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A B S T R A C T

In the context of Germany’s national energy transition and growing electric vehicle (EV) adoption, the devel
opment of cost-effective, region-specific EV charging infrastructure powered by renewable energy is crucial for 
achieving decarbonization targets. This study conducts a techno-economic assessment of stand-alone, battery- 
buffered electric vehicle charging stations (EVCSs) powered by hybrid solar photovoltaic (PV) and wind turbine 
(WT) energy systems in four major German cities: Berlin, Cologne, Hamburg, and Munich. Using the HOMER 
PRO simulation and optimization platform, the study identifies optimal system configurations that meet daily EV 
charging demand under location-specific meteorological conditions. Key economic indicators —Net Present Cost 
(NPC) and Levelized Cost of Electricity (LCOE) are evaluated to determine cost-effective solutions. Results 
indicate that hybrid PV/WT/battery systems are optimal for Berlin, Hamburg, and Munich, as they are able to 
NPC and LCOE while meeting daily charging demand and environmental targets. In Cologne, in contrast, due to 
higher wind availability, WT/battery systems emerge as the most cost-effective option. A sensitivity analysis 
quantifies the impact of varying load demand, storage capacity, solar irradiance, and wind speed on system 
performance, with NPC values ranging from €524,836 to €1,640,000 across various load scenarios. The findings 
demonstrate that economic feasibility can be further enhanced through PV tracking systems, increased wind 
turbine hub heights, and offshore wind deployment. The study provides actionable insights for designing 
regionally tailored, renewables-powered EV charging infrastructure in support of Germany’s energy transition.

1. Introduction

Electric vehicles (EVs) have gained significant attraction in recent 
years as a means to reduce air pollution and greenhouse gas (GHG) 
emissions. However, the growing demand for EV charging infrastructure 
presents major challenges for long-term sustainability and scalability. 
Rising fuel prices, environmental concerns, and climate change have 
prompted governments worldwide, including the European Union (EU), 
to implement stringent regulations on fleet-level GHG emissions. In 
response, automakers are increasingly incentivized to develop low- 
emission, eco-friendly transportation solutions [1,2]. Among these, 
EVs have emerged as a promising alternative by reducing dependence on 
fossil fuels [3]. This paradigm shift has contributed to the declining cost 
competitiveness of internal combustion engine vehicles (ICEVs), espe
cially as countries such as the United States (US), United Kingdom (UK), 

China, and EU member states adopt policy measures such as financial 
subsidies, tax exemptions, and publicly funded infrastructure in
vestments to accelerate EV deployment [4]. Many national strategies 
also aim to ensure that by 2050, EV fleets are powered entirely by 
renewable energy sources, thereby aligning with global decarbonization 
goals.

The increasing adoption of EVs has been further supported by the 
advancements in battery technologies and the growing availability of 
renewable energy-powered EV charging stations [5]. Nevertheless, 
consumer concerns—such as range anxiety, high purchase costs, battery 
safety issues, and inadequate charging infrastructure—remain signifi
cant market barriers, especially for long-distance travel where 
fast-charging capabilities are critical [6]. In response to these issues, 
governments worldwide are intensifying their efforts to develop sus
tainable EV ecosystems [3,7]. The energy savings, environmental 
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benefits of EVs, and strong policy support are expected to make them the 
dominant vehicle type in the automotive industry in the future [8]. In 
Germany, key policy frameworks such as the National Platform Elec
tromobility (NPE), launched in 2010, and the National Electromobility 
Development Plan target the deployment of one million public charging 
stations nationwide by 2030 [9]. While various policy measures such as 
subsidies, tax incentives, and investments in charging infrastructure 
have been implemented, meeting these targets remains a significant 
challenge. The rising electricity demand caused by the rapid market 
diffusion of EVs is increasing the pressure on the electric grids. As EV 
charging demand is directly linked to power generation capacity and 
grid stability, ensuring a resilient and sustainable energy supply is 
crucial for the long-term success of e-mobility. One promising solution is 
the integration of renewable energy sources (RES) —particularly wind 
power and solar photovoltaics (PV) —into the EV charging infrastruc
ture. Hybrid renewable energy systems (HRES) that combine RES with 
battery storage can reduce reliance on fossil-fuel-based power genera
tion, lower emissions, and enhance energy security [10]. In Germany 
and across Europe, solar and wind energy are expected to play a pivotal 
role in achieving climate neutrality [11]. However, the techno-economic 
feasibility of such renewables-powered (EVCSs) is highly dependent on 
local renewable resource availability, which varies significantly across 
different geographic locations. This variability presents a core challenge 
in designing optimal system configurations. In recent years, Al-Quraan 
et al. [12–19] have proposed a comprehensive series of studies 
applying techno-economic predictive control, bi-/tri-level optimization, 
and sizing techniques for stand-alone and grid-connected HRES. These 
works explore multi-layer control architectures and advanced fore
casting methods to enhance the performance of HRES under uncertain 
demand and renewable supply conditions. Their contributions demon
strate how predictive control and layered optimization frameworks can 
significantly improve system efficiency and cost-effectiveness across 
diverse application scenarios.

Despite the methodological sophistication of these studies, they do 
not address EV charging infrastructure, nor do they consider location- 
specific renewable energy availability—both of which are essential for 
real-world, urban deployment scenarios. Moreover, most studies focus 
on generalized HRES or microgrid applications without tailoring the 
analysis to stand-alone configurations for EV charging under mobility- 
driven demand profiles.

To address this research gap, the present study proposes a techno- 
economic simulation framework to evaluate the optimal configuration 
and operational feasibility of stand-alone hybrid EVCSs powered by PV, 
WT, and battery storage. Focusing on four major German cities, the 
model uses Hybrid Optimization of Multiple Energy Renewables 
(HOMER) PRO to simulate system performance under location-specific 
solar and wind resource conditions and EV demand profiles. The find
ings provide actionable insights to inform regional infrastructure plan
ning and contribute to Germany’s broader goal of achieving a carbon- 
neutral transport sector.

2. Literature review

Several studies have evaluated the techno-economic feasibility of 
grid-connected and stand-alone hybrid EV charging systems, employing 
a variety of modeling techniques. Tools such as HOMER PRO have been 
widely adopted to assess optimal system configurations, cost- 
effectiveness, and environmental performance under different climate 
and operational conditions.

A notable contribution by Al Wahedi and Bicer [20] investigated the 
techno-economic feasibility of a stand-alone PV/battery EVCS under 
desert conditions in Qatar, demonstrating that location-specific opti
mization significantly enhances system viability in harsh climate envi
ronments. Li et al. [21] extended this approach in China by comparing 
hybrid PV/WT/battery configurations across several Chinese cities. 
Their study showed that PV/WT/battery systems can be cost-effective, 

but their economic viability is highly dependent on regional climatic 
conditions. Among the cities analyzed, Nanjing emerged as the most 
economically feasible location, while Zhengzhou was found to be the 
least feasible.

In Brazil, Schetinger et al. [10] simulated the integration of a 
PV-powered EV charging system on a university campus and concluded 
that integrating EVs with clean energy can significantly reduce emis
sions while maintaining cost efficiency. Similarly, Ekren et al. [22] 
optimized a hybrid PV/WT EVCS in Izmir, Turkey, revealing a feasible 
configuration with a generating capacity of 843,150 kWh/a and a pro
duction cost of 0.064 €/kWh, though they did not evaluate which var
iables influence cost performance most. While these studies underscore 
the advantages of renewables-powered EVCSs, they also highlight that 
the optimal system configuration and cost-effectiveness depend heavily 
on location-specific factors.

In addition to location-specific optimization, energy storage has 
emerged as a central theme in assessing stand-alone EVCSs. Grande et al. 
[25] investigated the techno-economic feasibility of a stand-alone 
PV/battery hybrid system for charging EVs in Madrid, Spain, finding 
that battery storage capacity significantly impacts cost-effectiveness, 
especially in regions with seasonal solar variability. For the 
Netherlands, Mouli et al. [26] examined workplace PV/battery chargers 
and found that battery size must be tailored to local irradiance patterns 
to reduce grid dependence. Karmaker et al. [23] suggested a hybrid solar 
PV/biogas-powered EVCS to reduce the load on the national grid. Using 
the HOMER software, they evaluated the technical, economic, and 
environmental sustainability of the proposed system. The optimal 
design, with a total NPC of 56,202 €/kWh, an operational cost of 2540 
€/a, and a LCOE of 0.1302 €/kWh, was found to have the lowest overall 
costs. The proposed solution reduced CO2 emissions by 34.7 % 
compared to standard grid-based charging stations. In another study, 
Karmaker et al. [24] conducted a thorough feasibility study of the 
planned EVCS using the HOMER model, considering technical, eco
nomic, and environmental aspects. They created a 20 kW charging 
station for electric vehicles using biogas resources in Bangladesh. Ac
cording to the findings, this station can provide the daily charging needs 
of 15–20 EVs, including simple bicycles and electric three-wheel EVs. By 
using this station instead of grid charging, users can save between €16.3 
and €29.5 per month per vehicle, highlighting its economic benefit.

The overall system configuration and operational strategy play a 
crucial role in determining the feasibility of renewable energy-powered 
EV charging infrastructure. Vermaak and Kusakana [27] examined the 
feasibility of installing EVCSs powered by renewable energy in the rural 
Democratic Republic of the Congo. Their study applied the least bene
ficial month sizing method to configure the capacity of system compo
nents such that the PV and wind energy sources, ensuring that they 
could meet demand even in months with lower renewable energy 
availability. Two different charging station operation strategies were 
simulated, and the results examined to ascertain the optimal system 
configuration. The simulation results demonstrate that using the 
charging station continually to charge several vehicles throughout the 
day or 24 h was the optimal operation strategy. Similarly, Alghoul et al. 
[28] assessed the performance of a PV/grid hybrid charging system 
under various grid capacity scenarios. The outcomes show that a 
solar-aided EV charging system, integrated into a gasoline station and a 
10 kW limited power grid, could meet the initial EV penetration rate of 
2.14 %. With a feed-in-tariff plan, the capital cost of the 10 kW 
PV/microgrid system can be recovered in 6.3 years, providing 14.7 years 
of net profit based on an assumed 21-year system lifetime.

Recent studies have introduced advanced optimization and control 
frameworks to enhance hybrid EV charging infrastructure. Dong et al. 
[29] developed a two-stage stochastic scheduling model for integrated 
PV/battery EV charging systems that addresses uncertainties in photo
voltaic (PV) generation and battery power constraints. Their approach 
improves system reliability by dynamically allocating energy resources 
under varying solar conditions and vehicle demand profiles. In a related 
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advancement, Tabassum et al. [30] proposed an adaptive energy man
agement strategy for sustainable EVCSs within hybrid microgrid archi
tectures. Their framework integrates real-time forecasting and load 
balancing to optimize energy flows from PV, WT, and battery systems, 
enhancing operational efficiency and grid independence. However, 
these contributions focus primarily on microgrid or semi-grid-connected 
scenarios and do not assess stand-alone system behavior or 
location-specific renewable energy potentials.

A summary of these key studies is provided in Table 1, which outlines 
their geographic scope, renewable energy types, modeling tools, and 
major contributions. This table helps contextualize the existing body of 
work and highlights where gaps remain.

Theey contributions of the present study are:
Despite extensive advancements in renewable-powered EV infra

structure research, no existing study provides a comparative techno- 
economic evaluation of stand-alone hybrid PV/WT/battery EV 
charging systems across different cities in Europe (Germany). Prior 
research often focuses on PV-only systems or evaluates hybrid systems in 
isolated locations, overlooking the value of wind/solar integration 
despite Germany’s high wind energy availability. Moreover, sensitivity 
analysis of key operational variables such as demand profiles, capacity 
shortages, solar irradiation, and wind speed is often limited or absent, 
leaving uncertainty about the robustness of system design choices under 
real-world conditions.

This study addresses these gaps by conducting a comparative techno- 
economic analysis of stand-alone PV/WT/battery EV charging systems 
in four major German cities with varying renewable energy source 
profiles: Berlin, Cologne, Hamburg, and Munich. By incorporating 
empirical meteorological data, realistic EV demand modeling, and 
scenario-based sensitivity analysis, the research delivers regionally 
tailored insights into infrastructure planning for renewables-based EV 
charging systems.

The remainder of the study is structured as follows. Section 2 de
scribes the methodology of the study and presents the setup for the four 
case studies of hybrid EVCSs in the four cities in Germany considered. 
Section 3 presents the results and a discussion of these; finally, Section 4
concludes.

3. Methodology

3.1. Energy simulation tool

The HOMER PRO software developed by the US National Renew
ables Energy Laboratory (NREL) is the software tool applied for simu
lation and optimization in this study. HOMER employs grid search and 
proprietary derivative-free optimization techniques to determine the 
most economically viable solution. The methodology flowchart for this 
study is shown in Fig. 1, and each stage is explained in more detail in the 
following.

The methodology illustrated in Fig. 1 begins with the definition of 
input parameters—such as renewable energy sources availability, EV 
charging load profiles, component specifications (e.g., PV, wind, bat
tery, converter), technical constraints, and economic data. These inputs 
are fed into HOMER’s simulation engine, which evaluates all feasible 
system configurations by minimizing the NPC under user-defined con
straints. Infeasible configurations are discarded, and feasible ones are 
ranked based on economic performance. In the final phase, a multi- 
dimensional assessment is conducted, including techno-economic- 
environmental analysis and sensitivity testing (e.g., variation in load, 
wind speed, or storage capacity), to identify robust system designs under 
different operating conditions.

The economic optimization in this study is based on minimizing the 
net present cost (NPC), which reflects the total lifecycle cost of the 
system over 25 years, including capital, replacement, O&M, and fuel 
costs (where applicable). Although other indicators like LCOE are re
ported for interpretive purposes, NPC serves as the main cost function 
driving the optimization process in HOMER PRO.

3.2. Assessing the economic feasibility

The most famous indicators applied by renewable energy power 
generation systems are NPC and LCOE, followed by PP, PI, and IRR, all 
described next. The total NPC of the system is calculated as (see Refs. 
[20,31]): 

NPC =
Ctotal annual

i(1+i)T

(1+i)T − 1

(1) 

where Ctotal annual represents the total annualized cost, n denotes the 
economic operational lifetime in years, and t refers to a specific year (t =

Table 1 
Summary of key studies on hybrid renewable-powered EV charging stations.

Study Year Country/ 
Region

System Type RES Type Tool/Method Key Contribution

Alghoul et al. 2018 Malaysia Grid- 
connected

PV HOMER • Evaluated feed-in tariff profitability for grid/PV charging station

Al Wahedi & 
Bicer

2021 Qatar Stand-alone PV, Battery HOMER • Demonstrated feasibility of site-specific renewables-powered EV sta
tions under desert conditions

Dong et al. 2024 China Grid- 
connected

PV, Battery Two-stage stochastic 
model

• Improved energy dispatch reliability under PV and load uncertainty 
for EV charging infrastructure

Ekren et al. 2022 Turkey Stand-alone PV, WT HOMER • Identified optimal configuration and energy cost for Izmir
Grande et al. 2021 Spain Stand-alone PV, Battery HOMER • Evaluated battery sizing impacts in seasonal climates
Karmaker et al. 2020 Bangladesh Stand-alone PV, Biogas HOMER • Achieved 34.7 % CO2 reduction vs grid-based charging
Karmaker et al. 2021 Bangladesh Stand-alone Biogas HOMER • Designed 20 kW station for light EVs; highlighted monthly user 

savings
Li et al. 2020 China Stand-alone PV, WT, 

Battery
HOMER • Compared cost-effectiveness across Chinese cities; found regional 

variability significant
Mouli et al. 2016 The 

Netherlands
Grid- 
connected

PV, Battery Simulation model • Examined workplace charging feasibility under seasonal PV 
generation

Schetinger et al. 2020 Brazil Grid- 
connected

PV HOMER • Showed GHG reductions on a university campus through integrated 
renewables-powered EV charging systems

Tabassum et al. 2025 India Microgrid- 
based

PV, WT, 
Battery

Adaptive EMS 
(ANFIS-based)

• Developed real-time load balancing and control for hybrid EV stations 
with enhanced off-grid resilience

Vermaak & 
Kusakana

2014 DR Congo Stand-alone PV, WT Least-beneficial 
month sizing

• Optimal operation strategy for rural Tuk-tuk stations
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Fig. 1. Methodology flowchart.
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1, 2, .., T). NPC is the present value of all investments and lifetime costs 
associated with constructing and operating an electricity generation 
plant, minus the present value of all revenues generated by the plant 
over its lifespan. LCOE is the present value of the total costs of building 
and operating an electricity generation plant, divided by the total 
electricity generated over its lifetime. It represents the average cost per 
kWh required to supply electricity under a given proposal and is 
calculated as (see Refs. [20,32]): 

LCOE =
I0 +

∑T
t=1

At
(1+i)t

∑T
t=1

Mel
(1+i)t

(2) 

where I0 denotes the investment expenditure at t = 0, At is the annual 
total costs in year t, Mel is the electricity produced in the respective year t 
[kWh], i the discount rate, and T the expected economic operational 
lifetime in years.

To complete the economic analysis, additional economic assessment 
metrics such as payback period (PP), profitability index (PI), and the 
internal rate of Return (IRR) have been computed and compared for 
stand-alone and grid-connected systems.

The PP calculation measures how long it will take for cash inflows 
from an investment to equal the intial cash outflows over a given time 
period.

According to equation (3) below, the profitability index (PI) is 
determined by dividing the present value of future cash flows by the 
initial investment: 

PI =

∑T
t=1

CFt
(1+r)t

I0
(3) 

where CFt is the future cash flow (€) in each time period t, I0 denotes the 
initial investment (€), r the discount rate (%), and T the number of time 
periods considered.

Finally, IRR is calculated using the following formula: 

IRR =
∑T

t− 1

CFt

(1 + r)t − C0 (4) 

where Ct is the net cash inflow during period t (€), C0 the total initial 
investment (€), r the discount rate (%), and t the number of time periods 
considered.

3.3. Case study

Until 2014, Germany had the most extensive installed solar PV ca
pacity in the world at about 1.9 GW; by 2021, that capacity has 
increased to over 58 GW. Germany ranks second for offshore wind, with 
over 7 GW, and third in terms of total installed wind generating ca
pacity, at 64 GW in 2021 (compared to 59 GW in 2018). The label "the 
world’s first big renewable energy economy" has been applied to Ger
many (see Ref. [33]).

In this paper, hybrid stand-alone EVCSs in the four major cities 
Berlin, Cologne, Hamburg and Munich are chosen as four case studies. 
These cities were chosen due to their geographical diversity, population 
density, and economic significance, which influence the feasibility and 
scalability of renewable energy-based EV charging infrastructure. Their 
locations in different climate zones allow for an in-depth analysis of 
regional variations in solar and wind energy potential, providing 

insights into how geographical differences affect hybrid charging station 
performance. Additionally, these cities have the highest EV adoption 
rates in Germany, driven by strong transport policies, infrastructure 
investments, and urban mobility initiatives [34]. Studying these urban 
areas allows for an evaluation of how existing EV market penetration, 
grid integration challenges, and consumer behavior impact the feasi
bility of hybrid renewable charging systems. The geographical co
ordinates are shown in Table 2 and Fig. 2.

3.3.1. Load data
The load data in this study is modeled under hypothetical conditions 

to represent a small-scale EV charging scenario, assuming a fleet of 40 
EVs operating within an urban setting, each with an average battery 
energy requirement of 30 kWh/d, leading to a total estimated daily 
energy demand of 1200 kWh. Based on the data either fed into the 
HOMER model manually or retrieved from the HOMER library, the 
software performs hourly simulations over a one-year period, evaluating 
all possible system configurations to identify the optimal setup that 
satisfies both demand and technical criteria at the minimum lifecycle 
cost [20].

The daily and seasonal stochastic EV load profiles are shown in 
Fig. 3, illustrating how the EVCS electricity demand is predicted in 
HOMER Pro. The daily profile reveals that charging demand steadily 
increases from early morning, and peaks between 12:00 and 18:00 h, 
aligning with workplace and public charging station usage trends. The 
seasonal profile indicates moderate variations in demand across months, 
suggesting that EV charging patterns remain relatively stable 
throughout the year. The yearly profile highlights a consistent hourly 
load distribution, with peak fluctuations occurring during midday and 
early evening. The estimated annual average daily energy demand is 
1200 kWh, with an observed peak-load of approximately 200 kW. The 
black zones in the yearly profile indicate minimal or no charging activity 
between 0:00 and 6:00 h, confirming that most EV charging occurs 
during the daytime and early evening. The same load profile is applied 
to all selected cities due to the similar urban characteristics and EV 
adoption trends observed in large metropolitan areas. Previous studies 
have demonstrated that EV charging behavior in major cities is pri
marily influenced by commuting patterns, workplace and residential 
charging infrastructure, and electricity pricing policies rather than 
geographical location alone [36]. Given the lack of high-resolution, 
city-specific EV charging data, this generalized load profile provides a 
reasonable approximation for urban EVCS planning. While the load 
profile reflects typical hourly and seasonal charging behavior, it does not 
account for time-of-use pricing or dynamic user response to electricity 
tariffs, which are beyond the scope of this analysis. Furthermore, 
although the load profile remains constant, this study accounts for 
regional differences in renewable energy availability (solar and wind 
potential) to evaluate location-specific system performance.

3.3.2. Resource assessment
This study uses hybrid renewable energy resources for powering the 

EVCs, including a PV/WT/battery hybrid system. Consequently, in this 
part, the assessment of meteorological data is provided.

3.3.3. Weather data
Monthly average wind speeds at 50 m/s above ground over 30 years 

(from January 1984 to December 2013) for each selected location are 

Table 2 
Geographical coordinates of the chosen sites.

City Federal State Latitude (◦N) Longitude (◦E) Average Solar Irradiation (kWh/m2/day) Average Wind Speed (m/s) Population (2024)

Berlin Berlin 52.5214 13.4050 2.73 6.64 3,897,145
Hamburg Hamburg 53.5511 9.9937 2.72 7.07 1,861,053
Munich Bavaria 48.1351 11.5820 3.15 4.82 1,594,632
Cologne North Rhine-Westphalia 50.9375 6.9603 2.82 6.62 1,149,014
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extracted from the National Aeronautics and Space Administration 
(NASA) forecasting of the Worldwide Energy Resource (POWER) data
base [37]. In Fig. 4, the monthly average wind speed data for 30 years 

are illustrated. The maximum average wind speed values for Berlin, 
Hamburg, Munich and Cologne occur in January. The average wind 
speed values from 1984 to 2013 for Berlin, Hamburg, Munich and 

Fig. 2. Map of Germany with the four city case studies investigated [35].

Fig. 3. Load profile for the charging stations in the four cities in Germany.
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Cologne were 6.64 m/s, 7.07 m/s, 4.82 m/s, and 6.62 m/s, respectively 
(Table 1; [33]). These high wind speeds during the winter months could 
potentially enhance wind energy production, particularly in Hamburg, 

which shows the highest average wind speeds, closely followed by Berlin 
and Cologne (see Fig. 4).

Monthly average solar Global Horizontal Irradiance (GHI) data of the 

Fig. 4. Monthly average wind speed at the four chosen locations.

Fig. 5. Monthly average solar irradiation data at the four chosen locations, July 1983– June 2005.

Fig. 6. Monthly average air temperature data for the four chosen locations, January 1984–December 2013.
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four specific cities over 22 years, from July 1983 to Jun 2005, were also 
taken from the NASA Prediction of Worldwide Energy Resource (power) 
database. Fig. 5 illustrates the monthly average GHI data for the four 
cities studied [37]. As can be seen, solar irradiation in the southern city 
of Munich is considerably higher than in the others. The variability in 
GHI data across different months highlights the need for solar energy 
systems that can adapt to lower light conditions during certain periods, 
especially considering the significant drop in solar irradiance during the 
winter months.

NASA’s Prediction of the Worldwide Energy Resource database is 
used to acquire monthly average air temperature data for the four 
chosen locations for 30 years from January 1984 to December 2013 as 
an additional input parameter [37]. Fig. 6 shows the monthly average 
air temperature data in the four different cities studied. For Berlin, 
Hamburg, Munich and Cologne, January’s minimum monthly average 
air temperature values were − 1.25 ◦C, 0.24 ◦C, 0.25 ◦C, and − 1.96 ◦C, 
respectively. On the other hand, the maximum monthly average air 
temperatures of 19.22 ◦C, 17.76 ◦C, 17.78 ◦C, and 17.39 ◦C were 
recorded in the month of July in Berlin, Hamburg, Munich, and Cologne, 
respectively. These temperature extremes highlight potential challenges 
in maintaining optimal operational conditions for both wind turbines 
and solar panels. Low air temperatures in winter can improve the effi
ciency of PV arrays, while high air temperatures in summer might 
negatively affect the performance of wind turbines.

3.4. System configuration and modeling

The project lifetime of the hybrid charging systems is set to 25 years. 
An inflation rate of 2 % and annual discount rate of 8 % are assumed, 
with calculations adjusted accordingly on an annual basis. According to 
Fig. 7, the off-grid hybrid PV/WT/battery EV charging system consists of 
PV arrays, WTs, batteries, converters, and other components. These are 

integrated through a shared DC/AC bus, allowing the system to operate 
as a stand-alone microgrid capable of autonomous energy balancing 
without reliance on the utility grid.

Batteries serve as the primary energy storage technology (see section 
2.4.3 below for details) used. WT and, to some extent, PV power gen
eration provide the majority of the power for EVCSs. The extra power 
will be charged to the battery when the amount of power produced by 
the PV arrays and WTs exceeds the demand for charging. Instead, the 
load will be provided by the batteries (cf. [24,38]).

If the batteries are fully charged and renewable power generation 
continues to exceed load demand, excess energy is curtailed. This 
curtailment behavior is inherent in HOMER PRO’s load-following 
dispatch logic and reflects a realistic operational constraint in off-grid 
systems without auxiliary loads. HOMER PRO dynamically manages 
power flow using a load-following dispatch strategy, prioritizing 
renewable energy sources and utilizing storage when necessary. The 
bidirectional converter enables smooth DC/AC transitions and ensures 
reliable power supply to EVCSs in the absence of a grid connection. This 
setup allows for real-time power routing in response to varying load 
conditions, as schematically represented in Fig. 7.

To support the techno-economic analysis, the system’s technical 
behavior was modeled in detail. Component-level performance 
including PV power output under location-specific solar irradiation, 
wind turbine generation using height-adjusted wind speed and power 
curves, and battery charge-discharge cycles governed by round-trip ef
ficiency and depth of discharge (DoD) was simulated using HOMER 
PRO. The control strategy follows a load-following dispatch logic, 
prioritizing renewable power generation for direct consumption and 
storing surplus energy in batteries. Full mathematical formulations and 
sensitivity parameters are provided in Appendix A.

3.4.1. PV module
One of the fundamental technologies used in the creation of Hybrid 

Renewable Energy Storage (HRES) systems is the PV module. The esti
mated capital, replacement, and maintenance costs of a solar PV module 
are 1300 €/kW, 1100 €/kW, and 20 €/a, respectively [39–41]. Detailed 
equations and parameter definitions are provided in Appendix A

Fig. 7. Schematic of the hybrid EV charging system showing energy flows from 
PV, WT, and battery components to the load.

Table 3 
Specifications of the SunPower E20-327 PV solar panel.

Parameter Specification Unit

PV slope 30/32/35/30.6 ◦

Nominal operating cell temperature 45 ◦C
Temperature effects on power − 0.38 ◦C
Derating factor 88 %
Efficiency of PV arrays at STC 20.4 %
Capital cost 1300 €
Replacement cost 1100 €
O&M cost 20 €/a
Capacity (range) 0–3000 kW
Lifetime 25 a

Table 4 
Parametrization of the XANT M − 21 (100 kW) wind turbine, manufactured by 
XANT.

Parameter Specification Unit

Rotor diameter 21 m
Hub height 31.8 m
Number of wind turbines (range) 0–20 –
Lifetime 20 a
Cut-in wind speed 3 m/s
Cut-out wind speed 20 m/s
Rated capacity 100 kW
Rated wind speed 11 m/s
Capital cost 50,000 €
O&M cost 2500 €/a
Replacement cost 30,000 €

Table 5 
Specifications and cost of the chosen battery technology.

Parameter Specification Unit

Nominal voltage 6 V
Maximum capacity 376 Ah
Nominal capacity 2.26 kWh
Round-trip efficiency 80 %
Capital cost 174 €
Replacement cost 174 €
O&M cost 0 €/a
Lifetime 10 a
String size 8 –
Output (range) 0–5000 kWh
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(Section A.1; Eq. (A.1) and (A.2)).
Additionally, all four systems have a panel azimuth of zero based on 

the HOMER optimizer, and the PV capacity is optimized. The PV has 
upper and lower bounds of 0 kW and 3000 kW, respectively. Table 3
displays the specific details of the solar PV panels [39–41].

3.4.2. Wind turbine
The 100-kW XANT M 21 wind turbine (WT) was chosen for the 

investigation because it offers several advantages from an economic and 
technical performance standpoint [42]. Each wind turbine is assumed to 
have capital, replacement, and O&M expenses of 50,000 €/a, 30,000 
€/a, and 2500 €/a, respectively. Based on the HOMER optimizer, the 
wind turbine’s capacity is optimized. The upper and lower bounds of 
wind turbines are 20 kW and 0 kW, respectively. Table 4 shows the wind 
turbine’s parameterization adopted [43]. Detailed equations and 
parameter definitions are provided in Appendix A (Section A.2; Eq. 
(A.3), (A.4), and (A.5)).

3.4.3. Battery
The battery storage unit is intended to be used for this HRES due to 

the intermittent nature of the renewable energies wind and solar power 
during the days and months of the year. The HRES can be set up in such a 
way as to have a storage unit to assure the required constant voltage and 
reliability of the power supply [44].

The system was modeled in HOMER PRO using a storage unit that 
provides autonomous balancing between generation and load. HOMER’s 
optimization engine determines the most cost-effective battery size by 
simulating different configurations across a defined capacity range 
(0–5000 kWh). In addition to cost considerations, the model accounts 
for technical limitations, including a defined battery lifetime of 10 years 
and a round-trip efficiency of 80 %. Although a minimum state of charge 
(SoC) threshold was not explicitly defined by the user, HOMER’s inter
nal logic maintains feasible SoC levels to prevent over-discharge, 
thereby implicitly capturing operational constraints.

Detailed equations and parameter definitions are provided in Ap
pendix A (Section A.3; Eqs. (A.6), (A.7), (A.8), (A.9)), and Table 5 dis
plays the key technical and cost specifications of the selected battery 
technology.

3.4.4. Converter
The converter is used to transfer the energy flow between DC and AC 

[45]. According to the energy flow from a DC bus to an AV bus, the 
capacity required for an inverter is estimated as (cf. [46]): 

ηinv =
Po

Pi
, (5) 

where Pi is the inverter’s input power (kW) and Po is its output power 
(kW).

The converter’s initial, replacement, and O&M expenses are esti
mated to be 800, 750, and 8 €/kW/a, respectively. It is assumed that the 
converter has a 15-year lifespan and a 95 percent efficiency [21]. The 
converter’s capacity is optimized by HOMER PRO. The converter’s 
upper and lower bounds are 0 kW and 1000 kW, respectively. Table 6
provides the exact specification details of the converter under 
consideration.

4. Results

In this section, the results of the techno-economic analysis of hybrid 
renewable energy EVCSs in the four cities considered are reported. The 
configuration of three types of EVCS, which are PV, WT, and battery, are 
selected. Table 7 shows the optimal configuration schemes for each city 
in the case of no capacity shortage.

Table 7 shows, from an economic perspective, that the hybrid PV/ 
WT/battery EVCS is the preferred option in Berlin, Hamburg, and 
Munich, but not for Cologne. In contrast, the economically most favor
able configuration for EVCSs in Cologne is WT/battery. Across the cities, 
the most economical hybrid PV/WT/battery EVCS is in Cologne (0 kW 
PV, 4 WTs, 1192 batteries, and a 186 kW converter) with the minimum 
NPC, LCOE, and operating cost (OC), and initial capital cost (IC) of 
€882,891, 0.131 €/kWh, 25,171 €/a, and €557,496, while the PV/WT/ 
battery (142 kW PV, 4 WTs, 2000 batteries, 196 kW converter) charging 
station in Munich is the least economical, with the maximum NPC, 
LCOE, OC, and IC at €1.23 M, 0.182 €/kWh, 26,331 €/a, and €890,937. 
In Cologne, although the WT/battery system has the lowest NPC, the 
hybrid PV/WT/battery system remains a competitive alternative with 
an NPC of €888,898. Across all four cities, the analysis demonstrates that 
renewables-based EVCSs offer clean and environmentally friendly so
lutions by reducing reliance on grid electricity and minimizing CO2 
emissions. In the following, a sensitivity analysis highlights the influ
ence of storage capacity and load profiles on the economic performance 
of these systems.

The NPC and LCOE are two significant aspects in every project to 
make the critical decision. Fig. 8 proves that based on the overall cost 
comparison in terms of NPC and LCOE, the design of hybrid charging 
stations in Cologne gives the best economic benefits. The monthly 
electric output from the best hybrid PV/WT/battery EVCSs in the four 
cities is shown in Fig. 9. The highest amount of electricity generated 
from WTs in Berlin, Hamburg, Munich, and Cologne is in January; in 
addition, it can be concluded that Munich has a great economic potential 
for hybrid PV/WT systems. The maximum amount of electricity from PV 
arrays in Munich is produced in the month of May, and during 
summertime.

The total annual amount of electricity generated by the four hybrid 
PV/WT/battery EVCSs is shown in Fig. 10. The maximum electricity 
production and wind power generation among the technological options 
considered are achieved by Hamburg’s hybrid PV/WT/battery power 
generation system, with values of 1,264,836 kWh/a and 1,247,398 
kWh/a, respectively. The maximum annual PV power generation that 
occurs in Munich is 169,467 kWh/a. Additionally, Munich’s hybrid PV/ 
WT/battery power generating system has the lowest electricity output, 
with a value of 1,041,323 kWh/a. Munich has a minimum WT power 
generation of 871,857 kWh/a, and Hamburg has a minimum PV power 
generation of 17,438 kWh/a.

4.1. Sensitivity analysis

The main focus of the sensitivity analysis in this study is on the ef
fects of demand load variation, capacity shortage, solar irradiation, and 
variations in wind speed on Munich’s PV/WT/battery charging stations. 
Table 8 displays the sensitivity variables’ fluctuation range. It can be 
seen that the daily energy demand ranges from 935 kWh/d to 1935 
kWh/d, the capacity shortage from 0 to 10 %, solar irradiation from 2.80 
to 5.45 kWh/m2/d, and wind speed from 3.67 m/s to 7.52 m/s. Fig. 11
shows the effect of the load change on PV/WT/battery EVCSs in Munich. 
It can be seen that the NPC of the charging station increases from 
€524,836 to €1,640,000 when the energy demand increases from 935 
kWh/d to 1935 kWh/d. It can also be seen that the LCOE value of the 
charging station fluctuates around 0.181 €/kWh as demand increases. 
Fig. 12 depicts how changes in load affect the excess electricity (EE) and 
unmet electric load (UEL) values of the PV/WT/battery EVCSs in 
Munich. As can be seen the EE value of the PV/WT/battery system 

Table 6 
Converter specifications.

Parameter Specification Unit

Capital cost 800 €
Replacement cost (after 15 years) 750 €
O&M cost 8 €/kW/a
Efficiency 95 %
Lifetime 15 a
Capacity (range) 0–1000 kW
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increases from 154,854 kW/a to 1,047,426 kWh/a when the energy 
demand increases from 935 kWh/d to 1935 kWh/d. Fig. 13 (a) displays 
the fluctuation of the NPC and LCOE values for the EVCS under various 
capacity shortages and charging load values. NPC values are represented 
via the graphical interface, while LCOE values are superimposed on the 
graphical interface. The NPC and LCOE values of the optimal system 
diminish from €883,348 to €527,338 and from 0.181 €/kWh to 0.131 
€/kWh when the capacity shortage rises from 0 % to 10 %. The reduction 
in NPC and LCOE with increasing capacity shortage suggests that higher 
capacity shortages enhance system reliability and economic feasibility 
due to more effective management of energy resources. Therefore, it can 
be concluded that in the case of a capacity shortage, having the appro
priate number of EVs can increase the charging station’s efficiency and 
reliability (see Fig. 13 (b)).

Fig. 13 (b) illustrates how the NPC and LCOE values of the EVCS 
change as a function of solar irradiation and wind speed values. It can be 
seen that the NPC and LCOE values of the optimal charging station 
decrease when solar irradiation rises from 2.07 kWh/m2/d to 5.45 kWh/ 
m2/d at a particular wind speed. Moreover, the NPC and LCOE values of 
the optimal charging station decrease when the wind speed increases 
from 3.67 m/s to 7.52 m/s at a particular solar irradiation level. 
Furthermore, the effect of changes in both wind speed and solar irra
diation on the NPV and LCOE is illustrated in Fig. 14(a) and (b), 
respectively. In other words, moderate increases in the values of solar 
irradiation and wind speed can significantly enhance the economic 
feasibility of the charging stations. It can also be deduced that improving 
the economic viability of EVCSs may be achieved by adopting PV 
tracking modes to boost the solar irradiation value, or by raising the hub 
height of the wind turbine in order to increase wind speed, or by using 
more economical battery technology.

4.2. Comparative analysis with grid connectivity

Although a large number of fast EVCS connections to the current grid 
may strain the network and have a detrimental influence on the security 
of power supply, it is important to consider whether it is economically 
feasible to choose a stand-alone or grid-connected EVCS. Therefore, in 
this section, the break-even distance is calculated for all four studied 
cities to determine how far from the network a stand-alone EVCS be
comes more economically viable than a grid-connected system. Table 9
shows the variables used in HOMER’s grid-based EVCS simulation and 
optimization method. The grid cost data in this table are derived from 
real-world infrastructure cost assessments, as analyzed by Ahamer [47,
48]. Table 10 presents the break-even distance at which both 
grid-connected and stand-alone optimal configuration EVCS NPCs are 
the same for each of the four selected cities in Germany. On the one 
hand, the hybrid renewable energy stand-alone system option is pref
erable from an economic perspective if the distance between the chosen 
EVCS location and the available grid is equal to or greater than the 
break-even distance. On the other hand, if it is lower, the grid-connected 
EVCS option is more desirable. Fig. 15 shows the break-even distance 
graphically. If the grid is present at the EVCS location, the NPC is rela
tively low, but as the distance grows, it increases steadily. The lines 
denoting stand-alone NPC and grid-connected NPC intersect at a 
break-even distance. A separate EVCS solution would be more practical 
after this. The payback period for stand-alone and grid-connected 
selected cities are calculated and reflected in Table 11. The results 
show that the payback period for stand-alone systems in the four cities 
are lower than the payback period for grid-connected systems.

The calculated PI values for stand-alone hybrid renewable energy 
EVCSs in Berlin, Hamburg, Munich, and Cologne are 1.5, 1.2, 1.4, and 
1.1, respectively, confirming the financial viability of these projects, as 

Table 7 
Optimum configurations of renewable energy EVCSs in different locations.

Location Configuration PV (kW) WT (#) Battery (#) Converter (kW) NPC (€) LCOE (€/kWh) OC (€/a) IC (€)

Berlin PV/WT/battery 67.5 3 1904 186 982,628 0.145 20,380 719,159
WT/battery 0 4 2056 198 993,101 0.147 21,350 717,099
PV/battery 1328 0 6328 239 3.38 M 0.500 27,810 3.02 M

Hamburg PV/WT/battery 16.7 3 2288 182 941,132 0.139 17,367 716,618
WT/battery 0 2 3208 192 993,773 0.147 14,009 812,667
PV/battery/ 1602 0 5720 318 3.80 M 0.562 36,396 3.33 M

Munich PV/WT/battery 102 5 1776 184 1.22 M 0.180 26,331 890,937
WT/battery 0 6 2928 184 1.31 M 0.193 26,329 967,051
PV/battery 1197 0 5448 356 3.18 M 0.470 27,940 2.56 M

Cologne WT/battery 0 4 1192 186 882,891 0.131 25,171 557,496
PV/WT/battery 50.1 3 1344 181 888,898 0.131 22,746 594,852
PV/battery 1281 0 5464 359 3.32 M 0.490 31,847 2.90

Note: M stands for million.

Fig. 8. Comparison of total NPC and LCOE for the four cities in Germany studied.
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Fig. 9. The monthly electricity output of the PV/WT/battery charging stations in the four cities studied.

R. Dejkam and R. Madlener                                                                                                                                                                                                                  Energy 334 (2025) 137450 

11 



all values exceed the profitability threshold of 1.0. In contrast, the PI 
values for grid-connected EVCSs in the same cities are 0.99, 0.87, 0.69, 
and 0.65, respectively, indicating lower profitability.

Finally, the IRR for stand-alone configurations in Berlin, Hamburg, 
Munich, and Cologne is 5.23 %, 4.62 %, 3.51 %, and 2.15, respectively. 
In comparison, the IRR calculated for grid-connected EVCS in these 
selected cities is lower at 2.16 %, 1.56 %, 1.14 %, and 0.87 %, respec
tively. Accordingly, the stand-alone hybrid renewable energy project is 
economically more attractive due to its higher IRR and greater potential 
returns.

5. Conclusions and future work

This study presented a comprehensive techno-economic assessment 
of stand-alone EVCSs powered by hybrid PV, WT, and battery systems in 
four major German cities: Berlin, Munich, Hamburg, and Cologne. Using 
the HOMER PRO microgrid optimization software, various system 
configurations were modeled and simulated to identify cost-optimal 
setups that meet daily EV charging demand under region-specific 
renewable resource conditions. The results indicated that hybrid PV/ 
WT/battery EVCSs are the most cost-effective configurations for Berlin, 
Munich, and Hamburg, while a WT/battery system proved more suitable 
for Cologne due to better wind conditions and lower dependence on PV 
arrays. However, the hybrid PV/WT/battery system in Cologne remains 
a competitive economic alternative, particularly under scenarios of 
increased solar availability. Seasonal generation patterns revealed that 
wind power production in all four cities peaked in January, while PV 
arrays delivered maximum output in May, particularly in Munich, which 
demonstrates high potential for PV integration.

The analysis also demonstrated that increasing the daily energy de
mand from 935 kWh/d to 1935 kWh/d led to a significant rise in NPC of 
the charging station in Munich, although LCOE remained stable at 
around 0.181 €/kWh, indicating that higher loads impact investment 
requirements more than per-unit energy costs. Additionally, increased 
energy demand improved system utilization, as total annual electricity 
generation rose markedly. Allowing for capacity shortages of up to 10 % 

Fig. 10. Comparison of the total annual electricity production, excess and un-met electric load (UEL) of the four cities, various configurations of hybrid PV/WT/ 
battery EVCSs.

Table 8 
The fluctuation range of sensitivity variables.

Energy demand 
(kWh/d)

Capacity 
shortage (%)

Solar irradiation 
(kWh/m2/d)

Wind speed 
(m/s)

935 0 2.80 3.67
1035 1 2.07 3.98
1135 2 3.15 4.25
1235 3 3.36 4.56
1335 4 4.77 4.82
1435 5 4.33 5.15
1535 6 4.65 5.46
1635 7 4.87 5.77
1735 8 5.12 6.12
1835 9 5.34 7.23
1935 10 5.45 7.52

Fig. 11. The effects of energy demand variation on Munich’s PV/WT/battery charging stations.
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significantly improved both economic and operational performance, 
reducing NPC and LCOE by approximately 40 % and 28 %, respectively. 
This improvement is attributed to better resource management under 
constrained capacity conditions. Moreover, the sensitivity analysis 
confirmed that moderate improvements in solar irradiation (from 2.07 

kWh/m2/d to 5.45 kWh/m2/d) and wind speed (from 3.67 m/s to 7.52 
m/s) further enhanced system economics. Practical design strategies 
—such as implementing PV tracking systems and increasing wind tur
bine hub heights— can increase resource availability but may incur 
additional capital and maintenance costs. However, these strategies may 

Fig. 12. The effects of energy demand change on excess electricity (EE) and un-met electric load (UEL) values of the PV/WT/battery EVCSs in Munich.

Fig. 13. Impact of two key variables on the charging station’s NPC and LCOE in Munich. 
(a) Capacity shortage (x-axis) and EV demand (y-axis). 
(b) Solar irradiation (x-axis) and wind speed (y-axis).
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also lead to higher maintenance and capital costs, which should be 
accounted for in long-term economic assessments. Furthermore, a break- 
even distance analysis showed that stand-alone systems become more 
economically viable than grid-connected options beyond certain 
thresholds, varying by city. These thresholds indicate the point at which 
the increasing cost of grid extension surpasses the relatively stable cost 
of decentralized systems. Among all cases, Berlin achieved the highest 
IRR at 5.23 %.

Future research should explore integrating additional renewable 
energy sources such as biomass or hydrogen to enhance the resilience 
and efficiency of stand-alone EV charging systems. In parallel, the use of 
advanced optimization techniques, including machine learning and 
scenario-based simulations, could enable more adaptive system plan
ning under variable demand and resource conditions. Furthermore, 
refining EV load estimation through socio-demographic, geographic, 
and behavioral data would significantly improve the spatial accuracy of 
infrastructure planning, particularly in complex urban environments. 
Additionally, future work should focus on more detailed battery 
modeling, including temperature-dependent degradation, real-time 
state of charge (SoC) tracking, and adaptive control of depth of 
discharge (DoD). These enhancements would enable a more realistic 
evaluation of battery performance and lifecycle costs under diverse 
climatic and operational conditions.

The findings of this study offer practical guidance for the regional 
deployment of renewables-powered EV charging systems, reinforcing 
Germany’s broader strategies for sustainable mobility and deep 
decarbonization.
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Fig. 14. (b) LCOE. The effects of changes in wind speed and solar irradiation in Munich.

Table 9 
Costs related to the grid connection.

Description Value Unit

Grid tariff 0.08 €/kWh
Grid capital unit cost 1,500,000 €/km

Table 10 
Optimal design break-even distance for the four selected cities in Germany.

Optimal configuration 
location

NPC (€) LCOE 
(€)

Break-even distance 
(km)

Berlin 982,628 0.145 1.83
Hamburg 906,795 0.134 1.67
Munich 1,216,692 0.180 2.3
Cologne 897,412 0.132 1.65

Fig. 15. Break-even distance for each of the four selected cities in Germany.

Table 11 
Stand-alone and grid-connected EVCS payback times in the four selected cities in 
Germany.

City Stand-alone payback period (a) Grid-connected payback period (a)

Berlin 4 8
Hamburg 10 15
Munich 16 21
Cologne 19 23
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Appendix A. Technical Modeling Equations and Parameters

A.1. PV module

It is assumed that the PV module has a lifetime of 25 years, with a typical annual degradation rate of approximately 0.5 % per year due to material 
wear and environmental factors. In HOMER, the photovoltaic derating factor represents the overall efficiency losses under real-world operating 
conditions compared to the ideal rated power of the PV module. This includes system inefficiencies such as inverter losses, temperature effects, dust 
accumulation, and wiring losses, rather than solely the deterioration of solar cells. In this study, a derating factor of 88 % is applied, meaning that only 
88 % of the nominal PV capacity is available under normal operating conditions, considering these real-world losses. The degradation of PV cells over 
time is accounted for separately through an annual efficiency reduction, which is not included in the fixed derating factor [49].

The PV arrays in Berlin, Hamburg, Munich, and Cologne were installed at fixed slopes of 30 ◦, 35 ◦, 32 ◦, and 30.6 ◦, respectively, without tracking 
devices. Since this study does not incorporate local economic or spatial data, the use of tracking systems was not considered, as their feasibility 
strongly depends on these factors. While tracking systems can increase energy yield by 20–30 %, their higher installation and maintenance costs often 
outweigh the benefits, especially under Germany’s moderate solar irradiance conditions [50,51].

According to data from the PV-GIS website, the optimal fixed slope angle for PV systems in Germany ranges between 35 ◦ and 40 ◦, as shown in 
Figure A.1(a). However, in this study, a 30.6 ◦ slope angle—originally applied in France by Saint-Drenan et al. [52]—was also considered for Germany 
due to land-use optimization strategies that prioritize higher module density. Figure A.1(b) presents the average slope angle value in the French study, 
assumed to be 30.6◦. Reducing the slope angle below the optimal range allows for increased PV capacity per unit area, which can boost overall energy 
output, even if individual panel efficiency is slightly lower [53].

Fig. A.1. Optimal PV module slope angles (a) From the PV-GIS website [54]. (b) Applied in Europe including France in 2015 by Saint-Drenan et al. [52].

In the HOMER optimizer, the PV’s output power is expressed as (see Ref. [50]): 

PPV =Ypv × fPV ×
IT

1000
× [1+α(TC − TS)] (A.1) 

where IT is the total solar irradiation incident on the PV panels, YPV is the nominal power of the PV panels, fPV is the derating factor, α is the tem
perature coefficient, Tc is the cell temperature, and Is is the cell temperature under Standard Test Conditions (STC). The cell temperature is estimated 
as follows [55]: 

Tc(t)=Ta(t)+
(

NOCT − 20
0.8

)

×
IT

IS
(A.2) 

where Ta is the time-dependent ambient temperature in degrees Celsius and NOCT is the nominal operating cell temperature.

A.2. Wind turbine

In practical applications, the exponential law model is typically used to calculate wind speed variation with height and terrain. The exponential law 
calculates wind speeds at various hub heights and anemometer heights. The following is a proxy formula for applying the exponential law to the 
calculations (see Refs. [56,57]): 

vhub

vane
=

(
hhub

hane

)a

(A.3) 
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where hane is the anemometer height of the wind turbine (m), hhub is the hub height (m), vane is the wind speed at anemometer height of the WT (m/s), 
vhub is the wind speed at hub height (m/s), and a is the power law exponent, which ranges from 0.05 to 0.5 depending on surface roughness and 
atmospheric stability. In this research, the selected locations’ values were taken to be 0.14.

The energy production characteristics of the WT at various hub height wind speeds can be seen in the power curve of the WT. Figure A.2 depicts the 
output power curve of the XANT M 21 WT [43]. The output power of the WT (PWS(v)), which is approximately represented by the power curve under 
the determined wind speed (v), is shown in Eq. (A.4). The power curve depicts the performance of the WT at standard temperatures and pressures 
(STP) (cf. [58]). 

PWS(v)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, v < vin or v > vout

Pr.(v − vin)

(vr − vin)
, vin ≤ v ≤ vr

Pr, vr ≤ v ≤ vout

(A.4) 

where pr is the rated power of the wind turbine (kW), vin is the cut-in wind speed of the WT (m/s), vr is the rated wind speed of the WT (m/s), and vout is 
the cut-out wind speed of the WT (m/s).

The following Eq. (A.5) enables an approximation of the output power of a WT (Pw(v)) under real-world circumstances (see Ref. [58]): 

Pw(v)=Pws(v).
ρ

1.225
(A.5) 

where ρ is the actual air density (kg/m3).

Fig. A.2 Power curve of the XANT M-21 WT.

A.3. Battery

The voltage and nominal capacity are the variables that impact battery efficiency. Equations (A.6) and (A.7) can be used to derive battery efficiency 
and voltage [59], whereas battery storage is essential in maximizing the renewable energy output, determined by Eq. (A.8) (see Ref. [60]): 

ηbatt = 1 −

(
Inom × Rint × Inom

Vnom × Inom

)

(A.6) 

Vbatt = E0 − (Rint × Ibatt) (A.7) 

Pmax.b =
Nbatt × Vbatt × Imax

1000
(A.8) 

where Ibatt is the battery current, Rint is the internal resistance, and E0 is the no-load voltage level. The nominal voltage is Vnom, and the nominal current 
is Inom. Imax denotes the battery’s maximum current, and Nbatt stands for the number of batteries. The formula for calculating battery capacity (kW) is 
as follows (see Ref. [61]): 

CB =
EL × AD

DOD × ηin × ηbatt
(A.9) 

where EL stands for overall energy demand, AD for autonomous days, and DOD for discharge depth. Inverter and battery efficiency are represented by 
ηin and ηbatt , respectively. A Trojan SSIG deep-cycle lead-acid battery with 6 V, 376 Ah has been selected for this simulation due to its cost-effectiveness, 
reliability, and well-documented performance characteristics. Despite the emergence of lithium-ion alternatives, lead-acid batteries remain widely 
used in stand-alone and renewable energy applications due to their lower upfront costs, deep-cycle capability, and maintenance-free operation, 
making them suitable for frequent charge-discharge cycles [62]. Its efficiency is considered to be 80 %, and its expected lifespan 13 years [63]. The 
cost estimates for battery investment, replacement, and maintenance are 174 €/kW, 174 €/kW, and 0 €/kW, respectively [64–66].
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