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Abstract 

Accurate prediction of toluene/water partition coefficients of neutral species is crucial in drug discovery and separa-
tion processes; however, data-driven modeling of these coefficients remains challenging due to limited available 
experimental data. To address the limitation of available data, we apply multi-fidelity learning approaches leveraging 
a quantum chemical dataset (low fidelity) of approximately 9000 entries generated by COSMO-RS and an experimen-
tal dataset (high fidelity) of about 250 entries collected from the literature. We explore the transfer learning, feature-
augmented learning, and multi-target learning approaches in combination with graph neural networks, validating 
them on two external datasets: one with molecules similar to training data (EXT-Zamora) and one with more chal-
lenging molecules (EXT-SAMPL9). Our results show that multi-target learning significantly improves predictive accu-
racy, achieving a root-mean-square error of 0.44 log P units for the EXT-Zamora, compared to a root-mean-square error 
of 0.63 log P units for single-task models. For the EXT-SAMPL9 dataset, multi-target learning achieves a root-mean-
square error of 1.02 log P units, indicating reasonable performance even for more complex molecular structures. 
These findings highlight the potential of multi-fidelity learning approaches that leverage quantum chemical data 
to improve toluene/water partition coefficient predictions and address challenges posed by limited experimental 
data. We expect the applicability of the methods used beyond just toluene/water partition coefficients.

Scientific contribution 

We investigate the benefits of transfer learning, feature-augmented learning, and multi-target learning approaches 
in combination with graph neural networks for the prediction of toluene–water partition coefficients. We show 
how a combination of a large number of cheap data from the semi-empirical COSMO-RS model with a few high-fidel-
ity experimental data and multi-target learning efficiently leads to machine learning models with broad applicability 
and low uncertainties of 0.44 to 1.02 log units in the partition coefficient, depending on the test set.
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Introduction
The partition coefficient log P of neutral species between 
water and an organic species is an important physical 
property, playing a significant role in various fields such 
as drug discovery [1–4] and separation processes [5, 6]. 
This property captures the ratio of concentrations of a 
chemical species in two immiscible solvents. For phar-
maceutical applications, the partition coefficient of an 
Active Pharmaceutical Ingredient (API) indicates its 
hydrophobicity/hydrophilicity and is thus a critical indi-
cator for its pharmacokinetics and physical properties of 
potential drug candidates [7, 8]. In separation processes, 
the partition coefficient between water and an organic 
solvent is key for determining the most effective meth-
ods for separating species impacting both the yield and 
purity [9–11]. While water/octanol partition coefficients 
of neutral species are widely available, data for water and 
other organic solvents, such as toluene/water are limited. 
Toluene/water partition coefficients offer better physi-
ological relevance compared to water/octanol  [12, 13]. 
Consequently, models that predict toluene/water parti-
tion coefficients for a wide spectrum of neutral species 
are highly desired.

Existing computational methods, such as the COnduc-
tor like Screening MOdel for Real Solvents (COSMO-
RS) [14, 15], Group Contribution (GC), and Molecular 
Dynamics (MD) have been employed to predict tolu-
ene/water log P of neutral species [16–23]. Recently, the 
SAMPL9 blind challenge [24] allowed different groups 
to compare such predictive methods against a set of 16 
drug-like molecules for predicting toluene/water log P . 
We also participated in the challenge using the COSMO-
RS method. Among 18 contributions, we ranked second 
with an Root-Mean-Square Error (RMSE) of 1.24 log P 
units [25]. The best-performing method in the SAMPL9 
blind challenge  [24] achieved an RMSE of 1.12 log P 
units  [24]. COSMO-RS is a semi-empirical model, par-
tially physics-based, allowing application to any system, 
though its performance varies depending on the specific 
system and property being studied [26–28]. Nevertheless, 
COSMO-RS shows good agreement with experimen-
tal log P values in our dataset that we performed in this 
study, supporting our choice to use it for generating low-
fidelity training data. Machine Learning (ML) offers new 
possibilities for predicting toluene/water log P by utiliz-
ing experimental data. Recent advances in ML such as 
Graph Neural Networks (GNN) models and transform-
ers enable end-to-end learning of molecular properties 
directly from the structure and have demonstrated suc-
cess across various applications [29–37]. The general idea 
is to find a representation of molecules, e.g., in the form 
of descriptors, strings, or graphs, which can be mapped 
to properties of interest by applying regressions methods. 

For instance, in predicting the toluene/water partition 
coefficient of APIs as a post-SAMPL9 study, Zamora et al. 
[38] used a variety of molecular descriptors—related to 
the topological structure and properties such as the 
Ghose–Crippen water/octanol partition coefficient—on 
which they fitted a multiple linear regression model for 
the 251 experimental log P values from their collected 
dataset. These 251 experimental toluene/water log P of 
neutral species [38] are currently the largest available 
dataset in the literature. This multiple linear regression 
model achieved an RMSE of 1.05 log P units on the test 
dataset and an RMSE of 0.86 log P units on the SAMPL9 
dataset [38]. These promising results are constrained by 
the limited amount of training data, which may restrict 
the model’s broader applicability and potentially its effec-
tiveness across diverse solutes and log P ranges. The 
direct prediction of toluene/water log P of neutral species 
using ML therefore remains limited due to data scarcity, 
necessitating the exploration of alternative approaches.

To address scarcity of molecular property data, previ-
ous literature studies  [32, 39–41] have employed vari-
ous multi-fidelity learning approaches. A recent review 
by Qian et al. [42] summarizes the different multi-fidel-
ity methods, suggesting that pretraining models on low 
fidelity data such as a large dataset derived from Quan-
tum Chemical (QC) calculations and semi-empirical 
models, followed by fine-tuning with high fidelity data 
such as experimental data, can significantly enhance 
their applicability and reliability in predicting molecular 
properties. In particular, three multi-fidelity approaches 
are promising in molecular ML: transfer learning, fea-
ture-augmented learning, and multi-target learning [42]. 
Transfer learning leverages pretrained models to improve 
predictions, feature-augmented learning integrates pre-
dictions as additional features, and multi-target learning 
simultaneously predicts multiple related properties. To 
this end, to overcome the challenges posed by limited 
experimental data in predicting toluene/water log P of 
neutral species, we investigate these three multi-fidelity 
learning approaches that leverage QC and experimental 
data to increase the effectiveness of GNN models.

We apply various ML models and multi-fidelity learn-
ing approaches to predict the toluene/water log P of 
neutral species. Initially, we generate a low fidelity QC 
dataset consisting of approximately 9000 toluene/water 
log P values of neutral species using the COSMO-RS 
approach, which we chose due to its balance of accu-
racy and computational efficiency. We use this data-
set to pretrain GNN models, so they encompass a wide 
range of chemical classes and atom types. We then fine-
tune and test the pretrained GNN models with different 
multi-fidelity learning approaches using the high fidel-
ity datasets of Zamora et al. [38] and the SAMPL9 blind 
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challenge. Specifically, a part of the Zamora dataset, 
comprising 212 out of 250 experimental log P values, is 
used for fine-tuning while the remaining part 38 out of 
250 is reserved for testing, similar to the approach taken 
with the SAMPL9 dataset, which includes 16 experimen-
tal log P values. The Zamora dataset originally contained 
251 values, but we removed one duplicate molecule that 
appeared as both entry 79 (Aflukin) and entry 266 (Qui-
nine) in External-SAMPL9 (EXT-SAMPL9)  [38]. Next, 
we compare the GNN models with a GNN trained only 
on the experimental data and additional semi-empirical 
and data-driven approaches for the prediction of toluene/
water log P . Finally, we discuss the strengths and limita-
tions of the different approaches. Thereby, we address 
how multi-fidelity strategies leveraging both QC and 
experimental values can play a crucial role in ML for 
accurately predicting molecular properties, especially 
when only a limited amount of experimental data is 
available.

Dataset
We first present the low and high fidelity datasets of tolu-
ene/water partition coefficients and describe the data 
splitting process for training and testing of the compu-
tational methods. An overview of the datasets is shown 
in Table 1. The SMILES from all molecules used in this 
study are provided in the supporting information as a 
CSV file.

Low fidelity‑quantum chemical dataset
To generate the Low fidelity-quantum chemical (LF-
QC) dataset of log P values, we initially collect molecules 
represented by SMILES strings from the iBonD data-
base [43], covering a diverse range of chemical classes 
and atom types. The iBonD database is chosen because 
it contains many drug-like molecules similar to those in 
the experimental datasets investigated in this work while 
also covering a broad spectrum of chemical diversity. The 
molecules are selected on the basis of standard ranges of 
acid dissociation constants. The final selection consists of 
molecules, predominantly featuring substituted benzoic 

and phenolic acids, alkyl carboxylic acids, alkylamines, 
and derivatives of pyridine and aniline. We then use 
these SMILES strings as input to obtain the 3D geomet-
ric structures using the software RDKit [44, 45]. Next, we 
optimize the molecular structures obtained from RDKit 
at the GFN2-xTB level of theory [46]. We further refine 
the geometries of each molecule in the COSMO state 
using COSMOconf 23 [47], with the BP86/TZVPD para-
metrization and FINE COSMO cavity [48–50]. Finally, 
we calculate the log Ptol/w values for each molecule at 
25 °C and at low finite dilution (0.0002 mol%) using COS-
MOtherm 23 [51], based on the difference in chemi-
cal potential between the water and toluene phases. We 
utilize small finite fractions of the molecules in both the 
aqueous phase and toluene to match the solute concen-
tration range used in the experimental studies, which is 
2.0–0.5 mM [52]. The error of log P in the LF-QC data-
set is determined by propagating the uncertainties of the 
solvation free energies in water and toluene using Eq. 2. 
Given the uncertainty of 0.45 kcal mol−1 [53] for the sol-
vation free energy, the resulting error in log P is 0.47 log P 
units. The LF-QC dataset consists of 8891 molecules (see 
Table 1). The LF-QC set is not publicly available due to 
licensing restrictions. Consultation with the commercial 
software provider confirmed that data sharing is not per-
mitted under our academic license terms. However, the 
log Ptol/w values for each molecule in the LF-QC can be 
generated by applying the described approach to the pro-
vided SMILES strings, which are available in the support-
ing information as a CSV file.

High fidelity‑experimental dataset
The High fidelity-experimental (HF-Exp) dataset is 
obtained from Zamora et  al. [38] who determined the 
partition coefficients log Ptol/w through sample titra-
tions, following a procedure similar to that used for 
aqueous acid dissociation constants determination but 
in the presence of varying amounts of the partition-
ing solvent. All measurements were conducted at 25  °C 
under an inert gas atmosphere, with at least three titra-
tions performed for each compound to ensure accuracy. 
The solute concentration range estimations are based 
on the details provided in the experimental study [38, 
52]. While these studies do not report the uncertainty of 
the toluene/water partition coefficient measurements, 
similar methods used for octanol/water partition coef-
ficients typically report uncertainties around 0.04 log P 
units [54]. Therefore, it is reasonable to expect a similar 
level of uncertainty for the toluene/water measurements. 
An additional uncertainty arises from the fact that exper-
imental concentrations are not provided for individual 
molecules, resulting in the calculations potentially being 

Table 1  Overview of log Ptol/w datasets used for model (pre-)
training and testing

a  The LF-QC set is generated in this work and is not publicly available due to 
licensing restrictions. We describe how to generate the LF-QC set in the text

Name Number of data points Origin

LF-QCa 8891 QC

HF-Exp [38] 212 Exp.

EXT-Zamora [38] 38 Exp.

EXT-SAMPL9 [24] 16 Exp.
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at slightly different concentrations. For most molecules, 
this difference will be negligible, but for molecules form-
ing dimers in the toluene phase, the discrepancy can be 
in the order of 2 log P units  [25]. The HF-Exp dataset 
consists of 212 molecules (see Table 1).

External Zamora and SAMPL9 datasets
The External-Zamora (EXT-Zamora) and EXT-SAMPL9 
datasets are taken from previous studies [24, 38]. The 
experiments conducted to measure the log Ptol/w values 
in these datasets follow similar protocols to those used 
for obtaining the HF-Exp dataset. The EXT-Zamora and 
EXT-SAMPL9 datasets consist of 38 and 16 molecules, 
respectively (see Table 1).

Dataset comparison and analysis
Figure  1a shows the density distributions of log P val-
ues for the LF-QC, HF-Exp, EXT-Zamora, and EXT-
SAMPL9 datasets. The LF-QC dataset (red) shows a 

wide distribution range from − 10 to 7, reflecting the 
extensive chemical diversity captured by the Quantum 
Mechanics (QM) dataset. The HF-Exp dataset (green) 
and EXT-Zamora dataset (cyan) have a more narrow 
and peaked distribution centered around − 1 to 3 log P 
values, indicating that the experimental measurements 
are focused on a more homogenous set of species. The 
EXT-SAMPL9 dataset (purple) peaks around − 1 to 3 
log P values and 3 to 6 log P values, indicating differ-
ences in the molecules compared to the other data-
sets. The broad range of the LF-QC dataset shows the 
variability in computational predictions, while the nar-
rower distributions of the experimental datasets (HF-
Exp, EXT-Zamora, EXT-SAMPL9) reflect controlled 
conditions and specific chemical spaces. This variation 
is crucial for evaluating the performance and general-
izability of predictive models across different types of 
data.

Figure  1b depicts the density distributions of solute 
molar masses for the LF-QC, HF-Exp, EXT-Zamora, and 

Fig. 1  Comparison of chemical properties across four datasets:   LF-QC,  HF-Exp,  EXT-Zamora, and   EXT-SAMPL9. The subfigures show a 
density plots of log P values, b density distribution of molar masses, and c analysis of atom type distributions
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EXT-SAMPL9 datasets. The LF-QC dataset (red) shows a 
peak around 170 g mol−1 , indicating a relatively uniform 
distribution of molecules. The HF-Exp dataset (green) 
and the EXT-Zamora dataset (cyan) have a peak around 
110 g mol−1 , suggesting a range of smaller molecule sizes. 
The EXT-SAMPL9 dataset (purple) displays a peak at 
higher molar masses, around 300  g mol−1 , indicating a 
tendency towards larger molecules.

Figure  1c shows the normalized distribution of differ-
ent atom types across the LF-QC, HF-Exp, EXT-Zamora, 
and EXT-SAMPL9 datasets. This distribution is defined 
as the frequency of each atom type appearing in the 
datasets, adjusted so that the total frequency adds up to 
one. The LF-QC dataset (red) exhibits a broad distribu-
tion with significant representation across various atom 
types, highlighting its diverse chemical composition. The 
HF-Exp dataset (green) shows a more constrained distri-
bution, indicating a focus on a narrower range of chemi-
cal species. The EXT-Zamora (cyan) and EXT-SAMPL9 
(purple) datasets display even more distinct distributions, 
with the EXT-SAMPL9 dataset showing significant rep-
resentation of specific atom types. This comparison high-
lights the diverse chemical compositions and focuses of 
the datasets, with LF-QC covering a wide array of atom 
types, while the experimental datasets (HF-Exp, EXT-
Zamora, EXT-SAMPL9) are more specialized.

Methodology
Next, we present the different computational methods, 
both semi-empirical and data-driven that we explore 
for predicting toluene/water partition coefficients. We 
choose COSMO-RS, a physics-based model, to gener-
ate low fidelity data because it performs better than the 
other available methods like GC and MD. Based on this 
low fidelity data, we develop several multi-fidelity ML 
approaches to address the issue of limited high fidelity 
experimental data.

COSMO‑RS
COSMO-RS is a computational model utilized for pre-
dicting thermodynamic properties and solvation behav-
ior of molecules in solution. It combines quantum 
chemistry and statistical thermodynamics to estimate 
the chemical potentials of components in a system [14, 
15]. Molecules are represented by surface segments, with 
segment interactions approximated as independent enti-
ties. The model relies on the σ-profile calculated from 
quantum chemical calculations, to predict the properties 
of interest. For a detailed description of COSMO-RS, we 
refer the interested reader to Refs. [55–59].

The logarithm of the toluene/water partition coefficient 
log P can be calculated according to

where [S]tol and [S]wat are the concentrations of a solute 
[S] in toluene and water, respectively. In the COSMO-RS 
framework, the toluene/water log P is calculated accord-
ing to [59, 60]

where �GTransfer is the transfer free energy of a solute 
from the pure aqueous phase to toluene. R is the gas con-
stant and T is the temperature. �Gsolv

w  and �Gsolv
tol  are the 

solvation free energies of a solute in water and toluene, 
respectively. For all calculations, the temperature of 25 °C 
and the reference state of 1 mol L −1 in the liquid and the 
gas is used.

Alternatively, the partition coefficient at infinite dilu-
tion can be calculated from infinite dilution activity coef-
ficients γ∞ and liquid molar volumes ν of toluene and 
water:

We also evaluated openCOSMO-RS [22, 23] as an open-
source alternative but found it produced significant 
errors (see Table 3 and supporting information for more 
detail). This performance gap likely stems from open-
COSMO-RS currently being limited to single conform-
ers, which is particularly problematic for polar molecules 
that require multiple conformer consideration for accu-
rate predictions. Development of conformer ensemble 
capabilities for openCOSMO-RS is currently underway 
to address this single-conformer limitation.

Graph neural networks
GNN models learn properties directly from the molecu-
lar structure and have shown high prediction accura-
cies for a variety of both pure component  [30, 61, 62] 
and mixture properties [32, 34, 63, 64]. Each molecule is 
represented as a graph with atoms as nodes and bonds 
as edges with corresponding feature vectors that contain 
atom and bond information, respectively. GNN mod-
els learn to extract local structural information about 
the molecular graph in graph convolutions that are then 
encoded into a vector representation. This molecular 
vector is then mapped to the property of interest by using 
a feedforward neural network. For a detailed description 
of GNN models, we refer the interested reader to over-
views in Refs. [29, 36, 65, 66].

(1)log Ptol/w = log

(

[S]tol

[S]w

)

,

(2)log Ptol/w =
�GTransfer

RT ln 10
=

�Gsolv
w −�Gsolv

tol

RT ln 10
,

(3)log P∞
tol/w = log

γ∞,s
w

γ
∞,s
tol

νw

νtol
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We use the Directed-Message Passing Neural Net-
work (D-MPNN) model implemented in python library 
chemprop v1.7, which has achieved high accuracies in a 
variety of molecular property prediction tasks  [67]. All 
datasets were split into 80-10-10 training-validation-
test proportions using chemprop’s default random split-
ting. We use the default molecular features [67] and we 
tune the model hyperparameters of the chemprop library 
using 100 iterations of Bayesian optimization for hyper-
parameter search (see supporting information for more 
detail), with the test set remaining completely unseen 
during model development. The best set of parameters 
is chosen based on the validation error to train the final 
model, which is provided in the supporting information. 
We then explore different training approaches.

We utilize three multi-fidelity approaches [42] to 
enhance the prediction of molecular properties: trans-
fer learning, feature-augmented learning, and multi-
target learning (see Fig.  2). Transfer learning (cf. 
Refs.  [68, 69]) leverages pretrained models on LF-QC 
dataset to fine-tune predictions on the HF-Exp dataset. 
The idea is to use the low fidelity QC data (LF-QC) to 
develop a broadly applicable model and then employ 
the high fidelity experimental data (HF-Exp) to increase 
model’s accuracy, thus enhancing the model’s predic-
tive capability with limited high fidelity data. Feature-
augmented learning (cf. Ref. [41]) combines the HF-Exp 

dataset and LF-QC dataset: first a model is trained on 
the LF-QC dataset and then the predictions are used as 
an additional feature to existing ones for training a new 
model on the HF-Exp dataset. The purpose of feature-
augmented learning is to integrate data of varying fidel-
ities with high correlation to improve the predictive 
accuracy. Multi-target learning or multi-task learning 
(cf. Refs. [70, 71]) simultaneously predicts both experi-
mental (HF-Exp dataset) and synthetic (LF-QC dataset) 
properties using a single model, aiming to exploit the 
interdependencies between different properties. This 
approach therefore aims to utilize information from 
multiple related tasks (predicted and experimental 
data) to improve the overall learning process and model 
robustness.

Results & discussion
We now present a comparison of the D-MPNN predic-
tion performance, focusing on the different multi-fidelity 
learning approaches, to conclude if one is more suitable 
than the others. We then compare these models with 
other existing models from the literature that can be used 
for toluene/water partition coefficient prediction to eval-
uate the multi-fidelity learning approaches overall.

Fig. 2  Overview of different multi-fidelity approaches for training the graph neural network models. Panels a–c depict the transfer learning, 
the feature-augmented learning, and the multi-target learning approach, respectively
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Comparison of multi‑fidelity learning approaches
Table  2 first shows the performance of the D-MPNN 
models on the EXT-Zamora and EXT-SAMPL9 data-
sets. As described in Section “Dataset”, the EXT-Zamora 
contains molecules that are similar to the training sets 
(LF-QC and HF-Exp) in terms of molecular weight and 
log P range, thereby providing insight into the predictive 
capability within a similar molecular space. In contrast, 
the EXT-SAMPL9 dataset consists of relatively larger 
molecules, allowing us to evaluate the models’ gener-
alization capabilities. We report the performance of 
various D-MPNN models, including single-task, transfer 
learning, multi-target learning, and feature-augmented 
learning.

The single-task D-MPNN model is trained on HF-Exp 
only and thus serves as a baseline to evaluate whether 
the inclusion of LF-QC data in the different multi-fidel-
ity approaches can improve prediction accuracy. The 
single-task model achieves an RMSE of 0.63 log P units 
and R 2 of 0.86 on the EXT-Zamora and an RMSE of 1.32 
log P units and R 2 of 0.65 on the EXT-SAMPL9 dataset. 
The lower accuracy observed on EXT-SAMPL9 data-
set is expected, as this dataset tests the generalization to 
larger molecules. For completeness, we train also a sin-
gle-task D-MPNN model on the LF-QC and the models 
shows comparable performance, with slight differences 
in RMSE and R 2 values (Table  2). For comparison with 
a traditional Quantitative StructureActivity Relation-
ships (QSAR) method, we also trained a Random-Forest 
regressor on ECFP4 fingerprints generated from the 
combined LF-QC+HF-Exp set, retaining the experimen-
tal value whenever a molecule appeared in both sources. 
This fingerprint model attains an RMSE/R2 of 0.88 log P 
units/0.74 on EXT-Zamora and 2.51 log P units/−0.26 on 
EXT-SAMPL9, markedly worse than any D-MPNN vari-
ant and thus underscoring the benefit of the graph-based 
approach.

Now considering the multi-fidelity approaches, we find 
that transfer learning, where the model is sequentially 
trained on the LF-QC dataset and HF-Exp dataset, shows 
an improvement over single-task training with an RMSE 

of 0.51 log P units and R 2 of 0.91 on the EXT-Zamora and 
an RMSE of 1.14 log P units and R 2 of 0.74 on the EXT-
SAMPL9 dataset. The multi-target learning approach, 
which simultaneously trains on both LF-QC and HF-
Exp datasets, performs even better, achieving an RMSE 
of 0.44 log P units and R 2 of 0.93 on the EXT-Zamora 
and an RMSE of 1.02 log P units and R 2 of 0.79 on the 
EXT-SAMPL9 dataset. The feature-augmented learning 
approach, which sequentially trains on LF-QC and HF-
Exp datasets, does not perform as well as the multi-target 
learning approach, with an RMSE of 0.81 log P units and 
R 2 of 0.78 on the EXT-Zamora and an RMSE of 1.16 log P 
units and R 2 of 0.73 on the EXT-SAMPL9 dataset. It thus 
does not improve the predictive quality compared to the 
single-task model on the EXT-Zamora, but only on the 
EXT-SAMPL9 dataset. For the overall predictive qual-
ity in terms of RMSE and R 2 , multi-target learning thus 
yields the highest improvement over single-task learning 
and is therefore most effective, see Table 2.

Impact of molar mass
Figures  3 and 4 further show the parity plots, i.e., pre-
dicted against the experimental data, of EXT-Zamora 
and EXT-SAMPL9 datasets for the different multi-fidel-
ity approaches. The dashed lines indicate an error of ± 1 
log P units. To analyze the impact of the molar mass on 
the performance of the models, we also indicate different 
weight ranges with colors.

For the EXT-Zamora dataset, the multi-target learning 
approach consistently shows the best performance across 
all molar masses. Only one molecule of 400  g mol−1 to 
500  g mol−1 is out of the range of ± 1 log P units (see 
Fig.  3b). The transfer learning approach also performs 
well, though slightly less effectively for larger molecules 
> 300 g mol−1 . The feature-augmented learning approach, 
however, shows higher variability, particularly for the 
middle-weight range (100  g mol−1 to 200  g mol−1 and 
200 g mol−1 to 300 g mol−1).

Similarly, for the EXT-SAMPL9 dataset, the multi-
target learning approach maintains the best performance 

Table 2  D-MPNN and Random Forrest (baseline) models performance comparison for EXT-Zamora [38] and EXT-SAMPL9 [24] datasets

Model Mode Dataset Split EXT-Zamora [38] EXT-SAMPL9 [24]

RMSE R2 RMSE R2

D-MPNN (this work) Single HF-Exp Random 0.63 0.86 1.32 0.65

D-MPNN (this work) Single LF-QC Random 0.71 0.83 1.34 0.64

D-MPNN Transfer Learning (this work) sequential LF-QC + HF-Exp Random 0.51 0.91 1.14 0.74

D-MPNN Multi-target (this work) simultaneous LF-QC + HF-Exp Random 0.44 0.93 1.02 0.79

D-MPNN Feature-augmented (this work) sequential LF-QC + HF-Exp Random 0.81 0.78 1.16 0.73

Random Forrest (baseline) Single LF-QC + HF-Exp Random 0.88 0.74 2.51 − 0.26
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across most weight categories (see Fig. 4). It shows par-
ticularly strong results for light molecules and less strong 
results for heavier molecules. Transfer learning remains 
competitive but again shows slight performance deg-
radation for heavier molecules. The feature-augmented 
learning approach continues to exhibit higher variability, 
especially for molecules in the 200 g mol−1 to 300 g mol−1 
and > 500 g mol−1.

Overall, the multi-target learning approach shows 
the highest predictive robustness across different molar 
masses.

Impact of chemical classes
We also investigate the model performance across differ-
ent chemical classes, and illustrate the results in Fig. 5. To 

analyze the impact of chemical classes on model perfor-
mance, we categorize molecules based on their chemi-
cal structures using SMARTS patterns and substructure 
matching. It is important to note that the overall number 
of molecules per class is very low (sometimes as few as 
one), indicating that additional data and further evalua-
tions will be needed to confirm these findings. In Fig. 5, 
the boxes represent the interquartile range with lines 
indicating the median values and the whiskers extend to 
1.5 times the interquartile range. The EXT-Zamora data-
set features a diverse set of chemical classes, including 
11 phenols, 5 ketones, 3 quinoline, 3 ethers, 3 alcohols, 2 
benzoic acids, 2 alkyl halides, and one each of aminophe-
nol, aniline, benzene derivative, and cycloalkane (5 mol-
ecules classified as other). The EXT-SAMPL9 dataset, in 

Fig. 3  Comparison of the multi-fidelity learning approaches on EXT-Zamora dataset colored by molar mass range for a feature-augmented learning, 
b multi-target learning, and c transfer learning. Dashed lines indicate an error margin of ± 1 log P units

Fig. 4  Comparison of the multi-fidelity learning approaches on EXT-SAMPL9 dataset colored by molar mass range for a feature-augmented learning, 
b multi-target learning, and c transfer learning. Dashed lines indicate an error margin of ± 1 log P units
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contrast, is less diverse compared to EXT-Zamora data-
set. It is a smaller dataset comprising a limited range of 
chemical classes, containing 4 pyridine derivatives, 2 
benzene derivatives, 2 anilines, and one each of phenol, 
ureide, ketone, aminophenol, and sulfonamide (3 mol-
ecules classified as other). An overview of the chemical 
class distributions in the LF-QC and HF-Exp datasets 
can be found in the supporting information.

The multi-target learning approach demonstrates the 
most consistent and lowest absolute differences in log P 
predictions across various chemical classes. For example, 

in the classes of alcohols, ethers, and alkyl halides, it 
shows significantly lower errors compared to feature-
augmented learning and transfer learning approaches. 
Interestingly, multi-target learning shows a great agree-
ment between predictions and experiments with a mean 
absolute lower lower than 0.5 log P units for the chemi-
cal classes aniline, ketone, and aminophenol for the EXT-
SAMPL9 dataset and keeps the same consistency for the 
EXT-Zamora dataset except for the chemical class ami-
nophenol. This indicates multi-target learning effectively 
captures the distinct characteristics of different chemical 

Fig. 5  Predictive performance of the different multi-fidelity learning approaches across various chemical classes in the a EXT-Zamora and b 
EXT-SAMPL9 datasets. Numbers in parentheses indicate the number of molecules in each chemical class
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structures by leveraging both LF-QC and HF-Exp data-
sets during training.

Transfer learning also performs well across various 
chemical classes but shows higher variability in classes 
such as benzene derivatives and amides. This variability 
suggests that while transfer learning can improve model 
accuracy by integrating different data types, it may still 
face challenges in fully capturing the intricate prop-
erties of more complex molecules. For instance, the 
errors are more pronounced in the benzene derivatives 
class in the EXT-Zamora dataset, indicating a potential 
limitation in handling aromatic systems. This might be 
due to the fact that not enough data are available for 
the fine-tuning step, as Vermeire and Green [32] have 
shown that transfer learning can achieve a great agree-
ment between predictions and experiments if enough 
high fidelity data are available.

The feature-augmented learning approach shows the 
highest absolute differences in several chemical classes, 
including ketones and benzene derivatives. This perfor-
mance suggests that the method’s sequential training 
on LF-QC and HF-Exp datasets may not be as effective 
in capturing the detailed chemical properties required 
for accurate log P predictions. The higher errors in the 
ketone class, particularly in the SAMPL9 dataset, high-
light the approach’s difficulty in balancing data contri-
butions from different fidelities, especially for complex 
chemical structures. This indicates that feature-aug-
mented learning requires careful handling to avoid poor 
performance in chemically diverse datasets, especially 
when few data is available for fine-tuning.

Comparison to other models
We further compare the best performing D-MPNN 
model, multi-target learning, to other semi-empirical 
and data-driven models from the literature, as shown 
in Table  3. Specifically, we consider two GNN models 
that provide infinite dilution activity coefficient (AC) 
predictions, namely Gibbs-Duhem-informed (GDI)-
GNNs trained on COSMO-RS activity coefficient data 
from our previous work  [72] and the Gibbs–Helmholtz 
(GH)-GNN [73] trained on experimental infinite dilution 
activity coefficient (IDAC) data from the DECHEMA 
Chemistry Data Series  [78]. To predict the partition 
coefficients, we employ the already trained models from 
Refs.  [72, 73], using Eq.  3. We calculate the molar vol-
umes with densities and molecular weights for toluene 
and water from the National Institute of Standards and 
Technology (NIST) Chemistry webbook [79]. We further 
include two GNN models based on the D-MPNN archi-
tecture trained on diverse datasets of COSMO-RS and 
experimental solvation Gibbs free energies, namely Sol-
vation GNN [32] and DirectML [74]. Here, the partition 
coefficients are calculated using the already trained mod-
els from Refs. [32, 74] along with Eq. 2. All GNN models 
use an ensemble approach, i.e., the prediction of multi-
ple models trained on different data splits are averaged 
to obtain a final prediction. In addition, we consider the 
MLR and RFR from Zamora et al. [38] that were fitted on 
the HF-Exp set. The partition coefficient values are taken 
directly from the original publication [38]. These two 
regression models use 11 input descriptors, including 
AlogP (octanol/water partition coefficient using Ghose–
Crippen atomic contributions  [80]), which shows a 58% 

Table 3  Model performance comparison for EXT-Zamora [38] and EXT-SAMPL9 [24] datasets

a Models are not trained on partition coefficients

Some molecules of the test set are included in the training set (in bold)

Some molecules of the test set might be included in the training set (the training set is not publicly available)

Model Mode Dataset Split EXT-Zamora  [38] EXT-SAMPL9 [24]

RMSE R2 RMSE R2

D-MPNN Multi-target (this work) Simultaneous LF-QC + HF-Exp Random 0.44 0.93 1.02 0.79

GDI-GNNa by  Rittig et al. [72] Ensemble COSMO-AC – 0.77 0.80 1.56 0.51

GH-GNNa by Sanchez Medina et al. [73] Ensemble DECHEMA IDAC – 1.23 0.48 1.69 0.43

Solvation GNNa by  Vermeire and Green [32] Ensemble COSMO & exp. G – 0.27 0.97 1.07 0.77
DirectMLa by  Chung et al. [74] Ensemble COSMO & exp. G – 0.37 0.95 1.04 0.78
MLR by  Zamora et al.[38] Single exp – 1.05 – 0.86 0.85
RFR by  Zamora et al. [38] Single exp – 1.13 – 0.84 0.86
COSMO-RSa results from  Nevolianis et al. [25] – COSMO – 0.60 0.88 1.23 0.70

openCOSMO-RSa by Müller et al. [23] – – – 1.74 − 0.73 2.37 − 0.35

MM/PBSAa by  Amezcua et al. [24] – – – – – 1.12 0.75

HANNAa (Clapeyron.jl) by  Walker et al. [75] – – – 1.71 0.01 2.01 0.19

UNIFACa (thermo) by  Bell et al. [76, 77] – – – 3.34 − 2.80 3.89 − 2.01
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correlation to the toluene-water partition coefficient, 
cf.  [38]. Lastly, we compare to two semi-empirical mod-
els: COSMO-RS and MM/PBSA  [24]. In the COSMO-
RS approach  [25], the geometry of each molecule is 
optimized at GFN2-xTB [46] level and further in the 
COSMO state using COSMOconf [81]. Next, the solva-
tion free energies of the molecules are calculated in water 
and toluene at infinite dilution using COSMOtherm [82]. 
In the MM/PBSA approach, each molecule is optimized 
using QM, followed by molecular dynamics geometry 
optimization, and solvation free energies in water and 
toluene are calculated. In this case, the partition coeffi-
cient values are obtained directly from the original pub-
lication [24].

The GDI-GNN model shows strong performance on 
EXT-Zamora dataset; however, its prediction accuracy 
is likely overestimated due to 16 of the 38 test set mol-
ecules being included in the training. In contrast, its per-
formance on the EXT-SAMPL9 set, which has no overlap 
with the training data, is lower. The GH-GNN model 
generally shows lower performance, and since its train-
ing data is not publicly available, we could not identify 
potential overlaps of training and test data. Interestingly, 
activity coefficient GNN models are performing at level 
comparable to the top five models from the SAMPL9 
challenge  [24]. Yet, the activity coefficient GNN models 
show lower accuracy than the D-MPNNs directly trained 
on partition coefficients.

The Solvation GNN and DirectML models show high 
predictive quality; however, their accuracy is likely over-
estimated due to significant overlap between training and 
test molecules. For example, the experimental training 
data of Solvation GNN and DirectML contain, respec-
tively, 29 (34 for pretraining) and 35 of the 38 molecules 
of EXT-Zamora, and, respectively, 4 (7 for pretraining) 
and 14 of the 16 molecules of EXT-SAMPL9. In fact, we 
observe a similar accuracy of the Solvation GNN and 
DirectML on EXT-SAMPL9 compared to the multi-
target D-MPNN, although some molecules are already 
included in training, thus indicating at most comparable 
generalization capabilities.

The MLR and RFR models from Zamora et  al. [38] 
show varying performance. Both models achieve higher 
accuracy on the EXT-SAMPL9 dataset compared to the 
EXT-Zamora dataset. The high predictive accuracy on 
the EXT-SAMPL9 indicates the effectiveness of using 
molecular descriptors when available training data is 
limited, which has also been reported in recent com-
parisons of ML/GNN models with and without using 
QC descriptors [83]. However, these models are typically 
limited in their generalizability to molecules dissimilar 
from the training data. The higher accuracy on the pre-
sumably more distinct EXT-SAMPL9 set compared to 

EXT-Zamora (cf. Section “Dataset”) is thus unexpected. 
In fact, we find that the experimental data used for fitting 
contains a duplicate entry with EXT-SAMPL9, indexed as 
entries 79 (Aflukin) and 266 (Quinine)  [38]. This dupli-
cation might explain the better performance observed on 
the EXT-SAMPL9 dataset compared to the EXT-Zamora 
dataset. However, after retraining the models without 
the duplicate entry, the RMSEs for EXT-Zamora are 1.12 
(MLR) and 1.04 (RFR), while for EXT-SAMPL9, they are 
0.94 (MLR) and 0.90 (RFR), indicating that the duplica-
tion had only a minor impact on the results. We thus find 
lower accuracy of the MLR and RFR compared to the ML 
models for EXT-Zamora and slightly reduced accuracy 
for EXT-SAMPL9.

The COSMO-RS and MM/PBSA models from the 
SAMPL9 challenge show moderate performance on the 
EXT-SAMPL9 dataset but perform better on the EXT-
Zamora dataset. Despite their performance, they are 
outperformed by the D-MPNNs with multi-fidelity learn-
ing. It is important to note that the SAMPL9 challenge 
reports different r 2 values, which are not coefficients of 
determination R 2 ; therefore, the R 2 values here have 
been recalculated for consistency. Additionally, we evalu-
ated openCOSMO-RS as an open-source alternative to 
COSMO-RS, which showed limited accuracy on both 
datasets, primarily due to its current single-conformer 
limitation as discussed in the methods section (see sup-
porting information). Last, the thermodynamic models 
HANNA and UNIFAC show limited performance on 
both datasets, with particularly poor R 2 values, suggest-
ing that these methods may struggle with the molecular 
diversity present in these datasets. The absence of con-
formational flexibility in these approaches could be a 
significant limitation for larger, more flexible molecules 
where conformational effects play a crucial role in parti-
tion behavior.

Conclusion
In this work, we investigated multi-fidelity learning 
approaches with GNN models for predicting toluene/
water partition coefficients for which experimental 
data are only readily available in the order of a few hun-
dred values. First, we used COSMO-RS to create a low 
fidelity dataset of partition coefficients for about 9000 
molecules. The low fidelity data in combination with 
the available high fidelity experimental data was then 
utilized for training GNN models. Our results showed 
that multi-target learning, i.e., predicting low fidel-
ity and high fidelity target properties with one GNN 
model, yields substantial accuracy increases to train-
ing a GNN model on the experimental data only and 
is superior to transfer learning and feature-augmented 
learning. We further found competitive accuracy of 
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the multi-target GNN model compared to other pre-
dictive models, e.g., based on activity coefficients and 
solvation free energies, and other methods such as 
COSMO-RS. Overall, the comparison of the different 
approaches for partition coefficient predictions shows 
that direct training on log P data is most effective. Here, 
multi-fidelity learning in the form of multi-target learn-
ing substantially increases the predictive accuracy. This 
is particularly interesting as the multi-target learning 
approach presumably requires the least training and 
model changes, i.e., just an additional model output, 
and is thus straightforward to implement. Generating 
additional molecular property data through QC cal-
culations for training predictive ML models like GNN 
models is thus highly promising to enhance the predic-
tive quality when available experimental data is limited, 
such as for toluene/water partition coefficients. How-
ever, it is important to acknowledge that the availability 
of high fidelity data remains a significant challenge and 
the extrapolation to new chemical classes cannot be 
fully resolved with multi-fidelity learning approaches 
leveraging large low-fidelity datasets.

Future work could consider multi-target learning 
with low and high fidelity datasets for multiple molecu-
lar properties, e.g., combining activity coefficients, sol-
vation free energies, and partition coefficients. For this, 
also thermodynamics relationships between the prop-
erties could be integrated into the model training and 
architecture, as, e.g., in [84, 85], aiming at more general 
predictive models.
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