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Abstract

The processing of biomedical signals in mobile sensing devices enables the continuous moni-

toring of health parameters for early detection of threatening arrhythmia in the population through

convenient wearable devices, such as smartwatches. The design of processing modules, which are

feasible in this resource-constrained environment, is subject to multiple constraints for their deploy-

ment in-field. High quality classification is desired for accurate detection to trigger treatment by

trained personnel. Robust classification beyond available training data is necessary to generalize

system feasibility across the general population. Low-power operation is necessary for long-term

screening for sparse features indicating abnormal health conditions. The co-optimization of neuro-

inspired algorithms on dedicated hardware shows the promise to address all desired specifications in

an application-specific device.

This work explores neuro-inspired concepts for low-power digital processing of biomedical sig-

nals. Artificial neural networks has shown superior classification capabilities in the machine learn-

ing domain. Using an artifical neural network as a baseline, a systematic design space exploration

methodology is applied to design an ECG classifier and co-optimize the system from the algorithm

level down to a hardware design for ultra-low power consumption and high classification quality.

Then, the system is extended with a domain generalization method for robust classification across

multiple datasets. The method is designed for direct integration into a pre-trained neural network

with low overhead regarding inference and training. At last, the temporal coding of information in

spikes is adopted from the human brain as a data processing mechanism for low power processing.

The investigated temporal coding method shows equivalent numerical values after processing with

reduced operations compared to conventional fixed-point arithmetic. In the end, the neuro-inspired

concepts show promising directions to improve specialized ANN hardware accelerators for biomedi-

cal signal processing both for low-power processing and robust high-quality classification.
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1

Chapter 1

Introduction

Futuristic scenarios in science fiction envision high cognitive abilities in compact form factor. One

example is an exoskeleton armor, the so-called “Iron Man Suit”, which possesses the capability to

monitor the health parameter of its wearer and the environment in real-time. The captured data, such

as blood toxicity or flight acceleration, are analyzed instantaneously for accurate interpretation and

corresponding reaction. Although this example describes an ideal system interaction in a fictitious

story, the core element of continuous data stream analysis in mobile devices is highly desirable in

many application fields, especially the domain of healthcare. In this case, the monitoring of vital

parameters enable automated detection of asymptomatic heart anomalies, such as atrial fibrillation

(AF) [1], and, potentially, save lives with early treatments by healthcare professionals. Recent studies

already aim to incorporate this functionality in wearable devices, e.g. smartwatches [2].

When we imagine the idealistic scenario of vital parameter monitoring, one essential component

to realize the desired cognitive ability is the data processing component. It receives data from sensors

and processes it into an interpretation of the data. The challenges involved with the design of such data

processing component for mobile devices usually revolve around two opposing targets: High QoS and

low power consumption [JL1]. One the one hand, high quality analysis require high complexity [3]

and, therefore, high power consumption. Low power devices, on the other hand, feature long device

operation, but are severely limited in terms of task complexity and quality [4]. Especially, biomedical

signal processing requires robustness for the classification algorithm, since distinctive features in

the data are very subtle and sensitive to noise. As the characteristic electrophysiological signal is

measured indirectly through surface potentials of the patients body [5], the variety of noise sources is

diverse and can impact data analysis significantly.
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ANN provide the capability to solve highly complex tasks. One prominent example is the clas-

sification of predefined and labeled datasets, in which it achieves remarkable performances even ex-

ceeding humans in several data domains, such as images [6] or ECG data [3]. Nevertheless these

state-of-the-art networks come with a significant cost. Best performing ANN models require massive

amounts of memory and computational resources in traditional hardware [7]. Based on the trends

over the last decade the computational requirements are increasing in an exponential rate [8]. In the

context of mobile ECG monitoring, this trend poses significant challenges on multiple abstraction

levels of the device design process. In essence, the design of the ANN model as well as the hardware

component performing its inference need to be rethought from scratch to provide “the best of both

worlds”.

To push the limits of state-of-the-art data processing components, the research field of Neuromor-

phic Computing draws inspiration from its biological reference - the human brain [9]. Optimized over

countless generations in evolution, the human brain is able to achieve cognitive tasks not yet in reach

for conventional computing systems, whilst only consuming little power [10]. Although the field of

neuromorphic computing started with the emulation of analog implementations of neural features in

silico [11], it evolved into a wider domain focusing on non-von Neumann computers with neuro-

inspired functions and structures [9]. In the context of vital parameter monitoring in mobile devices,

these neuro-inspired features promise to achieve both high QoS and low power consumption at the

same time. One prominent neuro-inspired principle is the communication with sparse activations, or

more specifically spikes [12]. SNNs embody the core feature of many state-of-the-art neuromorphic

systems on both a large and small scale [13]. While these systems face different challenges and target

different objectives, a major desired feature of spiking communication is the compact representation

of information. In the end, this representation is expected to provide the same information content

for less energy compared to traditional methods. For practical applications like ECG classification, a

SNN model can be acquired with different approaches.

To summarize, the continuous monitoring of biomedical signals with high diagnostic quality pose

a significant challenge for specialized hardware in mobile devices. Within this domain, neuro-inspired

concepts, such as neural networks and even more biologically inspired features, promise high quality

classification, which need to be fitted for real-time application case. In this application, the low data-

rate of the input signal compared to the clock frequency of modern digital circuits [14] introduces a

unique design constraint to be considered in the optimization process.
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1.1 Thesis Contributions

The target of this thesis is to answer the following research question:

What neuro-inspired concepts enable low-power digital processing of real-time, low data

rate signals?

First, a suitable application task, i.e. ECG classification is defined for exploration. Especially, the

prerequisites need to be clarified for a systematic selection and optimization of available methods. In

essence, the state-of-the-art design methodologies and evaluation methods are discussed in the con-

text of the target application (see Section 2). Then, the adapted design methodology and evaluation

method is applied in the design of an ANN accelerator. The co-design of the resulting ECG classi-

fication systems spans across multiple abstraction levels of a digital design flow. The design steps

include algorithm design, e.g. training and optimization of an ANN classifier, over the mapping to

hardware components in system level and RTL down to the structured placement of standard cells

(see Section 3). The ANN accelerator is used as a baseline to incorporate two features, which are

observed in a biologically plausible system. Firstly in Section 4, domain-invariant feature representa-

tions are incorporated into the ANN classification system. These are realized with hardware friendly

correction layers inserted into a pre-trained ANN, such that the features are aligned across domains

with low hardware overhead. Secondly in Section 5, the ANN classification system is converted into

an equivalent SNN. Its quality of the classification is undistinguishable to the fixed-point reference,

while the sparse activation representation as well as its corresponding temporal computation result in

less addition operations than the ANN baseline. In the end, this thesis shows that systematic selection

of neuro-inspired concepts can ensure high-quality classification, robust classification and low power

real-time processing of low data rate signals.
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Chapter 2

Prerequisites for Efficient Real-Time

Processing of Low Data Rate Streams

Considering the overarching research question from Section 1.1 the investigation needs to cover fol-

lowing items:

• Representative Application: The chosen application benchmark needs to reflect the expected

target features. A well fitting use case is ECG monitoring as it is commonly sampled with a

low data rate and benefits from the real-time processing in the digital domain. In Section 2.1,

the properties of ECG signals, the corresponding processing task and their benchmarking is

discussed in the context of recent literature.

• System Scope: The state-of-the-art in neuro-inspired concepts, especially neural networks,

exhibit different granularities of bio-plausible features as well as digital processing concepts.

To enable a structured exploration over existing and novel methods, the scope of the exploration

needs to be defined to a promising subset within a global application context. Section 2.2

discusses the suitability of ECG processing on the edge, in particular ANNs, as an effective

early warning system and design concepts, which target this setup for pre-processing on the

edge.

• Design and Evaluation Strategy: Despite an existing pool of valid methods, which can be

used for a design space exploration, a methodology is required to systematically select methods

to converge against high quality designs. Especially, the co-optimization of both algorithm

model and hardware requires design steps across multiple abstraction levels, which need to be

guided by application specific constraints. Section 2.3 outlines a methodology for design space
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exploration specialized for streaming input data and discusses an energy estimation policy for

ANN workloads.

2.1 Application Context of ECG Monitoring

An electrocardiogram (ECG) is a time-continuous signal representing the electrical activity from the

human heart and is used for the diagnosis of life-threatening heart conditions [15]. Surface potentials

on the skin are picked up over electrodes and the difference between two electrodes is measured over

time. These measurements are used to derive the electrical stimuli responsible for heart contraction.

Potential deviations from standard cardiac rhythms indicate abnormal function of the heart and, thus,

a cardiovascular disease (CVD).

2.1.1 Cardiac Electrophysiology
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(a) Pacemaker cells automatically generate stimuli for propaga-

tion in specialized conduction tissue to trigger the contraction of

the heart muscle sections in a specific order.

RA LA
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RA LA

LL

Lead I

Lead II Lead III

Einthoven's Triangle

(b) Position of electrodes for standard limb leads I

(LA → RA), II (LL → RA) and III (LL → LA)

Figure 2.1: Overview of cardiac stimuli for the heart and the first three ECG leads and

corresponding electrode positions at the extremities adapted from [15].

Figure 2.1 shows a minimal overview of cardiac electrophysiology. The heart muscle is automat-

ically stimulated by electrical signals generated by pacemaker cells and their spread through special

conduction tissue (see Fig. 2.1a). The resulting contraction of the heart muscle leads to blood pump-

ing through the cardiovascular system. A non-invasive method to capture these electrical stimuli is

to attach electrodes on the surface of the skin and derive directions between the attached electrodes,

i.e. leads. A standard ECG consists of 12 leads to capture the electrical propagation front from a

wide variety of angles and planes. The first three leads are visualized in Fig. 2.1b. In principle, they

capture three different angles within frontal plane of the human body. Since the propagation front of
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the electrophysiological signal is three dimensional, 12 leads should provide sufficient information

for analysis in all directions.

2.1.2 Mobile ECG Monitoring

Although the 12 lead ECG is preferable in a clinical setting for maximum amount of information,

it is not practical to realize in a mobile setting. An effort to develop wearable cardiac monitoring

devices started in the early 1950s, i.e. the Holter monitor [16], and still persist today to achieve the

“ultimate” monitoring device without restrictions for the wearer. While classical Holter monitors

consists of a recording device taped to the patient and attached to a reduced number of leads, modern

heart monitors even go down to single lead heart monitors. These feature different form factors and

user interfaces such as a heart patch [17], a smartwatch [2] or a dry electrode pair for fingers [18]. The

influence of the device form factor is even more pronounced in implantable cardiac monitoring (ICM)

devices [19].

As evident simply from the diverse set of device form factors, the setup to capture ECG data is

not always coherent. One example is the position of electrodes, which differs from device to device,

i.e. finger-to-finger vs. two adjacent patches. The variety of measurement setups is reflected in the

variety of ECG datasets in popular databases, such as PhysioBank [20]. Furthermore, external noise

is also influencing ECG data quality through e.g. baseline wander, power-line interference or muscle

artifacts [21]. Evidently, the influence of noise is more pronounced in a mobile application setting

than a stationary setup. As noise sources can be mitigated in a known environment, one challenge in

a mobile monitoring setting is the handling of noise in an unknown environment.

Since a variety of CVD is associated with characteristics within the ECG beat, it is essential to

distinguish those features from noise. In the continuous monitoring use case, the arrhythmia types

are typically asymptomatic, i.e. do not exhibit explicit symptoms. One of the most common cardiac

arrhythmia is AF. In 2023, the European Union is anticipated to have an estimated amount of 14-17

million people diagnosed with AF [1]. This trend is increasing every year and these patients are likely

to exhibit life-threatening diseases, which is often missed due to the lack of proper monitoring meth-

ods deployable in daily life. It has been shown that screening at-risk population with conventional

single-lead measurements is already cost-effective [1]. Further improvements in terms of coverage

of population can be achieved by automating the screening process using already prevalent wearable

devices.
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2.1.3 Application Scope of This Work

Within this work, the PhysioBank database, in specific datasets with AF as a classification task is

selected as a benchmark for the classification systems. For instance, the Computing in Cardiology

Challenge 2017 (CinC’17) [18] is chosen, since it features single lead measurements in a large-scale,

i.e. roughly 8500 samples, and comprises one of the largest collection of labeled AF data at its time

of creation. Further, it mimics a real-world conditions by using the commercially available AliveCor

device for classification with a special focus on AF detection. It is ideal as an application baseline as

it necessitates long-term ECG monitoring in a low-power mobile device. Not only is the detection of

AF complex due to its sparse sensitive features, but it also is a real-world problem highly relevant to

the general public. Further, it poses challenges in the algorithm-hardware co-design of the specialized

hardware to enable high quality processing capabilities on the edge.

2.2 Pre-processing on the Edge with ANNs

The co-design of digital processing modules requires both fine-tuned classification algorithms and

tailored hardware to satisfy objectives for both high-quality classification and low-power processing.

2.2.1 State-of-the-art ECG Classification Using ANNs

Classification with ANNs reaches back more than two decades starting with multi-layer percep-

trons (MLPs) [22], [23]. Publicly available datasets, such as the MIT-BIH Arrhythmia Database [24]

or CinC’17 [18] within the PhysioBank database [20], accelerated ANN research. In combination

with better access to better graphics processing unit (GPU) acceleration for training and supporting

machine learning frameworks, like PyTorch [25] and TensorFlow [26], a large variety of classifiers

emerged.

State-of-the-art ECG classification is summarized in various surveys, e.g. [27]–[29]. The prede-

cessors of ANN models are traditional machine learning approaches such as support vector machines,

decision trees/random forest, etc. Given well-selected expert features they already perform very well

on even complex datasets, such as CinC’17 [18]. Within early machine learning classification, simple

ANN models such as MLPs are also utilized, often for early ECG datasets, i.e. MIT-BIH arrhythmia,

or as a baseline for hardware implementations. One prominent type of an ANN is the convolutional

neural network (CNN). In the case of one dimensional temporal data, such as ECG, the network is

also often described as a TCN [30]. In general, many ANN topologies have been tested for ECG
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classification, such as recurrent neural networks (e.g. long-short term memory [31], gated recurrent

units [32] etc.), deep belief networks [33] and exotic archetypes with probabilistic features or fuzzy

logic [27]. The combination of different models is also common, further increasing the variety of

architectures.

The classification process is mainly split into two consecutive stages: data pre-processing and

the classification. The former deals with the extraction of relevant information in terms of features,

which include e.g. interesting frequency components in the signal or morphological features etc. [34].

Alternatively, the features are extracted using trained feature extractors along with the classifier [35].

The latter deals with the analysis of extracted features into the prediction of a label. This usually

involves a training process using labeled data from the benchmark dataset.

Figure 2.2: Example distribution of quality metrics for ECG classifiers derived from

references in [28].

In this process, the target metric is decisive to determine the quality of the classification task, i.e.

quality of service (QoS). Figure 2.2 shows an excerpt from the key performance indicator (KPI) of

recent ECG classifiers. While the performance of the classifiers is seemingly very high, not only the

data specifications vary in terms of above mentioned parameters, but also the classification task is

redefined. For instance, the tasks include user authentication, i.e. classifying patients, specific sets

of beat types, beat grouping schemes, i.e. ISO [36] or custom, or global labels for signal segments.

The consequence is that there are low complexity ANNs, which can solve low complexity tasks
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down to no error, and there are high complexity ANNs, which solve high complexity tasks with

larger error compared to the same metric. The metric usually revolve around derivations from the

confusion matrix, e.g. accuracy (Acc), sensitivity or recall (Sens), specificity (Spec), precision or

positive predictive value (Prec), F1 score or harmonic mean of precision and recall (F1). In the

exploration in Sections 3 to 5, the AF classification benchmarks are chosen as the target application,

as the corresponding datasets, e.g. the CinC’17, require more complicated models and are not yet

solvable with near perfect QoS. Thus, the resulting classifiers are expected to scale to realistic test

cases.

2.2.2 State-of-the-art Digital Processing of ECG Classifiers

Despite significant advances in the quality of ECG classifiers, the deployment of those classifiers on

edge devices, i.e. smartphone or wearable devices [37], is highly desirable. The motivation is clear:

security risks are inherent in the transmission of critical personal data, such as vital parameters, for

cloud processing [38]. Local data processing eliminates those security risks and also enables direct

and personalized feedback on your own device. Nevertheless, these edge devices are limited in terms

of battery capacity and their computational resources, since they are designed to be convenient in

daily life. Hence, the overall deployed system needs to adapt these advanced ECG classification

algorithms, i.a. ANN models, towards energy constrained devices and these devices need to consume

low power in a continuous operation mode.

When considering the options to realize the digital back-end of the ECG classification device,

the range of digital computing architectures is diverse. Conceptually, the architectures can be cate-

gorized in terms of flexibility and include, for instance, programmable processor architectures, field

programmable gate arrays (FPGAs) and application specific integrated circuits (ASICs).

State-of-the-art Edge Processing of ECG classifiers using General-Purpose Processors

For instance, Kim et al. uses a single instruction multiple data (SIMD) processor to execute the ECG

signal processing workload [39]. The algorithmic operations are translated into available instruc-

tions of the processor architecture, e.g. through a compiler. The degree of parallelism achieved is

dependent on the instruction set available. Typically the processor comprises a reduced instruction

set computer (RISC) architecture, such as an ARM processor [40], for less complex core logic and

specialized instruction set. The optimization of program code for the specific processor architecture
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is essential to reduce the latency and program memory. This software-hardware co-optimization pro-

cess already leads to highly efficient designs consuming power down to tenths of a microwatt [39],

[41] for low complexity ECG processing algorithms. Another method is to use the programmable

processor architecture on the edge to execute a reduced classification model resulting from the split

learning technique. For instance, Ayad et al. [42] uses the split learning technique to split an ANN

model into two separately inferrable models: a large model on the server and a small model on the

edge. NVIDIA Jetsons are used to deploy the reduced model on the client side. Figure 2.3 shows

Figure 2.3: System overview of ECG classifier with a modified split-learning mecha-

nism from [42].

the overall concept of the split learning mechanism. This concept allows to adjust the size of the

ANN model, which is inferred on the edge. The general quality of the classification remains high, as

intermediate features are transferred to the server side for further processing. From the perspective

of the client, the computational workload and the memory required to store the model is adjusted on

the algorithm level. The size of the resulting client side model after training will influence both the

memory consumption and the computational efficiency on the client processor. The deployment of

the model on the processor architecture is well supported ML frameworks like TensorFlow [26] and

PyTorch [25]. Further reductions is achieved through ANN model quantization from a floating-point

to fixed-point. It is shown that the energy consumption of one MAC operation is extremely reduced.

Taking a 32-bit floating-point number representation as a reference, the post-training quantization of

the ANN model can consume just 0.5 % of the original energy in 4-bit fixed-point executing other-

wise the same operation. However, a minor quality reduction needs to be tolerated due to the reduced

representable range of numbers.
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State-of-the-art Edge Processing of ECG classifiers using FPGAs

In contrast to programmable processor architectures, FPGAs are not limited to several processing

cores with a fixed hardware architecture. Instead, it consists of programmable logic blocks and in-

terconnects. During the design time the logic blocks and interconnect is configured with a hardware

description language (HDL). The circuit design can be designed to feature arbitrary logic level de-

signs within the available resources of the FPGA. In the case of ECG classification systems, Lu et al.

designed a CNN accelerator for ECG classification of MIT-BIH Arrhythmia Database [43], [44]. It

features dedicated weight, bias and activation memory and buffers as well as an array of processing

units. As logic optimizations are available, larger algorithm designs could be inferred with a larger

amount of parallel processing units, therefore achieving remarkable hardware resource efficiency of

up to 16.71 [44] GOPS/kLUT. Even though FPGAs are very powerful in the prototyping phase of

the hardware design, the reconfigurable hardware requires trade-offs in terms of available resources,

such as number of logic blocks, memory blocks, component sizing, power partitioning etc. Thus,

the utilization of available resources is key for the efficiency of the deployed system. For instance,

it is unlikely that all available resources are actually used for a specific design, as the FPGA is not

designed with specific architecture with specific amount of hardware modules in mind. In this case,

the idling components are still contributing to power consumption, e.g. through leakage, and, hence,

significantly influence the efficiency of the overall system.

State-of-the-art Edge Processing of ECG Classifiers using ASICs

In contrast to FPGA implementations, ASICs are intended to be task-specific instead of a general

purpose design. A HDL description is directly mapped to transistor layouts, which is fabricated in a

foundry, e.g. in a complementary metal-oxide-semiconductor (CMOS) technology node. Early ASIC

implementations for ECG processing focus on sample-and-send type devices, i.e. the edge device’s

function comprises the sampling of the ECG only and sends the data to another device for further

processing [45], [46]. Another task with limited processing on the digital back-end is the delineation

of the ECG signal. This task deals with the extraction of biomarkers in characteristic waves, which

are diagnostic for heart arrhythmia [34]. Although early low complexity algorithms, such as the

Pan-Tompkins algorithm [47] or others [48], already achieve sufficient detection quality, they are

further investigated for more robustness across datasets and input data. One example is the ECG

delineation using CNNs, in specific a U-Net architecture with around 12 convolution blocks [49]. It
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is evident, that computational complexity (CC) is increased significantly to achieve greater capacity

for generalization and QoS. Dedicated HW implementations for ECG delineation, however, focus

on the efficient implementation of early algorithms, i.e. wavelet-based [50], [51] or Pan-Tompkins

[52]. The trend towards low complexity algorithms in the hardware design domain extends into the

task of ECG classification using ANNs. For instance, MLPs are used to extract features to compare

with similarity functions [53], [54] or directly as the classifier using extracted features as input [55]–

[57]. Interestingly, the complexity of the implemented MLP computations spreads over two orders

of magnitude for classes like premature ventricular contraction, i.e. 3 neurons [55], in comparison to

clinical AF, i.e. 156 neurons [57].

In contrast to MLP architectures, there are more complex ANN topologies for ECG classification

on ASICs, such as CNNs [JL1], [JL3], [58], [59], gated recurrent unit (GRU) [35] and long-short term

memory (LSTM) [60]. Typically, these architectures classify the raw input either sampled equidis-

tantly over time [58] or using a level-crossing analog-to-digital converter (ADC). Other methods

pre-process the signal using digital filters. For instance, discrete wavelet transforms [JL1], [JL3] or

trainable filter kernels [35] are used to extract features e.g. in the frequency domain. More biolog-

ically inspired ASIC implementations utilize SNNs for ECG monitoring. These include large-scale

multi-core [61], [62], mixed-signal single-core [63], [64] and digital single-core solutions [65], [66].

These works target the design of a SNN accelerator using a bottom-up approach. For instance, vari-

ants of the integrate-and-fire (IF) neuron are implemented in dedicated circuits to support the model

behavior [63]–[66]. Then, the accelerator is designed with the composition of those fixed modules.

Other works utilize existing neuromorphic solutions such as Loihi [62] or DYNAP [61] to reconfigure

the architecture towards the ECG classification application.

Comparison of Computing Architectures for Ultra-Low Power Processing

Figure 2.4 shows the quantitative evaluation of different digital computing architectures scaled to an

example technology node. The programmable general purpose processors feature a low energy and

area efficiency. Special purpose circuits, such as full-custom ASICs or standard cell-based design,

show superior energy and area efficiency, but feature only limited amount of programmability and/or

reconfigurability. In the shown example the difference in efficiency spans across multiple orders of

magnitude. It is evident that ultra-low power requirements are most likely to be achieved by ASIC

designs.
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Figure 2.4: Energy and area efficiency for digital computing architectures scaled to

130-nm CMOS technology [67].

2.2.3 Cascaded Classification of ANN classifiers

From a system perspective, a monitored ECG does not contain an equally distributed amount of traces

with different labels. In an optimal case, the system only records normal sine signals in a healthy

patient. In a realistic setup, noise artifacts and uncritical heart conditions can influence the recording

such that some segments need to be identified as such in irregular intervals. Further, the appearance

of CVD is usually sporadic [1] and occupies a low percentage of the recorded data stream.

Contemporary systems utilize preliminary wake-up stages to reduce the overall system power

consumption. The concept leverages skewed data distributions and complexity necessary to classify

certain classes to concentrate the major computational workload on low complexity classifiers [68].

High complexity classifiers or eventually a human expert are “activated” in problematic cases, where

the preliminary classification stage is expected to fail.

Preliminary investigations show that the CC, i.e. the number of operations necessary to compute

the ANN model, can be adjusted over multiple orders of magnitude, while QoS, i.e. the quality

of the classification, remains the close to the high complexity model [JL2]. A detailed analysis of

pass-on-criteria is performed for off-the-shelf classifiers to investigate the impact on QoS and CC for

configurations of 2- and 3-staged cascades. Figure 2.5 shows the concept of the cascaded classifier.

All input samples first pass through an initial classifier of lowest complexity, i.e. lowest number of

computation, to “filter” high confidence samples. When samples do not exceed a certain confidence

threshold, the sample is passed on to the next classifier with higher complexity. The complexity of
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Figure 2.5: Structure of cascaded classifier for balanced datasets and MLs classifiers,

here ANNs, with increasing CC [JL2].

the classifiers are chosen in such a way, that a classifier with higher CC also results in a higher QoS.

Consequently, the last classifier is the best performing classifier with highest QoS, but also highest CC

In the case of image classification, the quality metric is the prediction accuracy. Confidence values

are calculated on the output vector of each classifier, which contains prediction probability pi of each

class i. The L1 norm of this vector should be guaranteed to be 1, such that probabilistic metrics

can be applied on the vector. This is achieved by linear normalization or the softmax function. The

confidence metrics, which are investigated within [JL2], are the absolute value of the prediction, “best

versus second best”, variance, kurtosis, entropy and Kullback-Leibler divergence. It is observed, that

the first four confidence metrics perform similarly well on the MNIST dataset achieving a trade-off

between accuracy and CC (normalized MAC operations). The range, in which the CC can be adjusted

gracefully is five orders of magnitude for MNIST and two orders of magnitude for CIFAR10. With

only small error tolerances of 1 %, a CC reduction of 263.17× and 2.55× is possible for MNIST and

CIFAR10, respectively.

In the end, this investigation shows that a low complexity ANN classifiers are capable to achieve

high QoS for a majority of samples. The split of the classifier into multiple stages proves especially

useful, if the preliminary stage is used to effectively filter “easy” samples. In the case of an ECG

monitoring system, the target is to design this preliminary stage well, such that only relevant or rare

indecisive events are forwarded to reliable ANN models or trained experts.

2.2.4 System Scope of This Work

As seen in state-of-the-art solutions, the efficient monitoring of ECG signals can be tackled from a va-

riety of perspectives. In the following, a use case is sketched to provide a context for the implemented

classifier system. The use case provides proper requirements for the optimization of the system.

Figure 2.6 shows an application scenario, where the continuous monitoring of ECG data can be

utilized. The target classification system is applied in a sensor node, where the ECG data is acquired
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Figure 2.6: Hardware accelerator as gating mechanism for post-processing steps.

and processed for subsequent analysis. The top row of the diagram shows a typical sample-and-send

setup. In this setup, the data is sampled on the mobile device and directly transferred to an expert

for further processing or manual monitoring. Evidently, there is no digital processing on the device

resulting in high data rates. The second scenario processes the raw data inside a digital processing

module, such that compressed information about the monitored system, here a patient with a ECG

trace, is sent to the expert. The compressed information is, for instance, classified labels or snippets

of an ECG trace, which is found to be abnormal. This highly reduces the data transmitted resulting

in less time spend by the expert. The challenge is to design an efficient pre-processing system to

detect the abnormal classes with high quality and low power. A high quality classification guarantees

that only relevant samples are selected for expert diagnosis and no critical samples are neglected.

A low power operation is necessary for long monitoring durations as is necessary for critical sparse

features as AF. Considering the energy budget of battery cells, which are available today, the target

consumption for several weeks of operation is in the region microwatt for the whole system.

The scope of this work aims to design the digital signal processing module for this use case.

In this use case, we assume a digital data stream as an input and a classified label as an output.

An assumption is that the continuous input data stream is directly processed by the classification

system in an always-on manner, such that the coverage of the whole stream is guaranteed. Possible

post-processing steps can be activated based on the acquired label. A DNN classifier is designed
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such that it can be computed on dedicated hardware components targeting the always-on processing

of this data stream. Ultra-low power requirements for limited energy budgets are achievable in an

dedicated ASIC design. For a long-term monitoring setup, an operation of multiple weeks with a

battery charge is assumed as the target for the ECG classification system. For contemporary battery

cells, a realistic target covering this time frame would result in average current consumptions in the

region of microampere [69]. Therefore, an ASIC solution is targeted as a proof-of-concept. In the next

chapter, the methodology is discussed how to systematically explore the design space and evaluate

the performance of the target solution.

2.3 Design and Evaluation Strategy

The target is to design a system, in which the algorithm, i.e. the DNN classifier, is adjusted to its

hardware and vice versa, such that multiple optimization objectives are met. In the following, we

denote this as algorithm-hardware co-design. First, we evaluate how the state-of-the-art is addressing

the co-optimization of DNNs. Then, we derive our own co-design strategy tailored to our target

application.

2.3.1 State-of-the-Art of Energy Estimation of Batched ANN Workloads

Influential literature has targeted design schemes for the efficient processing of DNNs, as high classi-

fication quality in ML tasks requires high computational cost. Especially, the inference is performed

on embedded devices and, hence, the main subject of previous works. It has been identified that the

efficient processing of popular reference DNN architectures, such as AlexNet [6], relies on an effi-

cient dataflow [70]. In specific, the energy required to access data in memory is up to 1-2 orders of

magnitude more than the energy to process one MAC operation, i.e. the most common operation in

the DNN. Hence, the orchestration from memory to processing unit plays an important role in the

evaluation of the DNN workload.

Considering ANNs trained in a supervised fashion, labeled data is used to provide desired input-

output pairs for the model and allow the backpropagation of error values during the training phase.

Computer vision benchmarks serve as baselines for the research and development of ANNs and cor-

responding ASICs accelerators. For instance, MNIST sparked initial research on ANN models, e.g.

CNNs [71], and continues to be used for proof-of-concept designs for more advanced neuro-inspired

principles, e.g. memristive SNNs [72], even until today. Nevertheless, the increasing complexity of



18 Chapter 2. Prerequisites for Efficient Real-Time Processing of Low Data Rate Streams

more realistic larger scale datasets, i.e. ImageNet [73], forces algorithms scale in their complexity

and triggered key innovations in ANN research.

Popular ANN models resulting from the ImageNet challenge are e.g. AlexNet [6] or ResNet

[74]. The former spawned a variety of digital accelerators specifically targeting DNN, i.e. ANNs

with deep layered architectures, which are described by a major body of survey works on ANN

accelerators [70], [75]. A major bottleneck in larger ANN models is that the amount of parameters,

i.e. weights and biases of the ANN, exceed typical on-chip storage/memory capacities. Therefore,

off-chip memory, e.g. DRAM, needs to be accessed to buffer required chunks of model parameters

for processing. The dataflow regarding the movement of parameters and activations is a major focus

in DNN accelerator design. The access sequence is crucial for the consumed energy per inference,

as each memory access to different levels of the memory hierarchies consume different energy. For

instance, it is less desirable to access off-chip memory than local register files as the consumed energy

is up to two orders of magnitude higher [70].

A systematic design space exploration typically uses a quantitative model for KPI evaluation.

Analytical models provide a good initial measure to quantify the consumed energy for a large design

space of accelerator architectures with different topologies [76]. Further they provide an indicator for

the suitability of dataflow schemes for DNN specific workloads.

for r=[0:R):
for s=[0:S):

for p=[0:P):
for q=[0:Q):

for c=[0:C):
for k=[0:K):

for n=[0:N):
Output[p][q][k][n] += 

Weight[r][s][k][c] * Input[p+r][q+s][c][n];

H=
Q+S-1

W=P+R-1
C

C K

P

Q

C
R

=
S

K

N N

Figure 2.7: Loop nest representation of computational workload of a 2D-convolution

operation for a batch of input feature maps [76].

Figure 2.7 shows a convolution operation represented in nested loops over the corresponding

dimensions of two dimensional feature maps. In the case of batched image data, there are seven

dimensions: three dimensions for the output feature maps, i.e. P, Q (spatial) and K (channel), two

dimensions for the convolution kernel, i.e. S and R (spatial), one dimension for the input features

maps, i.e. C (channel), and one dimension for the batch, i.e. N. The other dimensions, e.g. spatial

dimensions of the input feature map, can be derived, respectively. Based on this representation, loop



2.3. Design and Evaluation Strategy 19

nest optimizations are derived from predetermined PE array sizes and memory limitations. The loops

can be tiled or unrolled spatially or temporally based on the hardware architecture. In the end the

actual numerical dimensions of a specific DNN layer can be inserted, which estimates the number of

cycles and memory accesses for the specified workload.

However, conventional DNN energy estimation methods typically reduce the loop nest optimiza-

tion problem [76], [77]. For instance, the regularity of DNN workloads is used to abstract to calcu-

lation of memory accesses. Parashar et al. calculate the first, second and last iteration for the loop

tiles for extrapolation [76]. Other works reduce the problem to values indicating the number of tiles

within one loop, i.e. how many iterations are required to process one loop dimension with given par-

allel PEs, e.g. [77]. This is possible, since many DNN accelerator architectures operate in pre-defined

patterns, e.g. execute convolution row by row from left to right. One example are two nested loops:

The x1 iterator of the inner loop increments until the end of the range. Then, the x2 iterator of the

outer loop increments, while the inner loop restarts from the start of the range. Above mentioned

loop nest optimizations consider the loop ordering, tiling, unrolling etc., however, they do not allow

for arbitrary sequences of (x1,x2). An example would be to traverse all combinations of the 2D-tuple

(x1,x2) without a sequential order of x1 or x2.

2.3.2 Exploration of Dataflow Sequences for Convolution Operations

Previous works distinguish the dataflow based on which data in the convolution is held stationary

inside the PE, which are denoted as input, weight and output stationary dataflow1 [70], [78]. Typically,

the number of data held in PEs is less than the number of elements in the processed data tensor. In

the conventional dataflow models, the sequence is predetermined by the loop order in the loop nest

representation (see Fig. 2.7). It is straightforward to process these loops in a row-by-row or column-

by-column fashion. However, the design space of possible sequences is theoretically much larger.

This raises the question whether another sequence could provide a more efficient alternative, since

memory accesses contribute largely to the energy consumption [70].

From a different perspective, the problem can be viewed as a sequential traversal of elements

in a tensor. Instead of iterating the tensor on a dimension-by-dimension basis, a curve can be de-

fined, which passes through all elements in the tensor. In mathematics, the search for these space-

filling curves date back more than a century [79], [80]. The idea is that these curves traverse the

1For simplicity we omit special cases such as row stationary dataflows in our investigation
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multi-dimensional space, such that “locality” is preserved, i.e. points, which are close in the multi-

dimensional grid, are also close in the traversal order [81]. However, the sequence in the dataflow

models require different optimization constraints, which possibly results in solutions with different

properties than already proposed space-filling curves.

Therefore in our exploration, we approach the search for the sequence from a new perspective.

The concept is to define costs related to the execution sequence in a dataflow model. Based on this

cost model, any sequence has a cost, which can be compared with each other and optimized globally.

The required steps to achieve this are summarized as follows:

1. Memory model to estimate access patterns of an ANN workload

2. Index mapping of data samples in PE to required data in memory

3. Cost of a sequence of memory accesses during a convolution operation

First, a model needs to be established to define the memory access patterns resulting from different

sequences. Then, the relationship between the data in the PE array and the corresponding data, which

needs to be stored in the on-chip memory, is defined in a mapping function. This mapping function

relates a set of indices from one dataspace to another. This is used in the last step to find overlaps

between two consecutive states in a sequence. The cost of this sequence can then be calculated as the

sum over all states in a sequence. In the following, these three steps are further presented in detail.

Memory model

As the memory access cost from off- and on-chip buffers deviate by one or two orders of magnitude

[70], it is key to model the number of these two hierarchies separately. We investigate a memory

hierarchies with three levels: Off-chip, on-chip memory and registers on the PE level (see Fig. 2.8a).

In this model the on-chip memory is limited in size, while the off-chip memory is able to contain all

data for a typical DNN inference.

The costs to access the on-chip and off-chip memory are denoted as Con-chip and Coff-chip, respec-

tively. The access pattern of the on-chip and off-chip memory and, thereby, the number of accesses

Non-chip and Noff-chip, as function of the dataflow scheme used by the DNN accelerator. The considered

dataflow schemes are depicted in Fig. 2.8b, Fig. 2.8c and Fig. 2.8d. The dataflow is visualized for the

example of the systolic array with three PEs [78]. One cell represents a PE and contains the stationary

data. It calculates one MAC operation, i.e. multiplies two values and subsequently adds one value to
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Off-chip

Memory

On-chip

Memory

PE Array

Coff-chip

Con-chip

(a) Memory model with three stages. (b) Input stationary (IS) dataflow.

(c) Weight stationary (WS) dataflow. (d) Output stationary (OS) dataflow.

Figure 2.8: Simplified memory model to estimate data access costs for elementary

dataflow schemes (adapted from [78]). A cell indicates the PE and the data held

within it until all corresponding partial sums are calculated.

a partial sum resulting in a new partial sum. The required data within the on-chip memory is further

exemplified for the weight stationary dataflow in the next step - the index mapping.

All in all, the memory model uses the number of memory accesses Non-chip and Noff-chip to calculate

the memory access cost

Cmem = Non-chip ·Con-chip +Noff-chip ·Coff-chip (2.1)

per inference. The computational cost Ccomp is also considered as

Ccomp = Nmac ·Cmac (2.2)

with Nmac being the number of the MAC operations in the DNN inference and Cmac being the cost to

execute one operation. In the end, the total cost is the sum of both components resulting in

Ctot =Ccomp +Cmem, (2.3)
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Index mapping

In our investigation, we consider a convolution layer and an input feature map with cin input channels

to produce output feature maps with cout output channels (see Eq. (2.4)).

y(cout) =
cin−1

∑
c=0

W(cout,c)∗x(c) (2.4)

Here, ‘∗’ denotes the convolution operation, x the input feature maps, W the filter kernel and

y the output feature maps. Similar to Fig. 2.7 we assume three dimensional inputs feature maps

and convolve it with four dimensional weights to result in three dimensional output feature maps. It

is evident, that the computational cost Cmac would stay the same regardless of the order, in which

input/output channels are computed. However, this is not the case for the memory accesses, due to

opportunities for reuse in the on-chip memory.

Since the convolution is performed in a discrete domain, x, W and y can be interpreted as scalar

values mapped to integer lattice points in a multi-dimensional space, i.e. dataspace of operand and

result tensors [76]. For the design space exploration of dataflow sequences, we want to find the

relationship between the dataspace of the tensors, which remains stationary in the PE array, and the

other two dataspaces. In the weight stationary dataflow, the objective is to find the location, i.e. spatial

indices, of the necessary input and output feature maps given a set of weights. Once this mapping

function is known, the overlap between two consecutive states can be calculated. In the following, we

showcase this in the example of the weight stationary dataflow, however, the transfer to other dataflow

schemes is straightforward.

Figure 2.9 visualizes the mapping of indices in a simplified diagram. The convolution is per-

formed partially for a single weight inside the convolution kernel for one step in the sequence. The

bold cross and circle indicate the spatial location of the weight in the kernel, for which all partial

sums are generated. The non-bold crosses and circles show the spatial locations of the corresponding

input and output feature maps, which need to be accessed to calculate the partial sums. It can be

observed, that not all input and output feature maps are required for this specific weight. A different

set of feature maps is required for two different weights, e.g. at the spatial location of the bold cross

and circle. If the stationary weight inside the PE is exchanged, e.g. the bold circle replaces the bold

cross, the overlapping samples in the input and output feature maps can be reused. However, the new

non-overlapping samples need to be loaded into the memory and their number define the necessary

memory accesses for further cost calculation.
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Figure 2.9: Diagram of a memory state for a weight stationary 2D-convolution with a

filter kernel 3×3, 2 input/output channels, an output feature map size of 5×5 and a

convolution stride 1. The crosses and circles mark data from two separate states. The

weight marked in bold is held stationary inside the PE memory until all partial sums

has been calculated for its input.

Sequence Cost

As indicated in Eq. (2.3), the total cost of a DNN inference is the sum of computational and memory

access costs. Since the number of MAC operations do not change based on the execution order, the

number of memory accesses define the cost difference (see Eq. (2.1)). In the dataflow schemes, as

shown in Fig. 2.8, the set of data within the PE array is limited and all require multiple iterations to

process all data points. In the weight stationary dataflow, this means that the weights are exchanged

the PEs in a certain sequence, such that all weights are processed for the convolution operation.

Hence, we define the sequence ξws as the ordered set of weight indices. Each sequence maps to

Non-chip(ξws) on-chip and Noff-chip(ξws) off-chip memory accesses. These are calculated based on the

overlapping indices from consecutive memory states as described previously and visualized in Fig.

2.9.

Meta-heuristical design space exploration

Based on above model, the cost of a sequence relative to each other can be determined quantitatively.

The unique property of this model compared to state-of-the-art energy estimation models for DNNs

[76] is that random sequences, especially those deviating from the loop nest representation, are in-

corporated and can be estimated in terms of DNN inference cost. To find a cost optimal sequence,
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however, it is not feasible to apply a full search. The issue is that the search space of the sequence vec-

tor is huge, e.g. a weight kernel of size 3×3 with 32 input and output channels requires (3 ·3 ·32 ·32)!

combinations.

Therefore, we employ a metaheuristic optimization method from the class of evolutionary algo-

rithms, in specific the genetic algorithm [82]. The basic principle is to represent the solution, in our

case ξws, as a genetic representation, on which biologically inspired operations can be performed.

Over multiple iterations, denoted as generations, a population of possible candidate solutions will

converge towards a potentially globally optimal solution. Every candidate solution is evaluated based

on a fitness function or its cost for optimization. The candidate solutions will be modified (subjected

to crossover and mutation) based on its costs and selected for the next generation. In our case, the

genetic representation of the sequence ξws is straightforward, since the spatial index of the weight in

the kernel can be mapped unambiguously to linear indices and backwards.

Init

Current
Pop

Selected
Parents

Mutation CrossoverElite

End

New Pop

Score

(a) Flow chart of the genetic algo-

rithm.

1 2 3 ... N-2 N-1 N
Elite

1 2 3 ... N-2 N-1 N
Best Score

1 2 3 ... N-2 N-1 N
Mutation

1 N-1 3 ... N-2 2 N

4 5 6...
Crossover

7 ...

7 6 5... 4 ...

(b) Detailed description of elite, mutation and crossover children for the

next generation.

Figure 2.10: Concept of the genetic algorithm.

Figure 2.10a visualizes the flow chart of the employed genetic algorithm. First, a set of initial

sequences is generated for the first generation of individuals. A scoring mechanism determines the

fitness value of each individual in the generation. In our case, the fitness value is determined by the

cost calculated in Eq. (2.1). Based on the fitness values, parent individuals are selected for the next

generation. The individuals of the next generation can either be elite, mutated or crossover individ-

uals. If the change of fitness values across generations does not exceed a threshold, the algorithm

terminates and returns a set of potential result sequences. Figure 2.10b shows the details of the in-

dividuals of the next generation. Each sequence in the four dimensional space is mapped to a one
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dimensional vector with unique scalar indices. The elite individuals comprise a predefined number

of sequences in the previous generation with the best fitness value and remain unmodified in the next

generation. The mutated individuals are generated from a subset of the previous generation by ex-

changing two random elements in the sequence vector. In the original genetic algorithm, the crossover

step combines two individuals into a new vector. However, for the sequence to be a valid traversal

through all elements in the tensor, it needs to be guaranteed that all indices in the vector appear ex-

actly once. Therefore, the exchange of random sections in two individuals is likely to violate this

constraint. As a workaround, our crossover step simply flips a random contiguous section, thereby

introducing a large change in the individual. An alternative is to search for the same set of elements

in two individuals for a crossover, however, this would heavily impact runtime performance of the

genetic algorithm.

(a) Conventional execution sequence

of weights.

(b) Optimized sequence using ge-

netic algorithm.

(c) Manually optimized sequence

with equivalent cost to b.

Figure 2.11: Execution sequence of weights in a weight stationary dataflow assuming

1 PE for processing.

Figure 2.11 depicts the execution sequence of the same example as chosen in Fig. 2.9. In the

following we assume that the size of the on-chip memory corresponds to the necessary entries for

input and output activations at one step in sequence ξws. In the conventional loop order (as indicated

in Fig. 2.7 and Fig. 2.11a), the weights are accessed row by row and then channel by channel for

input and output, respectively. We use this as a baseline to compare against the following optimized

sequence. For the optimization, we ran the genetic algorithm with a population size of 2000 and a

maximum of 500 generations. When the cost does not increase over 50 generations, the algorithm is

stopped early. The result is shown in Fig. 2.11b, in which the cost is reduced by 23.8 %. Figure 2.12

shows the convergence against the cost optimal solution. The spread in the fitness value is large in

the initial population and throughout all generations. However, the elite individuals quickly converge

beyond the cost of the conventional loop order, which is used as the reference sequence. The score

distribution of individuals resembles a shifted gamma distribution over the course of generations.
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Figure 2.12: Best and mean fitness values during generations of genetic algorithm

optimization (above). Fitness value distribution of final generation (below).

The exploration process generated a snake pattern in the 4-dimensional space of the weight kernel.

Specifically, the next weight chosen for processing in the PE is always chosen with a Manhattan

distance equal to 1, i.e. spatially the next weight is adjacent to the previous weight. In the conventional

loop orders, however, there are cases, i.e. from the end to the beginning of a inner loop iteration, in

which this locality is not guaranteed. In those transitions, we observe additional costs for memory

accesses. Based on this exploration, we could manually construct a sequence with a regular pattern

and, even, the same cost as the optimized sequence (see Fig. 2.11c).
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Figure 2.13: Sweep across number of parallel PEs for cost optimal sequences in a

weight stationary dataflow using genetic algorithm optimization.
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Figure 2.13 shows the relative costs of parallel PEs compared to a single PE. For small number

of PEs, the cost is decreasing linearly with increasing PE numbers. However, the cost reduction is

saturating at 45 % for the example convolution in Fig. 2.9. In this example, the ideal case minimizes

the off-chip accesses, i.e. only one read. This motivates to scope the on-chip memory, such that

all activations and parameters can be stored on-chip. Note that the costs are based on the simplified

memory model in Fig. 2.8a and does not consider control overhead, multiple memory hierarchies etc.

Implications for the ECG Monitoring Use Case

Based on the sweep performed in Fig. 2.13, the relative cost can be significantly reduced by a few

parallel PEs. If the number of PEs correspond to the number of elements in the row of a convolution

the cost reduction already comes close to the achievable maximum. This insight aligns with findings

of previous literature, where a row stationary dataflow is proposed for the execution of 2D-convolution

workloads.

The ECG monitoring use case only requires 1D-convolutions and state-of-the-art ECG classifiers

need much less parameters than computer vision models (see Section 2.2.2). In most cases, the whole

DNN model is able to fit in the on-chip memory (in the region of kilo-/megabytes), such that no off-

chip memory accesses are necessary. This aligns with the result of previous cost exploration, such that

a major energy bottleneck common in image processing DNNs can already be eliminated. Further,

the dataflow sequence exploration shows that it is beneficial to process spatially adjacent data chunks

preferably in rows. It is important to recall that this investigation focuses on batched data processing.

As the corresponding DNN models assume that input data is readily available for processing, it needs

to be reconfirmed, whether the found principles remain valid for the stream processing use case. This

is further investigated in the example design discussed in Section 3.

2.3.3 Design Space Exploration Methodology for Stream Processing Architectures

As seen in the previous section, the application of ECG monitoring implies certain constraints on the

designed hardware. The example of batch processing is prevalent in the design of DNN accelerators

[70]. However, the real-time monitoring of ECG signals does not provide data in batches. Instead,

the data is available as a continuous stream of samples. For ECG data, the number of leads in the

monitoring setup determine the number of parallel channels, which are available for analysis. The
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key difference is that the samples are only provided one at a time and a sample sequence is used for

the analysis.

Considering a batched processing architecture, an example processing flow would be as follows:

The input stream is recorded into an internal memory and segmented into batches of ECG traces.

Once the data is accumulated, the hardware unit is activated and used to classify the traces. Not only

does this setup require a separate memory to record and store the raw data, but it also delays the

output of the classifier until the recordings of multiple segments are finished.

However, in a streaming architecture, the input stream is directly processed on-the-fly, e.g. in dig-

ital filters. Since past samples do not need to be stored on the device, the input storage can be omitted

to reduce the number of components in the design. Further, the processed result is directly available

at the output. The latency of the classifier prediction is, therefore, not limited by the recording of

the batch. In the following, the stream processing architectures are considered for the chosen ECG

monitoring use case.

State-of-the-Art Stream Processing Architectures for ECG Data

In the case of ECG, leads are recorded based on a standardized setup [83]. Each lead is treated sepa-

rately as a distinct input channel without any spatial relation in the data, for instance in neighboring

pixels of an image. The samples in the input stream are ordered through their temporal relationship

within the sequence. Figure 2.14 shows a general sketch of specifications to process a continuous

data stream and a categorization of state-of-the-art accelerators addressing the stream processing ar-

chitectures. Basically, the processing schemes can be subdivided into three subcategories.

fin

fout

Nstride

Nframe

Logic

FE

FE

FE
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beat segmented

full streaming

feature thresholding

Figure 2.14: Design specifications for the continuous ECG monitoring use case [JL7].

The input is sampled continuously and buffered intermediately for processing, where

frames are selected for further analysis. Data is either processed using raw frames or

extracted features or in a full streaming fashion.

In the first, the raw data is buffered in frames, e.g. heart beats or sequences, such that these are

further processed when the buffer is full. State-of-the-art focuses on the samples aligned around the
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R-peak of a beat [53], [54], [56]. In this case, a R-peak detection mechanism, e.g. Pan-Tompkins

Algorithms [47], is necessary to detect the center of the sequence to be recorded. Therefore, initial

processing stage only comprises few components, such as FIR filters, some alignment/normalization

and thresholding units. These trigger the ANN in a subsequent step, which either work as feature

extractors [53], [54] or directly classify the buffered data [56].

In the second category, the processing of buffered frames is not triggered by heart beats, but

based on lightweight features indicating interesting events. These methods aim to reduce the number

of activations of the post-processing step. One example for lightweight features is the instant rate

of change [59]. This feature is designed for event-driven ADCs, such as level-crossing ADCs. An

alternative approach, which also works on uniformly sampled ADC input, are features like signal line

length, area, decay and zero-crossings [58]. When those values exceed a fixed threshold, it triggers

the classification of those features or the pre-buffered raw data. In this case, the components, which

are executed for every input sample, are more complex than the simple buffering.

In the last category, the accelerators operate in a full streaming fashion [JL3], [35], [57]. Here,

the utilized ANN is executed partially for each input sample. It is apparent in the used ANNs that

subsampling is a key component to reduce number of operations performed, while keeping a large

frame, on which the processing steps are performed on. For instance, DWT is useful to both extract

relevant features in the ECG signal and subsampling the signal by a factor of 2d , in which d denotes

the depth of the DWT [JL3], [57]. Alternatively, trained filter banks are also suited to reduce the data

rate of the input data stream [35].

Data Stream Coverage and Impact on Power Consumption

As discussed, state-of-the-art ECG stream processing architectures differ from conventional DNN

accelerators, which are primarily designed for batch processing [70], [75]. In a continuous data

stream, a frame is a subsection of Nframe samples within the data stream (see Fig. 2.14). The time

interval at which data points are sampled from the stream, is determined by the sampling frequency

fin and, consequently, the time to acquire a data frame is fixed to Nframe/ fin. Similarly, the time

period between two consecutive frames are fixed, as new samples are acquired from the data stream.

The delay is determined by the number of temporal samples in between two consecutive frames, i.e.

Nstride.
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State-of-the-art ECG accelerators use different specifications, since they are heavily dependent

on the application requirements (see Section 2.2.2). To analyze the impact of these specifications on

the KPI of the hardware implementation, a normalized setup can be used to relate the data stream

to a batched processing setup. The basic concept is to divide the data stream into non-overlapping

frames, such that every input sample is processed exactly once analogous to batched inference. In

this case, the stride is equal to the frame size, i.e. Nstride,norm = Nframe, resulting in an output frequency

fout,norm = fin/Nframe. Both stride and output frequency are directly determined by the input sampling

rate and the frame size used by the post-processing ANN. A factor α =
Nstride,norm

Nstride
or α = fout

fout,norm

is introduced to relate the normalized setup to arbitrary stream processing setups. In principle, α

determines the overlap between adjacent frames. For α > 1, input samples are used multiple times for

classification. For α < 1, there are gaps in between adjacent frames and input samples are neglected

for classification.

Figure 2.15: Normalized system power in relation to normalization factor α derived

from [JL3], [35], [44], [53], [57], [62], [84]2.

Figure 2.15 shows the normalized system power of various ANN accelerators over α , i.e. the cov-

erage of the input stream. While recurrent neural networks, such as GRUs [35], are able to represent

the whole temporal sequence in their internal state, other ANN architectures operate on a limited set

of input, i.e. single [62], [84] or multiple [JL3], [53] heart beats. The power consumption is lowest

2When no data is reported for the output frequency, a normal resting heart frequency of 1.25 Hz is assumed.
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for sparse frames and low reuse. In previous works, there is a tendency that classification systems

with larger input frames are also designed with a larger percentage of overlap, i.e. greater alpha, to

process the data stream.

Note that most designs reuse input data in some form, i.e. α > 1, through sliding windows on

the input stream or reuse of adjacent RR-peak distances. Hence, features are considered temporally

in ECG classification, which require overlapping input frames. This overlaps with the requirement

of long analysis windows required for the detection of faint AF features set by expert societies [1].

Hence, the targeted design in Section 3 will adopt overlapping frames for continuous ECG processing.

Top-Down Design Methodology for Algorithm-Hardware Co-Design for Stream Processing

The previous insights are incorporated in a holistic design flow for systematic design space explo-

ration. A top-down design methodology is suitable to address the research question, as requirements

are determined by the target application.

Figure 2.16: Top-down design methodology proposed in [JL7]. The design con-

straints, specific to streaming ECG data, are used to guide both the algorithm and

hardware design. Costs, which map to power and QoS, are continuously assessed to

guarantee the convergence towards a cost-optimal design.

Figure 2.16 shows a diagram of the methodology split into the design stages: Algorithm Design,

Algorithm Fitting, Hardware Mapping and Digital Design Flow. In the Algorithm Design stage, a

DNN classifier is designed to meet the application requirements, i.e. is able to classify ECG data with

a certain quality. Typically, this process involves the filtering of possible solution candidates in terms

of DNN architecture. Modern ML frameworks [25], [26] feature a broad selection of layer types,

e.g. ranging from typical convolution layers to recurrent or even transformer layers. As the number

of layer combinations is theoretically endless, a systematic selection is necessary to narrow down
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the solution space. Further the hyperparameters for training also play an important role for model

convergence and how well the model fits to the given data.

The Algorithm Fitting stage deals with the reduction of a high-performing DNN classifier from

the previous design stage, i.e. an optimization of the DNN classifier in terms of complexity. Since

the design of a DNN primarily aims to increase the QoS of the target application, the resulting model

tends to feature high computational complexity (CC), i.e. high number of MAC operations in deep

network architectures. However, a significant reduction of CC can be achieved with minimal impact

on QoS through methods like pruning [85] or quantization [86]. For ultra-low power ECG classifica-

tion a trade-off between CC and QoS needs to be found.

Once the DNN is determined with sufficient QoS, the corresponding accelerator is designed in

the Hardware Mapping stage. In this stage, the arithmetic operations are conceptually mapped onto

processing elements (PEs). This involves the translation of the simple dependence of the operations,

e.g. defined in a dependence graph, into a signal flow graph with information about the control

and dataflow. In contrast to a typical von-Neumann architecture, the design of application-specific

integrated circuits allows the implementation and selection of specialized circuit components [87].

Not only does this reduce unnecessary components within the hardware design, but also more control

on the dataflow and degree of parallelism.

In the end, a high-level design description, i.e. a register-transfer level (RTL) description, is

used in the Digital Design Flow to realize an integrated circuit, which can be simulated in various

granularity and fabricated in a semiconductor foundry. In a standard cell-based design flow, the total

system performance and KPIs can be modeled as the conjunction of all individual components of

the system, e.g. transistor/gate-level timing/power models, wire load etc., which are available in

technology specific libraries. In addition to their obvious use in electronic design automation (EDA)

tools, these libraries can be used to drive early design decisions in the hardware design phase.

As indicated in Fig. 2.16, each stage evaluates the design quality with cost metrics of differ-

ent granularity. While in the algorithm design phase the CC is determined by the number of MAC

operations in the algorithm, in the hardware design phase the actual power consumption can be deter-

mined. The detailed breakdown of component contribution as well as the split into static and dynamic

power consumption allows a fine-grained analysis of the design. Even though the diagram shows a

sequential order in the design stages, the co-design process also includes the re-iterations of early

design stages based-on insights in later ones, e.g. hardware mapping adjustments based on circuit

simulations.
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2.4 Summary

The processing of low-data rate streams requires a systematic process to enable efficient real-time

processing. Before the design and optimization process the requirements from the application need

to be considered in a structured design methodology. In a first step, ECG monitoring is chosen as

an example use case for exploration. The classification of AF poses a practical example for long-

term monitoring in a mobile device. The detection of AF necessitates 24/7 monitoring systems, as

indicative features are sparse. Further, the integration into practical devices requires the efficient

processing in a small form factor device. In a second step, the context of the design is defined. The

focus of this work is to design a digital signal processing module to process an ECG input stream into

prediction values, which are used to identify critical segments to alert medical personnel or trigger

further analysis. The baseline classifier used for exploration is an ANN, as it shows promising results

both in terms of high quality classification and low power devices. Finally, a design space exploration

methodology is chosen to co-design algorithm and hardware based on the defined scope. As the target

application is clearly defined, a top-down design methodology is used to guide the design process

based on the application specifications.
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Chapter 3

Co-Optimization of an ANN Accelerator

for ECG Monitoring

This section demonstrates the systematic design space exploration to design an efficient ECG clas-

sifier for AF, as outlined in the problem definition in Section 2.1 and 2.2. Following the described

exploration methodology (see Section 2.3), an ultra-low power and high-quality ANNs classification

system is designed. All design considerations through all abstraction levels are detailed in the fol-

lowing subsections. Note that all general principles are generally applicable to low-rate data streams

with adjustments in the application constraints.

3.1 Algorithm Design

The chosen benchmark to evaluate the algorithm quality is the CinC’17, which targets the classifica-

tion of atrial fibrillation among three other classes, i.e. normal sinus rhythm, other heart rhythms and

noise. The data consists of single lead ECG recordings of varying length mainly between 30 and 60

seconds collected from an AliveCor device. The recordings are sampled with a frequency of 300 Hz

with a 16-bit resolution and a dynamical range of ±5 mV. The data is split into 8528 recordings in a

open training set, on which the model design is performed, and a hidden test set of 3658 recordings.

The complete dataset was made publicly available after the challenge on the PhysioBank platform

[20].

This benchmark is chosen for the following reasons:

• The dataset contains a large corpus of data covering a large variety of patients. The patient

variety allows for inter-patient generalization, as sufficient data is available for training.
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• The recordings are captured in a commercially available recording device. The recording does

not follow clinical procedures and captures noise and realistic artifacts from patient usage, e.g.

lead inversions etc.

• Single lead measurements correspond to various setups in a mobile setting, such as ECG

patches, watches etc. [88]

Note that this field of research is rapidly evolving and datasets with better properties, i.e. more labeled

data, have emerged over time, e.g. the Incentia11k dataset [17].

Further, the CinC’17 data is accompanied with a range of ML solutions submitted to the challenge.

The top performing algorithms include LSTMs [89], [90], Cascaded Binary Classifiers [91], Random

Forest Classifiers [92] and Ensemble Classifiers [93]. Although the classification performance of all

classifiers are impressive for the given benchmark, the choice of algorithm for the ultra-low power

application needs to consider the scalability of the algorithm. Even though classical ML algorithms

perform very well on a large or curated set of expert features, the features have their own individual

complexity and, correspondingly, a diverse set of numeric operations, which need to be supported

by processing elements. For instance, the calculation of entropy or kurtosis as used by Hong et al.

[93] requires more computationally complex mathematical operations, i.e. logarithm or exponential

functions, than basic addition or multiplication.

For our exploration in [JL1], we chose the CNN baseline by Zihlmann et al. [90] as an inspiration

to design a classifier from scratch. In contrast to previous works, the goal is to find an ECG classifier,

which is scalable in terms of both QoS and CC. The idea is that the majority of operations in the clas-

sifier feature the same mathematical component. Analogous to the processing/algorithm/data-flow

proposed in [90], a two-staged processing architecture consisting of a feature extraction component

and a classification component is used in this work. Figure 3.1 depicts the targeted processing archi-

tecture.

Figure 3.1: ECG classifier structure adapted from [JL3]. The yellow blocks are per-

forming convolution operations and the green blocks perform subsampling operations.
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3.1.1 Discrete Wavelet Transform for Feature Extraction

In contrast to the reference architecture, the ECG features are extracted with a discrete wavelet trans-

form (analogous to [94]). This pre-processing component captures both time and frequency informa-

tion from the signal. Further, the Daubechies wavelets db2 are chosen based on its similarity to the

morphology of the ECG beat.

The computation of DWT coefficients are realized by 4-tap finite impulse response (FIR) filters

with fixed filter coefficients and subsampling components in multiple stages. Consequently, the rate of

DWT coefficients is halved at each stage after it is convolved with the filter kernel. The mathematical

components are limited to MAC operations resulting from the convolution. Figure 3.2 shows the

block diagram of this DWT pre-processing stage.
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³ 2
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Figure 3.2: Block diagram of wavelet transformation with level 4 decomposition

adapted from [JL1]. Lowpass filters h(n) are used in the early levels to generate

approximation coefficients Ax from input x(n) for deeper levels. The highpass filters

g(n) are only used in the final level to generate the detail coefficients Dx.

When all coefficients are used for further analysis, the discrepancy between the output rates of the

DWT coefficients needs to be compensated. Assuming an input rate fin for x(n), D1 would have an

output rate of fin/2 and D2 would have an output rate of fin/4 etc. The intermediate approximation

coefficients A1 . . .A3 are directly used for the next level. In contrast, we omit D1 . . .D3 for further

analysis in the classifier. Hence, the amount of input for subsequent classification is reduced. Figure

3.3 shows the spectrum of white noise as an example input signal and its reconstruction from the A4

and D4 coefficients after the DWT. The reconstructed frequency response shows that low frequency

components, i.e. up to 40 Hz of the signal, are preserved, while high frequency components are

dampened. In the time domain, the reconstructed signal from A4 and D4 coefficients has a root mean

square error (RMSE) of less than 50 µV, which indicates that they preserve a sufficient quality for

further analysis.

3.1.2 Subsampling-based Classification of Temporal Sequences using TCNs

The low-rate features from the DWT are further used in a subsequent CNN for classification. As

discussed in Section 2.3.3, the input data is available in form of a temporal sequence. In previous
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Figure 3.3: Frequency spectrum of white noise and reconstruction using only A4/D4

coefficients after DWT.

works, a neural network operating on this temporal sequence is defined both in general terms as a

CNN or as a temporal convolutional network [30], [95]. The former stresses the temporal nature of

the input compared to a static data frame, as the convolutions in this architecture remain causal. This

guarantees that all output samples are computed from input samples of previous or current time steps

[95]. The importance of causality is evident in deployment, as data, which is not captured yet, cannot

be used for classification or, even, used to compute intermediate results for the classification. Further,

the family of TCN architectures uses a hierarchy of temporal convolutions and pooling or dilations to

capture long-range patterns, i.e. increasing the size of the analyzed time window [30]. This proves

especially useful as it enables a large effective window necessary to detect AF [1] and utilizes hi-

erarchical subsampling of the data stream for efficient data-driven computation. Both causality of

the temporal convolutions and the hierarchical subsampling of the input data stream is exploited in

the hardware mapping stage and further described in Section 3.2.1. In the following, we further use

temporal convolutional network to denote the used neural network for classification.

Considering the processing blocks of both the DWT pre-processing and the TCN classifier, the

processing blocks in the TCN share the same characteristics in each layer: a convolution and a sub-

sampling component. Similar to the DWT block, the TCN intends to convolve the input with internal

weights and further reduce the data rate in each layer.

During training, batch normalization is intended to reduce internal covariate shift [96], but it also

demonstrates faster convergence and better generalization [97]. However, during inference they in-

troduce additional layers inside the TCN architecture. Therefore, an effective method is to merge

adjacent linear transforms, i.e. convolution and batch normalization, to eliminate computations with-

out changing the output.
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Consider a matrix multiplication

ynn = W ·x+b (3.1)

and a subsequent normalization

ybn =
ynn −µ√

σ
· γ +β . (3.2)

Inserting Eq. (3.1) in Eq. (3.2) , we derive new weight Ŵ and bias b̂ tensors resulting in

ˆynn = Ŵ ·x+ b̂ (3.3)

with

Ŵ =
W√

σ
· γ (3.4)

and

b̂ =
b−µ√

σ
· γ +β . (3.5)

The extension of this proof to the convolution operation is straightforward. Note that this assumes

that the parameters of the batch normalization layer, especially the mean µ and variance σ is not

required to change in inference after TCN training.

The TCN, as proposed in [JL1], [JL3], uses max-pooling operations for subsampling. In addition

to a mere rate reduction, the max-pooling operation selects the maximum value of its window as an

output. The maximum function can be realized in an iterative manner (see Section 3.2.1). Neverthe-

less, the rate reduction of the data stream can also be performed by dilated convolutions [95] or by

increasing the convolution stride. Their impact on the QoS is not evaluated within the scope of this

work.

The final dense layer, or also fully-connected layer, is performed to map the output feature maps

from previous layers to a prediction. When performed over a data stream, a prediction can be cal-

culated for every new sample, which is available in the input, similar to the convolution. However,

the kernel size of the dense layer determines how many temporal features are used for a prediction

and, therefore, the effective time window, on which a prediction is performed on. In [JL1], [JL3], it

is selected such that it matches a 1 second ECG sequence.

Despite the TCN structure, the hyperparameters for training are essential for the model conver-

gence. Especially, the chosen TCN is rather shallow compared to state-of-the-art DNNs [3], [90]. In

our experiments, we use the PyTorch framework to implement and train the models in a full sweep
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across learning rate and batch size. For all training runs, we performed stratified 5-fold cross valida-

tion with multiple iterations of a random seed to generate robust results. We observed, that learning

rate and batch size show an average local minimum with 0.005 and 128, respectively. However, they

also show large variations across folds and iterations, which indicate the necessity for fine-tuning on

other datasets. In addition, a stepwise reduction of the learning rate by 10 % after every 30 epoch

showed significant performance improvement in achieved QoS.

Another method to increase the classification performance of the TCN without changing its struc-

ture is data augmentation. In this use case the following data augmentation techniques are additive

noise and offset, beat rate variation, dropout bursts and lead inversion. All techniques imitate common

variations in the ECG signal (further discussed in Section 4). Nevertheless, only the additive offset

and the lead inversion showed an improvement in the QoS, i.e. ∆F1offset ≈ 0.7% and ∆F1inv ≈ 2.1%,

respectively. Both in combination, achieved an improvement of ∆F1offset+inv ≈ 2.5%. Similar to the

hyperparameter exploration, the variations are large across training runs with different samples in

the training and validation folds. Therefore, the efficacy of data augmentation techniques need to be

evaluated on a case-by-case basis.

Further details on the exploration of training hyperparameters and data augmentation can be found

in [98]. In the end, the TCN model show a validation F1 score of up to 79 % [JL3], which constitutes

only a reduction of approx. 4 % compared to best-in-class classifiers [18]. The model structure is

summarized in Table 3.1.

Table 3.1: TCN structure from [JL3]

Layer1 Kernel Size
# Output

Channels

Subsampl.

Factor

DWT L1 4 1 2

DWT L2 4 1 2

DWT L3 4 1 2

DWT L4 4 2 2

TCN L1 5 10 3

TCN L2 5 13 3

TCN L3 5 20 3

TCN L4 5 63 3

TCN FC 11 4 -

1 Each layer Lx consists of one convolution (incl. rectified linear unit for

TCN layers) and one subsampling block.



3.2. Hardware Design 41

3.1.3 Algorithm Fitting

The exploration in the previous stage established a baseline with high QoS for further optimization.

The fitting stage uses this baseline and reduces its complexity with minor compromises in QoS.

One method is the number representation and quantization of the TCN model. More importantly,

the TCN model is trained based on a floating-point number representation. It is more commonly

supported in the ML frameworks, which target CPU/GPU architectures. Even though arithmetic

computations with floating-point numbers can represent a huge number range with fine precision,

a floating-point operation consumes more energy than a fixed-point operation with equivalent word

length [99]. Modern ML frameworks are capable of supporting down to 8 bit fixed point numbers

and operations, since int8 instructions are commonly supported in the target processor architectures.

However, highly efficient digital signal processing (DSP) blocks, which are established since multiple

decades [100], can be designed with arbitrary word lengths in specialized fixed-point arithmetic units.

Post-training quantization promises a systematic word length reduction of both weight and activations

without the need for re-training with the full preservation of classifier QoS [101].

Analogous to previous explorations a sweep was performed in [98] to determine a possible sweet

spot for the proposed TCN model. Surprisingly, the configuration with 12 bit word length, in specific

4 integer bits and 8 fractional bits provided a local optimum with a relative QoS degradation of

0.15 %. In contrast to the image classification tasks, the quantization down to 6 or 8 bit did not

yield the expected result, i.e. more than −30 % F1 score reduction or even no model convergence at

all. Hence, we conclude that quantization is significantly dependent on the sensitivity of data features

towards the target classes. The quantization of weights also has the effect of fully removing the impact

of filter kernels of specific channels, since all weights smaller than the least significant bit (LSB) are

rounded to zero. In specific cases, whole filter kernels result in zero, e.g. up to 31.76 % [JL1]. In

these models, the corresponding channels can be pruned without impact on the final result.

3.2 Hardware Design

In the following, dedicated hardware components are designed for the fitted TCN. Even though the

variety of arithmetic operations seems trivial, i.e. only MAC operations and subsampling, the target

is to execute the necessary computations in the most efficient way. As the continuous monitoring

application requires the classification component to operate in a always-on fashion, the average power
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consumption is key to quantify efficiency. Especially, both dynamic and static power needs to be

accounted for in the design process.

3.2.1 Hardware Mapping

As mentioned earlier, the hardware mapping stage maps the arithmetic operations onto processing

elements with a certain control and dataflow. It includes the storage of data as well as the movement

of data in between storage elements and processing elements. The design space is huge regarding the

possible mapping variants, e.g. dataflow strategies [70], mixed precision PEs with bit-serial/-parallel

multiplication [102] etc.

Therefore, a systematic approach is performed, in which the activation memory and the PE map-

ping is explored separately based on high-level cost functions. In contrast to Section 2.3.2, the cost

functions aim to relate to the power consumption of the target system instead of the energy consumed

per inference. The key difference is that the components are quantified by both their active and idle

power consumption, which equally contribute to the overall costs of an always-on system. In the

following, we assume that the inference of the TCN exhibit a trade-off between active and leakage

currents, since it is continuously switching between active processing of input samples and an idle pe-

riod in between. The cost estimation in this work relies on the detailed characterization of fitted TCN

model, i.e. in terms of number of operations, number of intermediate activations in each layer and per

channel etc., and the used technology components, i.e. characterized standard cell components.

TCN Memory Components

Early cost estimation for the memory components in a TCN is demonstrated in [JL3], [JL7]. There are

two types of data, which require buffering or permanent storage in the TCN: weights and intermediate

activations.

The former constitutes the trainable parameters of the TCN model and are usually stored in high

density memory components such as static random-access memory (SRAM) [54], [103]. In models

with a high number of parameters, these components are the preferred choice due to area limitations.

For state-of-the-art DNN models, it is even not possible to store all parameters on-chip. Here, this

memory component is used as an intermediate buffer, while an external memory component stores all

model parameters (see Section 2.3.2). However, the TCN capable of high-quality AF classification
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requires a multiple orders of magnitude less parameters and, therefore, can be stored completely on-

chip. Consequently, no off-chip accesses are required and, thus, eliminating expensive data access

costs [70]. If no reconfiguration of the model parameters are required, e.g. fixed coefficients in the

DWT, fixed coefficient multipliers can be directly synthesized. Applied to a full-flat TCN accelerator

a power reduction of 34.8 % has been demonstrated [JL1].

The activation memory stores the intermediate activations for processing in the PE array. In the

case of temporal sequences, the activations are streamed sample-by-sample from the input of each

layer into the buffer. As convolutions are performed, the kernel slides across the stream of input

activations. Hence, the buffer only needs to store the activations within a kernel in a first-in first-

out (FIFO) order. For the processing of convolution kernels, the number of items in the buffer remain

fixed. Therefore, every new inserted entry results in the oldest entry being removed from the buffer.

Further, all data within the buffer needs to be accessible for the convolution operation, which needs

to be supported by the memory structure. In this regard, the buffer needs to select the appropriate

memory device and logic level implementation for a low cost solution.

SRAM
Array

Regfile

DFF DFF

Alignment Logic

Devices Buffer Logic

Ring Buffer

Shift Register

Figure 3.4: Memory devices and logic level implementation of activation buffers

[JL3].

Figure 3.4 visualizes that the memory can be designed using SRAM devices or registers. How-

ever, conventional SRAM macros do not contain the flexibility to implement internal shift operations

and, therefore, need to be implemented as ring buffers. In contrast, D-flip-flop-based registers can re-

alize both ring buffers and shift registers, since individual bit cells can be arranged and connected on

RTL. For convolution operations, the logic level implementations needs to implement SIPO buffers
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[84]. For shift registers, all register values are concatenated as an output. However, a ring buffer

needs to realize an additional alignment logic, e.g. a barrel shifter, for the correct order of the data

within the convolution kernel. To find the cost optimal solution for the context of TCN processing, a

cost function is defined as follows:

CostE = ∑
i

κop,i ·Eop,i +κleak,i ·Tcyc ·Pleak,i (3.6)

The concept of Eq. 3.6 is to aggregate all influences of the memory components, which con-

tributes to the overall cost of the activation memory. The total cost CostE is split into contributions

from dynamic and static power. The contribution to dynamic power is estimated based on the energy

per operation Eop,i and the number of operations κop,i. The static power is estimated by the number of

components κop,i and their corresponding leakage Pleak,i normalized by a predefined time period, e.g.

Tcyc. Note that the figures Eop,i, Pleak,i are extracted from the datasheets of characterized components

and they are scaled with scaling factors κop,i, κop,i, which are obtained from the mapped hardware

and an example workload. Figure 3.5a shows the normalized efficiency 1/CostE over the duty cycle

and the size of the memory component. The duty cycle indicates either no memory transactions, i.e.

d = 0, or memory transactions in every cycle, i.e. d = 1 [JL3]. Since the duty cycle directly relates

to the number of operations in the activation memory and the memory size relates to the number of

components, the diagram displays the cost tradeoff for different activation configurations. Thus, an

early informed design decision can be made based on specific requirements of the targeted TCN ac-

celerator. In the case of the fitted architecture in Section 3.1, there is a cost advantage of the register

file compared to a SRAM macro (design point marked in black).

(a) Efficiency comparison of ultra-low leakage SRAM

and D-flip-flops. Higher efficiency relates to less power

consumption.
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Figure 3.5: Cost comparison for memory devices and simulation results for logic level

implementations [JL7].
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The classical method to determine the power consumption of logic implementations is to simulate

all designs using e.g. post-synthesis or post-layout netlists. Although the design effort is much

higher than the high-level cost analysis demonstrated earlier, the power estimation is more precise

and leverages industry-standard EDA tools. For instance, it can capture switching activity of each

cell in a testbench setup and differentiate between the dynamic energy consumption of rising/falling

edge. Figure 3.5b shows the post-synthesis simulation results of ring buffers and shift registers for

12 bit words in a 22 nm CMOS technology. In this case, the shift register requires both less leakage

and dynamic power than the ring buffer implementation for random input activity. Since the number

of cells required for the alignment logic increases quadratically with the buffer size, leakage is also

increased with the increased area. Further, more cells are switching, thus, increasing dynamic power

of the ring buffer implementation. Hence, a shift-register outperforms the ring buffer for activation

buffering in this configuration.

PE Mapping

As data is stored in SIPO buffers, the activations for the convolution operation are pre-aligned and

need to be multiplied with their corresponding weight and accumulated for each input and output

channel. In high throughput DNN accelerators, the arithmetic operations are performed in PE arrays

[70], which enable parallel MAC operations. While high-throughput architectures prefer a high-

utilization of the PE array (e.g. [JL6]), low-power ECG accelerators need to balance the dynamic and

static power of the components. This can lead to DNN inference logic with few or even a single PE

executing MAC operations sequentially [56]. In the co-designed ANN architecture by Zhao et al., the

classification algorithm contained only 592 MAC operations and, thus, the sequential computation

does not violate any latency constraints.

In other cases, however, the design choice is not clearly seperable between the two extreme cases.

On the one hand, a fully parallel PE design, or full-flat mapping, enables fast computations, but

sacrifices area and static power. On the other hand, a fully sequential PE design, does minimize

area and static power, but based on the computational complexity of the inferred DNN might violate

real-time constraints (as discussed in Section 2.3.3).

It is important to note that power gating might be a viable option to utilize a highly parallel design

for DNNs with low MAC operations and, thus, mitigate drawbacks in static power consumption.

However, it needs to address how mode transition times and energy impact the architecture in a
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stream processing design, which frequently switches between active and inactive mode. Within the

scope of this work, power gating is not utilize to simplify the design process.

Given a DNN, the question is how many PEs are requires to execute its computations. The cost

model of Eq. 3.6 also provides an informed solution to above mentioned design problem. Again

a cost model can be constructed based on the estimated static and dynamic power consumption of

the system. In the PE mapping process, however, the concept requires adjustments. Typically, EDA

tools use characterized standard cells to perform power estimations. In this case, Eop,i and Pleak,i

are available on gate level, which are summed together using the gate-level netlist after synthesis.

However, there are cases, in which it is not desirable to perform synthesis over all design points. For

instance, the mapped architecture features too many possible design points, e.g. PE array sizes. Or

synthesis and post-synthesis simulations for each design requires too much time for a full exploration.

In this case, the cost model should provide an estimate of the qualitative differences between the

explored configurations of the design.

The PE configurations for subsampling-based TCNs (see Section 3.1.2) result in specific trade-

offs between static power from the implemented PE units and the dynamic power from the sequential

processing on those units (c.f. [JL3]). Since both DWT operations and TCN operations in each layer

are convolutions, the PE are constructed using MAC units. In alignment with a previous experiment

(see Fig. 2.13 in Section 2.3.2) and previous DNN accelerators [70] that the parallel processing of

rows, i.e. in the 1D case a whole channel, is chosen for the PE exploration in [JL3]. Therefore, a

vector MAC unit is used to perform the convolution for one SIPO buffer of one input channel. In

the exploration [JL7], the number of PEs is increased from one unit, i.e. fully sequential execution,

to a full flat mapping, i.e. isomorphic architecture [104]. In terms of static power consumption, the

number of units scale leakage. Here, the layers of the TCN from Table 3.1 are subsequently inserted

starting from the initial DWT layers. The number of parallel PEs is, hence, determined by

NPE =
L

∑
i

ki ·Ci, (3.7)

where ki is the kernel size of the convolution and Ci is the number of output channels of layer i. In

terms of dynamic power consumption, the operating frequency can be decreased for more concurrent

PEs. This required minimum frequency fsys,min is calculated based on the input frequency fin and the
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subsampling factors di in each layer i, hence,

fsys,min = fin ·
Lmax

∏
i

di. (3.8)

For the cost function, we use NPE and fsys,min as the scaling factors κleak,i and κop,i, respectively. For

the leakage Pleak,i and energy per operation Eop,i of a technology node, a characteristic template cell

from the standard library is used.
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Figure 3.6: Pareto-optimal front (left) and aggregated cost (right) for parallelized lay-

ers using a DFF as the template cell. Variations of Pleak,i and Eop,i for rise/fall transi-

tions are resulting in cost uncertainties [JL3].

Figure 3.6 plots the result of the PE sweep. The left diagram plots the number of parallel MAC

units as function of the minimum system frequency of the design points. The aggregated cost Cagg,pe

is the sum of above mentioned cost components relating to static and dynamic power. A cost optimal

point is visible for five parallel PE layers. This corresponds to fully flat mapped DWT components

and one vector MAC unit for the sequential inference of the TCN layers. Since the cost estimation is

based on Eq. (3.6), a good correlation of the estimation to the actual system power is dependent on

the prior knowledge of the cells used in the final implementation. For instance, with no knowledge of

the synthesized standard cells, representative assumptions, e.g. about used cells, need to be made to

extrapolate the cost for a component level to system level. A more granular approximation is, hence,

available with more knowledge of the expected gate-level netlist after synthesis. One example is to

construct the aggregated cost Cagg,pe using not only one characteristic template cell but a selection of

cells to construct the components of leakage Pleak,i and energy per operation Eop,i.
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3.2.2 Digital Implementation

The previous hardware mapping phase investigated cost-optimal components for the implementation

in a complete system. In the following, these components are integrated into a system level architec-

ture to process the DWT pre-processing and TCN in a streaming fashion.

Cascaded Fixed-Coefficient DWT Filters

Given the PE mapping exploration from Section 3.2.1, the initial DWT pre-processing should be

realized as dedicated components. As a full streaming architecture is targeted, the cascaded FIR

filters are used to realize the DWT low- and high-pass filters.

Clock gated filter taps
Clock gated filter taps Clock gated filter taps

. . .

Figure 3.7: Flat mapping of cascaded FIR filters DWT pre-processing.

Figure 3.7 shows the circuit diagram of the DWT pre-processing block as a fully flat mapped

component using FIR filters [JL1]. Each block represents one 4-tap FIR filter for the db2 wavelets.

The triangles indicate a fixed coefficient multiplication. The result is summed together in an adder

tree. The design description in RTL is realized as a behavioral description with parametrizable number

of taps, word length and filter coefficients. Therefore, the fixed coefficient multipliers and adder trees

can be optimized by synthesis, where registers for the coefficients are omitted and replaced with static

wiring for shift and partial product summation. The subsampling is realized by the selective clock-

gating of the filter taps, which enables the propagation of the generated output. Conceptually, the

control of the enable signal for the clock gates can be generated locally or globally. For instance,

a global state machine can orchestrate the enable signals through a common counter logic or there

are local counters per layer, i.e. binary counters for subsampling factor 2, which are triggered by

preceding enable signals.

The data rate of the ECG data stream is reduced layer by layer, i.e. halved by every stage of the

DWT pre-processing component. In Figure 3.8 on the left, the rate reduction is plotted for an input

frequency of 300 Hz. The output frequency after each is halved such that the input samples of the



3.2. Hardware Design 49

Figure 3.8: Data rate reduction in flat mapped DWT components and number of cycles

for partial TCN inference over the number of input samples from the DWT layer [JL3].

TCN are available at 18.75 Hz after four stages. Basically, this stage both compresses the data with

fewer samples and increases the time frame for the subsequent sequential TCN inference.

Data-driven TCN Inference on a Vector MAC Unit

The inference of both convolution and dense layers are mapped onto one vector MAC unit using

the size of the convolution kernel as the tiling size. Analogous to the FIR filter of the DWT units,

the vector MAC units comprises the multiplication with weights and the subsequent accumulation.

However, the weight kernels are selected from an external SRAM unit and the input taps are divided

into a separate module (see next Section for more information).

Vector MAC ADD POOL

repeat CHNin times

repeat CHNout times

triggered

computation

oldest sample

discarded

wj0 wj1 wj2 wj3 wj4

xt xt-1 xt-2 xt-3 xt-4

FIFO Buffer
new sample

To Next Layer

FIFO Buffer

fin,p fin,p / 3

Figure 3.9: Data movement in a SIPO buffer, which provides self-aligned input feature

maps for the channel-wise convolution subroutine [JL3].

The concept of the serialized inference is visualized in Fig. 3.9. The buffer receives new tem-

poral sample either from the DWT output or the previous TCN layer. For instance the DWT output

generates two new samples, i.e. from A4 and D4 coefficients, which are inserted into two separate

shift registers. Since the insertion results in a new alignment of the buffer content to the weight kernel

(and the omission of the oldest sample), potential new outputs need to be calculated for the layer.

In the computation subroutine, the vector MAC unit is reused to iterate through the input channels,
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which are accumulated in the output stationary dataflow. Once all partial sums resulting from the

input channels are added for one output channel, the process is repeated for all output channel. The

results are each fed into a pooling unit for each output channel. The pooling unit also calculates the

pooling operation in an iterative manner. Samples from the pooling unit are emitted for every third

input sample, i.e. size of the pooling kernel. The output from the pooling unit are again fed into the

buffer units of the next TCN layer or the output prediction buffer. In Figure 3.8 the number of cycles

are plotted as a result of the aforementioned process. Each layer requires approx. Cin ·Cout+1 cycles,

i.e. one cycle for each input and output channel and one pooling operation. The diagram shows that

every third input sample results in the computation of the next layer. Hence, the first layer is triggered

for every DWT sample. The second layer triggers for every third, the third layer for every ninth etc.

The prediction is generated for every 81th sample. For an input rate of 300 Hz, a prediction is gen-

erated every fout = 4.32sec with a stride of Nstride = 24 · 34 = 1296. The effective frame size can be

calculated recursively based on the kernel size from the final dense layer using

Neff,i−1 = Neff,i · kpool,i +(kconv,i −1) (3.9)

with Neff,i being the effective input size at layer i and kernel size kpool,i and kconv,i for pooling and

convolution, respectively. This results in approx. 16-17k samples for Nframe covering up to nearly one

minute of an ECG recording satisfying AF classification requirements [1].

Wait for  
new sample Start

Reset prev Pool cnt 
Push Conv FIFO

Conv
Subroutine

Incr Pool count 
Push Pool FIFO

Pool cnt  
==  

Pool size?

FC Subroutine

Push Predict Reg

End 
(no pred)

End 
(pred)

4x

no

yes

Figure 3.10: Flow chart of the data-driven TCN inference [JL3].
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Figure 3.10 exemplifies the TCN inference process in a flow chart. Similar to the DWT com-

ponents, the trigger mechanisms are controlled through local counters, which enable the insertion of

data into the SIPO buffers and the subroutine of the next layer. In the end, the control mechanism is

realized in a static state machine, which coordinates the counters and derived enable signals for clock

gates according to TCN layer.

WVCNN Accelerator Architecture

The resulting ECG accelerator is denoted as WVCNN for the combination of wavelet transforms and

convolutional layers with subsampling. The system level block diagram is depicted in Fig. 3.11. The

test environment (blocks marked in blue) interfaces the accelerator (blocks marked in red) for test

purposes. Here, a register-file is accessed through a UART-Regfile bridge, which consists of open-

source modules for the communication from UART to AXI and AXI to a register file. The register

file is used to set registers for accelerator configuration and for the streaming input. On the one hand,

the test environment is used to set the weights and biases of the TCN within the SRAM. On the other

hand, the register is used to feed the input samples of the ECG signal into the accelerator. For the

data-driven TCN inference, the input sample needs to further accommodate a strobe signal to indicate

a valid new input to trigger the computation engines. The strobe signal is set to 1 for one clock

cycle, which is also used as the enable signal for the first SIPO register. The device under test (DUT)

consists of the modules for DWT pre-processing, denoted as compression engine, and the modules

for TCN processing, denoted as NN acceleration engine.

Module IO

UART-Regfile

Bridge
Regfile FIR Engine ...

Compression Engine NN Accelera�on Engine

FIR Engine
Ac�va�on

Memory

Parameter

Memory

PE

Array

Control

fin,0 > fin,1 > ... > fin,k > fout,k
TEST ENVIRONMENT DEVICE UNDER TEST (DUT)

Figure 3.11: System-level architecture of the WVCNN design including the test envi-

ronment [JL3].

As mentioned above, the compression engine comprises cascaded FIR filters. However, the neural

network acceleration engine splits the memory and the PE. Figure 3.12 shows the block diagram of

the neural network acceleration engine. The modules are split into three parts: the activation memory,

the PE array and the parameter memory. The activation memory is the collection of all SIPO registers
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for the input activations of all layers. In contrast to the buffers for the convolution layers, the buffers

for the pooling layers do feature additional logic for the subsampling and the maximum function. In

the maximum logic the input is directly compared with the stored value and updated with the current

maximum. A cyclic counter logic is used to control the reset and the value propagation to the next

convolution buffer. In this case, the logic sets enable high, when the counter reaches its maximum

value.
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Figure 3.12: Block diagram of the neural network acceleration engine in the WVCNN

design [JL3].

Although the pooling buffers are directly connected to the convolution buffers, the connection

from the convolution buffer to the PE array and from the PE array to the pooling buffer needs to be

multiplexed. The multiplexer logic is split into two stages, in which the first stage selects the set of

buffers corresponding to the inferred layer. In specific, for the inference of layer 3 the C3 buffers are

selected as an input to the PE array and the P3 buffer is selected as the buffer, which receives the

result of the PE array. The second stage of the multiplexer hierarchy selects the channel of the input

and output activations. The same control signals are also used to align weights and biases from the

SRAM and to reset the accumulator within the PE array. For the parameter memory two single port

SRAM modules are used to store the weights and biases. The weight memory contains 60 bits per
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address line, such that 5 weights can be read at once for the whole vector multiplication. Even though

the weights and biases can be reconfigured on-the-fly, the size of the memory block is fixed based on

the TCN model from Section 3.1.3.

The HDL description is written, such that the counters for number of input/output channel, pool-

ing/convolution kernel size, number of layers are parametrizable. Thus, all TCN model sizes can be

accommodated in a dedicated design. Further steps can be made to increase the flexibility and recon-

figurability of the design. These could include gated filter taps and PE units or reconfigurable channel

sizing. However, this would introduce more logic components, which contribute additionally to the

overall power consumption.

3.2.3 Design Evaluation

In the end, the WVCNN design is evaluated in a 22 nm fully-depleted silicon-on-insulator (fdSOI)

CMOS technology by GlobalFoundries. Commercial EDA tools were used for the digital design flow.

In specific, Cadence Genus is used for synthesis, Cadence Innovus is used for the place-and-route,

Mentor QuestaSim is used for the post-synthesis and post-layout simulation and Cadence Voltus is

used for the power evaluation on the back-annotated netlists. For synthesis, the ultra-low leakage

standard cells are used for the final evaluation as leakage dominates the total power consumption.

Simulations are performed at nominal conditions, i.e. TT process corner, 0.8 V supply voltage and

room temperature. ECG sequences with a sample frequency of 300 Hz are streamed into the acceler-

ator. The sequence of 60 sec will result in 13 predictions, as long as the operating frequency satisfies

Eq. (3.8).

(a) Breakdown of power for components in WVCNN

design grouped by function.

(b) Breakdown of power for components in WVCNN design

for SRAM components only.

Figure 3.13: Power breakdown of WVCNN design based on back annotated post-

synthesis netlists [JL3].
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Figure 3.13 shows the power breakdown of the WVCNN design. The breakdown in Fig. 3.13a

shows that two third of the system power is dissipated by the parameter memory (SRAM). The ac-

tivation memory (FIFO) consumes only 15.68 %, while the other components, such as DWT pre-

processing (COMPR) and the vector MAC unit (PE), are comparatively low. Due to the big contri-

bution of the SRAM component, it is further inspected in Fig. 3.13a. It is evident, that the weight

memory (MEMW) consumes a higher percentage than bias memory (MEMB) due to the bigger mem-

ory size. Further, the leakage power from both memories is dominating the power consumption with

approx. 73 %. A reason for this is the low utilization of the memory during the data-driven inference

of the classifier. When considering the TCN inference (see Fig. 3.8), not every new input sample

from the DWT pre-processing results in a vector MAC operation, thus, the PE unit is idling most

of the time. Assuming the operation of the accelerator at the minimum clock frequency as defined

in Eq. (3.8), the maximum number of cycles is defined by the sample triggering the prediction, i.e.

computing all TCN layers. Thus, the PE is utilized to 100 %, if it is computing the maximum number

of cycles for every new input sample. Compared to this reference, in the data-driven paradigm the PE

only needs to be active about 6.55 % of the time. In general, this utilization is dependent on the num-

ber of channels and subsampling factors of the TCN architecture. Nevertheless, we observe that the

WVCNN design effectively reduces dynamic power consumption to the degree that the power bot-

tleneck is the leakage of the memory components. The design in Fig. 3.13 were already considering

low frequency operation with ultra-low leakage components. Therefore, we expect that further power

saving can be achieved through leakage reduction through e.g. power gating and voltage scaling.

However, power gating has not been investigated in the scope of this work.

586 um

Other Logic

DUT

280 um

TESTENV

Figure 3.14: Layout level view of the WVCNN design and the chip micrograph [JL3].

In the end, the WVCNN design has been fabricated and the chip micrograph as well as the layout

level view can be seen in Fig. 3.14. The design occupies an area of 280 µm × 586 µm. The biggest
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area is occupied by the memory components both from the SRAM and the activation FIFOs. The

actual PEs for DWT and TCN is comparatively small and located in the center of the memory com-

ponents. The test environment is surrounding the DUT from the left and right and is not considered

in the evaluation.
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Figure 3.15: Measurement results of the fabricated WVCNN design operating at

500 kHz [JL7]. The left diagram shows the average power consumption split into

static and dynamic power and the right diagram shows the distribution of total power

over 5 measurements across multiple dies.

Measurements on the fabricated chip are performed for the same input stimuli as the post-synthesis

and post-layout netlists. The power domains of test environment and DUT are separated, such that

the current can be captured for the DUT only. In the experiment, the current is sampled during the

period, when the prediction is calculated. From all 13 predictions in a 60 sec ECG trace the average is

taken as one measurement point of an iteration. Five measurement iterations across multiple chips are

performed to account for on-chip variations and noise in the measurement setup. Figure 3.15 sum-

marizes the results for voltage sweep from nominal, i.e. Vdd = 0.8 V, down to Vdd = 0.5 V. On the

right, we observe that the statistical distributions across all voltages show robust clusters with small

deviations, i.e. up to σ = 6.4%. On the left, we can see that the dynamic power is scaling proportional

to the squared supply voltage. Further leakage is significantly reduced by voltage scaling, such that

the final design only consumes about 525 nW.

Another option available in the fdSOI CMOS technology node used is body biasing [105]. In this

method the well is polarized to create a non-zero potential to adjust the gate voltage of the transistor

devices. Consequently, gate voltage or leakage of the transistor devices can be further reduced by

applying a body bias potential. The latter is interesting for the WVCNN design, since the leakage

is a major contributor to overall system power. Figure 3.16 shows the shmoo plot for the fabricated

WVCNN design at a reverse body bias VRBB of 0 V, 0.9 V and 1.8 V. The ultra-low leakage devices
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Figure 3.16: Shmoo plot for three different levels of reverse body bias [JL3].

can only be biased in the opposite direction of the gate potential and, thus, reduce the leakage of the

devices. It is evident, that without body bias the WVCNN design can be operated at low voltages and

low frequencies. If the bias voltage is increased, the design only remains operable at higher supply

voltages. In the end, the gain in power consumption, which is achieved through body biasing, is

negligible (up to 5 %).

3.3 Summary

Within this chapter, an ECG classification system has been designed from scratch and demonstrates

systematic design of an accelerator for smart sensor applications. The key to obtain a system with

both low power and high quality classification requires the co-design of algorithm and hardware. In

this work, it is shown that a classic DNN model carefully chosen with uniform operations is capable

to achieve such requirements. A DWT as pre-processing and a TCN as classifier mainly require con-

volution operations to achieve high quality AF classification. The subsampling in both components

are favorable for the streaming architecture design as it reduces the number of samples consecutively

over each processing stage. Based on this algorithm baseline, the hardware components could be de-

signed such that both static and dynamic power is balanced in a cost optimal point. This is achieved

through a cost-driven selection of memory devices and a data-driven computation of the TCN. In the

end, these classic design techniques applied on the continuous ECG monitoring use case results in a

design, which is capable of classifying AF with a F1 score of 79 % and a power of down to 525 nW.

This work intends to show how a systematic selection process in combination with classical design

techniques can already achieve state-of-the-art performance. However, as outlined in Section 2.2.1,

DNN classifiers applied on the ECG classification task span over all variants of modern machine

learning technique. The adoption of modern algorithms to this task shows that the development
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of ECG classifiers is still a challenging application to solve. For instance, recent developments in

transformer architectures are modified for arrhythmia detection in microcontrollers [106]. In contrast

to popular machine learning benchmarks in image classification, the amount and quality of data for

biomedical applications is a challenge to provide sufficient generalization. Similar to modern machine

learning applications [107], we expect that classifier quality scales with sufficient data and model

size. Here, the improvement in classification quality is expected to be applicable across all different

DNN architecture variants. The advantage of an architecture with only convolution operations, as

demonstrated in this work, is the mapping to less complex computing units and the scalability of the

model to support increasing model sizes for the generalization across larger datasets. In complex

DNN architectures, such as transformers, the variety of operations, e.g. different activation functions

and complex dataflow, need to be supported in the computation platform. The co-design of power

optimal designs needs more complex design space exploration than PE and activation memory sweeps

(as shown in Section 3.2.1), which need to account for every new operation and component in the

design.
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Chapter 4

Hardware-Aware Domain Generalization

for ANN-Based Feature Alignment

The efficient use of continuous monitoring systems does not only require low power operation of high

performing classifiers. It is also dependent on its robustness in a real-life situation, e.g. how well the

classifier performs with different input data, noise etc. Especially in the case of the monitoring of

cardiac arrhythmia, the classifiers of the algorithm-hardware co-designed systems show incredible

performance on their respective dataset (see Section 2.2.1), but rarely discuss the results beyond the

scope of this dataset. Therefore, commercial products rarely incorporate such monitoring systems,

as their efficacy in real life situations remain to be validated. Instead, traditional thresholding of

hand-engineered features are still the preferred methods [2].

One main issue is that the data used for training and the data captured during deployment differ.

Hence, the trained DNN does not perform as well, since it is not generalizing well enough beyond the

available training data. Especially in biomedical applications with the need for high-quality feedback,

it is essential that prediction of these systems are reliable and robust. Hence, it is critical to address

this domain shift problem for the successful deployment of continuous monitoring systems on mobile

devices.

In the following, we first discuss the context of domain generalization with respect to ECG clas-

sification as an application. Then, we review the state-of-the-art addressing the domain shift problem

and outline a low complexity solution, which generalizes across source and target domain using a

single linear layer. In the end, this concept is evaluated and compared against a reference case, where

fine-tuning is used for generalization.
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4.1 Application Context of Domain Generalization

Classification
Task

Tr + Te same
domain?

SD + TD
same labels?

TD data available
during Tr?

OOD
Generalization

IID Data

Generalization
on same task

Generalization
to new task

Zero-Shot
Learning

Transfer
Learning

DA

no yes

yes no limited

TTT DG

yes no

Supervised
Learning

Figure 4.1: Summary of the classification problem of data dependent on the availabil-

ity of data during training (Tr) and testing (Te). For the robust classification of ECG

data in a practical setting the aim is to generalize over OOD data with a domain shift

between source domain (SD) and target domain (TD) [JL10].

Figure 4.1 shows the different facets of the classification task. The complexity is defined by the

data, which is available during training and deployment of the model used. A typical classification

scenario assumes data to be idependent and identically distributed (IID), which is common practice

in algorithm-hardware co-designed DNNs. Hence, the task is typically solved using supervised learn-

ing, as the distribution of training data matches the test domain. Nevertheless, in many application

cases, such as ECG monitoring, it is not possible to capture all features across patients and mea-

surement setups, such that a domain shift between training data and deployment is inevitable. In

the scenario, where new labels are introduced in the target domain, the generalization over out-of-

distribution (OOD) would extend into complex disciplines, e.g. zero-shot learning [108] or transfer

learning [109], which is out of the scope of this work. Instead, we focus on the generalization of

different data distributions in source and target domain, but the same label set. Here, the task can be

further subdivided into domain adaptation (DA), test-time training (TTT) and DG. The fundamental

difference is how much data of the target domain is available for the training phase. While domain

adaptation assumes that the target data can be used for training, test-time training only allows the

adaptation of the model during test-time with limited data. The ideal scenario would be to generalize

to the target domain without incorporating its data for training, i.e. domain generalization.

Figure 4.2 shows the sources of domain shift for ECG data. On the left, the sources are summa-

rized based on the measurement setup. It is evident, that the domain shift is not only defined by noise,

but also contains systematic patient specific components such as deviations in the body impedance

between electrodes, the contact of the electrode itself and its position. Further, configurations in the

analog front end also influence the captured data, such as sampling rate, bandpass filters, resolution

etc. On the right, the deviations of openly available ECG datasets, as in PhysioBank [24], are listed.

It is evident, that not only the data quality deviates, but also the labeling scheme. For instance, some
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Figure 4.2: Summary of domain shift sources in ECG data acquisition. The discrep-

ancy is databases does not result only from deviations in the measurement setup, but

also the labeling scheme [JL10].

labels are assigned to a whole sequence [18], but a majority is assigning labels to individual beats

[24]. Another example is the introduction of grouping schemes to guarantee sufficient samples in

training [56]. While it is possible to simply duplicate labels from one sequence to all individual beat

in it, it is questionable, whether all beats do contain the features associated with label of the sequence.

In the end, the usage of multiple databases requires a method to transform one scheme into another

or one is limited to the selection of databases with coherent measurement and labeling setups.

Therefore, the design of DG algorithms and corresponding hardware components need to be

viewed under the circumstances of the suitability of available data. The choice of the used datasets

and methods need to match a practical scenario suited for the continuous monitoring of ECG for

deployment on smart sensors as targeted in this work. In the following, recent literature is reviewed

to see how well the state-of-the-art covers this application case.

4.2 State-of-the-art Domain Generalization for ECG Classification

Figure 4.3 shows the structure of most commonly applied DG algorithms in the use case of ECG

classification. One method is to continuously extend the set of samples used for training with OOD

samples. The collection of samples from the target domain in an active dataset is used to fine-tune the

original DNN, such that the network incorporates and adapts to new features [110], [111]. Figure 4.3a

depicts a high-level schematic of this method. The samples stored in the active dataset are selected

based on a filter criterion to reduce the memory footprint and maximize the diversity of samples.

Despite the selection process, the concept of an additional dataset used for model finetuning requires

both the memory to store raw ECG data and the model finetuning. In the context of smart sensors,

both on-chip memory and computations need to be minimized as much as possible to reduce power
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consumption. A DG method with constantly scaling memory requirements, however, is suboptimal

from the perspective of power consumption. Therefore, it needs to be further evaluated whether

memory limitations impact DG performance.
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Figure 4.3: State-of-the-art DG methods applied for the classification of ECG signals

[JL10].

Another method is to align features for the same classes and different domains to each other

[111]–[117]. Similarly, features from different classes and different domains are separated in the

feature domain (see Fig. 4.3b). This is achieved by the modification of the loss function during the

training process. An additional term is rewarding a short/long “distance” of features resulting in the

prediction of the same/distinct classes. This concept relies on the assumption, that within the feature

space the distributions should be robust against domain shift and the features are similarly clustered.

The distance metric is critical for this method, as it quantifies the similarity of features. In this method,

the fine-tuning of the whole DNN model is still required.

In a third method, the classifier is split into multiple models, thus, classification is performed

by the ensemble of domain in-/variant models (see Fig. 4.3c) [118].Conceptually, each new target

domain requires the training of a new DNN model. From a resource perspective, the memory and

computational requirements are duplicated for each new classifier added, when assuming similarly

sized models for each branch.

4.3 Low Complexity DG Algorithms

It is apparent that data and model up-scaling are focused in recent literature. This results not only in

the increased generalization performance, but also similarly scaled resources, which is unfavorable for
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resource-constrained environments as smart sensors. The method of model retraining with modified

loss functions for feature cluster alignment and separation is promising, since the original model is

reused to incorporate the target domain. Therefore, the model complexity remains similar with a

different training setup.

4.3.1 Complexity Exploration in State-of-the-Art DG Methods

When looking at the problem of DG for smart sensors from scratch, the key question to answer is:

how much complexity is needed to achieve the capability of generalization. In the next experiment,

the separation of features is visualized for two feature alignment techniques on homogeneous and

heterogeneous domain shift. The idea is to evaluate the generalization performance on the use case of

AF classification for different degrees of domain shift and different complexity of the DG algorithm.

Therefore, we focused on the binary classification of AF and normal sine signals in the inter-patient

scenario as a representative for homogeneous domain shift in the AFDB dataset. The more com-

plex problem is the transition to the CinC’17 dataset with a different ECG device and noise, which

represent the heterogeneous domain shift. For the DG algorithm, we chose the instance normaliza-

tion in each layer to normalize features for each instance, which prevents domain specific means and

variances in the intermediate activations. In contrast to this basic normalization, contrast learning is

chosen as a representative for the methods depicted in Fig. 4.3b. Although this method still uses the

original DNN model for fine-tuning, all weights and biases of the network are adapted instead of the

scaling factors for the normalization. As a baseline network a fully convolutional network is trained

from scratch on the source domain after which the adaptation to the target domain is performed.

Figure 4.4 visualizes the feature distribution in the last convolution layer before the final dense

layer. The features are mapped to the 2D plane using principle component analysis (PCA) and colored

by their correspondence to their ground truth label. The classes are clearly clustered and separable

in the baseline and source domain. Since no generalization is considered in the baseline the features

are not separable for the two target domains within the AFDB dataset and the CinC’17 dataset. Both

the instance normalization and the contrastive learning are able to separate the feature clusters for the

unknown AFDB patients. However, this is not clearly visible for the CinC’17 samples.

Table 4.1 shows the quantitative results of the experiment. Coherent to the visual representation

of the feature distributions in Fig. 4.4, the achieved F1 score is high in the baseline classifier for the

source domain. The performance is dropping significantly in the CinC’17 benchmark, i.e. down to
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Figure 4.4: Fully convolutional neural network for the evaluation of instance normal-

ization and contrastive learning. Features before the final dense layer are visualized in

the 2D plane after principle component analysis [JL10].

AFDB CinC’17

Test - Known Test - Unknown Test - Unknown

N AF N AF N AF

Baseline (w/o

DG)

0.93

± 0.03

0.90

± 0.03

0.91

± 0.07

0.88

± 0.07

0.67

± 0.01

0.17

± 0.21

Instance

Normalization

0.96

± 0.02

0.93

± 0.03

0.92

± 0.10

0.91

± 0.09

0.79

± 0.02

0.78

± 0.03

Contrastive

Learning

0.97

± 0.02

0.94

± 0.02

0.96

± 0.04

0.94

± 0.05

0.80

± 0.01

0.77

± 0.02

Table 4.1: Validation F1 score of DG techniques on the inter-patient AFDB and CinC’17

dataset using 5-fold cross-validation.

17 %. However, the baseline also performs quite well for homogeneous domain shift with 88-91 %.

Both instance normalization and contrastive learning increase the performance on the target domain

of AFDB unknown. The F1 score is saturating at 91-92 % and 94-96 % for instance normalization and

contrastive learning, respectively. The same trend is also visible for the CinC’17 samples. In this case,

the F1 score is increased to 78-79 % and 77-80 % for instance normalization and contrastive learning,

respectively. The relative performance gain is more evident for the CinC’17 samples, although it is

not visually apparent in the feature distribution. Nevertheless, the difference in classification quality

between instance normalization and contrastive learning is minimal.

Based on this experiment, we reevaluate the necessity to fine-tune the baseline DNN to achieve

generalization. As seen for instance normalization, the normalization layers simply reduce mean
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and variance between source domain and OOD samples and, thus, achieve a similar classification

performance as more sophisticated DG algorithms.

4.3.2 Correction Layer (CL)

Hence, the concept of correction layer (CL) is introduced to align the features using a single trainable

layer. It borrows the principle of the methods from Fig. 4.3b. However, the training is concentrated

on the CL, in which the normalization is performed. Conceptually, the realization of the CL can be

chosen as an arbitrary transformation, which is trained within a DNN with frozen weights and biases.

As an initial entry point, linear transformations are investigated. The advantage of linear transfor-

mation as a CL is that they can be merged into adjacent layers with linear transforms, e.g. convolution

or dense layers. In the following, two types of CL are considered: the channel-wise and the inter-

channel transform.

fcw = (w+1)»x (4.1)

fic = (W+ I) ·x (4.2)

The “»” and “·” denote the element-wise and matrix-vector multiplication, respectively. The channel-

wise transform aims to scale each channel with a weight separately. The inter-channel transform

comprises the weighted sum of all input channels into separate output channels. It is evident that the

former and latter scale linearly and quadratically, respectively. Thus, these two transforms showcase

two types of linear transforms with different complexity. In principle, the concept can be extended

further to biases and arbitrary transforms, e.g. polynomial or non-linear transforms in general. In the

following, the channel-wise and inter-channel transform are used to demonstrate the CL concept.

Figure 4.5 shows the CL training concept. An arbitrary multi-layer DNN architecture is trained

on the source domain. In a consecutive step, the parameters are frozen such they do not change

during the training of the CL. To train the CL, first, it is inserted into the pre-trained DNN. The

input and output dimension should match, such that the original architecture is unmodified. Then the

correction layer is trained on a subset of the target domain to align the features at the output of the

CL. The validation is performed on the remaining set of the target domain. In this setup, the target

domain is chosen such that it contains a balanced number of AF and normal samples to ensure good

performance on small samples sizes. In the end, the training procedure consists of two interleaved

cross-validation steps with 5 folds to guarantee robust results across the dataset.
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Figure 4.5: Experimental setup for the insertion of CLs in a DNN. The training and

validation is performed in two distinct steps. First, the DNN is trained without the

CL on the source domain. Second, the CL is trained on a subset of the target domain.

Both stages are cross validated for statistically robust results [JL10].

4.4 Evaluation of Correction Layer Performance

Since the objective of the CL is to provide inter-domain generalization, the evaluation of CL perfor-

mance is divided into classification quality and hardware complexity.

4.4.1 CL Classification Performance

Figure 4.6 shows the quality of service of the baseline and the CL version measured using the F1 score.

The CNN from Section 3.1.2 (see also [JL3]) is chosen as a baseline architecture for exploration. We

trained the model on the AFDB dataset for binary classification of AF and normal sine signals. The

architecture is adjusted to the new task through the number of intermediate channels, i.e. the number

of output channels are (10,24,50,70) from the first to last convolution layer. The split of source

and target domain is done based on the inter-patient paradigm, where the recordings of both domains

contain mutually exclusive subsets of patients. The blue dotted line shows the average F1 score of

the baseline trained on the source domain. The average performance is dropping from a near perfect

classification score by over 20 % on unseen patient data in the target domain (red dotted line). The

insertion of the trained CL is expected to yield performance gains compared to the untrained baseline.

The channel-wise CL shows greatly deviating classification performance over different folds and

positions. While some positions, e.g. after layer 3, indicate consistently good performance with

the exception of a few outliers, other positions, e.g. after layer 4, are consistently underperforming.

On the other hand, the inter-channel CL designs show consistently better F1 score in all inserted
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positions with few exceptions. Especially, the position after layer 2 shows robust distributions close

to the original F1 score of the baseline on the source domain.

(a) Insertion of one channel-wise CL after each layer

(b) Insertion of one inter-channel CL after each layer

Figure 4.6: CL performance based on correction layer position and type. The blue

and red dotted lines indicate the average performance on source and target domain

without CL training, respectively [JL10].

As a consequence, we observed that CLs with more trainable parameters and larger degree of

freedom yield better generalization results. However, this also means that more parameters need to

be learned and computations need to be performed.

We also investigated the sample efficiency of CL training. For this experiment the training setup

of Fig. 4.5 is kept the same and reduced the number of training samples in the target domain per

recording. A 2.99× reduction of training samples results in a 1 % F1 score reduction. In an ex-

treme case, the training samples are reduced by 120.48× and the F1 score is still preserved within

a 6 % range. In essence, the training of the CL can be achieved using few samples and, thus, can be

performed during test-time.
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4.4.2 CL Integration into an ECG Inference Engine

In the following, the complexity of the CL is evaluated in an ECG inference engine. Basically,

the design from Section 3.2 is reused and extended by the CL. Three designs are implemented for

comparison.

As a reference design, the WVCNN design remains unmodified. The second design extends the

design by including more memory for parameters in the SRAM and the activation memory. The

latter requires the insertion of SIPO registers at the corresponding layer and the fitted dimensions to

that layer. In specific, the kernel dimension is 1, since the features of one time step are transformed

into a new set of features with the same channel dimension. Further, the control logic needs to be

modified from a purely convolution-based dataflow to realization of the matrix-vector multiplication

of the CL transform. This is achieved by aligning the channel dimension on the vector MAC unit such

that one row-by-column multiplication can be executed in an output stationary manner. Hence, the

computations of one output element is loop tiled and executed in C/k cycles with C and k being the

number of channels and number of elements in the vector MAC unit, respectively. The third design

merges the parameters of the CL with an adjacent convolution layer, such that the weights and biases

of the reference design are modified in one layer only (see Equations (3.1) to (3.5)).

Train

Acc.

(%)

Test

Acc.

(%)

Area

(µm2)

Seq.

Cells

Comb.

Cells

Max.

Freq.

(MHz)

Power

(µW)

CL Design
98.98 97.16

19.9k 19.7k 6.9k 9.96 267

CL Design

(integr.) 19.3k 19.4k 6.6k 9.97 255

Reference

Design
99.01 95.15

Table 4.2: Post-synthesis results of reference ECG accelerator with and without inte-

grated CL [JL10].

Table 4.2 shows the KPI of the three designs after synthesis. The CL design improves classifica-

tion on the patients in the test set by approx. 2 %. The circuit area is increased by the additionally

synthesized cells for the SIPO registers in the additional layer and the control overhead. This area

overhead amounts to approx. 3 % of the reference design. Further, the power consumption increases

by only 12 µW, i.e. 4.7 %. All in all, dedicated CL logic amounts to little area and power overhead

and, thus, can be integrated into existing an accelerator to provide generalization capability without

modification of the reference model. In the CL design, which integrates the layer into existing DNN

layers, the same logic from the reference architecture can be reused for inference. Hence, the number
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of cells and the area is identical to the reference. In terms of the power of the inference, the differ-

ence in switching activity resulting from the changed weight in the merged layer is negligible. In the

end, the integrated CL design provides generalization capabilities without any hardware overhead by

weight reconfiguration of one layer.

4.4.3 CL Evaluation for Backpropagation On-Chip

The concept of CL further reduces training complexity for the target domain to a single layer. There-

fore, we demonstrate the savings in terms of memory consumption and MAC operations compared

to full DNN fine-tuning. In the reference case, the whole DNN is fine-tuned as common in state-of-

the-art ECG DG algorithms (see Section 4.2). Typically, hardware accelerators for on-device DNN

training feature the training of all layers [119]. For the training of a single layer, the backpropagation

algorithm requires error signals propagated from the final output layer. This error signal is used to

calculate gradients and weight deltas to update the weight. Since only one layer is updated in the

CL method, the calculation of intermediate results can be reduced by pruning gradient calculation at

other layers. Further, the error signal does not need to be propagated beyond the CL.

CLL2L1 L3 L4

SGD
const

FC

4x63x11
63x20x5x37

20x13x5x115

~13x13x115x2

= MAC Ops

Figure 4.7: Theoretical concept of CL training. In contrast to DNN fine-tuning, the

training of CL only requires partial memory resources (bold solid box) and a fraction

of computations (grey area in red dashed line) [JL10].

Figure 4.7 visualizes the described mechanism. The chain rule of the backpropagation algorithm

results in partial derivatives, which are reused in each layer for gradient calculation, i.e. indicated as

∂L
∂xi

. For convolution operations, the partial derivative with respect to one input is the corresponding

weight. The gradient ∂L
∂wi

is calculated with a layer specific term
∂xi+1

∂wi
to eventually derive ∆wi for

the weight update. In this evaluation, the number of MAC operations are used to estimate the com-

putational complexity of the “reduced” backpropagation algorithm. For simplification, multiplication
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without an addition are also counted as one MAC operation, as we assume that the cost of a multipli-

cation is much larger than an addition. The bold circles on the right of Fig. 4.7 show the calculation

considered in the backpropagation algorithm. Other calculations involved in the stochastic gradient

descent (SGD) algorithm are neglected, since many variants and extensions exist. Nevertheless, the

evaluation accounts for a majority of the calculations in the learning algorithm and indicates a lower

bound of its complexity. Regarding the memory, the weights and activations need to be stored to

calculate the weight updates. For backpropagation, the intermediate activations of the inference pass

are required for the partial derivative
∂xi+1

∂wi
. As the update is only performed in one layer, the stored

activations in the CL method are reduced significantly. In the evaluation, it is assumed that the refer-

ence case does not contain a CL and the investigated designs with CL introduce an additional layer

with additional weights and activations corresponding to the inter-channel CL.

(a) Normalized MAC operations for different CL posi-

tion (left:input, right: output)

(b) Normalized memory for different CL position

(left:input, right: output)

Figure 4.8: estimated MAC operations and memory necessary for CL training based

on different DNN architectures and CL position. The costs are normalized against the

reference case, in which the DNN is fine-tuned [JL10].

Figure 4.8 shows the normalized results in different DNN architectures common for classifiers

utilized in state-of-the-art ECG accelerators [43], [57]. The designs are normalized against the refer-

ence case, i.e. the whole DNN is fine-tuned. It is evident from all designs that the CL method is both

superior in terms of computational complexity and memory consumption except special cases. In Fig.

4.8a all design points show less MAC operations than the reference. The number of operations also

depend on the position of the CL. If the CL is positioned close to the output, less partial derivatives

need to be computed for the update of the CL’s parameters. If it is positioned close to the input, the

computation of the chain rule needs to traverse through all layers of the DNN. Nevertheless, MAC

operations are still reduced, since the gradient computations of other layers are omitted. Compared to
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those, the computations of the additional CL is negligible. Figure 4.8b shows less consumed memory

compared to the reference in the CNN architectures by Lu et al. and Loh et al. [JL7], [43]. One ex-

ception is the architecture of Parmar et al. [57]. In principle, the omitted activations from the forward

pass should outweigh the number of additional parameters required for the CL. However, in the case

of Parmar et al. a fully-connected DNN was used with few layers. The total number of activations

do not exceed the number of additional weights required to store the CL’s trainable parameters. Es-

pecially, the inter-channel CL requires the squared number of output channel for the weights and an

additional set of activations for the added layer.

In the end, the evaluation assumes an additional dedicated CL. As previously described, the CL

is arithmetically integrable into adjacent convolution and dense layers. For the in-field training of the

CL, a method could be derived to leverage this integration further, e.g. through single layer training

or on-the-fly weight updates.

4.5 Summary

Within this chapter, an ECG classifier is extended to feature domain generalization capabilities through

an additional layer, i.e. correction layer (CL). Inspired from low complexity generalization methods,

the CL aligns the features of the source and target domain in a separate layer, while preserving the

original DNN architecture. Since the correction layer uses linear transformations for alignment the

layer can be merged into adjacent convolution or dense layers from the DNN. Cross-validation over

source and target domain is performed to validate the performance of the correction layer. A center

position of the inter-channel CL shows the best classification performance. An evaluation on an ECG

inference engine, that the area and power overhead to integrate an additional CL is low. If the CL

parameters are merged with adjacent layers, area and power remain the same as the reference design

without domain generalization. The training of CL on-device show significant CC and memory re-

ductions compared to conventional fine-tuning. For the investigated example in this work, the number

of MAC operations and memory are reduced by more than 50 %.

In terms of robustness across domain variations, algorithm design feature generalization capabil-

ities, which are supported by dedicated hardware components to a limited degree. For instance, ECG

accelerators provide the support for DNNs, in which the weights and biases can be reconfigured [29].

The in-field training of such modules has only been demonstrated for single layers [120], in which

the discussed CL method provides additional flexibility in terms of layer position. It is shown that the



72 Chapter 4. Hardware-Aware Domain Generalization for ANN-Based Feature Alignment

re-training of a single layer is less complex than DNN fine-tuning by design. The accelerators incor-

porating on-chip circuits for re-training [119] would provide additional features into state-of-the-art

reconfigurable ECG accelerators with low overhead.
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Chapter 5

Temporal Coding for

Numerically-Equivalent Conversion of

ANNs to SNNs

Spiking neural networks (SNNs) integrate one bio-plausible feature into the computations of conven-

tional DNNs. The spiking communication promises fast inference and low power consumption due to

the event-driven processing of spikes within the neurons [121]. The concept relies on the exchange of

information with temporal events, i.e. spikes, which are transferred in a network of mainly uniform

computing nodes interconnected through synapses.

In the following, we investigate how SNNs provide benefit to the classification of ECG in ded-

icated hardware components. First, we outline the landscape of SNN algorithm design and existing

integrated circuits for SNNs. Then, one conversion method is introduced to map activations to a tem-

porally encoded representation. The main operation of an ANN, i.e. the sum of products, can be

calculated with less additions than classical methods. In the use case of ECG monitoring, the model

from Section 3.1 is mapped to its spiking counterpart and the activations are analyzed for efficient

hardware mapping. In the end, a hardware architecture is designed to infer the converted SNN. The

evaluation shows that this mapping fully preserves the classification quality of the reference ANN

and achieves complexity reductions at the same time.

5.1 Application Context of SNN Algorithm and Hardware Design

The concept of SNNs is used in different contexts both from the perspective of algorithm develop-

ment and supporting hardware. Figure 5.1 shows an overview of the corresponding design concepts
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for SNNs and how the target application influences the design choices of SNN neuron models and

supporting hardware modules. These are further detailed below.
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Figure 5.1: Simplified overview of SNN design concepts in context of custom neuron

model proposed in [JL4].

The common denominator of SNN is the communication with spikes, which can be abstracted

as binary signaling events with spatio-temporal features encoding their information. Spiking com-

munication is a feature, which is not only used in neuroscientific simulations of the brain, e.g. the

microcircuit model [122], [123], but also in machine learning applications. In the former, network

architectures are built in close relation to the experimental evidence, which map brain structures and

electrophysiological properties to a mathematical model with analogous behavior. In the latter, arti-

ficial network architectures are designed to solve e.g. classification tasks [JL4], [120]. This typically

involves an optimization process to adapt the internal state of the model to produce a desired in-

put/output behavior corresponding to training data or similarity metrics. The used neuron models,

i.e. the elementary computing units of the network, mainly deviate based on the granularity of bio-

plausible features contained in them. For instance, the Hodgkin-Huxley [124] model can mimic the

dynamics of an action potential using conductances of ion channels. While this may prove useful

in the replication of neuron-level simulations, the complexity of the computations limits its use in

large scale networks. In ML applications the spatio-temporal correlation of spikes is used as input

and feature representations in e.g. classification tasks. In this case, the timing of spikes and their

integration in an internal state is more important than the dynamics of the action potential1. The

variants of the integrate-and-fire models represent the spikes in binary signaling events, while the

temporal progression of the internal state can incorporate leak terms or adaptive thresholds. In terms

1The width of the action potential is suggested to influence synaptic plasticity [125].
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of hardware, the circuits supporting those models can range from large-scale multi-core to digital

single-core systems. Again, the application requirements determine the complexity of the system, in

which power-performance-area (PPA) trade-offs might favor the one or the other design paradigm.

For instance, large-scale multi-core systems are suited for neuroscience simulations as they require

scalability. On the other hand digital single core architectures are favorable for mobile ML applica-

tions as sparse activations in a small footprint circuit can meet demands for low power etc. In the end,

the deployed SNN need to be trained before their usage. While some methods follow traditional un-

/supervised training methods with adjustments to the non-linearity of some neuron models, there are

also conversion methods, which transfer the parameters of a baseline ANN into a spiking counterpart.

In a task-oriented application, such as ECG classification, the design is mainly guided by appli-

cation requirements. For instance, real-time processing is constrained by input rate etc. (see Section

2.3.3). The processing algorithm and executing hardware is designed such that it adheres to con-

straints set by the application down to the component level hardware design, i.e. top-down design

approach. The bottom-up approach significantly differs from the top-down approach, as the design

starts from the component level design and extends from there to the system level. An example, in

this case, is the design of a cluster to emulate IF neurons on a large scale. In this example, the design

of a neuron core is extended with network structures for communication etc.

In the case of health monitoring, the exact processing mechanism is not pre-defined and remains

flexible as long as it achieves its functionality under certain quality metrics. Therefore, a top-down

approach is chosen for the remainder of this Section to design a neuro-inspired accelerator. Further,

the requirements on bio-plausibility are flexible, as the target is to optimize against the quality metrics.

In the case of ECG monitoring, it is desirable to classify artifacts with high quality and low power.

In the context of former, state-of-the-art ANN already achieve high quality with low power in a

custom digital circuit (see Section 3). Hence, the aim is to integrate biologically-inspired features

into existing artificial neural network to further reduce the power consumption. The method of ANN-

SNN conversion fits perfectly for this goal, since it aims to mimic the reference ANN in the conversion

scheme. Therefore, the activations are closely matching the reference and, in the ideal case, provide

the same classifications with sparse communication and computations.
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5.2 State-of-the-art ANN-SNN Conversion

The usage of spikes as communication signals is fundamental to SNNs. The expectation is the com-

munication between computing nodes is sparsely represented through the temporal and binary nature

of the spikes. The sparsity should result in less circuit activity, which in turn reduces the dynamic

power of the system for further power reductions. Neural networks with spiking neurons cannot

be trained conventionally with gradient descent algorithms, since they need differentiable activation

functions. Hence, a variety of methods are introduced to train SNNs [121]. While some concepts

adapt existing training techniques to directly train the SNN, e.g. through spike probabilities [126],

others leverage baseline ANNs for conversion into the spiking domain. In an ideal scenario, the con-

version process from activations with real numeric values to spike representations does not alter the

encoded numeric values, such that both models are equivalent in their input-output response. The

ANN-SNN conversion method is used in this section to include the feature of spiking communication

into health monitoring systems for further optimization.

The basis of the conversion method is the encoding of real-valued activations in the ANN to

spikes. A series of spikes contain the information in binary signaling events with temporal properties

corresponding to the reference. Although recent literature discovered many methods of spike encod-

ing schemes(see review [12]), popular methods mainly focus on two subcategories: rate and temporal

coding.

The most common method is the rate coding of the activations [127]–[131]. In essence, the

numeric value of the ANN neuron outputs are represented in the spike rate. This coding method is

widely used, since IF neurons can be used to generate the spikes with a certain rate proportional to

the spike rates of the neuron’s input channel. This neuron model is highly popular due to its simple

phenomenological structure [132]. The idea is that the accumulated input signals are increasing

the internal state of the neuron, i.e. membrane voltage, until it exceeds a threshold. By adjusting

the neurons parameters, e.g. its threshold, and the synaptic weights, the spike generation can be

influenced. For a constant input, the basic IF neuron will generate a spike train with constant spike

rate.

However, it is also suggested that SNNs require a very low spiking activity to justify an advantage

energetically compared to their ANN counterpart [133]. SNN with spike-rate encoding require many

spikes to represent their numeric value, especially, when this value is high. An alternative are temporal

encoding methods, which encode information in the timing of their spikes [12]. The advantage of
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temporal encoding schemes are the sparsity of used spikes. In specific, the time-to-first-spike (TTFS)

encoding schemes use only one spike to represent the numeric value in the spike timing in relation to

a global reference [134], [135].

Rueckauer et al. introduced a temporal coding scheme to represent the activations in the spike

timing of the first spike [134]. The neuron models generating the spike have long refractory periods,

such that all other input after the spike is ignored. This guarantees the sparsity of the output, but also

looses information content of the input in the refractory period. The timing of the output spike ti is

designed to follow an inversely proportional relationship to the ANN activation ai, i.e. ti = 1/ai. The

classification quality of the SNN with their temporal encoding relies on the precision, in which this

relationship is actually preserved. Since spikes are lost during the refractory period of the neuron

model, accuracy degradations are expected in the converted model. Park et al. use IF neurons, which

perform spike encoding and decoding in two separate phases. In the decoding phase, input spikes of

a neuron are integrated into a membrane potential. In the encoding phase, the membrane potential

is encoded into an output spike. The split into two phases addresses the problem of neglected input

spikes. In their work, there is an error between the value before encoding and the value restored after

decoding. The error results from the chosen time constant in the kernel for dynamic threshold used

for spike encoding.

In the discussed examples, the temporal encoding is, in general, affected by a conversion error.

The error can be backtracked to neuron model discrepancies of the reference ANN and the converted

SNN. As the intention of the spike encoding is to reduce the complexity of the ANN computation, it

seems natural that the encoding scheme is approximate. The expectation is that the reference ANN

can tolerate small approximation errors resulting from temporal encoding without deteriorating the

classification quality of the network model.

Assuming a sensitive reference ANN, conversion errors could result in many misclassifications. In

the following, we investigate a concept, which can perform temporal spike encoding without precision

loss and how it impacts the performance of dedicated hardware accelerators.

5.3 Lossless Temporal Coding for Fixed-Point Numbers

In the examples of Rueckauer et al. and Park et al., the models assume real values for the tim-

ing of spikes as well as the activations of the ANN reference. In the simulation framework, these

values are typically approximated using floating-point precision, in which the exact computation is
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performed within machine precision and variations in compilation settings. However, state-of-the-art

co-designed ANNs already utilize quantization to reduce memory consumption and computational

complexity [136]. Quantization is a well-investigated field, in which low precision can be achieved

without quality loss. The fixed-point representation of the quantized ANN is used as the baseline for

various novel computing principles such as computing arrays with memristive devices or time-domain

computing [137]. Therefore, we investigate whether the fixed-point representation can be exploited

to derive an equivalent SNN design. This concept, which we describe in more detail in the following

sections is published in [JL4].

Proposed WorkANN Neuron Integrate-and-Fire Neuron

Act Fcn High #OPs 
Low T 

Membrane
Pot. u

Low #OPs 
Low T 

SU
M

Increment u by w at time x
Refractory period

for TTFS

MAC Operations Spike Integration

Membrane
Pot. u

Medium #OPs 
Medium T 

2n time steps fully encoding
fixed-point x

Spike Integration

Decode u at end of
fixed interval

New spike

Figure 5.2: Concepts of the conventional ANN neuron (left), the IF neuron (right) and

the neuron model with proposed temporal coding (center) [JL4].

Figure 5.2 shows the concepts of the ANN neuron, the IF neuron and the lossless neuron model.

The IF neuron receives a binary input, which is multiplied with its weight and integrated in the

membrane potential. Various variants of the IF model introduce additional features such as a leakage

term [132] or adaptive thresholds [138]. Once the membrane potential exceeds a threshold, a spike is

generated. In sparse temporal coding schemes, the number of output spikes typically limited to the

timing of the first spike. Other subsequent spikes are prohibited by a long refractory period defined

in the neuron model.

In contrast, the ANN neuron has activations and weights with limited precision, which need to be

multiplied and summed. The result of the scalar product between activation and weight vector is fed

through an activation function to generate the output activation for the next layer. Hence, the main

computation is the sum of products resulting from fixed-point multiplications.

The idea of the lossless neuron model is that the membrane potential can encode this sum of

products in fixed-point without loss. In this case, the magnitude of the activation is represented in

the timing of the corresponding spike. Since the number representation of the operands and the result

is discrete and finite, the number of corresponding time steps is also discrete and finite. Hence, the
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calculation of multiplications and additions can be performed sequentially, analogous to sequential

addition in classical computer arithmetic.

In the following, we derive a temporal coding scheme analytically. This coding scheme enables a

temporal representation of fixed-point values and an alternative way to calculate the sum of products

with fixed-point values. Since this coding method provides fully equivalent numerical values to its

reference, the resulting SNN neuron model is lossless compared to its ANN counterpart.

Let’s consider a scalar product of two vectors with N elements

y =
N

∑
i

xi ·wi. (5.1)

Assuming fixed-point quantized activations xi and weights wi, it can be described as

y = 2−2 f ·∑
i

xint,i ·wint,i (5.2)

with xint,i,wint,i ∈ {0,2n − 1} ¢ N0. In this case, f and n describe the number of fractional bits and

word length of the fixed-point number, respectively. The sum and multiplication of two integers xint,i

and wint,i can be described as the sum of partial products resulting in

NADD,ref = n ·N (5.3)

additions. NADD,ref denotes the number of additions required for the sum of N fixed-point products

without temporal encoding.

On the other hand, the integer value xint,i can be represented as a binary signal xbin,i(t) with T = 2n

timesteps. The binary signal xbin,i(t) is 1 for xint,i timesteps and 0 for the other. It is notable, that the

area under this binary signal corresponds to the integer value. Assuming that xbin,i(t) is defined for

0 f t < T with t ∈ N0, then

xint,i =
T−1

∑
τ=0

xbin,i(t). (5.4)

When xbin,i(t) is represented as a Heaviside step function, tint,i is the timestep, in which the value of

xbin,i(t) turns from 0 to 1. For a defined timeframe 0 f t < T , this timestep is defined as

tint,i = (T −1)− xint,i. (5.5)
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Looking at the binary representation of xint,i, the timestep tint,i can be obtained by inverting all bits,

i.e. from 0 to 1 and vice versa.

The multiplication of one element xint,i with wint,i could be represented as the double integration of

a spike signal at tint,i weighted with its corresponding weight. The weighted spike function is defined

as

winc,i(τ) =















wint,i τ = tint,i

0 otherwise

. (5.6)

The result can be visualized as the area of a rectangle with the height of the weight and the length

of the activation. The area of the rectangle is accumulated over time in a state variable, i.e. the

membrane potential uint(t), by adding an offset (the numerical value of the weight) to the state. The

offset is updated once at the time of the encoded activation. The advantage of this representation is in

the superposition of multiple multiplications in an increment over time. The number of additions can

be summarized to

NADD,encoded = 2n +N. (5.7)

The first term describes the number of additions in each time step to increment the membrane po-

tential. The second term describes the number of updates of the increment, which is the number of

elements in the vector of the scalar product.
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Figure 5.3: Number of additions for a 1D-convolution with kernel size k = 5 and C

input channels [JL4].

Figure 5.3 shows the number of required additions as function of word length for different kernel

sizes. A 1D-convolution with a weight kernel and a bias term is compared for different channel sizes.

The computations in the 1D-convolution correspond to a scalar product with N = k ·C elements. The
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diagram shows a linear and an exponential function for the MAC-based and time-encoded convolu-

tion, respectively. For higher number of bits n, e.g. greater than 16, the trend obviously prefers the

conventional multiplication and additions of partial products. However, the time-encoded method has

less additions in the lower range of word lengths. The break-even point is a function of the number

of elements in the scalar product and is determined by solving

2n

n
= N −1 (5.8)

with a constant number of elements N to be multiplied. Convolution and dense layers in popular

DNNs are quantized to 8 bit and even lower [86]. Hence, the temporal encoding scheme remains

feasible for modern DNN architectures.
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Figure 5.4: Example encoding of a scalar product with four elements and normalized

time axes [JL4].

Figure 5.4 shows the membrane potential of a scalar product with four elements changing over

time. The blue graph indicates the superpositioned weighted spikes winc, which are integrated to the

weight increment ∆w. The step function ∆w is the momentary change in the membrane potential u,

which results from another integration of ∆w. The membrane potential is a piecewise linear function,

in which the last value in temporal range represents the result of the scalar product.

uint(t = T −1) = ∑
i

xint,i ·wint,i (5.9)

Note that the encoding method is shown for the multiplication and addition of integer valued elements.

Fractional bits of fixed-point numbers can be accounted for with static shift operations. In the example

of Fig. 5.4 the time axis is normalized to the region between 0 and 1, which will be explained in
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the next section. For a 3 bit value, the number of discrete time steps is 8, in which the membrane

voltage u can change. In the example, the scalar product of activations x̂ = [1,2,−4,1]T and weights

ŵ = [1,2,−4,1]T is calculated. The weight increment ∆w changes four times corresponding to the

number of elements in the scalar product. Since small activations now correspond to large latencies

after encoding, it is expected that the membrane voltage is changed less in the initial time steps than

the last time steps (see Fig. 5.6)

The shown encoding method is conceptually applicable to most quantized DNNs and theoretically

promises less additions. Hence, the computational complexity is reduced in the proposed ANN-SNN

encoding scheme with identical numeric computations. In the following, this assumption is validated

in the HW design of the ECG classifier from Section 3.1.

5.4 Algorithm Design of a Temporally Encoded ECG Classifier

Since the previous encoding method is designed for arbitrary sum of products, the application on ANN

layers is straightforward. Especially, CNNs consist of primarily convolution and fully connected

layers. Therefore the mapping of the ECG classifier, i.e. the model from Section 3.1, mainly requires

the transformation of activations to temporal signals and the computation as described in the previous

section. The result before the activation function of the layer is represented in fixed-point. Thus,

subsequent components such as activation function and pooling remain unchanged from the WVCNN

design in Section 3.2.

Nevertheless, the conversion of the WVCNN model into its spiking counterpart - further denoted

as the WVSNN design - requires preparatory steps, such that the converted model can be mapped to

dedicated hardware components. In the following, the normalization process for the activations are

discussed and its impact on the classifier quality. Then, the activations of the WVSNN design are

analyzed to identify properties in the activation distribution, which can be leveraged in the hardware

component design of the next section. Further, the impact of the resolution is discussed as a trade-off

between latency and classification quality.

5.4.1 Activation Normalization of the Reference Classifier

The normalization of the activations serves the purpose of representing the activations in the same

numerical range. After conversion the timesteps representing the activation values are in a predeter-

mined range. The model is normalized with the following three steps:
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1. Integration of batch normalization layers

2. Normalization of DNN activations

3. DNN quantization

The first and last step follow the same principles from Section 3.1. In the second step, the activations

are normalized into the same numerical range - typically [0,1] [128], [134]. The final step quantizes

the activations within this range and determines the resolution of the representable numbers. Since

the second step is unique for the conversion, it is discussed further within this subsection.

The normalized range is used to encode the activation vector x into spike latencies t = 1− x

in the same range throughout the whole network. The normalization is performed through linear

scaling using parameters δ for offset and λ for scaling. Here, the scaling factors are determined

by the statistics in the activation distributions, in specific the maximum and minimum of the input.

Naturally, the boundaries can be chosen based on percentile criteria to suppress outliers etc. The

scaling factors of the input layer are defined, such that xnorm = λ ·x+δ , resulting in

λ 0 =
1

x0
max − x0

min

(5.10)

δ 0 =−x0
min ·λ 0 (5.11)

The superscript denotes the output of the zeroth layer of the DNN and, hence, the input of the DNN.

The scaling factors for the outputs of layer l are defined as:

λ l =
1

xl
max

(5.12)

δ l = 0 (5.13)

This normalization accounts for non-positive input to the network, which are normalized to a positive

only range for encoding. The scaling within the network scales only with the positive boundary for

the activations to preserve the alignment to the rectified linear unit (ReLU) activation function. In the

end, λ l and δ l are applied to the weights and biases resulting in new weights and biases.

wl → wl · λ l

λ l−1
(5.14)

bl → (bl −wl · δ l−1

λ l−1
) ·λ l +δ l (5.15)
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Note that δ l = 0 for l > 0. Therefore, this term can be omitted. Further, the term wl · δ l−1

λ l−1 is also

only non-zero for the first layer. Hence, the normalization for layers l > 1 only needs a single factor

multiplied with the weights and biases.
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Figure 5.5: Ablation study on the normalization steps as preparation for the temporal

encoding scheme [JL4].

Figure 5.5 shows an ablation study for the normalization. In this study the floating-point reference

is consecutively normalized for conversion. First, the batch normalization layer are integrated and the

activations are normalized. These steps did not result in any QoS differences, except a few samples

even classified better in the validation set. This could be explained by numerical imprecisions from the

floating-point number representation. Then, the activations for the pre-processing and the classifier

are quantized to 12 bit. A F1-score drop of less than a percent is observed due to the introduced

quantization error.

5.4.2 Distribution of Spike Timings After Normalization

After normalization, the activations of the reference ANN is mapped linearly to the desired range

between 0 and 1. The corresponding timings of the normalized activation is expected to show a non-

uniform probability distribution over the whole temporal range. Therefore, we inspect the histogram

of spike timings over a random set of ECG samples in the dataset.

Figure 5.6 shows the histograms of spike timings after normalization. The probability is shown on

the y-axis and encoded latency is shown on the x-axis through the number of timesteps used. In this

example, the activations are encoded using 12 bits resulting in 4096 timesteps. The input activations

from the DWT pre-processing are normalized with an additional offset according to Eq. (5.10). The

corresponding histogram shows a cluster around the central timesteps. Since most activations before

the normalization are clustered around zero, the linear offset now centers them around the offset.
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Figure 5.6: Histogram of spike timings after normalization for the inference of 86

ECG samples. Each ECG sample results in multiple computation sequences per layer

and neuron, as multiple frames per ECG sample are selected using the sliding window

approach.

As the normalization used the maximum values of the activation distribution to calculate the upper

and lower bound, a large degree of the temporal range remains unused. In contrast, the second

layer receives the output of the first layer and shows more activations spread across the whole time

axis. Nevertheless, most activations are found around the last timesteps. The histogram resembles an

exponential distribution with a monotonically increasing distribution from the first timestep towards

its maximum at the last timestep. A similar trend is seen in the subsequent layers. However, the

clustering around the last timesteps is more pronounced the deeper the layer is. In the subset, which

is used for analysis, there are actually no samples in the first 75 % of the time period within layers C3

to FC layer.

This highly skewed distribution can be exploited on the circuit level of the hardware design. For

instance, zero skipping circuits are often utilized to omit weight kernels or kernel elements, which are

known to produce partial sums with value zero [103]. The same principle applies for the accumulation

cycles in the temporal encoding scheme. The “late-start” logic described in Section 5.5 is used to

skip those initial cycles. The impact of this logic on system power consumption is evaluated below in

Section 5.5.4.
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5.4.3 Toggle Activity of the Membrane Potential

As described in Section 5.3, the input spikes trigger a change in the increment of the membrane

potential, which is accumulated sequentially over the entire time period. Therefore, it is expected that

a major part of circuit activity is in the sequential adder used for accumulation.

Since the activity inside the sequential adder depends on both the weight, the input spike and

its timing, conventional ML frameworks do not provide the functionality to simulate cycle and bit

accurate behavior for this SNN neuron model. Hence, a software emulation of this SNN neuron

model is implemented in MATLAB to analyze the activity before the design of a component in a

HDL. Analogous to the analysis in the previous section, possible properties of the activity distribution

can be exploited in the hardware design phase.

Figure 5.7: Probability distribution over time of the activation value in the accumula-

tion register of the WVSNN design. A strong color depth indicates a high probability.
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The challenges in this software implementation include the accurate mapping of rounding, satura-

tion and timing of each computation step. For instance, the rounding scheme is dependent on the used

rounding mode in the software implementation, which deviates across implementations especially for

the handling of negative number. This needs to be adapted to the RTL implementation, which is

performing round-to-nearest with the edge cases being strictly rounded up. Further, the timing of

quantization steps and overflows need to be accounted in the simulation implementation. Especially,

the execution order is critical in the validation of the stream-based processing design. For an iden-

tical behavior of the software simulation and the hardware the timing of the subsampling need to be

aligned. For instance, for an equidistant subsampling of factor 2 there are two possible values, which

can be selected for processing. In the WVSNN design, there are 24 · 34 = 1296 possible permuta-

tion of starting conditions, i.e. 2 for each DWT layer and 3 for each pooling layer. In the software

simulation, this is manually set in parametrized configurations to match the RTL simulation.

Figure 5.7 shows the simulation of the membrane potential for two exemplary output neurons

in the first convolution layer and the final dense layer. The activation values are sampled over all

sliding windows over a 60 second ECG trace. The mean of the final value as well as the trend of the

distribution over time is neuron specific. There is a tendency for the first convolution layer to feature

a wider spread, i.e. approx. [0.3, -0.42], than the final dense layer, i.e. approx. [0.03, -0.07]. The

variance of the distribution is also wider spread in the first layers than the final dense layer.

Figure 5.8 shows the activity of each bit in detail. The activations and weights are assumed to be

quantized to 12 bits. The size of 24 bit is chosen as the word length of the accumulation register in

correspondence to the ANN reference implementation. As mentioned before, the preliminary cycles

do not show any activity at all, since no activations are encoded in earlier latencies for the example

ECG trace. For the bits with low significance, i.e. fractional bits, the bits are toggling about 50 %

of the time. The MSBs of the register show a high number of 1s for the active cycles. This is also

expected, since the majority of values is negative. The transitions seem also equally distributed with

the exception of few hotspots in the MSB region. For comparison, the L1 norm of the register value

is plotted in Fig. 5.9. The activity of the MSBs are lower, since no signs are flipped. One can

observe the gradual increasing activity of higher significant bits with increasing timesteps, while the

sign bit remains inactive. Hence, the toggling of MSBs is caused by the transition of negative values

to positive values. A similar trend is expected for the other subsequent layers.

On the circuit level, the activity caused by flipping MSBs can be reduced by introducing arithmetic

transformations to guarantee a calculation with positive numbers only. For instance, the increments
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can be shifted by a constant offset such that all values are positive. Since it is known how many

timesteps are used for the accumulation of the membrane potential, the offset can be compensated

with other offset at the end of the accumulation period. This is especially efficient, if the offsets are

chosen as a power of two, since constant shifts do not require logic components.

However, the activity in the membrane potential is limited to the time period after the first received

input spike. Looking at the temporal distribution (see Section 5.6), the impact of flipping MSB bits

is constrained to the few cycles at the end. Especially for the layers apart from the first layer, the

percentage of toggling MSBs over the entire time period of 4096 cycles is less than five percent.

Therefore, we do not opt for a circuit level optimization for toggling MSBs for the chosen application

and network model. However, the activity distribution is expected to deviate for different data and

SNN models. Hence, this design choice needs to be reevaluated on a case by case basis.

5.4.4 Impact of Temporal Resolution on Latency and Classification Quality

The precision of the temporal encoding scheme is a function of the temporal resolution for computa-

tion. In a digital circuit with a fixed clock frequency, the number of cycles determine the latency of

the inference. Since all layers are computed in sequence and the computation of each layer requires

the encoding and decoding of the activation, the critical path can be approximated by the number of

clock cycles from the input of the first layer to the output of the last layer, hence

Ncyc,crit = 2n ·L (5.16)

cycles with number of layers L and number of bits n. The resulting critical path τcrit = Ncyc,crit/ fsys

determines the bottleneck of the design in Section 5.5. In the application context of continuous

processing (see Section 2), the SNN engine is subject to real-time constraints set by the input data

rate. Therefore, there is a lower bound for the clock frequency fsys, in which the design can be

operated.

Figure 5.10 shows the trade-off between the quality of the SNN classification and the latency of

one SNN layer. It is evident, that the temporal resolution is closely related to 2n with additionally few

cycles for peripheral computations, such as activation function, pooling, etc. Similarly to conven-

tionally quantized ANNs, the QoS is increasing for higher resolutions and reaches a plateau starting

around 12 bits. This is to be expected, as the temporal encoding scheme is intended to provide iden-

tical results to the fixed-point ANN reference. Further QoS improvements are possible, when the



5.5. Hardware Design of a Temporally Encoded ECG Classifier 91

10
3

10
4

Number of Cycles

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Va
lid

at
io

n 
F1

Figure 5.10: Pareto-optimal front for SNN quality and the number of cycles required

to calculate one layer [JL4].

ANN reference is improved. This includes fine-tuning in the post-training quantization scheme and

possibly quantization-aware training schemes.

5.5 Hardware Design of a Temporally Encoded ECG Classifier

As discussed in the previous section, the converted SNN model uses sparse activation representations

for design efficiency. In the following, a hardware implementation is designed to support the encoded

activations and corresponding computation in dedicated modules. The expectation is that the hard-

ware KPI of both a reference implementation and the design with sparse temporal coding are directly

comparable, since the numerical values stay identical.

5.5.1 System-level Hardware Mapping

An isomorphic hardware mapping for the system architecture is used for the framework of compar-

ison. As a reminder, the temporally encoded design is denoted as “WVSNN”. Figure 5.11 depicts

the block diagram for hardware modules from the input of the SNN classifier, i.e. encoded DWT

output, to the prediction. Analogous to Section 3.2.1, the intermediate activations are stored in SIPO

registers. However, the activations are fed into custom logic to realize the encoding and decoding ac-

cording to Section 5.3. The logic is split into a compare module to generate the sparse representation

of the activation and the processing element (PE) for the accumulation of the membrane potential.

The encoding and decoding are executed in parallel and orchestrated by a control module. This con-

trol module contains a finite state machine (FSM) to track the executed layers and the time step of the

temporal coding. The modules of the isomorphic design are subsequently enabled by the FSM based
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on the data-driven dataflow as described in Section 3.2.2 with the exception of non-shared PE units.

Hence, the activation registers and pooling units are triggered by modules adjacent in the processing

pipeline of the SNN.
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Figure 5.11: System-level architecture of the mapped SNN accelerator [JL4]. The

convolution is performed using the time-encoding scheme and can be exchanged with

conventional PEs with fixed-point MAC units for comparison.

The coloring in Fig. 5.11 indicate that the computations in the architecture are a combination of

time-encoded and fixed-point arithmetic. Although previous works describe winner-take-all methods

to perform the max-pooling operation in the temporal domain [139], the classic approach digital

approach is selected for comparison. The target is to interchange the modules in the green region to

quantify the effect of temporal encoding in the neuron computation.

5.5.2 Temporal Encoding Logic for Activations

Starting from the activation registers the encoding logic is the first major difference to previous design

in Section 3.2. The inversion of the activation x and the first integration of the unweighted spike is

combined into one module. Basically, a vector of Heaviside step functions with temporal offset ti for

every input channel i is generated through the comparison of a decrementing counter with the stored

activation value. The counter is initialized with the maximum value of the representable number.

Since the number range is normalized to [0,1] all bits are used as fractional bits. In case of a 12 bit

number, the initial value is xcount,init = 1− 2−12. Therefore, the logical compare function creates a
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boolean signal as an output with

∫

ti(τ)dτ =















1 xcount,init ≥ xi(τ)

0 xcount,init < xi(τ)

. (5.17)

5.5.3 Temporal Decoding Logic in PE Unit
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Figure 5.12: Block diagram of PE unit for the time-encoded convolution [JL4]. The

encoded signal is inserted for the sequential decoding within the membrane potential.

The output of the compare module is used as an enable signal for the PE module as shown in

Fig. 5.12. A vector of constant weights is multiplexed into an adder tree to generate the weight

increment ∆w. The increment is used in a sequential adder for the second integration resulting in the

membrane potential u. The result in the final time step is used in the activation function module to

generate the output. The accumulation in the register is controlled by the external enable signal and

is enabled for the whole duration of the temporal sequence, i.e. 212 = 4096 cycles. The “late-start”

logic disables initial cycles of this time period based on the collective input through the integrated

clock gating (ICG) cell. If all input channels are zero, it disables the clock from switching the clock

pin at the accumulation register. Therefore, activation distribution with a tendency for small xi, i.e.

large ti, can benefit from a reduced energy consumption in the inference process.
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5.5.4 Design Evaluation

Analogous to Section 3.2.3, the design is evaluated in a 22 nm fdSOI CMOS technology node. The

setup is kept under nominal conditions and the design is synthesized for simulation. The post-

synthesis netlists are analyzed for comparison during a 60 second period, while the ECG trace is

streamed in real-time into the design at 300 Hz. In this case, however, we investigate the active calcu-

lation period of the ANN reference design and the temporally encoded SNN designs. Three designs

are compared: The reference design “ANN Ref”, the WVSNN design without and with “late-start”

logic, i.e. “SNN Base” and “SNN LS”, respectively. The reference design implements the calcula-

tion of the scalar product using a conventional MAC unit. This unit receives fixed-point activations

as input and returns the convolved result as an output within one cycle. In all designs, the weight

memory is configured during the design phase as parameters in the HDL description and is optimized

by synthesis.

Figure 5.13 shows the power breakdown of the WVSNN design. From Fig. 5.13a, it is evident

that the PE unit, i.e. the neuron logic, consumes up to 95.3 % of total power. In the layer breakdown

(see Fig. 5.13b), major savings are visible in the WVSNN design mainly in the dense layer and the

third/fourth convolution layer. Other layers remained similar or even consume more resources than the

ANN reference. Due to the trade-off shown in Fig. 5.3, the temporal encoding is expected to provide

less additions for a specific resolution of the activation in relation to the number of elements of the

scalar product. For the chosen resolution of 12 bits, the break-even point between the conventional

MAC unit and the temporally encoded neuron depends on the kernel size and the number of channels.

According to Eq. (5.8), the number of elements N is the product of kernel size k = 5 and number

of channels C. If the equation is solved for C with n = 12, the break-even point is reached with

Cbreak-even ≈ 64. In the hardware simulation, however, we observe that the break-even point is in

between C = 13 (Layer 2) and C = 20 (Layer 3). Since the theoretical estimation is purely based on

the number of addition and does not account for overhead resulting from control etc., a deviation is

expected. With the “late-start” logic, this trade-off is shifted even further, since only a power increase

is observed for Layer 1 compared to the ANN reference. In the breakdown of the PE unit (see Fig.

5.13c), the power reduction from the adder logic can be seen from the reference design to the base

WVSNN design. Further reductions are achieved by reducing the adder power through clock gating

of initial inactive cycles.

In the end, it is evident that the WVSNN design reduces the power by up to 2.32× for the ECG
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Figure 5.13: Power breakdown of the WVSNN design grouped into functional units,

layers and the components inside the computational neuron units [JL4].

monitoring use case. Note that this reduction does not exhibit the losses in the classification quality,

since the result of the converted model is identical to the reference. Power reductions are achieved not

only through the encoding to sparse activations, but also through circuit-level optimizations. These

optimizations exploit probability distributions of the converted spikes (see Section 5.4.2).

5.6 Summary

In this section, we explored ANN-SNN conversion methods for efficient inference of an ECG classi-

fier. In detail we investigated a conversion method, which encodes activations of an ANN reference

into spike latencies. The encoding method ensures equivalent representations of activations in fixed-

point and corresponding spike latencies. The basic operation of an ANN, i.e. a scalar product of

a activation vector and a weight vector, is calculated over time without numerical difference to the
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arithmetic operations in fixed-point. Comparing the number of additions, the algorithm in the encoded

representation features less additions for a range of configuration, i.e. number of bits in fixed-point

number or number of elements in input/weight vector.

An investigation of converted activations and the membrane potential of the derived SNN neuron

model shows that circuit activity is not evenly distributed. In the ECG monitoring example, the com-

putations are concentrated in the final cycles of the sequential accumulation within the SNN neuron.

In the designed co-optimized hardware modules, this is exploited through circuit-level optimizations,

e.g. clock gating of initial cycles.

The integration of the encoding principle in a system level hardware design confirms the com-

plexity reductions predicted theoretically in the algorithm analysis. The isomorphic mapping of both

a ANN reference design and the WVSNN design shows significant power reductions resulting from

the addition logic and circuit activity in the PE unit. All in all, the classification of ECG signals

exhibit a 2.32× power reduction without loss in QoS compared to the reference design.

Nevertheless, there are still many promising directions to improve the design further. A promis-

ing direction for future design optimization is to investigate dataflow mechanisms for the reuse of

PE units. Analogous to the in-depth exploration in Section 3, the WVSNN design can leverage the

layered inference structure of feed-forward networks architectures and sequentially execute the com-

putations on shared PE units.
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Chapter 6

Conclusion

In this thesis, we systematically explored methods to co-design algorithm and hardware for real-life

tasks. The targeted research question is as follows:

Research Question:

What neuro-inspired concepts enable low-power digital processing of real-time, low data

rate signals?

The approach started with the definition of a use case requiring real-time and low-power pro-

cessing of low data rate signals. We identified one task in the biomedical signal processing domain

as a suitable application. The identification of cardiac arrhythmia with high-quality and long-term

monitoring capabilities in a mobile ECG sensing device is ideal to demonstrate the desired features

of neuro-inspired concepts, i.e. high classification quality and low power processing. To guide the

exploration, specifications are defined to guarantee real-time capability, while optimizing for both

classifier quality and complexity. A top-down design methodology is chosen to adopt design methods

in multiple abstraction layers of the system design, i.e. algorithm and hardware design. Thus, the

co-design of a neural network classifier is guaranteed to adhere to the application specifications.

As a first design, the WVCNN design is implemented from scratch as a baseline for further neuro-

inspired features. The final design shows that a simple ANN architecture with wavelet transforms as

pre-processing and a CNN as a classifier is capable of achieving low power processing at high classi-

fication quality. The uniform arithmetic operations, i.e. MAC operations and the layered subsampling

modules allow adjusting the degree of parallel PE units to balance static and dynamic power consump-

tion. The temporal execution of convolution allows data-driven computation of convolution kernels

triggered by each input sample. Early cost estimations guide the the design of individual memory

components and number of PEs. An implementation in a 22 nm FDSOI technology shows that the

WVCNN design consumes only 525 nW, while achieving 79 % F1 score in the CINC’17 benchmark.
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Result 1:

A systematic top-down approach is capable to design a baseline classifier using con-

ventional CNNs capable of achieving ultra-low power classification with high quality of

service.

As an extension of the baseline design, the domain generalization algorithms with low complexity

are explored for robust classification. Similar to the human brain, the design needs to feature adaptive

capabilities to generalize on unseen data. For the example of ECG classification, it is shown that low

complexity algorithms like normalizations across instances are competitive compared to high com-

plexity methods requiring fine-tuning of the whole ANN architecture. Therefore, correction layers

are introduced to concentrate the generalization on a single linear layer. The correction layer with

more trainable parameters, e.g. inter-channel transforms, provide superior capacity to align the fea-

ture of both source and target domain. The correction layer favors a central position in the network

for best classification results. Evaluated in an inter-patient validation scheme for AF classification,

the correction layer improves the F1 score on average in the target domain by more than 20 % and

only less than 2 % difference compared to the F1 score on the source domain. The integration of the

correction layer into the WVCNN design shows a power overhead of 4.7 %. An integration of the

correction layer into adjacent convolution layers does not differ from the reference design without

generalization. For CL training, the WVCNN design requires 2× less MAC operations and memory

compared to conventional fine-tuning.

Result 2:

The incorporation of correction layers allows the generalization across domains with

low overhead in terms of computational complexity and memory both for inference and

training.

Another neuro-inspired feature is the spiking communication in neurons. Using the temporal

encoding of activations into spike timings, an ANN is converted into its SNN counterpart. Since

fixed-point numbers are discrete in their value, they can be represented fully using discrete timesteps.

The linearly encoded of fixed-point numbers in the temporal domain can be used to calculate multi-

plication of numbers as well as the sum of multiple products. In the case of a convolution operation,

the calculation in the temporal domain requires less additions than the conventional computer arith-

metic for low word lengths and high number of products to be summed. The integration of temporal
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encoding into an ECG classifier shows skewed activity distributions, which can be exploited in the

logic design. A direct comparison of an isomorphically mapped WVCNN design and an equivalent

WVSNN design reveals power reductions of 2.32×. Since the input/output behavior is numerically

identical, power reductions are achieved without loss in classification quality.

Result 3:

The ANN-SNN conversion into equivalent spike timings enable sparse communication

and low power inference without loss in classifier quality.

In the end, a top-down design approach for an ANN classifier achieves an efficient design for

continuous high-quality processing. The incorporation of bio-inspired elements such as spiking com-

munication and generalization on unseen data enables low-power digital processing of biomedical

signals in real-time.

Nevertheless, the achieved design elements closely match conventional neural network accelera-

tion, while additional features do not change the general processing concept. The main advantage of

this approach is that ANNs are proven to succeed for real-life tasks and those gain additional desired

features without major performance drawbacks. On the contrary, there are more disruptive methods

pushing the borders of bio-inspired computing to find more efficient designs for future applications.

For instance, three factor rules promises bio-plausible training methods to leverage spiking neural

networks with bio-plausible neuron models. In combination with bio-plausible network architec-

tures, e.g. distributions of excitatory and inhibitory synapses or general connectome in cortical areas,

this might lead to more compact and efficient systems for real-life tasks. However, a direct compari-

son is necessary to reveal the benefits and drawbacks of these new concepts against more conservative

approaches as proposed in this work.
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