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A B S T R A C T

Multi-domain research has become a popular topic in building science. However, studies in this area have not yet 
paid sufficient attention to the inadequacy of the dominant research practices entrenched in the conventional 
null hypothesis significance testing (NHST) when dealing with null effects. To address this problem, we first 
explain why null effects inherently exist in multi-domain research and argue for the importance of null effects. 
We then highlight numerous limitations of NHST that are particularly relevant to multi-domain research, for 
example the inability to accept null hypothesis or to refute false theories, the untested and thereby unfalsifiable 
alternative hypotheses, the underpowered results that mislead cumulative research and aggravate publication 
bias, the often ignored testing intentions, the fallacious black-and-white thinking, unintuitive interpretation and 
common misunderstanding, and the asymptotic behavior. Inspired by advances in methodology literature, we 
introduce Bayesian region of practical equivalence (ROPE) as an alternative approach that allows researchers to 
decide for, against, or remain undecided regarding whether an effect of research target is practically equivalent 
to a value of interest (e.g., the null value). The Bayesian ROPE approach has several advantages over NHST, 
namely the ability to establish practical absence of an effect and to refute false theories, better scalability, no 
requirement on minimum sample size, intuitive interpretations, and independence from testing intentions. We 
contend that this alternative approach can promote cumulative multi-domain research and mitigate publication 
bias.

1. Background

Building science has been paying increasing attention to multi- 
domain effects among thermal, visual, acoustic, and air quality do
mains. As extensive reviews (e.g., [1,2]) on previous studies have 
concluded that existing multi-domain results are often inconsistent or 
even contradictory, quality criteria have been proposed as guidelines for 
future multi-domain research [2]. While we recognize the contribution 
of these quality criteria to improved research practices, we highlight 
that they are still entrenched in the paradigm of conventional null hy
pothesis significance testing (NHST), which falls short when it comes to 
null results (i.e., non-significant results). This limitation seriously hin
ders the evaluation of null effects that are an inherent part of 
multi-domain research. In this paper, we understand null effects as 
either the absence of causal relationships or as practically negligible 
effects of a trivial size.

1.1. Reasons for the existence of null effects in multi-domain research

Multi-domain research inherently involves null effects for several 
reasons. First, although researchers have spent much effort in searching 
for significant multi-domain effects, numerous studies from past decades 
have yielded abundant null results (e.g., [3–6]). While some of these 
studies were underpowered and methodologically flawed (see reviews 
by Schweiker et al., [1] and Chinazzo et al., [2]), so that their null results 
are insufficient for supporting null effects, the repeated observations of 
null results by different researchers under diverse settings indicate the 
potential existence of null effects in multi-domain research.

Moreover, theories and solid arguments are still lacking regarding 
why considerable multi-domain effects would exist between any com
bination of multi-domain aspects [1]. One common assumption in the 
literature is that there are (substantial) multi-domain effects because 
humans have multiple senses that influence each other (e.g., [2,7–9]). 

* Corresponding author.
E-mail address: jpan@ukaachen.de (J. Pan). 

Contents lists available at ScienceDirect

Building and Environment

journal homepage: www.elsevier.com/locate/buildenv

https://doi.org/10.1016/j.buildenv.2025.113390
Received 18 November 2024; Received in revised form 20 June 2025; Accepted 4 July 2025  

Building and Environment 283 (2025) 113390 

Available online 5 July 2025 
0360-1323/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://orcid.org/0009-0007-2605-0515
https://orcid.org/0009-0007-2605-0515
https://orcid.org/0000-0003-0176-0434
https://orcid.org/0000-0003-0176-0434
https://orcid.org/0009-0006-8073-7572
https://orcid.org/0009-0006-8073-7572
https://orcid.org/0000-0003-3906-4688
https://orcid.org/0000-0003-3906-4688
mailto:jpan@ukaachen.de
www.sciencedirect.com/science/journal/03601323
https://www.elsevier.com/locate/buildenv
https://doi.org/10.1016/j.buildenv.2025.113390
https://doi.org/10.1016/j.buildenv.2025.113390
http://crossmark.crossref.org/dialog/?doi=10.1016/j.buildenv.2025.113390&domain=pdf
http://creativecommons.org/licenses/by/4.0/


While we agree this might be true for certain combinations of specific 
multi-domain aspects, we do not think this assumption applies to every 
combination among all possible aspects. Rather, based on common sense 
and daily experience, we consider null effects as more plausible for 
many multi-domain combinations. For example, the causal effect of 
changing CO2 from 100 ppm to 500 ppm—assuming other environ
mental factors are properly controlled for—should not have much 
practical influence on acoustic perception, nor should the causal effect 
of changing a room from 20 ◦C to 21 ◦C noticeably alter our perception 
of glare.

Furthermore, since the effect size often depends on the magnitude of 
the difference between conditions, once the difference is small enough, 
the effect size will inevitably become negligible. For example, assuming 
temperature does influence our hue perception (i.e., hue-heat- 
hypothesis; [7,10]), if the difference in manipulation between the 
thermal conditions is trivial, say 0.1 ◦C, it is plausible to expect no 
practical difference in the corresponding hue perception. While a dif
ference of 0.1 ◦C in this example seems obviously too trivial to be of 
common research interest, for many (understudied) domains, it can 
often be unclear whether the difference between conditions is large 
enough to produce any non-trivial effect sizes. Thus, we expect that at 
least some research will unconsciously employ conditions with a trivial 
difference and thereby unintentionally face null effects.

Finally, most empirical research involves an unlimited number of 
aspects that cannot be controlled or fully randomized (e.g., the char
acteristics of the equipment, the oxygen level during the experiment, or 
even the ranking in Bundesliga). Based on scientific evidence, common 
knowledge, and practical constraints, most of these aspects will be 
deemed as irrelevant (i.e., null effects) and thus intentionally omitted in 
research [11]. In this way, null effects are, even if implicitly, an inherent 
part of research.

1.2. Relevance of null effects (Why should we care about null effects?)

Although the existing research practices generally focus on rejecting 
null hypotheses and favor non-zero effects (i.e., publication bias; 
[12–15]), there are several reasons why we should also care about null 
effects. On the scientific side, knowing the non-existence of an effect is a 
gain in knowledge. Such knowledge helps us identify irrelevant factors, 
allowing future research to omit them and focus on (potentially) rele
vant aspects [11]. Also, evidence supporting null effects can challenge 
and potentially falsify hypotheses and theories that expect practically 
meaningful, non-trivial causal effects [16]. By ruling out incorrect 
theoretical predictions, null effects pave the way toward the discovery of 
meaningful effects in the sense of cumulative science. Furthermore, 
since science generally explores the unknown, there is no guarantee 
regarding whether the effects of research interest are null or not. Thus, it 
is important for researchers to explicitly consider the possibility of null 
effects and to be able to appropriately assess them. On the practical side, 
null effects point out irrelevant aspects to practitioners, thereby 
informing cost-benefit analysis and contributing to more efficient and 
effective designs. In this way, null effects facilitate resource allocation 
and promote sustainability.

1.3. Research gaps and goals of this article

To summarize, we contend that null effects are essential in multi- 
domain research and that knowledge of null effects is scientifically 
and practically meaningful. However, the dominant research practices 
entrenched in NHST have severe limitations, especially when dealing 
with null effects. Although advances in methodology have proposed 
alternative practices that overcome these limitations, their potential has 
remained almost untapped in previous multi-domain studies. Below, we 
first briefly explain NHST and address its limitations. We then introduce 
Bayesian region of practical equivalence as an alternative approach, 
explain its advantages over NHST, and discuss its limitations. Finally, we 

provide simulated examples to demonstrate application of this alterna
tive approach. All codes and statistical details related to the simulations 
of this article are presented in supplementary material.

2. Limitations of null hypothesis significance testing

2.1. Brief introduction to null hypothesis significance testing

In existing multi-domain research, the dominant statistical proced
ure follows the null hypothesis significance testing (NHST). This section 
briefly explains core concepts regarding NHST, based on the introduc
tion in [17,18].

The NHST procedure starts with a null hypothesis proposing a 
certain value for a quantity of interest (e.g., the effect of hue on thermal 
perception is zero), and an alternative hypothesis that is mutually 
exclusive with the null hypothesis (e.g., the effect of hue on thermal 
perception is NOT zero). Then data are collected and a test statistic 
summarizing the observed data is computed (e.g., a t-statistic in a t-test).

Next, imaginary samples are repeatedly sampled from a hypothetical 
population that conforms to the null hypothesis. Each imaginary sam
pling occurs in the same way as the sampling of observed data (i.e., the 
testing intentions are the same as observed data, more details below). 
For each imaginary sample, the same summary statistic is calculated.

The summary statistics from all imaginary samples form a sampling 
distribution (e.g., a t-distribution in a t-test). This sampling distribution 
tells us the probability of observing a summary statistic that is at least so 
extreme as the summary statistic of the data, assuming the entire sta
tistical model—including the null hypothesis, the data collection pro
cess, and all other assumptions about data generation—is correct [19]. 
This probability is known as the p-value.

When p is below a pre-defined threshold (i.e., the α-level, conven
tionally at 5 %), the results are said to be significant, and the null hy
pothesis is rejected. On the other hand, when p exceeds the threshold, 
the results are called null results and the null hypothesis cannot be 
rejected.

Statistical power is the probability of correctly rejecting a false null 
hypothesis and can be calculated as the probability of rejecting the null 
hypothesis under the assumption of a certain effect size [20]. A larger 
sample size increases statistical power, and a greater effect size also 
enhances power. If the true effect size is smaller than the assumed effect 
size, then the actual power given the true effect size will be lower than 
the calculated power based on assumed effect size. If the true effect size 
is zero, then the concept of power becomes meaningless, since it 
necessarily assumes a non-zero effect.

In NHST, two types of decision errors are differentiated [20]. A Type 
I (sometimes referred to as false-positive) error occurs when the null 
hypothesis is incorrectly rejected. Assuming statistical assumptions are 
met, the long-run probability of committing Type I errors is controlled 
by the NHST procedure at the α-level. A Type II (sometimes referred to 
as false-negative) error occurs when the null hypothesis is incorrectly 
retained even though a true effect exists. The long-run probability of 
committing Type II errors, given a specific effect size, can be calculated 
as one minus the corresponding statistical power. For example, with a 
power of 80 %, the generally accepted convention value [21], there is 
still a 20 % chance for false-negative errors in the long run. This means 
that, across many hypothetical studies with the same effect size and 
power, approximately 20 % would fail to detect the true effect.

2.2. Null results related limitations

NHST has several limitations when dealing with null results in multi- 
domain research. To start with, an absence of significant results does not 
necessarily mean an absence of effects. This fact is primarily due to 
sampling variability: observed data may deviate from the true effect size 
to an extent that does not allow the rejection of the null hypothesis, 
resulting in a false-negative error.
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Low statistical power, often resulting from small sample sizes, in
creases the risk of false-negative errors, making null results unreliable 
and potentially wasting research resources. Thus, NHST is not appro
priate for studies with very small samples [22–26]. Unfortunately, it is 
not uncommon for multi-domain studies to recruit few participants (e.g., 
less than 10 subjects [2]). Such small samples can yield statistical power 
well below the conventional 80 % threshold, especially when the ex
pected effect sizes are small to moderate, as is often the case in 
real-world occupant-centric research due to the inherent variability in 
human responses and complex environmental conditions. In such un
derpowered studies, null results can be unreliable because high 
false-negative error rates make it difficult to detect true effects. These 
null results are more likely to reflect noise than a genuine absence of 
effect.

Importantly, null results from studies with a large sample, although 
more reliable due to reduced false-negative risks, still do not confirm the 
null hypothesis, because the power calculation is always based on an a 
priori assumed effect size. If the true effect size is smaller than assumed, 
the corresponding power for the true effect size will be smaller, so that 
the possibility of erroneously keeping the null hypothesis becomes 
larger. With a small enough true effect size, a limited sample size will 
eventually end with insufficient power. As many researchers (e.g., 
[27–29]) have emphasized, conventional NHST can only fail to reject 
the null hypothesis, but never accept it; significance only provides evi
dence against the null hypothesis, but not in favor of it.

For decades, statistical literature (e.g., [18,30]) has repeatedly 
pointed out that the null-results-related limitations of NHST could 
mislead cumulative research. For example, suppose several underpow
ered studies with NHST have been independently conducted regarding 
the multi-domain effect of lighting on sound perception. For demon
stration purposes, let’s assume the true effect is of practically negligible 
size. In ideal situations, we should observe many null results. Unfortu
nately, the individual null results will be inconclusive because of the 
lack of power. Even worse, because small sample sizes have a greater 
sampling variability, studies with a very small sample size are more 
susceptible to producing unstable and potentially exaggerated effect size 
estimates—particularly when significant results are obtained (Fig. 1). 
Such exaggerated results can distort the interpretations of the effect and 
its implication. Considering the prevalent publication bias that favors 

significant results [12,13,31], such non-zero results will be published 
more easily than null results. Even if the majority of the literature re
ports no effect, a few significant results may already suffice to motivate 
common post-hoc misinterpretations such as that there are other factors 
influencing the effect/association or that something was wrong with the 
studies with null results. In this hypothetical example, these in
terpretations are obviously wrong since the puzzling state of literature is 
only caused by random variation and the limitation that NHST is not 
able to appropriately assess null effects.

On the other hand, now we assume some other underpowered 
studies applying NHST to investigate the multi-domain effect of lighting 
on visual comfort. This time, suppose the real effect size is moderate. 
Because of insufficient power, suppose half of the studies observed null 
results, while the other half found significant results. Again, such a 
mixed literature state might mislead future research into investigating 
potential moderating or confounding factors to explain the in
consistencies, while in reality, the significant findings may be false- 
positives driven by random variation and the limitations of NHST.

Despite these examples being fictional, in reality, the limitations of 
NHST on null results have led to a “vast graveyard of undead theories” 
[31]. Psychological theories can often end in a zombie state. That is, 
theories, even false ones, will often hang around until forgotten [32], 
because NHST does not provide an informative assessment of evidence 
for the null hypothesis nor allow for a practical refutation of false the
ories. Although theory development in multi-domain research still re
quires much effort, some hypotheses and predicted effects remain 
similarly in an “undead state” (e.g., the thermo-photometric perception 
hypothesis [33]) and continue consuming limited research resources.

The above-mentioned limitations are particularly relevant to multi- 
domain research as this field may observe null results quite often for 
several reasons. To start with, as mentioned in Section 1.1, previous 
studies have repeatedly observed numerous null results and at least 
some multi-domain effects are likely to be of practically neglectable size. 
Also, because of resource limitations and practical restrictions, it is 
common for multi-domain experiments to adopt a relatively small 
sample size, as a previous review [2] showed. The resulting insufficient 
power can often lead to null results even under the presence of real ef
fects. Furthermore, multi-domain interactions, one of the main research 
interests of some multi-domain studies, can be methodologically even 

Fig. 1. Density distributions for the mean and the standard deviation (sd) of simulated samples of three sample sizes. Sample sizes of 10, 50, and 200 were repeatedly 
randomly drawn from a subject pool of 2000. The distributions of means and sds are shown for the three sample sizes. This simulation shows that small samples have 
a wide density distribution, thereby a larger variance, than large samples. Thus, studies with small sample sizes, common in multi-domain research, are more likely to 
yield unstable and potentially exaggerated effect size estimates because of greater sampling variability. Such exaggerated results can aggravate publication bias.
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harder to detect than main effects. This is because statistical power for 
interactions is generally lower than for main effects [34,35], due to (a) 
the typically small standardized effect sizes observed in empirical 
research studying interactions (e.g., [36]), (b) the increased variability 
introduced by product terms used to model interactions [35], and (c) the 
compounded measurement error resulting from combining multiple 
variables [35]. Finally, the quality of existing research instruments can 
also restrict the detectable effect size. Based on review results [2], pre
vious multi-domain research often deployed measurements without any 
psychometric validation to assess psychological constructs, such as 
perception and comfort. Such measurements can be of questionable 
reliability and validity, thereby introducing abundant random variance, 
which can potentially overwhelm the systematic variance from true ef
fects. As a result, studies on effects below a certain size would be more 
likely non-significant.

2.3. Limitations not related to null results

Beyond the limitations related to null results, diverse statistical 
literature has also highlighted more general limitations of NHST [18,
37–42]. Based on our experience, these limitations have seldom been 
considered in multi-domain research. Below, we mention a few that we 
deem as most relevant for multi-domain research.

First, current analysis practices often ignore the fact that testing in
tentions influence significance [18]. As introduced earlier, NHST com
putes the p-value with imaginary sampling distributions that have the 
same testing intentions as observed data. With different testing in
tentions, the imaginary sampling distributions will differ, causing the 
p-values to change accordingly [18,43].

For example, suppose the testing intention is to test a certain hy
pothesis multiple times, while the p-values are obtained from standard 
statistical procedures that by default assume a one-time testing intention 
(e.g., ANOVA or linear regression). If these p-values are interpreted at 
their face value, the probability of committing at least one false-positive 
error (i.e., family-wise error rate) will be higher than the α-level ([40, 
41]; simulation example in Table 1). This issue is known as α-cumulation 
and can be addressed by adjusting the α-level (e.g., using Bonferroni 
correction [44]), often with the consequence of reduced power. Unfor
tunately, we often observe multi-domain studies ignoring their testing 
intentions and committing α-cumulation, thereby increasing the risk of 
false-positive errors. This issue is particularly relevant in multidomain 
research, where multiple dependent variables (e.g., satisfaction, com
fort, and sensation from thermal, acoustic, visual, and olfactory do
mains) across multiple measurement time points can often be analyzed 
simultaneously under the same overarching hypothesis (e.g., an inter
vention improves perception).

Another inherent problem of NHST is that the null hypothesis can be 
wrong from the beginning [42,45–47]. As introduced above, the null 
hypothesis expects the effect of interest to be EXACTLY equal to a 

specific value (say absolute zero). However, in reality, the effect of in
terest may likely have at least some tiny deviation (say 0.000000001 ◦C 
of room temperature) from the exact value (e.g., absolute 0 ◦C) as ex
pected by the null hypothesis. Then, a large enough sample will even
tually lead to detection of such non-zero deviation as the power 
increases with the sample size, and thereby reject the null hypothesis.

A related problem is that NHST generally focuses on rejecting the 
null hypothesis that represents a null effect, but does not directly test the 
alternative hypotheses that are of central research interests. When the 
null hypothesis is a priori wrong, as explained above, then any theory or 
hypothesis that expects some non-null effect, regardless of its correct
ness,1 will be automatically “confirmed” given large enough sample 
sizes. In this way, the alternative hypotheses are not falsifiable since 
they are never tested. Although these problems have been pointed out 
half a century ago [47], most multi-domain research still sets out to 
reject the null hypothesis, thereby suffering from the same issues.

NHST also induces fallacious black-and-white thinking which has 
been criticized repeatedly by numerous statisticians (e.g., [18,38,39]). 
Concretely, not few multi-domain researchers have focused their sta
tistical analyses on making a dichotomous decision between the null and 
alternative hypotheses (or between “non-significant” and “significant” 
results). As a result, they (mainly) cared about p-values while ignoring 
further information about the magnitude or the uncertainty of the esti
mated effect [18]. Such information is critical [48], because significant 
results may come from an extremely small effect that is practically 
irrelevant. Also, significant results can greatly differ regarding their 
range of uncertainty. In extreme cases, the estimation of a significant 
effect can range from trivial to enormous (Fig. 2). Problematically, 
although these very different magnitudes of the estimated effect are all 
plausible, they would have totally different interpretations for the effect 
of interest and practical implications. Thus, common analysis practices 
often complement NHST with effect sizes and confidence intervals. 
Specifically, the effect size indicates the magnitude of an effect, while 
the confidence interval (CI) tells us the uncertainty of the estimation. 

Table 1 
False-positive rates from a simulated example. Data were randomly generated 
with the same sample size for three dependent variables and one independent 
variable, which has no effect on any of the dependent variables. Linear re
gressions were conducted respectively on the dependent variables and the per
centage of significant results were calculated. The false-positive rates for one- 
time testing (i.e., the testing intention was to test only one dependent vari
able) were round the α-level = 0.05. The family-wise false-positive rates (i.e., the 
testing intention was to test three dependent variables at the same time; sig
nificant results were found on at least one of the three dependent variables) 
became about two times higher than the alpha level.

Dependent 
variable A

Dependent 
variable B

Dependent 
variable C

Family- 
wise

False- 
positive 
rates

.0488 .0473 .0489 .1382

Fig. 2. Two simulated 95 % confidence intervals. Both results are significant as 
both confidence intervals exclude zero. The upper estimate has a wide confi
dence interval and thus large uncertainty, while the lower estimate has a nar
row confidence interval and small uncertainty.

1 For example, a hypothesis that predicts a positive effect of size 1 would be 
wrong if the real effect is negative of size 3.
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The 95 % CI is conventionally used in multi-domain research and can be 
defined as the range of values with corresponding p-values not smaller 
than the α-level [49].

Furthermore, NHST is not intuitive and thus often misunderstood. 
Studies from diverse fields have repeatedly shown high rates of misun
derstanding of basic NHST concepts among researchers, including some 
with extensive statistical training and research experience (e.g., [37]). 
For example, researchers often incorrectly interpret p-values as the 
probability of the null hypothesis and 95 % CIs as containing the true 
value (assuming the statistical model is correct) with a 95 % probability 
(see previous section for their actual meaning). One reason behind 
common misinterpretations of NHST concepts is that NHST is designed 
to answer a question that is often not of interest to researchers. To be 
specific, the p-value, one core output from NHST, tells us the probability 
of observing the data, given that the null hypothesis is true (e.g., if a coin 
is fair, what is the probability of observing ten heads in a row). However, 
most researchers are more interested in the inverse probability question 
[20]: what is the probability of the null hypothesis, given the observed 
data (e.g., when we observe ten heads in a row, what is the probability 
that the coin is fair). These non-intuitive aspects of NHST make it 
difficult to properly apply it and lead to a multitude of diverse mis
interpretations, hindering cumulative multi-domain research.

3. Bayesian region of practical equivalence as alternative 
approach

In light of the numerous limitations of NHST, various alternative 
methods have been developed for better data analysis. Unfortunately, 
their potential remains largely unexplored in multi-domain research. 
Here, we aim to introduce the Bayesian region of practical equivalence 
(ROPE) as an alternative to NHST. Most importantly, this alternative 
approach allows null results to also be informative, so that false theories 
can be empirically refuted, thereby promoting cumulative science.

3.1. Bayesian analysis

Several publications have introduced Bayesian analysis and related 
methodological alternatives within the context of building science (e.g., 
[50–52]). As this article is not intended to serve as a comprehensive 
tutorial or systematic review of the broader Bayesian inference and its 
implementation, we deliberately focus our introduction on the essential 
elements necessary to support the arguments and applications presented 
in the subsequent sections. Our introduction is based on Kruschke [53]. 
We refer interested readers to other more extensive yet still accessible 
materials on beginner-level Bayesian analysis and open-source tools (e. 
g., [23,54]).

Bayesian analysis starts with a prior (Fig. 3), that is, a distribution 
representing our a priori belief regarding the respective credibility of 
candidate values for the target of interest (e.g., a coefficient in a 
regression model between illuminance and thermal sensation). Then 
based on data and statistical model, credibility is re-allocated across 
candidate values following Bayes’ rule [55] toward the values that are 
more consistent with the data. The resulting distribution of the candi
date values is the posterior (Fig. 3). A certain percentage of the values 
with the highest posterior credibility forms the highest density interval 
(HDI). For example, the values inside the 95 % HDI represent the 95 % 
most credible values in posterior. In Bayesian literature, the 95 % HDI is 
one commonly used approach to characterize the uncertainty of the 
estimation.2

3.2. Region of practical equivalence

As an alternative to NHST, Kruschke et al. [18] have proposed a 
procedure3 that allows assessing whether some specific value of interest 
(e.g., the null value representing a null effect between temperature and 
acoustic satisfaction, or a non-null value of 0.1 K representing a hy
pothesized effect of illuminance on the skin temperature) is among the 
most credible values in the posterior. Concretely, a ROPE is first estab
lished to serve as a decision threshold. The ROPE includes all values 
around the value of interest with a trivial difference that is considered 
too small to be meaningful. In other words, these values in the ROPE are 
regarded as practically equivalent to the value of interest.

The ROPE should be specified before data collection and trans
parently justified, for example in a pre-registration [2]. The justification 
could be based on previous results, background theories, and measure
ment precision in relation to the expected effect size [18]. Following the 
recommendations by Lakens et al. [16,59], ideally, a cost-benefit anal
ysis may be conducted to set the ROPE. The main target of the 
cost-benefit analysis is to clarify how a study with a high probability of 
rejecting or accepting the defined practical equivalent region will add 
value to the existing knowledge. It is natural that ROPE varies across 
studies, researchers, fields, and time as costs and benefits can be very 
subjective. Importantly, the ROPE should remain independent of the 
study’s own results. For example, researchers should not adjust the 
ROPE based on their own results to make sure that the ROPE will sup
port the decision they had hoped for. Also, the ROPE should be chosen to 
ensure that the statistical inferences address important scientific ques
tions. For instance, if the ROPE range is too wide (say equals 100 as in 
Cohen’s d), it would likely be meaningless even if a practical equiva
lence could be established.

Admittedly, under the current research status, substantive informa
tion regarding previous results, background theories, and measurement 
precision can be lacking for many multi-domain research questions, so 
that it will be hard to develop sound justifications and cost-benefit 
analysis for setting up the ROPE. In such situations, researchers may 
follow the suggestion by Kruschke et al. [18] and set the default ROPE as 
±0.1 standard deviation of a parameter, which is analogous to a negli
gible effect size according to Cohen [60].

After the ROPE is determined, it is then compared with the 95 % HDI 
for making decisions. There are three possible outcomes. If the ROPE 
entirely includes the 95 % HDI of the posterior (Fig. 4 “Include”), then 
the 95 % most credible values are deemed as practically equivalent to 
the value of interest. Thus, the value of interest, which could also 
represent a null effect, will be accepted. On the other hand, if the ROPE 
entirely excludes the 95 % HDI (Fig. 4 “Exclude”), the value of interest 
will be rejected as the 95 % most credible values are not equivalent to 
the value of interest. If the ROPE partially overlaps with the 95 % HDI 
(Fig. 4 “Overlap”), then the result from the current data is inconclusive 
and no decision is made. In this case, more data are required to narrow 
down the 95 % HDI until a decision can eventually be reached.

It is important to note that this Bayesian ROPE procedure can only 
confirm the practical absence of effects that are more extreme than the 
trivially small difference as specified by the decision threshold of the 
ROPE. In other words, the Bayesian ROPE procedure cannot prove that 
an effect size is exactly zero. In fact, as statistical literature has pointed 
out (e.g., [46,61]), no probabilistic methods can ever prove that an ef
fect is absent or present, because there is always random variation, so 
that rare events can happen.

2 There are various other types of credible intervals. This article focuses on 
the 95% HDI following the convention in the classic ROPE approach by 
Kruschke & Liddell [18].

3 While various alternatives to NHST exist, such Bayesian hypothesis testing, 
alternative ROPE-based approaches, and frequentist equivalence testing, we 
focus on Kruschke et al.’s [18,56] classic Bayesian ROPE approach due to its 
interpretability, accessibility, and alignment with the inferential needs of our 
field. Interested readers may refer to broader methodological overviews (e.g., 
[57,58]).
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3.3. Advantages over conventional approach

The Bayesian ROPE procedure has several advantages over NHST. 
Above all, it allows null results to be informative. As mentioned in 
previous sections, null results from the conventional NHST are incon
clusive and do not provide evidence in favor of the null hypothesis. With 
Bayesian ROPE, researchers will be able to establish practical absence of 
an effect based on null results. In this way, alternative hypotheses that 
predict a presence of effect become falsifiable, thereby also refuting 
incorrect theories behind the alternative hypotheses. As such, alterna
tive hypotheses will not be automatically confirmed just because the 
null hypothesis was wrong in the first place due to tiny deviation from 
the absolute null (cf․ Section 2.3.), and theories will not easily end up in 
a zombie state (cf․ Section 2.2.).

In comparison to NHST, Bayesian ROPE will better promote cumu
lative research. For example, Bayesian ROPE does not aim at finding 
significant results as the case with NHST; researchers can now make 
equally important contributions with null results. In this way, the above- 
mentioned black-and-white thinking regarding significance and publi
cation bias [12–15] will be mitigated. Also, since this alternative 

procedure is based on the Bayesian approach, it can incorporate existing 
knowledge, such as previous data, theories, and expert expectations, in 
the analysis in the form of a prior. In other words, Bayesian results from 
previous studies (the posterior) can be incorporated into the analysis of 
later studies (as prior), known as posterior passing [62]. To formulate a 
prior, original data are not necessary once the posterior is available. 
Importantly, as the cumulative sample size increases, Bayesian ROPE 
will eventually converge to the correct decision [14]. In this way, 
research with Bayesian ROPE is more scalable and could be thought of a 
relay race.

In comparison, separate NHST results typically cannot be reused in 
the analysis of another subsequent study if the underlying data are not 
shared, which is often the case in the existing multi-domain studies.4

Additionally, even when the data are available, it can be challenging to 
directly use these data in the subsequent NHST analysis (e.g., because of 

Fig. 3. Simulated example of prior and posterior distributions of credibility (i.e., probability density) for a simulated regression coefficient. The prior follows a 
uniform distribution. The 95 % highest density interval (HDI) is the green area under the posterior distribution.

Fig. 4. Illustrations of three possible outcomes when comparing a region of practical equivalence (ROPE; the rectangular region in blue) with a highest density 
interval (HDI; the green area under the posterior curve). To visually distinguish the outcomes, each panel depicts a separate illustrative scenario with a different 
ROPE and posterior distribution. The left panel shows a ROPE that entirely excludes the HDI, supporting a decision to reject the value of interest lying within the 
ROPE. The middle panel shows a ROPE that partially overlaps with the HDI, indicating inconclusive results. The right panel shows a ROPE that entirely includes the 
HDI, supporting a decision to accept the value of interest.

4 Meanwhile, we acknowledge that we can expect to see more data available 
in the future because of various attempts to improve the situation, such as open 
data practices and funding requirements.
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different experiment designs or data structure). That is, conventional 
NHST calculations often need to start from scratch and its results cannot 
be directly reused in future analysis. Suppose we are to perform a con
ventional ANOVA, access to previous data is necessary to combine it 
with our own and conduct the analysis on the integrated dataset. If the 
previous data were not available or the combination with our own data 
is not possible, our ANOVA results would rely solely on our own data. 
Such limitations lead to a waste of research resources. Even worse, 
random variation and lack of power often lead to an unclear state of 
literature, when part of the results report significant results, while the 
others do not. Despite a large number of studies, conventional NHST 
cannot clarify inconsistent results and often leads to misleading in
terpretations as mentioned in previous section. Moreover, as argued 
above, NHST can often incorrectly confirm any alternative hypothesis 
that expects any non-null effect. This issue arises because the null hy
pothesis can often be a priori wrong. As previously discussed, the null 
hypothesis expects the quantity of interest to be of an exact value (i.e., 
the procedure rejects a point-wise hypothesis), but in real world, tiny 
deviations from this exact value likely exist [42,45,46]. As a result, a 
large enough sample will necessarily detect such tiny deviations and 
lead to the rejection of the null hypothesis, thereby automatically 
“confirming” any alternative hypothesis regardless of its correctness.

Furthermore, Bayesian ROPE does not require a minimum sample 
size [14,38,45]. One practical issue in multi-domain research is that 
large (experimental) samples are often not feasible or available. This 
limitation poses a problem for NHST, because many common NHST 
procedures, such as linear mixed models, χ² tests, and Z-tests, are 
asymptotic, meaning they rely on large-sample approximations to 
ensure valid results [25,26]. When sample sizes are small, NHST results 
can be questionable due to their dependence on large-sample 
approximations.

In contrast, Bayesian ROPE does not rely on asymptotic approxi
mations and provides valid inference at any sample size (even at n = 0), 
provided the prior and model assumptions are appropriately specified 
and hold [23,24]. This flexibility in sample size makes Bayesian ROPE 
especially suitable for studies with limited samples, a common scenario 
in multi-domain research.

Additionally, Bayesian ROPE does not involve imaginary sampling 
distributions. As mentioned in the brief introduction to NHST, p-values 
depend on the imaginary sampling distributions that are directly influ
enced by the testing intentions. Therefore, with different testing in
tentions, identical data can result in totally different p-values and 
corresponding CIs. Based on our experience, much multi-domain 
research did not consider these distributions, so that the significance 
would be (unintentionally) biased. In worse cases, testing intentions can 
easily be intentionally misreported to reach significance in the sense of 
p-hacking (e.g., [63]) and questionable research practices (e.g., 
[63–65]). For example, if multiple tests are conducted but only the 
significant tests are reported, the actual p-values and confidence in
tervals will be larger than reported because of the discrepant testing 
intentions. Such unethical practices can be individually hard to detect 
and bias the literature. In comparison, the issues related to testing in
tentions are mitigated by Bayesian ROPE, since it does not rely on 
imaginary sampling distributions to calculate significance, so that its 
results are invariant to testing intentions. Moreover, since Bayesian 
ROPE makes null findings more interpretable and valuable, it reduces 
the pressure to obtain “significant” outcomes, thereby decreasing the 
incentive for selective reporting. That said, it is important to note that 
Bayesian ROPE is not entirely immune to researchers’ intentions to 
report only “interesting” results or those that align with their prior be
liefs or theoretical preferences.

A further important advantage of Bayesian ROPE is its intuitiveness 
of basic concepts. As mentioned in Section 2.3., NHST basic concepts are 
not intuitive and thereby often misinterpreted because it targets the 
probability of observing the data, given that the null hypothesis is true. 
In contrast, Bayesian ROPE directly answers the inverse probability 

question (i.e., the probability of the null hypothesis, given the observed 
data), thus its results have a more intuitive interpretation. The posterior 
probability can be interpreted as the probabilities of parameter values. 
The 95 % HDI contains the true value (assuming the statistical model is 
correct) with a 95 % probability. When researchers incorrectly under
stand p-values as the probability of the null hypothesis and 95 % CIs as 
containing the true value with a 95 % probability (cf․ Section 2.3.), they 
are misinterpreting the unintuitive p-values and CIs as if they were 
Bayesian posterior probability and HDI.

3.4. Limitations of the alternative approach

The Bayesian ROPE approach, like any statistical approach, has 
limitations—particularly in the context of complex multi-domain 
research. A key limitation involves the sensitivity to prior specifica
tion. Prior distributions can critically shape the posterior, especially in 
small-sample contexts where data alone may be insufficient to override 
prior beliefs. Overly informative or poorly calibrated priors can bias 
results or impede convergence toward the true parameter value.

Moreover, in multi-domain research, specifying appropriate priors 
can be particularly challenging. Domains may differ in measurement 
scales, variability, and underlying mechanisms, making it non-trivial to 
formulate priors that are both principled and context-sensitive. There is 
also no universal standard for what constitutes an “appropriate” prior, 
and the subjectivity inherent in this step may raise concerns about bias 
or replicability. Rather than prescribing a specific approach, we 
emphasize the importance of domain expertise and recommend con
ducting prior predictive checks and sensitivity analyses to evaluate the 
robustness of conclusions under different plausible priors (cf․ [23,53,
66]).

The Bayesian approach also relies on the assumption that the sta
tistical model adequately represents the underlying data-generating 
process. If the model is misspecified—for example, due to an inappro
priate likelihood function, unaccounted structural dependencies, or 
violated assumptions—the resulting inferences may be misleading or 
invalid. In the context of real-world multidomain research, such mis
specifications are especially plausible, given the inherent complexity, 
heterogeneity, and interdependencies across domains. These points 
highlight the critical importance of thorough model checking (cf․ [23,
67,68]), such as posterior predictive checks and convergence di
agnostics, to assess model fit and detect potential discrepancies between 
models and observed data.

From a practical standpoint, Bayesian analyses often require more 
computational resources than common NHST procedures. Estimating 
posterior distributions for large datasets or in complex mod
els—particularly with hierarchical structures that are common in multi- 
domain research—typically involves Markov Chain Monte Carlo or 
other iterative sampling techniques (cf․ [23,53]). These methods can be 
computationally intensive and require careful monitoring to ensure 
convergence to prevent unstable or misleading inference. While ad
vances in computational tools have made Bayesian methods more 
accessible, they still demand technical proficiency and interpretive 
caution, which may pose a barrier for multi-domain and building science 
researchers who are unfamiliar with Bayesian statistics. Targeted 
training and clearer guidance may help mitigate these challenges. For 
readers seeking further discussion on limitations and best practices, we 
refer to [23,53,54,69] for additional resources on Bayesian workflow.
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4. Simulated application example

In this section, the application of Bayesian ROPE procedure will be 
demonstrated with simulated examples.5 To investigate the multi- 
domain effect of office thermal and visual conditions on body temper
ature,6 a 2 × 2 between-subjects experiment was simulated with 100 
subjects. The independent variables were the thermal condition (un
comfortable vs. normal) and the visual condition (uncomfortable vs. 
normal). Each subject was randomly assigned to one of the four resulting 
conditions. The dependent variable was the standardized mean skin 
temperature. The true effect of changing the thermal condition from 
uncomfortable to normal on standardized mean skin temperature was 
simulated to be 0.8, while the effect of changing the visual condition was 
set to 0.

Bayesian ROPE procedure was conducted with a Bayesian multiple 
regression of thermal and visual conditions on skin temperature. 95 % 
HDIs were respectively calculated for the posterior thermal and visual 
effects. For demonstration purposes, the ROPE was set to be an interval 
of ±0.3 around the zero (which represents a null effect), that is, 0.3 of 
the standard deviation of the standardized skin temperature. This 
equates to a small effect size following Cohen [60] .7

For the thermal condition, the analysis showed that the ROPE 
entirely excludes the 95 % HDI (Fig. 5 left). Thus, we reject the null 
effect and conclude a thermal effect on body temperature. For the visual 
condition, the ROPE partially overlaps with the 95 % HDI (Fig. 5 mid
dle), indicating inconclusive results regarding the visual effect.

To narrow down the 95 % HDIs until a decision can be reached 
regarding the visual effect, a second experiment with the same setup was 
replicated with another 150 subjects. By applying posterior passing (i.e., 
using the posterior from the first experiment as the prior for the second 
analysis), the new analysis was able to incorporate the results from the 
first experiment, even without directly using the data from the first 
experiment (suppose they were somehow unavailable).

The second analysis revealed a ROPE that fully overlaps with the 95 
% HDI for the visual condition (Fig. 5 right). Thus, we deem the visual 
effect on body temperature as practically equivalent to zero (i.e., 
accepting the null effect).

5. Conclusion

This article addressed a critical deficit underlying multi-domain 
research in building science, namely the inadequacy of the dominant 
research practices entrenched in the conventional null hypothesis sig
nificance testing (NHST) when dealing with null effects. To this end, we 
first explained why null effects are inherently involved in multi-domain 
research and provided several arguments regarding the importance of 
null effects. We then highlighted numerous limitations of NHST that are 
particularly relevant to multi-domain research yet have not received 
enough attention, including the inability to accept null hypothesis or to 
refute false theories, the untested and thereby unfalsifiable alternative 
hypotheses, the underpowered results that mislead cumulative research 
and aggravate publication bias, the often ignored testing intentions that 
bias significance, the fallacious black-and-white thinking, unintuitive 

interpretation and common misunderstanding, and the asymptotic 
behavior.

Inspired by advances in methodology literature, we introduce the 
untapped potential of Bayesian region of practical equivalence (ROPE) 
as an alternative approach that allows more appropriate statistical 
inference. By comparing a ROPE with the highest density interval (HDI) 
of a Bayesian posterior distribution, researchers will be able to decide 
for, against, or remain undecided regarding whether an effect of 
research target is practically equivalent to a certain value of interest (e. 
g., the null value). The Bayesian ROPE approach has several advantages 
over NHST, namely the ability to establish practical absence of an effect 
and to refute false theories, better scalability (e.g., via posterior pass
ing), no requirement on minimum sample size, intuitive interpretations, 
and independence from testing intentions. As such, we contend that this 
alternative approach can promote cumulative multi-domain research 
and mitigate publication bias.

We acknowledge that the Bayesian ROPE approach has its own 
limitations, such as computational complexity, sensitivity to prior as
sumptions, and necessity of prior predictive checks and model di
agnostics. In addition, a considerably large sample size, often at least in 
the order of over hundred or thousand, can be necessary for sufficiently 
narrowing down the HDI until a decision can be reached. Given these 
limitations, we concede that the Bayesian ROPE approach will not solve 
all problems that are entrenched in the dominant research practices. 
Rather, we believe that adopting this alternative approach will be an 
initial but crucial step toward appropriate evaluation of null effects and 
cumulative multi-domain research. Investigating and understanding 
null effects is crucial for advancing cumulative research, as it enables 
researchers to build upon existing results, both positive and negative, 
and honestly report their own findings. This alternative approach will 
promote a more comprehensive understanding of the phenomena under 
investigation and will help to address inconsistencies in the current 
literature.

Note that highlighting suboptimal research practices in the field can 
also reveal remarkable opportunities for future research. The discussed 
deficits of NHST and advantages of the Bayesian ROPE procedure were 
also meant to raise the awareness of null effects and methodology in the 
relevant research community and to encourage reflections and im
provements on our established research practices.

More broadly, although we mainly addressed multi-domain 
research, our criticism on the deficits and recommendations can also 
benefit other research fields, for example, with regard to occupancy, 
occupant behavior and single-domain perception in the built environ
ment, since challenges they face are often similar to those in multi- 
domain research. As such, improved methodology with the Bayesian 
ROPE procedure is likely to enhance not only multi-domain research, 
but also general research efforts in occupant-centric building design and 
operation.
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