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 A B S T R A C T

To incorporate a high share of intermittent renewable sources in energy systems, energy system optimization 
models rely on weather and climate time series data. However, data for renewable energy sources often 
contains missing values due to sensor or transmission faults. This study evaluates various data imputation 
methods for minutely-resolved global horizontal irradiance, direct normal irradiance, and wind speed time 
series, with missingness ranging from two to ninety percent. Alongside standard statistical tests, a novel 
validation criterion is introduced by directly evaluating the impact of imputation methods on energy system 
modeling. While certain imputation methods demonstrate strong point-wise statistical accuracy, they do not 
necessarily preserve the underlying data distribution. The performance of these methods is strongly influenced 
by the type of time series and the missingness mechanism, either continuous gaps or randomly missing 
data points. In energy system optimization, multiple imputation by chained equations, 𝑘-nearest neighbors, 
linear interpolation, and simple moving average yield the best results, outperforming more sophisticated deep 
learning-based methods. Overall, 𝑘-nearest neighbors consistently outperformed the other approaches across 
all validation criteria. By comprehensively evaluating the statistical performance of imputation methods and 
their impact on energy system modeling, this study offers valuable insights for researchers and practitioners 
addressing missing data in energy system applications.
1. Introduction

The rise in energy demand and climate change threats has increased 
the need for renewable energy sources. This drives the system-wide in-
tegration of intermittent renewable sources into the electricity grid [1–
3]. Together with hydro energy, solar and wind energy are the most 
used renewable sources by total feed-in, relying on solar irradiance 
and wind speed, respectively. Therefore, accurate and reliable data 
on global horizontal irradiance (GHI), direct normal irradiance (DNI), 
and wind speed are crucial for the planning, design, and operation 
of renewable energy systems [4]. However, missing data can be a 
common issue in such datasets, which can be caused by various factors 
such as equipment failure, data transmission errors, and environmental 
conditions [5,6]. These missing data have a substantial impact on the 
accuracy and reliability of energy system models, which can result 
in sub-optimal decision-making and potential financial losses [7–9]. 
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Therefore, methods for data imputation have been extensively em-
ployed to fill in the gaps in datasets for wind speed and solar irradiance. 
These data imputation techniques help predict the missing values based 
on the information from the available data, thereby improving the 
accuracy and reliability of energy system modeling outcomes [8].

Several studies have considered data imputation methods in energy 
time series, as summarized in Fig.  1 and Appendix  A. Among these 
methods, classical imputation techniques based on the mean, mode, 
median, interpolation, or moving average are widely used and are 
often employed as benchmark methods, as pointed out by Lin and 
Tsai [10]. In addition to these, variant methods were proposed, such 
as the combination of linear interpolation (LI) and linear regression by 
Sánchez et al. [11]. Multiple imputation by chained equations (MICE) 
- although not extensively used in the energy field (see Fig.  1) - is 
a common technique in data imputation [8,12–17]. Machine learning 
plays a vital role in the development of more advanced methods 
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Fig. 1. Frequency of use in previous studies of various imputation techniques on time series of electricity consumption, wind speed, and solar irradiance.
of data imputation, such as 𝑘-nearest neighbors (KNN), generative 
adversarial networks (GAN), and many other techniques. KNN is the 
most widely used machine learning-based imputation method [10], 
and is often considered a benchmark [8,12,13,18–25]. Other machine 
learning techniques include linear regression [11,12,15,26,27], support 
vector machines [11,24,25,28], support vector regressors [21,26,29], 
and random forests [30]. In recent years, there has been a growing 
interest in neural network-based methods of data imputation. Kim 
et al. [31] used artificial neural networks (ANN) and random trees 
for rainfall data imputation. Garnier et al. [32] employed a feedfor-
ward ANN to solar radiation and indoor temperature data. Shukur 
et al. [33] proposed an autoregressive ANN for wind speed data im-
putation, while Rahman et al. [34] applied a deep recurrent neural 
network to electricity consumption data. A promising approach based 
on GAN was introduced by Goodfellow et al. [35]. GAN were primarily 
used for image generation but later adapted to imputation tasks with 
the generative adversarial imputation nets (GAIN) by Yoon et al. [36]. 
Variants of GAN developed for applications in the energy field include 
solarGAN by Zhang et al. [13] and the GAN by Khare et al. [23], both 
specifically designed for solar data imputation. Qu et al. [29] proposed 
ipGAN for wind speed data imputation. Further recent methods include 
multivariate time series imputation by Bülte et al. [18] and convo-
lutional denoising autoencoders (CAE) by Liguori et al. [19,37], in 
addition to ANN combined with encoder–decoder proposed by Centeno 
et al. [20], extreme gradient boosting by differential evolution of 
Başakin et al. [38], and convolutional neural networks combined with 
long short-term memory networks proposed by Hussain et al. [39].

Whether deep learning-based imputation methods can consistently 
outperform conventional approaches remains an open question, as 
prior studies have highlighted the limitations of more advanced tech-
niques [16,17]. The outcomes of such comparisons are highly depen-
dent on factors such as the data type, missingness mechanism, missing 
rates, and evaluation criteria. To date, no study has comprehensively 
assessed a broad range of imputation techniques for energy time series 
under different missingness scenarios, nor explicitly evaluated their 
impact on energy system modeling, an important gap that the present 
work aims to address.

In this study, we employ both conventional and more advanced 
imputation methods: mean, median, interpolations, moving averages, 
MICE, KNN, GAIN, and CAE. These methods are applied to impute 
high-resolution GHI, DNI, and wind speed time series. The resolution 
is defined as the time interval between two consecutive measurements. 
2 
Consequently, high-resolution time series are characterized by smaller 
time intervals. Missing data are generated under two missingness mech-
anisms, namely continuous gaps or randomly missing data points, with 
missing rates ranging from two to ninety percent. The resulting syn-
thetic data are compared to the original ones to evaluate the methods’ 
effectiveness. The accuracy of data obtained from different techniques 
is evaluated using statistical metrics and, for GHI data, energy system 
modeling. The statistical tests used to validate the methods include the 
root mean square error (RMSE) and the Kolmogorov–Smirnov (KS) test. 
While the statistical approaches compare the original and the imputed 
data based on the respective time series profile, the energy system mod-
eling quantifies the imputation techniques’ effectiveness by evaluating 
their accuracy when synthetic data are used to optimize a self-sufficient 
building energy system. The optimization problem is solved using both 
original and synthetic data, and the resulting outcomes - total system 
costs and installed capacity of components - are compared to measure 
the deviation between the values obtained from original data and those 
from the synthetic data.

This research offers a comprehensive assessment of imputation 
methods across diverse data types and missingness scenarios, including 
their impact on energy system optimization. By explicitly quantifying 
how different imputation techniques affect optimization outcomes and 
comparing these results with statistical metrics, this study provides a 
detailed evaluation of approaches for handling missing data in time 
series for energy system applications.

The remainder of the work is structured as follows: Section 2 
outlines our methodology, including the imputation methods, the data 
used in the experiments, and the selected validation criteria. In Sec-
tion 3 we discuss the results, while Section 4 presents our conclusions 
and suggests potential directions for future research.

2. Methodology

In the following sections, the applied imputation methods are de-
scribed (see Section 2.1), along with the data used in the experiments 
(see Section 2.2), and the validation methods, including the energy 
system model (see Section 2.3).

2.1. Applied imputation methods

In this study, we employ both conventional and more advanced 
imputation methods based on machine learning and deep learning, 
which are described in the following.
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The mean imputation replaces any missing data point 𝑌𝑡 with 
the mean value of available data, as in Eq. (1) [40]. 

𝑌𝑡 =
1
𝑛

𝑛
∑

𝑖=1
𝑌𝑖 (1)

where 𝑛 and 𝑌𝑖 are the total number of observations and the 
observation at time 𝑖, respectively.
The median imputation replaces any missing data point 𝑌𝑡 with 
the median value of available data, as in Eq. (2) [40]. 

𝑌𝑡 =
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⎪
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(2)

where 𝑛 is the total number of observations.
The linear interpolation (LI) assumes a linear relationship be-
tween pairs of consecutive available data points, as in Eq. (3) [41,
42]. 

𝑌𝑡 = 𝑌𝑡1 +
𝑌𝑡2 − 𝑌𝑡1
𝑡2 − 𝑡1

(𝑡 − 𝑡1) (3)

where 𝑡1 and 𝑌𝑡1  are the first coordinates, 𝑡2 and 𝑌𝑡2  are the second 
coordinates, 𝑡 is the missing data point to be interpolated, and 𝑌𝑡
is the interpolated value.
The cubic interpolation (CI) employs polynomial curves of de-
gree three to interpolate between pairs of consecutive available 
data points, as in Eq. (4) [41,42]. 
𝑌𝑡 = 𝑐1𝑡

3 + 𝑐2𝑡
2 + 𝑐3𝑡 + 𝑐4 (4)

Given four data points {𝑡0, 𝑌𝑡0}, {𝑡1, 𝑌𝑡1}, {𝑡2, 𝑌𝑡2}, and {𝑡3, 𝑌𝑡3}, the 
coefficients 𝑐1, 𝑐2, 𝑐3, and 𝑐4 are obtained. Due to its non-linearity, 
this method can produce outliers - both positive and negative - 
when there are large gaps in the data.
The simple moving average (SMA) computes the average of the 
available data points in a specified time window, as in Eq. (5) [43,
44]. 

𝑌𝑡 =
1
𝑘

𝑡−1
∑

𝑖=𝑡−𝑘
𝑌𝑖 (5)

where 𝑘 is the size of the time window and 𝑌𝑖 is the observation 
at time 𝑖, with 𝑖 ranging from 𝑡−𝑘 to 𝑡−1. The SMA helps reduce 
the impact of noise and can emphasize long-term patterns as 𝑘
increases.
The exponentially weighted moving average (EWMA) calcu-
lates a moving average by assigning varying weights to obser-
vations over time, giving more weight to recent observations 
and less to older ones [43]. The weights are determined by a 
parameter 𝛽, which ranges between 0 and 1. The values 𝑌𝑖 in 
Eq. (6) correspond to the observations being summed over time, 
with 𝑖 ranging from 1 to 𝑡 − 1. 

𝑌𝑡 =
𝑡−1
∑

𝑖=1
𝛽 (1 − 𝛽)𝑡−𝑖−1 𝑌𝑖 (6)

The autoregressive integrated moving average (ARIMA) for 
data imputation [45] consists of three key components: an autore-
gressive (AR), an integrated (I), and a moving average (MA) term. 
Together, these components determine the model order (𝑝, 𝑑, 𝑞), 
as shown in Eq. (7) [46]. The term I ensures the time series is 
stationary by replacing its values with differenced values of order 
𝑑, while the AR and MA terms incorporate the lagged 𝑝 data 
points and the lagged 𝑞 errors, respectively. The ARIMA (𝑝, 𝑑, 𝑞)
model predicts the 𝑑𝑡ℎ-order differenced 𝑌𝑡 using the 𝛼 and 𝜃
coefficients, which are estimated from the time series data. 
𝑌 ′
𝑡 = 𝐼 + 𝛼1𝑌

′
𝑡−1 +⋯ + 𝛼𝑝𝑌

′
𝑡−𝑝 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 +⋯ + 𝜃𝑞𝜀𝑡−𝑞 (7)

The multiple imputation by chained equations (MICE) em-
ploys variable correlations to estimate missing data using statis-
3 
tical models such as linear regression [47]. Initially, the missing 
values are imputed randomly or replaced with the mean value of 
available observations. Through iterative steps, the missing values 
are then imputed by leveraging correlations between variables 
until convergence is reached, resulting in a final dataset where 
all missing gaps are imputed.
The 𝒌-nearest neighbors (KNN) method is employed to impute 
missing data points by estimating them through their proximity 
to available observations, typically measured using the Euclidean 
distance [48]. After computing the distance between the missing 
data point and all available observations, the KNN formula in 
Eq. (8) is used to calculate the missing value 𝑌𝑡 by averaging the 
𝑘-nearest available observations 𝑌𝑖, with 𝑖 ranging from 1 to 𝑘. 

𝑌𝑡 =
1
𝑘

𝑘
∑

𝑖=1
𝑌𝑖 (8)

Goodfellow et al. [35] introduced the generative adversarial net-
works (GAN), a machine learning model in which two neural 
networks - the generator and the discriminator - engage in a 
minimax game. The generator network aims to generate data that 
mimics the distribution of a given dataset, while the discriminator 
network evaluates the authenticity of the generated data against 
the real data. Through iterative training, the generator refines 
its ability to generate synthetic data that is increasingly indis-
tinguishable from real data. The first adaptation of GAN for the 
task of missing data imputation was the generative adversarial 
imputation nets (GAIN) by Yoon et al. [36]. Numerous GAIN-
based techniques for imputing either wind or solar time series 
data have emerged in recent years [13,23,29]. Given the diverse 
nature of the data used in our experiments - both wind speed and 
solar irradiance - we apply the original GAIN proposed by Yoon 
et al. [36].
Convolutional denoising autoencoders (CAE) were used by 
Liguori et al. [19,37] to impute missing data in electricity con-
sumption time series. This model consists of an encoder–decoder 
pair designed to handle noisy input data. The encoder processes 
the noisy data through convolutional layers to extract significant 
pattern information. Afterwards, the decoder reconstructs the 
encoded data, removing noise and transforming the data back 
to its original size. Additionally, Liguori et al. [19] proposed an 
alternative approach that combines CAE with data augmentation 
(CAE + Aug) to reconstruct missing gaps in settings with limited 
data availability. Given the sufficiency of available data, we adopt 
the base CAE model, as data augmentation is not necessary.

2.2. Data

Three different types of time series are considered: GHI, DNI, and 
wind speed. The data used for imputation come from Milan (latitude: 
45.50, longitude: 9.16) for the year 2019, while the data from 2017 
and 2018 are used to train the supervised learning models. The solar 
irradiance data for GHI and DNI are available in the National Solar 
Radiation Database (NSRDB) [49].

2.2.1. Resolution
The resolution (or sampling rate) of a time series refers to the time 

interval between consecutive measurements and is crucial for capturing 
patterns in intermittent renewable energy time series data, thereby 
leading to more reliable results in energy system modeling [50]. How-
ever, as summarized in the table in Appendix  A and Fig.  2, the most 
commonly used resolution in previous studies is one hour, followed 
by one day and 15 min. Indeed, minutely resolution is rarely em-
ployed due to the unavailability of data [51]. This study focuses on 
minutely time series for more accurate sub-hourly modeling of the 
energy system, deriving high-resolution data from hourly data. Specif-
ically, solar irradiance hourly time series obtained from NSRDB are 
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Fig. 2. Frequency of use in previous studies of different resolutions, missing rates, and error metrics.
downscaled to minutely time series using a non-dimensional model 
developed to generate synthetic data [52,53]. This model applies non-
dimensionalization of solar irradiance and time - both stored in a 
database - to downscale GHI and DNI from hourly to minutely resolu-
tion. The hourly data to be downscaled are then parameterized to align 
with the database using clear-sky irradiance values and their variabil-
ity [51,54]. The wind speed data are simulated using CorRES [55,56], a 
time series simulation tool for variable renewable energy. The CorRES 
tool produces high-resolution renewable energy data from reanalyzed 
meteorological data and stochastic fluctuations [51].

2.2.2. Missingness
The extent of missing data significantly impacts imputation results 

because imputation methods rely on the available data to capture 
patterns and estimate the missing values. While most studies consider 
missing rates up to 30% (see Fig.  2), this research evaluates a broader 
range, from 2% to 90%, to assess the performance of imputation meth-
ods under varying levels of missingness severity. Two approaches are 
used to generate missing data, the example of which is illustrated in Fig. 
3. The first approach (hereinafter referred to as ‘‘continuously missing’’) 
randomly generates intervals of 360 to 4320 consecutive missing data 
points, corresponding to gaps ranging from six hours to three days. This 
approach mimics a real-world scenario where time is required for the 
maintenance of measurement equipment or to repair it after a fault. 
The second approach (hereinafter referred to as ‘‘randomly missing’’) 
randomly generates single missing data points instead of continuous 
intervals. The imputation considers both scenarios, enabling a compar-
ative analysis of the statistical validation results. Conversely, the energy 
system modeling problem only considers the first scenario, as it more 
closely reflects a real-world case of equipment failure or maintenance.

2.3. Validation

The effectiveness of imputation techniques is evaluated using the 
RMSE and the KS test as statistical metrics (see Section 2.3.1). Addi-
tionally, we introduce a novel validation criterion based on comparing 
the outcomes of an energy system optimization problem solved using 
both synthetic and original data (see Section 2.3.2).

2.3.1. Statistical metrics
As reported in Appendix  A and Fig.  2, the commonly used validation 

metrics are RMSE, mean absolute error (MAE), and the coefficient of 
determination (𝑅2). Other frequently adopted metrics are the mean 
absolute percentage error (MAPE), normalized root mean square error 
(NRMSE), mean square error (MSE), and mean relative error (MRE). 
Given the comparative nature of our study to previous studies, we em-
ploy RMSE to evaluate the point-to-point accuracy of imputation meth-
ods. In addition to point-wise performance evaluation, we apply the 
4 
KS test as a complementary statistical validation criterion. The KS test 
compares the distributions of the original and imputed data, providing 
a more comprehensive evaluation of imputation performance [51].

The RMSE, defined in Eq. (9), provides the square root of the 
mean squared differences between the original data points 𝑦𝑖 and the 
synthetic data points 𝑦𝑖, with 𝑖 ranging from 1 to the number of 
observations, 𝑛 [57]. 

RMSE =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1

(

𝑦𝑖 − 𝑦𝑖
)2 (9)

The KS test, defined in Eq. (10), measures the maximum absolute 
difference 𝐷 between the synthetic and original distributions [58]. 
𝐷 = max |𝐹𝑛(𝑥) − 𝐹 (𝑥)| (10)

where 𝐹𝑛(𝑥) and 𝐹 (𝑥) denote the empirical cumulative distribution 
functions of the synthetic and original samples, respectively. The KS 
test yields the KS statistic, representing the maximum difference be-
tween the cumulative distribution functions of the synthetic and origi-
nal data, and the corresponding 𝑝-value, indicating the likelihood that 
the two samples come from the same population.

2.3.2. Self-sufficient building model
The drive towards net-zero emissions and the declining costs of 

decentralized off-grid renewable energy systems have intensified the 
focus on renewable energy deployment, leading to a growing interest 
in energy autonomy at the residential level [2,60–62]. One proposed 
approach is the self-sufficient building, which is designed to gener-
ate energy from renewable sources to reduce its reliance on energy 
providers. As a result, there is heightened emphasis on residential 
energy autonomy, with self-sufficient homes playing a key role in con-
tributing to environmental sustainability [60,63]. In this study, a self-
sufficient building model introduced by Kotzur et al. [64], and further 
explored by Knosala et al. [59] and Omoyele et al. [50] is considered. 
This model integrates renewable energy sources (solar photovoltaics) 
and energy storage systems, combined with advanced energy manage-
ment strategies to optimize resource utilization. The model comprises 
an electricity grid, a hydrogen grid, and a heat grid, integrated to 
maximize the utilization of renewable energy and self-sufficiency (see 
Fig.  4).

Economic aspects of system components. The cost structure of the se-
lected components comprises initial capital expenditures (CAPEX) and 
fixed operational expenditures (OPEX), covering predictable expenses 
such as maintenance and scheduled repairs. The techno-economic data 
of the self-sufficient building, as detailed by Knosala et al. [59] - 
including both fixed and capacity-specific capital and operational ex-
penditures, along with technology lifetimes - are summarized in the 
table in Appendix  B.
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Fig. 3. One-day profile of a GHI minutely time series (Milan, July 7, 2019) with continuously (left) and randomly (right) missing data generation. Available data points are shown 

in blue, whereas missing data points are shown in gray.
Fig. 4. Self-sufficient building energy system model proposed by Knosala et al. [59]. The abbreviations LOHC and rSOC stand for liquid organic hydrogen carrier and reversible 
solid oxide cell, respectively.
Energy system optimization problem. The self-sufficient building ca-
pacity expansion optimization problem is formulated as a mixed-integer 
linear programming (MILP) problem. This MILP formulation defines 
technology selection, component sizing, and operational characteris-
tics. The total annualized costs (TAC) in Eq. (11) are minimized, where 
the annual economic interest rate, 𝑖, is assumed to be 3% over the 
component lifetime, 𝑛.1

TAC = CAPEX ×
(

𝑖
1 − (1 + 𝑖)−𝑛

+ OPEXrel

)

(11)

1 The operational expenditures (OPEXrel) are considered relative to the 
capital expenditures (CAPEX).
5 
The complete MILP formulation, as detailed by Refs. [50,65,66], is 
presented in Appendix  C. The energy system optimization problem is 
modeled using the ETHOS.FINE framework [67,68].

3. Results and discussion

The experiments are conducted on GHI, DNI, and wind speed data 
under the two different scenarios referred to as continuously missing 
and randomly missing, as described in Section 2.2.2. The original time 
series are corrupted by introducing missing data at percentages ranging 
from 2% to 90%, and are subsequently imputed using the methods 
described in Section 2.1. The statistical validation results of the 726 
experiments are discussed in Section 3.1. Finally, the imputed GHI data 
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Fig. 5. Statistical validation results of the applied imputation methods for missing rates ranging from 2% to 90% in global horizontal irradiance time series (see also the detailed 
table of results in Appendix  D). Results for the continuously missing scenario are shown on the left, while those for the randomly missing scenario are shown on the right.
from the continuously missing scenario are used in the self-sufficient 
building capacity expansion optimization problem. To quantify the 
impact of imputation on energy system modeling, we compute the 
percentage error between the results - namely TAC and capacities of 
photovoltaic (PV) modules, inverter, and battery - obtained from the 
synthetic data and those obtained from the original data, as outlined 
in Section 3.2.
6 
3.1. Time series imputation

The statistical validation results for the imputation methods applied 
to GHI, DNI, and wind speed data at different missing rates are shown 
in Figs.  5–7. The evaluation metrics are computed by comparing the 
imputed time series to the original ones. Note that the negative values 
generated, which lack physical interpretation, are replaced with zeros 
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Fig. 6. Statistical validation results of the applied imputation methods for missing rates ranging from 2% to 90% in direct normal irradiance time series (see also the detailed 
table of results in Appendix  D). Results for the continuously missing scenario are shown on the left, while those for the randomly missing scenario are shown on the right.
before validation. A detailed discussion of the RMSE and KS test results 
is provided below, while the complete numerical results are presented 
in the tables in Appendix  D.

RMSE
Continuously missing data. In GHI imputation (top-left plot of Fig. 

5), both KNN and MICE consistently yield the lowest RMSE over 
7 
the full range of missingness. Notably, KNN demonstrates optimal 
performance up to 50% of missing rate, after which MICE exhibits 
a comparable performance. CAE performs well at low missing rates 
(up to 10%), after which it alternates with GAIN, although the latter 
demonstrates variability. In DNI imputation (top-left plot of Fig.  6), 
the mean method yields the lowest RMSE at 2% missingness. As the 
missingness increases, KNN alternates with CAE in achieving the best 
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Fig. 7. Statistical validation results of the applied imputation methods for missing rates ranging from 2% to 90% in wind speed time series (see also the detailed table of results 
in Appendix  D). Results for the continuously missing scenario are shown on the left, while those for the randomly missing scenario are shown on the right.
performance, with both methods closely followed by MICE. In wind 
speed imputation (top-left plot of Fig.  7), mean imputation performs 
best at 2% missingness, while median imputation outperforms the other 
methods at 5% and 20%. At other missing rates, LI and CAE alternately 
achieve the best results. It is noteworthy that, in the continuously 
missing scenario discussed thus far, CI consistently yields the highest 
8 
RMSE values, falling outside the plot scale and thus not visible. This 

poor performance is attributed to the tendency of cubic interpolation 

to significantly deviate from the original values when interpolating over 

large continuous gaps, leading to substantial errors.
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Randomly missing data. The imputation results in the randomly 
missing scenario are significantly more regular than those in the con-
tinuously missing scenario across all three data types. Specifically, LI, 
CI, and EWMA consistently outperform the other methods (top-right 
plots of Figs.  5–7). LI achieves the best RMSE over the entire range 
of missingness in GHI imputation, while CI performs best at 2% miss-
ingness in DNI imputation. In wind speed imputation, CI outperforms 
the other methods up to 70% missingness, after which LI yields the 
best RMSE. EWMA follows closely behind LI and CI, outperforming CI 
at higher missing rates in GHI and DNI. It is observed that both LI 
and CI are effective in randomly missing scenarios, as they are able 
to effectively approximate the original time series by interpolating the 
(single) missing data points. Conversely, when employed to impute 
large continuous gaps in the data, these methods fail to capture the 
complex patterns characteristic of high-resolution time series, resulting 
in larger errors.
KS test

KS statistic. In both GHI and DNI imputation, across continuously 
and randomly missing data scenarios, the lowest KS statistic values 
are achieved by LI, CI, and KNN, though their relative performance 
varies depending on missingness scenario and data type. Notably, in 
GHI imputation under continuously missing data (bottom-left plot of 
Fig.  5), KNN yields the lowest KS statistic, followed by CI and LI. In 
DNI imputation under the same scenario (bottom-left plot of Fig.  6), 
the KS statistics of LI, CI, and KNN are found to be highly comparable, 
with CI demonstrating optimal performance from 40% missingness 
onwards and KNN exhibiting a sharp deviation at 90% missingness. 
Similar trends are observed for randomly missing data in GHI and 
DNI imputation (bottom-right plots of Fig.  5 and Fig.  6, respectively), 
where LI consistently outperforms the other methods, followed by KNN 
- except for an outlier at 70% missingness in DNI - and CI. In wind 
speed imputation under continuously missing data (bottom-left plot of 
Fig.  7), ARIMA performs best up to 10% missingness (matched by LI at 
2%), while at higher missing rates, LI and EWMA yield the lowest KS 
statistics. In the randomly missing scenario (bottom-right plot of Fig.  7), 
the KS statistics of LI, CI, and EWMA closely reflect the RMSE trends. It 
is noteworthy that CI yields low KS statistics despite having the highest 
RMSE values, indicating good distributional similarity in spite of large 
point-wise errors. Conversely, methods such as MICE and CAE, which 
achieve low RMSE values, underperform in preserving distributional 
similarity, as reflected in their KS statistics.

p-value. The significance level for the KS test 𝑝-value is set to 
0.05. This is the threshold above which the null hypothesis - that the 
synthetic data distribution does not significantly differ from the original 
data distribution - cannot be rejected. As outlined in Appendix  D, none 
of the evaluated methods exceeds this threshold in the continuously 
missing scenario. In contrast, for randomly missing data in GHI, LI 
and KNN yield p-values above the significance level for missing rates 
up to 50% and 2%, respectively. In DNI imputation, LI has a 𝑝-value 
above 0.05 up to 20%, while in wind speed imputation, LI, CI, EWMA, 
and ARIMA show p-values above 0.05 up to 80%, 80%, 40%, and 5%, 
respectively.

Overall, the best-performing methods based on RMSE in continu-
ously missing scenarios are MICE, KNN, and CAE, whereas LI, CI, and 
EWMA perform best in randomly missing scenarios. Regarding distri-
butional similarity measured by the KS test, LI, CI, and KNN yield the 
most favorable results in GHI and DNI imputation, while LI and EWMA 
perform best in wind speed imputation, alongside CI in the randomly 
missing case. A salient observation is that the more sophisticated meth-
ods (i.e., GAIN and CAE) do not outperform the simpler ones, contrary 
to expectations. However, similar results have been reported in the 
literature. Sun et al. [16] compared MICE with GAIN and variational 
autoencoders, concluding that deep learning-based methods often fail 
to outperform conventional imputation techniques. In their study, GAIN 
performed well only under specific missingness mechanisms, while 
9 
variational autoencoders were prone to mode collapse. They suggest 
that MICE may be preferable for small- to moderately-sized real-world 
datasets. Similarly, Wang et al. [17] demonstrated through simulations 
that MICE outperforms both GAIN and multiple imputation using de-
noising autoencoders, noting that deep learning-based approaches often 
generate highly unstable imputations. Furthermore, our results align 
with those of Liguori et al. [19], who used a similar experimental 
setup. Their study considered both missingness scenarios, missing rates 
ranging from 20% to 80%, and three electricity consumption datasets. 
In the continuously missing scenario, LI, KNN, and CAE alternately 
achieved the best RMSE, depending on the dataset and missing rate. 
In contrast, LI consistently outperformed KNN and CAE in imputing 
randomly missing data across all datasets. However, our study incorpo-
rates additional imputation methods and adopts a more comprehensive 
validation framework. As summarized in Fig.  2 and the table in Ap-
pendix  A, most previous studies predominantly rely on point-wise error 
metrics. Nevertheless, the observed discrepancies between RMSE and 
KS test outcomes highlight the importance of using both point-wise 
metrics and distribution-based measures to comprehensively assess the 
statistical performance of imputation methods. This dual approach 
allows for a more informed selection of imputation techniques tailored 
to specific use cases characterized by different data types, missingness 
scenarios, and missing rates.

3.2. Self-sufficient building optimization

The outcomes of the energy system modeling analysis are illustrated 
in Fig.  8. The results are grouped by missing rates (≤30%, >30%
and ≤60%, >60% and ≤90%) with percentage errors calculated as the 
average over all missing rates within each group. The baseline at zero 
represents the results obtained using original data, while the vertical 
bars represent the percentage deviations resulting from the use of 
imputed data. As expected, the magnitude of deviations increases with 
higher missing rates (from top to bottom in Fig.  8). This trend is 
most pronounced for methods such as median and ARIMA, whereas 
MICE and KNN show only modest increases, aligning with their RMSE 
performance and, in the case of KNN, KS statistic. It is noteworthy that 
methods exhibiting moderate performance in statistical validation, such 
as LI and SMA, demonstrate deviations similar to those observed in 
MICE and KNN. These findings highlight two salient points. Firstly, as 
anticipated, the missing rate can significantly impact the performance 
of imputation methods in energy system modeling, as demonstrated by 
the increasing deviations of median and ARIMA. Secondly, for missing 
rates up to 30% - the most commonly considered range in literature 
(see Fig.  2) - most methods perform similarly (with the exception of 
median, EWMA, and ARIMA). Notably, when missing rates are low, 
mean imputation - a very simple and interpretable method - achieves 
results that are comparable to those of more complex approaches. How-
ever, as the missingness increases, percentage errors rise significantly. 
Therefore, for low missing rates, simpler methods might be preferable 
to approximate missing gaps in time series for energy system modeling, 
particularly in contexts where high-quality training data for more ad-
vanced machine learning models are unavailable. Conversely, at higher 
missing rates, the selection of the most appropriate imputation method 
becomes crucial to prevent substantial under- or overestimation of 
component capacities and TAC. Among all the evaluated methods, KNN 
demonstrates the most consistent performance across the three valida-
tion metrics: best RMSE and KS statistic for GHI, and low deviations in 
energy system modeling over the full range of missingness.

While the self-sufficient building model used in this study provides 
a robust framework to evaluate the impact of imputation on energy 
system modeling, its specificity may limit the generalizability of the 
findings. Therefore, Appendix  E includes the validation results for a 
grid-connected variant of the same system, assuming a constant elec-
tricity price of 0.40 e/kWh. In this case - characterized by a reduced 
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Fig. 8. Percentage error in total annualized costs and component capacities in the self-sufficient building (off-grid system). Zero indicates the baseline corresponding to the results 
obtained using the original data, while the vertical bars represent the deviations resulting from imputed data. Results are grouped by missing rates (≤30%, >30% and ≤60%, >60%
and ≤90%), and the error values shown are group averages.
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contribution of renewable energy sources due to the availability of elec-
tricity from the grid - KNN confirms its strong performance, particularly 
under high missingness. To extend these insights and their applicability, 
future work could explore similar analyses using diverse energy system 
configurations and geographical locations.

4. Conclusions

This study examined the problem of data gaps in time series used 
for energy system modeling by applying and evaluating several impu-
tation techniques: mean, median, linear interpolation, cubic interpo-
lation, simple moving average, exponentially weighted moving aver-
age, autoregressive integrated moving average, multiple imputation by 
chained equations, 𝑘-nearest neighbors, generative adversarial impu-
tation nets, and convolutional denoising autoencoders. Two types of 
missingness were defined, namely continuous gaps (ranging from six 
hours to three days) and randomly missing single data points, with 
missing rates ranging from 2% to 90%. The analysis was conducted on 
global horizontal irradiance, direct normal irradiance, and wind speed 
time series. The imputation methods were evaluated using three vali-
dation criteria: the root mean square error, the Kolmogorov–Smirnov 
test, and the impact on a self-sufficient building capacity expansion 
optimization problem.

The results highlighted substantial differences in the statistical per-
formance of imputation methods across scenarios defined by missing-
ness type and data type. Moreover, discrepancies between the outcomes 
of the root mean square error and Kolmogorov–Smirnov test under-
scored the importance of using both point-wise and distributional 
error metrics. In continuously missing scenarios, the best-performing 
methods according to root mean square error were multiple imputation 
by chained equations, 𝑘-nearest neighbors, and convolutional denoising 
autoencoders, while linear and cubic interpolation and exponentially 
weighted moving average exhibited optimal performance in randomly 
missing scenarios. In terms of distributional similarity, linear interpo-
lation, cubic interpolation, and 𝑘-nearest neighbors performed best for 
global horizontal irradiance and direct normal irradiance, while lin-
ear interpolation and exponentially weighted moving average showed 
strong performance for wind speed, alongside cubic interpolation in 
the randomly missing case. Energy system modeling confirmed the 
strong performance of multiple imputation by chained equations and 
𝑘-nearest neighbors, and showed that simpler methods such as linear 
interpolation and simple moving average can achieve results compara-
ble to those of more advanced techniques. Overall, 𝑘-nearest neighbors 
emerged as the most consistently effective approach across the three 
validation criteria.

This work provides an explicit quantification of the impact of miss-
ing data imputation on energy system modeling, alongside a compre-
hensive evaluation of statistical performance across diverse imputation 
11 
methods and time series. However, the specificity of the case study may 
limit the generalizability of the findings. Future research could expand 
this analysis by considering energy systems in different geographical 
locations and incorporating diverse renewable energy sources. Interme-
diate missingness scenarios, including both continuously and randomly 
missing data within the same time series, could also be considered 
to investigate potential variations in the performance of the different 
techniques. Additionally, the evaluation of emerging state-of-the-art 
methods, such as transformers or generative AI-based imputation, could 
provide valuable insights into their effectiveness in filling data gaps 
in time series for energy system modeling. Evaluating the impact of 
these techniques on the optimal sizing and operation of system com-
ponents could foster the integration of renewable energy sources in 
future energy systems, contributing to the attainment of climate and 
environmental goals.
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Appendix A. Literature review

Reviewed studies categorized by year of publication, authors, ap-
plication domain, proposed imputation method, comparative methods, 
solution approach, missing rates, data resolution, and error metrics (see 
Tables  A.1 and A.2).
Table A.1
List of abbreviations used in Table  A.2.
 List of abbreviations
 AD Adaptive boosting MASE Mean absolute scaled error  
 AE Absolute error/Autoencoder MBE Mean bias error  
 AE-CD Autoencoder - coordinate descent MFA Mixture factor analysis  
 ANN Artificial neural network MGEL-ELM Meta-learning extreme learning machine optimized with 
 ANNEM Artificial neural network estimation method golden eagle optimization and logistic map  
 AR-ANN Autoregressive artificial neural network MICE Multiple imputation by chained equations  
 ARIMA Autoregressive integrated moving average MIDA Multiple imputation using denoising autoencoders  
 ARMA Autoregressive moving average MIDWM Modified inverse distance weighting method  
 Aug Augmentation ML Machine learning imputation algorithm  
 AVG Average algorithm MLP Multi-layer perceptron  
 AvgNRMSE Average normalized root mean square error MLP-AVG Ensemble model adopting the average of subnetworks  
 BN Bayesian network MLPNN Multi-layer perceptron neural network  
 BPNN Back-propagation neural network MLP-S Single multi-layer perceptron  
 BRITS Bidirectional recurrent imputation for time series MLR Multiple linear regression  
 CAE Convolutional denoising autoencoder neural network MPCA Multilinear principal component analysis  
 (continued on next page)
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Table A.1 (continued).
 List of abbreviations
 CBRi Case-based reasoning imputation MRD Maximum rank distance  
 CCWM Coefficient of correlation weighting method MRE Mean relative error  
 CD Correlation dimension MSE Mean square error  
 CI Cubic interpolation MVTSI Multivariate time series imputation  
 CNN Convolutional neural network NI Nearest interpolation  
 CRM Coefficient of residual mass NMSE Normalized mean square error  
 C-SpI Cubic spline interpolation N − N Nearest neighbor interpolation  
 CVMAE Coefficient of variation of the mean absolute error NN Neural network  
 CVME Coefficient of variation of the mean error NNWM Nearest neighbor distance weighting method  
 DAE Denoising autoencoder NR Normal ratio  
 DBN Deep belief network NRMSE Normalized root mean square error  
 DM Decision matrix NRWC Normal ratio weighted with correlations  
 DT-NN Decision tree neural network NSE Nash–Sutcliffe efficiency  
 𝑒 Percentage error OWA Optimally weighted average  
 eLAI Extended learning-based adaptive imputation method PCHIP Shape-preserving piecewise cubic hermite interpolating 
 EM Expectation maximization polynomial interpolation  
 EM-MCMC Expectation–maximization Monte Carlo Markov chain PPCA Probabilistic principal component analysis  
 FA Factor analysis 𝑅2 Coefficient of determination  
 FCNN Fully connected neural network rMAE Relative mean absolute error  
 FFSGAM Fixed functional set genetic algorithm method RMSD Root mean square deviation  
 FIR Fuzzy inductive reasoning RMSE Root mean square error  
 GAIN Generative adversarial imputation nets RNN Recurrent neural network  
 GAN Generative adversarial networks RNNWM Revised nearest neighbor weighting method  
 GBM Gradient boosting machine rRMSE Relative root mean square error  
 GRU Gated recurrent unit RT Regression tree  
 HA Historical average SAA Simple arithmetic average  
 H-S-A Hargreaves, Samani and Annandale method SAE-CD Sparse autoencoder - coordinate descent  
 IDWM Inverse distance weighting method SAME Same datetime interval averaged algorithm  
 IEWM Inverse exponential weighting method SASR Statistically adjusted solar radiation  
 KEM Kriging estimation method SC Seasonal component  
 KF Kalman filter SENet Softmax ensemble network  
 KGE Kling-Gupta efficiency SI Spline interpolation  
 KNN 𝑘-nearest neighbors SMA Simple moving average  
 LAI Learning-based adaptive imputation method sMAPE Symmetric mean absolute percentage error  
 LANN Local average of nearest neighbors SSA Singular spectrum analysis  
 LI Linear interpolation StI Stineman interpolation  
 LOCF Last observation carried forward SVM Support vector machine  
 LR Linear regression TBA Temperature-based approach  
 LSTM Long-short term memory TMMVAE Temporal multi-modal variational autoencoder  
 LSTM-BIT Deep learning and transfer learning-based method VGI Vector-autoregressive gaussian interpolation  
 MA Moving average WMAPE Weighted mean absolute percentage error  
 MAE Mean absolute error XGBoost Extreme gradient boosting  
 MAKIMA Modified Akima interpolation XGBoost-DE Extreme gradient boosting by differential evolution  
 MAPE Mean absolute percentage error ZERO Zero-replace algorithm  
 MARS Multivariate adaptive regression splines  
Table A.2
Literature review of studies on missing data imputation in time series for energy applications.
 Year Authors Application Proposed method Comparative methods Approach Missingness Resolution Err. metrics  
 2023 Bülte et al. [18] Energy data MVTSI LSTM, LOCF, KNN ML, Statistical 1%–23% 1 h MSE, MAE  
 2023 Boriratrit et al. [69] Solar irradiance SAME AVG, ZERO, ML ML, Statistical 20% 1 h RMSE, 

𝑝-value
 

 2023 Liguori et al. [19] Electricity
consumption

CAE + Aug CAE, RF, KNN, LI, Mean ML, Statistical 20%, 40%,
60%, 80%

15 min MAE, RMSE, 
NRMSE

 

 2023 Centeno et al. [20] Solar power ANN + 
Encoder-Decoder

Random Sample, Mean, Mode,
Median, EM, KNN, solarGAN

ML, Statistical 10%–90% 15 min WMAPE, 
RMSE, R2

 

 2023 Başakin et al. [38] Solar irradiance XGBoost-DE LI, SI, MARS, RF ML, Statistical 5%, 10%,
20%, 30%

24 h RMSE, R2

MAE, NSE, 
KGE

 

 2022 Phan et al. [12] Solar power RF-MICE ZERO, Mean, Median, Mode, LR, 
interpolation, MA, KNN, MICE, 
SC + Mean, SC + Median, SC + 
Mode, SC + Mean + LR, SC + 
Median + LR, SC + Mode + LR

ML, Statistical 37% 1 h RMSE  

 2022 Mohamad et al. [70] Solar irradiance – N-N, LI, C-SpI, PCHIP, MAKIMA,
StI, Bezier curve, SMA

ML, Statistical 10%–50% 5 min MAE, RMSE,
MIE, MBE

 

 2022 Hussain et al. [39] Electricity
consumption

CNN-LSTM CNN, LSTM ML N/A 24 h RMSE  

 (continued on next page)
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Table A.2 (continued).
 Year Authors Application Proposed 

method
Comparative methods Approach Missingness Resolution Err. metrics  

 2021 Denhard et al. [43] Solar irradiance – KF, LI, SI, StI, SMA, Linear 
weighted MA, Exponential 
weighted MA, LOCF, NOCF, 
Random sample

Statistical N/A 1 min,
30 min

RMSE, MAE, 
MBE

 

 2021 Zhang et al. [13] Solar power solarGAN Mean, LOCF, MF, KNN, MICE, 
GAIN, GAN-Z

ML, Statistical 10%–90% 1 h MSE  

 2021 Yelchuri et al. [71] Solar irradiance – KF, ARIMA, LI, SI, StI, SMA, 
Linear weighted MA, Exponential 
weighted MA

Statistical N/A 15 min MAE  

 2021 Shen et al. [72] Solar power TMMVAE Mean, GAIN, TMVAE, TVAE-Num, 
MMVAE

ML, Statistical 10%–90% 30 min AvgNRMSE  

 2021 Flores et al. [73] Solar irradiance CBRi2 CBRi, LANN, ARIMA ML, Statistical 10%, 20%,
30%

24 h RMSE, MAE,
MAPE, R2

 

 2021 Jeong et al. [5] Electricity
consumption

MFA Mean, LI, MA, BRITS, PPCA, FA, 
MPCA

ML, Statistical 10%–50% 15 min RMSE, 
CV(RES)

 

 2021 Liu et al. [14] Wind turbines
(SCADA)

SAE-CD Mean, MIDA, GAIN, AE-CD, MICE ML, Statistical N/A 10 s NRMSE  

 2021 Ho et al. [74] Solar irradiance ANN – ML N/A 5 min RMSE  
 2021 Wang et al. [21] Electricity

consumption
– KNN, SVR, MLP, LI, ARIMA ML, Statistical N/A 1 min MAPE  

 2020 Qu et al. [29] Wind speed ipGAN ARMA, BPNN, SVR, DBN, CNN, 
DAE

ML, Statistical N/A 10 min MAE, MSE,
NRMSE

 

 2020 Lindig et al. [75] Solar irradiance – Isotropic, Klucher, Hay-Davies, 
Reindl, King, Perez, RF, Extra 
trees, Gradient boosting, 
Histogram-based gradient 
boosting

ML, Statistical 20% 15 min RMSE  

 2020 Park et al. [22] Fault detection
(PV fleet)

– AR, Simple regression, Multiple 
regression, KNN

ML, Statistical N/A 1 h NRMSE  

 2020 Khare et al. [23] Solar irradiance GAN Mean, KNN ML, Statistical 14%, 16%,
18%

24 h MSE, RMSE,
R2

 

 2020 Ma et al. [24] Electricity
consumption

LSTM-BIT Mean, LI, KNN, SVM, RF, FCNN, 
RNN, LSTM

ML, Statistical 10%–90% 15 min RMSE, R2  

 2020 Zhao et al. [76] Electricity
consumption

Intelligent 
electricity 
data 
imputation 
method

Transaction imputation method,
Arithmetic average method

Statistical N/A 24 h Standard 
error

 

 2020 Khan et al. [11] Electricity
consumption

Machine 
learning-
based hybrid 
ensemble 
model

– ML 20% 1 h MAE, R2  

 2020 Chen et al. [25] Solar irradiance DT-NN 
interpolation

NN, DT-NN, ARMA, SVM, 
Weighted KNN

ML, Statistical 34% 1 h MAE, RMSE  

 2020 Li et al. [77] Electricity
consumption

BPNN – ML N/A 1 h Relative error 

 2020 Jung et al. [26] Electricity
consumption

SENet + MLP LR, AD, SVR, GBM, XGBoost, RF, 
MLP-S, CNN, RNN, MLP-AVG, 
SENet + CNN, SENet + RNN

ML 10%–30% 1 h MAPE, RMSE  

 2019 Kim et al. [8] Solar power – LI, Mode, KNN, MICE ML, Statistical 10%, 15%,
20%

1 h RMSE, MRE,
RMSD, MRD

 

 2018 Demirhan et al. [40] Solar irradiance – Interpolation, KF, Persistence, 
Weighted MA, Mean, Mode, 
Median, Random sample, Seasonal 
decomposition, Seasonal splitting

Statistical 5%, 10%,
25%, 50%

1 min, 1 h, 
24 h, 1 wk

MASE, rMAE,
rRMSE

 

 2018 Sánchez et al. [78] Wind speed LI + LR CI, LI, LR, SVM, MLP, LI + SVM, 
LI + MLP

ML, Statistical 1.5% 10 min MAE  

 2018 Rahman et al. [34] Electricity
consumption

Deep RNN MLP ML 3% 1 h RMSE, 
Pearson 
coefficient

 

 2017 Layanun et al. [28] Solar irradiance SVM + Mean Interpolation, MA, Mean ML, Statistical 14% 1 h, 3 h MAE, RMSE  
 2017 Kim et al. [79] Electricity

consumption
LAI, eLAI LI, OWA, PPCA ML, Statistical 1%–30% 30 min MAPE, RMSE  

 2017 Jurado et al. [80] Electricity
consumption

Flexible FIR – ML 9%–81% 1 h NMSE,
sMAPE

 

 (continued on next page)
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Table A.2 (continued).
 Year Authors Application Proposed 

method
Comparative methods Approach Missingness Resolution Err. metrics  

 2016 Peppanen et al. [81] Electricity
consumption

OWA HA, LI Statistical N/A 15 min MAPE  

 2015 Zainudin et al. [41] Solar irradiance – LI, CI, NI, SI, Bezier/Said-Ball
(Piecewise interpolation)

Statistical 10%–50% 1 h RMSE, R2  

 2015 Shukur et al. [33] Wind speed AR-ANN LI, N-N, State space ML, Statistical 10%, 20%,
30%

24 h RMSE  

 2014 Turrado et al. [15] Solar irradiance MICE IDW, MLR Statistical 0%–1% 10 min RMSE, MAE  
 2014 Saaban et al. [82] Solar irradiance – LI, CI, NI, SI, Bezier/Said-Ball

(Piecewise interpolation)
Statistical 10%–50% 1 h RMSE, R2  

 2014 Kasam et al. [83] Temperature VGI – Statistical N/A 1 h Relative error 
 2014 Ogunsola et al. [84] Solar irradiance – SSA, SASR, TBA Statistical N/A 1 h CVMAE,

CVRMSE, 
CVME, R2

 

 2012 Garnier et al. [32] Solar irradiance, 
Indoor 
temperature

Feedforward 
ANN

– ML 2% 1 h MRE,
Weighted 
MRE

 

 2012 Yozgatligil et al. [85] Precipitation,
Temperature

– SAA, NR, NRWC, MLPNN, 
EM-MCMC

ML, Statistical 10%, 20%, 
50%

1 mo CVRMSE, CD  

 2011 Daut et al. [27] Solar irradiance,
Temperature

Hargreaves + 
LR

Hargreaves, LR Statistical 58% 1 mo RMSE, CRM,
NSE, 𝑒

 

 2010 Kim et al. [31] Precipitation ANN + RT ANN, RT ML 0%–2% 24 h RMSE, 
Pearson 
coefficient

 

 2009 Teegavarapu et al. [86] Precipitation FFSGAM IDWM, CCWM ML, Statistical N/A 24 h RMSE, MAE, 
AE, 
Correlation
coefficient

 

 2005 Teegavarapu et al. [87] Precipitation – IDWM, MIDWM, CCWM, IEWM, 
NNWM, RNNWM, ANNEM, KEM

ML, Statistical N/A 24 h MAE, MRE,
RMSE, R2

 

 2005 Jin et al. [88] Temperature Stochastic 
binning

– Statistical N/A 1 h MAPE  
Appendix B. Techno-economic data of the self-sufficient building
14 



C. Mantuano et al. Energy Conversion and Management 339 (2025) 119857 
Appendix C. Self-sufficient building capacity expansion optimization problem

The formulation of the self-sufficient building capacity expansion optimization problem is presented in (C.1 - C.10) using the notation described 
in the following table, as detailed in Refs. [50,65,66].

 Symbol Description  
 Sets
 𝑇 Time steps  
 𝑀 Components  
 𝐺 Commodities  
 𝑀 source Subset of components representing sources  
 𝑀 sink Subset of components representing sinks  
 𝑀 store Subset of components representing storage units  
 𝑀conv Subset of components representing conversion units  
 𝑀g Components associated with a commodity in 𝑔  
 Parameters
 𝐶CAPEX𝑐 Capital expenditures of component 𝑐  
 𝐶OPEX𝑐 Operational expenditures of component 𝑐  
 𝜂ch𝑐 Efficiency (charging) of storage unit 𝑐  
 𝜂dis𝑐 Efficiency (discharging) of storage unit 𝑐  
 𝛾𝑐 Conversion factor (from one commodity to another) of conversion unit 𝑐 
 Variables
 𝑥𝑐𝑎𝑝𝑐 Installed capacity of component 𝑐  
 𝑥𝑆𝑂𝐶

𝑐,𝑡 State of charge of storage unit 𝑐 at time 𝑡  
 𝑥𝑜𝑝𝑐,𝑡 Operation rate of component 𝑐 at time 𝑡  
 𝑥op,ch𝑐,𝑡 Operation rate (charging) of storage unit 𝑐 at time 𝑡  
 𝑥op,dis𝑐,𝑡 Operation rate (discharging) of storage unit 𝑐 at time 𝑡  
 𝑓𝑐,𝑡 Flow of commodity 𝑐 at time 𝑡  

min
(

∑

𝑐∈𝑀

(

𝐶CAPEX
𝑐 +

∑

𝑡∈𝑇
𝐶OPEX
𝑐 𝑥op𝑐,𝑡

))

(C.1)

s.t. ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇 :
∑

𝑐∈𝑀g
𝑓𝑐,𝑡 = 0 (C.2)

𝑓𝑐,𝑡 = 𝑥op𝑐,𝑡 ∀𝑐 ∈ 𝑀 source ∩𝑀g (C.3)

𝑓𝑐,𝑡 = −𝑥op𝑐,𝑡 ∀𝑐 ∈ 𝑀 sink ∩𝑀g (C.4)

𝑓𝑐,𝑡 = 𝛾𝑐𝑥
op
𝑐,𝑡 ∀𝑐 ∈ 𝑀conv ∩𝑀g (C.5)

𝑓𝑐,𝑡 = 𝑥op,dis𝑐,𝑡 − 𝑥op,ch𝑐,𝑡 ∀𝑐 ∈ 𝑀 store ∩𝑀g (C.6)
s.t. ∀𝑡 ∈ 𝑇 :

𝑥op𝑐,𝑡 ≥ 0 ∀𝑐 ∈ 𝑀 source, sink, conv, store (C.7)

𝑥op𝑐,𝑡 ≤ 𝑥cap𝑐 ∀𝑐 ∈ 𝑀 source, sink, conv (C.8)

𝑥SOC𝑐,𝑡+1 = 𝑥SOC𝑐,𝑡 + 𝜂ch𝑐 𝑥op, ch𝑐,𝑡 −
𝑥op, dis𝑐,𝑡

𝜂dis𝑐
∀𝑐 ∈ 𝑀 store (C.9)

0 ≤ 𝑥SOC𝑐,𝑡 ≤ 𝑥cap𝑐 ∀𝑐 ∈ 𝑀 store (C.10)
15 
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Appendix D. Imputation results

The RMSE values for all imputation methods, missing rates, and experimental settings are presented. The best results, relative to each 
experimental setting, are highlighted in green, the worst results in red, and intermediate results in white.
16 
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The KS test statistic values for all imputation methods, missing rates, and experimental settings are presented. The best results, relative to each 
experimental setting, are highlighted in green, the worst results in red, and intermediate results in white.
17 
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The KS test p-values for all imputation methods, missing rates, and experimental settings are presented. The best results, relative to each 
experimental setting, are highlighted in green.
18 
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Appendix E. Energy system modeling results for the grid-connected self-sufficient building

See Fig.  9. 

Fig. 9. Percentage error in total annualized costs and component capacities in the self-sufficient building (grid-connected system). Zero indicates the baseline corresponding to 
the results obtained using the original data, while the vertical bars represent the deviations resulting from imputed data. Results are grouped by missing rates (≤30%, >30% and 
≤60%, >60% and ≤90%), and the error values shown are group averages.
19 
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Data availability

Data will be made available on request.
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