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 A B S T R A C T

This study presents a robust genetic algorithm (GA)-based framework for calibrating crystal plasticity (CP) 
model parameters in dual-phase (DP) steels using multiscale mechanical testing. To overcome challenges 
associated with phase-specific parameter identification and temperature dependence, a two-stage calibration 
strategy is developed. In the first stage, nanoindentation tests at multiple temperatures are employed to 
determine the CP parameters of ferrite by matching simulated and experimental force–displacement curves. 
In the second stage, uniaxial tensile data are used to calibrate martensite parameters via representative 
volume elements (RVEs). The GA efficiently explores the high-dimensional parameter space and ensures 
fast convergence while maintaining physical consistency. Comparative results show that the GA-calibrated 
parameters outperform those obtained by conventional trial-and-error methods, with better alignment to 
experimental data. The proposed framework enables accurate and scalable CP calibration across different 
temperatures and offers broad applicability to multiscale modeling and alloy design.
1. Introduction

Dual-phase (DP) steel is one of the most widely utilized advanced 
high-strength steel (AHSS) in the automotive industry due to its extraor-
dinary balance of high strength, good formability, and lightweight [1]. 
This unique balance of mechanical properties arises from its distinct 
microstructure, consisting of a soft ferritic matrix with hard martensitic 
islands dispersed throughout [2]. Extensive microscopic and macro-
scopic studies have been conducted on various DP steels to explore the 
relationship between their mechanical properties and microstructures, 
such as those conducted by Liu et al. [3], Münstermann et al. [4,5], 
Han et al. [6], González-Zapatero et al. [7], Costa et al. [8], etc.

These studies employ a wide range of experimental techniques, 
including macroscopic uniaxial and multiaxial tensile and compres-
sion tests, as well as in-situ tensile and bending tests, to character-
ize mechanical behavior and failure mechanisms. Failure analysis is 
performed by capturing plastic deformation using scanning electron 
microscopy (SEM) during in-situ tests, examining post-deformation 
microstructural changes via SEM and electron backscatter diffraction 
(EBSD), and employing cross-scale numerical simulations to identify 
critical stress states.

To accurately capture the relationships between the microstructures 
and mechanical properties, multiple material constitutive models have 
also been developed [9]. At the atomic scale (0.1–1 nm), Density 
Functional Theory (DFT) provides quantum-mechanical descriptions 
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of atomic and electronic interactions, accurately determining intrinsic 
material parameters, such as elastic constants, stacking fault energies, 
and dislocation core structures [10]. At the nanometer to sub-micron 
scale (1 nm–1 μm), Molecular Dynamics (MD) simulations utilize em-
pirical or ab-initio-derived potentials to explore atomic interactions 
and mechanisms of deformation, including dislocation nucleation and 
propagation [11]. For the sub-micron to micron scale (0.1–10 μm), 
Discrete Dislocation Dynamics (DDD) explicitly captures the evolution 
and interactions of discrete dislocation lines, providing detailed insights 
into plastic deformation and strain hardening [12]. At the micron 
scale (1–10 μm), Dislocation Density-based constitutive models offer a 
continuum-based framework that describes plastic deformation through 
evolving dislocation densities, enabling efficient prediction of material 
hardening behaviors [13]. At the polycrystalline grain scale (typically 
above 10 μm), Crystal Plasticity (CP) models incorporate crystallo-
graphic slip systems, grain orientations, and phase interactions explic-
itly, thus directly bridging the microstructural deformation processes 
with macroscopic mechanical properties. Among these approaches, CP 
models stand out due to their unique capability to integrate microscale 
physical mechanisms and crystallographic anisotropy into larger-scale 
predictive frameworks, making them particularly suitable for mul-
tiscale investigations aimed at linking microstructural attributes di-
rectly to engineering-scale mechanical performance [14]. By linking 
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microstructural deformation mechanisms to macroscopic material be-
havior, CP models not only enhance the accuracy of macroscopic 
constitutive models by integrating physically informed parameters and 
reducing empirical assumptions [15] but also serve as a critical ap-
proach for investigating fundamental mechanical behavior mechanisms 
such as fracture [16], damage [17], creep [18], fatigue [19], and 
strain localization [20]. This is particularly critical for advanced en-
gineering materials, where microstructural features significantly influ-
ence mechanical properties such as strength, ductility, and damage. 
These models enable a deeper understanding of failure mechanisms 
by simulating dislocation motion, grain boundary interactions, and 
phase transformations, thereby improving the predictive capability of 
large-scale mechanical simulations and guiding the design of advanced 
structural materials.

The predictive accuracy of crystal plasticity (CP) models hinges on 
the precise calibration of model parameters — such as the critical 
resolved shear stress (CRSS), hardening coefficients, and slip system 
interaction matrices — that govern slip activation, strain hardening, 
and phase interactions. These parameters establish the link between 
microscale deformation mechanisms and macroscale mechanical re-
sponses. However, direct experimental measurement of these param-
eters is infeasible, as they are internal variables that do not correspond 
to any directly observable quantity [14]. As a result, CP parameter cali-
bration must be formulated as an inverse problem, typically addressed 
using an integrated experimental–numerical approach, in which 
high-resolution experimental data (e.g., stress–strain curves, full–field 
strain maps, or local slip activity) is first acquired and then used 
to iteratively update model parameters until the simulated response 
matches the experimental observation.

Furthermore, the constitutive formulations underlying CP models 
are inherently complex and nonlinear, leading to strong coupling be-
tween model parameters [21], making parameter calibration of the CP 
model parameters a particularly challenging task requiring advanced 
optimization strategies. For DP steels, the CP model parameters cali-
bration is further complicated by the inherent heterogeneity between 
ferrite and martensite. The softer Ferrite matrix undergoes significant 
plastic deformation, whereas martensite is harder and primarily elastic 
at low stress levels [22]. This difference induces complex phase inter-
actions, including stress redistribution, load transfer, and strain parti-
tioning, which must be accurately captured. Furthermore, differences 
in experimental scale pose additional challenges. While microscopic 
mechanical tests such as nanoindentation and micropillar compression 
provide phase–specific properties, isolating the martensitic phase re-
mains difficult due to its fine scale and surrounding matrix interference.

To address the challenges in CP model parameter calibration, var-
ious integrated experimental–numerical approaches have been devel-
oped. Several experimental–numerical studies have aimed to calibrate 
CP parameters by leveraging micromechanical tests and image-based 
strain mapping. Tasan et al. [23] combined in-situ SEM tensile testing, 
EBSD, and nanoindentation to investigate phase-specific mechanical 
responses and local strain partitioning. They employed the spectral CP 
solver DAMASK to simulate nanoindentation on ferrite grains and used 
a Nelder–Mead algorithm to inversely calibrate the critical resolved 
shear stress (CRSS) of ferrite, based on matching load–displacement 
curves and pile-up morphologies; martensite parameters were esti-
mated by scaling relative to ferrite based on NI-test derived hard-
ness ratios, then refined using macroscopic stress–strain data. Tian 
et al. [24] applied micropillar compression to ferrite and martensite 
to extract orientation-dependent CRSS values directly from measured 
yield stresses and Schmid factors, which were then input into the CP 
model without further optimization. Vermeij et al. [25] developed 
a quasi-2D testing framework using ultrathin tensile specimens with 
front-rear EBSD and SEM-DIC to achieve full-field strain measure-
ments with minimal subsurface uncertainty; The CP parameters were 
calibrated inversely by numerical simulations incorporated experimen-
tally measured microstructures and boundary conditions. Hestroffer 
2 
et al. [26] employed SEM-DIC to analyze strain localization in DP 
steels, comparing simulations based on both columnar and real 3D 
microstructures using fixed parameter sets. Diehl et al. [27] integrated 
3D EBSD with CP simulations to study subsurface effects on surface slip 
behavior, using literature-sourced material parameters. 

While CP parameter calibration has been widely applied at room 
temperature, extending this process to elevated temperatures is essen-
tial for accurately modeling the fracture behavior of DP steels at high 
temperatures. High temperatures can induce substantial microstruc-
tural changes, such as martensite tempering and ferrite softening, 
which directly influence fracture behavior and deformation mecha-
nisms. Properly capturing these effects in CP models requires dedicated 
high-temperature calibration, which remains largely underexplored. In-
corporating temperature-sensitive CP parameters enhances the model’s 
predictive capability in hot-forming processes, enabling better assess-
ment of formability, failure, and performance at high temperatures [28,
29]. However, CP parameters identification at elevated temperatures 
is further complicated due to the potential effect of temperature on 
the microstructures. This necessitates the use of robust optimization 
strategies for CP parameter calibration. While Tasan et al. have ac-
knowledged the importance of optimization techniques in the calibra-
tion of crystal plasticity (CP) models, most existing studies place little 
emphasis on the choice and design of the optimization strategy itself. 
However, in complex material systems such as dual-phase steels, effi-
cient and robust optimization is an essential part of model calibration, 
not just a computational convenience. Traditionally, researchers have 
relied on iterative trial-and-error methods, where parameters are man-
ually adjusted to match experimental data. This approach is not only 
highly time-consuming but also lacks a rigorous evaluation framework, 
making it impractical for complex models. To improve the reliability 
and reproducibility of parameter calibration, direct-inverse methods 
have been introduced, which formulate CP parameter identification 
as a root-finding or least-squares problem that seeks to minimize the 
discrepancy between simulated and experimental results analytically 
or numerically [30]. However, the strong nonlinearity and coupling 
of CP parameters, along with the inherent sensitivity to noise, often 
render these methods ill-posed, leading to unstable or non-physical 
solutions. With advances in machine learning, neural networks, partic-
ularly deep learning models, have been explored for CP parameter iden-
tification [21]. While these models can accelerate parameter estimation 
once trained, they require extensive datasets, suffer from generalization 
issues, and lack interpretability. To address these limitations, non-
gradient optimization techniques such as Bayesian Optimization (BO), 
Particle Swarm Optimization (PSO), and Genetic Algorithm (GA) have 
been employed [31,32]. Among these, GA, an evolutionary algorithm 
inspired by natural selection, has proven particularly effective for 
complex optimization problems through its mechanisms of selection, 
crossover, and mutation [33]. GA has great potential for CP model 
parameter calibration in dual-phase materials due to its superior global 
search capabilities over BO and PSO. Unlike BO, which struggles with 
high-dimensional nonlinear spaces, GA efficiently explores complex 
parameter interactions without requiring smooth response surfaces. 
Compared to PSO, GA enhances search diversity through crossover and 
mutation, reducing the risk of premature convergence. Additionally, 
GA’s high parallelizability makes it more computationally efficient than 
BO, which is limited by the costly Gaussian Process Regression, and 
PSO, which requires careful tuning of inertia and learning factors. 
These advantages establish GA as a robust and scalable approach for 
CP parameter calibration in DP steels [34,35].

This study introduces a GA-based calibration framework designed to 
simultaneously optimize CP model parameters for each phase in dual-
phase materials, significantly enhancing calibration efficiency. The 
framework seamlessly integrates with numerical simulation platforms 
such as ABAQUS and DAMASK, enabling automated and robust pa-
rameter optimization. By leveraging GA’s global search capabilities, it 
efficiently explores the high-dimensional CP parameter space, reducing 
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Fig. 1. (a) Sample geometry for NI tests. (b) Loading function of NI tests.
Table 1
Chemical composition of the investigated DP780 [unit: %].
 C Si Mn P S Cr Al N Fe  
 0.17 0.4 2.05 0.015 0.005 0.2 0.75 0.003 Balance 

both computational cost and the time required for parameter tuning. 
Optimal parameters can be identified within days or even hours — 
substantially faster than traditional trial-and-error methods — while 
delivering simulation results that closely align with experimental ob-
servations, thereby improving the predictive accuracy of CP models. 
To demonstrate the improvement in accuracy enabled by the GA 
framework, its calibrated parameters were compared against those 
obtained using a conventional trial-and-error(T&E) approach reported 
in previous work [36]. Optimal parameters can be identified within 
days or even hours—substantially faster than traditional trial-and-error 
methods—while delivering simulation results that closely align with 
experimental observations, thereby improving the predictive accuracy 
of CP models.

2. Materials and experiments

2.1. Materials

2.1.1. DP780 steel
DP780 steel is a dual-phase steel with body-centered cubic(BCC) 

ferrite and martensite. In this study, the DP780 steel was hot rolled 
with the intermediate quenching at 780 ◦C for 10 min. The phase 
fractions are 82% martensite and 18% ferrite. The average grain sizes 
are 7.2 μm for martensite and 2.0 μm for ferrite, respectively. The 
chemical compositions are listed in Table  1.

The sample for the NI tests across different temperatures is an 
sosceles right triangle with two legs of 2 cm and 1.5 mm(Fig.  1(a)). 
The sample was at first grinded and polished after being embedded 
into easy-crack resin and etched with Nital (Nitrate alcohol solution). 
Then an chosen area of 200 μm × 200 μm was marked with micro 
hardness indents using 10 N after final polishing. Before the EBSD test, 
the sample was polished again with a finest 0.04 μm suspension to 
remove the etched surface. After the EBSD experiment, the sample was 
repolished to eliminate the carbonized layer, and then lightly etched to 
reveal the microstructure for nanoindentation analysis.

2.2. Experimental procedures

2.2.1. Nanoindentation test
For accurate calibration of single ferrite phase, the Nanoindenta-

tion(NI) tests were performed to DP780 steel from room temperature 
to high temperature. The NI tests were carried out with a Hysitron 
3 
Table 2
Euler angles and the grain size of the selected grains.
 Grain Euler angle 1 (◦) Euler angle 2 (◦) Euler angle 3 (◦) Grain size (μm) 
 RT 308.0 91.0 31.9 11.43  
 100 ◦C 47.3 51.4 262.7 18.84  
 200 ◦C 227.5 113.2 95.5 17.15  
 300 ◦C 259.9 98.1 101.5 12.9  

Triboindenter TI-980 instrument equipped with the xSol heating stage 
and a scanning probe microscopy (SPM). The NI tests tip is a specialized 
17 mm rigid Berkovich tip, which is suitable for high-temperature mea-
surements. Measurements were conducted using a specialized 17 mm 
rigid Berkovich tip, the only tip suitable for high-temperature nanoin-
dentation (NI) tests. To ensure thermal stability, a thermal insulating 
tube connects the diamond Berkovich tip to a standard one-dimensional 
nanoscale dynamic mechanical analysis (nanoDMA) transducer, as 
shown in Fig.  2(a). The tip calibration to define the geometry function 
of the indenter is performed on a reference fused quartz sample using 
a partial unloading load function(Fig.  1(b)). The transducer is enclosed 
within a specially designed cylinder optimized for high-temperature 
measurements. The heating stage setup, illustrated in Fig.  2(b), in-
corporates two heating rings (top and bottom) to achieve uniform 
temperature distribution across the sample. A thermocouple positioned 
nearby enables precise temperature regulation via a proportional–
integral–derivative (PID) control system. Additionally, a gas supply 
system introduces a protective atmosphere of 95% 𝑁2 and 5% 𝐻2, en-
suring a chemically stable environment during heating. During testing, 
the Berkovich tip is lowered through a small access hole in the heating 
stage to establish contact with the sample. The Euler angles and sizes of 
the selected grains are summarized in Table  2 . The inverse pole figure 
(IPF) based on the EBSD measurement results is shown in Fig.  3.

2.2.2. Uniaxial tension tests
UT tests were conducted to obtain the flow curve of DP780 steel 

for the consequent calibration of the CP parameters. Standard dog 
bone(SDB) samples were used to perform tests at room temperature, 
100 ◦C, 200 ◦C, and 300 ◦C with a strain rate of 0.00025 /s. Three 
parallel tests were conducted at each temperature to ensure accuracy 
and reduce potential errors. The design of the SDB samples used and 
fractured samples at different temperatures are presented in Fig.  4.

The mechanical properties are listed in Table  3 and their tempera-
ture dependencies are shown in Fig.  5(a). Four parallel tests were per-
formed in the 0◦, 45◦ and 90◦ directions(Fig.  5(b)), and the results con-
firmed that the material exhibits isotropic mechanical behavior. A sig-
nificant increase in yield stress can be observed from 100 ◦C to 200 ◦C, 
which can be related to the Dynamic Strain Aging (DSA) effect [37].
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Fig. 2. Sample geometry of the SDB samples and the fractured samples. (a) TI-980 measurement setup, (b) xSol high temperature heating stage.
Table 3
Mechanical properties of DP780 steel at different temperatures.
 Temperature (◦C) Yield strength 𝑅𝑝0.2 (MPa) Ultimate tensile strength 𝑅𝑚 (MPa) 
 RT 443 854  
 100 441 765  
 200 472 790  
 300 444 917  

3. Numerical methods

3.1. Crystal plasticity model

The crystal plasticity model implemented in the numerical simula-
tion framework was developed utilizing a phenomenological approach. 
The basic mathematical formulations in the implemented crystal plas-
ticity model were developed by Rice [38], Hutchinson [39], and Peirce 
et al. [40]. In the phenomenological constitutive model, the parame-
ters to be calibrated include rate sensitivity of slip 𝑚, slip hardening 
parameters ℎ0, 𝑎, and 𝜏𝑠 [41]. When the elastic deformation of metallic 
materials is small, the resolved shear stress on the slip system 𝛼 is 
usually approximated as [41]: 
𝜏𝛼 = 𝐒 ⋅ (𝐦𝛼 ⊗ 𝐧𝛼) (1)
4 
The shear rate is formulated as a function of the critical resolved shear 
stress 𝜏𝛼𝑠  and resolved shear stress 𝜏𝛼 . Based on the kinetic law on the 
slip systems of a fcc crystal, the shear rate reads [41]: 

𝛾̇𝛼 = 𝛾̇0
|

|

|

|

|

𝜏𝛼

𝜏𝛼𝑠

|

|

|

|
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1
𝑚
𝑠𝑔𝑛(𝜏𝛼) (2)

where 𝛾̇𝛼 is the shear rate for slip system 𝛼, 𝛾̇0 and 𝑚 are material pa-
rameters that represent the reference shear rate and the rate sensitivity 
of slip, respectively. The hardening effect of slip system 𝛽 on the slip 
system 𝛼 is formulated as [41]: 

𝜏̇𝛼𝑐 = ℎ𝛼𝛽
|

|

|

𝛾̇𝛽 ||
|

(3)

in which ℎ𝛼𝛽 is the hardening matrix [41], 

ℎ𝛼𝛽 = 𝑞𝛼𝛽

[

ℎ0

(

1 −
𝜏𝛽𝑐
𝜏𝑠

)𝑎]

(4)

which empirically models the micromechanical interaction between 
different slip systems. In summary, the CP parameters for both the 
ferrite and martensite phases to be calibrated include slip hardening 
parameters 𝜏 , 𝜏 , ℎ , and 𝑎.
0 𝑠 0
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Fig. 3. IPF based on the EBSD measurements.
Fig. 4. Sample geometry of the SDB samples and the fractured samples. (a) Geometry design at high temperature, (b) at room temperature, (c)Fractured samples at room 
temperature, (d) 100 ◦C, (e) 200 ◦C, (f) 300 ◦C.
Fig. 5. (a) Temperature dependencies of yield stress and UTS for DP780 steel. (b) Engineering strain–strain curves of DP780 steel along 0◦, 45◦ and 90◦ at RT.
5 
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Fig. 6. A 3D NI test model with a Berkovich indenter constructed in ABAQUS before (a) and after (b) the simulation.
Table 4
Elastic constants of ferrite phase [43].
 Temperature (◦C) 𝐶11 (GPa) 𝐶12 (GPa) 𝐶44 (GPa) 
 RT 230.3 134.3 115.9  
 100 226.1 128.3 114.2  
 200 220.5 122.7 112.1  
 300 213.8 115.7 110.1  

3.2. Nanoindentation simulation

To calibrate the CP model parameters of the ferrite in the DP780 
steel, a three-dimensional (3D) NI model with a Berkovich indenter 
was constructed in ABAQUS, as shown in Fig.  6(a) 4-node 3D rigid 
(R3D4) elements were used for the indenter, while 8-node 3D contin-
uum (C3D8) elements were applied to the grain. The finest meshes, 
with an element size of 30 nm, were applied to the grain’s critical 
deformation area (center), while coarser meshes were used elsewhere. 
To improve convergence, the tip and three edges of the Berkovich 
indenter were smoothed rather than being as sharp as in reality. To 
avoid penetration, the finest mesh at the tip of the Berkovich indenter 
had an element size of 50 nm, slightly larger than the ferrite grain 
size in the critical deformation area. The force control mode and the 
loading direction were adopted along the 𝑧-direction. The same loading 
function used in NI tests was applied with a peak force of 2.25 mN as 
shown in Fig.  1(b). The friction between the tip and the grain was 
neglected during the simulation to achieve better convergence. The 
same Euler angles and grain size were also used as listed in Table  2. The 
crystal plasticity finite element simulation was done by a user-defined 
subroutine(UMAT) [42]. The required parameters of the CP subroutine 
include elastic constants and CP hardening parameters. The elastic 
constants were obtained from the work of Adams et al. [43] as listed in 
Table  4, while the CP hardening parameters were calibrated using a GA-
based calibration scheme. The number of slip systems was set to 24. The 
strain rate sensitivity, 𝑚, was fixed at 20 and not calibrated, as quasi-
static loading was employed in the mechanical tests. The reference 
shear strain rate, 𝛾̇0, was set to 0.001 s−1, following the work of Tasan 
et al. [44]. The setup of the NI test simulation is shown in Fig.  6 (see 
Table  4).

3.3. Uniaxial tension simulation

Nanoindentation is not performed on martensite due to its fine size 
and lamellar structure, which make it difficult to position indents and 
obtain reliable measurements accurately. Therefore, the calibration of 
CP parameters for the martensite phase must be done by the numerical 
6 
Table 5
Elastic constants of martensite [44].
 Temperature (◦C) 𝐶11 (GPa) 𝐶12 (GPa) 𝐶44 (GPa) 
 RT 417.4 242.4 211.1  
 100 407.4 230.4 207.1  
 200 395.4 218.4 203.1  
 300 381.4 205.4 119.1  

inverse method. To reduce the computational cost, uniaxial tension 
simulation was performed using RVEs, which were generated by the 
Discrete Representative Volume Element framework, DRAGen [45]. 
The RVE contains eight-node solid elements, and reduced integra-
tion(C3D8R) was used in the finite element simulation. The edge length 
of the RVE is 25 μm and includes 54 grains, as illustrated in Fig.  7. 
The phase ratio of ferrite and martensite phase are 83.3% and 16.7%, 
respectively, close to the studied material. The boundary conditions for 
uniaxial tension in DAMASK are given in Eq. (5), where +𝛥 corresponds 
to the applied strain rate used in the experiment(0.00025/s). 

̇̄𝐹 =
⎡

⎢

⎢

⎣

+𝛥 0 0
0 𝑥 0
0 0 𝑥

⎤

⎥

⎥

⎦

, 𝑃 =
⎡

⎢

⎢

⎣

𝑥 𝑥 𝑥
𝑥 0 𝑥
𝑥 𝑥 0

⎤

⎥

⎥

⎦

(5)

Numerical simulations were subsequently conducted using DAMASK, 
leveraging its efficient spectral method for crystal plasticity model-
ing [46]. The elastic constants of the martensite phase at different 
temperatures were again referred to the literature [44] (see Table  5). 
The simulations utilized an RVE with the calibrated ferrite CP parame-
ters to facilitate the calibration of the martensite phase CP parameters. 
As depicted in Fig.  3 and given the isotropic mechanical behavior of 
the studied DP780 steel, random crystallographic orientations were 
assigned to the grains within the generated RVE to reflect a texture-free 
microstructure.

3.4. 2-Stage integrated experimental–numerical calibration framework us-
ing genetic algorithm

The calibration of dual-phase material models is an optimization 
problem in high-dimensional space. The goal is to find the optimal 
set of input parameters 𝐗∗ that minimizes the deviation between the 
model’s output 𝑦 and the experimental observation 𝑦′  [47]. 
𝑦 = 𝑓 (𝐗)

𝐗∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝐗(𝑦, 𝑦′)
(6)

The GA performs selection, crossover, and mutation operations 
to evolve the parameter sets over multiple iterations until a stop 
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Fig. 7. (a) RVE used in CP parameters calibration of the martensite phase. Orange: ferrite, Blue: martensite. (b) The phase ratio of the DP steel and generated RVE.
Fig. 8. CA optimization operators. Blue: CP parameters of the first individual. Orange: CP parameters of the second individual. Star: random variation of CP parameters.
criterion is achieved, as illustrated in Fig.  8. During selection, indi-
viduals (parameter sets) from the current generation are chosen based 
on their fitness. This ensures that better-performing candidates are 
more likely to pass their characteristics to the next generation. This 
step mimics natural selection by prioritizing solutions with superior 
performance. In the crossover phase, selected individuals undergo re-
combination, where portions of their parameter sets are exchanged to 
create new offspring. This operation allows the algorithm to explore 
new regions of the parameter space by combining features from dif-
ferent high-performing individuals, enhancing diversity and improving 
convergence towards an optimal solution. Finally, mutation introduces 
controlled random variations into some individuals by altering their 
parameters slightly. This prevents premature convergence to local op-
tima by maintaining genetic diversity in the population, ensuring that 
the search space remains well-explored. By iteratively applying these 
operations over multiple generations, the GA effectively refines the 
7 
parameter sets, progressively converging towards an optimal solution 
that best fits the desired objectives [48].

The loss function (𝑦, 𝑦′) defined in Eq. (7) quantitatively evaluates 
the agreement between simulation and experimental results during the 
calibration of crystal plasticity (CP) model parameters. In this context, 
𝑦 and 𝑦′ represent the force (or stress) values from simulation and 
experiment, respectively, while 𝑥 denotes the corresponding displace-
ment (or strain) values. The first term in Eq. (7) computes the mean 
absolute error (MAE) between the simulated and experimental force 
(or stress) values across all sampled data points, ensuring that the 
calibrated parameters minimize the overall discrepancy between the 
simulated and experimental mechanical responses. The second term 
serves as a penalization for non-convergent or prematurely terminated 
simulations. In some cases, the CP model may fail to reach the target 
displacement (or strain) due to unsuitable parameter choices, result-
ing in simulations that stop before achieving the intended loading 
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Fig. 9. GA calibration process.

condition. To address this, the penalty term 100
(

1 − 𝑥𝑖,max
𝑥∗𝑖,max

)2
 is intro-

duced, where 𝑥𝑖,max is the maximum displacement (or strain) reached 
in the simulation, and 𝑥∗𝑖,max is the target maximum value from the 
experiment. This term strongly penalizes cases where the simulation 
does not reach the desired loading endpoint, thereby guiding the opti-
mization process toward parameter sets that ensure both accuracy and 
convergence throughout the entire loading path. In summary, the loss 
function not only measures the fit between simulation and experiment 
but also enforces the physical requirement that the simulation must 
reach the full experimental loading range, thus ensuring the reliability 
and robustness of the calibrated CP model parameters (see Fig.  9). 

(𝑦, 𝑦′) =
𝑖

∑

1
( 1
𝑛
(

𝑛
∑

1

|

|

𝑦𝑖 − 𝑦′𝑖||) + 100(1 −
𝑥𝑖,𝑚𝑎𝑥
𝑥∗𝑖,𝑚𝑎𝑥

)2) (7)

The calibration of crystal plasticity (CP) parameters for ferrite and 
martensite phases in DP780 steel is achieved through an integrated 
experiment — numerical methodology. In this approach, the calibration 
process is divided into two sequential stages to ensure both accuracy 
and computational efficiency for each phase. Experimental data from 
nanoindentation and uniaxial tensile tests are combined with advanced 
numerical simulations, while a genetic algorithm (GA)-based frame-
work is employed for the numerical optimization of the CP parameters 
in each stage.

In the first stage, nanoindentation experiments are performed on the 
DP780 steel to obtain high-resolution force–displacement curves that 
primarily reflect the mechanical response of the ferrite phase. These 
experimental results serve as the target for a series of nanoindentation 
simulations conducted in ABAQUS, where the ferrite CP parameters 
are treated as optimization variables. The GA-based calibration frame-
work iteratively updates the ferrite CP parameters, running ABAQUS 
8 
Table 6
Value bounds of CP parameters to be calibrated.
 Parameters ℎ0 (GPa) 𝑎 𝜏0 (GPa) 𝜏𝑠 (GPa)  
 Ferrite [1e−3, 4e−3] [1, 5] [1e−4, 5e−4] [1.5e−4, 1e−3] 
 Martensite [1e−3, 9e−3] [1, 20] [1e−4, 9e−4] [1e−4, 9e−4]  

simulations at each iteration, and evaluates the deviation between 
the simulated and experimental force–displacement curves using the 
defined loss function Eq. (7). This process continues until the stop cri-
terion is reached, resulting in an optimized set of ferrite CP parameters 
that show good agreement with the experimental results.

In the second stage, the optimized ferrite CP parameters obtained 
from the first stage are fixed and used as known inputs in subsequent 
simulations. Uniaxial tensile experiments are performed on DP780 steel 
to provide macroscopic stress–strain data, which are then used as 
targets for numerical simulations conducted in DAMASK. The use of 
DAMASK’s spectral solver is particularly advantageous at this stage 
due to its high computational efficiency for polycrystalline simula-
tions. In this step, the GA-based framework is employed again, but 
at this stage it optimizes the martensite CP parameters, while the 
ferrite parameters remain fixed. The optimization iteratively adjusts the 
martensite parameters to minimize the deviation between the simulated 
and experimental stress–strain curves. Although the GA framework is, 
in principle, capable of simultaneously optimizing both ferrite and 
martensite CP parameters, a serial two-stage approach is adopted in 
this work. This is primarily due to the significant difference in com-
putational cost between ABAQUS nanoindentation simulations and 
DAMASK uniaxial tensile simulations. By decoupling the optimiza-
tion into two sequential stages, the overall computational efficiency 
is greatly improved, and the calibration process remains robust and 
tractable. This integrated experiment-numerical, two-stage calibration 
strategy ensures that the CP parameters for both ferrite and martensite 
are accurately identified, while making optimal use of experimental 
data and computational resources. The framework is flexible, scalable, 
and can be readily extended to other multiphase materials, advanced 
constitutive models, and experimental technique (see Fig.  10).

CP simulations are employed to capture the deformation behav-
ior of polycrystalline materials, where individual grains demonstrate 
anisotropic mechanical responses. Due to the prohibitive computational 
cost of modeling an entire material microstructure directly, Repre-
sentative Volume Elements (RVEs) are utilized to offer a statistically 
representative snapshot of the microstructure while maintaining com-
putational efficiency [49]. The calibration tool seamlessly integrates 
with the ABAQUS and DAMASK frameworks through RVEs. The user 
specifies the CP parameters to be calibrated in the configuration file. 
The genetic algorithm (GA) for ferrite phase parameter calibration was 
configured with a maximum of 100 iterations and a population size of 
100. A mutation probability of 0.1 maintained diversity, while an elite 
ratio of 0.05 preserved top solutions. 10% of the best individuals were 
selected as parents, and the algorithm terminated after two iterations 
without improvement.

The genetic optimization framework is developed based on the 
python module geneticalgorithm2 developed by Demetry Pascal [50] as 
well as other modules including pandas [51], scipy [52], numpy [53]. 
The CP parameters to be calibrated are listed in Table  6, and their range 
is based on the approximate range of previously calibrated parameters 
from NI tests of ferrite and uniaxial tension test results.

4. Results and discussion

4.1. Calibrated CP parameters for ferrite

By iterative refinement of the CP parameters using the GA-based cal-
ibration framework, the simulated force–displacement curves at differ-
ent temperatures exhibit good agreement with the experimental data, 
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Fig. 10. 2-stage CP parameters calibration process.
Fig. 11. Force–displacement curves at (a) room temperature, (b) 100 ◦C (c) 200 ◦C (d) 300 ◦C.
as shown in Fig.  11. Compared to parameters obtained via the T&E 
method, the GA-calibrated curves consistently achieve lower deviations 
from the experimental results. This direct comparison highlights the 
improved predictive capability of the GA-calibrated parameters. The 
9 
convergence behavior of the GA optimization is illustrated in Fig.  12(a), 
which presents the best cost values of each generation computed ac-
cording to Eq. (7). The algorithm achieves fast convergence — typically 
within 4 to 7 generations — due to the carefully selected parameter 
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Fig. 12. Best cost values of each generation for (a) NI simulation, (b) UT simulation.
Table 7
Comparison of CP parameters for ferrite calibrated by GA and T&E methods.
 Temperature (◦C) Method 𝜏0 (MPa) 𝜏𝑠 (MPa) 𝑎 (–) ℎ0 (MPa) 
 RT GA 227 752 1.79 2792  
 T&E 260 600 1.70 3000  
 100 GA 226 659 2.74 3949  
 T&E 250 550 1.80 2000  
 200 GA 252 650 2.77 2277  
 T&E 254 573 1.77 2450  
 300 GA 246 723 1.99 3594  
 T&E 265 625 1.65 3500  

Table 8
RMSE of NI simulation at different temperatures.
 Temperature (◦C) RT 100 200 300  
 RMSE[GA] (μN) 59.2 36.9 42.2 66.0 
 RMSE[T&E] (μN) 79.2 54.5 78.3 89.5 

bounds and the robust search strategy. The best cost values decrease 
rapidly in early generations and stabilize in later ones, indicating effi-
cient exploration and convergence toward optimal solutions. in which 
the best cost values are computed using Eq (7), and lower cost values in-
dicate a better agreement with the experimental results. Noticeable de-
viations are observed during the hold period, which may be attributed 
to a mismatch in the indenter shape between the numerical simulation 
and the experiment. To improve convergence, a slight modification was 
made to the indenter shape in the numerical simulation.

The calibrated CP parameters of the ferrite under different tem-
peratures are listed in Table  7. Quantitative evaluation of calibration 
accuracy was conducted using the root mean square error (RMSE) 
between the simulated and experimental force–displacement curves, 
based on 100 uniformly sampled displacement points during the load-
ing stage. As shown in Table  8, the RMSE values of the GA-calibrated 
results range from 36.9 μN to 66.0 μN across all tested temperatures. 
In contrast, the RMSEs for the T&E method are significantly higher, 
ranging from 54.5 μN to 89.5 μN. The largest deviation for GA occurs 
at 300 ◦C, where the RMSE is 66.0 μN—only 3.0% of the maximum 
indentation force (2196 μN)—demonstrating the high fidelity of the 
calibrated parameter set.

4.2. Calibrated CP parameters for martensite

The calibrated ferrite CP parameters based on NI tests results, 
were subsequently utilized to calibrate the martensitic CP parame-
ters. This was achieved through inverse optimization using UT result 
of DP780 steel at multiple temperatures, once again employing the 
10 
Table 9
Comparison of CP parameters for martensite calibrated by GA and T&E methods.
 Temperature (◦C) Method 𝜏0 (MPa) 𝜏𝑠 (MPa) 𝑎 (–) ℎ0 (MPa) 
 RT GA 252 304 17.0 3386  
 T&E 450 700 2.00 40000  
 100 GA 253 528 19.3 4771  
 T&E 440 650 2.10 40000  
 200 GA 381 583 4.64 7537  
 T&E 442 672 2.07 40000  
 300 GA 303 515 18.1 3069  
 T&E 460 725 1.95 40000  

Table 10
RMSE of uniaxial tension simulation at different temperatures.
 Temperature (◦C) RT 100 200 300  
 RMSE [GA] (MPa) 7.9 8.0 6.8 6.6  
 RMSE[T&E] (MPa) 16.1 16.5 7.8 10.8 

GA-based framework. The simulated stress–strain curves using GA-
calibrated martensite parameters also show good agreement with the 
experimental data, as presented in Fig.  13. Compared to the parameters 
obtained via T&E method (see Table  9), the GA-calibrated curves ex-
hibit noticeably lower deviation from the experimental response across 
all temperature conditions. This highlights the improved accuracy and 
temperature sensitivity of the GA-calibrated CP parameters. The con-
vergence process of the GA optimization is illustrated in Fig.  12(b), 
where the best cost values decrease steadily across generations. Due to 
the well-defined objective function and efficient search strategy, con-
vergence was achieved within 9–12 generations, requiring only a few 
hours of computation. This behavior is consistent with the convergence 
characteristics observed during ferrite calibration.

Quantitative assessment of calibration accuracy was performed by 
computing the RMSE between the simulated and experimental stress 
values, based on 50 uniformly sampled strain points. As shown in Table 
10, the GA method consistently outperforms the T&E approach, achiev-
ing RMSE values between 6.6 and 8.0 MPa across all temperatures. 
The largest RMSE using GA is 8.0 MPa at 100 ◦ C, which remains 
below 3% of the maximum stress, demonstrating the high fidelity of 
the calibrated parameter set. In contrast, the T&E-calibrated parameters 
yield larger RMSEs ranging from 7.8 to 16.5 MPa, with the most 
significant deviation occurring at room temperature.

4.3. Discussion

The absolute differences between the CP parameters calibrated 
using the GA and T&E methods are shown in Fig.  14. The parameter 
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Fig. 13. Stress–strain curves at (a) room temperature, (b) 100 ◦C, (c) 200 ◦C, (d) 300 ◦C.

Fig. 14. Absolute differences of the calibrated CP parameters at (a) RT (b) 100 ◦C (c)200 ◦C, and (d) 300 ◦C.
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Fig. 15. Exploration of martensite parameters by the GA at RT. (a)–(d) CP parameters for ferrite, (e)–(h) CP parameters for martensite. Box (blue outline): Interquartile range 
(IQR), covering the middle 50% of parameters range. Red horizontal line: Median (50th percentile) of the parameters. Whiskers: The minimum and maximum values within 1.5IQR. 
Red crosses: Represent outliers outside 1.5IQR from the first and third quartile.
ℎ0 is not included, as its value obtained from the T&E method is very 
high. Together with the comparison in both Tables  8 and 10, two 
key observations emerge from the comparison between the calibrated 
CP parameters by both GA and T&E methods. First, across all tested 
temperatures, the GA-calibrated CP parameters consistently yield lower 
errors in both NI and UT simulations. This superior performance can be 
attributed to the use of a unified and consistent error quantification (Eq. 
(7)) in GA, which guides the optimization toward globally improved 
solutions. The optimization strategy of the GA framework ensures that 
the objective function value — representing the deviation between 
simulation and experiment — is systematically minimized over genera-
tions, whereas T&E calibrations often lack such a consistent metric and 
rely heavily on subjective judgment or manual curve fitting. Second, 
while the CP parameters for ferrite obtained from both methods are 
relatively similar across all temperatures, the discrepancy between GA 
and T&E parameters is substantially larger in the martensitic phase. 
This difference can be partially explained by the use of very large 
ℎ0 values in the T&E method and the relatively low volume frac-
tion of martensite (18%) in DP780 steel. The stress–strain response 
is therefore more dominated by ferrite, rendering it less sensitive to 
12 
variations in martensite parameters during manual calibration. Conse-
quently, this finding reinforces the advantage of employing a robust 
optimization framework — such as the GA approach presented in this 
study — that leverages consistent error metrics and broad parameter 
space exploration, thereby ensuring physically meaningful parameters 
identification for both phases.

The box plots in Fig.  15 illustrate the evolution of calibrated ferrite 
CP parameters across multiple generations during the genetic algorithm 
(GA) optimization process at room temperature. In several cases, such 
as Fig.  15(d), (g) the parameter distributions become significantly 
narrower in later generations, with reduced interquartile ranges (IQR) 
and fewer outliers. This indicates successful convergence, where the 
GA refines the parameters toward an optimal solution with minimal 
variation in subsequent generations, signifying stabilization. However, 
in some cases, such as Fig.  15(a), (c), (e) and (f) the CP parameters 
stabilize too early, converging before the final generation. The GA 
calibration framework subsequently expands the search space through 
parameter mutations to avoid premature convergence. Early stabiliza-
tion increases the risk of being trapped in a local optimum rather than 
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Fig. 16. Temperature dependencies of the calibrated CP parameters (a) 𝑎 (b) ℎ0 (c)𝜏0, and (d) 𝜏𝑠.
identifying the global optimum. By introducing controlled variations 
in later generations, the GA preserves search diversity, mitigates stag-
nation, and enhances the exploration of the parameter space, thereby 
ensuring a more robust and effective optimization process. Similar 
phenomena were also observed at all other temperatures (Figs.  A.17, 
A.18, and A.19).

The temperature dependencies of the calibrated CP parameters 
for both ferrite and martensite are demonstrated in Fig.  16. The re-
sult clearly shows that nearly across all investigated temperatures, 
the martensitic phase exhibits higher values of ℎ0, 𝜏0, and 𝑎 and 
lower values of 𝜏𝑠 compared to the ferritic phase. This combination is 
consistent with the generally recognized behavior for martensite and 
ferrite: martensite undergoes stronger strain hardening, while ferrite 
contributes more significantly to ductility of the DP780 steels.

Furthermore, a notable correlation between the temperature-
dependent trends in CP parameters and macroscopic mechanical behav-
ior was identified. The evolution of 𝜏𝑠 of ferrite phase with temperature 
closely matches the trend of ultimate tensile strength (UTS) in the 
experimental macroscopic data as shown in Fig.  5. Given that phase 
ratio of ferrite phase is 82% in the studied DP780 steel, this trend 
supports the interpretation that UTS is largely governed by the satu-
ration of strain hardening for ferrite phase. Moreover, the variation 
of 𝜏0 in ferrite mirrors the trend observed in yield strength: a slight 
decrease from room temperature (RT) to 100 ◦C, a significant increase 
at 200 ◦C, followed by a decline at 300 ◦C. These trends are consistent 
with experimental observations and suggest that the calibrated 𝜏0, as 
a proxy for the initial dislocation resistance, successfully captures the 
temperature-dependent mechanical behavior for DP780 steel.

A particularly interesting observation at 200 ◦C is the appearance 
of serrated features in the load–displacement curves from NI test, 
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accompanied by a pronounced increase in macroscopic yield strength. 
These phenomena are indicative of DSA, suggesting intensified solute-
dislocation interactions that temporarily hinder dislocation motion and 
lead to localized strain bursts. Correspondingly, the calibrated CP 
parameters show a marked increase in 𝜏0 and ℎ0 for martensite at 
200 ◦C, along with a pronounced decrease in the hardening exponent 
𝑎, which is in line with the theoretical understanding of DSA [37]. This 
alignment with both micro- and macroscale experimental signatures of 
DSA provides further validation of the physical fidelity of the calibrated 
CP parameters.

5. Conclusion

This work develops a robust genetic algorithm (GA)-driven frame-
work for calibrating crystal plasticity (CP) model parameters in DP780 
steels, seamlessly integrating multi-scale mechanical testing technique. 
The proposed methodology effectively addresses the key challenges 
associated with dual-phase CP parameter calibration, ensuring both 
accuracy and computational efficiency. The main findings and their 
broader significance are as follows:

• The GA-calibrated CP parameters accurately reflect known phase 
behaviors, such as the pronounced hardening in martensite and 
the ductility of ferrite, consistent with metallurgical expectations.

• The temperature-dependent evolution of key CP parameters (𝜏𝑠, 
𝜏0) closely tracks experimental trends in ultimate tensile strength 
and yield strength.

• The framework robustly identifies parameter anomalies at 200 ◦C, 
matching signatures of dynamic strain aging (DSA) observed in 
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Fig. A.17. Exploration of martensite parameters by the GA at 100 ◦C. (a)–(d) CP parameters for ferrite, (e)–(h) CP parameters for martensite. Box (blue outline): Interquartile 
range (IQR), covering the middle 50% of parameters range. Red horizontal line: Median (50th percentile) of the parameters. Whiskers: The minimum and maximum values within 
1.5IQR. Red crosses: Represent outliers outside 1.5IQR from the first and third quartile.
both nanoindentation and tensile tests, thus validating the phys-
ical fidelity of the calibration.

• The GA-based multiscale calibration is efficient, rapid, and capa-
ble of exploring a wide parameter space, yielding solutions that 
are both experimentally consistent and physically interpretable 
across temperatures and microstructures.

• This approach enables predictive, temperature-sensitive modeling 
of DP steels, supporting advanced material design, failure anal-
ysis, and the development of next-generation high-performance 
steels.

In summary, this study not only advances the methodology for 
CP parameter calibration in complex multiphase alloys, but also pro-
vides a scalable tool for integrating experimental data and computa-
tional modeling across multiple length scales. Future work will ex-
tend this framework to more complex microstructures and incorporate
machine learning-based surrogate models to further enhance efficiency 
and predictive capability.
14 
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Fig. A.18. Exploration of martensite parameters by the GA at 200 ◦C. (a)–(d) CP parameters for ferrite, (e)–(h) CP parameters for martensite. Box (blue outline): Interquartile 
range (IQR), covering the middle 50% of parameters range. Red horizontal line: Median (50th percentile) of the parameters. Whiskers: The minimum and maximum values within 
1.5IQR. Red crosses: Represent outliers outside 1.5IQR from the first and third quartile.
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Fig. A.19. Exploration of martensite parameters by the GA at 300 ◦C. (a)–(d) CP parameters for ferrite, (e)–(h) CP parameters for martensite. Box (blue outline): Interquartile 
range (IQR), covering the middle 50% of parameters range. Red horizontal line: Median (50th percentile) of the parameters. Whiskers: The minimum and maximum values within 
1.5IQR. Red crosses: Represent outliers outside 1.5IQR from the first and third quartile.
Data availability

Data will be made available on request.
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