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Digitalizing metallic materials from image
segmentation to multiscale solutions via
physics informed operator learning

Check for updates

Shahed Rezaei1 , Kianoosh Taghikhani1, Alexandre Viardin1, Reza Najian Asl2, Ali Harandi3,
Nikhil Vijay Jagtap4, David Bailly4, Hannah Naber5, Alexander Gramlich5, Tim Brepols3,
Mustapha Abouridouane6, Ulrich Krupp5, Thomas Bergs6 & Markus Apel1

Fast prediction of microstructural responses based on realistic material topology is vital for linking
process, structure, and properties. This work presents a digital framework for metallic materials using
microscale features. We explore deep learning for two primary goals: (1) segmenting experimental
images to extract microstructural topology, translated into spatial property distributions; and (2)
learning mappings from digital microstructures to mechanical fields using physics-informed operator
learning. Loss functions are formulated using discretized weak or strong forms, and boundary
conditions-Dirichlet and periodic-are embedded in the network. Input space is reduced to focus on
key features of 2D and 3D materials, and generalization to varying loads and input topologies are
demonstrated. Compared to FEM and FFT solvers, our models yield errors under 1–5% for averaged
quantities and are over 1000× faster during 3D inference.

Multiscale material modeling is essential for optimizing metallic materials
and linking process parameters to product performance. Integrated com-
putational materials engineering (ICME) combines approaches across
scales, from atomic interactions and phase diagrams (CALPHAD) to phase
field models and finite element simulations. While these methods excel in
material design, their real-time application during production is limited by
computational demands. This challenge is critical as the shift towards a
circular steel economy introduces variability in compositions and process
parameters1.

Digital twins2,3 and digital shadows (DS)4 have been explored as
solutions for real-time feedback. However, these concepts are unsuitable for
describing materials during production due to their multi-layered nature.
To address this, the digitalmaterial twin (DMT) anddigitalmaterial shadow
(DMS) were introduced5. The DMT integrates the nano-, micro-, and
macroscopic material structures, enabling comprehensive material
description during processing. This framework accelerates material inno-
vation and improves predictions for properties like strength and durability,
bridging microstructural design to large-scale applications.

Adigitalmaterial shadow framework6 is crucial for capturingdata from
machines and simulations, enabling cross-domain collaboration and
defining real-world applications. This is especially relevant when micro-
structures evolve through distinct processes, as in drive shaft

manufacturing7, involving forging, heat treatment, andmachining.Using an
ICMEapproach, theDMS tracks productiondata to predictmicrostructural
changes at each stage, as shown in Fig. 1. The final microstructure analysis
supports evaluations of local properties like surface integrity and compo-
nent service life.

The microstructure of the workpiece, material 42CrMo4 (1.7225),
through the forging process undergoes static and dynamic recrystallization,
resulting into an austenitic microstructure at the end. As this workpiece
cools during heat treatment, the two-phase ferrite perlite microstructure is
formed, which determines the properties of the material. The local prop-
erties are thus to be analyzed from the microstructure for the DMS of the
shaft component.

The first challenge to address is the automatic detection of dif-
ferent microstructural features from experimental images, creating a
digitalized version of the material for further analysis. The application
of artificial intelligence (AI), particularly deep learning and convolu-
tional neural networks (CNNs), has recently garnered significant
attention for automating the identification, categorization, and analysis
of material properties from two-dimensional experimental images8,9.
Agbozo and Jin10 utilized Mask R-CNN11 to segment carbide particles,
achieving an accuracy exceeding 90%. Similarly, Fu et al.12 employed
Faster R-CNN13 with transfer learning to detect dendrite cores in
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Ni-based superalloys, demonstrating high precision. Studies by
Mulewicz et al.14 and Elbana et al.15 validated the utility of CNNs for
classifying microstructural features in steels and ultrahigh carbon steel,
while Banerjee and Sparks16 applied CNNs to categorize dendritic
microstructures. Liotti et al.17 developed a supervised method that used
real-time X-ray imaging to monitor crystal nucleation events during
aluminum alloy solidification, achieving remarkable accuracy with
automated image analysis algorithms. Further advancements by
Breumier et al.18, Martinez-Ostormujof et al.19, and Germain et al.20

demonstrated that U-Net-based deep learning models21 surpassed
conventional thresholding techniques for tasks such as graphite shape
characterization and phase discrimination in steels. The reviewed
articles and advancements clearly demonstrate the potential of deep
learning to automate the digitalization of experimental images,
enabling the next level of progress in computational aspects.

In order to link macroscopic properties directly to the microscale
without any ad-hoc assumptions, one needs to solve the microscale with
appropriatenumericalmethods.Notable examplesof simulation techniques
include finite difference, finite volume, spectral methods22, boundary ele-
ment methods23–25, virtual element method26–28 and finite element methods
(FEM)29. See also examples literature on FE2 methods30–32, a review of FE-
FFT-based two-scale methods22 and hybrid DL-FE based ones for
multiscaling33,34.

Despite their predictive power, obtaining the solution from these
methods can easily become time-consuming,which is problematic formany
upcoming design applications. Secondly, as soon as any parameter changes
(e.g., the morphology of the microstructure), one has to recompile the
adapted model and redo the computation to obtain the new solution. In

other words, the standard solvers are limited to one particular boundary
value problem (BVP) and do not seem to be a sustainable and green choice,
since they are designed to be used only once.

Deep learning (DL) methods provide solutions to the stated problem
by leveraging their interpolation capabilities. For an overview of the
potential of deep learning methods in the field of computational material
mechanics see refs. 35–37. The interpolation power of deep learningmodels
is raised to a level that encourages researchers to train the neural network to
learn the solution to a given boundary value problem in a parametric way.
This idea is nowpressed as operator learning,which involves themappingof
two infinite spaces or functions to each other. In the ideal case, the eva-
luation of a single forward pass of a neural network is similar to analytical
solutions for partial differential equations, which provide the solution in a
very fast way and under any given physical parameters. Some well-
established methods for operator learning include but are not limited to,
DeepOnet38, Fourier Neural Operator39, Graph Neural Operator40 and
Laplace Neural Operator41,42.

In this category, the data for the training is obtained from the available
resources or by performing offline computations and/or experimental
measurements for a set of parameters of interest. The idea can also be
combined with different architectures of convolutional neural networks
(CNN), recurrent neural networks, etc., depending on the application.
Winovich et al.43 proposed and trained networks that are capable of pre-
dicting the solutions to linear and nonlinear elliptic problems with het-
erogeneous source terms. Yang et al.44 employed a DL method to predict
complex stress and strain fields in composites. Mohammadzadeh and
Lejeune45 provided a dataset for mechanical tests under various conditions
and heterogeneities and predicted full-field solutions with MultiRes-WNet

Fig. 1 | Data pipeline of the drive shaft digital material shadow. The production
data and simulation results in each step of process chain is used in reducedmodels to
predict the localmicrostructure and thematerial properties. The reducedmodels can
be AI based or analytical, all linked by a data pipeline. By employing physics-

informed operator learning, we aim to map the microstructure property to its
mechanical deformation field. Consequently, this approach eliminates the necessity
of data generation in forward problems.
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architecture. Koric et al.46 applied the DeepONet formulation to solve the
stress distribution in homogeneous elastoplastic solids with variable loads
andmaterial properties. Lu et al.47 employed a deep neural operator to learn
the transient response of interpenetrating phase composites under dynamic
loading. He et al.48 introduced a deep operator network with a residual
U-Net to predict elastic-plastic stress response for complex geometries
under variable loads. To further explore this topic, one canfind comparative
studies on available operator learning algorithms49,50. Despite their benefits,
deep learning methods face challenges: high training costs, limited perfor-
mance beyond training data, and ensuring physical consistency in
predictions.

Another mainstream goes in the direction of integrating the model
equations into the loss function of the neural network51,52. It is known as
Physics-InformedNeuralNetworks (PINNs) as introduced byRaissi et al.53.
When the underlying physics of the problem is completely known, we can
train the neural network without any initial data. Among many contribu-
tions, see its applications in fluid dynamics54,55, solid mechanics56–59, and
constitutive material behavior60,61. On the other hand, applying PINNs to
forward problems without any training data remains an active area of
research. To date, PINNs generally maymatch classical numerical methods
(e.g., FEM) in terms of accuracy and computational efficiency for fixed
boundary value problems57.

An emerging area of research explores combining operator learning
with PINNs. For example, Li et al.62 used Fourier neural operators to inte-
grate training data and physical constraints. Wang et al.63 introduced
physics-informedDeepONets, enforcing physical laws through soft penalty
constraints to improve prediction accuracy and reduce training data needs.
Other approaches include combining CNNs with physical constraints64–66,
and Zhang andGu67 trained PINNs on digitalizedmaterials without labeled
data, using minimum energy criteria. Zhang and Garikipati68 proposed
encoder-decodermodels to solve differential equations in weak form across
varying conditions. In these methods, automatic differentiation is mainly
used to build the loss function from physical knowledge.

Despite the current active progress reviewed above, key challenges
remain. Accurately capturing high-frequency oscillations and sharp dis-
continuities is still difficult, and the generalizability of suchmodels to out-of-
distribution cases or different resolutions is not yet fully understood espe-
cially in the context ofmaterialsmicromechanics.Moreover, eliminating the
need for data generation by directly combining deep learning with classical
numerical methods opens a promising research direction. Finally, an end-
to-end pipeline-from image segmentation to solution prediction-remains
largely unexplored (see also Fig. 1).

In this paper, we propose a novel method combining ideas from
numerical methods (e.g., finite element and fast Fourier transform) for
loss construction and neural operators to efficiently predict mechanical
behavior in heterogeneous polycrystalline solids. By discretizing the loss
function, we handle complex geometries and boundary conditions while
improving training efficiency. The approach maps elasticity parameters
to deformation states. Additionally, automated image segmentation is
integrated to create digital microstructure representations, allowing

direct use of light optical as well as scanning electron microscopy (LOM
and SEM) for material property prediction (see e.g., 69,70). This stream-
lines theworkflow and extends applicability to complexmicrostructures,
such as bainitic steels.

Results
Preparation of collocation fields
Theneural network introduced inSection “Method” shouldbe trainedusing
initial input samples representing theYoung’smodulus distribution.On the
other hand, these samples should align with the realistic LOM images. It is
important to note that the training process is entirely unsupervised (i.e., no
FE solution is required) and random fields are sufficient to initiate the
training by having the loss function based on discretized FEM residual
vector.

In this work, we focus on the study of dual phase polycrystalline
materials. Additionally, to ensure the completeness of the proposed meth-
odology and the provided study strategies, we will also explore training the
model for multiphase heterogeneousmaterials. These types of materials are
commonly found in many alloys and composite materials71,72. An overview
of the LOM-based investigations, along with examples of randomly gen-
erated two-phase and multiphase polycrystalline structures, is shown in
Fig. 2.

The samples that were examined were from shafts made of 42CrMo4
(1.7225). In order to be able to examine the sample under the light micro-
scope, small pieceswere first removed from the shaft, whichwere thenheat-
embeddedwithATMDuroplast blackwith graphite. The embedded sample
was then grinded with silicon carbide paper up to 2500 grit and polished
with a diamond paste. To make the microstructure visible, the surface was
etched with three percent nitric acid.Microstructural images with a 100x or
500x magnification were then taken using a Leica DM 2500 reflected-light
microscope and SIS software. The samples show a ferritic-pearlitic micro-
structure. The majority of the micorstructure is pearlitic, with some ferritic
grains on the prior austenite grain boundaries.

On a typical production line, after forging one end of the shaft, the
gripping end is forged after reheating. This produces two distinct micro-
structures in two different parts of the workpiece. Thus during experi-
mentation, one shaftwas forgedwithout reheating, the otherwas cooled and
reheated. The different process steps resulted in different grain sizes. The
samples with reheating were coarser than the samples without reheating.

Our objective is tomodify themorphology of thesemicrostructures by
controlling the number and distribution of grains. We have developed a
straightforward yet effective algorithm to generate random input files,
allowing control over the shape, quantity, and spatial distribution of grains.
Although inspired by LOM images, the algorithm is adaptable and can be
customized fordifferent applications asneeded.Adetaileddescriptionof the
algorithm is described in Supplementary Information.

For the LOM images, we converted them to grayscale and performed
inference using the same trained network. The ferrite appears white in the
original images, and the conversion to grayscale enhances its brightness. As
a result, theMaskR-CNNmodel, trained on solidification results, effectively

Fig. 2 | Polycrystalline-based microstructures of
42CrMo4. Left: LOM image of a ferritic-pearlitic
steel grade. Right: Artificially generated random
samples for unsupervised training of the finite
operator learning framework.
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segments grains surrounded by ferrite and large ferrite grains. This provides
a reasonable approximation of the grain distributions and sizes.

An example of the inference results is shown in Fig. 3. In Fig. 3a, the
initial microstructure image, used as input for the Mask R-CNN model, is
displayed. The segmentation results are presented in Fig. 3b, where the
contours primarily align with the ferrite precipitates. From Fig. 3b, we
selected a specific area, as shown in Fig. 3c. Based on the contours in Fig. 3c,
we isolated each grain individually, with each grain represented in different
colors in Fig. 3d. Finally, we propagated these grain contours isotropically to
create a Voronoi structure, as shown in Fig. 3e.

This image will serve as input for the nextmodel by assigning different
material properties to each identified phase. Given a segmented micro-
structure image with distinct phases, the spatial distribution of a material
property E(X), such as Young’s modulus, can be defined as:

EðXÞ ¼ Ei if X 2 Ωi; ð1Þ

where X 2 Rd is the spatial position (2D or 3D), Ωi denotes the region
occupied by phase i, Ei is the assigned material property for phase i. This
expression assigns a constant material property Ei to each spatial point X
based on the recognized phase from the segmented image.

We present a statistical analysis of the synthetic samples used to train
the FOL and SPiFOLmodels, highlighting differences between training and
test set topologies. For the 2D FOL model, 8000 dual-phase samples are
analyzed based on phase fraction and dispersion, as shown in Fig. 4.

The unseen test cases derived from segmentation exhibit similar pat-
terns to the artificially generated training samples. Their positions in the
histograms,marked by red dashed lines, indicate that while some fall within
the typical sample distribution, others lie further from the training data,
suggesting a degree of generalization challenge.

The setup for the 2D and 3D SPiFOL frameworks presents a more
challenging test for the deep learning models. Specifically, training was
performed solely on Fourier-based samples at a resolution of 323, while
testing involved higher-resolution samples (up to 1283) with entirely dif-
ferent topologies inspired by polycrystalline microstructures.

Unlike the 2D case-where test samples were obtained via image
segmentation-the 3D microstructures were synthetically generated to
represent the target material (See Figure. 5). In future work, one could
explore generative models to reconstruct 3D structures directly from 2D
images. For more details on sample generation, see73,74 and “Method” sec-
tion. To quantitatively demonstrate that the test samples are out of dis-
tribution, we compute the Wasserstein distance between the training and
test images,which showsa clear deviation.Additional details are provided in
the Supplementary Information.

Network parameters
The algorithms developed in this study are implemented using JAX75 soft-
ware and themethodology can be adapted to other programming platforms
as well. A comprehensive summary of the network’s hyperparameters and
configurations for all the models is provided in Table 1.

The hyperparameters listed inTable 1were selected based on extensive
experimentation and represent configurations with some of the best per-
formance. We explored the effects of various activation functions, network
architectures, batch sizes, and even multi-stage training strategies to
improve network initialization. Model selection was guided by the average
error over 1000 reserved test samples in the final stage. For the FOL fra-
mework, we found that Swish and LeakyReLU activation functions per-
formed best. Other activation functions, such as tanh, often led to trivial
solutions dominated primarily by the boundary conditions.

Increasing the number of layers and neurons generally improved
accuracy, but at the cost of higher training time. The final architecture
balances performance and efficiency, based on systematic trial and error
rather than global optimization (see Supplementary Information).
Regarding batch size, we recommend using ~10% of the training dataset.
Smaller batches lead to slower training but can yield better accuracy, while
larger batches accelerate training but may be limited by GPU memory.
Showing the network moderate-sized batches may also help avoid con-
vergence to trivial solutions dominated by boundary conditions. For the
SPiFOLmodel, increasing the number of Fourier layers andmodes tends to
improve performance, as illustrated in Supplementary Information.

Fig. 3 |An example of the inference results. a Initial
image provided to the Mask R-CNN model (before
conversion to grayscale); b Segmentation results
using Mask R-CNN; c Specific area from the region
outlined by the black square in (b); d Isolated grains
based on the contours in (c); eVoronoi construction
derived from (d).

Fig. 4 | The histogram of training and some of
unseen test samples. These samples are used for the
unsupervised training of FOL in a 2D setting and are
generated using Voronoi-based parameterization.
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The loss function for training all models follows a standard decay over
epochs, as shown in Supplementary Information. We stopped the training
when there is no significant improvement by increasing epochs.

Quadro RTX 6000s with 24GB of RAM is utilized for the training of
all models. An important aspect of parametric training for the proposed
network is the proper initialization of its free parameters. From a
mathematical perspective, we are dealing with a multi-objective opti-
mization problem with a highly complex loss function. This loss func-
tion aims to map microstructural features to the physical solution space
while strictly satisfying boundary conditions. Consequently, it is highly
challenging to avoid local minima and trivial solutions that fail to cap-
ture the complex deformation patterns in heterogeneous material sys-
tems. This challenge is commonly associated with capturing high
frequencies and sharp jumps in the solution response, as well as ensuring
the network remains unbiased toward these features. To address this
issue, we drew inspiration from transfer learning. Specifically, we gra-
dually train the system using an increasing number of samples, rather
than training the network all at once with the entire set of randomly
generated samples. This stepwise approach enables the network to
progressively refine its performance, benefiting from improved initi-
alization at each stage.

For thematerial parameters,weprimarily focus onvarying theYoung’s
modulus. The normalized values range from 0.05 to 1.0, depending on each
example. We intentionally examine a wide range of phase contrasts to
demonstrate the applicability of the proposed approach to higher phase
contrast values, which are common in various material engineering appli-
cations. In other words, for the training we go beyond the typical properties
of 42CrMo4 (1.7225). In the “Result” section, we specify the corresponding
values for each test case. Furthermore, for the multiphase material system,
random values are assigned to each grain. These values are normalized so
that the normalized Young’s modulus values remain between 0 and 1.

Finally, we address the applied boundary conditions. In the first set of
studies with the 2D setup, we focus on an arbitrary set of boundary con-
ditions (BCs), which consist of amix of Dirichlet andNeumann conditions.
The applied displacement on the right edge is (UR, VR) = (0.05, 0.05) mm,
while the upper and lower edges remain traction-free.

For the SPiFOL setup, where periodic boundary conditions (PBCs) are
enforced, the macroscopic strain tensor, denoted by �ε, is fixed for all
reported results, as

�ε2D ¼ 0:05 0:0

0:0 0:0

� �
; and �ε3D ¼

0:05 0:0 0:0

0:0 0:0 0:0

0:0 0:0 0:0:

264
375: ð2Þ

For the 3D setup within the FOL framework, we aim to learn the
solution for randomly applied boundary conditions, while the micro-
structure topology remains fixed. In this setup, the back surface is fixed,
arbitrary boundary conditions are applied to the front surface, and all other
surfaces are traction-free.

FOLprediction for 2D test cases: learning ondifferent topologies
We train the network using the parameters listed in Table 1 and the arti-
ficially generated samples discussed in Fig. 4 and Supplementary Infor-
mation. Once training is complete, we evaluate the performance of the deep
learning model on unseen test cases derived from segmented LOM images,
as described in Section “Method” and illustrated in Fig. 3. The evaluation
results for the 2D cases are presented in the following sections.

The results presented in the following are selected examples from the
test set, consisting of either segmented images or synthetically generated
samples with similar characteristics such as grain size and phase fraction.
More comprehensive statistical analysis and systematic error evaluations of
the trained models are provided later. Note that most results show the
absolute pointwise error between the DL model and classical FEM or FFT
solvers. While this is common in the operator learning literature, relative
errors are lessmeaningful here due to potential division by zero. Instead, we
later report relative errors of homogenized (averaged) quantities, which
offer more useful insights for future multiscale applications. For con-
venience, all the reported values are presented in normalized notation.
Further error analysis and comparisons of computational costs are provided
later on.

In Figs. 6 and 7, the solutions obtained from FOL and FEM for the
deformation component U are compared, showing an excellent match
between the two methods. Similar results are observed for the deformation
component V, although these are not shown for brevity.

In Fig. 8, we repeat the same study for a multiphase polycrystalline
material, where similar observations confirm the effectiveness of the pro-
posed approach for approximating solutions solely based on governing
equations. Next, we use the predicted deformation components from the
trained network, apply spatial gradients based on standard FEM routines,
and calculate the stress components.

InFig. 9, the comparison is presented for the stress components σxx and
σyy. While the overall behavior matches very well, small fluctuations in the
predicted solution lead to slightly more oscillatory behavior in the DL
model. Nevertheless, the peak values and averages are captured with less
than 5%. Here, FOL is trained to predict displacement, not stress directly.

Table 1 | Summary of the network parameters

FOL 2D Learning on heterogeneity

Inputs, Outputs [Xj, Yj, Ej], [{Ui} = {U1,⋯ , UN}, {Vi} = {V1,⋯ , VN}]

Activation function Swish (initial training) and Sigmoid/LeakyRelu
(for re-training)

Layers and neurons [2000, 2000]

Number of samples 1, 10, 100, 200, 500, 1000, ⋯ , 8000

Batch size 10% of Number of samples

Learning rate 10−4

Number of epochs 2000 for each step

SPiFOL 2D Learning on heterogeneity

Inputs, Outputs [E(X)], [εxx(X), εyy(X), εxy(X)]

Latent size 32

Fourier layers and modes 3, 16

Number of samples 8000

Batch size 20

Activation function Gelu

FOL 3D Learning on BCs

Inputs, Outputs [Ub,j, Vb,j, Wb,j], [{Ui}, {Vi}, {Wi}]

Activation function Swish

Layers and neurons [100, 100]

Number of samples 1, 10, 100, 200, 400, 600, 800

Batch size 10% of Number of samples

Learning rate 10−4

Number of epochs 2000 for each step

SPiFOL 3D Learning on heterogeneity

Inputs, Outputs [E(X)], [εxx(X), εyy(X), εzz(X), εxy(X), εxz(X), εyz(X)]

Latent size 32

Fourier layers and modes 3, 16

Number of samples 8000

Batch size 20

Activation function Gelu

The first and second sections pertains to the 2D examples via FOLmodel andSPiFOLmodels, while
the third and fourth sections summarize the network details for the 3D setup using FOL and SPiFOL
model. For all the models, Adam Optimizer85 is used.
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Fig. 6 | Results of the FOL model. Prediction of the displacement field for an unseen test case (Case 1).

Fig. 7 | Results of the FOL model. Prediction of the displacement field for an unseen test case (Case 2).

Fig. 5 | Unsupervised training of SPiFOL in a 3D
setting. Training samples are based on Fourier
parametrization. For testing, we use extreme out-of-
distribution samples derived from polycrystalline
microstructures.
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Although displacement errors are low, stress errors can be amplified due to
sensitivity to derivatives, which explains the higher errors. A potential
solution is to train the model to predict stress directly, as demonstrated in
the next section. An alternative not explored here would be to enhance FOL
using a mixed formulation to directly learn stress fields, as suggested in
ref. 57.

SPiFOL prediction for 2D test cases: learning on different
topologies
The SPiFOLmodel is now evaluated and tested on unseen periodic samples,
and the results of the predicted stress components are shown in Fig. 10 for
one unseen test case. Similar to the previous section, the results shown here
are a few representative cases for demonstration purposes. A more com-
prehensive statistical error analysis over larger test sets and varying training
sample sizes will be presented later.

The stress profile errors are lower in the SPiFOL model compared to
the FOLmodel. This improvement arises because the SPiFOL model’s loss
function directly targets the strain components, which can be used to
evaluate the stress. In contrast, the FOL framework, while accurately cap-
turing the deformation field, shows increased errors in predicting spatial
derivatives due to their higher sensitivity to deviations. It is important to
note that SPiFOL, based on the FNO architecture and FFT algorithm, is
restricted to regular grids with periodic topologies.

It is important to note that the test sample topologies shown above
satisfy geometric periodicity and may not exactly replicate experimental
microstructures. Nevertheless, they preserve key statistical features such as
grain count, phase fraction, andphase contrast. Additionally, these test cases
represent challenging scenarios, as the SPiFOL model was trained exclu-
sively on Fourier-based samples without prior exposure to any Voronoi-
based structures.

Extension to 3D: learning on different boundary conditions
Here, the model learns with respect to the applied Dirichlet boundary
conditions on the front surface. The morphology of the microstructure is
kept constant, representing a chosen volume element, while we investigate
how deformation and stress components develop under various boundary
conditions.

The details of the boundary value problem are illustrated in Fig. 11,
where two different cases with two-phase and multiphase polycrystalline
materials are analyzed. For the meshing process, the approach is highly
adaptable, allowing the use of either structured or unstructuredmesheswith
any element type, seamlessly integrated into the proposed FOL framework.

For more details on the type and distribution of the training
samples as well as the NN hyperparameters, see Supplementary
Information. According to Fig. 12 where distribution plots of the
Dirichlet boundary condition components are shown, the selected test

Fig. 8 | Results of the FOL model. Prediction of the displacement field for an unseen test case (Case 3).

Fig. 9 | Results of the FOL model. Prediction of the stress field for an unseen multi-phase test case (Case 3).
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cases are intentionally chosen outside the typical range to evaluate the
interpolation capability of the trained network.

Deformation magnitude (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ V2 þW2

p
), as well as the σx stress

component are reported. For the two-phase 3Dvolume element, we present
two entirely different test cases for the applied deformation: one

predominantly in tensile mode and the other primarily involving shear and
compression, as illustrated in Fig. 13. The corresponding predicted values
for the stress component σx are shown in Fig. 14. Due to the strong het-
erogeneity, we observe sharp jumps in the deformation and stress fields,
which are both captured very accurately.

Fig. 10 | Results of the SPiFOL model. Prediction of the stress field for an unseen test case (Case 4).

Fig. 11 | 3D microstructure and its corresponding mesh. This test is used to learn the system response under arbitrary loading directions.
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Extension to 3D: learning on different topologies using SPiFOL
Finally, we examine the performance of the trained 3D SPiFOLmodel. The
test cases are selected to feature topologies similar to experimental images
and yet very different from those in the training set, and the evaluation is
carried out at various resolutions to assess the model’s zero-shot super-
resolution capability. Figures 15 and 16 compare the SPiFOL predictions
with those of the FFT solver for two selected stress components and two
representative morphologies: one dual-phase and one multi-phase poly-
crystalline microstructure.

In Fig. 17, we evaluate the same dual-phase polycrystalline test topol-
ogy at different resolutions. Importantly, no re-training is performed; the
model trained on a 323 grid is directly evaluated on finer grids of 643 and
1283. As expected, the maximum pointwise error increases with resolution,
primarily due tofine-scale features in themicrostructure thatmay bemissed
when training on lower-resolution data. This highlights the challenge of
applying models across significantly different resolutions. Therefore, we
recommend conducting a propermeshor grid convergence study, similar to
the one in Supplementary Information, before selecting the training
resolution.

A potential remedy is to integrate the model with microstructure-
embedded autoencoders, as proposed in ref. 76, to retain critical details lost
during downsampling. Nevertheless, when considering the error in

homogenized (averaged) stress values, the results remain low and within
acceptable limits. This suggests that SPiFOL effectively reduces the
dimensionality of the problem, enabling training at low resolutionwhile still
capturing meaningful averaged quantities when evaluated at higher
resolutions.

Computational costs and error analysis
Here, we evaluate the current methodology by comparing its performance
in training and evaluation against classical numerical solvers. The results of
suchcomparisons are summarized inTable 2. For brevity, FEMandFOLare
used for comparison, with similar trends also observed when comparing
SPiFOL to the FFT solver.

The test cases presented above demonstrate the potential of the trained
model to generalize to unseen scenarios, even those outside the training
patterns. In this section,we critically evaluate the performance of the trained
models using a larger set of test cases. Threemain aspects are explored: first,
we analyze the distribution of errors across a broader range of test samples,
examining variations in topology; second, we investigate the impact of the
number of training samples onmodel performance; and third, we compare
the purely physics-informed training (i.e., label-free) with a data-driven
approach, where we first solve for all training samples using classical
numerical solvers and then train the network using these labeled data. The

Fig. 12 | Distribution of the applied displacement
components. The colored markers represent selec-
ted test cases and the histograms depict the dis-
tribution of 1000 training samples. The test cases are
intentionally chosen outside the typical range.

Fig. 13 |Results of the FOLmodel.Prediction of the
displacement for two different unseen loading
directions.
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results of these investigations are summarized in the following figures. Note
that, due to the presence of two models and numerous possible variations,
we alternate between them for the sake of brevity in these studies. However,
similar results and trends are expected, unless stated otherwise.

In order to report the relative errors in percentage, we introduce the
following measure, which applies to an arbitrary quantity.

Relative Errorð%Þ ¼ ∣�̂ � �̂numerical∣
∣�̂numerical∣

× 100; �̂ ¼ 1
V

Z
V
� dV

Here, �̂ represents the volume-averaged value predicted by the model,
�̂numerical represents the volume-averagedvalueobtained fromthenumerical
method (e.g., classical FEM, FFT solver, etc.). Moreover, the volume-
averaged value is defined as �̂ is the volume-averaged quantity, V is the
volume over which the averaging is performed, • is the quantity of interest
(e.g., stress, deformation, etc.).

In the left panel of Fig. 18, the relative averaged error in displacement
components (primary field) over 500 unseen samples is shown. The trained

FOLmodel demonstrates excellent performance,with overall average errors
consistently below 4%. Dual-phase topologies exhibit slightly higher and
more widely distributed errors, reflecting the increased difficulty due to
sharp field variations. A similar level of accuracy is observed for stress
components, as discussed earlier, since local fluctuations have minimal
influence on averaged quantities. The overall relative error in homogenized
stress remains below 3%. Same pattern for the results also holds for the 3D
FOLmodel. In the3Dcase, the reported errors are even lower, as the training
was based solely on varied boundary conditions while maintaining a con-
stant topology. This observation suggests that the solution’s sensitivity to
topology is significantly higher than to the applied boundary conditions,
which aligns with intuitive expectations.

We now turn to the SPiFOL model. In Fig. 19, two key analyses are
presented. First, we observe how the error decreases as the number of
training samples increases. Second, we compare the error distributions
between two models: one trained with physics-informed constraints in
Fourier space, and another trained purely on data from an FFT solver.
Notably, the physics-informed model consistently outperforms the data-

Fig. 14 |Results of the FOLmodel.Prediction of the
stress field for two different unseen loading
directions.

Fig. 15 | Results of SPiFOLmodel.A3Ddual-phase
polycrystalline is used as an extreme unseen
test case.
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driven counterpart, showing both lower average errors and reduced stan-
dard deviation. Similar trends are also observed for the FOLmodel. In some
cases, the data-driven model captures only trivial solutions, missing critical
gradients arising from material heterogeneity, whereas the physics-
informed model better resolves such complexities. Same pattern of results
also repeat itself for the 3D SPiFOL model.

Discussion
This work discusses and aims to further motivate the application of
advanced deep learning algorithms for the chain of metallic material

engineering. We address two main challenges: one is translating experi-
mental images into digitized images for numerical analysis, and the second
is solving the system of equations via again DL techniques in a complex
heterogeneous domain.

To address the first challenge, we utilize Mask R-CNN deep learning
models to segment the LOM images of the metallic microstructure. The
backbone of the proposed model builds on established literature,
particularly77 and references therein. To address the second challenge, we
utilize the Finite Operator Learning method. This approach is data-free,
physics-informed, and notably supports parametric learning of partial dif-
ferential equations. The key novelty lies in formulating the loss function
using either the parametric discretized weak form or the strong form in
Fourier space. Furthermore, the proposed framework inherently satisfies
Dirichlet and PBCs through its architectural design. See also refs. 73,74,78.

We demonstrate the performance of DL models in 2D and 3D setting
with multi- and dual-phase distributions of properties, where we feed dif-
ferent topologies of themicrostructure (elasticity distribution) as input. The
results of the analysis show acceptable agreement compared to the classical
numericalmethod,making it an attractive surrogatemodel to replace costly
calculations for this particular set of materials.

While the proposed framework shows promising generalization-
especially with embedded physical constraints-it shares common limita-
tions of deep learning methods. Performance may decline when inputs
deviate significantly from the training distribution or when low-resolution

Fig. 16 | Results of SPiFOL model. A 3D multi-
phase polycrystalline used as an extreme unseen
test case.

Fig. 17 | Results of SPiFOL model. Upscaling the
results of SPiFOL (from 323 to 1283 grid points)
using zero shot super resolution.

Table 2 | Comparison of the computational costs

Averaged run-time

Training 2D (dual or multi phase) ≈40min

Training 3D ≈30min

Data generation (2D or 3D) Does not apply (method is data-free)

Network evaluation, 2D ≈0.1 ms

Network evaluation, 3D ≈0.6 ms

Finite element, 2D ≈0.3 s

Finite element, 3D ≈1.5 s
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models are applied to much finer grids, leading to local errors. However,
integral quantities remain accurate, underscoring the potential of neural
operators for zero-shot super-resolution in computational material
mechanics (see also ref. 79).

The current work can be extended in several important direc-
tions. Future efforts should incorporate anisotropic behavior and
nonlinear material responses such as plasticity and damage. Pro-
mising contributions in this direction have been reported in
refs. 60,80, where information on yield surfaces and evolution laws is
embedded into the physical loss terms.

The concept of FOL can be extended to other numerical methods such
as the Boundary ElementMethod24 and theVirtual ElementMethod27, both
of which are well-suited for simulating material micromechanics. VEM
provides enhanced meshing flexibility, broadening the applicability of tra-
ditional FEM approaches, while BEM offers significant mesh reduction
advantages for specific classes of problems.

The presented framework demonstrates strong potential for
advancing computational materials engineering. In particular, the
development of multiscale models and homogenized datasets lays a
foundation for improved machinability predictions and optimization
of manufacturing processes. These data-driven insights, when inte-
grated with Industry 4.0 technologies, offer a path toward real-time
monitoring and adaptive control. Furthermore, the generated data
can support Digital Twin systems for predictive simulation and
optimization. This approach is broadly applicable to machining, and
processes such as metal forming and additive manufacturing, and
future work will explore these directions in more detail.

Methods
In this work, we primarily focus on two-phase and multi-phase
material systems, addressing a broad range of potential applications
through two distinct models. The first model integrates ideas from
FEM and is designed to handle arbitrary combinations of Neumann
and Dirichlet boundary conditions, accommodating complex shapes
and geometries. The second model is tailored for PBCs and micro-
structures, leveraging spectral methods for efficient analysis. Both
models are constructed based on physical domain knowledge and do
not require any labeled data for training. Moreover, they are designed
to learn the governing equations in a parametric manner, enabling
them to generalize and solve a class of problems once the training
stage is complete. In what follows, we refer to the 2D formulation for
simplicity; however, extension to 3D is straightforward, and the
results of the 3D calculations are reported later.

Continuum model and elastic theory
Here we shall summarize the mechanical problem in a 2D hetero-
geneous solid where the position of material points is denoted by
XT = [x, y]. We denote the displacement components by U and V in
the x and y directions, respectively. The kinematic relation defines
the strain tensor ε in terms of the deformation vector UT = [U, V] and
reads:

ε ¼ symðgrad ðUÞÞ ¼ ∇sU ¼ 1
2

∇U þ ∇UT
� �

: ð3Þ

Fig. 18 | Error analysis of the FOL model. About 500 test samples for dual- and
multi-phase polycrystalline microstructures are evaluated using the trained 2D FOL
models. Higher errors are observed for the dual-phase case which is likely due to the

increased complexity and presence of high-frequency solution modes caused by
abrupt phase transitions.

Fig. 19 | Error analysis of the trained 2D
SPiFOL model. About 100 unseen test cases are
evaluated where we also compare its performance
against a purely data-driven method and examining
how the error decreases asmore training samples are
provided74.
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In the context of linear elasticity, we define the elastic energy of the solid as
ψlin ¼ 1

2 ε : CðXÞ : ε, where C is the fourth-order elasticity tensor.
Through the constitutive relation, one relates the stress tensor to the strain
tensor via σ ¼ CðXÞ ε; where we have CðXÞ ¼ ΛðXÞ I� Iþ 2μðXÞ Is.
Defining I as the second-order identity tensor and Is as the symmetric
fourth-order identity tensor, the above relation can also be written in the
following form

σ ¼ ΛðXÞ tr ðεÞ Iþ 2μðXÞ ε: ð4Þ

Here, we have position-dependent Lamé constants which can be written in
terms of Young’s modulus E and Poisson’s ratio ν as Λ = Eν/[(1− 2ν)
(1+ ν)] and μ = E/[2(1+ ν)]. Here, the elastic properties are phase-
dependent and vary throughout themicrostructure. Finally, themechanical
equilibrium in the absence of body force, as well as the Dirichlet and
Neumann boundary conditions, are written as:

div ðσÞ ¼ div ðCðXÞ∇sUÞ ¼ 0 in Ω ð5Þ

U ¼ �U on ΓD ð6Þ

σ � n ¼ t ¼ �t on ΓN ð7Þ
In the above relations,Ω andΓdenote thematerial points in the body andon
the boundary area, respectively. Moreover, the Dirichlet and Neumann
boundary conditions are introduced in Eq. (6) and Eq. (7), respectively.
Rewriting in theVoigt notation, we have σ̂ ¼ CðXÞε̂. Considering the plane
stress assumption in 2D, we write:

CðXÞ ¼ EðXÞ
1� ν2ðXÞ

1 νðXÞ 0

νðXÞ 1 0

0 0 1�νðXÞ
2

264
375: ð8Þ

Finite element method
By introducing δUT = [δU, δV] as standard test functions and performing
integration by parts, the weak form of the mechanical equilibrium problem
reads: Z

Ω
δε̂T CðXÞ ε̂ dV �

Z
ΓN

δUT �t dA ¼ 0: ð9Þ

The corresponding linear shape functionsN and the deformation matrix B
used to discretize the mechanical weak form. To compute these derivatives,
we utilize the Jacobian matrix J = ∂X/∂ξ.

Utilizing the standard finite element method, for each element the
deformation field, stress tensor σ̂ as well as elasticity field E, ν are
approximated as

U ¼ NU e; V ¼ NVe; E ¼ NEe; ν ¼ Nνe; σ̂ ¼ CBU e: ð10Þ

Here, UT
e , Ve, νe and ET

e are the nodal values of the deformation field and
elastic properties of element e. One can write the so-called discretized
residual vector for one element as

re ¼ �
Z

Ωe

½B�TC ½B�U e dV þ
Z

Ωt

½N �T C½Bue�Tn|fflfflfflfflffl{zfflfflfflfflffl}
�t

dS: ð11Þ

FFT-based homogenization
Building upon the approach proposed by81, the FFT-based homogenization
method begins with an additive decomposition of the strain field ε into the

macroscopic averaged strain field �ε and a fluctuation contribution eε
as ε ¼ �εþeε:

The constitutive relationship, we consider a homogeneous medium
with stiffness C0, leading to the expression for the stress field as
σ ¼ C0 : ð�ε þ eεÞ þ τ. Here, τ is the polarization stress, defined as τ ¼
C�C0� �

: �εþeεð Þ: The balance of linear momentum will then take the
form

div C0 : eε� �þ div τ ¼ 0: ð12Þ

By employing the Green’s function approach, Eq. (12) is converted to the
integral equation

ð13Þ

which is known as the Lippmann-Schwinger equation. In Eq. (13), is the
Lippmann-Schwinger or Green’s operator, which is expressed by the
following closed form in the Fourier space:

Γ̂
0
ijklðξÞ ¼

1

4μ0jξj2 δkiξ lξj þ δliξkξj þ δkjξ lξi þ δljξkξi

� 	
� λ0 þ μ0

� �
μ0 λ0 þ 2μ0
� � ξiξjξkξ ljξj4 :

ð14Þ

Here, ξ is the frequency vector, δ denotes the Kronecker delta function, and
λ0 and μ0 are the Lamé constants of the homogeneous reference medium.
Moreover, ð̂�Þ is used to represent a quantity in the Fourier space. Finally, the
total strain field in the real space is obtained via

ð15Þ

Physics-informed finite operator learning
This model relies solely on standard feed-forward neural networks. The
computation of each component of the vector zl is expressed as follows:

zlm ¼ a
XNl

n¼1

wl
mnz

l�1
n þ blm

 !
; l ¼ 1; . . . ; L: ð16Þ

The component wmn shows the weight between the n-th neuron of
the layer l− 1 and the m-th neuron of the layer l. Every neuron in
the l-th hidden layer owns a bias variable blm. The number Nl corre-
sponds to the number of neurons in the l-th hidden layer. The total
number of hidden layers is L. The letter a stands for the activation
function.

In the context of the current work which we coined as Finite Operator
Learning (FOL)78, we utilize the so-called collocation fields, which constitute
randomly generated and admissible parametric spaces used to train the
neural network. For the current work, collocation fields represent possible
choices for the elastic properties. More details on how to generate samples
are provided in Supplementry Information. Therefore, the input layer
consists of information on Young’s modulus {Ei} = {E1, ⋯ , EN} and Pois-
son’s ratios {νi} = {ν1,⋯ , νN} at all the nodes, and the output layer consists of
the components of the mechanical deformation at each discretization node
i, i.e., {Ui} = {U1,⋯ ,UN} and {Vi} = {V1,⋯ ,VN}. Themodel is summarized
in the following steps which are also depicted on the right-hand side of
Fig. 20.

X ¼ ½fEig; fνig�; Y ¼ ½fUig; fVig�; i ¼ 1 � � �N; ð17Þ
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Y ¼ N ðX; θÞ; θ ¼ fW; bg: ð18Þ

Here, the trainable parameters are represented as W and b, and are col-
lectively denoted by θ. The domain of interest is inspired by micro-
mechanical examples and is thus represented as a square shape. However,
this formulation is inherently flexible and can be readily adapted to
accommodate irregular geometries and unstructured meshes78,82.

Given the polycrystalline nature of the samples, modeled using the
concept of Voronoi tessellation, the input layer can be significantly sim-
plified. The input now consists of the spatial coordinates of the seed points
and the material properties associated with each seed point, effectively
representing individual grainswithin the structure.Wedenote this as the so-
calledVoronoi parametrization,Pi = {Xi,Yi,Ei}. Accordingly, we rewrite the
expressions in Eq. (17) as follows:

P ¼ fXj; Yj; Ejg; Y ¼ ½Ui; Vi�; i ¼ 1 � � �N; j ¼ 1 � � �M; M≪N;

ð19Þ

Y ¼ N ðP; θÞ; θ ¼ fW; bg: ð20Þ

In Fig. 20 and throughout this work, we assume a constant Poisson’s ratio
within the domain, focusing solely on variations in Young’s modulus. This
assumption does not limit the generality of the methodology. Moreover, the
output of the model consists of the deformation components, while the stress
components can be subsequently derived using standard FEM procedures.

Next, we introduce the loss function. The loss term simply combines
the elemental energy form of the governing equation. Note that, thanks to
theweak formulation, theNeumannboundary conditions are automatically
includedand theDirichlet boundary termsare satisfied in ahardway exactly
following the FEM routines (see also Rezaei et al.73). The total loss function
involves the integration of element residual vectors using Gaussian inte-
gration, resulting in

LFOL ¼
Xnel
e¼1

UT
e ðθÞ Ke U eðθÞ


 �
; ð21Þ

Fig. 22 | Mask R-CNN Diagram with input and
output images. For more information, readers are
referred to the supplementary information
and ref. 77.

Fig. 20 | Network architecture for finite operator
learning (FOL). Information about the Young’s
modulus distribution goes in and the unknown
displacement components are evaluated utilizing
deep neural networks.

Fig. 21 | Network architecture for spectral-based physics-informed finite operator learning (SPiFOL). Information about the Young’s modulus distribution goes in and
the unknown strain components are evaluated. Here, the Lippmann-Schwinger operator is built based on the fixed finite output space and FFT based physical loss is defined.
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K e ¼
Xnint
n¼1

wn

2
det ðJÞ ½BðξnÞ�TCeðξnÞBðξnÞ; ð22Þ

In the above set of equations, nint = 4 represents the number of Gaussian
integrationpoints and ξn andwndenote the coordinates andweight of then-
th integration point. The determinant of the Jacobian matrix is denoted by

det(J). The final loss function reads as

LFOL ¼ ae
Xnel
e¼1

UT
e

Xnint
n¼1

BTCeB

" #
: ð23Þ

Note that we assume here that the determinant of the Jacobian matrix
remains constant which holds only for quadrilateral elements. Additionally,
in the four integration points we have wn = 1. Based on the energy for-
mulation, we obtain ae ¼ 1

2 det ðJÞ.

Spectral-based physics-informed finite operator learning
For many applications in the multiscale modeling of materials, PBCs and
periodic microstructure topologies are often preferred. The approach
involves solving microscale problems and homogenizing the results to
derive macroscopic properties. However, this process can become com-

putationally expensive, particularly for repetitive calculations in FE2

methods. To address this challenge, we designed a novel deep learning
model that operates on similar principles to the one introduced earlier, but
with adaptations tailored to periodic systems and their unique demands.
In this section, we employ Fourier Neural Operator (FNO) architectures83

to map various microstructures to their corresponding strain fields (εxx,
εyy, εxy). The physical loss functions in this framework are formulated
based on the strong form of mechanical equilibrium expressed in Fourier
space. This approach is coined as spectral-based physics-informed finite
operator learning (SPiFOL) according to the developments presented by
Harandi et al.74.

In the SPiFOL framework, the FNO architecture begins with a
dense layer that projects the input function into a higher-dimensional
latent space, enabling sufficient channels for Fourier layers. Each
Fourier layer transforms the input into the frequency domain using
the Fourier transform (F ), truncates higher frequencies via a weight
tensor R, applies convolution in the truncated space, and then returns
to the spatial domain using the inverse transform (F�1). A non-
linear activation (e.g., GeLU) is applied, and a final dense layer maps
the output to the target strain fields. The computation of the output
at the l + 1-th Fourier layer is expressed as:

z lþ1 ¼ GeLu F�1ðR � F ðz lÞÞ þ W l � z l þ bl
� �

: ð24Þ

InEq. (24),bl is the bias,Wl is theweightmatrix, and zl refers to the output of
the previous Fourier layer. The loss function is formulated using the output
and the computedLippmann-Schwingeroperator, following thefixed-point
scheme for FFT-based mechanical methods. It is expressed as the mean

square error (MSE) of Eq. (15). Due to the varying scales of strain field
components, influenced by the applied macroscopic strain �ε, a weighting
scheme is applied to normalize these components, ensuring comparable
magnitudes in the loss function. This normalization enhances model
accuracy. The final loss is constructed as the sum of weighted losses over all
spatial points, defined as:where Nn is the total number of points and Xi

stands for the coordinates at that point. TheMSE can be calculated for each
strain component to ensure that the network learns the solution for each

component and that their corresponding loss functions are in the same
order.

L ¼ w1 MAE Lð1; 1Þð Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
corresponds to εxx

þw2 MAE Lð1; 2Þ þ Lð2; 1Þð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
corresponds to εxy þ εyx

þw3 MAE Lð2; 2Þð Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
MAEεyy

:

ð26Þ

In Eq.,(26), MAE denotes the mean absolute error and w1, w2, and w3

show the weighting factor for strain field components. These weighting
factors can be adjusted by neural tangent kernels74,84. See also Figure 21.
By considering Eq. (25), the final loss in Eq. (26) can be interpreted asMSE.
When the weighting factors are equal, one can simply write the total loss as

Digitalization of LOM images through deep learning-based
image segmentation
To test the trained networks from the previous sections, it is essential to
automatically delimit grains inLOMimages. This enables either direct input
of the images into the trained neural operators or the design of additional
test cases that mimic similar topologies.

A useful methodology is presented and discussed in ref. 77
where a deep learning model called Mask R-CNN11,77 is utilized to
automatically detect and segment closely spaced dendrites in CT
tomography sections of polycrystalline Al-Cu alloys. UNet performs
semantic segmentation by grouping all grains of the same class
together, while Mask R-CNN achieves instance segmentation, iden-
tifying and isolating each grain individually, even if they belong to
the same class. This model was chosen due to the difficulty of
separating dendrites that are closely packed or interconnected. Mask
R-CNN is a deep learning model that performs three tasks simulta-
neously: object detection, bounding box prediction, and mask gen-
eration for each object in the image. The model starts by using a
convolutional neural network to extract features from the input
image. Then, a Region Proposal Network (RPN) identifies regions of
interest. For each region, the model predicts the object class, refines
the bounding box, and generates a pixel-wise mask, allowing for
precise segmentation of even overlapping objects. This makes Mask
R-CNN highly effective for tasks where detailed, instance-level seg-
mentation is required, such as detecting and segmenting dendrites or
grains in microstructures.

Here is a short desscription of the steps of the Mask R-CNN
algorithm for alloy microstructure segmentation illustrated on

ð25Þ

ð27Þ

https://doi.org/10.1038/s41524-025-01718-y Article

npj Computational Materials |          (2025) 11:262 15

www.nature.com/npjcompumats


Fig. 22. The input image, typically obtained through a microscope,
displays the alloy’s microstructure, revealing various phases and
grains within the sample. This image is processed through a feature
extraction network, commonly ResNet50, which identifies hier-
archical features such as edges, textures, and patterns relevant to the
microstructure. A RPN then generates region proposals that may
contain distinct microstructural features like grains or precipitates.
These proposed regions are standardized using RoI Pooling, allowing
consistent processing across the network. The extracted features are
further refined using a Feature Pyramid Network, which creates
feature maps at multiple scales to detect both small and large
structures effectively. RoI Align follows, ensuring proposed regions
are uniformly resized while maintaining spatial accuracy. Fully
connected layers handle classification and bounding box regression
based on these standardized features. Additionally, a convolutional
network generates spatial masks for each region, enabling instance
segmentation to precisely identify object shapes. The final output
includes an image annotated with masks and bounding boxes that
delineate and highlight the various microstructural components of
the alloy.

Details on the data generation and training of theMask R-CNNmodel
are provided and summarized in Supplementary Information.

The results from applying Mask R-CNN achieving a detection
rate of more than 90% as illustrated in Fig. 22, where the input image
for inference and mask results of grain segmentation are shown. The
model successfully segmented most dendrites, even in areas where
they were densely packed or strongly interconnected. It segments
dendrites based on the white boundaries delimiting the grains, where
high segregation is present. However, some grains at the edges were
not well detected, as they were cropped from a larger original
experimental image and therefore do not share the same character-
istics as the traditional dendrites in the training/test dataset.

Fourier-based parametrization
The Fourier-based approach combines specific frequencies with random
amplitudes to generate diverse microstructures. To enhance variability, the
sigmoid function is applied as a transformation, enabling the creation of
smoother and more intricate patterns.

ϕ ¼ sigmoidðt1ðϕ? � t2ÞÞ þ 0:05
1þ 0:05

; ð28Þ

where ϕ⋆, the summation value of frequencies and random amplitudes, is
defined as

ϕ? ¼
XNx

i¼1

XNy

j¼1

aiaj cosð2π fxi xÞ cosð2πfyj yÞ: ð29Þ

In Eq. (28), ϕ devotes to the final distribution of phases. t1 and t2 are the
tuning parameters of the sigmoid function. Moreover, ai and aj denote the
normalized random amplitudes, while fxi and fyi represent the Fourier
frequencies in x and y directions and are integers. x and y show the coor-
dinates of mesh points.

Data availability
Data are provided within the manuscript or supplementary information
files. Any additional raw data that support the findings in this paper are
available from the corresponding author upon reasonable request. No
labeled data are used for training the operator learningmodels; the code for
generating training samples is provided in the corresponding section.

Code availability
The data supporting the findings of this study are openly available and can
be accessed via the following links: FOL framework and SPiFOL framework.
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