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S U M M A R Y 

Induced seismicity poses a significant challenge to the safe and sustainable development 
of Enhanced Geothermal Systems (EGS). This study explores the application of machine 
learning (ML) for forecasting cumulative seismic moment (CSM) of induced seismic events 
to e v aluate reservoir stability in response to fluid injections. Using data from the Cooper 
Basin (Australia), the St1 Helsinki geothermal project (Finland), and a controlled laboratory 

injection experiment, we e v aluate ML models that integrate catalogue and operational features 
with v arious frame works. Results indicate that feature-rich models outperform simpler ones in 

complex seismic environments like the Cooper Basin and laboratory cases, where seismicity 

is promoted by earthquake interaction and fault reactivation. Ho wever , in scenarios like St1 

Helsinki, with minimal event clustering, additional features offer limited predictive benefits. 
While ML models are promising, several challenges impede reliable forecasting, including data 
scarcity from operational wells, the extrapolation demands of cumulative output (i.e. CSM) and 

the difficulty of predicting abrupt CSM increases for large seismic events. Enhancing model 
robustness requires synthetic data augmentation and improved feature selection capable of 
capturing diverse reservoir dynamics. These advancements may enable more accurate near 
real-time forecasts of problematic induced seismic events, informing operational decisions to 

mitigate seismic risks while maximizing energy extraction, and hence offering a pathway for 
broader adoption of ML in rene w able energy development and management. 

Key words: Machine lear ning; Ear thquake interaction, forecasting, and prediction; Induced 

seismicity. 
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 I N T RO D U C T I O N  

afe usage of rene w able energy resources is crucial for mitigat-
ng greenhouse gas emissions and thus global warming. Deep
eothermal energy production plays an important role in this
spect and provides a sustainable and reliable base-load heat and
ower supply. Complementary to using heat from shallow depth
anges, ‘Enhanced Geothermal Systems’ (EGS) aim at extracting
eat from deeper reservoirs, typically at around 4 km depth
n crystalline basement or sedimentary basins, at temperatures
eaching or exceeding 100 ◦C. Developing EGS involves creating
uid pathways in low-permeability rock formations through
ydraulic stimulations, which are typically accompanied by mostly
mall-scale induced seismicity (Majer et al. 2012 ; Ellsworth 2013 ).
nduced seismic events large enough to be felt can reduce public
C © The Author(s) 2025. Published by Oxford University Press on behalf of The R
article distributed under the terms of the Creative Commons Attribution License (
permits unrestricted reuse, distribution, and reproduction in any medium, provided
cceptance and may in some cases lead to structural damage to
uildings, exceptionall y e ven resulting in personal injuries. For ex-
mple, in the Basel Deep Heat Mining project in Switzerland, deep
eothermal field development triggered over 10 000 earthquakes,
ome of which reached magnitudes up to M 3.4 (Deichmann &
iardini 2009 ; Giardini 2009 ). These larger events were widely

elt by the population, resulted in 9 million USD insurance claims
nd ultimately caused abandonment of the project. More recently,
he occurrence of a M w 5.5 earthquake in 2017 near Pohang, South
orea, left 82 people injured and damaged approximately 2000
ouses. This event has been linked to a nearby deep geothermal
roject under development (Park et al. 2020 ). 

Mitigating induced seismicity in EGS projects is essential for en-
uring a safe and efficient geothermal energy extraction (Mukuhira
t al. 2023 ; D. Li et al. 2024 ). For example, Kwiatek et al. ( 2019 )
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successfully applied a near real-time ‘adaptive stimulation con- 
cept’ during the currently deepest geothermal stimulation in urban 
Helsinki, Finland (St1 Deep Heat project). Based on earlier find- 
ings that the seismic energy release was stable and proportional to 
hydraulic energy input, they mitigated the injection scheme. This 
allowed keeping the maximum magnitude below the threshold (M2) 
gi ven b y local authorities. It w as found that the maximum magni- 
tude evolution in time follows predictions from theoretical models 
(McGarr 2014 ; van der Elst et al. 2016 ; Galis et al. 2017 ). For 
example, if a conserv ati ve model of McGarr ( 2014 ) is used, the 
expected maximum seismic energy release is bounded by the total 
injected fluid volume. In other words, the maximum earthquake 
size (seismic deformation) is constrained by the total elastic strain 
energy stored due to fluid injection. Galis et al. ( 2017 ) developed 
a slightl y dif ferent fracture mechanics-based scaling relation be- 
tween the largest magnitude of self-arrested earthquakes and the 
injected fluid volume. To this end, they used the size of ruptures 
induced by localized pore-pressure perturbations and propagating 
on pre-stressed faults. 

Applying these models, Kwiatek et al. ( 2019 , 2022) and Bentz 
et al. ( 2020 ) suggested that deviation from seismic moment re- 
lease that exceeds predictions from above cited models indicates 
an unstable seismic evolution and should trigger warning and re- 
assessment of injection operations. Primarily this requires a high- 
resolution seismic network continuously monitoring the balance 
between seismic and hydraulic energy, whereas the forecasting of 
large events itself is based on the premise that the deviation from 

a stable, pressure-controlled system can be detected in ample time. 
Kwiatek et al. ( 2019 ) pointed out that monitoring a single seismic 
parameter and hydraulic data alone may not be enough to handle 
the potentially complex processes in the reser voir. Mar t ́ınez-Garz ón 
et al. ( 2020 ) summarized observational factors from reservoir stim- 
ulations that would point at a high potential for run-away earth- 
quakes to occur. These factors include a notable drop in b -value, 
deformation localization along main seismogenic faults, high and/or 
increasing seismic injection efficiency (the ratio of radiated to hy- 
draulic energy), dominance of shear faulting, abundant earthquake 
triggering and earthquake interaction. Ho wever , not all of these fac- 
tors are necessarily observed in every case. For instance, a drop in 
the b -value is evident in Basel (Ritz et al. 2022 ) and the Geysers 
EGS (Mart ́ınez-Garz ón et al. 2014 ), but it remains unclear in Po- 
hang (Woo et al. 2019 ). Mart ́ınez-Garz ón et al. ( 2020 ) concluded 
that an y w arning system should incorporate further parameters that 
may potentially indicate undesirable system changes, among them 

b -value, clustering and triggering properties or focal mechanism 

similarity. 
Accurate forecasting of large induced earthquakes is vital 

for a warning system in an EGS project. Ho wever , some large 
ear thquakes—r unaw ay e vents—do not conform to the theoreti- 
cal models of maximum expected magnitude and stable, pressure- 
controlled seismic moment release (Ripperger et al. 2007 ; Galis 
et al. 2017 ; Norbeck & Horne 2018 ; Kwiatek et al. 2019 , 2022 ). 
Monitoring the stability of the geothermal system in near real-time 
and using solely the seismic energy release seems to be too lim- 
ited to capture operational and subsurface complexities (Kwiatek 
et al. 2022 , 2024 ). This calls for incorporating additional param- 
eters that characterize the potential changes in the structural in- 
ventory of the reservoir or changes in stress conditions, as well 
as more advanced forecasting models (Kwiatek et al. 2022 ). Ma- 
chine Learning (ML) algorithms are now widely used as power- 
ful data-driven tools for forecasting problematic events in seismol- 
ogy (Rouet-Leduc et al. 2017 ; Karimpouli et al. 2023 ; Saad et al. 
2023 ; Karimpouli, Kwiatek, Ben-Zion et al. 2024 ). In the EGS 

applications, ML is applied as aid in routine processing of seis- 
mic data (Leong & Zhu 2024 ; Okamoto et al. 2024 ). Ho wever , 
ML can potentially also be used in forecasting problems, mostly 
on a regional scale (Holtzman et al. 2018 ; Limbeck et al. 2021 ; 
Mehrabifard & Eberhardt 2021 ; Qin et al. 2022 ; Hui et al. 2023 ). 
Hincks et al. ( 2018 ) used seismicity data from Oklahoma from 

2009 to 2016 to predict annual moment release using a developed 
Bayesian Network. They found that the injection depth of fluids 
relative to the crystalline basement most strongly correlates with 
seismic moment release (the largest induced events typically oc- 
cur in the basement). Wozniakowska & Eaton ( 2020 ) estimated the 
seismo genic acti v ation potential of each well using a Logistic Re- 
gression ML model on a data set from 6466 multistage horizontal 
hydraulic fracturing wells drilled into the Montney Formation over a 
large region in western Canada. They found that injection depth and 
well distance to the Cordilleran thrust belt are the most important 
parameters. 

This study uses ML to forecast cumulative seismic moments from 

a future volume increment of injected fluid known a priori . This 
allows us to compare such a prediction with the maximum magni- 
tude models cited above to decide if the seismic moment evolution 
remains stable. To this end, we use the seismicity catalogue and fluid 
injection data from one laboratory experiment and two case studies 
of stimulated reservoirs that differ with respect to the geological and 
structural environment (Cooper Basin, Australia and St1 Helsinki, 
Finland). Using two ML models and applying catalogue/operational 
features, we will discuss challenges and opportunities of applying 
ML for induced seismicity monitoring in EGS. 

2  M E T H O D O L O G Y  

Suppose an injection well operates within an ongoing EGS. For 
operational decision-makers, an ef fecti ve tool would be one that 
provides reliable forecasts of upcoming earthquakes potentially in- 
duced by subsequent fluid injections and/or e xtractions. Howev er, 
the primary challenge lies in the lack and resolution of sufficient 
data from such operating wells to train an ML-based earthquake 
predictor (Saad et al. 2023 ; Karimpouli, Kwiatek, Ben-Zion et al. 
2024 ). A common approach is to use data from other cases. How- 
ever, Kwiatek et al. ( 2024 ) demonstrated that even two wells within 
the same EGS, located as close as 500 m apart (e.g. St1 Helsinki), 
exhibit significantl y dif ferent seismic responses. This suggests that, 
even data from a nearby well within the same EGS, may not be suit- 
able for training a predictor for the current well (let alone another 
system). As a result, the problem must be redefined to ensure that 
the predictor can be trained on limited data while still providing an 
ef fecti ve decision-making tool for operational use. 

Bentz et al. ( 2020 ) analysed ten geothermal injection operations 
and found that, during a stable injection phase of an EGS, cumu- 
lative seismic moment (CSM) scales with cumulative fluid volume 
injected (CVI) (see Fig. 2 therein). Based on trends in the magni- 
tude evolution with respect to injected fluid volume, they identified 
two types of geothermal reservoirs: those that result in stable, self- 
arrested earthquake ruptures during fluid injection, and thus follow 

the expected trends in seismic moment evolution in time, and those 
that are potentially unstable, and do not conform with the existing 
models. In logarithmic scale, theoretical seismic energy released in 
response to a total volume of fluid injection show slopes ranging 
from 1 (Hallo et al. 2014 ; McGarr 2014 ; Z. Li et al. 2022 ) to 1.5 
(van der Elst et al. 2016 ; Galis et al. 2017 ) (Fig. 1 ). Accordingly, an 
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Figure 1. Schematic illustration of cumulative seismic moment (CSM) plot to cumulative volume injection (CVI) in logarithmic scale showing trend of the 
moment ev olution (dark-b lue curve). The slopes of theoretical (McGarr 2014 and Galis et al. 2017 ) models vary between 1 and 1.5 (dashed and solid line) 
defining ‘stable’ and ‘unstable’ seismic energy release, shown as green and red areas, respecti vel y. The of fset of these models depends on reservoir and fluid 
properties. We aim at predicting CSM (dashed arrow) based on the next injection scenario (solid arro w), allo wing us to e v aluate if the reservoir will remain 
stable or become unstable in the next phase of injection. 

Figure 2. Inputs, output and ML layers used to construct three individual models in this study (see the text). 
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xpected CSM for the next CVI may be located below these models
r between them (green area in Fig. 1 ). We define a reservoir to
e in a stable phase if its seismic moment evolution remains below
r within limits gi ven b y the theoretical models having a slope of
–1.5 (green area in Fig. 1 ). If this trend exceeds theoretical pre-
ictions of self-arrested events (i.e. moves from green to red area in
ig. 1 ), we define the reservoir to be in an unstable phase, with an
nhanced potential for runaway earthquakes. Therefore, we define
ur problem as forecasting the cumulative seismic moment for the
ext step in the injection scenario . 

.1 Input/output data and features 

onsequently, the input data are injection volume and the corre-
ponding induced seismicity catalogue. For injection data, the vol-
me of fluid, which will be injected in the next step, is also known.
or catalogue data, we use cumulative seismic moment (CSM) as
ell as other catalogue/operational features such as: 
Gutenberg–Richter (GR) b-value (b): The GR frequency–

agnitude distribution describes the relationship between the earth-
uake magnitude ( M) and number of earthquakes ( N ) below this
agnitude: 

og 10 ( N M 

) = a − bM, (1) 

here a and b are constant values (known as a- and b -value). A de-
reasing trend of b -value has been proposed to reflect accumulation
f stress and damage and the dominance of larger fault segments
reparing to fail (Amitrano 2003 ; Scholz 2015 ). 

Corr elation integr al (C) : The correlation integral is a measure
f closeness and localization of events, providing insights into the
tress accumulation and release processes, describing the change in
vent number ( N ) with separation distance ( r ) as: 

 = lim 

n →∞ 

1 

n 

2 

n ∑ 

i= 0 

n ∑ 

j= 0 
H 

(
r − ∣∣x i − x j 

∣∣) , (2) 

here n indicates the amount of data in the analysis window, x the
ypocentre coordinates, and H the Heaviside step function: 

H = { 1 x> 0 
0 x≤0 (3) 

Seismo g enic index (SI or �) : Assuming a Gutenberg–Richter
istribution, Seismogenic Index is defined as (Shapiro et al. 2010 ): 

 = log 10 N − log 10 Q + bM, (4) 

here N is the cumulative number of induced seismic events larger
han M and Q is the cumulative injected fluid volume. The b param-
ter is the aforementioned GR b -value. SI determines the expected
evel of seismic activity in each EGS and is independent of the
njection time. 

Seismic efficiency ratio (SER): depends on the characterization
f the fractured zone and the injected or removed fluid volume
Hallo et al. 2012 , 2014 ). It accounts for the partitioning of the
lastic strain energy release ( 

∑ 

M o ) into seismic processes with

art/ggaf155_f1.eps
art/ggaf155_f2.eps
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respect to the theoretical total seismic moment ( 
∑ 

M T O T ) such as 
McGarr model (McGarr 2014 ): 

SER = � M o /� M T O T (5) 

Cluster ed ev ents r atio (CER): Following Zaliapin et al. ( 2008 ), 
we use the nearest-neighbour approach to classify events as back- 
ground or clustered. The distance between i and j events is defined 
as (Baiesi & Paczuski 2005 ): 

ηi j = 

{
t i j 

(
r i j 

)d f 10 −b M i t i j > 0 
∞ t i j ≤ 0 

, (6) 

where t i j and r i j are the time and space distance of two events, d f is 
the fractal dimension of event epicentres, b is the GR b -value, and 
M is the magnitude. Based on a threshold distance η0 background 
and clustered events are detected (Zaliapin & Ben-Zion 2013 ). CER 

is defined as: 

CER = N CE / ( N CE + N BE ) , (7) 

where N CE and N BE are the number of background and clustered 
e vents. It re veals seismicity deviation from background seismicity 
(following a Poissonian distribution) to clustered seismicity, signi- 
fying a complex interplay of stress accumulation and fault instability 
(Mart ́ınez-Garz ón et al. 2018 ; Picozzi et al. 2023 ). 

Correlation with McGarr model (CMG): quantifies the deviation 
from seismic moment evolution trend with respect to the theoretical 
model of McGar r. McGar r ( 2014 ) introduced a simple model, which 
forecasts the next largest magnitude as: 

� M 0 = 

2 μ ( 3 λ + 2 G 

) 

3 
�V , (8) 

where λ and G are Lame’s elastic parameters of the geothermal 
reservoir, G is the modulus of rigidity, μ is the friction coefficient 
and � V is the cumulative fluid injection. When λ = G and μ = 0 . 6 , 
the model simplifies to: 

� M 0 = 2 G�V . (9) 

The CMG computes the correlation between the observed CSM 

and the ones obtained from the McGarr model. A high correlation 
means the trend follows a stable state of the reservoir. 

2.2 Machine learning models 

Fig. 2 illustrates the input data and ML models that we use in this 
study. Input data are selected as time-series with a length of n time 
steps up to the current time step i . The output is the cumulative 
seismic moment (CSM) in the next time step i + 1 for a known 
fluid injection volume (i.e. CV I i+ 1 ), which is the independent ex- 
ternal feedback parameter. The ML models generally consist of an 
LSTM (Long Shor t-Ter m Memor y) network, paired with an Atten- 
tion mechanism and followed by a fully connected (FC) layer. 

The LSTM (Hochreiter & Schmidhuber 1997 ) is a type of neural 
network stemming from Recurrent Neural Networks (RNN) (El- 
man 1990 ) designed to capture features of sequence data. These 
features can be helpful for various downstream tasks, such as pre- 
diction and forecasting of future variables. Unlike typical multilayer 
perceptrons (MLP, Rumelhart et al. 1986 ), LSTMs have a context 
memory layer that is helpful in remembering historical variability 
and correlations within the input stream. LSTMs appeared as an im- 
provement to the original RNNs, from the need to solve the problem 

of vanishing and exploding gradients, which came as a side-effect of 
having the memory context lay er. These prob lems were to some ex- 
tent solved by using various the so-called ‘gates’ within the original 
RNN architecture, resulting in the subsequent LSTM architecture 
being more stable to train, among other things. Gates are essentially 
mathematical operators designed to improve the memory range of 
the LSTM, but in practice the LSTM often performs well at rel- 
ati vel y shor t-ter m lear ning, str uggling to capture ver y long-ter m 

dependencies. To mitigate this issue, the ML community proposed 
the concept of Attention (Bahdanau 2014 ). Attention mechanisms 
were significantly popularized within the transformer architecture 
in a natural language processing context (Vaswani et al. 2017 ). The 
attention mechanism has the ability to expand the memory range 
of a prediction task in practice, by placing emphasis on certain in- 
put samples that seem more important for predicting, even though 
these input samples might be encountered further away in the past. 
This is a form of empirical ‘selective’ memory, based on weighing 
and prioritizing long-term inputs, as opposed to the more short- 
term view of the LSTM. So, from one perspective, by combining 
the hidden memory embedding vector of the LSTM (providing a 
more ‘tactical’ view on the recent data) with the Attention layer 
(adding a more ‘strategic’ view on the long-term data), we hope to 
get the best of both approaches, resulting in improved overall pre- 
dictions. From another perspecti ve howe ver, fusing the LSTM and 
Attention via a layer with learnable weights FC has the potential to 
balance other strong points and shortcomings of these methodolo- 
gies in certain scenarios, such as the ability of the LSTM to capture 
smoother/cumulativ e av erage trends underlying the data, and the 
ability of the Attention layer to be more reactive to the immediate, 
sharp, stepwise behaviour of the input. To sum up, LSTM and At- 
tention can excel at different aspects while analysing the input data, 
hence we fuse them via a learnable layer FC to take advantage of 
their complementary nature across different input scenarios. 

In this study, we use three different models as follows: 

(a). First model (LSTM): Inspired by theoretical models (e.g. Mc- 
Garr 2014 ), we start with only two time-series of cumulative fluid 
volume injected (CVI) and cumulative seismic moment (CSM) as 
input data and apply a many-to-one LSTM model to predict CSM 

in the next step (Fig. 2 ). The LSTM layer contains 64 units and 
we impose a dropout rate of 10 per cent on it. Following is a dense 
layer with 1 output channel to predict the variable of interest. We use 
the ‘ Adam ’ optimizer (Kingma & Ba 2014 ), Mean Absolute Error 
( MAE ) as the loss function and a batch size of 128 to train the model 
for 200 epochs. We use a linear acti v ation function throughout our 
models. 
(b). Second model (LSTM + Att + FC) : Due to the stepwise be- 
haviour of the input data, we concatenate an Attention layer with 
the LSTM layer (Fig. 2 ) as a memory embedding. This wa y, w e use 
LSTM with the main intention to empirically capture shor t-ter m 

history, although theoretically it can also capture longer term, cu- 
mulati ve, smooth trends. Additionall y, we use a flattened attention 
vector to capture and emphasize important features from the longer 
ter m histor y, coping in parallel with the variable, stepwise nature 
of our data. The fully connected layer/FC acts as a fusion layer, 
intended to learn from both input streams: LSTM and Attention. 
The inputs, outputs and parameters are similar to the first model 
(i.e. LSTM); ho wever , for a more e xpressiv e fusion function, we 
use two FC layers in the last part, having eight neurons each, and a 
single projection channel for the output. 
c. Third model (LSTM + Att + FC + Feat) : Laboratory experiments 
hav e rev ealed that catalogue features contain valuable informa- 
tion about the stress evolution (Karimpouli, Kwiatek, Mart ́ınez- 
Garz ón et al. 2024 ) and could be used for large labquake fore- 
casting (Karimpouli, Kwiatek, Ben-Zion et al. 2024 ). Therefore, in 
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Figure 3. Cooper basin data set used in this study. (a) Magnitude of induced events (black dots) and injection rate (purple curve) along the time measured 
from the start of the injection. (b) Cumulative seismic moment versus cumulative volume injected. The first 65 per cent of data (blue area in (a) and blue curve 
in (b)) is used as the training data, and the following 35 per cent (orange area in (a) and orange curve in (b)) is used as both validation and test data. 
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his model, we increase the inputs by adding catalogue/operational
eatures (Fig. 2 ). These features reflect the background seismicity
e.g. SI) and response of the subsurface structure (e.g. b, SER and
MG) and may prepare some signs of the preparatory phase before

arge earthquakes (e.g. C and CER). The output model architecture
nd model parameters are the same as in the previous model (i.e.
STM + Att + FC). 

 C A S E  S T U D I E S  

.1 Cooper Basin, Australia 

he Cooper Basin, located in northeast of South Australia, is a
eothermal area known for its high-temperature hot rock geother-
al resources (Baisch et al. 2006 ). This basin contains thick layers

f Precambrian granite, which host significant heat resources, mak-
ng it ideal for EGS. As one of the primar y geother mal developments
n the Cooper Basin, the well Habanero#1, drilled in 2003, encoun-
ered high temperatures around 250 ◦C at depths exceeding 4200 m.
uring stimulation of well Habanero#1, over 20 000 m 

3 of water
as injected to create or enhance fractures in the granite, leading

o > 23 000 seismic events with −2.0 < M L < 3.7 and completeness
agnitude of −0.7 (see Data availability). The seismicity revealed
 nearly planar structure 2 × 1.5 km 

2 in size being acti v ated, with
n apparent thickness of 150–200 m (Baisch et al. 2006 , 2009 ).
vent magnitudes and injection rates are shown in Fig. 3 (a). As

ndicated in Fig. 3 (b), we use 65 per cent ( ∼ 30 d) of all data as the
raining set and the remaining data as both e v aluation and test data.
entz et al. ( 2020 ) noted that the Cooper Basin stimulation con-

ained some episodes of potentially unstable seismic response, as
he seismic injection efficiency was continuously increasing during
he stimulation campaign. 

The cumulative volume injected (CVI) and cumulative seismic
oment (CSM) are computed in temporal intervals of every 30 min.
his means that, in each step, all data from the start of injection and
p to the current step are used for computing the cumulative inputs
nd to extract the features listed in Section 2 . After input/feature
omputation, sequences of time-series are selected with 12 h length
nd 30 min steps, leading to time-series with a length of 24. There-
ore, depending on the model, input size is either 2 × 24 (LSTM and
STM + Att + FC) or 8 × 24 (LSTM + Att + FC + Feat), where
 and 8, respecti vel y, represent the number of input features, while
4 is the sequence length. Overall, 2183 sequences are produced,
hich are subsequently split into 1418 training sets and 765 vali-
ation/test subsets. It should be noted that only for the third model
LSTM + Att + FC + Feat), in which eight features are used, we
rst remove 200 initial sequences and then split them. This is due to

he small number of events in the early steps, where feature values
uctuate strongly. 

.2 St1 Helsinki 

he St1 Deep Heat geothermal project in Finland is aimed at pro-
iding rene w able district heating using deep geothermal energy.
ocated in Espoo, near Helsinki, the project involves drilling two
ells down to about 6400 m to access the heat from crystalline rock

ormations. This heat is then intended to be transferred to a district
eating network, supporting sustainable heating solutions for the lo-
al area. In 2018, stimulation of the OTN-3 well involved injecting
 total of 18 160 m 

3 of fresh water into deep crystalline rocks over
 period of 49 d, from June to July. The injection process utilized
ariable well-head pressures between 60 and 90 MPa and flow rates
etween 400 and 800 l min −1 , allowing for controlled fracturing
hile minimizing seismic impact. To monitor and manage seismic-

ty, a robust seismic monitoring system was set up, using a 24-station
orehole seismometer network around the well. The seismic cata-
ogue contains 55 707 detected events, with −1.0 < M W 

< 1.7 and a
ompleteness magnitude of −0.5, all originating near the stimulated
olume (Kwiatek et al. 2019 ). Fig. 4 shows the data set and data
ivision into training and validation/test sets in this study. Kwiatek
t al. ( 2019 , 2022 ) concluded that the 2018 stimulation was an
xample of a reservoir displaying a stable seismic response. 

We use the same parametrization of the models as in the case
f Cooper Basin and forecast the seismic moment release in time
indows of 30 min. Overall, we obtain 2767 sequences, which

re then split into 1936 and 831 sequences for the training and
alidation/test data, respectively. 

.3 Experimental data 

ang et al. ( 2020a , c ) conducted laboratory fluid-injection induced
ault reacti v ation experiments on reservoir sandstone samples at
pper crustal stress conditions in the configuration of triaxial com-
ression setup. The cylindrical rock samples (50 mm × 100 mm
n diameter and length) were cut by a prefabricated sawcut fracture
riented at 30 ◦ with respect to the cylinder axis. To record Acous-
ic Emission (AE) events (laborator y ear thquakes) associated with
ault slip, 16 piezoelectric transducers (PZTs) were mounted to the
ample surface before experiments. At a constant confining pressure
f 35 MPa and pore pressure of 5 MPa, the samples with sawcut
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Figure 4. Similar to Fig. 3 , but for the St1 Helsinki data set. 

Figure 5. Similar to Fig. 3 , but for the experimental data set. 
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faults were first axially loaded up to the critical stress state of the 
fault. Then, the position of the axial loading piston was fixed, and 
distilled w ater w as injected from the bottom end of the sample to 
induce slip at undrained conditions. Using a syringe pump, fluid 
pressure was increased stepwise from 5 to 29 MPa with a pressur- 
ization rate of 2 MPa min −1 . The whole fluid injection protocol was 
divided into six stages, and in each stage a duration of 10 min was 
composed of a ramp phase lasting for 2 min (4 MPa fluid pressure 
increment) and a subsequent plateau phase at constant pore pressure 
for 8 min. 

The six-stage fluid injection caused episodic slow stick-slip 
events with a peak slip rate of up to 4 μm s −1 . Injection-induced 
fault slip was accompanied by a total of 3 983 AE events with 
hypocentres distributed across the f ault surf ace (Wang et al. 2020b ). 
The moment magnitudes of AE events ranged from M w −9 to M w 

−7, and their temporal evolution during fluid injection is shown in 
F ig. 5 (a). F ig. 5 (b) presents the relation between cumulative seis- 
mic moments of AEs and cumulative fluid injection volume in the 
laboratory experiment. 

For the laboratory data, note that here time and volume are in 
seconds and milliliters, respecti vel y. Howe ver, all procedures for 
input features computation and model training are similar. We first 
compute all features with 1 s steps. Then, all sequences are produced 
for 24 steps corresponding to 24 s. Ho wever , the input array size 
for the ML models remains similar to the other cases. Finally, 3476 
sequences are obtained, which are split into 2259 and 1217 as the 
training and validation/test data, respectively. 

4  R E S U LT S  

Figs 6 –8 illustrate the results of forecasting the seismic moment 
release of the test data employing all three models (Fig. 2 ), as well 
as the feature variation and importance for all three cases. For each 
sequence of the test data, we assume that all data are known based 
on the catalogue and injection rate and the prediction is generated 
only for the next time step (i.e. next 30 min). 

The obtained results show that although forecasting by LSTM 

(and LSTM + Att + FC in the case of experimental data) is very 
close to the observed values in all analysed case studies (Figs 6 , 7 , 8 a, 
c), none of the ML models could forecast all larger earthquakes 
(indicated by sharp jumps in observ ed cumulativ e seismic moment 
(CSM) values in Figs 6 , 7 , 8 b, c). Instead, we generally see an under- 
estimation of CSM, and the CSM forecasts are delayed with respect 
to the actual observed data, which is not acceptable. This means that 
a generally low Root Mean Square Error (RMSE) obtained between 
the predicted and observed CSM does not guarantee that a model 
produces reliable forecasts. Kwiatek et al. ( 2024 ) proposed the best 
performing model to be the one that produces minimal, yet posi- 
ti ve de viation from the observed v alues. This means that a slight 
overestimation of the next value is preferred, whereas underestima- 
tion is heavily penalized. In the Cooper Basin and in the laboratory 
fluid injection experiment, we observe that adding more features 
led to a slight overestimation of the actually observed seismic mo- 
ment release (see third ML model in Figs 6 , 8 a, c). Ho wever , like 
the previous models, the third model (LSTM + Att + FC + Feat) 
is not sensitive to the rapid changes in CSM release either. Inter- 
estingly, the introduction of additional features seems to help the 
third model improve predictions, as long as the injection volume 
increases, even if the observed CSMs do not. For example, horizon- 
tal intervals in the observed CSM in Figs 6 , 8 (a) show absence or 
very small release of seismicity. Ho wever , in these intervals, fluid 
is still injected, storing potential energy in the reservoir and prepar- 
ing conditions for future large earthquak es. Unlik e the two other 
models, LSTM + Att + FC + Feat forecasts CSM with ascending 
values. This means that using additional features, the model learnt 
to ov erestimate ev en if real CSM is constant, while for example cu- 
mulative fluid volume injected (CVI) increases, SER decreases and 
so on (Figs 6 , 8 e, f). Unfortunately, in the case of St1 Helsinki, the 
CSM release remains underestimated even with additional features. 
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Figure 6. Forecasting cumulative seismic moment (CSM) release for the next 30 min for Cooper basin, Australia, using three different models: LSTM (blue), 
LSTM + Att + FC (orange) and LSTM + Att + FC + Feat (green) (see section 3.1 ). In all plots, the observed values are in black. (a) Temporal evolution 
of CSM with cumulative volume injected (CVI). The shadowed rectangle is the zoom area plotted in (b). (c) Temporal evolution of CSM with time. The 
shadow rectangle is the zoom area plotted in (d). Injection rate is plotted as the right-axis in (a–d). (e–f) Plots of features with time for training and test phases. 
Features’ values are normalized for a better comparison. (g) Importance weights for each feature in every model. Note that in the first two models (i.e. LSTM 

and LSTM + Att + FC), only CSM and CVI are inputs. (h) Importance of time steps within the input time-series. 
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Figure 7. Similar to Fig. 6 , but for the St1 Helsinki. 
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Unlike for Cooper Basin and the lab data, CVI plays an important 
role in the St1 Helsinki case. Figs 7 (b) and (d) show that while 
fluid is being injected, the model prediction benefits from the high 
correlation between CSM and CVI (see Fig. 4 (b) and also the slope 
of the forecasting plot in Figs 7 (a) and (b)). When injection stops, 
the model uses the last CSMs in the input time-series. 

We computed the importance of each feature and also of each 
time-step in the trained models (Figs 6 , 7 , 8 g, h) using the 
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Figure 8. Similar to Fig. 6 , but for the experimental data. 
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nteg rated g radients method (Sundararajan et al. 2017 ). A com-
arison of feature importance among different models reveals that
lmost all models prefer to use past CSM data rather than past
VI data to forecast the CSM in the next time window. All models

but especiall y LSTM) simpl y learn using past values of CSM to
redict the next upcoming CSM, largely ignoring the CVI evolu-
ion. Adding an attention layer and additional features pro gressi vel y
ecreases the CSM importance and increases the importance of re-
aining parameters. In addition, we found that the LSTM mostly

ses the most recent time windows to forecast CSM. Adding the

art/ggaf155_f8.eps


10 S. Karimpouli et al. 

Figure 9. Comparison of clustered events ratio (CER) and b -v alue e volution in all three cases. The time axis for Cooper Basin and St1 Helsinki is in days 
(lower axis) and for experimental data is in seconds (upper axis). 

Figure 10. Correlation coefficient (absolute value) among all inputs for every case study. 
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attention lay er enab les other models to use more information from a 
longer time period of the past. This effect is even more emphasized 
in the third model, in which additional features are used. 

5  D I S C U S S I O N  

In this study, we forecast cumulative seismic moments and e v aluate 
the stability of the geother mal reser voir in the next injection time 
step. In addition to the two main inputs (CSM and CVI), we apply 
catalogue/operational features to introduce more information to the 
ML model relative to reservoir characteristics, such as potential 
changes in the structural inventory of the reservoir, or changing 
stress conditions (Mart ́ınez-Garz ón et al. 2020 ). 

Results show that in the Cooper Basin project and in the labora- 
tory experiments, the addition of seismic features leads to a fore- 
cast improvement. In the case of the St1 Helsinki project, ho wever , 
adding features to the input data does not improve the forecasting 
model, regardless of the technique applied. In this case, it is conceiv- 
able that the additional features calculated do not hold any signifi- 
cant additional information that helps improve model performance. 
This could be due to several reasons. First, Kwiatek et al. ( 2024 ) 
found that the St1 seismicity does not display significant cluster- 
ing and earthquake interaction, suggesting a passive response to 
injection operation. In contrast, Fig. 9 shows that for Cooper Basin 
and similarly experimental data, a high amount of clustered seismic- 
ity with low b -value may indicate increased mechanical instability 
induced by the injection within the fault system. Secondly, the St1 
seismicity acti v ated a broad network of distributed fractures, with- 
out evidence for a prominent fault (Kwiatek et al. 2019 ; Leonhardt 
et al. 2021 ). Dif ferentl y, in both Cooper basin and the laboratory ex- 
periment, the hypocentre clouds are distributed along a planar fault 
zone (Kir ály et al. 2014 ; Wang et al. 2020a , c ). Such a structural 
dif ference can strongl y af fect the (stability of) seismic response of 
the reservoir as fluid is injected. This is also reflected in the different 
evolution of seismological features in the studied cases. 

Fig. 10 shows the correlation coefficient of input features in 
each case. The CSM shows a perfect correlation with CVI for St1 
Helsinki, but only a relatively low correlation for the other two case 
studies. Figs 3 , 4 , 5 (b) show that although linear correlation of CSM 

and CVI is relati vel y high for the Cooper Basin and experimental 
data, the jumps in CSM (due to relati vel y large e vents) could not be 
explained only by the CVI. This is why the ML models in these cases 
benefit from other features to fill these gaps. This is also supported 
by calculating feature importance (Figs 6 –8 g). Only in the case 
of St1 Helsinki, even by adding features, the model increases the 
importance of CVI, although it tries to use other features. In two 
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ther cases, the reduction of CSM importance is compensated by
he other features, and the CVI importance remains similar to the
ther model (i.e. LSTM + Att + FC). 

Feature importance plots for Cooper Basin and experimental
ases (Figs 6 g, 8 g) show that SER, CMG and SI are among the
ost important features. As the best feature in the Cooper Basin

ase, SER shows the highest correlation with CSM (Fig. 10 ) and
ecreases before large events (Figs 6 e and f). CMG is the most
mportant feature in the experimental data, showing a high corre-
ation with CSM in this case (Fig. 10 ). It helps the ML model to
ncrease forecasting CSM b y CVI e ven if the observed CSM does
ot increase. SI does not show high correlation with CSM in any
f the cases, although ML models still employ its information to
orecast the output. 

Some limitations exist with regard to applying ML models for
arge earthquake forecasting in EGS. The main limitation is train-
ng data. Since we are limited to the data from one operational well
catalogue and injection rate), ML models could not be trained un-
ess enough data is obtained covering all possible situations. For
xample, in this study we use about 30–40 d of data to train the
odel. Although one may start training the model at the very first

njection steps (although they are noisy) and update (fine-tune or
etrain) it with new data, lacking enough intervals with deviation
rom the stable phase (e.g. by emerging large events) in the training
ata is another limiting point. It means that there should be some
eviations in the training data to help the model learn the logic of
uch forecasting. A potential solution to overcome this limitation
ould be data augmentation by numerical simulation (Gaucher et al.
015 ). By assuming different subsurface possibilities for each ESG,
umerical modelling could be applied to generate numerous injec-
ion scenarios and to prepare subsequent catalogues of seismicity.
ome specific characteristics such as delayed fault acti v ation, like

n Pohang EGS (Woo et al. 2019 ), may also be implemented by nu-
erical modelling (e.g. a digital twin). Such a huge training data set

ncluding various subsurf ace/f ault scenarios could then be used to
re-train a more robust ML model. Following the potentials shown
n this study, preparing such numerical training data would be a
uture step of this study. 

The other limitation would be the range of data. Due to the
umulative nature of the output value (CSM), the ML model needs
o extrapolate the next CSM, which is highly error prone for most

L algorithms. Ho wever , with the problem in this study (Fig. 1 ),
 e can ha ve a rough estimation of the maximum (end) values in the

uture. For example, based on the scenario of an injection operation,
he maximum cumulative fluid volume injected (CVI) is known.
sing this value, we could forecast the final CSM with respect to

he theoretical models (e.g. McGarr 2014 ). These final values then
efine the full range of variables and allow for data normalization.
uch a strategy enables us to predict new outputs in the test steps
regarding the values in training data), considering the increasing
lope of CSM with CVI. 

If the above limitations are properly considered, implementation
f the method used in this study is somewhat straightforward in real
perational wells. At each time step (i.e. every 30 min in this study),
he catalogue and injection rate are obtained from the operational
nit, input features are computed, training data are reproduced and
he ML model is either fine-tuned or retrained. The training time of
 new model is on the order of a few minutes in this study (CPU:
ore-i9, GPU: RTX-A2000, RAM: 32 GB), which is relati vel y

mall compared to the time step (of 30 min). In addition to all
perational data, the estimated CSM for the next step provides
aluable additional information for operational decision-makers on
ite to potentially adjust the injection schedule. 
 C O N C LU S I O N S  

n this study we have employed ML to forecast the evolution of
umulative seismic moment, and hence the seismic stability of a
eservoir with respect to fluid injection activities. The seismic and
njection parameters from two geothermal experiments and one lab-
ratory experiment involving fault reacti v ation due to fluid injection
ave been analysed and compared. Our results demonstrate the fea-
ibility of predicting CSM for subsequent injection phases. They
lso indicate that feature-rich models outperform simpler frame-
orks in cases with complex seismic responses, as observed for
ooper Basin and laboratory data. The most important features

n these cases are SER, CMG and SI. Ho wever , in en vironments
uch as St1 Helsinki, characterized by distributed seismicity with
eak clustering, additional features offered limited predictive ben-
fit. A comparison of the tested data sets points towards a strong
ole of earthquake clustering and localization causing differences
n seismic responses (i.e. stable versus unstable), here related to
he existence of prominent structural features (faults) in the case of
ooper Basin and experimental data. 
Key limitations of the presented forecasting approach include the

carcity of training data from operational wells, the extrapolation
emands of cumulative outputs and the underestimation of rapid
SM jumps linked to large induced earthquakes. Addressing these

imitations through synthetic data augmentation by numerical sim-
lation could improve model robustness and predictive accuracy. 

The findings highlight the necessity of incorporating real-time
onitoring, enhanced data features and adaptable ML frameworks

o ensure the safe and efficient operation of EGS projects. As
eothermal energy expands its role in sustainable energy systems,
uch predicti ve methodolo gies will be vital in mitigating seismic
isks, while optimizing energy extraction. 
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