging from $0.79/kg
in 2030 to $0.94/kg in 2050, as shown in Fig. 3.11.

¢ The maintenance cost due to the HLFC system is derived using literature values and the
mass increase of 744kg as a driving parameter, resulting in $16.8k per year. Unsched-
uled maintenance cost are considered using LYFE’s default mechanism, as described in
Section 3.3.2.

* The increase in aircraft price for the HLFC aircraft (compared to the reference aircraft)
is derived similarly and results to $1.3M, as described in Section 3.3.2. The capital cost
mechanism assumes that the aircraft are bought and hence comprise ordering payments,
delivery payments, and distributed payments in between. Insurance and interest cost are
also modeled.
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This part of the Appendix offers supplemental information on topic from Chapter 4, covering
aspects regarding the sampling sequence of the non-variance-based GSA method from Morris,
a comparative analysis of the investigated GSA methods when inputs are (artificially) corre-
lated, the required modification of the Python package SALib, and a list of assumptions and

uncertainties regarding the applied GSA.

D.1 Sampling Sequence of Morris

Asdescribed in Section 4.1.2, the Morris method uses its own specific sampling approach, which
uses trajectories to explore the input space. This section explains the sampling methodology
and the impact of the key parameters: the number of trajectories 7,, and the number of levels
p. To do so, a parameter variation for u = 2 input variables X; and X, with n, and p being
increased in the columns and rows, respectively. The output is shown in Fig. D.1.

XZ/ [_]

nr:32

n, =128

n, =256

Xl/ [']

p =32

=64

QU

p=256 p=128

Figure D.1 Morris’ sample space of a u = 2 parameter model where X; ~ N(0.5,0.25) and X, ~ U and a

variation of the number of trajectories (columns) and number of levels (rows) by 2* forx =2,3,...,8.
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The influence of the two varied parameters can be X,
summarized as follows. As the number of trajecto- T
ries 11, increases from left to right, the density of sam-

pling points within the input space also increases. "
With only a few trajectories (e.g., n, = 4), the sam- "3

ple points are sparse, potentially missing significant
patterns, such as those stemming from the marginal
distributions. Increasing n, to higher values (e.g.,
ny, = 256) ensures a more thorough exploration, re- rs /

vealing the underlying normal and uniform marginal — X1

distributions from X; and Xj, respectively. Similarly,

as the number of levels p increases from top to bot-

tom, the granularity of the input space discretization X3 g

improves. Lower values of p (e.g., p = 4) result in

a coarser grid, which might overlook subtle effects. (a) Visualization in the unit cube.

Higher values of p (e.g., p = 256) create a finer grid,

enabling the method to detect more nuanced influ- Trajectory Samples

ences of input variables. X1 X X

0 1 1/3

The patterns in Figure D.1 show how the combina- r 2/3 1. 1/3

tion of n, and p affects the sampling distribution. 2/3 1/3 1/3
. . . . 2/3  1/3 1

Sparse trajectories with low p levels leave signifi-

cant gaps, while higher values for both parameters 1/3 0 0

provide comprehensive coverage, essential for robust 2 1{ 3 %?g 8

sensitivity analysis. 1 2/3  2/3

Figure D.2 complements the Morris method’s sup- 1{3 i g;g

plemental material by visualizing sampling trajec- r3 1 1 0

tories in a three-dimensional unit cube for a model 1 1/3 0

with three input variables (1 = 3). Each trajectory

starts at a random point and varies one input vari- (b) Sample space of each trajectory.

able at a time, ensuring balanced exploration of the  Fijgyre D.2  Examples of trajectories used
input space. The table in Figure D.2 details the sam-  in the Morris sampling method with u = 3,
pling points for each trajectory, illustrating how this p =4and A =2/3.

method isolates the effect of each input variable.

Figures D.1 and D.2 together highlight the Morris method’s rigorous approach in GSA. Adjust-
ing n, and p allows researchers to balance sampling density, computational cost, and analysis
precision. This flexibility makes the Morris method a powerful tool for identifying key in-
put variables and their interactions in complex models. However, determining the optimal
combination of parameters requires a thorough understanding of the sampling approach,
necessitating an investigative preprocessing step.

D.2 GSA with Correlated Inputs

This Section complements the comparative GSA study described in Section 4.2, investigating
the effects of input parameter correlation, an aspect that is often ignored but can make a big
difference when present [64, p. 2,4]. As Saltelli et al. [234] explained, their consideration is not
trivial as many conventional methods make use of assumptions and simplifications which are
only valid when input parameters are independent. The purpose of this study is to determine
if the techniques that promise to capture correlation can, in fact, do so, and what happens if an
independence assuming method is fed with correlated samples.
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Parameter Dependencies and Sampling

While the bounds and individual distributions of the uncertain parameters are kept identical
to those of the previous analyses (see Table 4.2), two of them are selected and made dependent:
namely, the SFC factor t; and the price of the technology pech. This dependency is modeled
as a negative correlation; that is, high values of p, are more likely to occur with low values
of ts. A possible interpretation could be as follows: The higher the price of a technology, the
more research and development effort was made, resulting in the technology likely being more
performant.

To maintain comparability with the previous analyses, the marginal distributions of ¢; and
Ptech are kept uniform. To create the samples, a bivariate standard normal distribution was
first generated, whose probability density function is defined as:

f(x1,x2) = [x% —2px1xp + x%]) . (D.1)

1 1
274/1 = p2 P ( 2(1-p?)

The marginal distributions of Eqn. (D.1) are, by definition, standard normal distributions them-
selves. This is illustrated with a correlation coefficient of p = —0.7 in Fig. D.3 (a). To transform
them to be uniform, the inverse probability integral transformation method, described later
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(a) bivariate standard normal distribution with p = —-0.7. (b) resulting desired sample space for p = —0.7
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(c) bivariate standard normal distribution with p = +0.7.

tS/ [-]

(d) resulting desired sample space for p = +0.7.

Figure D.3 Samples used to create a bivariate distribution with uniform marginals with positive (red) and

negative (green) correlation.
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(see Appendix 4.2.1), was adapted for use in the two-dimensional space. The resulting mod-
ified bivariate distribution, shown in Fig. D.3 (b), displays uniform marginal distributions as
desired. For the purpose of demonstrating the GSA capabilities with both positive and neg-
ative correlations, the process was repeated with p = +0.7, and the respective sample spaces
are shown in Fig. D.3 (c) and (d).

Because of this sampling strategy, only GSA methods which support given data can be uti-
lized. These are SCSA, DMIM, and FAST-RBD. The former two are expected to capture the
correlation correctly, whereas the latter requires independent samples. Therefore, this study
will demonstrate the impact of violating this assumption, knowingly or not. The sample size
was set to N = 2!° to ensure that all methods are converged'.

Results

The results of the SCSA method are depicted in Fig. D.4 (a) with negative correlation, no
correlation, and positive correlation in red (bottom plot), blue (center plot), and green (top plot),
respectively. For each uncertain input parameter, three bars are shown. The left one (solid)
represents S, being the uncorrelated measurement of sensitivity, the middle one (hatched), Sy,
being the correlation portion, and the right one (colored and hatched) showing S, = S, + S.

The results in the no correlation case (center) are identical to those shown in the independent
analysis (see Fig. 4.2). Apart from minor numerical noise, the method correctly quantifies Sy
as zero, i.e., no correlation has been identified. For the case with positive correlation (top), Sy
is nonzero for the two correlated parameters t; and piec and remains zero for the remaining
ones, verifying the positive correlation capture capability. In this case, correlation increases
Sc for the correlated parameters. This is reversed in the case of negative correlation (bottom),
where the value of S;, correctly shows negative values for t; and pyecn, verifying this case as
well. It is important to note that the ranking, when it is done using S;, remains identical
for each correlation case. For p = +0.7, the bar representing S, seems to be half as big as
for p = —0.7 which is an indicator of a non-linear model response. However, S, is the only
sensitivity measure which can be interpreted as the ratio of parameter caused variance over
total variance, as it is the only one for which

Z S.=1 (D.2)

holds. Therefore, it is advised to always take into account the full extent of SCSA results.

The response of the DMIM and FAST-RBD techniques to the same inputs are shown in
Fig. D.4 (b). Here, each bar represents one correlation case. There seems to be, apart from
the absolute value of the sensitivity measures, virtually no difference between both methods,
which is surprising as DMIM is said to capture correlation, whereas FAST-RBD necessitates
independence for the sensitivity measures to be meaningful. For both methods, the sensitivity
measures of the correlated parameters grow for higher values of p, while those of the other
parameters decrease, although their samples did not change with correlation. For FAST-RBD,
the positive correlation increased the sensitivity measure for ts and piec, so much that the
sum of all S1 exceeds 1. Therefore, it is concluded that these methods not only cannot capture
correlation, but their use when it is present leads to erroneous and misleading results.

Hn fact, the previous analysis has shown that the DMIM and FAST-RBD techniques may not be converged for values below
N = 214, see Table 4.4.
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Figure D.4 Comparative GSA analysis for different cases of correlation.
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D.3 Implementation (and Modification) of SALib

As mentioned before, the open source Python package SALib [105] is used for the GSA in
Chapter 4. SALIib itself is designed to be non-intrusive and its implementation hence does not
interfere with the mathematical or computational model (i.e., FastLYFE in this case). More
explicitly, SALib takes care of the sample generation, which may or may not be GSA method
specific, as well as breaking down the total output uncertainty into sensitivity measures. For
the former task, the package provides uniform, triangular, normal, and lognormal distributions
per default. As actual data can be present in all forms of distributions, the sampling approach
may need to be modified. This modification is based on the inverse probability integral
transformation method and makes use of the following fact: Assume a random variable X
with a CDF termed Fx. Regardless of the distribution of X, the output of Y = Fx(X) has a
uniform distribution on [0, 1]. This process can be inversed. That is, given a random variable
Y which has a uniform distribution on [0, 1], the execution of the inverse CDF F ;(1 on Y results
in an output that has the same distribution as X. This is illustrated in Fig. D.5 with X having a
standard normal distribution.

For the present GSA investigation, the first step is to select a distribution Fx that is appropriate
for each uncertain variable. Assuming one or more of these is not supported by SALib, the
next step is to define the bounds X min and Xmax of the desired distribution. These need to be
transformed to the respective bounds in the [0, 1] domain, i.e.,

Ymin = Fx(Xmin) and  Ymax = Fx(Xmax)- (D.3)
Subsequently, these bounds are used to create the uniformly distributed samples
Y ~ W(Ymin/ Ymax) (D4)

together with all other uncertain inputs using the GSA method specific sampler. This ensures
the correct sequencing and input space preparation which some of the methods require. Next,
Y is transformed with the inverse CDF of the initially selected distribution. The new samples,
now having the desired distribution Fy, are then fed to the model in the same manner as the
other uncertain parameters.
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(a) forward: from X to Y using Fx (X). (b) inverse: from Y to X using F}_{l (Y).

Figure D.5 Illustration of the inverse probability integral transformation method with the random variables
X ~N(,1)and Y ~ U(0, 1) and the (inverse) CDFs Fx and F)_(l.
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D.4 Assumptions and Uncertainties for the GSA study

Table D.1 shows the overview of the uncertainties considered in the GSA in Chapter 4. It
should be noted that all are treated with Prol and are assumed to be independent.

Table D.1 Summary of uncertain inputs for GSA with parameters for reproducibility.

domain general Information scipy parameters

parameter Unit | Type®  distribution Bounds loc scale shape
design

D : drag reduction [%] E  uniform [6.0,8.6] - - -

D5, : mass increase [kg] E  uniform [384,1104] - - -

D3 : SFC penalty [%] E  gen. normal [0.73,1.73] 1213 0.424 10.137
operation

O : cruise mach [-] A gen. normal [0.79,0.85] 0.819 0.0140 1.4023

O, : extra cont. fuel® [-] E  uniform [0,1] - - -

Os3 : load factor [-] E  gen. logistics [0.66,0.90] 0.835 0.0158 0.3968
environment

& :insect contamin.¥  [-] E  normal [0,1] 05 0.1667 -

&, : cdloud encounter [-] A exponential [0,0.6] 25e-6  0.093 -
economic

M : fuel priceS [-] A skewnormal [0,1] 019  0.390 2.6

Mp : maint. increase  [$/yr] E  nagasaki [14k, 82k] 14,060 29,626 0.8955

M3 : price increase [$] E  nagasaki [300k,2.1M] | 311,033 800,129 1.0467
E: epistemic, A: aleatory; Tsee Eqn. (4.22); Fsee Eqn. (4.23); Ssee Eqn. (4.27).
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This part of the Appendix offers supplemental information on topic from Chapter 5, covering
aspects such as the PCE-based surrogate model of LYFE, biographies of the interviewed experts,
and a brief description of the investigated quasi-random sampling schemes.

E.1 Polynomial Chaos Expansion for LYFE

As it was discussed in Section 5.4.4, quantifying the uncertainty with evidence theory requires
a very large number of executions to be conclusive. With more than 250,000 runs for a con-
verged result, neither the original lifecycle model LYFE, nor its mechanistic surrogate FastLYFE
allow an uncertainty-enabled simulation with reasonable execution times. To mitigate this, an
analytical PCE-based surrogate model was developed, whose execution time is a fraction of
that of FastLYFE.

General Considerations

Creating a PCE-based surrogate for a computationally expensive model can be done in multiple
ways. For the creation of LYFE’s PCE surrogate model, the regression-based non-intrusive
technique is used due to its simplicity. Code E.1 shows a minimal example with the Ishigami
function' (lines 7 and 8) introduced earlier as the original model. Note that the majority of the
underlying PCE algorithms is provided by the imported chaospy package (line 1).

The overall process is as follows. After defining the number of samples (n = 10,000 in this
example, line 11) and the polynomial order (p = 5, line 12), the input distributions are defined
(lines 16-18). Here, x1 and x; are selected to be uncertain, following a normal and uniform
distribution, respectively.The third parameter, x3, is fixed at 7/s. Afterwards, the joint distri-
bution | of x1 and x; is created (line 19) and sampled from (line 23). These samples are then
fed to the original model while recording the outputs y (lines 24-26). Using the polynomial
order p and the joint distribution |, the polynomial basis for the PCE is then generated (line
30), for which the coefficients subsequently are determined using least squares regression (line
31), resulting in the surrogate model sm, which can be evaluated using the same syntax as the
original function.

PCE Surrogate

For the LYFE surrogates, the original model comprises two runs of LYFE, one with the reference
case, and one with the laminar aircraft, resulting in one scalar output for each KPI, i.e., Anjgye
and ANPV. Hence, two surrogate models are created, one for each KPI. The uncertain input
parameters are the same as those in the GSA performed in Chapter 4 (see Table D.1 on page 173).
The MCS was fed with 32,768 samples, which are used, in combination with the MCS outputs,
to generate the surrogate model. The polynomial order p was varied from 2 to 6 and finally
selected to be p = 3 as this order had the lowest Root Mean Square Error (RMSE) in the test
data?.

A qualitative perspective on the accuracy of the surrogate model is shown in Fig. E.1, where the
predicted data (i.e., generated by the surrogate model) is plotted over the observed data (i.e.,
generated by LYFE). Fig. E.1 (a) shows that the surrogate model seems to both overestimate and

! The function was proposed by Ishigami et al. in 1990 and was designed to have a highly non-linear, non-monotonic response,
making it useful for testing the performance of uncertainty quantification and sensitivity analysis methods.

280 % of the data were used to train the model and the remaining 20 % are used for the error estimation.



176 Appendix E: Supplemental Information for Chapter 5

Code E.1 Minimal example for creating a PCE-based surrogate

import chaospy as cp
import numpy as np

# Step 0: Preparatory Work

# Defining the model (which is the Ishigami function in this example)
def blackboxmodel (x1, x2, x3):
return np.sin(xl) + 7*(np.sin(x2))**2 + (0.3%x3%*4)*np.sin(x1l)

# Setting up further parameters
n = 10000 # Number of samples to create
p=>5 # polynomial order

e

X1 = cp.Normal (mu=0, sigma=np.pi/3) # first uncertain variable
X2 = cp.Uniform(-np.pi, np.pi/3) # second uncertain variable
X3 = np.pi/4 # this is fixed

J = cp.J(X1, X2) # joint distribution

# Step 2: Running the Monte-Carlo Simulation
#
samples = J.sample(rule=’'sobol’, size=n) # Generate samples
y = np.zeros(n)
for idx in range(n):
y[idx] = blackboxmodel (samples[®, idx], samples[1l, idx], X3)

# Step 3: Create the polynomial basis and determine the coefficients

#

expansion = cp.generate_expansion(order=p, dist=]) # Cenerate expansion
sm = cp.fit_regression(expansion, samples, y)

# Evaluate output exemplarily
print(sm(np.pi/8, -np.pi/2, X3)) # prints 7.36
print(blackboxmodel (np.pi/8, -np.pi/2, X3)) # prints 7.43

underestimate the Ay values, leading to a RMSE of 0.128 %. The ANPV surrogate model
shown in Fig. E.1 (b) has a similar, albeit slightly better performance with a RMSE of $ 157k.
In conclusion, neither surrogate model is perfect, but considering the significant reduction in
computational runtime, their errors are accepted for the studies in this Chapter. Note that
this prediction error is not included in the overall UQ effort, as commonly done in most PCE

applications [178].
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Figure E.1 Results of the PCE-based surrogate model (predicted on the ordinate) vs. the original model

(observed on the abscissa).
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E.2 Interviewed Experts

Roger Taplin Roger Taplin began his career as a British Aircraft Corporation apprentice in
1964. He has extensive experience in system development, having worked on the Concorde
Engine Air Intake Control System, VAAC Harrier digital flight control system, A320 Gust Loads
Alleviation System, and A340/A330 airframe systems concepts and development. In 1987, he
became the UK Chief System Engineer and Head of the Aircraft Systems department. By 1993,
he was the UK Chief Engineer for FLA, later becoming the A400M Wing Chief Engineer. From
2006 to 2014, he served as the Senior Aircraft Architect - Wings, where he was responsible for
all aspects of wings, including leading future aircraft concept studies such as A3xx, which led
to Wing of Tomorrow research, ensuring the satisfactory integration of new projects like A320
Sharklet wing tip device, A350, and BLADE — laminar flow test aircraft using A340 MSN 1,
conducting architectural assessments of all wing research studies including Laminar Flow drag
reduction, and leading task forces investigating wing and landing gear in-service problems.

Heinz Hansen Heinz Hansen received his scientific education at the University of Bochum
and the RWTH Aachen, where he graduated as a Diplom-Ingenieur in Aeronautics. He worked
for nearly 35 years at Airbus in the field of Flight Physics and Research and Technology,
contributing to various aircraft projects with a focus on aerodynamic design, wind tunnel, and
flight testing. For nearly 20 years, he specialized in laminar flow technology, participating in
numerous national and European research projects. During his last eight years at Airbus, he
led all laminar flow and riblet research activities within the internal project TOP-Low Drag
Aircraft. Hansen is the inventor of several patents and the author of many publications,
recognized as an authority on laminar flow. Since his retirement in 2018, he remains very
active in various technology topics.

Thomas Kilian Thomas Kilian has been a scientific employee at the DLR Institute of Aerody-
namics and Flow Technology since 2010, focusing on aerodynamic research with a significant
emphasis on maintaining laminar flow and exploring HLFC structures and concepts. Since
2016, he has concentrated on novel HLFC designs, enhancing the aerodynamic efficiency of
aircraft. His contributions span various national and European projects, such as those under
the Clean Sky 2 initiative, aimed at developing environmentally friendly and fuel-efficient
aircraft technologies. Kilian’s work includes the development of tubeless suction systems and
inductive heating for HLFC systems, crucial for reducing drag and improving fuel efficiency
in long-range passenger aircraft. His expertise in both experimental and numerical meth-
ods has been showcased in numerous national and international conferences, making him a
well-regarded figure in the field of advanced aerodynamics.

Alexander Bismark Alexander Bismark is a System Engineer with a research focus on the
assessment and design of various innovative aircraft systems at an early development stage.
In 2018, he became involved in the Clean Sky 2 projects dealing with HLFC and was mainly
responsible for the suction system development, from evaluating solution candidates to the
specific component design and testing. Moreover, he was the focal point for technical discus-
sions at the overall project level in HLFC-Win.

Tim Effing Since early 2018, Tim Effing has been employed as a scientific assistant at the
Institute of Aerospace Systems at RWTH Aachen, a position he held until the end of April
2024. He has been researching HLFC for a total of six years, with the last three years focusing
on the combination of HLFC & variable camber, which is also the subject of his dissertation to be
submitted in 2024. He is a project partner in the LuFo V-3 project AVACON (Advanced Aircraft
Concepts) and project leader in the German LuFo VI-1 project CATeW (Coupled Aerodynamic
Technologies for Aircraft Wings). His research primarily evaluates the potential of individual
and combined technologies at the aircraft pre-design level.
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E.3 Investigated Sampling Schemes

Exploration and analysis of complex datasets in the fields of data science and statistics require
careful consideration of sampling techniques. The selection of suitable sampling schemes plays
a crucial role in obtaining representative samples at smaller sample sizes, thereby potentially
improving convergence behavior. This Section provides a concise overview of a variety of
sampling strategies commonly used in data science and engineering. Random sampling,
Latin-Hypercube sampling, Sobol sequence sampling, additive recursion sampling, Halton
sampling, and Hammersley sampling are among the sampling methods discussed. Each of
these techniques provides distinct strategies for systematically selecting samples from the
data space, thereby ensuring exhaustive coverage and minimizing biases. Understanding the
advantages and disadvantages of these sampling schemes is essential for practitioners to make
informed decisions about their sampling methodologies, thereby facilitating robust analysis
and inference in a variety of applications.

Random Sampling Scheme

Random sampling is a widely used approach in which samples are selected randomly from the
entire parameter space. This technique is simple to implement and provides a representative
sampling of the design space. However, since the samples are chosen randomly, there is a
possibility of clustering or sparse distribution of samples, which may not efficiently explore
the entire design space.

Latin-Hypercube Sampling Scheme

Latin-hypercube sampling is a stratified sampling technique that ensures a more even distri-
bution of samples across the parameter space. It partitions the design space into equally sized
intervals and randomly selects one sample from each interval. This method reduces the clus-
tering effect and enhances the coverage of the design space, making it suitable for exploring
multi-dimensional problems.

Sobol Sequence Sampling Scheme

The Sobol sequence sampling scheme employs low-discrepancy quasi-random numbers to
generate samples. It is designed to provide a more even distribution of points throughout
the parameter space compared to random sampling. The Sobol sequence is a deterministic
sequence that exhibits low discrepancy properties, ensuring a better coverage of the design
space with fewer samples.

Additive Recursion Sampling Scheme

The additive recursion sampling scheme is another method based on quasi-random numbers.
It involves using a series of arithmetic operations to generate a sequence of points that fills the
parameter space in a uniform manner. By iteratively adding different offsets to the initial seed
point, the resulting sequence exhibits a more regular distribution, minimizing clustering and
enhancing coverage.

Halton Sampling Scheme

The Halton sampling scheme is a deterministic quasi-random sampling technique that gen-
erates sequences of points based on prime numbers. It provides a more even distribution of
samples across the parameter space compared to random sampling. The Halton sequence uses
different prime numbers as bases for each dimension, resulting in an improved exploration of
the design space.
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Hammersley Sampling Scheme

The Hammersley sampling scheme is a stratified low-discrepancy technique that generates
points using a combination of a regular grid and the Van der Corput sequence. It is particu-
larly effective for sampling in higher dimensions. The Hammersley sequence ensures a more
uniform coverage of the design space compared to random sampling, reducing the clustering
effect and enhancing the accuracy of the sampling process.






F Supplemental Information for Chapter 6

This last part of the Appendix offers supplemental information regarding the matrices for
uncertainty combination as discussed in Chapter 6.

F.1 Matrices for Belief-Based Uncertainty Combination

In Section 6.2, the DSTE-based method for uncertainty combination was introduced. The
nested MCS, illustrated in Fig. 6.2, samples the epistemic uncertainties in the inner loop and
the aleatory samples in the outer loop. Each iteration then executes the LYFE surrogate with one
set of epistemic and aleatory parameters, resulting in one vy, 4 J value for ANPV and Aygyel.

Once both loops are finished, the outputs are structured in a matrix as shown in Eqn.(6.1),
which is then used to calculate the CCXF collectives.

In order to shed more light on the matrix creation and CCXF derivation, this Section illustrates
these steps using a simplified example. Consider the following model:

y=flar,a,€1,€2,€63) =a1 +2a2 —€1+€2-€3 . (F.1)

Here, it is assumed that a; and a; are aleatory uncertainties, while €1, €2, and €3 are of
epistemic nature. For simplicity reasons, all uncertainties in this example are modeled using a
uniform distribution. The respective bounds are as follows:

ay (aleatory): U (1,5)

ay (aleatory): U (0.5,2.5)
€1 (epistemic): U (0, 3)
€y (epistemic): U (0.1,1)
€3 (epistemic): U (1,4)

In the first step of the nested MCS, one aleatory sample set is created, resulting in one sample
vector for aq and one for a», each with N4 entries:

[2.498] 10.563]

4.803 1.773

. 3.928 . 1.129
1= and ap = (E.2)

11.432] 2.060 |

Next, the epistemic uncertainties €1, €3, and €3 are sampled, resulting in one sample vector
with Ng entries for each parameter:

1.926] 10.1477 [1.309]
0.252 0.578 3.708
- 0.485 - 0.587 - 2.516
1= , €= and €3 = . (F.3)

[0.256 [0.779] [3.959]
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Before executing the model, the aleatory and epistemic samples have to be combined. For the
first iteration (where 4; = a1 and ¢; = e1), the sample set is thus as follows:

Sgl,al = [a1,ap,€1,€p, €3] =[2.498,0.563,1.926,0.147,1.309] . (F4)
The resulting output for this sample set is
Yey,a; = 1.89 . (E.5)
The next execution of the model only foresees a change in the epistemic parameters, i.e., ¢; = e
while a; = a1, resulting in the second sample set and output value:

Sepay = L1, a2, €1, €2, €3] = [2.498,0.563,0.252, 0.578, 3.708] (F.6)
Yey,a, = 5.515 (E.7)

This is repeated until the predefined epistemic sample size NE is reached, which results in the
first column of the overall output matrix of Eqn. (6.1):

2.498 0.563 1926 0.147 1.309] [1.8907
2498 0.563 0.252 0.578 3.708 5.515
2498 0563 0485 0.587 2516 4.616
Sejar = | : : : | T Ve = (E8)
2498 0.563 0256 0.779 3.959] 6.452)

The second column of the output matrix is then obtained with a new aleatory sample set,
which is represented by the next iteration in the outer (aleatory) loop of the nested MCS. In
matrix notation, this is:

4803 1773 1.926 0.147 1.309] [ 6.615]
4803 1773 0252 0578 3.708 10.240
4803 1.773 0.485 0.587 2.516 9.341
Seiar = | . : : N e L (F9)
4803 1.773 0.256 0.779 3.959) 11.177]

Note how all values of a1 and a; are row-wise identical in Eqns. (E.8) and (F.9). This ensures
that the variation in each output column vy, 4, and y,, 4, represents the epistemic uncertainty.
This is necessary for the subsequent CCXF calculation, which calculates one CCBF, CCDF, and
CCPF for each column of the output matrix

1.890  6.615 4.452 ... 3.818]
5515 1024 8.077 --- 7.443
4616 9341 7178 - 6.544

y = (F.10)
6452 11177 9.014 --- 8.380]

The collection of CCBFs, denoted with yccpr, can be expressed as a matrix as well. It holds
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one CCBF in each column:

[1.000 1.000 1.000 --- 1.000]
1.000 1.000 0.972 --- 1.000
1.000 0.948 0972 --- 0.898
YCCBF = _ ' ' . _ (E.11)
[0.000  0.000 0.000 --- 0.000]

The collectives yccpr and yccpr are calculated in the same column-wise manner. The calcula-
tion of the percentiles, which are used to visualize the result of the DSTE-based combinatory
UQ, is performed by looping through yccxr from row to row and finding the respective per-
centile over all columns. This ensures that the distribution of percentiles reflects the aleatory
uncertainty, whereas the CCXFs themselves represent the epistemic uncertainty.

F.2 Matrices for Hybrid Uncertainty Combination

The hybrid-theoretic uncertainty combination, introduced in Section 6.3, also foresees a nested
MCS, as illustrated in Fig. 6.8. The creation of aleatory and epistemic samples and their
combination is identical to the previously described DSTE-based approach. Picking up the
example from Section F.1 and the resulting output matrix from Eqn. (F.10), the hybrid-theoretic
uncertainty combination proceeds to calculate the marginal average vectors as defined in
Eqgns. (6.7) and (6.8) as follows:

[1.890 6.615 4452 --- 3.818] [4.138]
5.515 10.240 8.077 --- 7.443 7.763
4.616 9.341 7178 ... 6.544 6.684
y=|" . . | =PEE| (F.12)
16.452 11.177 9.014 --- 8.380] 18.700]
=uys=[3499 8224 6061 --- 5427]" (F.13)

This representation shows how each entry in y 4 is calculated by averaging one column of y. As
y holds the aleatory variation from column to column, the vector y4 represents (epistemically
averaged) aleatory uncertainty. In a similar manner, the calculation of yg represents the
(aleatory averaged) epistemic uncertainty. By plotting y4 over yg, the scatter plots from
Figs. 6.9 and 6.10 can be obtained.
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