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 A B S T R A C T

We develop high-order flux splitting schemes for the one- and two-dimensional Euler equations of gas 
dynamics. The proposed schemes are high-order extensions of the existing first-order flux splitting schemes 
introduced in Toro and Vázquez-Cendón (2012) where the Euler equations of gas dynamics are split into 
two subsystems: the advection and pressure systems. In this paper, we formulate the TV splitting within the 
semi-discrete framework to extend it to higher orders of accuracy for the first time. The second-order extension 
is obtained by using piecewise linear interpolant to reconstruct the one-sided point values of the unknowns. 
The third- and fifth-order schemes are developed using the finite-difference alternative weighted essentially 
non-oscillatory (A-WENO) framework, which is particularly effective in handling multidimensional problems 
and provides a more straightforward approach to constructing higher-order WENO schemes. These extensions 
significantly improve the resolution of discontinuities and the accuracy of numerical solutions, as demonstrated 
by a series of numerical experiments of both the one- and two-dimensional Euler equations of gas dynamics.
1. Introduction

This paper focuses on numerical solutions of the Euler equations of 
gas dynamics, which in the one-dimensional (1-D) case, read as 
𝑼 𝑡 + 𝑭 (𝑼 )𝑥 = 𝟎, (1)

with 
𝑼 ∶= (𝜌, 𝜌𝑢, 𝐸)⊤, and 𝑭 (𝑼 ) = (𝜌𝑢, 𝜌𝑢2 + 𝑝, 𝑢(𝐸 + 𝑝))⊤, (2)

where 𝑡 is the time, 𝑥 is the spatial variable, 𝜌, 𝑢, 𝑝, and 𝐸 are the 
density, velocity, pressure, and total energy, respectively. The system 
is completed through the following equations of state (EOS): 

𝑝 = (𝛾 − 1)
[

𝐸 − 1
2
𝜌𝑢2

]

, (3)

where the parameter 𝛾 represents the specific heat ratio.
It is well-known that equations (1)–(3) model a wide range of 

physical phenomena such as shock waves, turbulence, and compressible 
flows. These systems often involve complex wave patterns, including 
discontinuities like shocks and rarefactions, even when the initial data 
are very smooth, which presents significant challenges for numerical 
methods. Traditional approaches, particularly first-order methods, may 
struggle to resolve these discontinuities accurately, often requiring very 
fine meshes to achieve satisfactory results.
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Since the pioneering works of [1–3], numerous methods have been 
developed to solve hyperbolic systems like the one in (1); see, e.g., the 
monographs and review papers [4–9] and the references therein. Here, 
we focus on flux splitting methods, which are fundamental in compu-
tational fluid dynamics due to their ability to decompose fluxes into 
components corresponding to different wave families, such as shock, 
contact, and expansion waves. This decomposition enhances the reso-
lution of shock waves and discontinuities, which is crucial for accurate 
simulations of compressible flows; see, e.g., [10–23]. While classical 
flux splitting schemes (e.g., [10–14]) are effective, they often struggle 
to resolve intermediate characteristic fields, leading to excessive dis-
sipation or numerical artifacts. To overcome these limitations, more 
advanced methods, such as the advection upstream splitting method 
(AUSM), have been developed (see, e.g., [15]) offering better handling 
of contact waves and improved resolution of wave patterns. AUSM has 
since garnered considerable attention and undergone refinement, with 
further developments [16–18]. Additionally, a flux splitting approach 
similar to AUSM was proposed in [23], and subsequent advancements 
have been recorded in works such as [19–22], further enriching the 
field of computational fluid dynamics.

Recently, a new flux splitting method, known as the TV splitting 
scheme, was introduced for the 1-D Euler equations (1)–(3) in [24] and 
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later extended to higher dimensions in [25], where the system (1)–(3) 
has been divided into two subsystems: the advection and pressure 
systems. These subsystems are analyzed, and corresponding Godunov-
type discretization schemes are formulated. The proposed schemes are 
characterized by their simplicity, robustness, and accuracy, offering 
significant improvements over existing flux splitting methods. In partic-
ular, they effectively capture contact and shear waves while precisely 
preserving isolated stationary contacts. Beyond its application to high-
dimensional Euler equations, it has also been extended to other systems, 
including magnetohydrodynamics and shallow water equations; see, 
e.g., [25–29].

The TV splitting schemes introduced in [24,25] offer a robust 
and accurate first-order approach for solving the Euler equations of 
gas dynamics. However, their accuracy is inherently limited. These 
methods typically require very fine meshes to achieve acceptable res-
olution for shock waves and other important wave structures. As the 
complexity increases, higher-order methods are necessary to improve 
the resolution and reduce the computational cost associated with fine 
grids. In this paper, we extend these schemes to higher orders of 
accuracy — second, third, and fifth — in the semi-discrete framework 
for the first time. The second-order extension is achieved through 
applying piecewise linear interpolant to reconstruct the one-sided point 
values of the unknowns, while third- and fifth-order schemes are de-
veloped within the finite-difference (FD) alternative essentially non-
oscillatory (A-WENO) framework. This framework has been proven 
to be a powerful tool for generalizing low-order finite-volume (FV) 
schemes to higher-order FD ones, particularly in multidimensional 
cases. Its ‘‘dimension-by-dimension’’ reconstruction process simplifies 
the development of higher-order WENO schemes; see, e.g., [30–35].

The proposed TV splitting schemes are applied to both 1-D and 
two-dimensional (2-D) Euler equations of gas dynamics. We test the 
first-, second-, third-, and fifth-order versions of these schemes on 
various numerical examples. As expected, the resolution improves with 
higher-order schemes used, especially when transiting from the first-
order scheme to the second-order one. Additionally, we compare the 
studied TV splitting schemes with the Central-Upwind (CU) schemes 
(see, e.g.,[36–38]), or HLL schemes (see, e.g., [39]), and the HLLC 
schemes (see, e.g., [40]), demonstrating the high efficiency of the 
proposed methods.

The rest of this paper is organized as follows. In Section 2, beginning 
with a brief overview of the existing first-order TV splitting scheme 
for the 1-D Euler equations of gas dynamics, we extend it to second-, 
third-, and fifth-order accuracy. In Section 3, we first introduce the 2-D 
first-order TV splitting scheme and similarly extend it to high orders. 
Finally, in Section 4, we present a number of the 1-D and 2-D numerical 
results to demonstrate their performances.

2. One-dimensional TV splitting schemes

In this section, we first describe the first-order TV splitting scheme 
for the 1-D Euler equations (1)–(3) from [24] and then extend it to 
second-, third-, and fifth-order accuracy.

2.1. 1-D first-order TV splitting schemes: A brief overview

Supposing the computational domain is covered with uniform cells 
𝐶𝑗 ∶= [𝑥𝑗− 1

2
, 𝑥𝑗+ 1

2
] with 𝑥𝑗+ 1

2
− 𝑥𝑗− 1

2
≡ 𝛥𝑥 centered at 𝑥𝑗 = (𝑥𝑗− 1

2
+

𝑥𝑗+ 1
2
)∕2, 𝑗 = 1,… , 𝑁 , we assume that the cell average values

𝑗 (𝑡) ∶≈
1
𝛥𝑥 ∫𝐶𝑗

𝑼 (𝑥, 𝑡) d𝑥

are available at a certain time level 𝑡. Note that all of the indexed 
quantities are time-dependent, but from here on, we suppress the 
time-dependence of all of the indexed quantities for the sake of brevity.
2 
The computed cell averages 𝑼 𝑗 of the 1-D system (1)–(3) are 
evolved in time by solving the following semi-discrete system of or-
dinary differential equations (ODEs): 

d𝑼 𝑗

d𝑡
= −

 FV
𝑗+ 1

2
−  FV

𝑗− 1
2

𝛥𝑥
, (4)

where  FV
𝑗+ 1

2
=  FV

𝑗+ 1
2

(

𝑼−
𝑗+ 1

2
,𝑼+

𝑗+ 1
2

) is the numerical flux, defined by 

 FV
𝑗+ 1

2

(

𝑼−
𝑗+ 1

2
,𝑼+

𝑗+ 1
2

)

= 𝐴
𝑗+ 1

2

(

𝑼−
𝑗+ 1

2
,𝑼+

𝑗+ 1
2

)

+  𝑃
𝑗+ 1

2

(

𝑼−
𝑗+ 1

2
,𝑼+

𝑗+ 1
2

)

. (5)

with 𝑼±
𝑗+ 1

2

 being the left/right-sided point values of 𝑼 at the cell 
interfaces 𝑥𝑗+ 1

2
. For the first order scheme, we take 𝑼+

𝑗+ 1
2

= 𝑼 𝑗+1 and 
𝑼−

𝑗+ 1
2
= 𝑼 𝑗 .

Here, 𝐴
𝑗+ 1

2

(

𝑼−
𝑗+ 1

2
,𝑼+

𝑗+ 1
2

) is the advection flux given by

𝐴
𝑗+ 1

2

(

𝑼−
𝑗+ 1

2
,𝑼+

𝑗+ 1
2

)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑢∗
𝑗+ 1

2

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝜌−
𝑗+ 1

2

(𝜌𝑢)−
𝑗+ 1

2
1
2
𝜌−
𝑗+ 1

2

(𝑢−
𝑗+ 1

2

)2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, if 𝑢∗
𝑗+ 1

2

≥ 0,

𝑢∗
𝑗+ 1

2

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝜌+
𝑗+ 1

2

(𝜌𝑢)+
𝑗+ 1

2
1
2
𝜌+
𝑗+ 1

2

(𝑢+
𝑗+ 1

2

)2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, otherwise,

and  𝑃
𝑗+ 1

2

(

𝑼−
𝑗+ 1

2
,𝑼+

𝑗+ 1
2

) is the pressure flux given by

 𝑃
𝑗+ 1

2

(

𝑼−
𝑗+ 1

2
,𝑼+

𝑗+ 1
2

)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0
𝑝∗
𝑗+ 1

2
𝛾𝑢∗

𝑗+ 1
2

𝑝∗
𝑗+ 1

2

𝛾 − 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

where 

𝑢∗
𝑗+ 1

2
=

𝐶+
𝑗+ 1

2

𝑢+
𝑗+ 1

2

− 𝐶−
𝑗+ 1

2

𝑢−
𝑗+ 1

2

𝐶+
𝑗+ 1

2

− 𝐶−
𝑗+ 1

2

− 2
𝐶+
𝑗+ 1

2

− 𝐶−
𝑗+ 1

2

(𝑝+
𝑗+ 1

2

− 𝑝−
𝑗+ 1

2
),

𝑝∗
𝑗+ 1

2
=

𝐶+
𝑗+ 1

2

𝑝−
𝑗+ 1

2

− 𝐶−
𝑗+ 1

2

𝑝+
𝑗+ 1

2

𝐶+
𝑗+ 1

2

− 𝐶−
𝑗+ 1

2

+
𝐶+
𝑗+ 1

2

𝐶−
𝑗+ 1

2

2(𝐶+
𝑗+ 1

2

− 𝐶−
𝑗+ 1

2

)
(𝑢+

𝑗+ 1
2

− 𝑢−
𝑗+ 1

2
),

𝐶±
𝑗+ 1

2

= 𝜌±
𝑗+ 1

2

(

𝑢±
𝑗+ 1

2

±
√

(

𝑢±
𝑗+ 1

2

)2 + 4
(

𝑐+
𝑗+ 1

2

)2
)

,

(6)

with

𝑢±
𝑗+ 1

2

=
(𝜌𝑢)±

𝑗+ 1
2

𝜌±
𝑗+ 1

2

, 𝑝±
𝑗+ 1

2

= (𝛾 − 1)
(

𝐸±
𝑗+ 1

2

− 1
2
𝜌±
𝑗+ 1

2

(𝑢±
𝑗+ 1

2

)2
)

,

and

𝑐±
𝑗+ 1

2

=
√

𝛾𝑝±
𝑗+ 1

2

∕𝜌±
𝑗+ 1

2

.

2.2. 1-D second-order TV splitting scheme

We now extend the first-order TV splitting scheme introduced in 
Section 2.1 to the second order of accuracy. The resulting scheme 
(4)–(6) achieves second-order accuracy provided that the one-sided 
point values 𝑼±

𝑗+ 1
2

, used to compute the numerical flux  FV
𝑗+ 1

2
 in (5), 

are second-order of accurate. To this end, we approximate 𝑼±
𝑗+ 1

2

 using 
a piecewise linear interpolant 
𝑼̃ (𝑥) = 𝑼 + (𝑼 ) (𝑥 − 𝑥 ), 𝑥 ∈ 𝐶 , (7)
𝑗 𝑥 𝑗 𝑗 𝑗
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which leads to 

𝑼−
𝑗+ 1

2
= 𝑼 𝑗 +

𝛥𝑥
2
(𝑼𝑥)𝑗 , 𝑼+

𝑗+ 1
2

= 𝑼 𝑗+1 −
𝛥𝑥
2
(𝑼𝑥)𝑗+1. (8)

In order to ensure the reconstruction (7)–(8) is non-oscillatory, one 
needs to compute the slopes (𝑼𝑥)𝑗 in (7) with the help of a nonlinear 
limiter. In all of the numerical experiments reported in Section 4, we 
have used a generalized minmod limiter [41–43]: 

(𝑼𝑥)𝑗 = minmod

(

𝜃
𝑼 𝑗 − 𝑼 𝑗−1

𝛥𝑥
,
𝑼 𝑗+1 − 𝑼 𝑗−1

2𝛥𝑥
, 𝜃

𝑼 𝑗+1 − 𝑼 𝑗

𝛥𝑥

)

, (9)

applied in a component-wise manner. Here, the minmod function is 
defined as 

minmod(𝑧1, 𝑧2,…) ∶=

⎧

⎪

⎨

⎪

⎩

min𝑗{𝑧𝑗} if 𝑧𝑗 > 0 ∀ 𝑗,
max𝑗{𝑧𝑗} if 𝑧𝑗 < 0 ∀ 𝑗,
0 otherwise.

(10)

The parameter 𝜃 ∈ [1, 2] in (9) is used to control the amount of numer-
ical viscosity present in the resulting scheme, and larger values of 𝜃
correspond to sharper but, in general, more oscillatory reconstructions. 
In this paper, we use 𝜃 = 1.3.

2.3. 1-D third-order TV splitting schemes

In this section, we extend the second-order TV splitting scheme 
introduced in Section 2.2 to the third-order of accuracy in the frame-
work of the finite-difference A-WENO scheme introduced in [34] (see 
also [30–33]), which has been proven to be a powerful tool for gener-
alizing low-order FV schemes to higher-order FD ones.

Following [34], the point values 𝑼 𝑗 are evolved in time by solving 
the following system of ODEs: 
d𝑼 𝑗

d𝑡
= −

𝑯 𝑗+ 1
2
−𝑯 𝑗− 1

2

𝛥𝑥
, (11)

where 𝑯 𝑗+ 1
2
 is the (third-order accurate) numerical flux defined by

𝑯 𝑗+ 1
2
=  FV

𝑗+ 1
2
− 1

24
(𝛥𝑥)2(𝑭 𝑥𝑥)𝑗+ 1

2
.

Here,  FV
𝑗+ 1

2
 is the FV numerical flux as in (5) and (𝑭 𝑥𝑥)𝑗+ 1

2
 is the higher-

order correction term used to increase the order of the numerical flux. 
The correction term (𝑭 𝑥𝑥)𝑗+ 1

2
 can be approximated using the standard 

central FDs:

(𝑭 𝑥𝑥)𝑗+ 1
2
= 1

2(𝛥𝑥)2
[

𝑭 𝑗−1 − 𝑭 𝑗 − 𝑭 𝑗+1 + 𝑭 𝑗+2
]

.

We stress that the resulting scheme is third-order once the one-sided 
point values 𝑼±

𝑗+ 1
2

 employed to compute the numerical flux  FV
𝑗+ 1

2
 are 

third-order accurate. This can be done by implementing a certain non-
linear limiting procedure like the third-order WENO-type interpolation 
(see, e.g, [31,32,44]) applied to the local characteristic variables; see 
Appendix  A for a detailed explanation.

2.4. 1-D fifth-order TV splitting schemes

According to [34], to achieve fifth-order accuracy, the point values 
𝑼 𝑗 are evolved in time by solving the system (11) with the (fifth-order 
accurate) numerical flux

𝑯 𝑗+ 1
2
=  FV

𝑗+ 1
2
− 1

24
(𝛥𝑥)2(𝑭 𝑥𝑥)𝑗+ 1

2
+ 7

5760
(𝛥𝑥)4(𝑭 𝑥𝑥𝑥𝑥)𝑗+ 1

2
,

where  FV
𝑗+ 1

2

 is the FV numerical flux as in (5), (𝑭 𝑥𝑥)𝑗+ 1
2
 and (𝑭 𝑥𝑥𝑥𝑥)𝑗+ 1

2
are the higher-order correction terms computed by the fourth- and 
second-order accurate FDs, respectively; see, e.g., [31,33,45–47].  Here, 
3 
we have used the following higher-order correction terms:

(𝑭 𝑥𝑥)𝑗+ 1
2
= 1

48(𝛥𝑥)2
[

−5𝑭 𝑗−2 + 39𝑭 𝑗−1 − 34𝑭 𝑗 − 34𝑭 𝑗+1 + 39𝑭 𝑗+2 − 5𝑭 𝑗+3

]

,

(𝑭 𝑥𝑥𝑥𝑥)𝑗+ 1
2
= 1

2(𝛥𝑥)4
[

𝑭 𝑗−2 − 3𝑭 𝑗−1 + 2𝑭 𝑗 + 2𝑭 𝑗+1 − 3𝑭 𝑗+2 + 𝑭 𝑗+3

]

,

where 𝑭 𝑗 ∶= 𝑭 (𝑼 𝑗 ). In order to ensure the resulting scheme is fifth 
order, the one-sided point values 𝑼±

𝑗+ 1
2

 employed to compute the 
numerical flux  FV

𝑗+ 1
2
 need to be at least fifth-order accurate. This can 

be done by using a certain nonlinear limiting procedure like the fifth-
order WENO-Z interpolation from [30,31,34,48,49] applied to the local 
characteristic variables; see Appendix  B for details.

Remark 2.1.  Note that we extend the first-order TV splitting schemes 
to third- and fifth-order accuracy in the framework of FD A-WENO 
methods. It is also easy to extend it to even higher-order accuracy in 
this framework; see, e.g. [49].

3. Two-dimensional schemes

In this section, we first briefly overview the first-order TV splitting 
scheme for the 2-D Euler equations of gas dynamics and then extend it 
to the higher order of accuracy.

The 2-D Euler equations of gas dynamics read as 

𝑼 𝑡 + 𝑭 (𝑼 )𝑥 +𝑮(𝑼 )𝑦 = 𝟎, (12)

with 𝑼 ∶= (𝜌, 𝜌𝑢, 𝜌𝑣, 𝐸)⊤, 𝑭 (𝑼 ) = (𝜌𝑢, 𝜌𝑢2 + 𝑝, 𝜌𝑢𝑣, 𝑢(𝐸 + 𝑝))⊤, and 
𝑮(𝑼 ) = (𝜌𝑣, 𝜌𝑢𝑣, 𝜌𝑣2 + 𝑝, 𝑣(𝐸 + 𝑝))⊤. Here 𝑣 is the 𝑦-velocity and the rest 
of the notations are the same as in the 1-D case (2)–(3). The system is 
completed through the following EOS: 

𝑝 = (𝛾 − 1)
[

𝐸 −
𝜌
2
(𝑢2 + 𝑣2)

]

. (13)

3.1. 2-D first-order TV splitting schemes

Supposing that the computational domain is covered with uniform 
cells 𝐶𝑗, 𝑘 ∶= [𝑥𝑗− 1

2
, 𝑥𝑗+ 1

2
] × [𝑦𝑘− 1

2
, 𝑦𝑘+ 1

2
] centered at (𝑥𝑗 , 𝑦𝑘) =

(

(𝑥𝑗− 1
2
+

𝑥𝑗+ 1
2
)∕2, (𝑦𝑘+ 1

2
+ 𝑦𝑘− 1

2
)∕2

) with 𝑥𝑗+ 1
2
−𝑥𝑗− 1

2
≡ 𝛥𝑥 and 𝑦𝑘+ 1

2
− 𝑦𝑘− 1

2
≡ 𝛥𝑦

for all 𝑗, 𝑘, we assume that the cell averages

𝑗,𝑘(𝑡) ∶≈
1

𝛥𝑥𝛥𝑦 ∫𝐶𝑗,𝑘

𝑼 (𝑥, 𝑦, 𝑡) d𝑥d𝑦

are available at a certain time level 𝑡. The cell averages 𝑼 𝑗,𝑘 are then 
evolved in time by numerically solving the following system of ODEs: 

d𝑼 𝑗,𝑘

d𝑡
= −

 FV
𝑗+ 1

2 ,𝑘
−  FV

𝑗− 1
2 ,𝑘

𝛥𝑥
−

FV
𝑗,𝑘+ 1

2
− FV

𝑗,𝑘− 1
2

𝛥𝑦
. (14)

Here,  FV
𝑗+ 1

2 ,𝑘

(

𝑼−
𝑗+ 1

2 ,𝑘
,𝑼+

𝑗+ 1
2 ,𝑘

) and FV
𝑗,𝑘+ 1

2

(

𝑼−
𝑗,𝑘+ 1

2
,𝑼+

𝑗,𝑘+ 1
2

) are the nu-
merical fluxes, defined by 

 FV
𝑗+ 1

2
,𝑘

(

𝑼−
𝑗+ 1

2
,𝑘
,𝑼+

𝑗+ 1
2
,𝑘

)

= 𝐴
𝑗+ 1

2
,𝑘

(

𝑼−
𝑗+ 1

2
,𝑘
,𝑼+

𝑗+ 1
2
,𝑘

)

+  𝑃
𝑗+ 1

2
,𝑘

(

𝑼−
𝑗+ 1

2
,𝑘
,𝑼+

𝑗+ 1
2
,𝑘

)

,

FV
𝑗,𝑘+ 1

2

(

𝑼−
𝑗,𝑘+ 1

2

,𝑼+
𝑗,𝑘+ 1

2

)

= 𝐴
𝑗,𝑘+ 1

2

(

𝑼−
𝑗,𝑘+ 1

2

,𝑼+
𝑗,𝑘+ 1

2

)

+ 𝑃
𝑗,𝑘+ 1

2

(

𝑼−
𝑗,𝑘+ 1

2

,𝑼+
𝑗,𝑘+ 1

2

)

,

(15)

where 𝑼±
𝑗+ 1

2 ,𝑘
 and 𝑼±

𝑗,𝑘+ 1
2

 are the left/right-sided point values of 𝑼 at 
the cell interfaces (𝑥𝑗+ 1

2
, 𝑦𝑘) and (𝑥𝑗 , 𝑦𝑘+ 1

2
), respectively. In the first-

order scheme, we take 𝑼+
𝑗+ 1

2 ,𝑘
= 𝑼 𝑗+1,𝑘, 𝑼+

𝑗,𝑘+ 1
2

= 𝑼 𝑗,𝑘+1, and 𝑼−
𝑗+ 1

2 ,𝑘
=

𝑼−
1 = 𝑼 𝑗,𝑘.
𝑗,𝑘+ 2
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Here, 𝐴
𝑗+ 1

2 ,𝑘

(

𝑼−
𝑗+ 1

2 ,𝑘
,𝑼+

𝑗+ 1
2 ,𝑘

) is the 𝑥-direction advection flux given 
by

𝐴
𝑗+ 1

2 ,𝑘

(

𝑼−
𝑗+ 1

2 ,𝑘
,𝑼+

𝑗+ 1
2 ,𝑘

)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑢∗
𝑗+ 1

2 ,𝑘

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜌−
𝑗+ 1

2 ,𝑘

(𝜌𝑢)−
𝑗+ 1

2 ,𝑘

(𝜌𝑣)−
𝑗+ 1

2 ,𝑘
1
2
𝜌−
𝑗+ 1

2

[

(𝑢−
𝑗+ 1

2 ,𝑘
)2 + (𝑣−

𝑗+ 1
2 ,𝑘

)2
]

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, if 𝑢∗
𝑗+ 1

2 ,𝑘
≥ 0,

𝑢∗
𝑗+ 1

2 ,𝑘

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜌+
𝑗+ 1

2 ,𝑘

(𝜌𝑢)+
𝑗+ 1

2 ,𝑘

(𝜌𝑣)+
𝑗+ 1

2 ,𝑘
1
2
𝜌+
𝑗+ 1

2

[

(𝑢+
𝑗+ 1

2 ,𝑘
)2 + (𝑣+

𝑗+ 1
2 ,𝑘

)2
]

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, otherwise,

and  𝑃
𝑗+ 1

2 ,𝑘

(

𝑼−
𝑗+ 1

2 ,𝑘
,𝑼+

𝑗+ 1
2 ,𝑘

) is the 𝑥-direction pressure flux given by

 𝑃
𝑗+ 1

2 ,𝑘

(

𝑼−
𝑗+ 1

2 ,𝑘
,𝑼+

𝑗+ 1
2 ,𝑘

)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
𝑝∗
𝑗+ 1

2 ,𝑘

0
𝛾𝑢∗

𝑗+ 1
2 ,𝑘

𝑝∗
𝑗+ 1

2 ,𝑘

𝛾 − 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

where 

𝑢∗
𝑗+ 1

2
,𝑘
=

𝐶+
𝑗+ 1

2
,𝑘
𝑢+
𝑗+ 1

2
,𝑘
− 𝐶−

𝑗+ 1
2
,𝑘
𝑢−
𝑗+ 1

2
,𝑘

𝐶+
𝑗+ 1

2
,𝑘
− 𝐶−

𝑗+ 1
2
,𝑘

− 2
𝐶+
𝑗+ 1

2
,𝑘
− 𝐶−

𝑗+ 1
2
,𝑘

(

𝑝+
𝑗+ 1

2
,𝑘
− 𝑝−

𝑗+ 1
2
,𝑘

)

,

𝑝∗
𝑗+ 1

2
,𝑘
=

𝐶+
𝑗+ 1

2
,𝑘
𝑝−
𝑗+ 1

2
,𝑘
− 𝐶−

𝑗+ 1
2
,𝑘
𝑝+
𝑗+ 1

2
,𝑘

𝐶+
𝑗+ 1

2
,𝑘
− 𝐶−

𝑗+ 1
2
,𝑘

+
𝐶+
𝑗+ 1

2
,𝑘
𝐶−
𝑗+ 1

2
,𝑘

2(𝐶+
𝑗+ 1

2
,𝑘
− 𝐶−

𝑗+ 1
2
,𝑘
)
(

𝑢+
𝑗+ 1

2
,𝑘
− 𝑢−

𝑗+ 1
2
,𝑘

)

,

𝐶±
𝑗+ 1

2
,𝑘
= 𝜌±

𝑗+ 1
2
,𝑘

(

𝑢±
𝑗+ 1

2
,𝑘
±
√

(

𝑢±
𝑗+ 1

2
,𝑘

)2 + 4
(

𝑐±
𝑗+ 1

2
,𝑘

)2
)

,

(16)

with

𝑢±
𝑗+ 1

2 ,𝑘
=

(𝜌𝑢)±
𝑗+ 1

2 ,𝑘

𝜌±
𝑗+ 1

2 ,𝑘

, 𝑣±
𝑗+ 1

2 ,𝑘
=

(𝜌𝑣)±
𝑗+ 1

2 ,𝑘

𝜌±
𝑗+ 1

2 ,𝑘

,

𝑝±
𝑗+ 1

2 ,𝑘
= (𝛾 − 1)

(

𝐸±
𝑗+ 1

2 ,𝑘
− 1

2
𝜌±
𝑗+ 1

2 ,𝑘
[(𝑢±

𝑗+ 1
2 ,𝑘

)2 + (𝑣±
𝑗+ 1

2 ,𝑘
)2]

)

,

and

𝑐±
𝑗+ 1

2 ,𝑘
=
√

𝛾𝑝±
𝑗+ 1

2 ,𝑘
∕𝜌±

𝑗+ 1
2 ,𝑘

.

Similarly, 𝐴
𝑗,𝑘+ 1

2

(

𝑼−
𝑗,𝑘+ 1

2
,𝑼+

𝑗,𝑘+ 1
2

) is the 𝑦-direction advection flux given 
by

𝐴
𝑗,𝑘+ 1

2

(

𝑼−
𝑗,𝑘+ 1

2
,𝑼+

𝑗+ 1
2 ,𝑘

)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

𝑣∗
𝑗,𝑘+ 1

2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜌−
𝑗,𝑘+ 1

2

(𝜌𝑢)−
𝑗,𝑘+ 1

2

(𝜌𝑣)−
𝑗,𝑘+ 1

2
1
2
𝜌−
𝑗+ 1

2

[

(𝑢−
𝑗,𝑘+ 1

2

)2 + (𝑣−
𝑗,𝑘+ 1

2

)2
]

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, if 𝑣∗
𝑗,𝑘+ 1

2

≥ 0,

𝑣∗
𝑗,𝑘+ 1

2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜌+
𝑗,𝑘+ 1

2

(𝜌𝑢)+
𝑗,𝑘+ 1

2

(𝜌𝑣)+
𝑗,𝑘+ 1

2
1
2
𝜌+
𝑗,𝑘+ 1

2

[

(𝑢+
𝑗,𝑘+ 1

2

)2 + (𝑣+
𝑗,𝑘+ 1

2

)2
]

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, otherwise,
⎩

4 
and 𝑃
𝑗,𝑘+ 1

2

(

𝑼−
𝑗,𝑘+ 1

2
,𝑼+

𝑗,𝑘+ 1
2

) is the 𝑦-direction pressure flux given by

𝑃
𝑗,𝑘+ 1

2

(

𝑼−
𝑗,𝑘+ 1

2
,𝑼+

𝑗,𝑘+ 1
2

)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
0

𝑝∗
𝑗,𝑘+ 1

2
𝛾𝑣∗

𝑗,𝑘+ 1
2

𝑝∗
𝑗,𝑘+ 1

2

𝛾 − 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

where 

𝑣∗
𝑗,𝑘+ 1

2

=
𝐶+
𝑗,𝑘+ 1

2

𝑣+
𝑗,𝑘+ 1

2

− 𝐶−
𝑗,𝑘+ 1

2

𝑣−
𝑗,𝑘+ 1

2

𝐶+
𝑗,𝑘+ 1

2

− 𝐶−
𝑗,𝑘+ 1

2

− 2
𝐶+
𝑗,𝑘+ 1

2

− 𝐶−
𝑗,𝑘+ 1

2

(

𝑝+
𝑗,𝑘+ 1

2

− 𝑝−
𝑗,𝑘+ 1

2

)

,

𝑝∗
𝑗,𝑘+ 1

2

=
𝐶+
𝑗,𝑘+ 1

2

𝑝−
𝑗,𝑘+ 1

2

− 𝐶−
𝑗,𝑘+ 1

2

𝑝+
𝑗,𝑘+ 1

2

𝐶+
𝑗,𝑘+ 1

2

− 𝐶−
𝑗,𝑘+ 1

2

+
𝐶+
𝑗,𝑘+ 1

2

𝐶−
𝑗,𝑘+ 1

2

2(𝐶+
𝑗,𝑘+ 1

2

− 𝐶−
𝑗,𝑘+ 1

2

)
(

𝑣+
𝑗,𝑘+ 1

2

− 𝑣−
𝑗,𝑘+ 1

2

)

,

𝐶±
𝑗,𝑘+ 1

2

= 𝜌±
𝑗,𝑘+ 1

2

(

𝑣−
𝑗,𝑘+ 1

2

±
√

(

𝑣±
𝑗,𝑘+ 1

2

)2 + 4
(

𝑐±
𝑗,𝑘+ 1

2

)2
)

,

(17)

with

𝑢±
𝑗,𝑘+ 1

2

=
(𝜌𝑢)±

𝑗,𝑘+ 1
2

𝜌±
𝑗,𝑘+ 1

2

, 𝑣±
𝑗,𝑘+ 1

2

=
(𝜌𝑣)±

𝑗,𝑘+ 1
2

𝜌±
𝑗,𝑘+ 1

2

,

𝑝±
𝑗,𝑘+ 1

2

= (𝛾 − 1)
(

𝐸±
𝑗,𝑘+ 1

2

− 1
2
𝜌±
𝑗,𝑘+ 1

2

[(𝑢±
𝑗,𝑘+ 1

2

)2 + (𝑣±
𝑗,𝑘+ 1

2

)2]
)

,

and

𝑐±
𝑗,𝑘+ 1

2

=
√

𝛾𝑝±
𝑗,𝑘+ 1

2

∕𝜌±
𝑗,𝑘+ 1

2

.

3.2. 2-D second-order TV splitting scheme

As in the 1-D case, the resulting scheme (14)–(15) is second-order 
accurate once the one-sided point values 𝑼±

𝑗+ 1
2 ,𝑘

 and 𝑼±
𝑗,𝑘+ 1

2

 employed 
to compute the numerical fluxes (15) are second order. To this end, we 
approximate 𝑼±

𝑗+ 1
2 ,𝑘

 and 𝑼±
𝑗,𝑘+ 1

2

 by

𝑼̃ (𝑥, 𝑦) = 𝑼 𝑗,𝑘 + (𝑼𝑥)𝑗,𝑘(𝑥 − 𝑥𝑗 ) + (𝑼 𝑦)𝑗,𝑘(𝑦 − 𝑦𝑘), 𝑥 ∈ 𝐶𝑗,𝑘,

which leads to
𝑼−

𝑗+ 1
2 ,𝑘

= 𝑼 𝑗,𝑘 +
𝛥𝑥
2
(𝑼𝑥)𝑗,𝑘, 𝑼+

𝑗+ 1
2 ,𝑘

= 𝑼 𝑗+1,𝑘 −
𝛥𝑥
2
(𝑼𝑥)𝑗+1,𝑘,

𝑼−
𝑗,𝑘+ 1

2
= 𝑼 𝑗,𝑘 +

𝛥𝑦
2
(𝑼 𝑦)𝑗,𝑘, 𝑼+

𝑗,𝑘+ 1
2

= 𝑼 𝑗+1,𝑘 −
𝛥𝑦
2
(𝑼 𝑦)𝑗+1,𝑘,

where

(𝑼 𝑥)𝑗,𝑘 = minmod

(

𝜃
𝑼 𝑗,𝑘 − 𝑼 𝑗−1,𝑘

𝛥𝑥
,
𝑼 𝑗+1,𝑘 − 𝑼 𝑗−1,𝑘

2𝛥𝑥
, 𝜃

𝑼 𝑗+1,𝑘 − 𝑼 𝑗,𝑘

𝛥𝑥

)

,

(𝑼 𝑦)𝑗,𝑘 = minmod

(

𝜃
𝑼 𝑗,𝑘 − 𝑼 𝑗,𝑘−1

𝛥𝑦
,
𝑼 𝑗,𝑘+1 − 𝑼 𝑗,𝑘−1

2𝛥𝑦
, 𝜃

𝑼 𝑗,𝑘+1 − 𝑼 𝑗,𝑘

𝛥𝑦

)

.

Here, the minmod function is defined by (10).

3.3. 2-D third-order TV splitting schemes

Following [34], the point values 𝑼 𝑗,𝑘 are evolved in time by solving 
the following system of ODEs: 
d𝑼 𝑗,𝑘

d𝑡
= −

𝑯 𝑗+ 1
2 ,𝑘

−𝑯 𝑗− 1
2 ,𝑘

𝛥𝑥
−

𝑯 𝑗,𝑘+ 1
2
−𝑯 𝑗,𝑘+ 1

2

𝛥𝑦
, (18)

where the numerical fluxes 𝑯 𝑗+ 1
2 ,𝑘

 and 𝑯 𝑗,𝑘+ 1
2
 are defined by

𝑯 1 =  FV
1 − 1 (𝛥𝑥)2(𝑭 𝑥𝑥) 1 , 𝑯 1 = FV

1 − 1 (𝛥𝑦)2(𝑮𝑦𝑦) 1 .
𝑗+ 2 ,𝑘 𝑗+ 2 ,𝑘 24 𝑗+ 2 ,𝑘 𝑗,𝑘+ 2 𝑗,𝑘+ 2 24 𝑗,𝑘+ 2
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Here,  FV
𝑗+ 1

2 ,𝑘
 and 𝑮FV

𝑗,𝑘+ 1
2
 are the FV numerical fluxes as in (15), 

(𝑭 𝑥𝑥)𝑗+ 1
2 ,𝑘

 and (𝑮𝑦𝑦)𝑗,𝑘+ 1
2
 are the higher-order correction terms com-

puted by the standard central FDs:

(𝑭 𝑥𝑥)𝑗+ 1
2 ,𝑘

= 1
12(𝛥𝑥)2

[

𝑭 𝑗−1,𝑘 − 𝑭 𝑗,𝑘 − 𝑭 𝑗+1,𝑘 + 𝑭 𝑗+2,𝑘
]

,

(𝑮𝑦𝑦)𝑗,𝑘+ 1
2
= 1

12(𝛥𝑦)2
[

𝑮𝑗,𝑘−1 −𝑮𝑗,𝑘 −𝑮𝑗,𝑘+1 +𝑮𝑗,𝑘+2
]

.

To ensure the resulting scheme is third-order accuracy, the one-sided 
point values 𝑼±

𝑗+ 1
2 ,𝑘

 and 𝑼±
𝑗,𝑘+ 1

2

 are also computed using third-order 
WENO-type interpolation applied to the local characteristic variables. 
Note that this can be done in a ‘‘dimension-by-dimension’’ manner as 
in the 1-D case, we therefore omit the details for the sake of brevity.

3.4. 2-D fifth-order TV splitting schemes

According to [34], the point values 𝑼 𝑗 are evolved in time by 
solving the system of ODEs (18) with the following numerical fluxes 
𝑯 𝑗+ 1

2 ,𝑘
 and 𝑯 𝑗,𝑘+ 1

2
:

𝑯 𝑗+ 1
2 ,𝑘

=  FV
𝑗+ 1

2 ,𝑘
− 1

24
(𝛥𝑥)2(𝑭 𝑥𝑥)𝑗+ 1

2 ,𝑘
+ 7

5760
(𝛥𝑥)4(𝑭 𝑥𝑥𝑥𝑥)𝑗+ 1

2 ,𝑘
,

𝑮𝑗,𝑘+ 1
2
= FV

𝑗,𝑘+ 1
2
− 1

24
(𝛥𝑦)2(𝑮𝑦𝑦)𝑗,𝑘+ 1

2
+ 7

5760
(𝛥𝑦)4(𝑮𝑦𝑦𝑦𝑦)𝑗,𝑘+ 1

2
.

Here,  FV
𝑗+ 1

2 ,𝑘
 and 𝑮FV

𝑗,𝑘+ 1
2
 are the FV numerical fluxes as in (15), 

(𝑭 𝑥𝑥)𝑗+ 1
2 ,𝑘
, (𝑭 𝑥𝑥𝑥𝑥)𝑗+ 1

2 ,𝑘
, (𝑮𝑦𝑦)𝑗,𝑘+ 1

2
, (𝑮𝑦𝑦𝑦𝑦)𝑗,𝑘+ 1

2
 are approximations 

of the second- and fourth-order spatial derivatives of 𝑭  at (𝑥, 𝑦) =
(𝑥𝑗+ 1

2
, 𝑦𝑘) and 𝑮 at (𝑥, 𝑦) = (𝑥𝑗 , 𝑦𝑘+ 1

2
), respectively. In this paper, we 

have used the following higher-order correction terms from [46]:
(𝑭 𝑥𝑥)𝑗+ 1

2 ,𝑘
= 1

48(𝛥𝑥)2
(

−5𝑭 𝑗−2,𝑘 + 39𝑭 𝑗−1,𝑘 − 34𝑭 𝑗,𝑘 − 34𝑭 𝑗+1,𝑘 + 39𝑭 𝑗+2,𝑘 − 5𝑭 𝑗+3,𝑘
)

,

(𝑭 𝑥𝑥𝑥𝑥)𝑗+ 1
2 ,𝑘

= 1
2(𝛥𝑥)4

(

𝑭 𝑗−2,𝑘 − 3𝑭 𝑗−1,𝑘 + 2𝑭 𝑗,𝑘 + 2𝑭 𝑗+1,𝑘 − 3𝑭 𝑗+2,𝑘 + 𝑭 𝑗+3,𝑘
)

,

(𝑮𝑦𝑦)𝑗,𝑘+ 1
2
= 1

48(𝛥𝑦)2
(

−5𝑮𝑗,𝑘−2 + 39𝑮𝑗,𝑘−1 − 34𝑮𝑗,𝑘 − 34𝑮𝑗,𝑘+1 + 39𝑮𝑗,𝑘+2 − 5𝑮𝑗,𝑘+3
)

,

(𝑮𝑦𝑦𝑦𝑦)𝑗,𝑘+ 1
2
= 1

2(𝛥𝑦)4
(

𝑮𝑗,𝑘−2 − 3𝑮𝑗,𝑘−1 + 2𝑮𝑗,𝑘 + 2𝑮𝑗,𝑘+1 − 3𝑮𝑗,𝑘+2 +𝑮𝑗,𝑘+3
)

,

where 𝑭 𝑗,𝑘 ∶= 𝑭 (𝑼 𝑗,𝑘) and 𝑮𝑗,𝑘 ∶= 𝑮(𝑼 𝑗,𝑘). To achieve fifth-order 
accuracy, the one-sided point values 𝑼±

𝑗+ 1
2 ,𝑘

 and 𝑼±
𝑗,𝑘+ 1

2

 employed to 
compute the numerical flux  FV

𝑗+ 1
2 ,𝑘

 and FV
𝑗,𝑘+ 1

2
 need to be at least fifth-

order accurate. This can also be done in a ‘‘dimension-by-dimension’’ 
manner as in the 1-D case, we therefore omit the details for the sake of 
brevity.

4. Numerical examples

In this section, [2] we test the studied first-, second-, third-, and 
fifth-order schemes on several numerical examples and compare their 
performances. For the sake of brevity, these schemes will be referred 
to as the 1-, 2-, 3-, and 5-Order schemes, respectively.

We numerically integrate the ODE systems (4), (11), (14), and 
(18) by the three-stage third-order strong stability preserving (SSP) 
Runge–Kutta method (see, e.g., [50,51]) and use the CFL number 0.45.

4.1. One-dimensional examples

We begin with the 1-D Euler equations of gas dynamics (1)–(3). In 
all of the Examples 1–5, we take the specific heat ratio 𝛾 = 1.4.

Example 1—1-D accuracy test
In the first example, we consider the system (1)–(3) subject to the 

following periodic initial conditions,

𝜌(𝑥, 0) = 1 + 1 sin(2𝜋𝑥), 𝑢(𝑥, 0) ≡ 1, 𝑝(𝑥, 0) ≡ 1.

10

5 
The exact solution of this initial value problem is given by

𝜌(𝑥, 𝑡) = 1 + 1
10

sin [2𝜋(𝑥 − 𝑡)] , 𝑢(𝑥, 𝑡) ≡ 1, 𝑝(𝑥, 0) ≡ 1.

We first compute the numerical solution on the computational 
domain [−1, 1] until the final time 𝑡 = 0.1 by the 1-, 2-, 3-, and 
5-Order schemes on a sequence of uniform meshes: 100, 200, 400, 
and 800, measure the 𝐿1-errors, and then compute the corresponding 
experimental convergence rates for the density. The obtained results 
are presented in Table  1, where one can clearly see that the expected 
order of accuracy is achieved for the studied schemes.

Remark 4.1.  We stress that in order to achieve the fifth order of 
accuracy for the 5-Order scheme, we use smaller time steps with 𝛥𝑡 ∼
(𝛥𝑥)

5
3  to balance the spatial and temporal errors.

Example 2—Advection of smooth density
In the second example taken from [8], we evaluate the efficiency of 

the four studied schemes. We consider the following initial conditions:
(𝜌, 𝑢, 𝑝)(𝑥, 0) = (2 + sin4(𝜋𝑥), 1, 1),

subject to the period boundary conditions at both ends on the compu-
tational interval [−1, 1]. The exact solution of this initial value problem 
can be easily obtained and is given by
(𝜌, 𝑢, 𝑝)(𝑥, 𝑡) = (2 + sin4(𝜋(𝑥 − 𝑡)), 1, 1).

In Fig.  1, we present the computational cost (bars) versus the 
order of accuracy for three cases, each corresponding to prescribed 𝐿2-
errors (10−7, 10−8, and 10−9). As one can see, the computational cost 
decreases significantly with increasing order of accuracy, demonstrat-
ing the superior efficiency of high-order methods. In fact, high-order 
methods can achieve the same accuracy as low-order methods while 
requiring orders of magnitude less CPU time, making them substantially 
more efficient

Example 3—Shock–density wave interaction problem
In this example taken from [52], we consider the shock–density 

wave interaction problem with the following initial data,

(𝜌, 𝑢, 𝑝)||
|(𝑥,0)

=

⎧

⎪

⎨

⎪

⎩

(

27
7
,
4
√

35
9

, 31
3

)

, 𝑥 < −4,

(1 + 0.2 sin(5𝑥), 0, 1), 𝑥 > −4,

prescribed in the computational domain [−5, 5] subject to the free 
boundary conditions.

We compute the numerical solutions until the final time 𝑡 = 5 by 
the 1-, 2-, 3-, and 5-Order schemes on a uniform mesh of 400 cells, 
and present the obtained numerical results in Fig.  2 together with the 
reference solution computed by the 5-Order scheme on a much finer 
mesh of 8000 cells. One can clearly see that the resolution of the 
computed density improves significantly when high-order schemes are 
used.

Example 4—Titarev-Toro problem
In this example, we consider the Titarev–Toro problem taken from

[53]; see also [54,55]. The initial conditions,

(𝜌, 𝑢, 𝑝)(𝑥, 0) =

{

(1.51695, 0.523346, 1.805), 𝑥 < −4.5,
(1 + 0.1 sin(20𝑥), 0, 1), 𝑥 > −4.5,

correspond to a forward-facing shock wave of Mach 1.1 interacting with 
high-frequency density perturbations, that is, as the shock wave moves, 
the perturbations spread ahead. In this example, we set free boundary 
conditions at both ends of the computational domain [−10, 5].

We compute the solutions until the final time 𝑡 = 5 by the 1-, 
2-, 3-, and 5-Order schemes on a uniform mesh of 1200 cells. The 
numerical results are shown in Fig.  3 along with the reference solution 
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Table 1
Example 1: The 𝐿1-errors and experimental convergence rates for the density 𝜌 computed by the 1-, 2-, 3-, and 
5-Order schemes.
 Mesh 1-Order 2-Order 3-Order 5-Order

 Error Rate Error Rate Error Rate Error Rate 
 100 4.93e−03 – 4.70e−04 – 1.02e−05 – 1.33e−07 –  
 200 2.49e−03 0.985 1.12e−04 2.07 1.24e−06 3.04 4.40e−09 4.92 
 400 1.25e−03 0.993 2.76e−05 2.03 1.55e−07 3.00 1.42e−10 4.95 
 800 6.27e−04 0.996 6.30e−06 2.13 1.94e−08 3.00 4.55e−12 5.00 
Fig. 1. Example 2: Computational cost (bars) against order of accuracy in space and time for three prescribed errors: 10−7, 10−8, and 10−9.
Fig. 2. Example 3: Density 𝜌 computed by the 1-, 2-, 3-, and 5-Order schemes (left) and zoom at [1.3, 2.3] (right).
Fig. 3. Example 4: Density 𝜌 computed by the 1-, 2-, 3-, and 5-Order schemes (left) and zoom at [−2,−1] (right).
computed by the 5-Order scheme on a much finer mesh of 12000 cells. 
The obtained results clearly demonstrate a substantial difference in the 
resolution computed by schemes with different orders.

In this example, we compare the performances of the studied TV 
splitting scheme with the CU scheme (see, e.g.,[37,38]) or HLL scheme 
(see, e.g.,[39]), and HLLC scheme (see e.g.,[40]. We compute the solu-
tions by the corresponding CU (HLL) and HLLC schemes and present 
6 
the obtained numerical densities in Fig.  4, where one can both TV 
splitting and HLLC schemes achieve better resolutions than the CU 
(HLL) scheme. At the same time, HLLC scheme contains slightly less 
numerical dissipations than the studied TV splitting scheme; see the 
first two rows in Fig.  4, and the results computed by TV splitting and 
HLLC schemes are almost identical after extended to higher orders; see 
the last two rows in Fig.  4.
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Fig. 4. Example 4: Density 𝜌 computed by the 1- (top row), 2- (second row), 3- (third-row) and 5-Order (bottom row) TV splitting, CU (HLL), and HLLC schemes (left) and zoom 
at [−1,−0.6] (right).
Example 5—Blast wave problem
In the last 1-D example, we consider the strong shocks interaction 

problem from [56] with the following initial conditions:

(𝜌, 𝑢, 𝑝)(𝑥, 0) =

⎧

⎪

⎨

⎪

⎩

(1, 0, 1000), 𝑥 < 0.1,
(1, 0, 0.01), 0.1 ≤ 𝑥 ≤ 0.9,
(1, 0, 100), 𝑥 > 0.9,

prescribed in the computational domain [0, 1] subject to the solid wall 
boundary conditions at both ends.

We compute the numerical solutions until the final time 𝑡 = 0.038
by the 1-, 2-, 3-, and 5-Order schemes on a uniform mesh of 400 cells. 
The obtained results are presented in Fig.  5 together with the reference 
solution computed by the 5-Order scheme on a much finer mesh of 
4000 cells, demonstrating that the resolution of the computed density 
7 
improves significantly with the use of high-order schemes, especially 
when transiting from the 1-Order scheme to the 2-Order one.

4.2. Two-dimensional examples

In this section, we consider the 2-D Euler equations of gas dynamics 
(12)–(13). In Examples 6–10, we take the specific heat ratio 𝛾 = 1.4, 
while in Example 11, we take 𝛾 = 5∕3.

Example 6—2-D accuracy test
In the first 2-D example taken from [46,57,58], we consider the 

2-D Euler equations of gas dynamics subject to the periodic initial 
conditions,

𝜌(𝑥, 𝑦, 0) = 1 + 1 sin(𝜋(𝑥 + 𝑦)), 𝑢(𝑥, 𝑦, 0) ≡ 1,

5
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Fig. 5. Example 5: Density 𝜌 computed by the 1-, 2-, 3-, and 5-Order schemes (left) and zoom at [0.55, 0.87] (right).
Table 2
Example 6: The 𝐿1-errors and experimental convergence rates for the density 𝜌 computed by the 1-, 2-, 3-, and 
5-Order schemes.
 Mesh 1-Order 2-Order 3-Order 5-Order

 Error Rate Error Rate Error Rate Error Rate 
 50 × 50 1.68e−02 – 1.08e−03 – 3.36e−05 – 2.49e−07 –  
 100 × 100 8.47e−03 0.986 2.64e−04 2.03 4.21e−06 2.99 7.80e−09 5.00 
 200 × 200 4.25e−03 0.994 6.16e−05 2.10 5.27e−07 3.00 2.44e−10 5.00 
 400 × 400 2.13e−03 0.997 1.47e−05 2.06 6.59e−08 3.00 7.83e−12 4.96 
Fig. 6. Example 6: 𝐿1- (left) and 𝐿∞- (right) errors computed by the 1-, 2-, 3-, and 5-Orders TV splitting, CU (HLL), and HLLC schemes.
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𝑣(𝑥, 𝑦, 0) ≡ −0.7, 𝑝(𝑥, 𝑦, 0) ≡ 1,

rescribed on [−1, 1] × [−1, 1]. The exact solution of this initial value 
roblem can be easily obtained and is given by

(𝑥, 𝑦, 𝑡) = 1 + 1
5
sin [𝜋(𝑥 + 𝑦 − 0.3𝑡)] , 𝑢(𝑥, 𝑦, 𝑡) ≡ 1,

𝑣(𝑥, 𝑦, 𝑡) ≡ −0.7, 𝑝(𝑥, 𝑦, 0) ≡ 1.

We first compute the numerical solution until the final time 𝑡 = 0.1
sing the 1-, 2-, 3-, and 5-Order schemes on a sequence of uniform 
eshes: 50 × 50, 100 × 100, 200 × 200, and 400 × 400. We then 
easure the 𝐿1-errors and the corresponding experimental convergence 
ates for the density. The obtained results are presented in Table  2, 
here one can see that the studied 1-, 2-, 3-, and 5-Order schemes 
chieve the expected order of accuracy. Similar to Example 1, we had 
o use smaller time steps with 𝛥𝑡 ∼ min

{

(𝛥𝑥)
5
3 , (𝛥𝑦)

5
3
} to achieve the 

ifth order of accuracy.
We also compute the numerical results using the CU (HLL) and 

LLC schemes on the same meshes and present the obtained 𝐿1- 
nd 𝐿∞-errors in Fig.  6. As observed, all the studied schemes obtain 
he expected order of accuracy. Moreover, the TV-splitting schemes 
emonstrate accuracy comparable to that of the HLLC schemes and 
xhibit higher accuracy than the corresponding CU (HLL) schemes.
 w

8 
xample 7—2-D vortex evolution problem
In this example taken from [59]; see also [60], we consider the 2-D 

ortex evolution problem with the following initial conditions

𝜌, 𝑢, 𝑣, 𝑝)(𝑥, 𝑦, 0) =
(

𝑇
1

𝛾−1 , 1 − 𝜀
2𝜋

𝑒
1
2 (1−𝑟

2)𝑦, 1 + 𝜀
2𝜋

𝑒
1
2 (1−𝑟

2)𝑥, 𝜌𝛾
)

,

here 𝑇 = 1 − (𝛾−1)𝜀2

8𝛾𝜋2 𝑒(1−𝑟2), 𝑟2 = 𝑥2 + 𝑦2, and 𝜀 = 5 is the vortex 
trength. The initial data, which is prescribed in the computational 
omain [−5, 5] × [−5, 5] subject to the periodic boundary conditions, 
orresponds to a smooth vortex placed at the origin and is defined 
s the isentropic perturbation to the uniform flow of unit values of 
rimitive variables and the exact solution is a vortex moving with a 
onstant velocity at 45◦ to the Cartesian mesh lines.
We compute the numerical solution until the final time 𝑡 = 10

sing the 1-, 2-, 3-, and 5-Order TV splitting schemes on a sequence 
f uniform meshes: 25 × 25, 50 × 50, 100 × 100, 200 × 200, and 
00 × 400, and then measure the 𝐿1- and 𝐿∞-errors between the 
omputed solutions and the exact solutions and the corresponding 
xperimental convergence rates for the density. We also compare the 
erformances of the TV splitting schemes with the CU (HLL) and HLLC 
chemes and present the obtained results in Tables  3 and 4. One can 
ee that for the 1- and 2-Order schemes, both first- and second-order 
onvergence rates are observed only after significant mesh refinement, 
hile the 3- and 5-Order TV splitting, CU (HLL), and HLLC schemes 
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Table 3
Example 7: 𝐿1-errors and experimental convergence rates for the density 𝜌 computed by the 1-, 2-, 3-, and 5-Order TV splitting, CU (HLL), and 
HLLC schemes.
 Method Mesh 1-Order 2-Order 3-Order 5-Order

 Error Rate Error Rate Error Rate Error Rate 
 
TV 
splitting

25 × 25 2.89 – 2.19e−00 – 8.89e−01 – 1.62e−01 –  
 50 × 50 2.84 2.09e−02 6.24e−01 1.81 1.68e−01 2.40 1.01e−02 4.00 
 100 × 100 2.49 1.90e−01 1.24e−01 2.33 2.41e−02 2.80 3.73e−04 4.76 
 200 × 200 1.91 3.84e−01 3.00e−02 2.05 3.12e−03 2.95 1.20e−05 4.96 
 400 × 400 1.26 5.97e−01 6.75e−03 2.15 3.93e−04 2.99 4.65e−07 4.70 
 
CU (HLL)

25 × 25 2.60 – 1.81e−00 – 5.76e−01 – 1.58e−01 –  
 50 × 50 2.34 1.52e−01 5.69e−01 1.67 1.18e−01 2.29 1.12e−02 3.83 
 100 × 100 1.86 3.30e−01 1.48e−01 1.94 1.83e−02 2.69 4.42e−04 4.66 
 200 × 200 1.33 4.84e−01 4.54e−02 1.71 2.37e−03 2.95 1.44e−05 4.94 
 400 × 400 0.84 6.71e−01 1.00e−02 2.18 2.98e−04 2.99 4.73e−07 4.93 
 
HLLC

25 × 25 2.53 – 1.68e−00 – 5.39e−01 – 1.53e−01 –  
 50 × 50 2.22 1.87e−01 5.36e−01 1.64 1.07e−01 2.33 9.90e−03 3.95 
 100 × 100 1.74 3.49e−01 1.44e−01 1.90 1.61e−02 2.74 3.82e−04 4.70 
 200 × 200 1.21 5.26e−01 4.67e−02 1.62 2.07e−03 2.95 1.24e−05 4.94 
 400 × 400 0.74 7.04e−01 9.88e−03 2.24 2.60e−04 2.99 4.11e−07 4.92 
Table 4
Example 7: 𝐿∞-errors and experimental convergence rates for the density 𝜌 computed by the 1-, 2-, 3-, and 5-Order TV splitting, CU (HLL), 
and HLLC schemes. 
 Method Mesh 1-Order 2-Order 3-Order 5-Order

 Error Rate Error Rate Error Rate Error Rate 
 
TV 
splitting

25 × 25 4.81e−01 – 4.38e−01 – 1.96e−01 – 2.61e−02 –  
 50 × 50 4.75e−01 1.80e−02 1.78e−01 1.30 3.05e−02 2.68 2.66e−03 3.30 
 100 × 100 4.58e−01 5.44e−02 7.02e−02 1.34 4.20e−03 2.86 9.86e−05 4.75 
 200 × 200 3.79e−01 2.74e−01 2.35e−02 1.58 5.43e−04 2.95 3.17e−06 4.96 
 400 × 400 2.52e−01 5.86e−01 7.13e−03 1.72 6.78e−05 3.00 9.99e−08 4.99 
 
CU (HLL)

25 × 25 4.60e−01 – 3.50e−01 – 1.20e−01 – 4.48e−02 –  
 50 × 50 4.26e−01 1.08e−01 1.21e−01 1.53 2.10e−02 2.51 2.18e−03 4.36 
 100 × 100 3.70e−01 2.05e−01 6.44e−02 0.91 3.03e−03 2.79 7.99e−05 4.77 
 200 × 200 2.67e−01 4.69e−01 3.05e−02 1.08 3.93e−04 2.95 2.64e−06 4.92 
 400 × 400 1.58e−01 7.61e−01 8.02e−03 1.93 4.93e−05 2.99 8.14e−08 5.02 
 
HLLC

25 × 25 4.54e−01 – 3.27e−01 – 1.14e−01 – 4.04e−02 –  
 50 × 50 4.15e−01 1.30e−01 1.07e−01 1.62 2.02e−02 2.49 1.82e−03 4.47 
 100 × 100 3.49e−01 2.47e−01 6.39e−02 0.74 2.86e−03 2.82 7.02e−05 4.70 
 200 × 200 2.42e−01 5.30e−01 2.97e−02 1.11 3.65e−04 2.97 2.31e−06 4.93 
 400 × 400 1.39e−01 7.97e−01 7.88e−03 1.91 4.57e−05 3.00 7.18e−08 5.00 
Fig. 7. Example 7: 𝐿1- (left) and 𝐿∞- (right) errors computed by the 1-, 2-, 3-, and 5-Orders TV splitting, HLL, and HLLC schemes.
achieve the expected order of accuracy. In order to have a better 
view, we also show the 𝐿1- and 𝐿∞-errors in Fig.  7, where we also 
show the results computed by the 1- and 2-Order schemes on finer 
meshes 800 × 800 and 1600 × 1600 to show that the 1- and 2-Order 
schemes achieve expected convergence rates after mesh refinement. 
Note that the 𝐿1- and 𝐿∞-errors computed by the TV splitting schemes 
are slightly larger than the ones computed by the CU (HLL) and HLLC 
schemes, while HLLC schemes are the most accurate ones among the 
studied schemes. However, it can be observed that the TV-splitting 
schemes achieve accuracy comparable to that of the HLLC schemes 
and are more accurate than the corresponding CU (HLL) schemes; see 
Examples 4, 6, and 9.
9 
Example 8—Explosion problem
In this example, we consider the explosion problem studied in [8]. 

We take the following initial conditions,

(𝜌, 𝑢, 𝑣, 𝑝)(𝑥, 𝑦, 0) =

{

(1, 0, 0, 1), 𝑥2 + 𝑦2 < 0.16,
(0.125, 0, 0, 0.1), otherwise,

prescribed in the computational domain [−1, 1] × [−1, 1] subject to free 
boundary conditions at all the four sides.

We apply the studied 1-, 2-, 3-, and 5-Order schemes and compute 
the numerical solutions until the final time 𝑡 = 0.25 on a uniform mesh 
with 50 × 50 cells. The obtained results are presented in Figs.  8 and 9. 
In Fig.  9, we show the slices of the densities along the diagonal 𝑦 = 𝑥 for 
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Fig. 8. Example 8: Density 𝜌 computed by the 1-, 2-, 3-, and 5-Order schemes.
Fig. 9. Example 8: Diagonal slices of the density 𝜌 computed by the 1-, 2-, 3-, and 5-Order schemes (left) and zoom at 𝑥 ∈ [0, 0.35].
Fig. 10. Example 9: Density (𝜌) computed by the 1-, 2, 3-, and 5-Order schemes.
different schemes. As one can clearly see, using higher-order numerical 
schemes can achieve better resolution, with a particularly significant 
improvement observed when transiting from the 1-Order scheme to the 
2-Order one.

Example 9—Implosion problem
In this example, we consider the implosion problem taken from [61] 

(see also [38,58,61,62]). The initial conditions,

(𝜌, 𝑢, 𝑣, 𝑝)(𝑥, 𝑦, 0) =

{

(0.125, 0, 0, 0.14), |𝑥| + |𝑦| < 0.15,
(1, 0, 0, 1), otherwise,

are prescribed in the computational domain [0, 0.3] × [0, 0.3] with solid 
boundary conditions imposed at all four sides. This example was de-
signed to test the amount of numerical diffusion present in different 
schemes as there is a jet forming near the origin and propagating along 
the diagonal 𝑦 = 𝑥 direction, and schemes containing large numerical 
diffusion may not resolve the jet at all or the jet propagation velocity 
may be affected by the numerical diffusion.

We compute the numerical solutions until the final time 𝑡 = 2.5 by 
the 1-, 2-, 3-, and 5-Order schemes on a uniform mesh of 400 × 400 
cells. The obtained results are depicted in Fig.  10, where one can clearly 
observe that the jet propagates much further in the direction of 𝑦 = 𝑥
when using higher-order schemes, clearly indicating that the high-order 
schemes are substantially less dissipative than the low-order ones.

In order to compare the studied TV splitting schemes with the CU, 
or HLL, and HLLC schemes, we compute the numerical results by the 
corresponding CU (HLL) and HLLC schemes and plot the corresponding 
results in Fig.  11. One can see that, the jets produced by the HLLC and 
10 
TV splitting schemes move further than the corresponding CU (HLL) 
scheme. At the same time, the positions of the jets produced by the 
HLLC and TV splitting schemes are close, indicating that there is much 
less dissipation in the TV splitting schemes compared with the CU (HLL) 
ones.

It is instructive to check whether the studied TV splitting schemes 
are more efficient than the CU (HLL) and HLLC schemes. To this end, 
we measure the CPU time consumed during the CU (HLL) schemes 
and refine the mesh used by the HLLC and TV splitting scheme to 
the level that exactly the same CPU time is consumed to compute all 
three numerical solutions. The corresponding meshes are 400 × 400 for 
the 1-, 2-, 3-, and 5-Order CU (HLL) schemes, 425 × 425, 425 × 425, 
405 × 405, and 408 × 408 for the HLLC schemes, and 455 × 455, 
455 × 455, 420 × 420, and 418 × 418 for the TV splitting scheme. 
The obtained numerical results, presented in Fig.  12, indicate that the 
TV splitting schemes still achieve a much higher resolution than the CU 
(HLL) schemes. At the same time, the TV splitting schemes are slightly 
less dissipative than the HLLC schemes; see, e.g., the 2-Order results.

Example 10—Kelvin–Helmholtz (KH) instability
In this example, we study the KH instability taken from [63,64] (see 

also [58,62,65]). We take the following initial data:

(𝜌(𝑥, 𝑦, 0), 𝑢(𝑥, 𝑦, 0)) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(1,−0.5 + 0.5𝑒(𝑦+0.25)∕𝐿), 𝑦 < −0.25,
(2, 0.5 − 0.5𝑒(−𝑦−0.25)∕𝐿), −0.25 < 𝑦 < 0,
(2, 0.5 − 0.5𝑒(𝑦−0.25)∕𝐿), 0 < 𝑦 < 0.25,
(1,−0.5 + 0.5𝑒(0.25−𝑦)∕𝐿), 𝑦 > 0.25,
𝑣(𝑥, 𝑦, 0) = 0.01 sin(4𝜋𝑥), 𝑝(𝑥, 𝑦, 0) ≡ 1.5,
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Fig. 11. Example 9: Density 𝜌 computed by the 1-, 2-, 3-, and 5-Order CU (top row) and HLLC (bottom row) schemes.
) 
where 𝐿 is a smoothing parameter (we take 𝐿 = 0.00625), which 
corresponds to a thin shear interface with a perturbed vertical velocity 
field 𝑣 in the conducted simulations. The periodic boundary conditions 
are imposed on all four sides of the computational domain [−0.5, 0.5] ×
[−0.5, 0.5].

We compute the numerical solutions until the final time 𝑡 = 4 by 
the 1-, 2-, 3-, and 5-Order schemes on a uniform mesh of 1024 × 1024 
cells, and plot the numerical results at times 𝑡 = 1, 2.5, and 4 in 
Fig.  13. One can observe that at the early time 𝑡 = 1, the vortex 
streets generated by the high-order schemes are more pronounced. 
These structures grow exponentially over time, leading to increasingly 
complex turbulent mixing, particularly evident at later times 𝑡 = 2.5
and 4, clearly indicating that high-order schemes exhibit significantly 
less dissipation compared to low-order ones.

Example 11—Rayleigh–Taylor (RT) instability
In the last example taken from [66] (see also [33,58,62,67]), we 

investigate the RT instability, which is a physical phenomenon occur-
ring when a layer of heavier fluid is placed on top of a layer of lighter 
fluid. The model is governed by the 2-D Euler equations (12)–(13) with 
added gravitational source terms and the modified system reads as
𝜌𝑡 + (𝜌𝑢)𝑥 + (𝜌𝑣)𝑦 = 0,

(𝜌𝑢)𝑡 + (𝜌𝑢2 + 𝑝)𝑥 + (𝜌𝑢𝑣)𝑦 = 0,

(𝜌𝑣)𝑡 + (𝜌𝑢𝑣)𝑥 + (𝜌𝑣2 + 𝑝)𝑦 = 𝜌,

𝐸𝑡 + [𝑢(𝐸 + 𝑝)]𝑥 + [𝑣(𝐸 + 𝑝)]𝑦 = 𝜌𝑣.

We consider the following initial conditions:

(𝜌, 𝑢, 𝑣, 𝑝)(𝑥, 𝑦, 0) =

{

(2, 0,−0.025 𝑐 cos(8𝜋𝑥), 2𝑦 + 1), 𝑦 < 0.5,
(1, 0,−0.025 𝑐 cos(8𝜋𝑥), 𝑦 + 1.5), otherwise,

where 𝑐 ∶=
√

𝛾𝑝∕𝜌 is the speed of sound, prescribed in the computa-
tional domain [0, 0.25] × [0, 1] with the solid wall boundary conditions 
imposed at 𝑥 = 0 and 𝑥 = 0.25, and the following Dirichlet boundary 
conditions imposed at the top and bottom boundaries:

(𝜌, 𝑢, 𝑣, 𝑝)|𝑦=1 = (1, 0, 0, 2.5), (𝜌, 𝑢, 𝑣, 𝑝)|𝑦=0 = (2, 0, 0, 1).

We compute the numerical solutions until the final time 𝑡 = 2.95
by 1-, 2-, 3-, and 5-Order schemes on the uniform mesh of 256 × 1024 
cells and present the numerical results at times 𝑡 = 1.95 and 2.95 in Fig. 
14. One can see that, there are pronounced differences between the 
solutions computed by different schemes and the structures captured 
by the high-order schemes are much more complicated, which again 
11 
demonstrates that the high-order schemes can capture more details and 
are less dissipative than the low-order ones.
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Appendix A. One-dimensional local characteristic decomposition 
based third-order WENO-type interpolant

In this appendix, we briefly describe the 1-D local characteristic 
decomposition (LCD) based third-order WENO-Type interpolant.
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Fig. 12. Example 9: Density 𝜌 computed by the CU (left column), HLLC (middle column), and TV splitting (right column) schemes.
Supposing the point values 𝑼 𝑗 are given at uniform grid points 
𝑥 = 𝑥𝑗 , we now demonstrate how to compute the interpolated left-sided 
value of 𝑼 at 𝑥 = 𝑥𝑗+ 1

2
, denoted as 𝑼−

𝑗+ 1
2
. The corresponding right-sided 

value 𝑼+
𝑗+ 1

2

, can be computed in a mirror-symmetric manner.

The value of (𝑈 (𝑖)
𝑗+ 1

2

)− is computed using a weighted average of the 
two linear interpolants  0(𝑥) and  1(𝑥), which are obtained using the 
stencils [𝑥𝑗−1, 𝑥𝑗 ] and [𝑥𝑗 , 𝑥𝑗+1], respectively: 

(𝑈 (𝑖)
𝑗+ 1

2

)− = 𝜔(𝑖)
0  (𝑖)

0 (𝑥𝑗+ 1
2
) + 𝜔(𝑖)

1  (𝑖)
1 (𝑥𝑗+ 1

2
), (A.1)

where 

 (𝑖)
0 (𝑥𝑗+ 1

2
) = −1

2
𝑈 (𝑖)
𝑗−1 +

3
2
𝑈 (𝑖)
𝑗 , and  (𝑖)

1 (𝑥𝑗+ 1
2
) = 1

2
𝑈 (𝑖)
𝑗 + 1

2
𝑈 (𝑖)
𝑗+1. (A.2)

By performing a straightforward Taylor expansion, one can demon-
strate that (A.1)–(A.2) achieve third-order accuracy if the weights 𝜔
𝑘

12 
in (A.1) are chosen as: 

𝜔(𝑖)
𝑘 =

𝛼(𝑖)𝑘
𝛼(𝑖)0 + 𝛼(𝑖)1

, 𝛼(𝑖)𝑘 = 𝑑𝑘

[

1 +
𝜏(𝑖)3

𝛽(𝑖)𝑘 + 𝜀

]

, (A.3)

where 𝑑0 = 1
4  and 𝑑1 =

3
4 ,

𝜏(𝑖)3 = |

|

|

𝛽(𝑖)2 − 𝛽(𝑖)3
|

|

|

𝑝
,

and the smoothness indicators 𝛽(𝑖)𝑘  are given by (see e.g., [44]) 

𝛽(𝑖)0 = (𝑈 (𝑖)
𝑗−1 − 𝑈 (𝑖)

𝑗 )2, 𝛽(𝑖)1 = (𝑈 (𝑖)
𝑗 − 𝑈 (𝑖)

𝑗+1)
2, (A.4)

and 

𝛽2 =
13
12

(𝑈 (𝑖)
𝑗−1 − 2𝑈 (𝑖)

𝑗 + 𝑈 (𝑖)
𝑗+1)

2 + 1
4
(𝑈 (𝑖)

𝑗+1 − 𝑈 (𝑖)
𝑗−1)

2,

𝛽 = 13 (𝑈 (𝑖) − 2𝑈 (𝑖) + 𝑈 (𝑖) )2 + 1 (3𝑈 (𝑖) − 4𝑈 (𝑖) + 𝑈 (𝑖) )2.
(A.5)
3 12 𝑗 𝑗+1 𝑗+2 4 𝑗 𝑗+1 𝑗+2
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Fig. 13. Example 10: Time snapshots of density 𝜌 computed by the 1- (first column), 2- (second column), 3- (third column), and 5- (fourth column) Order schemes at 𝑡 = 1 (top 
row), 𝑡 = 2.5 (middle row), and 𝑡 = 4 (bottom row).
Finally, in all of the numerical examples reported in Section 4, we have 
chosen 𝑝 = 1.4 and 𝜀 = 10−12.

Although the third-order interpolant (A.1)–(A.5) is essentially non-
oscillatory, it is well-known that applying it to the conservative vari-
ables 𝑼 in a componentwise manner can result in spurious oscillations 
in the computed solution. To address this, we adopt the reconstruction 
procedure within the LCD framework.

To this end, we first introduce the matrix 𝐴𝑗+ 1
2
∶= 𝐴(𝑼̂ 𝑗+ 1

2
), where 

𝐴 = 𝜕𝑭
𝜕𝑼  and 𝑼̂ 𝑗+ 1

2
 is either a simple average (𝑼 𝑗 + 𝑼 𝑗+1)∕2 or another 

type of average of the 𝑼 𝑗 and 𝑼 𝑗+1 states (in the numerical examples 
reported in Section 4, we have used the simple average). We then 
compute the matrices 𝑅𝑗+ 1

2
 and 𝑅−1

𝑗+ 1
2

 such that 𝑅−1
𝑗+ 1

2

𝐴𝑗+ 1
2
𝑅𝑗+ 1

2
 is a 

diagonal matrix and introduce the local characteristic variables in the 
neighborhood of 𝑥 = 𝑥𝑗+ 1

2
:

𝜞𝑚 = 𝑅−1
𝑗+ 1

2
𝑼𝑚, 𝑚 = 𝑗 − 1,… , 𝑗 + 2.

Equipped with the values 𝜞 𝑗−1, 𝜞 𝑗 , 𝜞 𝑗+1, and 𝜞 𝑗+2, we apply the 
interpolation procedure (A.1)–(A.5) to each of the components 𝛤 (𝑖), 𝑖 =
1,… , 𝑑 of 𝜞  to obtain 𝜞 −

𝑗+ 1
2
 (the values of 𝜞 +

𝑗+ 1
2

 are computed, as men-
tioned above, in the mirror-symmetric way). Finally, the corresponding 
point values of 𝑼 are given by

𝑼±
𝑗+ 1

2

= 𝑅𝑗+ 1
2
𝜞 ±

𝑗+ 1
2

.

Remark A.1.  A detailed explanation of how the average matrix 
𝐴𝑗+ 1

2
 and the corresponding matrices 𝑅𝑗+ 1

2
 and 𝑅−1

𝑗+ 1
2

 of the 1-D Euler 
equation of gas dynamics can be found in, e.g., [58].
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Appendix B. 1-D local characteristic decomposition based fifth-
order WENO-Z interpolant

In this appendix, we briefly describe the 1-D LCD based fifth-order 
WENO-Z interpolant.

Given the point values 𝑼 𝑗 at uniform grid points 𝑥 = 𝑥𝑗 , the 
value (𝑈 (𝑖))−

𝑗+ 1
2

 is computed using a weighted average of the three 
parabolic interpolants  0(𝑥),  1(𝑥) and  2(𝑥) obtained using the sten-
cils [𝑥𝑗−2, 𝑥𝑗−1, 𝑥𝑗 ], [𝑥𝑗−1, 𝑥𝑗 , 𝑥𝑗+1], and [𝑥𝑗 , 𝑥𝑗+1, 𝑥𝑗+2], respectively: 

(𝑈 (𝑖))−
𝑗+ 1

2
=

2
∑

𝑘=0
𝜔(𝑖)
𝑘  (𝑖)

𝑘 (𝑥𝑗+ 1
2
), (B.1)

where 

 (𝑖)
0 (𝑥𝑗+ 1

2
) = 3

8
𝑈 (𝑖)
𝑗−2 −

5
4
𝑈 (𝑖)
𝑗−1 +

15
8
𝑈 (𝑖)
𝑗 ,

 (𝑖)
1 (𝑥𝑗+ 1

2
) = −1

8
𝑈 (𝑖)
𝑗−1 +

3
4
𝑈 (𝑖)
𝑗 + 3

8
𝑈 (𝑖)
𝑗+1,

 (𝑖)
2 (𝑥𝑗+ 1

2
) = 3

8
𝑈 (𝑖)
𝑗 + 3

4
𝑈 (𝑖)
𝑗+1 −

1
8
𝑈 (𝑖)
𝑗+2.

(B.2)

To ensure (B.1)–(B.2) is fifth-order accurate and nonoscillatory, one can 
take the weights 𝜔𝑘 in (B.1) to be 

𝜔(𝑖)
𝑘 ∶=

𝛼(𝑖)𝑘
𝛼(𝑖)0 + 𝛼(𝑖)1 + 𝛼(𝑖)2

, 𝛼(𝑖)𝑘 = 𝑑𝑘
⎡

⎢

⎢

⎣

1 +

(

𝜏(𝑖)5
𝛽(𝑖)𝑘 + 𝜀

)𝑝
⎤

⎥

⎥

⎦

, 𝜏5 = |𝛽(𝑖)2 − 𝛽(𝑖)0 |,

(B.3)

where 𝑑0 = 1
16 , 𝑑1 =

5
8 , and 𝑑2 =

5
16 , and the smoothness indicators 𝛽

(𝑖)
𝑘

are given by
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Fig. 14. Example 11: Density 𝜌 computed by the 1- (first column), 2- (second column), 3- (third column), and 5- (fourth column) Order schemes at 𝑡 = 1.95 (top row) and 𝑡 = 2.95
(bottom row).
𝛽(𝑖)0 = 13
12

(

𝑈 (𝑖)
𝑗−2 − 2𝑈 (𝑖)

𝑗−1 + 𝑈 (𝑖)
𝑗
)2 + 1

4
(

𝑈 (𝑖)
𝑗−2 − 4𝑈 (𝑖)

𝑗−1 + 3𝑈 (𝑖)
𝑗
)2,

𝛽(𝑖)1 = 13
12

(

𝑈 (𝑖)
𝑗−1 − 2𝑈 (𝑖)

𝑗 + 𝑈 (𝑖)
𝑗+1

)2 + 1
4
(

𝑈 (𝑖)
𝑗−1 − 𝑈 (𝑖)

𝑗+1
)2,

𝛽(𝑖)2 = 13
12

(

𝑈 (𝑖)
𝑗 − 2𝑈 (𝑖)

𝑗+1 + 𝑈 (𝑖)
𝑗+2

)2 + 1
4
(

3𝑈 (𝑖)
𝑗 − 4𝑈 (𝑖)

𝑗+1 + 𝑈 (𝑖)
𝑗+2

)2.

(B.4)

We have used 𝑝 = 2 and 𝜀 = 10−12 in all of the numerical examples 
reported in this paper. The corresponding right-sided value, (𝑈 (𝑖)

𝑗+ 1
2

)−, 
can also be derived using a mirror-symmetric approach.

As in Appendix  A, to ensure the nonoscillatory nature of the re-
construction (B.1)–(B.4), we also need to adopt the reconstruction 
procedure within the LCD framework. To this end, we first introduce 
the local characteristic variables in the neighborhood of 𝑥 = 𝑥𝑗+ 1

2
:

𝜞𝑚 = 𝑅−1
𝑗+ 1

2
𝑼𝑚, 𝑚 = 𝑗 − 2,… , 𝑗 + 3.

Equipped with the values 𝜞 𝑗−2, 𝜞 𝑗−1, 𝜞 𝑗 , 𝜞 𝑗+1, 𝜞 𝑗+2, and 𝜞 𝑗+3, we 
then apply the interpolation procedure (B.1)–(B.4) to each of the 
components 𝛤 (𝑖), 𝑖 = 1,… , 𝑑 of 𝜞  to obtain 𝜞 −

𝑗+ 1
2
 (the values of 𝜞 +

𝑗+ 1
2

are computed in the mirror-symmetric way). Finally, the corresponding 
one-sided point values of 𝑼 are given by
𝑼±

𝑗+ 1
2

= 𝑅𝑗+ 1
2
𝜞 ±

𝑗+ 1
2

.

Data availability

Data will be made available on request.
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