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A B S T R A C T

Open-porous materials are characterized by a complex morphology consisting of an interconnected solid
network and voids. The mechanical performance of these materials is strongly governed by their underlying
microstructure. This study presents a computational framework to investigate the structure–property relation-
ships in open-porous materials by explicitly modeling the effects of pore-size distribution (PSD), solid fraction,
and pore wall geometry. Microstructures with tunable PSDs are generated using Laguerre-Voronoi tessellation
based on random closed packing of polydisperse spheres, allowing precise control over pore morphology. A
finite element framework with the elastoplastic material model is used to study the macroscopic behavior
under compressive loading. The model response is validated against experimental data from aerogel and foam
materials. The study reveals that while the solid fraction alone governs the bulk elastic modulus and plastic
collapse stress through well-established scaling laws, the PSD critically affects the post-yield behavior, including
the plateau and densification regimes under large strains. This study highlights the importance of PSD beyond
classical density-based models and provides a predictive design strategy to tailor open-porous materials to
application-specific mechanical requirements.
1. Introduction

Due to depleting resources, rising cost of raw materials, and ad-
vancements in sustainability, reducing material consumption in au-
tomotive, aerospace, and machinery has become an ongoing chal-
lenge. Therefore, there is an increasing demand for the development
of lightweight and multifunctional innovative materials with enhanced
mechanical and thermal properties. One of the promising classes of
materials for light-weight design and multifunctional applications are
porous materials, which consist of an interconnected solid structure
surrounding a network of pores, offering high structural rigidity and
low mass density. While natural and synthetic open-porous materi-
als have been investigated for several decades, open-porous nano-
materials have seen a rise in advancements over the past decade.
Nanoporous materials typically have pore-sizes in the range of 2 to
100 nm and exhibit fascinating mechanical and thermal properties,
such as ultralow density, high energy absorption capacity, better ther-
mal management, and excellent durability under dynamic loading con-
ditions (Thommes and Schlumberger, 2021; Merillas et al., 2022).
Typical examples of nanoporous solids are zeolites, activated carbon,
metal–organic frameworks and aerogels (Polarz and Smarsly, 2002).
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In recent decades, research on the synthesis, characterization, func-
tionalization, molecular modeling, and design of new and novel nano-
porous materials has witnessed an exponential rise due to their increas-
ing demand in a wide spectrum of applications (Davis, 2002; Kelly,
2006; Smith et al., 2012; Bennett et al., 2021; Ates et al., 2022). Porous
materials can be synthesized using various fabrication techniques such
as foaming, precipitation, solid state reaction (usually performed at
high temperature), sol–gel, hydrothermal, and solvothermal synthesis
routes (Yang et al., 2017; Rechberger and Niederberger, 2017; Zhao
et al., 2018; Jin et al., 2019; Cai et al., 2021). By exploring differ-
ent materials to form the skeletal backbone for designing the solid
network with different pore morphologies, we can achieve a unique
and attractive combination of their mechanical and thermal properties.
The structure, pore-size and subsequently the pore fraction, specific
surface area and density of nanoporous materials could be tailored
using different fabrication techniques. To this end, the characterization
of the structure–property relationship of such materials is key to their
material design. They are typically characterized by two essential mi-
crostructural features, namely density and pore-size distribution (PSD).
Density is often interpreted in terms of the dimensionless quantity,
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termed relative density, which is the ratio of the envelope density
𝜌𝑒) to the skeletal density (𝜌𝑠). This is directly related to the solid

fraction (𝜙𝑠 = 𝜌𝑒∕𝜌𝑠) of the structure. The PSD characterizes the
relative abundance of each pore-size in a representative volume of
the material. Both microstructural parameters, 𝜙𝑠 and PSD, can be

easured experimentally using various characterization techniques.
Open-porous materials, including nanoporous types, are widely used

cross different fields such as energy absorbers in crash, scaffolds in
issue engineering, carrier materials for drugs, food packaging and
ther applications that demand a stable mechanical performance with

insulating properties. Some of these materials show brittle behavior
in tension and undergo elastoplastic deformation under large strains
in compression. On the other hand, there also exist highly flexible
materials that undergo large reversible deformations. Most tests on
cellular-like nanoporous materials are performed under compressive
loading, where significant energy absorption can be observed. Under
monotonic loading, the typical behavior of porous materials is char-
acterized by three major phenomena that give rise to the resulting
deformation zones: (a) a small elastic regime, where the pore walls
undergo elastic bending and buckling, followed by (b) a plateau regime
which results from plastic yielding and pore collapse, and (c) the
densification regime with a rapid increase in peak stress under a
considerably small increase in strain (Rege, 2021), where the collapsed
pores begin to densify resulting in hardening of the network. Under
yclic loading, open-porous materials show inelastic behavior with a
ysteresis cycle and residual deformations (Santos-Rosales et al., 2020).

The main challenge remains the correlation of the structural fea-
ures with the mechanical properties to enable reverse engineering
hrough optimization techniques. In comparison to trial-and-error lab-

oratory experiments, numerical modeling and computer simulation is a
cost- and resource-efficient method to study such structure–property re-
lationships. Gibson and Ashby (Gibson et al., 1982; Gibson and Ashby,
1982) expressed the mechanical properties such as Young’s modulus
and compressive strength in the form of power laws with respect
to the densities in porous materials. Besides, the micromechanically
motivated constitutive model recently developed by Rege et al. (2021)
as shown good predictive capabilities in describing the mechanical
ehavior of aerogel materials. While these models account for the PSD,
hey tend to ignore the heterogeneous morphology of the pore structure
n terms of its shape. The PSD solely describes the spatial variation of
he pore-sizes and has recently been shown to influence the mechanical
roperties of porous materials (Rege et al., 2021; Aney and Rege, 2023).

These open-porous materials can be designed computationally using
odels that inherit the most important geometric properties, such as

he solid fraction and the PSD. The most widely used computational
ethods for reconstructing the porous structure are Voronoi tessel-

ations. Kraynik (2006) as well as Ghosh and Moorthy (2004) have
demonstrated the application of 3-d Voronoi tessellations to describe
he porous architecture of foam-like materials. Several other authors
ave extended these studies and validated the use of Voronoi-based ap-
roaches to accurately describe the mechanical and thermal properties

of foam-like porous materials (Sotomayor and Tippur, 2014; Sharma
et al., 2019; Aney and Rege, 2025). Recently, with the aim of account-
ing for the polydispersity in the pore sizes, Chandrasekaran et al. (2021)
econstructed the 3-d nanoporous microstructure of biopolymer aero-
els using Laguerre-Voronoi tesselation (LVT) based on random closed
acking of polydisperse spheres (RCPPS). This model approach requires
SD and solid fraction to adequately represent the 3-d nanoporous

morphology of the material, while still proving to be accurate in
predicting the bulk macroscopic behavior.

While a few studies have demonstrated the application of elastoplas-
tic models within the Voronoi framework, to the best of our knowledge,
investigations on the influence of the geometric parameters on the
large deformation behavior, particularly the densification in open-
porous materials, have not yet been reported. The present work is
otivated by the larger goal of understanding the structure–property

2 
relations to guide and optimize the synthesis of open-porous materials.
This can be achieved by correlating the synthesis characteristics with
model parameters as shown in Rege et al. (2018). To this end, the
article presents the computational studies on the influence of different
geometric parameters on the bulk mechanical response under large
deformations using the framework proposed in Chandrasekaran et al.
(2021). The elastic and inelastic response of various open-porous struc-
tures with PSD based on different probability density functions (PDFs)
and different combinations of other geometric properties is studied.
Geometric properties that are interdependent and more sensitive to the
bulk response are identified.

2. Methods

This section discusses the method of determining the PSD for a given
choice of PDF, namely beta, log-normal or normal distribution. This
choice of PDFs is in line with experimental observations in polydisperse
nanoporous materials (Rege et al., 2016). In addition, an overview
of geometric and finite element (FE) modeling based on the given
probability is elaborated.

Generally, regardless of the experimental methodology, the PSD
is derived by stepwise determination of pore volume increments for
corresponding pore-width intervals. Accordingly, the sum of all the
pore volume increments represents the total pore volume. Since spher-
ical pores are assumed for the following study, the pore-width can be
expressed by the pore diameter 𝐷. The PSD is represented by a function
𝑃 (𝐷) proportional to the combined volume of all pores whose effective
pore diameter lies within an infinitesimal range centered on 𝐷. Hence,
the PSD can be obtained from the ratio of the pore volume increment
𝛥𝑉𝑖 for each pore-width 𝐷𝑖 and the total pore volume as

𝑃 (𝐷𝑖) =
𝛥𝑉𝑖

∑𝑛
𝑗=1 𝛥𝑉𝑗

, (1)

where 𝑛 is the total number of pore-width intervals.
The cumulative PSD (𝑃𝑐) can be obtained from the ratio of the

artial sums of the pore volume increment, i.e., that of the cumulative
pore volume to the total pore volume as

𝑃𝑐 (𝐷𝑖) =
∑𝑖

𝑘=1 𝛥𝑉𝑘
∑𝑛

𝑗=1 𝛥𝑉𝑗
. (2)

2.1. Determination of pore-size distribution (PSD) from probability density
function (PDF)

The equivalent PSD is determined from the PDF for a given set of
pore-diameter intervals 𝐷 and binwidth d𝐷. The set of pore-diameter
ntervals is represented as 𝐷 = {𝐷𝑖} with 𝑖 = 1, 2, 3,… , 𝑛.

The volume of each pore with diameter 𝐷𝑖 can be expressed by

𝑉𝑖 = 𝑓1(𝐷𝑖). (3)

Further, the number of pores with the diameter between 𝐷𝑖 and
𝐷𝑖 + d𝐷 takes the form

d𝑁𝑖 = 𝑁 𝑓2(𝐷𝑖)d𝐷 . (4)

where 𝑓2 is the probability density function and 𝑁 is the total number
of pores in a system.

The volume of all pores with the diameter between 𝐷𝑖 and 𝐷𝑖 + d𝐷
an thus be written as

d𝑉𝑖 = 𝑉𝑖d𝑁𝑖 = 𝑁 𝑓1(𝐷𝑖)𝑓2(𝐷𝑖)d𝐷 . (5)

The theoretical PSD can be obtained from the ratio of the volume
f all pores with diameters between 𝐷𝑖 and 𝐷𝑖 + d𝐷 to the total pore
olume in the system as

𝑃 (𝐷𝑖) =
d𝑉𝑖

∑𝑛 =
𝑓1(𝐷𝑖)𝑓2(𝐷𝑖)

∑𝑛 . (6)

𝑗=1 d𝑉𝑗 𝑗=1 𝑓1(𝐷𝑗 )𝑓2(𝐷𝑗 )
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Fig. 1. Comparison between the PDF and PSD for beta distribution with different
kewness: (a) & (b) Right-skewed (𝛼 < 𝛽), (c) & (d) Left-skewed (𝛼 > 𝛽), and (e)
 (f) Symmetric (𝛼 = 𝛽).

The theoretical cumulative PSD can be obtained from the ratio of
the sum of the volumes of all pores with a diameter up to 𝐷𝑖 to the
total volume of all pores in the system as

𝑃𝑐 (𝐷𝑖) =
∑𝑖

𝑘=1 d𝑉𝑘
∑𝑛

𝑗=1 d𝑉𝑗
=

∑𝑖
𝑘=1 𝑓1(𝐷𝑖)𝑓2(𝐷𝑖)

∑𝑛
𝑗=1 𝑓1(𝐷𝑗 )𝑓2(𝐷𝑗 )

. (7)

In order to solve Eq. (3) & (4), it is necessary to obtain the explicit
functions 𝑓1 and 𝑓2, which depend on the geometrical type of the pore

odel as follows.

• For a spherical type pore model, 𝑓1(𝑑) = 𝜋
6 𝑑

3, where 𝑑 is the
diameter of the spherical pore.

• For a cylindrical type pore model, 𝑓1(𝑑) = 𝜋
4 𝑙 𝑑2, where 𝑑 is the

diameter and 𝑙 is the length of the cylindrical pore.
• For the beta distribution,
𝑓2(𝑥) = 𝛤 (𝛼+𝛽)

𝛤 (𝛼)𝛤 (𝛽) ⋅ 𝑥
𝛼−1 ⋅ (1 − 𝑥)𝛽−1, where

- 𝑥 is the pore diameter in the interval [0, 1],
- 𝛼 and 𝛽 are the shape parameters,
- 𝛤 is a gamma function.

• For the normal distribution,

𝑓2(𝑥) = 1
𝑠
√

2𝜋
𝑒−

1
2

(

𝑥−𝜇
𝑠

)2

, where

- 𝑥 is the pore diameter, i.e., 𝑥 ∈ R,
- 𝜇 is the mean,
- 𝑠 is the standard deviation.

• For the log-normal distribution,

𝑓 (𝑥) = 1
√ 𝑒−

1
2

(

𝑙 𝑛𝑥−𝜇
𝑠

)2

, where
2 𝑥𝑠 2𝜋

3 
- 𝑥 is the pore diameter in the interval [0,+∞],
- 𝜇 is the mean of the natural logarithm of the variable in the

interval [−∞,+∞],
- 𝑠 standard deviation of the natural logarithm of the variable,

i.e., 𝑠 > 0.

The comparison between the probability density function and the
corresponding PSD is illustrated in Fig. 1 using a beta distribution for
different shape parameters 𝛼 and 𝛽 and assuming the pore shape to
e spherical. It is observed that the contribution of the larger pores is
ominant in the PSD, although the occurrence probability of the smaller
ores is higher. In Fig. 1, a right-skewed PDF shows a symmetric PSD,

and a symmetric PDF shows a left-skewed PSD. Thus, one should not
isinterpret PSD as PDF and vice versa. This can lead to completely
ifferent analysis and interpretation.

2.2. Modeling of the open-porous network

This section discusses the geometric and finite element (FE) model-
ing of the porous structure using symmetric beta PDF with 𝛼 = 5 & 𝛽 = 5
hereafter referred to as reference PDF). A computational model of a
orous structure with highly dispersed pore-sizes can be created using a
andom closed packing of polydisperse spheres (RCPPS) and Laguerre-
oronoi tessellation (LVT). This combined technique has been shown to
e a powerful method to computationally generate and model porous
aterials (Chandrasekaran et al., 2021).

2.2.1. Geometric modeling
In the modeling of porous structures, the following geometric prop-

rties have to be considered: porosity/solid fraction/relative density
nd PSD, which are the essential input parameters for the generation of
he microstructure. In general, Voronoi tessellation is capable of repre-
enting the microstructure of porous materials with an interconnected
etwork structure. However, it limits the control over the PSD due to

the randomized spatial distribution of seed points in 3-d space and the
eneration of cell boundaries equidistant between seed points. LVT is

a weighted version of Voronoi tessellations, where the pore-sizes can
be controlled by defining specific weights for each seed. The resulting
position of the seed in the 3-d space and the corresponding weights
required for LVT are provided by RCPPS as sphere centers and radii,
respectively. Consequently, a periodic 3-d structure capturing a partic-
ular PSD with an interconnected solid network is generated. Although
LVT is initially performed under the assumption of spherical pores as a
consequence of the RCPPS algorithm, the resulting pore shapes within
the generated microstructure exhibit irregular geometries. In addition
to the PSD, a microstructure model with a given solid fraction can be
obtained by defining appropriate cross-sectional properties to the cell
walls of the Voronoi structure.

In this study, the cell walls of the porous structure are assumed to
be cylindrical. Consequently, an appropriate cell wall diameter (CWD)
must be determined to obtain the desired solid fraction. This can
be achieved by using one of the following approaches: (1) Constant
diameter (CD) approach: a constant CWD is defined throughout the
structure to maintain a constant porosity throughout the model. (2)
Diameter distribution (DD) approach: a distinct diameter is assigned
to each cell wall, ensuring a constant porosity for each individual pore
within the structure. The CD method provides a structure with distinct
porosity for each pore but has a constant CWD throughout. In contrast,
the latter method provides a structure with constant porosity at the
pore level, but a distinct CWD (for more details see Chandrasekaran
et al., 2021).

The generation of a computational microstructure model with pore
sizes ranging from 5 to 100 nm and a porosity of 95% (𝜙𝑠 = 0.05)
or the reference PDF is illustrated in Fig. 2. Based on the desired PSD

(Fig. 2(a)) and the total number of pores (N) in the porous system,
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Fig. 2. Model workflow using RCPPS and LVT: (a) Desired PSD corresponding to reference PDF for N=3000 (b) RCPPS, (c) LVT, (d) Microstructure model, and (e) Comparison
of desired PSD with the PSD of resulting microstructure model, (f) CWD for a given solid fraction of 0.05, illustrating CD (mean) and DD (histogram) approaches.
the size of the packing domain is determined and provided as input
to the sphere packing algorithm. The coordinates of the centers and
the corresponding radii of the packed spheres are then given as input
to the LVT algorithm (Fig. 2(b)). LVT based on RCPPS is illustrated
in Fig. 2(c). The microstructure model with the desired properties is
shown in Fig. 2(d). The PSD of the generated structure is compared to
the desired input PSD, shown as a histogram in Fig. 2(e). For the given
solid fraction of 0.05, the distribution of CWD determined using the
DD approach and the average CWD obtained using the CD approach
are presented in Fig. 2(f).

2.2.2. FE modeling
The Voronoi diagram generated in the geometric modeling is trans-

formed into a cubic representative volume element (RVE) with periodic
boundary conditions (PBCs) as described in Chandrasekaran et al.
(2021). The RVE, in conjunction with the PBCs, allows the computation
of the homogenized macroscopic response of the material. An example
of the RVE of the microstructure model shown in Fig. 2(d), with PBCs,
is presented in Fig. 3(a). The cell walls of the Voronoi network are dis-
cretized using Hughes–Liu beam elements with circular cross sections.
The cross-sectional diameter obtained from the geometric modeling is
assigned to the beam elements. A comprehensive description of the
RVE generation process can be found in Chandrasekaran et al. (2021).
The behavior of the cell walls is modeled using a bilinear elastoplastic
material model, as shown in Fig. 3(b). The input parameters for the
material model include Young’s modulus (𝐸 = 4.5 GPa), yield stress
(𝜎𝑦 = 0.1 GPa), and tangent modulus (Etan = 1.0 GPa). The automatic
general contact algorithm is used to model the beam-to-beam contact
to capture the interaction between cell walls. The model is subjected
to monotonic and cyclic compressive loading, and the simulations are
performed using the LS-DYNA implicit solver.

3. Results

This section presents the macroscopic response of the microstructure
model (RVE) under compression, considering different PSDs, CWDs,
and solid fractions.
4 
3.1. Macroscopic response

The RVE of the microstructure, shown in Fig. 3(a), was subjected to
cyclic compression up to 70% strain. The corresponding stress–strain
response is presented in Fig. 3(c). Contour plots of the von Mises
effective stress distribution at 35% and 70% compressive strains are
illustrated in Fig. 3(d). The results demonstrate that the RVE model
captures both the elastic and inelastic behavior typically observed
in such materials (Santos-Rosales et al., 2020). Under compression,
the energy is absorbed by the structure as the pore walls (Fig. 3(e))
undergo buckling and bending (Fig. 3(f)). In addition, once the cell
walls buckle or bend elastically, the pores begin to collapse, resulting
in a plateau in the stress–strain diagram. Subsequently, the collapsed
pores resist further deformation due to lack of available space, referred
to as densification (Fig. 3(g)). In Fig. 3(c), the linear regime is denoted
by the modulus 𝐸, and the point where the pore walls undergo plastic
deformation is marked as 𝜎𝑝𝑙. Under cyclic loading, the model exhibits
behavior similar to the Mullins effect observed in elastomers, character-
ized by stress softening between the first and subsequent loading, along
with a small hysteresis (i.e., the stress softening between the unloading
and reloading of the subsequent cycle). The model also captures the
permanent set due to the irreversible damage in the microstructure.

The model predictions were validated against experimental data for
cellulose aerogels, polyethylene, and aluminium alloy foams available
in the literature (Gibson and Ashby, 1999; McCullough et al., 1999;
Rege, 2021). To this end, a microstructure model with uniform PSD
was generated. The model parameters, specifically 𝜌𝑠, 𝐸𝑠 and 𝜎𝑦, were
extracted from literatures (Jones and Ashby, 2018; McCullough et al.,
1999; Rege, 2021) and summarized in Table 1. 𝐸𝑡𝑎𝑛 was obtained by
fitting to the experimental data, and a contact thickness scaling factor
between 2 and 3 was used to more accurately capture the densification
phase. Fig. 4 shows excellent agreement with experimental results un-
der monotonic and cyclic loading. This confirms that the computational
model effectively predicts the macroscopic response of real foam and
aerogel materials.



R. Chandrasekaran et al. International Journal of Solids and Structures 319 (2025) 113441 
Fig. 3. Illustration of (a) RVE with PBCs, (b) stress–strain diagram of the elastoplastic material model, (c) macroscopic stress–strain response under monotonic and cyclic compressive
loading, (d) Von-Misses stress distribution under compression, and illustration of the cell wall behavior due to deformation: (e) undeformed cell, (f) bending and buckling of cell
walls, and (g) contact between cell walls after cell collapse.
Table 1
Model parameters for validation.

Materials 𝜌𝑒 𝜌𝑠 𝜙𝑠 𝐸 𝜎𝑦 𝐸𝑡𝑎𝑛

Cellulose 3wt% 45 1500 0.03 12 0.35 8
Cellulose 5wt% 75 1500 0.05 12 0.35 8

Polyethylene 120 950 0.13 0.2 0.01 0.1
138 950 0.15 0.2 0.01 0.1

AlMg1Si0.6 650 2670 0.25 70 0.75 12
AlMg1Si10 650 2670 0.25 70 0.35 5

Units: 𝜌𝑒 and 𝜌𝑠 are in kg/m3, and 𝐸, 𝜎𝑦, and 𝐸𝑡𝑎𝑛 are in GPa.

3.2. Representativeness of RVE

In general, the RVE size should be large enough that any increase
in its volume is equally representative. On the other hand, minimizing
the RVE size is desired to make simulations more computationally
efficient. Therefore, the representativeness of an RVE is studied based
on the microstructural properties and the resulting effective mechanical
properties. For this purpose, the statistical descriptors of the PSD, such
as mean pore-width and pore-size range, are analyzed across different
RVE sizes. In addition, the CWD and effective macroscopic properties
are also evaluated accordingly. Based on this study, the most favorable
RVE size is selected. Thus, RVEs with 250, 500, 1000, 2000 and 3000
cells, are generated based on a symmetric and a right-skewed beta
PDF and a constant solid fraction of 0.05. The corresponding statistical
descriptors of the PSD of the structures are compared as shown in
Fig. 5(a) &(c).
5 
For the symmetric beta PDF (see Fig. 5(a)), with increasing number
of cells from 250 to 3000, the pore-width range changes from 21.32–
84.82 nm to 18.86–91.42 nm, while resulting in a constant mean
pore-width of 53.27±0.02 nm. For the right-skewed beta PDF (see
Fig. 5(c)), the pore-width range changes from 10.62–45.69 nm to 9.2–
65.26 nm in this case, but the calculated average CWD remains the
same regardless of the RVE size (refer to inner plot in Fig. 5(a) &(c)).
The variation in the elastic and inelastic response in Fig. 5(d) is due
to the 20% increase in the maximum pore-width (see Fig. 5(c)). From
Fig. 5(b) &(d), it is clear that the effective macroscopic response is
identical for converged statistical properties. Therefore, for the same
solid fraction and mean pore-size, as well as the same CWD, the
minimal representative size of the RVE is identified.

3.3. Influence of CWD

The average CWD for different pore-sizes in the structure, de-
termined using both CD and DD approaches (as explained in Sec-
tion 2.2.1), following reference PDF and solid fraction, is illustrated
in Fig. 5(e). In the DD approach, the CWD varies with the pore size,
whereas a constant CWD is defined to the entire structure in the CD
approach.

The bulk response of the structure with CWD, as determined using
both approaches, shows similar bulk elastic modulus (𝐸) and plastic
collapse stress (𝜎𝑝𝑙), but differs significantly beyond 𝜎𝑝𝑙, as shown in
Fig. 5(f). In particular, larger pore widths result in smaller CWD in
the CD approach, leading to stronger stress softening compared to the
DD approach (see Fig. 5(f)), as larger cells begin to deform earlier
under small strains. Furthermore, densification occurs earlier in the CD
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Fig. 4. Model validation against experimental results of (a) Cellulose aerogels, (b) polyethylene foams, (c) aluminium alloy foams, and (d) the cyclic response of AlMgSi0.6 with
𝑠 = 0.28, under compression.
l

a

Table 2
Properties of the microstructure following the reference PDF with different CWD.

CWD 𝜙𝑠 𝐸 𝜎𝑦 SEA
(nm) (MPa) (MPa) (kJ/kg)

4.0 0.032 02.86 0.15 08.47
4.5 0.040 04.42 0.20 12.74
5.0 0.050 06.42 0.28 18.34
5.5 0.060 08.92 0.40 25.30
6.0 0.071 12.00 0.51 34.05

approach because smaller cells have larger CWDs, causing the cell walls
to contact earlier after pore collapse. Accordingly, the densification
is more strongly influenced by the smaller cells. Therefore, although
the porosity of the structure remains the same, the CWD definition
influences the bulk response.

The influence of the constant CWD on the bulk response of the
structure is shown in Fig. 5(g). Accordingly, the solid fraction (𝜙𝑠)
ncreases with CWD, resulting in reduced porosity and stiffening of the

mechanical response. This trend is evident in Fig. 5(h) and (i), which
illustrate the variations in E, 𝜎𝑝𝑙 and specific energy absorption (SEA)
with 𝜙𝑠 (refer Table 2). Specifically, increasing CWD leads to higher 𝐸,
𝑝𝑙, and SEA (Goods et al., 1997), while shortening the span of plateau
egime and lowering the strain at which the densification begins. These
ffects are consistent with previous studies (Rege, 2021). Note that the
6 
residual deformation exhibits only a minor variation with increasing
CWD. Furthermore, the relationship between 𝐸 and 𝜙𝑠 follows a scaling
aw with an exponent of approximately 1.8, which is close to the

theoretical value of 2 predicted for open-cell foams (Gibson and Ashby,
1999). Similarly, 𝜎𝑝𝑙 scales with 𝜙𝑠 with an exponent of 1.48, consistent
with the findings by Gibson and Ashby (1999).

3.4. Influence of PSD

The PSD can vary based on different PDFs, each characterized by
different statistical properties, such as the mean and standard deviation.
It is important to study the influence of the PSD on the geomet-
ric parameters, such as solid fraction and CWD, as well as the bulk
mechanical response of the structure.

3.4.1. Varying mean pore-width
For a given distribution with a constant standard deviation, the

shape of the PSD remains unchanged. In this study, PSDs with constant
standard deviation and varying mean pore widths (40, 50, 60, and
70 nm) are compared using a normal distribution, as shown in Fig. 6(a).

Due to the symmetric nature of the normal PDF, the PSDs are
lso symmetric and have a similar shape. However, the pore-width

range (minimal and maximal values) shifts according to the selected
mean pore-width. As a consequence, the resulting CWD (for a given
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Fig. 5. Convergence study on the RVE size: (a) Pore-width with the average CWD in the subplot and (b) corresponding macroscopic response for symmetric beta PDF (𝛼 = 5,
= 5), (c) pore-width with the average CWD in the subplot and (d) resulting macroscopic response for right-skewed beta PDF (𝛼 = 2, 𝛽 = 10). Comparison of CD and DD approach:

(e) average CWD for each pore-width, and (f) bulk response of the structures. Influence of CWD and 𝜙𝑆 : (g) Bulk response (h) bulk stiffness and (i) plastic collapse stress of the
icrostructure subjected to compression.
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Table 3
Properties of the structures with PSDs in Fig. 6(a), where the standard deviation and
number of cells (N=1000) are held constant.

Pore Widtha Constant RVE 𝐸 SEA

Mean Min. Max. CWDa,b sizea (MPa) (kJ/kg)

40 22 58 3.615 332 7.07 11.20
50 32 68 4.462 410 7.10 11.19
60 42 78 5.315 490 7.15 11.22
70 52 88 6.175 570 7.12 11.25

a Unit of all the parameters is nm.
b A constant CWD is determined for all structures with a constant solid fraction of
.05.

solid fraction of 0.05) and RVE size increase proportionally with the
mean pore-width (refer Table 3). The bulk responses of the structures
under compressive loading and unloading are found to be similar, as
illustrated in Fig. 6(c). The macroscopic properties, 𝐸 (≈ 7.11 MPa),
𝜎𝑝𝑙 (≈ 0.3 MPa) and SEA (≈ 11.22 kJ/kg), remain consistent across all
distributions. This is because the PSDs are identical when normalized,
as shown in Fig. 6(b), resulting in the same CWD and RVE size. Con-
sequently, the geometric properties scale with pore-width, resulting in
similar bulk responses for structures with the same PSD shape and solid
 r

7 
Table 4
Properties of the structures with PSDs corresponding to Fig. 6(e), where the mean
pore-width and number of cells (N=1000) are held constant.

SD Pore Widtha Constant RVE 𝐸 SEA

Min. Max. CWDa,b Sizea (MPa) (kJ/kg)

10 26 81 4.82 440 6.60 11.44
15 21 88 5.03 455 6.55 10.85
20 17 98 5.49 490 6.52 10.41

a Unit of all the parameters is nm.
b A constant CWD is determined for all structures with a constant solid fraction of
.05.

fraction. This behavior extends the findings of Aney and Rege (Aney
and Rege, 2023), who demonstrated similar results in the linear elastic
egime, to larger deformations.

3.4.2. Varying shape of PSD
Different PSDs with constant mean pore-width and different stan-

ard deviation (SD) are investigated using a symmetric beta PDF. The
DFs with 𝛼 = 𝛽 = 10, 5, and 2, having SD = 10, 15, and 20,
espectively, and a constant mean pore-width of 53 nm, are shown
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Fig. 6. Comparison of (a) PSDs based on normal PDFs and (b) PSDs with pore-widths in normalized scale with different mean pore-widths and constant SD, (c) bulk responses
of microstructures with PSDs shown in (a), comparison of (d) beta PDFs and (e) PSDs corresponding to the PDFs with varying SD and constant mean pore-width, and (f) bulk
responses of microstructures with PSDs from (e).
in Fig. 6(d). The corresponding PSDs of the Voronoi structures are
depicted in Fig. 6(e) in comparison with the desired PSDs correspond-
ing to the PDFs in Fig. 6(d). As the standard deviation increases, the
pore-width range expands (refer Table 4), leading to a variation in
the shape of the PSDs. As a consequence, marginal differences in the
bulk response of the structures are observed beyond the elastic regime
(refer to Fig. 6(f)). 𝐸 in the elastic regime and 𝜎𝑝𝑙 remain identical, as
they share the same solid fraction. However, beyond the elastic regime,
softening response is observed as the standard deviation of the PDF
increases, despite an increase in the CWD. This behavior is attributed to
the shift in the PSD shape, where larger cells dominate more, deforming
earlier and contributing to the observed response. Note that the SEA
decreases with increasing SD (refer Table 4) and no significant change
is observed in the residual deformation during unloading.

3.4.3. Varying PSD with constant CWD
To study only the influence of the PSD, neglecting the effect of

the CWD on the bulk response, we compare here different PSDs using
normal and beta PDFs (denoted as PSD-1, 2 & 3) that result in a
structure with the same average CWD and solid fraction. The statistical
parameters of the three different PDFs, along with the corresponding
geometric properties of the resulting structures, are detailed in Table 5.
The PSDs and their corresponding cumulative PSDs are shown in
Fig. 7(a) &(b). All structures have an RVE size of 400 ± 10 nm, with
varying pore-width ranges, mean pore-widths, and standard deviations
(SDs), while maintaining an average CWD of 4.5 nm and a solid fraction
of 0.05.

The bulk mechanical response of these structures, depicted in
Fig. 7(c) & (d), exhibits noticeable differences. While the stiffness (𝐸 ≈
6 MPa) and the plastic collapse stress (𝜎𝑦 ≈ 0.3 MPa) remain unaffected
by all PSDs, variations in the plateau stress and the densification behav-
ior are observed. A detailed comparison of the PDFs and their statistical
properties indicates that structures with smaller mean pore-widths tend
to exhibit reduced plateau stress, contradicting previous findings by
Aney and Rege (Aney and Rege, 2023). However, an examination of
the cumulative PSDs in Fig. 7(b) reveals that PSD-3, despite of a smaller
8 
Table 5
Geometric properties of the structures with PSDs corresponding to Fig. 7(a), and the
same average CWD of 4.5 nm and solid fraction of 0.05 with N=1000 cells.

PSD Pore width1 SD RVE

No. Input Mean Min. Max. Sizea

1 Normal 50 33 68 5.8 410
(𝜇=50, 𝑠=7)

2 Beta 50 28 70 7.3 410
(𝛼=17.6, 𝛽=20)

3 Normal 45 14 90 15 390
(𝜇=40, 𝑠=21)

a Unit of all the parameters is nm.

mean pore-width, includes a higher volume fraction of larger pores
compared to PSD-1 and PSD-2. This results in a softened response for
PSD-3 beyond 10% strain due to the deformation of larger cells. In
addition, the greater volume contribution of smaller pores below the
mean pore-width in PSD-3 leads to earlier densification compared to
PSD-1 and PSD-2. Although PSD-1 and PSD-2 have identical mean pore
widths, the different shapes of their PSDs — due to the varying standard
deviations — significantly affect the bulk response at strains above
10%. However, their effects on SEA (≈ 22 kJ/kg) and permanent set
during unloading remain minimal.

4. Discussion

The computational model representing the realistic pore morphol-
ogy of porous materials and capturing the important structural prop-
erties (PSD, solid fraction and pore wall thickness) is generated using
RCPPS and LVT (Chandrasekaran et al., 2021). The pore morphology of
the model is described by the PSD, which can be derived from the given
PDF as outlined in Section 2.1. The average CWD of the structure is
computed for a given solid fraction. Accordingly, RVEs of different sizes
that inherit the full range of the PSD exhibit similar bulk responses.
The smallest RVE size is identified through a convergence study of
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Fig. 7. Comparison of (a) PSDs and (b) cumulative PSDs of microstructure with similar CWD and different SD, bulk response of the corresponding microstructures under (c)
monotonic and (d) cyclic compression loading, (e) cell wall behavior of a square-shaped unit cell subjected to tension along its diagonal at 0%, 25% and 50% strain, and (f) the
corresponding stress–strain response for different cell sizes.
Table 6
Geometric properties of square shaped cell with cell wall length (l) and
the same solid fraction.

Cell wall length (l) Cell width (√2𝑙) CWD (𝑑𝑓 )
(nm) (nm) (nm)

5 7.07 0.73
10 14.14 1.46
20 28.28 2.92

the effective geometric and mechanical properties of the structure.
The computational model effectively captures both elastic and inelastic
behavior typical for porous materials. The bulk elastic modulus and
plastic collapse stress of the RVE scale with the solid fraction, exhibit-
ing scaling exponents of 1.8 and 1.5, respectively. These exponents
agree well with the results of Gibson and Ashby (1982). The solid
fraction significantly influences the SEA and permanent set under cyclic
loading. In fact, the CWD and elastic modulus increase with the solid
fraction while decreasing the plateau regime and the compressive strain
at which densification occurs. The solid fraction is a dimensionless
quantity and can be conveniently used as a model parameter, allowing
the CWD to be calculated for a given RVE size by reverse engineering
as demonstrated in Chandrasekaran et al. (2021). In addition, the
method used to define the CWD — whether through the CD or DD
approach — also impacts the overall bulk response. Therefore, further
experimental investigation is needed to explore the true distribution
of CWD in real porous structures. For a constant solid fraction and
PSD with the same shape, the bulk response of the structure remains
similar at different scales. This is because the average CWD and RVE
sizes scale proportionally with the given pore-width interval and solid
fraction. This could be better explained with an example of an idealized
square-shaped cell, as first proposed in Rege et al. (2016).

For illustration we consider a square shape cell with different side
lengths (𝑙 = 5, 10 and 20 nm), but the same solid fraction. The
corresponding CWD (𝑑𝑓 ) with a circular cross-section are listed in
Table 6. Note that for a given solid fraction, the CWD is proportional
9 
to the cell width (diagonal of the square cell). The normal stress 𝜎 in
a square cell subjected to tension along its diagonal (Rege and Itskov,
2018) can be expressed as

𝜎(𝜆, 𝑙) = 𝐸(𝜆 − 1) sin𝜑
[

sin𝜑 +
3 cos𝜑𝑑𝑓

2𝑙

]

, (8)

where 𝜆 represents the stretch along the diagonal, 𝑙 is the side length,
𝜑 is the angle of a single cell wall relative to the horizontal axis, 𝑑𝑓
is the cross-sectional CWD. Since both 𝑑𝑓 and 𝑙 scale proportionally
(as shown in Table 6), the ratio 𝑑𝑓∕𝑙 remains constant, resulting in
the same normal stress for square cells of different sizes but the same
solid fraction and pore shape. To see the response of the square cell
at high strains, a FE simulation is carried out with a linear elastic
material. Fig. 7(e) shows the deformation behavior of a square-shaped
cell subjected to tension along its diagonal direction. From Fig. 7(f),
we can see that even at higher strains, the structure shows a similar
response.

In contrast, the structure with a different PSD, but the same average
CWD and solid fraction, significantly affects the bulk response. From
the cumulative PSDs and corresponding bulk responses, it is inferred
that the plateau regime in the stress–strain curve are influenced by
larger cells, while the densification behavior is governed by smaller
cells. This observation is consistent with the findings by Rege et al.
(2016) regarding the collapse of cells. For a given solid fraction, the
PSD has a minimal effect on SEA and permanent set.

5. Conclusion

In this study, the influence of various structural parameters, such as
PSD, solid fraction, and pore wall thickness, on the elastic and inelastic
behavior of cellular-like open-porous materials has been investigated
through a detailed computational modeling approach. For a better
understanding of the structure–property relationship, it is crucial to
focus on the PSD, rather than just the PDF. The results highlight that the
PSD and the solid fraction are the most significant geometric features
that determine the bulk mechanical response.
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The findings confirm that the solid fraction primarily dictates the
lastic modulus and plastic collapse stress, in accordance with es-
ablished scaling laws. Furthermore, notable effects on the specific
nergy absorption and residual deformation under cyclic loading were
bserved. In contrast, the PSD plays a critical role in shaping the non-
inear deformation behavior, particularly the plateau and densification
egimes. Note also that both PSD and solid fraction are dimensionless
uantities and therefore remain consistent across different length scales
from nano- to macroscale). On the other hand, dimensional parameters
uch as the CWD and RVE size are scale-dependent and derived from
he PSD and solid fraction, making them secondary descriptors of the
tructural performance.

When attempting to correlate the synthesis parameters with mate-
ial performance, it is essential to consider both PSD and solid frac-

tion. Although the computational framework in this study is based
n randomly shaped pores and cylindrical pore wall cross-sections,
he insights gained are not limited to this geometry. Thus, while the

study focuses on a specific configuration, it provides a broader under-
standing of the relationship between structural parameters and material
behavior that can be applied to other types of open-porous materials.
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