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H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• Synthetic capacity fade data generation 
without invasive battery 
characterization.

• Augmentation of existing datasets for 
data-driven battery aging prediction.

• Validation using both shallow and deep 
learning models.

• Validation across diverse chemistries 
and realistic conditions.

• Potential 50 % reduction in cell testing 
effects through synthetic data 
utilization.
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A B S T R A C T

Degradation prediction for lithium-ion batteries using data-driven methods requires high-quality aging data. 
However, generating such data, whether in the laboratory or the field, is time- and resource-intensive. Here, we 
propose a method for the synthetic generation of capacity fade curves based on limited battery tests or operation 
data without the need for invasive battery characterization, aiming to augment the datasets used by data-driven 
models for degradation prediction. We validate our method by evaluating the performance of both shallow and 
deep learning models using diverse datasets from laboratory and field applications. These datasets encompass 
various chemistries and realistic conditions, including cell-to-cell variations, measurement noise, varying charge- 
discharge conditions, and capacity recovery. Our results show that it is possible to reduce cell-testing efforts by at 
least 50 % by substituting synthetic data into an existing dataset. This paper highlights the effectiveness of our 
synthetic data augmentation method in supplementing existing methodologies in battery health prognostics 
while dramatically reducing the expenditure of time and resources on battery aging experiments.
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Introduction

The application of lithium-ion batteries (LIBs) is widespread in many 
sectors of the economy due to their high gravimetric and volumetric 
energy density, long lifespan and decreasing production costs [1]. 
However, with repetitive charge-discharge cycles as well as storage, 
these electrochemical systems undergo degradation, which manifests 
itself in the form of capacity, energy, and power losses [2]. Therefore, 
accurate degradation prediction of LIBs has been an extensive area of 
research. Such insights can enable original equipment manufacturers 
(OEMs), such as electric vehicle (EV) makers, to assign calculated war
ranties to battery packs and ensure high pack performance and safety 
during their expected lifetime, while end-users and battery system op
erators can be informed of the date of pack replacement in advance. 
However, reliable and accurate degradation prediction remains chal
lenging due to the nonlinear nature of such systems that stem from in
ternal electrochemical reactions and intrinsic parameter variability 
across cells.

Several studies have proposed physics-based models [3–9] and 
semi/-empirical models [10–13] to characterize and parametrize the 
degradation mechanisms of LIBs. Although these models have demon
strated their predictive abilities, it remains challenging to capture 
nonlinear degradation trends and account for intrinsic manufacturing 
variabilities while sufficiently parametrizing a broad range of LIB 
degradation mechanisms is challenging. Moreover, not all aging mech
anisms have been well understood and accurately modeled in the lab
oratory. In contrast, the availability of increasing amounts of field and 
laboratory data has paved the way for data-driven approaches [10]. 
Numerous studies have used both shallow machine learning [11–15] 
and deep learning [16–20] models to predict the degradation of LIBs. 
Rather than modeling the underlying degradation mechanisms in LIBs 
with predefined equations, these models derive relations directly from 
battery aging data. Therefore, they require a large quantity of data to 
train the model to capture degradation trends successfully. In general, 
the performance of data-driven methods is affected by the inadequate 
quantity of high-quality data.

The primary problems encountered in generating high-quality 
datasets for such models are insufficient numbers and types of aging 
scenarios and inadequate numbers of cells tested per aging scenario [21,
22]. Recent trends have shown rapid improvements in existing LIB 
compositions as well as the development of new LIB chemistries [23]. 
Thus, thoroughly examining the performance characteristics of newly 
developed LIB materials within a limited time before the application is 
of utmost priority. At the same time, developing the degradation pre
diction model with limited data and time is also important. In addition, 
cell testing in laboratories is resource-, time- and space-intensive [24], 
and there is an urgent need among research groups and OEMs to 
accelerate cell aging tests at lower costs.

One possible solution is the generation of synthetic data. Based on 
the available literature, methods to generate synthetic data can be 
categorized into electrochemical modeling, mechanistic modeling, and 
data-driven approaches. Electrochemical modeling, of which the 
pseudo-two-dimensional (P2D) model is the most widely used frame
work, computes the evolution of the internal states of the battery based 
on physical principles. Due to a large number of parameters and high 
computational complexity, it is challenging and time-consuming to use 
these models to generate a large synthetic dataset. Moreover, it is un
clear how the physical parameters change in different aging scenarios, 
adding another layer of uncertainty. Secondly, the mechanistic 
modeling framework proposed by Dubarry parametrizes the loss of 
active material and lithium inventory to simulate electrode half-cell 
curves under different degradation pathways [25,26]. Consequently, 
one could simulate full cell voltage curves and the capacity fade curves 
using minimal computational effort. Despite these favorable qualities, 
the mechanistic modeling approach can pose practical limitations as it 
requires the availability of reference half-cell voltage curve data. This 

prerequisite could require one to dismantle the cell and produce half 
cells [25], which is not available in most application cases. Additionally, 
replicating this method on different cell types is expected to be 
cost-intensive due to the need for half-cell voltage curve data of each 
different cell chemistry.

Data-driven methods have seen significant growth, particularly with 
advancements in Generative AI technologies like Generative Adversarial 
Networks (GANs) and Autoencoders [27,28]. Jiang et al. [29]. proposed 
an enhanced Conditional Variational Autoencoder to generate opera
tional data with a specific focus on the charging process. Various ma
chine learning models, including neural networks [30] and 
transformer-based deep learning models [31], have been developed to 
predict voltage discharge curves and estimate the current aging state. 
These studies underscore the importance of generating operational data 
for both charging and discharging processes, though further validation is 
needed for their application in lifetime prediction. Lin et al. [32]. 
introduced a model combining polynomial functions with neural net
works to generate synthetic capacity degradation curves. However, the 
need to manually partition the dataset into subgroups based on cycle 
numbers limits its scalability, making it more suited for smaller, less 
diverse datasets. Another method [33] used machine learning ap
proaches to reconstruct missing battery data using a few correctly 
measured data points. However, such a reconstruction is only possible if 
the cells have been aged till their End of Life (EOL) under normal or 
accelerated tests. This method is more suited for recovering field data 
where cells have already been aged under the application load profile. A 
quick data augmentation method with a low computation burden, which 
doesn’t need invasive half-cell characterization and material informa
tion to boost the data-driven aging prediction, is missing.

In this work, we focus on proposing a practical and efficient data 
generation method to enhance the performance of existing data-driven 
degradation prediction models. We generate synthetic capacity fade 
data using a function consisting of three parameters that can potentially 
model all possible electrochemical mechanisms of degradation in LIBs 
based on an existing seed dataset. A massive amount of synthetic 
degradation data can be generated through this method within a few 
seconds and with low computing costs. The generalizability of this 
simple method relaxes the experimental requirements of the seed 
dataset, allowing room for obtaining specific or extreme cell degrada
tion scenarios for cells independent of their chemistries. Knowledge of 
complex battery aging mechanisms is also not necessary to generate the 
data. The method could serve to enrich sparse datasets, thereby reducing 
time and resource expenditure on cell aging tests. Or on the other hand, 
it generates data with additional variations in existing aging datasets to 
potentially increase the prediction performance of data-driven models. 
In the study, our method is validated by assessing the performance of 
both shallow machine learning and deep learning models, predicting the 
future capacity fade trajectory from early life data in the following 
scenarios: (a) seed dataset with different amounts of real cell data, (b) 
seed dataset with different amounts of real cell data + fixed amount of 
synthetic cell data, (c) partially replacing real cell data of seed dataset 
with synthetic cell data, (d) enriching sparse seed datasets with syn
thetic cell data. Our results show an improvement in the prediction 
performance of the data-driven models and a possibility of effort 
reduction for cell testing by at least 50 %.

Framework

The general workflow of the tasks in this work is shown in Fig. 1a. 
The initial step is obtaining seed data from aging tests and thorough data 
analysis to characterize the statistics of the seed dataset, followed by 
building models for the degradation prediction of unseen cells. The steps 
for synthetic data generation and its utilization are integrated after the 
data analysis step to build better prediction models. The method of 
synthetic data generation works by modifying the capacity fade curves 
of an existing battery degradation dataset, i.e., seed dataset, as shown in 
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Fig. 1b The proposed method of creating synthetic degradation curves 
involves a series of steps. The initial capacity values and the final cycle 
numbers are identified for the capacity degradation curves within the 
seed dataset. These are used to define the parameters of the synthetic 
data generation function, namely Offset, Slope and Elongation, each 
representing a characteristic of the variation in the capacity degradation 
curves of LIBs.

These three parameters, Offset, Slope and Elongation, provide three 
practical basis functions to yield synthetically generated capacity fade 
curves. Moreover, from a top-down perspective, we argue that these 
parameters can also rationalize cell capacity degradation trajectories 
using a materials science foundation. Factors such as manufacturing 
variability [34] are known to affect initial capacity between cells; 
charging and discharging current rates may induce accelerated degra
dation at the end of life (EOL) or influence the linear capacity fade rate 

[35,36]. Depth of discharge (DOD) and the average state of charge 
(SOC) during cycling may result in varying rates of capacity fade [37,
38], whereas temperature is understood to have an Arrhenius-type 
relationship with SEI growth-induced capacity degradation [39]. The 
above analysis highlights the proposed method as a top-down approach, 
in contrast to mechanistic modeling-based synthesis methods, which 
adopt a bottom-up strategy by deriving macro-level synthesis from 
microscopic degradation analysis at the electrode level. Unlike con
ventional bottom-up approaches requiring half-cell OCP data, the pro
posed data synthesis method generates data directly from capacity 
degradation curves, making it more accessible for users in field 
operations.

In our methodology, the Offset parameter governs cell-to-cell 
manufacturing variability, the Slope parameter is related to the rate of 
capacity fade, and the Elongation parameter determines the occurrence of 

Fig. 1. a, Framework of synthetic data augmentation based on a limited battery degradation dataset. b, Factors influencing cell aging and the individual effects of the 
corresponding synthetic data generation function parameters on the modification of the seed data.
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the ’capacity knee’ and the EOL. In contrast to describing a capacity 
degradation curve in a polynomial or exponential functional form, these 
three parameters can capture several properties that are relevant to LIB 
cell degradation. This is a favorable quality of our proposed method, as it 
provides an additional level of understanding of the synthetic curve.

A graphical description of this method can be found in Fig. 1b First, 
the Offset parameter is related to manufacturing-induced cell variability, 
typical in commercial LIB cells. Commercially available LIB cells, such as 
the ones used in this study, are commonly assembled in a cylindrical, 
pouch, or prismatic form factor. These specific form factors, which have 
different rates of production and manufacturing control tolerances, 
result in characteristically different levels of cell-to-cell variations. Such 
variances can be manifested in discrepancies in cell capacities, internal 
resistances, or loading ratios. The underlying reasons for these varia
tions could come from inhomogeneities in the electrode structure, 
inequitable distributions of electrolytes across the cell’s volume, and 
varying thickness of dried electrode material - among many other cau
ses, driven by uncertainty levels in the manufacturing process [40,41]. 
Studies on large numbers of commercially available LIBs, such as 1100 
LFP/Graphite cells from two different manufacturing batches, show that 
typical capacity and cell resistance properties can be modeled with a 
Gaussian distribution, with a coefficient of variation of roughly 0.5 % 
[42].

The Slope parameter determines the attenuation or amplification of 
the capacity fade rate on a per-cycle basis. While the Offset parameter is 
mainly characterized by the manufacturing variances, the Slope param
eter is related to degradation processes occurring due to the cycling of 
the cell. Throughout the life of a LIB cell, capacity degradation is often 
attributed to the Loss of Lithium Inventory (LLI) and the Loss of active 
material on positive electrode (LAM_PE) and negative electrode 
(LAM_NE) [43,44]. For graphite-based LIB cells, the LLI, a hypernym for 
processes that lead to lithium ions becoming unable to participate in 
electrode insertion, acts as the most significant aging mechanism, 
whereas the impact of LAM_NE typically lower compared to both LLI and 
LAM_PE [45]. Different causes of LLI include the formation of solid 
electrolyte interphase (SEI), lithium becoming electrically isolated when 
the lithiated active material loses electrical contact and the event of 
irreversible plating on the graphite. Besides LLI, the rise of impedance 
will affect the cell’s capacity, especially when the capacity is assessed 
with a discharge cut-off condition. Cell impedance can rise due to the 
thickening of an SEI layer on graphite particles and the formation of 
resistive layers on electrode particles [46,47]. Both LLI and impedance 
increase are not strictly modeled as having a linear relationship with 
cycling. Yet, several studies have characterized the LLI mechanism with 
near-linear fade trajectories [36,48]. LAM_PE happens due to structural 
degradation, particle cracking, and dissolution of active materials in the 
positive electrode. The LAM reduces the electrode’s ability to store and 
release lithium ions. When LAM and LLI happen together, this typically 
causes an accelerated aging trend, which indicates an amplified Slope 
parameter [49]. The method proposed here amplifies or attenuates the 
slope of capacity fade with a multiplication factor without implying an 
assumption about the linearity of the underlying capacity fade curve.

Lastly, the position of the capacity knee is primarily influenced by 
the Elongation parameter, as it describes the number of cycles until the 
cell reaches its EOL. The capacity knee refers to accelerated degradation 
that is observed in LIBs [50,51]. It has been reported that the acceler
ation of capacity fade can be due to the increased likelihood of plating 
lithium on the graphite anode as kinetic properties deteriorate at the 
anode. Furthermore, the nonlinear decrease of capacity can become 
apparent as resistance growth limits the voltage-based operating win
dow to the flatter region of the OCV curve [52]. Regardless of the exact 
mechanism, the Elongation parameter can set the maximum lifetime of a 
cell, therefore implicitly determining the accelerated rate of capacity 
degradation past the knee point.

As we just explained, the three parameters modify the reference 
capacity fade curves from the seed data to create the synthetic data 

curves. The range from which these parameters are sampled is based on 
the observed statistical characteristics of the seed dataset and is further 
informed by empirical knowledge of battery aging mechanisms. By 
tailoring the variations within physically meaningful ranges, the 
generated synthetic data retains realistic and physically plausible 
degradation patterns, ensuring that the synthetic curves accurately 
represent the types of variations seen in real-world battery performance. 
This domain-specific approach ensures that the synthetic data reflects 
the inherent variability in battery degradation and avoids the risk of 
creating unrealistic or arbitrary data. The resulting synthetic curves 
were combined with the real capacity degradation curves as training 
data for the prediction models. An example of the effect on the nature of 
the generated synthetic data through quantitative variation of the three 
parameters can be seen in Figure S3 (in the supplementary materials).

Machine learning models require manual feature engineering to 
extract relevant features from the data. In contrast, deep learning 
models overcome these hurdles by extracting features from the data at 
the cost of large numbers of parameters [53]. To demonstrate the 
viability of our synthetic data generation method, we use two prediction 
models - a deep learning model, a convolutional neural network (CNN), 
and a shallow machine learning model, Gaussian process regression 
(GPR) - to predict the EOL and knee-point of LIBs. The input to these two 
models is solely the capacity of the cells, without incorporating addi
tional features. The objective is to analyze the impact of the generated 
synthetic data on the models’ performances and the differences 
observed upon drawing performance comparisons between machine- 
and deep-learning models for each scenario across various datasets. Five 
datasets that represent phenomena observed in real-world battery ap
plications were used in the validation of the methods described in this 
paper. These datasets differ in cell composition, size, test conditions and 
aging behavior. Their descriptions have been summarized in Table 1. 
Additional details related to the used datasets, data pre-processing, se
lection of sizes of the training subsets, prediction models, model archi
tecture and training have been elaborated in Methods.

Results and discussion

The results of this paper provide insights into the effect of varying 
proportions of synthetic data on the performance of the prediction 
models. Various training datasets were constructed through two ap
proaches: (a) augmenting seed data with synthetic data and (b) partially 
replacing seed data with synthetic data. Consequently, the training 
datasets contained varying proportions of synthetic data. It is important 
to note that model validation was performed exclusively using real cell 
data, while synthetic data were utilized solely to enhance the training 
process. Initially, model performance was evaluated by training on the 

Table 1 
Datasets used for method validation.

Dataset Year Number 
of cells/ 
packs

Chemistry Aging 
condition

Dataset 
characteristics

RWTH 
[19]

2014 48 NMC/ 
graphite

Single test 
condition

Intrinsic cell-to- 
cell variances 
due to 
manufacturing 
processes

Stanford 
[54]

2020 45 LFP/ 
graphite

Multiple 
fast- 
charging 
protocols

Degradation 
variances due to 
variances in 
stress factors

Oxford 
[55]

2017 8 LCO–NCO/ 
graphite

Single test 
condition

Sparse dataset

NASA 
[56]

2007 4 - Single test 
condition

Capacity 
recovery

Field 
[57]

2023 20 LFP Electric 
vehicle

Real-world field 
dataset
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larger datasets, specifically RWTH and Stanford, to assess the data re
quirements of both shallow machine learning and deep learning models. 
This evaluation involved increasing (a) the number of cells and (b) the 
amount of cycle data available for predicting EOLs and keen points. To 
validate the synthetic data generation method, training subsets with 
varying numbers of real cells were randomly selected from the seed data, 
with and without synthetic data augmentation. Separate prediction 
models were trained on each subset to examine the consistency of pre
dictive performance between synthetic and seed data. This analysis 
aimed to determine whether synthetic data could effectively substitute 
for seed data. Finally, the applicability of the synthetic data generation 
method was further explored by augmenting smaller, sparser datasets, 
including the Oxford and NASA datasets, as well as real-world field data. 
These experiments demonstrated the method’s capacity to enrich 
limited laboratory datasets and improve the predictive performance of 
models trained on real-world data by incorporating high-quality syn
thetic data.

Data analysis

Selecting the range of synthetic data generation parameters is crucial 
to obtaining good-quality synthetic data. The range of these parameters 
should reflect the variation in stress factors, e.g., DOD, average SOC, 
current rate, and temperature, unique to the dataset. The cell-capacity 

degradation curves of the used datasets in this work and correspond
ing sample synthetic curves generated by our method are shown in 
Fig. 2. Notably, the Stanford dataset exhibits an initial capacity increase, 
likely attributable to battery anode overhang effects. Additionally, ca
pacity regeneration events are observed during cycling in the Oxford 
and NASA datasets. The synthetic curves generated by our method 
successfully replicate these subtle fluctuations, demonstrating the 
method’s ability to adjust the three key parameters that characterize the 
shape of the capacity fade curve. In our study, an initial analysis was 
performed on the larger RWTH and Stanford datasets to study the dis
tribution of the three synthetic data generation function parameters to 
define suitable ranges of the parameters. The histograms obtained in 
Figure S5 (in the supplementary materials) are the results of the pairwise 
calculation of the parameters. They are a normal distribution for the 
RWTH dataset and a flatter, more uniform distribution for the Stanford 
dataset, which is significantly harder to characterize. The RWTH dataset 
has been subjected to a single test condition and consists of data 
concentrated within a narrow region, while the Stanford dataset results 
from different conditions, resulting in a more extensive spread of the 
degradation data. This difference in the distributions, combined with 
our intention to produce significant numbers of synthetic data beyond 
the regions of the seed data, led to the selection of the uniform distri
bution for random selection of synthetic data generation function pa
rameters during the data generation step. Additional information on the 

Fig. 2. a, RWTH, b, Stanford, c, Oxford and d, NASA datasets along with their sample synthetic curves.
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correlations between the EOL and knee-points of the real and synthetic 
data for the RWTH and Stanford datasets can be visualized in Figure S4. 
The Pearson correlation coefficient for the EOL and knee-points of both 
real and synthetic data of the RWTH dataset is the same (r = 0.96), while 
that for the Stanford dataset is r = 0.99. This also shows a strong simi
larity in the characteristics of the seed and synthetic data.

Model training with seed data

The analysis of the performances of the CNN and GPR models has 
been divided into two groups. The first focuses on adding a fixed number 
of synthetic data to varying numbers of seed data. In contrast, the second 
group shows the effect of adding synthetic data, whose numbers are 
multiples of the number of real capacity fade data used for model 
training in the respective experiment cases. The model performances in 
all experiments in this paper have been evaluated by calculating the 
averaged mean prediction error of models on all test cells in each 
simulation run. This paper also treats a decrease in the error as equiv
alent to an increase in model performance. Further details on this 
evaluation have been discussed in Methods. Only the results of the 
RWTH and Stanford datasets are presented in this section.

Fig. 3 shows the performance of the CNN and GPR models using seed 
data purely. The results highlight how increasing the availability of real 
cycle data significantly impacts the prediction accuracy of both models, 
particularly the CNN model. The EOL prediction error band of the CNN 
model varies from 13.6 % at input availability of 100 cycles to 5 % at 
inputs available till 800 cycles for the RWTH dataset, as shown in 
Fig. 3a. Fig. 3e shows the respective error band from 12.8 % to 7.8 % for 
the GPR model. Furthermore, the increase in the number of real cells 
from 3 to 30 leads to a decrease in the average model prediction error on 
all test cells from 13.6 % to 12.9 % and from 9.4 % to 5 % at 100 and 800 
cycles of input availability, respectively for the CNN model. For the GPR 
model, the corresponding errors decrease from 12.8 % to 12.2 % at 100 
cycles and from 11.7 % to 7.8 % at 800 cycles. Similar trends can be 
observed in the Stanford dataset. As shown in Fig. 3c and g, the band of 
EOL prediction errors on the test cells varies from 24.7 % (100 cycles) 
and 8.4 % (400 cycles) and from 19.8 % (250 cycles) to 17.5 % (400 
cycles) for the CNN and GPR models, respectively. The results for the 
knee-point prediction errors can be analyzed in a similar fashion.

It can be observed that the CNN model performs better with an in
crease in the amount of data in terms of the number of cells and the 
available cycle data. However, for the GPR model, performance worsens 
with increasing data in terms of the numbers of cells and increasing 
cyclic input availability in some cases, as is evident from Fig. 3g and h in 
the Stanford dataset. There can be several reasons for these results. 
Battery capacity degradation data is highly nonlinear, and the rela
tionship between the initial cycles up to the EOL or knee-point is com
plex and cannot be defined by a specific or a combination of 
mathematical functions. Since the GPR is predominantly function-based, 
it is possible that it cannot map the distribution of functions over the 
nonlinear data and model it as accurately as neural networks. The CNN 
comprises tens of thousands of trainable parameters, which are finely 
tuned during model training. The resulting model is better equipped to 
handle the complex nature of battery degradation. Another reason can 
be observed from the nature of the two datasets. It can be clearly 
observed in Fig. 2 that there are no correlations between the initial ca
pacities, the degradation trajectories and the EOL and knee-points of the 
cells. The RWTH dataset has far less spread in the data under a single 
aging profile than the Stanford dataset. The number of cells per aging 
profile in the RWTH dataset is also much higher (48 cells) than in the 
Stanford dataset (9 cells). This difference in data is also a factor 
responsible for irregular prediction patterns for the Stanford dataset. It 
may be noted that measures were taken to prevent overfitting in the 
CNN model, and hence, it can be ruled out during the discussion of the 
results. The model training has been discussed in detail in Methods.

Addition of synthetic data

Fig. 4 shows the results from the first group of experiments by adding 
synthetic data in model training. With an increase in synthetic data, both 
models show improvements in their performance on both datasets. The 
largest performance increment can be observed in the cases with the 
least number of real cells, which can be derived from Fig. 4a and d The 
EOL prediction errors on the test cells of the RWTH dataset are similar at 
input availability of 100 cycles but reduced to 4 % and 8.5 % for the CNN 
and GPR models, respectively, at 800 cycles after the addition of syn
thetic data. For the Stanford dataset, as shown in Fig. 4d regarding EOL, 
the errors at 100 cycles are 24.7 % and 18.6 % for the CNN and GPR 
models, respectively, which drop to 20.4 % and 18 % after adding 
synthetic data. The errors at 400 cycles reduce from 14 % to 9.1 % after 
adding synthetic data for the CNN model, while the reduction for the 
GPR model is observed from 18.5 % to 16.2 %. Taking into account the 
remaining figures, the maximum difference in prediction errors for the 
RWTH dataset at cycle 100 is negligible for all models, while those at 
cycle 800 are 1 % each in Fig. 4b (EOL) for both the models before and 
after synthetic data addition in the model training sets. In the case of the 
Stanford dataset, the maximum difference in prediction errors at cycle 
100 is 3 % for the CNN and 0.1 % for the GPR model, as shown in Fig. 4e 
and f, while those at cycle 400 are 1.8 % and 1 % in Fig. 4e for the 
respective models.

The improvement in performance for most cases after adding syn
thetic data is much smaller for the GPR model than for the CNN model. 
This is because battery data is complex and nonlinear, as is the corre
lation between the initial capacity data and knee points or EOL. Machine 
learning models are simpler than deep learning models. The latter can 
extract low and high-level features from the complex battery data by 
virtue of their layered structures. An optimal number of layers, as well as 
the hidden neurons per layer, makes the deep-learning CNN model 
robust to moderate changes within the input training data. Additionally, 
for all cases, the CNN model, on average, performs better than the GPR 
model if the numbers of real and synthetic data are sufficiently large. 
This is because the performance of deep learning models increases with 
increased training data.

While the errors displayed in the results of this paper show only 
slight improvements in model performance, a few points need to be 
considered. First, these are the averaged errors of at least 15 simulation 
runs, and each simulation’s error is an average of the prediction errors 
(MAE) of all test cells in the respective dataset. This double average 
marginalizes the errors to provide a broader view of the model perfor
mance rather than model performance on individual test cells or a single 
simulation. Second, the test cells for each dataset were chosen randomly 
without deliberately picking the cells that would showcase the best 
performances of prediction models. This is evident from the errors for 
individual test cells in Figures S9 - S12, in which some cells show 
extreme deviations in error, from as low as 6 % to as high as 60 % at an 
input availability of 100 cycles across all the figures. It was further 
verified through cross-validation, as shown in Figure S16, where 
different sets of test cells were selected randomly, upon which the model 
prediction errors were recorded by training on the remaining cells in the 
respective seed datasets.

Partial replacement of real data with synthetic data

The ability of synthetic data to replace real data while not impacting 
model performance negatively is perhaps one of the clearest validations 
of any synthetic data generation method. In this study, we systematically 
evaluated how much real data can be replaced by synthetic data while 
maintaining model performance. Fig. 5 shows the respective perfor
mances of the CNN and GPR models for the EOL predictions. The results 
demonstrate that for both the RWTH and Stanford datasets, up to 50 % 
of the real training data can be replaced with synthetic data without 
negatively affecting the CNN model’s prediction accuracy. Specifically, 
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Fig. 3. Performance of the CNN and GPR models using training data with increasing numbers of only real cells of the RWTH and the Stanford datasets. As can be 
seen, the performance of the CNN model increases with an increase in the number of real cell data, thereby validating the expected model behavior. The GPR model 
performs better with an increase in the number of cells of the seed data. However, it cannot track the EOL or the knee-point as well as the CNN model with increasing 
input availability in terms of cycle data and the number of cells from the seed datasets. The predictions in these plots are shown from cycle number 50.
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the model’s performance with a combination of synthetic and seed data 
is either better than or as good as with purely real data for the CNN 
model. Better model performance can be attributed to the random 
synthetic data generation within the tolerances defined by the synthetic 
data generation function parameters, which yielded some data that had 
similar features as the unseen test data. The same can be seen for the 
CNN model’s performance on the knee-point predictions for the test cells 
in Figure S6. However, for both the EOL and knee-point predictions in 
Fig. 5 and Figure S7, respectively, the performance of the GPR is 
inconsistent. The GPR model can track the EOL using training sets 
containing synthetic data to a limited extent as opposed to training sets 
containing purely real data. This can be observed in Fig. 4e, f, g, and h, 

where the green line graphs, corresponding to mixed training sets, 
closely follow the red line graphs, corresponding to purely real training 
sets, only in some areas. In the case of knee-point predictions, as shown 
in Figure S7, the model performances with the mixed training sets are 
even worse. However, these results are similar to those obtained using 
only real data, as shown in Fig. 3g and h This suggests that the CNN 
model can generalize well even when trained with synthetic data, while 
the GPR model struggles due to its inherent limitations rather than the 
quality of the synthetic data.

The discussed method was able to generate degradation data that is 
different from the already present training data without the expenditure 
of time and resources for cell testing, which is desirable and the intended 

Fig. 4. Model performances upon the addition of a fixed number of synthetic data. 30 and 36 synthetic cells were added to the model training sets for the RWTH (a, 
b, c) and the Stanford (d, e, f) datasets. ’SD’ in the legend stands for ’Synthetic data’, indicating the presence of synthetic data in the training sets. In every sub
sequent row of graphs, there is an increase in the number of real training cells, which is the same as the number of cells used as the base for synthetic data generation 
for that case. Performance comparisons of both the GPR and the CNN models have also been highlighted.
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Fig. 5. Replacement of real data by synthetic data for EOL and knee-point predictions by the CNN and GPR models for the RWTH and the Stanford datasets. Error line 
plots for model performance on training sets having only real curves are represented in the legend as a single integer ’n’, while for training sets having a combination 
of ’n’ real and ’m’, synthetic curves are represented as ’n + m’. The predictions in these plots are shown from cycle number 50.
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purpose. Results from Fig. 5 also serve as a base for calculating the effort 
reduction regarding the number of cells being tested, which is propor
tional to the shares of synthetic data within the respective training sets. 
Based on our studies, it is possible to reduce cell-testing effort by at least 
50 % using the synthetic data generation method for similar perfor
mance to our prediction models. These results highlight the practical 
advantage of synthetic data generation, as it can significantly reduce 
experimental workload without sacrificing model accuracy. For an 
example of testing effort reduction calculations, the readers are directed 
to Note S1 in the supplementary material.

The readers are reminded that for all the experiments performed in 
this paper, the selection of training subsets of seed data and the gener
ation of synthetic data from those subsets were completely random. 
Therefore, with more precise selection of seed data and stricter control 
over the synthetic data generation process, further improvements in 
model performance are expected.

There have been some common observations regarding the predic
tion results of the two datasets used so far. The prediction errors of EOL 
and knee-point in the Stanford dataset were significantly larger than 
those in the RWTH dataset. This is because the Stanford dataset dem
onstrates a much larger variation in terms of the EOL and knee-points of 
cells due to different internal processes taking place within the cells 
under stress factors, e.g., current rates. The nine aging protocols them
selves are significantly different, resulting in different types and extents 
of degradation of the cells. Prediction errors were also observed to be 
higher for knee-point than EOL. Knee points are not precisely defined as 

sharp points on capacity fade curves. Hence, differences can exist in the 
ways that the prediction models interpret them during training 
compared to the well-defined EOL.

The advantages of our synthetic data generation method are 
observed predominantly due to the defined ranges of the synthetic data 
generation function parameters: Offset, Slope, and Elongation. The se
lection of the parameters within these ranges was performed randomly 
to avoid the influence of human bias on the type of data generated and, 
hence, the performance of the prediction models. Further details on the 
statistical and sensitivity analysis can be found in Methods. Having said 
that, the synthetic data generation function can be used to produce the 
exact nature of synthetic degradation curves required for different ap
plications as well as to improve model accuracy significantly, and the 
statistical analysis step is not mandatory. However, these analyses help 
address the concerns regarding the extrapolation capability of our syn
thetic data generation method beyond the boundaries of the seed dataset 
and the real-world significance of the generated data. A significantly 
large extrapolation of synthetic data beyond the boundaries of the seed 
dataset may not be a valid real degradation path for cells under the 
specified aging conditions. As visible from the seed datasets and their 
respective sample synthetic curves in Fig. 2, the statistical analysis step 
aids in selecting parameter ranges that result in creating the synthetic 
curves within and slightly beyond the bounds of the seed datasets.

Fig. 6. Mean errors, MAEc.a. for performance validations of the CNN (a, b) and GPR (c, d) models on the Oxford and NASA datasets. Error bars for model per
formance on training sets with only real curves are represented in the legend as a single integer ’n’, while for training sets with a combination of ’n’ real and ’m’, 
synthetic curves are represented as ’n + m’. ’N’ denotes the ratio of the number of synthetic curves to the number of real curves within the model training set for the 
respective cases. Figure S15 (in supplementary materials) shows the evolution of errors with cycle numbers in the form of line graphs. It may be argued that the GPR 
model performs better than the CNN model for the Oxford dataset. Some plausible reasons could be the nature of the dataset in terms of complexity, the number of 
cells, and the training mechanism of the two models on the dataset. However, the primary objective of the paper is to showcase the effect of adding synthetic data on 
the prediction accuracy of the machine learning and deep learning models and not draw comparisons between the two models themselves. A detailed comparative 
analysis of the performances of the two models is, hence, out of the scope of this paper.
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Validation on sparse datasets

The common range of the elongation parameter obtained from the 
sensitivity analysis was used for the performance validation of the two 
models on the sparse Oxford and NASA datasets. Fig. 6 shows the mean 
errors of model performances upon training sets having varying 
numbers of synthetic data added to seed data. The figures depict the 
errors MAEr.a. and MAEc.a. as described in Eqs. (16) and (17) in Methods. 
With the increase in the proportion of synthetic data within the training 
subset, the performances of both the CNN and GPR models also increase. 
The Oxford dataset has limited cells tested under a single condition but 
displays much larger cell-to-cell variations than the RWTH dataset. The 
capacity degradation curves of the NASA dataset show capacity recovery 
at several stages of degradation. Therefore, it is evident that the pro
posed synthetic data generation methodology helps generate data 
resembling actual cell data that can enrich smaller datasets while 
improving the predictive performances of both machine- and deep- 
learning models.

Validation on field datasets

To validate the performance of the proposed method using field data, 
we analyzed degradation data from battery packs in 20 commercial 
electric vehicles operating in real-world conditions over two years [57]. 
Field data presented significant noise due to measurement uncertainties, 
a challenge not present in laboratory datasets. Capacity recovery 
observed during long rest periods between driving profiles posed an 
additional challenge for data augmentation. Figure S17 displays the 
original field data alongside synthetic data generated by the proposed 
method, distinguished by different colors. To validate the proposed data 
augmentation approach on field datasets, we randomly selected data 
from 15 vehicles as seed data to generate synthetic data. The remaining 
data from the other five vehicles were used for validation. Fig. 7 shows 
the mean errors of model performances with varying amounts of syn
thetic data added to the seed data in the training sets. As the proportion 
of synthetic data increased, the performance of both the CNN and GPR 
models improved. The models’ mean errors decreased upon integrating 
synthetic data into the training set, thereby verifying the effectiveness of 
the proposed synthetic method for enhancing lifetime prediction in 
complex, noisy battery field data.

Applications and outlook

The primary applications of the work of this paper are lifetime pre
diction of LIB systems, reduction of resources for cell testing, and 

enrichment of operation datasets when having insufficient data. The 
proposed synthetic data generation process can help increase the 
quantity and quality of the sparsely available field operation data while 
decreasing cell testing effort by at least 50 %. Additionally, this can lead 
to better training of prediction models using field data and their inte
gration into battery management systems. Even though the work in this 
paper randomly selected the cells for each seed dataset, it could be 
possible to train models for specialized applications by selecting specific 
capacity degradation curves in the seed dataset. Moreover, the described 
methodology of synthetic data generation and deep-learning neural 
networks can be adapted and applied to data-driven studies in entirely 
unrelated domains of research that share similarities with the non- 
linearity observed in LIB systems.

However, several challenges continue to exist for the accurate pre
diction of LIB degradation. To minimize the number of cell aging tests 
and to generate relevant synthetic data catering to a wide range of field 
applications, the aging protocols and the number thereof must be well- 
defined. It is known that capacity degradation in LIBs is correlated to an 
increase in their internal resistance. Thus, including resistance data as 
an additional feature to prognostic models could increase degradation 
prediction accuracy. Hence, generating synthetic resistance curves 
correlated to the corresponding synthetic capacity degradation curves 
for model training would be extremely advantageous. Finally, even 
though the proposed model has been trained on different datasets with 
characteristics that resemble many aspects of field data, and the results 
obtained show promise, the actual implementation of the synthetic data 
generation method and subsequent model training and validation on 
field data is still needed.

Conclusions

In this paper, we developed a method of fast data augmentation with 
the objective of increasing the predictive performance of data-driven 
models while reducing cell testing efforts and costs. Three parameters 
are designed based on the degradation mechanisms to introduce the 
variations in degradation trajectories without complicated, time- 
consuming electrochemical simulations. We demonstrated its advan
tages in conjunction with both machine learning and deep learning 
models to predict the occurrences of the end-of-life and knee-points of 
battery degradation curves. Four datasets from different chemistries, 
which exhibit vast differences in terms of cell capacities, inter-cellular 
variations, testing protocols, and the presence of measurement noise 
and capacity recovery, were used to validate our method. The addition 
of synthetic data showed an increase in prediction accuracy, while the 
partial replacement of real data with synthetic data also led to similar 

Fig. 7. Mean errors, MAEc.a. for performance validations of the CNN (a) and GPR (b) models on the field datasets. Error bars for model performance on training sets 
with only real curves are represented in the legend as a single integer ’n’, while for training sets with a combination of ’n’ real and ’m’, synthetic curves are 
represented as ’n + m’. ’N’ denotes the ratio of the number of synthetic curves to the number of real curves within the model training set for the respective cases.
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model performances using limited cell data. Performance comparisons 
were also drawn between shallow machine learning and deep learning 
models. From a broader perspective, the work of this paper opens pos
sibilities to extend its application to battery health prognostics using 
sparsely available field data from energy storage systems that have 
larger variations and more relevance to practical applications than 
laboratory-generated test data.

Methods

Synthetic data generation function

The offset parameter is described as the difference between the 
initial capacity values of two cells in Ah. The slope parameter, repre
sented in Ah, is determined by the variances in the slopes of the capacity 
fade curves within the initial linear degradation phase, in which the 
spread in capacity degradation is relatively less yet prominent. It is 
calculated by first subtracting the initial capacity values of the two cells, 
followed by subtraction of the differences in capacities at the nth cycle of 
the cells up to which minor differences in slopes are observed. The 
elongation parameter is defined as the ratio of the cycle numbers of the 
endpoints of two LIB degradation curves and is a dimensionless quantity. 
If o, s and e represent the offset, slope, and elongation parameters, 
respectively, then 

o = Qi, 1 − Qj,1 (1) 

s =
(
Qi, n − Qi, 1

)
−
(
Qj, n − Qj, 1

)
(2) 

e = N / M (3) 

where i and j represent any two cells taken at a time for the calculation of 
the parameters that have initial capacities Qi, 1 and Qj, 1, capacities at 
the nth cycle Qi, n and Qj, n and cycle numbers of their final data points N 
and M, respectively.

A cell’s capacity data can be represented in the form of a capacity 
vector Q and the corresponding cycle number vector C, both being of the 
same length L. The vectors of the corresponding parameters, having 
lengths equal to L are then prepared as follows. 

O = (o, …, o) (4) 

S = (0, …, s) (5) 

E = (1, …, e) (6) 

where O is the offset parameter vector and is a constant vector. S and E 
are the slope and elongation parameter vectors that are obtained by 
linear interpolation between the initial and final values, as shown in Eqs. 
(5) and (6). The real curve is combined elementwise with these 
parameter vectors to obtain the modified data as 

Qʹ = Q + O + S (7) 

Cʹ = C ∗ E (8) 

The modified cycle-number vector Cʹ will comprise non-integer 
values. Hence, a new vector Cs

ʹ is generated by linear interpolation of 
the integer values between the initial value of C and the final value of Cʹ 

rounded off to the closest integer. Cs
ʹ is the cycle number vector of the 

new synthetic curve. The corresponding synthetic capacity values Qs
ʹ are 

obtained with the interpolation of capacity values at cycle numbers Cs
ʹ 

against the vector Qʹ. The resulting synthetic curve vectors will have 
lengths of (L ∗E) rounded off to the nearest integer. The variations of 
synthetic data with the change in the parameters can be quantitatively 
visualized in Figure S3.

Datasets

High-quality datasets are essential for developing accurate data- 
driven models for battery applications. The generation of such data
sets requires high-precision measurement equipment, controlled testing 
environments, and standardized testing protocols to minimize noise and 
measurement errors, thereby ensuring robust model training and 
validation.

In battery capacity estimation and prediction tasks, high-quality 
laboratory data typically involve capacity and resistance measure
ments obtained using high-precision sensors under consistent, fixed 
check-up testing procedures conducted at regular intervals. This ensures 
the availability of sufficient and reliable data for model development. In 
contrast, high-quality field data are characterized by high sampling 
rates, low sensor noise, and minimal logging errors, such as data gaps. In 
optimal scenarios, reliable capacity tests are conducted in workshops to 
provide accurate data labels for aging diagnosis and prognostics tasks.

The dataset generated by RWTH consists of 48 Sanyo/Panasonic 
UR18650E graphite/NMC cylindrical cells with a nominal capacity of 
1.85 Ah aged under the same load profile and test conditions. Initial 
performance of the cells was ascertained with begin-of-life (BOL) tests, 
with regular reference parameter tests (RPT) carried out to determine 
cell performance. The validation batch of cells tested by Stanford con
sists of 45 A123 Systems’ APR18650M1A graphite/LFP cells having a 
nominal capacity of 1.1 Ah. These cells underwent nine different fast- 
charging protocols, five cells per protocol, and were cycled to failure. 
The Oxford dataset consisted of 8 Kokam pouch cells having lithium 
cobalt oxide (LCO)/lithium nickel cobalt oxide (NCO) positive electrode 
and graphite negative electrode. The cells had a nominal capacity of 740 
mAh and were aged till EOL of 80 % nominal capacity under a constant 
current of 2 C of a CC–CV profile and discharged under an urban drive 
cycle profile. Characterization tests were carried out every 100 cycles at 
1 C current. The NASA dataset’s test batch was used, containing four 
cells labeled 5, 6, 7 and 18. These cells had a nominal capacity of 2 Ah 
and were aged under three different profiles at room temperature. 
Charging was performed at a constant current of 1.5 A till the cell 
voltages reached 4.2 V, followed by a constant voltage stage until the 
charging current dropped to 20 mA. The discharge was performed at a 
constant current of 2 A till the voltages of cells 5, 6, 7, and 18 reached 
2.7 V, 2.5 V, 2.2 V and 2.5 V, respectively. The experiments were con
ducted until the defined EOL of 30 % capacity degradation in all cells, i. 
e., from 2 Ah to 1.4 Ah. The field dataset consists of data from 20 
commercial electric vehicles operating in real-world conditions over two 
years. Each vehicle used identical battery systems. Raw capacity data for 
each vehicle were obtained using a variant of the Ampere integral 
equation and statistical calibration to mitigate errors caused by impre
cise SOC measurements and data noise. Due to the embedded BMS 
limitations in computation and data transmission, capacity calculations 
were performed monthly.

Data pre-processing

Pre-processing was performed for both the model train and test sets. 
To reduce the model training time, the input capacity curves were 
reduced in resolution by sampling only one in every two points. This 
sampling rate was chosen after analyzing trade-offs between model 
performances with data using different sampling rates and their 
respective computation times. The outputs were the knee or EOL points 
of the respective degradation curve. This was applied directly to the 
Stanford, Oxford and NASA datasets, and no additional pre-processing 
was required. However, the RWTH dataset required interpolations of 
intermediate capacity data points, which was done using the Piecewise 
Cubic Hermetic Interpolating Polynomial (PCHIP) function available in 
MATLAB. For the field dataset, due to the sparsity of monthly measured 
raw data for model training, we initially used cubic spline interpolation 
to estimate daily capacity changes.
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Calculation of synthetic data generation function parameters

The three synthetic data generation function parameters were ob
tained separately for each dataset. These parameters were calculated, 
taking two cells at a time within each dataset and each aging test con
dition. The calculation of the offset and elongation parameters has 
already been discussed as part of the methodology. The values of n 
chosen for calculating the slope parameter were 500, 200 and 500 cycles 
for the RWTH, Stanford and Oxford datasets, respectively. The NASA 
dataset did not have any similarities in capacities and slopes in the initial 
cycles of the degradation curves. Hence, the slope parameter for this 
dataset was assigned a value of 0. The resulting sets of these parameters 
for the RWTH and Stanford datasets have been represented as histo
grams in Figure S5. This can serve as a starting point for selecting the 
synthetic data generation function parameters for a given dataset to 
obtain representative synthetic data, as was done for the Oxford and 
NASA datasets. However, such an analysis is not mandatory, and the 
parameters can be selected based on the nature of the synthetic data 
required.

Model training methodology

For the RWTH dataset, 7 test cells were randomly selected, and the 
training set had 40 cells. For the Stanford dataset, one cell was randomly 
selected for the validation batch of cells from each of the nine charging 
protocols. This resulted in a total of 9 tests and 36 train cells. In the 
Oxford dataset, two cells were randomly selected for the test set, leaving 
a total of 6 cells for training. The NASA dataset had three training cells 
and 1 test cell. All datasets were trained separately in all the simulations. 
The training and test data of the datasets have been plotted in Figures S1 
and S2.

The model performances for the larger datasets were observed by 
increasing the available real cell data and the number of available cycle 
data of test cells to predict their EOL and knee points. We increased the 
number of randomly selected cells from the available real training cell 
data to create training subsets with or without synthetic data and trained 
the prediction models separately for each subset. For the RWTH dataset, 
we increased the seed data in the order 3, 15 and 30 cells, whereas for 
the Stanford dataset, the number of cells was increased by one cell per 
test condition, resulting in the order of 9, 18 and 36 cells. Because these 
training subsets were selected at random, simulations were run at least 
15 times per scenario. The average errors of these runs/trials have been 
presented as the results. This was done to reduce the weights of the 
results obtained by inadvertently selecting ’good’ or ’badly’ biased 
training subsets by the random function.

In all simulations, the numbers of both real and synthetic curves in 
each training subset were specifically chosen such that the minimum 
ratio of the numbers of synthetic curves to real curves within the subset 
was equal to 1. This would ensure a significant contribution to model 
performance by the synthetic curves. The selected numbers of real and 
synthetic data also prevented repetitive experiments from understand
ing the behavior of the prediction models in response to a wide range of 
training data.

Cross validation

To ensure transparency regarding the final cell selection for model 
training and test sets, k-fold cross-validations were performed. Some 
results for the same have been provided for knee-point and EOL pre
dictions for both the GPR and CNN models on the RWTH and Stanford 
datasets, whose results have been plotted in Figure S16. The value of ’k’ 
for the RWTH and Stanford datasets chosen were 6 and 5, respectively. It 
can be observed that the margin of prediction errors can vary enor
mously based on the test set and that the errors corresponding to the test 
cells that were randomly selected and fixed for all the results in this 
paper roughly lie within the shaded regions.

Sensitivity analysis

The synthetic data generation function takes ranges of values of the 
three parameters as inputs, and a random function within it chooses a set 
of parameter values from those ranges. These are used to generate 
synthetic degradation curves. A sensitivity analysis was performed 
alongside the statistical analyses, as shown in Figure S5, to determine 
the optimal ranges of parameter values. This was done to support the 
conclusions of the parameter ranges derived in the statistical analyses of 
the used datasets. It also offers insights into the pre-selection of these 
parameter value ranges for other datasets with very few cells, which 
could benefit from the generation of synthetic data, but for whom car
rying out statistical analysis could lead to erroneous results due to their 
small size.

The sensitivity analysis was carried out by varying the ranges of one 
parameter while keeping the other parameters fixed. Results obtained by 
such analysis provided some interesting insights. Firstly, as expected, 
the model performance results and the process of synthetic data gener
ation were most sensitive to the elongation parameter due to its direct 
impact on the cycle life of the synthetically generated cell. The variation 
of cycle life of cells in the datasets, and hence the elongation parameter, 
is the largest as compared to the offset and slope parameters. Secondly, 
an optimum range exists for the selection of the elongation parameter. A 
narrow range of elongation of ±10 % was observed to produce unevenly 
distributed synthetic data, with a higher density of synthetic data at the 
extreme boundaries, leading to worse results by synthetic data addition 
as compared to the cases of adding no synthetic data at all. A high range 
of ±40 % and above improved the model performance but led to the 
creation of synthetic data that no longer resembled the original dataset. 
The ranges obtained by the statistical analysis in Fig. 2 produced results 
as good as high parameter ranges while at the same time maintaining the 
likeness to the real cells within the datasets. To further generalize the 
conclusion of the analysis, a common range of the elongation parameter 
of ±25 % was selected and used for all experiments and all four datasets 
in this paper. The offset and slope parameters did not influence the re
sults in any clear manner and were obtained directly from the respective 
dataset due to their dimensionality (Ah), which would be different for 
different datasets. A selection of extremely high values of these two 
parameters would be unreasonable due to the lack of resemblance of 
synthetic data with the seed data and was therefore not considered.

Convolutional neural network

Among the various deep learning neural networks available, we 
implemented a CNN-based model for the purpose of point prediction. 
The core of such models is the convolutional layer, which can extract 
and preserve the relationships between different data points using its 
constituent kernels. CNNs apply the mathematical operation, convolu
tion, to the input series x and its composite kernel w to produce the 
resulting output series y. 

x = [x0, x1, x2,…, xm− 1] (9) 

w =
[
w− p, w− p+1,…, w0,…,wp− 1,wp

]
(10) 

y =
[
y0, y1, y2,…, ym− 1

]
(11) 

yn =
∑p

k=− p

xn− kwk ∀n ∈ [0,m − 1] (12) 

In the context of our work, x is one of the multiple inputs within the 
capacity data array created during data pre-processing, whereas y is the 
output series of the previous layers, which is received as input by the 
final dense layer of the CNN model. The dense layer then performs a 
series of matrix-vector multiplication, producing a single point as the 
prediction output of the model. Our CNN model architecture consisted 
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of convolutional, max-pooling, dropout, dense and flattened layers. The 
’relu’ activation function was used to improve the model’s ability to 
learn nonlinear relations. The number of epochs for all the experiments 
was fixed at 700 to provide justified comparisons of results obtained 
from experiments on different datasets as well as the variation of input 
data within each dataset. The kernel size was kept to a minimum, which 
resulted in the best possible learning of features of the data. Two dropout 
layers with a dropout percentage of 10 % each were added to the model. 
Additionally, a callback was used in model training to store the model 
with the lowest validation loss. These measures were taken to prevent 
model overfitting on the training dataset. A detailed structure of the 
CNN model used for the experiments has been shown in Figure S13.

A typical lithium-ion capacity fade curve is a time series and, 
simultaneously, spatial data. The 1-D CNN was chosen because of its 
ability to extract the spatial distribution of data as well as features with 
the help of kernels. The initial preference to use Long-Short-Term- 
Memory (LSTM) based models was intuitive due to their ability to 
detect temporal relationships of time-series data and their abundant 
utilization in existing studies and literature. However, after several ex
periments for the purpose of knee-point and EOL prediction, CNN-based 
models had a significant reduction in training time by approximately 
1100–1600 %, with no noticeable effect on performance.

Gaussian process regression

We used the Gaussian Process Regression (GPR) based model to 
provide a benchmark model for performance comparison. It is a super
vised machine learning algorithm that defines a distribution over 
functions that can be defined over the available data. A combination of 
k-fold cross-validation and manual hit and trial was used to fix the GPR 
hyperparameters. After performance comparisons with the radial basis 
function (RBF) kernel, the Matérn 3/2 kernel was selected, which is 
given by: 

k
(
xi, xj

)
=

1
γ(ν)2ν− 1

( ̅̅̅̅̅
2ν

√

l
d
(
xi, xj

)
)ν

Kν

( ̅̅̅̅̅
2ν

√

l
d
(
xi, xj

)
)

(13) 

where d is the Euclidean distance between the points xi and xj, Kν is a 
modified Bessel function and γ is the gamma function. The value of ν is 
1.5 for the used kernel.

Numerous scientific works have benefited from the GPR for EOL and 
knee-point predictions. In all the studies, however, feature engineering 
and hyperparameter tuning were crucial steps. For a justified compari
son of our CNN-based model performance with the GPR serving as a 
benchmark, no feature engineering was performed and hence, the inputs 
were the same for both models. This was done to highlight the learning 
ability of our CNN-based model without the need for feature engineering 
as well as changes in any of its hyperparameters.

Identification of EOL and knee point

The reduction of the cell’s discharge capacity to 80 % of its nominal 
capacity was this study’s chosen definition of end-of-life (EOL). Among 
the various available knee point identification methods [50–59], the one 
proposed in [58] was used. It involves fitting two tangent lines to the 
capacity fade curves that represent the two degradation stages. The 
cycle number of their point of intersection is defined as the knee point. 
This method outperformed the others on both datasets with minimum 
adjustment of the function’s parameters, capacity data processing, and 
application complexity. It could also be applied across multiple datasets 
having different natures of capacity fade curves.

Evaluation metrics

The model performance was evaluated based on the difference in the 
predicted and actual EOL and knee point values. The prediction error of 

the model for a test cell is given by 

Δ = yp − ya (14) 

where yp and ya are respectively the predicted and actual values of the 
knee-point or EOL of the test cell. The unit can either be the percent or 
the number of cycles.

However, since the focus is on the performance of the prediction 
models for different numbers of randomly selected cells of the datasets 
and randomly generated synthetic data as an ensemble, the average 
errors for all the test cells at the respective cycle numbers were obtained 
instead of individual cells. For error metrics, we chose the mean absolute 
error (MAE), which can be represented in cycles as well as percentages. 
Thus, the MAE of the entire group of test cells is defined as 

MAE =

∑n
i=1

⃒
⃒
⃒yi,p − yi,a

⃒
⃒
⃒

n
(15) 

where yi,p and yi,a are the predicted and actual knee-point or EOL values 
of the ith test cell, averaged over n test cells, which is 7, 9, 2 and 1 for the 
RWTH, Stanford, Oxford, and NASA datasets, respectively. Because of 
randomly selected subsets of cells for training with different cells or 
different combinations of randomly selected cells in every subset and the 
random synthetic data generated, several runs were performed. The 
mean absolute errors of all the m runs, MAE run-average (MAEr.a.) is 
calculated as in Eq. (16). The error-calculation procedure has been 
graphically represented in Figure S14. 

MAEr.a. =
MAE
mruns

(16) 

The errors for the Oxford and NASA datasets, as shown in Fig. 6, 
represent the mean of MAEr.a. over its p points of cycle data. This is 
referred to as the MAE cycle average (MAEc.a.) in this paper. 

MAEc.a. =
MAEr.a.

p
(17) 

Another commonly used metric is the root mean squared error 
(RMSE), which measures the average error and the error distribution. 
However, it provides an ambiguous interpretation of errors. MAE, on the 
other hand, is a much more reliable and intuitive measure of errors, 
especially when comparing model performances [60], and hence, we 
only use MAE as the performance metric for model performance 
evaluations.
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