
Multiphysics modeling and experimental
analysis of fiber-reinforced polymers across

scales

Von der Fakultät für Bauingenieurwesen
der Rheinisch-Westfälischen Technischen Hochschule Aachen

zur Erlangung des akademischen Grades einer Doktorin der Ingenieurwissenschaften
genehmigte Dissertation

vorgelegt von

Marie-Christine Reuvers, M. Sc.

Berichter*innen: Prof. Dr.-Ing. habil. Stefanie Reese
Prof. Dr.-Ing. habil. Alexander Lion

Tag der mündlichen Prüfung: 20.06.2025

Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek online verfügbar.





Für mich.





Acknowledgements

Diese kumulative Dissertation ist das Ergebnis meiner Arbeit als Wissenschaftliche Mitarbei-
terin am Institut für Angewandte Mechanik (IFAM) an der RWTH Aachen University.

Mein besonderer Dank gilt Frau Prof. Dr.-Ing. Stefanie Reese für die Betreuung meiner
Arbeit sowie die Möglichkeit, Teil ihres Aachener Teams sein zu dürfen. Ihre fachliche
Expertise und daswissenschaftlicheUmfeld, das Sie geschaffen haben, habenmeineArbeit und
mich selbst wesentlich geprägt. Ein weiteres Dankeschön gilt Herrn Prof. Dr.-Ing. Alexander
Lion für seine fortwährende Unterstützung, die wertschätzende Zusammenarbeit im Rahmen
des Thermoformen-Projekts und die Bereitschaft, als Zweitgutachter meiner Dissertation zu
fungieren. In diesem Zusammenhang möchte ich mich auch noch einmal ganz herzlich bei
Michael Johlitz und Sameer Kulkarni bedanken. Die Zusammenarbeit zwischen unseren
Instituten – sowohl fachlich als auch persönlich – im Rahmen des Thermoformen-Projekts hat
mir großen Spaß gemacht. Vielen Dank euch beiden für die Unterstützung in den letzten Jahren
– und ein ganz besonderer Dank an Sameer für die außergewöhnliche experimentelle Arbeit,
die einen zentralen Beitrag zu meiner Dissertation geleistet hat. Schließlich gilt mein Dank
auch Herrn Prof. Dr.-Ing. Sven Klinkel, der mich schon während der Masterarbeit begleitet
hat und den Vorsitz meiner Promotionskommission übernommen hat.

Darüber hinaus möchte ich mich ganz herzlich bei Tim Brepols bedanken. Deine Unter-
stützung und deine konstruktive, stets wertschätzende Art der Zusammenarbeit sowie dein
unglaublich tiefgehendes Fachverständnis haben meine Forschungsarbeit und das Institut
maßgeblich geprägt. Ein weiterer Dank gilt Shahed Rezaei, ohne den ich wahrscheinlich
schon im ersten Projekt aufgegeben hätte. Vielen Dank für die zahlreichen Cohesive Zone
Diskussionen, deine fortwährende Unterstützung und besonders deine motivierenden Worte.
Außerdem gilt ein riesiges Dankeschön allen meinen Kolleginnen und Kollegen am IFAM für
die vielen großartigen Momente in den letzten Jahren – auch abseits der Arbeit. Während der
Zeit am Institut hatte ich viele tolle Bürokollegen und -kolleginnen, aber wieman so schön sagt:
Das Beste kommt zum Schluss. Vielen Dank, Ali, für dein offenes Ohr und die „konstruktiven
Gespräche“, die den Arbeitsalltag deutlich angenehmer gemacht haben. Weiterhin hatte ich
das Glück, viele tolle Studierende im Rahmen meiner Promotionszeit betreuen zu dürfen, die
einen großen Anteil an meiner Forschungsarbeit hatten. Insbesondere möchte ich mich hier
bei dir bedanken, Chris, für dein Vertrauen und das freundschaftliche Verhältnis, das sich aus
der langjährigen Zusammenarbeit entwickelt hat.

Im Laufe der Jahre sind aus der gemeinsamen Arbeit tiefgehende Freundschaften entstanden
– und das ist für mich das Beste, was mir diese Promotion gegeben hat. Vielen Dank an



6

Christian und Mirjam, dafür, dass ihr immer da seid. Für die gemeinsamen Abende, Urlaube
und Samstage auf dem Markt (an dieser Stelle vielen Dank an Max für den Kaffee) und
dafür, dass ihr die Hochs und Tiefs mit mir teilt. Meine beiden IFAMs Winest, Johanna und
Katharina – wir kamen nie über Folge drei bei Sex and the City hinaus, weil wir uns so viel
zu sagen haben. Danke euch beiden von Herzen für alles – ihr macht so vieles leichter und so
vieles schöner. Mit Katharina kamen Alexander, Konstantin und Isabella in mein Leben – und
damit die besten Desserts und ganz viel Freude. An dieser Stelle auch nochmal ein fachliches
Danke anKatharina undAlexander, ohne eure Unterstützungwäre das Thermoformen-Beispiel
ziemlich sicher nicht so schnell gelaufen.

Großer Dank gilt außerdem den Menschen, die mich schon längere Zeit begleiten und
die ich glücklicherweise zu meinen besten Freunden zählen kann. Franzi, die mich – dank
Cornelia – schon seit dem Studium begleitet: Vielen Dank für jedes Jahr Tatsächlich...Liebe
und Raclette, für die gemeinsame Zeit und für Fabi, der mit dir im Paket kam – ihr seid Aachen
für mich. Nicht zuletzt möchte ichmich von ganzemHerzen bei dir bedanken, Philipp, meinem
Lieblingskarnevalisten. Vielen Dank dafür, dass es mit dir immer wie immer ist, ungeachtet
der Zeit, die dazwischen liegt, dich nicht zu mögen, ist nicht leicht.

Abschließend möchte ich mich noch bei meiner Schwester Nina bedanken und bei meinen
Eltern, für all die Möglichkeiten, die ich dank ihnen hatte und habe. Danke, Mama und Papa,
dass ihr mich immer unterstützt und immer für mich da seid, ihr bedeutet mir alles!



Summary

Nowadays, the growing demand for cost-effective, customizable, and reusable materials in
the domains of mobility and transport, as well as consumer goods, has led to an increased
significance of fiber-reinforced thermoplastics (FRTPs). Nonetheless, the industrial processing
of FRTPs in terms of (thermo-)forming processes is still associated with costly and time-
consuming trial and error processes to adjust the material design and processing parameters.
Still, oftentimes, unwanted deformations or even defects in the components arise due to thermal
gradients and residual stresses within the material that need to be eliminated. In this context,
numerical simulation tools, such as, for example, digital twins (i.e., the virtual representation
of physical objects), can be employed in the conception and development phase of products
and processes to improve efficiency, shorten development cycles, and identify potential error
sources. In particular, the finite element method (FEM) has established itself as a suitable
tool for the simulation of complex technical problems due to steadily increasing computational
resources. The accuracy and reliability of the numerical predictions are, however, highly
dependent on the quality of the employedmaterial model. Thereby, thematerial behavior on the
structural level is determined by the underlyingmicrostructure and its associated characteristics.
Especially fiber-reinforced semi-crystalline polymers (SCPs) represent a challenging material,
due to their complex (time-dependent) inelastic deformations and dependencies on both the
temperature and the temperature history. Consequently, the internal structure of FRTPs must
be taken into account during model development by incorporating information across various
scales.

Multiscale modeling schemes can provide valuable insights into the overall constitutive
response of the material. However, these simulations are generally computationally expen-
sive. In order to reduce the computational cost and develop frameworks suitable for industry
applications, hierarchical approaches have been developed and applied. The objective, and
simultaneously the challenge, is to reduce computational costs and experimental effort while
preserving high accuracy and validity across a broad spectrum of process parameters.

The given cumulative dissertation comprises a collection of journal articles that contribute
to the aforementioned research topics. It aims to develop a multiphysical framework for fiber-
reinforced SCPs, including the impact of temperature and temperature history across various
scales. Starting with the motivation and corresponding research-relevant questions, followed
by an overview of the current literature.

In the first paper, a thermo-mechanically coupled constitutive model is developed for semi-
crystalline polyamide 6 blends. Based on an extensive experimental data set, comprising me-
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chanical and thermal tests, a visco-elastic, elasto-plastic approach is chosen in which nonlinear
relaxation, strain hardening, and a tension-compression asymmetry in yielding are considered.
The degree of crystallinity (DOC) serves as a constant input parameter, which significantly
influences the material response.

Subsequently, a micromechanical and microthermal analysis is conducted in the second pa-
per, employing the aforementioned matrix framework accompanied by a detailed experimental
analysis of the composite’s behavior at various temperatures. Thus, an experimental and virtual
data base is generated for a wide range of process parameters.

The third paper’s objective is to extend the aforementioned micromechanical matrix model
to represent glass-fiber reinforced polyamide 6 on the macroscale. Therefore, mechanical and
thermal anisotropy is incorporated into the framework and, subsequently, characterized with
the data base from the second paper. The DOC is now treated as a non-constant internal
variable depending on the temperature history. Finally, a full 3D thermoforming simulation is
conducted. The validity of the presented approach is verified by comparison of the numerical
material response with experimental data across all material scales.



Zusammenfassung

Die steigende Nachfrage nach kostengünstigen, individualisierbaren und wiederverwendba-
ren Materialien in den Bereichen Mobilität und Verkehr sowie Konsumgüter hat zu einem
zunehmenden Interesse an faserverstärkten Thermoplasten geführt. Die industrielle Verarbei-
tung dieser Materialien in Form von Umformprozessen wie z.B Thermoformen ist hingegen
immer noch mit kostspieligen und zeitaufwändigen Trial-and-Error-Prozessen zur Anpassung
des Materialdesigns und der Prozessparameter verbunden. Oftmals kommt es dabei zu un-
erwünschten Verformungen oder gar Defekten in den Bauteilen aufgrund von thermischen
Gradienten und Eigenspannungen imMaterial, die es zu beseitigen gilt. In diesem Zusammen-
hang können numerische Simulationswerkzeuge, wie z. B. digitale Zwillinge (d. h. die virtuelle
Darstellung physischer Objekte), in der Konzeptions- und Entwicklungsphase von Produkten
und Prozessen eingesetzt werden, um die Effizienz zu verbessern, Entwicklungszyklen zu
verkürzen und potenzielle Fehlerquellen zu identifizieren. Insbesondere die Finite-Elemente-
Methode (FEM) hat sich aufgrund der stetig wachsenden Rechenleistung moderner Computer
als geeignetesWerkzeug für die Simulation komplexer technischer Probleme etabliert. Die Ge-
nauigkeit und Zuverlässigkeit der numerischen Vorhersagen sind jedoch in hohem Maße von
der Qualität des verwendeten Materialmodells abhängig. Dabei wird das Materialverhalten auf
der strukturellen Ebene durch die zugrunde liegende Mikrostruktur und deren Eigenschaften
bestimmt. Insbesondere faserverstärkte teilkristalline Polymere stellen aufgrund ihrer komple-
xen (zeitabhängigen) inelastischen Verformungen und ihrer Abhängigkeit von der Temperatur
und der Temperaturhistorie eine Herausforderung dar. Folglich muss die innere Struktur von
faserverstärkten Thermoplasten durch die Einbeziehung von Informationen sowie die Modell-
entwicklung über verschiedene Skalen hinweg berücksichtigt werden.

Mehrskalige Modellierungsverfahren können an dieser Stelle wertvolle Einblicke in die
konstitutive Reaktion des Materials liefern. Diese Simulationen sind jedoch im Allgemeinen
sehr zeit- und rechenintensiv. Um die damit assozierten Kosten zu senken und für industrielle
Anwendungen geeignete Frameworks zu entwickeln, wurden hierarchische Ansätze entwickelt
und angewandt. Das Ziel und gleichzeitig die Herausforderung besteht darin, die Rechenkosten
und den experimentellen Aufwand zu verringern und gleichzeitig eine hohe Genauigkeit und
Gültigkeit des Modells über ein breites Spektrum von Prozessparametern zu erhalten.

Die vorliegende kumulative Dissertation umfasst eine Sammlung von Zeitschriftenartikeln,
die zu den oben genannten Forschungsthemen beitragen. Sie zielt darauf ab, ein multiphysika-
lisches Framework für faserverstärkte teilkristalline Polymere zu entwickeln, das den Einfluss
von Temperatur und Temperaturhistorie über verschiedene Skalen hinweg berücksichtigt. An-
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gefangen mit der Motivation und den entsprechenden forschungsrelevanten Fragen, folgt ein
Überblick über die aktuelle Literatur.

In der ersten Veröffentlichung wird ein thermo-mechanisch gekoppeltes konstitutives Mo-
dell für teilkristalline Polyamid 6-Blends entwickelt. Auf der Grundlage eines umfangreichen
experimentellen Datensatzes, der mechanische und thermische Tests umfasst, wird ein visko-
elastischer, elasto-plastischer Ansatz gewählt, bei dem nichtlineare Relaxation- und Verfesti-
gungsprozesse sowie eineZug-Druck-Asymmetrie in der Plastifizierung berücksichtigtwerden.
Der Kristallinitätsgrad dient dabei als konstanter Eingangsparameter, der die Materialreaktion
erheblich beeinflusst.

Anschließend wird in der zweiten Veröffentlichung eine mikromechanische und mikrother-
mische Analyse durchgeführt, bei der das oben erwähnte Matrixmodell zusammen mit einer
detaillierten experimentellen Analyse des Verhaltens des Verbundwerkstoffs bei verschiede-
nen Temperaturen verwendet wird. Auf diese Weise wird eine experimentelle und virtuelle
Datenbasis für ein breites Spektrum von Prozessparametern geschaffen.

Ziel der dritten Veröffentlichung ist es, das oben erwähnte mikromechanische Matrixmodell
zu erweitern, um glasfaserverstärktes Polyamid 6 auf der Strukturebene darzustellen. Dazu
wird das Modell um mechanische und thermische Anisotropie erweitert und anschließend
mit der Datenbank aus der zweiten Veröffentlichung charakterisiert. Der Kristallinitätsgrad
geht nun als nicht konstante interne Variable in Abhängigkeit von der Temperaturhistorie ein.
Abschließend wird eine vollständige 3D-Thermoformsimulation durchgeführt. Die Gültigkeit
des vorgestellten Ansatzes wird durch den Vergleich der numerischen Materialantwort mit
experimentellen Daten über alle Materialebenen hinweg verifiziert.
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1 Introduction

1.1 Motivation

Nowadays, more and more often recyclability and reusability are key factors for the choice
and design process of engineering materials, alongside increasing requirements for climate
protection. Especially in the fields of mobility and transport as well as consumer goods,
tailorablematerials with a broad variety of constituents that allow for flexibility, weigth savings,
and cost-effective mass production are increasingly sought-after. For these applications, fiber-
reinforced polymers (FRPs), in particular thermoplastics, are extensively used due to their
low weight in combination with good thermo-mechanical properties. However, despite their
popularity in industry and cross-sector usage, the accurate prediction and performance of
the manufacturing process, such as, for example, thermoforming, often remains a process of
trial and error, where process stability is difficult to ensure. In many cases, the final product
exhibits unwanted deformations or even defects after forming that need to be addressed with
time-consuming, iterative, and costly experiments, often between different stakeholders until
the material as well as the process parameters are adjusted reliably. Thus, process simulation
tools, such as, for example, digital twins, are highly desirable from an economic point of view
to facilitate time and cost advantages. Steadily growing computational resources increase the
popularity for the integration of numerical tools within various engineering disciplines. Still,
manymanufacturers chose not to simulate the production process or product behavior, primarily
due to inadequate prediction quality or inexperience, mostly associated with the choice and
accuracy of the underlying material models. Thus, to approximate these complex processes
and materials under realistic processing conditions, a strong demand for sophisticated material
models has formed, motivating the need for ongoing fundamental research.

Independent of the employedmaterial, the actual forming process generally follows the same
sequence. Starting with a heating phase, where the workpiece, which usually comes in the form
of a sheet or a foil, is heated close to themelting point to improve its pliability. Subsequently, the
desired shape is imprinted by, e.g., pressure- or vacuum-forming, which offers the possibility
of achieving complex geometries with relatively low effort. Lastly, the resulting product is

1



2 1 Introduction

cooled down rapidly before removal from the mold. During the cooling, the interplay between
fibers and matrix at their interface and their differences in thermal and mechanical properties
significantly influence the behavior of the final product. Moreover, material anisotropy and
phase transformations such as crystallization or glass transition facilitate the development of
thermal gradients and residual stresses within the final product that can ultimately lead to
component distortion or even defects.

From amodeling perspective, thermoforming processes of polymer composites are in partic-
ular challenging due to themultitude of influencing factors and the inherentmaterial anisotropy.
As a result of the nature of the process, the material typically undergoes large strains and
rotations, often including severe nonlinearities and complex (time-dependent) inelastic defor-
mations over a broad range of temperatures. Therefore, necessitating the use of finite strain
constitutive theories. In turn, these nonlinear mechanisms induce dissipative effects such as
material self-heating and ultimately lead to a change in the temperature that varies with the
applied forming rate. Thus, in addition to the mechanical field, the thermal field must also
be taken into consideration. Naturally, the backcoupling is not limited to the influence of
the mechanical field on the temperature. Similarly, an increase in temperature leads to ther-
mal softening, especially for the polymeric matrix material. Moreover, residual stresses may
emerge due to thermal expansion, resulting from the disparity in material properties between
the fibers and the matrix, as well as the anisotropy inherent in composite materials. It is
therefore necessary to consider complex two-way thermo-mechanical coupling effects as well
as the underlying microstructural phenomena.

On the individual constituent level, the evolution of the temperature during thermoforming
results in local phase transformations. For instance, the polymer matrix undergoes a second-
order phase change around the glass transition regime from a purely amorphous state after
the heating phase to a glassy state after cooling. Furthermore, in the case of semi-crystalline
polymers (SCPs), the supercooling of the amorphous phase triggers the formation of crystalline
configurations. Naturally, both mechanisms significantly alter the underlying morphology and,
therefore, strongly influence the effective properties of the resulting component. Noteworthy,
the non-isothermal crystallization process occurs within a temperature environment that is both
temporally and locally evolving. Due to the exothermic nature of the process, a change in the
temperature is triggered, which, in turn, has a significant impact on the relevant parameters for
the heat transfer and thus, ultimately, the temperature field within the component. These com-
plex interactions consequently give rise to a fully coupled multiphysics problem, demanding
sophisticated and integrated multi-field modeling strategies.

Attentive readers will likely have already noticed that the processes and interactions un-
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der discussion occur across multiple material scales. Microscopic mechanisms, such as, for
example, crystallization, play a crucial role in describing the material behavior observed at
the structural component level. Consequently, accurate modeling of complex engineering
processes, such as thermoforming, necessitates the incorporation of information from various
material scales into the constitutive formulation. A widely adopted framework to address
this complexity is the concept of scale separation, wherein the governing equations are solved
independently at each material scale. This approach relies on the assumption that the char-
acteristic length of the current scale is substantially larger than that of the next lower scale.
The effective response obtained from the lower scale can then be used to determine the ma-
terial behavior at the higher scale either by concurrent or hierarchical multiscale approaches.
Limiting ourselves to material scales where the theory of continuum mechanics is applicable,
typical scales considered for the modeling of fiber-reinforced polymers are the micro-, meso-,
and macroscale.

Starting at the microscale, where the internal material geometry is explicitly considered
and fibers and matrix are modeled as individual constituents. Besides the complexity of the
polymer matrix requiring multiphysical coupling mechanisms, the interaction of the individual
constituents on this level can be challenging due to the heterogeneous morphology of the
microstructure. Moreover, the randomly oriented fibers result in statistical fluctuation of the
effective material response. Moving up, the next level is the mesoscale or ply level, followed
by the structural level, where the behavior of the entire component is treated as an effective,
homogenized material, approximated by an anisotropic macroscopic material model.

Ideally, to model complex engineering problems that involve specific microstructural ef-
fects, information from all material levels should be used to determine and characterize the
macroscopic response. In most cases, this is, however, unfeasible, since an extensive amount
of experiments would be necessary to characterize the associated material models. More-
over, oftentimes, the material parameters at the lower scales are not known, since (reliable)
experimental testing at these levels is extremely challenging. From a numerical perspective,
concurrent multiscale methods, such as FE2 or FE-FFT, can be employed, which connect two
or more of the aforementioned scales and, therefore, significantly increase modeling accu-
racy. These methods, despite their recent and ongoing advances, are, however, not suitable
for industry applications because of their extensive computation time. In such cases, hierar-
chical approaches offer a more reasonable solution, where, first, a micro- or meso-mechanical
analysis is conducted on a unit cell. The resulting homogenized material response is then
used for model identification on the macroscale. Thus, hierarchical modeling schemes are,
essentially, multi-step processes. Nevertheless, despite the considerable time savings of hier-
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archical approaches, a sophisticated macroscopic constitutive model is necessary for a reliable
prediction.

With the goal in mind to enable modeling of the industrial processing of polymer composites
under conditions that increasingly resemble reality, several open questions remain, which
provide the need for fundamental research. For instance, which scales and effects must
be considered for the development of a sophisticated and reliable material formulation on
the macroscale? Furthermore, which experiments are needed to successfully characterize
and validate such models, and which experiments can be neglected or reduced? Once the
experimental and virtual data is available, the characterization process and the corresponding
optimization procedures need to be systematically chosen. In particular, in the context of
fiber-reinforced SCPs, which exhibit a wide array of different material phenomena ranging
from brittle to glassy to fluid-like behavior and incorporate multiphysical coupling phenomena
as well as phase transformations, these questions seem worthwhile to investigate. Despite the
existence of numerous phenomenological or physically motivated models in the literature, the
range of considered processing parameters is often limited. Furthermore, taking into account
all aforementioned mechanisms in a thermodynamically consistent macroscopic theory still is
a challenging task, resulting in a limited amount of applicable and comprehensive studies.

Conclusively, this dissertation aims to find a compromise between modeling accuracy and
sophisticatedmodel development across various scales and influencing factorswhile simultane-
ously reducing the associated experimental effort, enhancing the data base for characterization
with virtually generated data where needed. Therefore, a bottom-up approach is chosen,
starting with the development of a suitable thermodynamically consistent constitutive model
for the polyamide 6 matrix. A comprehensive micromechanical and microthermal analysis
allows for the generation of a data base for the identification of the homogenized macroscopic
material model. Finally, the macroscopic material formulation is developed based on the
underlying matrix model, and the influence of material anisotropy on the thermo-mechanical
and thermo-chemical coupling phenomena is experimentally and numerically evaluated. An
extensive experimental data set containing carefully selected experiments on individual con-
stituents as well as various material levels allows for model characterization while ensuring
an unprecedentedly wide range of process parameters. In this way, new experimental insights
and modeling approaches regarding the overall macroscopic material response of FRPs to
thermoforming are generated.
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1.2 State-of-the-art

In order to contextualize the aforementioned research questions within the broader framework
of previously published studies and to motivate the developments of the present dissertation
further, a review of the relevant literature is provided below. The focus is primarily on
modeling approaches for heterogeneous materials across different length scales as well as
continuum mechanical approaches related to modeling polymeric materials and composites.

1.2.1 Modeling strategies for composites across various scales

As previously outlined, reliablematerial models are essential for the numerical analysis of fiber-
reinforced polymers in industrial (thermo-)forming processes. Various modeling strategies
have been developed to capture the effective constitutive response at the macroscale. These
can generally be categorized into singlescale and multiscale approaches.

Multiscale modeling involves solving separate boundary value problems on two or more
distinct material scales, thereby enabling information transfer across scales – typically from the
microscale up to themacroscale. In contrast, singlescale approaches involve only one boundary
value problem and operate entirely within a singlematerial scale. For the purpose of the present
dissertation, this category also includes homogenized microscopic models, often referred to as
micromechanical approaches. While these consider the material’s individual constituents and
the material response derived from such models reflects the effective macroscopic behavior
through volume averaging over the microscale domain, they do not propagate this information
to solve another boundary value problem on a higher material level. Instead, the analysis
remains confined to one scale.

In terms of computational efficiency, macroscopic singlescale methods are themost efficient.
Here, the underlying material morphology as well as microstructural effects are not explicitly
considered, instead, a phenomenological or micromechanically motivated approach is chosen
to account for nonlinear or multiphysical material behavior. Typically, these type of material
models are identified with experiments only on the component level. Well-knownmacroscopic
material models for anisotropic fiber-reinforced material systems that laid the foundation for
current approaches are presented by, for example,Weiss et al. [1996]; Bonet and Burton [1998];
Holzapfel and Gasser [2001]. While this approach certainly has its advantages, the lack of
information about the microstructure results in inferior adaptability to changes in the process
parameters, underlying morphology, or material parameters of the constituents. Oftentimes,
the model requires time-intensive re-characterization or even re-development for every process
modification in order to ensure its predictive capabilities.
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Therefore, singlescale methods on the micro- (see e.g. Melro et al. [2013a]; Naya et al.
[2017]; Chevalier et al. [2019]; Varandas et al. [2020]) and mesoscale (see e.g. Barbero et al.
[2005]; Bednarcyk et al. [2015]; Stier et al. [2015a]) were introduced. Here, the averaged
material response over the chosen microscopic or mesoscopic domain yields the effective
macroscopic material behavior. However, only a limited number of studies related to FRPs
consider the influence of temperature. For example, Bai et al. [2015] investigated the thermo-
visco-plastic behavior of carbon fiber polymer matrix composites by introducing temperature-
dependent material parameters via a scaling function and conducting mechanical unit cell
simulations at various constant temperatures. A thermo-mechanically coupled approach is
available in Sevenois et al. [2022], wheremechanical and thermal periodic boundary conditions
are employed to investigate the effect of self-heating. Micromechanics incorporating the effect
of the degree of crystallinity are only available for the polymeric matrix (see e.g. Nikolov
and Doghri [2000]; Van Dommelen et al. [2003]; Shojaei and Li [2013]; van Dommelen et al.
[2017]). Here, themicroscale is defined as the underlying individual crystalline and amorphous
phases, and their homogenized response denotes the matrix behavior.

Despite their high accuracy in reproducing experimental results, homogenized microme-
chanical or mesomechanical approaches as previously described are generally not suited for
use in industrial forming simulations. This is primarily due to their high computational cost,
which arises from the explicit modeling of individual constituents such as fibers and matrix
or laminate architectures. As a result, their application is often limited to academic stud-
ies or small-scale components where computational efficiency is not the primary constraint.
Nonetheless, these singlescale methods provide valuable insights into the mechanisms govern-
ing complex micromechanical and -thermal phenomena. Thus, they have played a crucial role
in demonstrating the importance of incorporating microstructural effects for the prediction
of the macroscopic material response. Consequently, integrating these kind of approaches
in computationally efficient multiscale modeling strategies is key for reliable and adaptable
predictions in industrial applications.

Multiscalemethods offer a powerful solution that have seen a continuous increase in popular-
ity due to steadily growing computational resources. Two fundamentally different approaches
need to be distinguished: concurrent and hierarchical methods. Concurrent or fully coupled
modeling schemes connect two or more material scales by passing the macroscopic deforma-
tion to the microscale in every Gauss point, where an additional boundary value problem is
solved on a unit cell. The resulting stress state as well as the tangent operator are transferred
back to the macroscale as volume averages over the microscopic domain to achieve a global
solution. Popular fully coupled methods usually employ the finite element method (FEM) on



1.2 State-of-the-art 7

the structural scale and different methods on the microscale, such as, for example, FEM or
Fast Fourier Transform (FFT), resulting in FE2 (see e.g. Feyel and Chaboche [2000]; Schröder
[2014]; Raju et al. [2021]) or FE-FFT (see e.g. Spahn et al. [2014]; Schneider [2021]; Gierden
et al. [2022]) coupling schemes, respectively. A few contributions also address multiphysical
problems, as, for example, thermo-mechanical coupling (see e.g. Özdemir et al. [2008]; Tem-
izer and Wriggers [2011]; Li et al. [2019]; Wicht et al. [2021]; Schmidt et al. [2025]). Recent
advancements in the field of concurrent multiscale modeling include the replacement of con-
stitutive theories with data-driven methods, such as artificial neural networks or deep material
networks, to model the mechanical or thermo-mechanical behavior of composites (see e.g.
Gajek et al. [2021, 2022]; Bishara et al. [2023]). In general, concurrent multiscale modeling
schemes are able to predict the macroscopic material behavior with a high degree of accuracy
given a sufficient separation of scale and an appropriate choice of the microscopic domain.
Moreover, these approaches are highly adaptable, since the constituent behavior can be altered
without re-characterization of the macroscopic material model. Nonetheless, the associated
computational cost is usually very high (cf. Geers et al. [2010]). Therefore, these approaches
are not well suited for industry applications. To increase the efficiency, model order reduction
techniques have been developed (see e.g. Radermacher and Reese [2016]; Kochmann et al.
[2019]) and successfully applied to industrial deep rolling processes (cf. Gierden et al. [2021]).

Hierarchical multiscale approaches, on the other hand, are essentially multi-step processes,
where first, depending on the scales of interest, a micro- or meso-mechanical analysis is
conducted by subjecting a unit cell to different mechanical or thermal loading conditions.
Thereafter, the resulting effective material properties and, in the case of nonlinear material
behavior, stress-strain-curves, are used as virtual input data for the identification of a suitable
macroscopic material formulation (cf. Aboudi et al. [2012]). Thus, a scale transition is ac-
complished. For FRPs, these kind of models have been successfully employed in, for example,
Reese et al. [2001]; Reese [2003b]; Bednarcyk et al. [2015]; Stier et al. [2015b]; Rezasefat et al.
[2023]. However, these contributions are mostly limited to isothermal problems investigating
inelastic phenomena, delamination, or damage. For the polymeric matrix material, hierarchical
modeling schemes exist that take into account the degree of crystallinity (cf. Uchida and Tada
[2013]). Moreover, data-driven approaches are available (cf. Unger and Könke [2008, 2009]).
Here, the artificial neural network was trained by microscale simulations and subsequently
used as a constitutive model within the finite element simulation of the macroscopic material
behavior. Although hierarchical approaches have been widely applied in composite model-
ing, the influence of the temperature and the degree of crystallinity within such frameworks
–particularly for FRPs– has received comparatively little attention to date (cf. Bouvard et al.



8 1 Introduction

[2009]), revealing the need for further research.
In contrast to concurrent methods, hierarchical approaches rely on a sequential scale tran-

sition and require a well-formulated macroscopic material model. While their accuracy and
adaptability strongly depend on the quality of the micromechanical analysis as well as the
model’s ability to capture processing conditions, fiber contents, and underlying morphologies,
they significantly reduce computational cost. This trade-off makes them an attractive and
efficient choice for industrial applications, balancing reliability with performance.

1.2.2 Multiphysics modeling of semi-crystalline polymers and
polymer matrix composites

Multiscale methods commonly rely on the quality of the representation and analysis of the
microscale. Hence, suitable domain sizes, geometric approximations, and most importantly,
constituent material models need to be chosen in order to gain reliable insights into thematerial.
With regard to fiber-reinforced thermoplastic polymers (FRTPs), particularly the polymeric
matrix requires sophisticated modeling schemes, since it exhibits a multitude of inelastic and
nonlinear material behaviors within the industrial operating temperature range (see e.g. Ayoub
et al. [2010]; Qi et al. [2019]; Felder et al. [2020b]). Hereby, the mechanical behavior is, inter
alia, characterized by large (plastic) deformations, loading rate dependency, stress relaxation,
and strain hardening as well as tension-compression asymmetry. Semi-crystalline polymers
are a subclass of thermoplastics that form crystalline regions during cool-down from the
amorphous melt. Therefore, strictly speaking, SCPs are heterogeneous materials themselves,
consisting of amorphous and crystalline regions (cf. Dietz [1981]; Wunderlich [2003]).

In the literature, numerous scientific contributions were concerned with the modeling of
polymers. Starting with mechanical approaches, many continuum mechanical frameworks for
amorphous (see e.g. Anand and Gurtin [2003]; Srivastava et al. [2010]; Barriere et al. [2019])
and semi-crystalline (see e.g. Boyce et al. [2000]; Van Dommelen et al. [2003]; Ayoub et al.
[2011]) polymers are based on an additive decomposition into intermolecular and molecular
network resistance (cf. Haward and Thackray [1968]; Boyce et al. [1988]). Within the class
of phenomenological models, purely visco-elastic (see e.g. Khan et al. [2006]; Ricker et al.
[2023]; Kulkarni et al. [2025]) and visco-plastic (see e.g. Kästner et al. [2012]; Cundiff
et al. [2022]) approaches are employed, as well as approaches including coupled visco-elastic,
elasto-plastic phenomena (see e.g. Gudimetla and Doghri [2017]; Qi et al. [2019]; Wang et al.
[2019]; Felder et al. [2020a]; Hao et al. [2022a]). The tension-compression asymmetry of
polymers is investigated by, for example, Ghorbel [2008]; Farrokh and Khan [2010]; Vogler
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et al. [2013]; Melro et al. [2013b]; Bai et al. [2015]; Nguyen et al. [2016]; Manaia et al. [2020],
to name a few. Here, experimental studies revealed the need for an appropriate choice of the
yield surface, including hydrostatic pressure effects. Moreover, the applicability of associative
and non-associative approaches for modeling plasticity is discussed together with the choice of
an appropriate plastic potential. However, none of the above-mentioned approaches consider
the dependence on both the DOC and temperature in their choice of the yield surface. To
account for the well-known Bauschinger effect, several approaches also incorporate kinematic
hardening (see e.g. Anand et al. [2009]; Krairi and Doghri [2014]).

In addition to the complex mechanical phenomena, the material behavior of SCPs is highly
dependent on the thermal conditions. With regard to thermo-mechanically coupled material
modeling schemes, two approaches are commonly used in the literature. Classical thermo-
mechanically coupled models start with a general representation of the overall free energy that
is obtained from the twice integrated heat capacity (see Chadwick [1974]). Based on this gen-
eral idea, Reese and Govindjee [1997] proposed an enhanced description of the heat capacity,
yielding a non-linear stress-temperature dependence. Here, thermal expansion is defined by
an appropriate choice of the Helmholtz free energy. Later, Reese [2003a] proposed a contin-
uum mechanical model for finite visco-elasticity, including micro-mechanical considerations
based on this framework. Conversely, physically motivated methods employ a multiplicative
decomposition of the deformation gradient into a thermal and a mechanical part (see e.g.
Stojanovic et al. [1964]; Lu and Pister [1975]; Lion [1997a]). Here, the description of thermal
expansion within this framework is automatically accomplished by means of the thermal part
of the deformation gradient. The experimental verification of this theory is conducted in, for
example, Lion [1998, 1997a]. Both methods can generally be used interchangeably, however,
with regard to damage processes, Felder et al. [2022] showed that the damage growth criterion
(cf. Wulfinghoff et al. [2017]) is not easily fulfilled a priori using the classical approach.

The temperature range considered in polymer modeling is typically categorized into studies
focusing on behavior below the glass transition regime (e.g. Ames et al. [2009]), near the
glass transition (e.g. Shepherd et al. [2006]; Johlitz et al. [2010]), and those that cover a broad
spectrum spanning both below and above this phase change (e.g. Srivastava et al. [2010]). The
glass transition, which is a characteristic phenomenon of the amorphous phase in polymers,
has also been the subject of specific modeling efforts, as shown in Lion et al. [2010, 2011,
2017], to name a few. With regard to semi-crystalline polymers, fewer thermo-mechanically
coupled approaches exist despite numerous isothermal contributions. Recent publications
include investigations related to material self-heating (see e.g. Ghorbel et al. [2014]; Krairi
et al. [2019]; Felder et al. [2020b]), including the double yield phenomenon (cf. Hao et al.
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[2022a]) and damage effects (e.g. Shen et al. [2019]).
In addition to the current thermal conditions, the temperature history significantly influences

the effective thermo-mechanical behavior of SCPs in terms of themorphology of the underlying
microstructure after forming (see e.g. Ayoub et al. [2011]). In order to predict the evolution of
the crystalline phase during processing (e.g. the evolution of the degree of crystallinity during
cooling from the melt), several approaches were proposed in the past. Based on the isothermal
Avrami equation (Avrami [1939]), numerous non-isothermal frameworks were developed that
describe the evolution of the DOC (cf. Di Lorenzo and Silvestre [1999]). To account for the
heat generation during the exothermic crystallization process, Le Goff et al. [2005]; Zinet et al.
[2010] and Kugele [2020] proposed frameworks based on differential scanning calorimetry
(DSC) measurements of the enthalpy of fusion. Additionally, the effect of pressure on the
crystallization process was described in a thermodynamically consistent manner by Lion and
Johlitz [2016], taking into account amorphous and crystalline phases. The influence of the ply
thickness on the resulting distribution of the degree of crystallinity is studied in Kulkarni et al.
[2023], in the context of thermoforming. Here, a particularly broad range of cooling rates is
investigated due to conducting both standard (S-DSC) and flash (F-DSC) differential scanning
calorimetry tests.

The effect of the DOC on the mechanical response of SCPs is, however, subject in only a
limited number of constitutive models. Several works investigate varying constant degrees of
crystallinity at specific temperatures by introducing a rule of mixture for the differentiation
between the amorphous and the crystalline regimes (cf. Dusunceli and Colak [2008]) and
suggesting a two-phase representation of the microstructure (see e.g. Ayoub et al. [2011];
Abdul-Hameed et al. [2014]; Cundiff et al. [2022]). A particularly wide range of tempera-
tures below and above the glass transition was considered by Felder et al. [2020a], who first
introduced both temperature- and crystallinity-dependent material parameters in their mod-
eling scheme, following an extensive experimental investigation. The approach was further
extended to a thermodynamically consistent, thermo-mechanically coupled model in Felder
et al. [2020b], taking into account the crystallization from the amorphous melt as a separate
pre-process. Though significant progress was made, the flexibility of the approach is limited
by the considered range of process parameters, especially in terms of the DOC ranging from
only 23% to 28%. More recently, Yoshida et al. [2022] experimentally investigated different
semi-crystalline polyamides considering their molecular chain structure as well as crystallinity,
resulting in a modified modeling approach based on molecular chain networks. This modeling
approach was also chosen in Uchida et al. [2024], where prior to modeling, different thermal
histories for polyamide were investigated.
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As previously discussed, hierarchical multiscale approaches rely on the development of a
robust and adaptable macroscopic modeling framework. One effective strategy is a bottom-
up approach, in which micro- or mesoscale material models are systematically extended
to capture the anisotropic behavior of the composite material. Depending on the level of
detail at the microscale, complex micromechanical phenomena, such as thermo-mechanical
coupling or the influence of the degree of crystallinity, are directly incorporated into the
macroscopic formulation. Moreover, depending on the resolution and scope of the mesoscale,
mesomechanical effects, such as fiber-matrix debonding, ply delamination, or interactions
arising from woven fiber architecture, may also be accounted for.

Fiber-induced anisotropy, i.e., transversely isotropic or orthotropic material behavior, can
be captured by introducing structural tensors into the formulation (see e.g. Boehler [1979];
Holzapfel and Gasser [2001]; Reese et al. [2001]; Reese [2003b]; Poggenpohl et al. [2021];
Holthusen et al. [2020]). In Vladimirov et al. [2010], the concept of structural tensors has
been used to model anisotropic finite elasto-plasticity, whereas Reese et al. [2021] employed
this method to model damage in elasto-plastic materials. Fewer contributions are available
in regards to anisotropic thermal phenomena. In this context, Vujošević and Lubarda [2002]
developed a theory for anisotropic thermal expansion. Based on this work, Al-Kinani [2014]
developed a framework for transversely isotropic materials incorporating a macroscopic de-
scription for the anisotropic heat flux. Moreover, the author conducted several numerical studies
to investigate thermal anisotropy for FRPs. With regard to classical thermo-mechanically cou-
pled approaches based on the twice integrated heat capacity, to the author’s knowledge, only
Groß et al. [2019, 2020] incorporated anisotropic thermal expansion via the choice of the free
energy. However, no numerical investigations regarding the thermal anisotropy were carried
out, and the applicability of the chosen energy terms was not evaluated.

From the above review, a considerable large progress regarding the experimental and nu-
merical investigation of semi-crystalline polymers and polymer matrix composites is apparent.
However, most existing models are limited to investigations, either accounting for the impact
of the temperature (see e.g. Krairi et al. [2019]; Shen et al. [2019]; Hao et al. [2022a]) or
the process-induced crystallinity (see e.g. Dusunceli and Colak [2008]; Ayoub et al. [2011]).
Although efforts have been made to investigate both aforementioned influencing factors (see
e.g. Felder et al. [2020a,b]), the considered range of processing conditions is still limited and
does not yet reflect the broader spectrum required for forming applications (cf. Kulkarni et al.
[2022]; Hao et al. [2022b]). Thus, restricting the flexibility of these approaches. Moreover,
primarily the polymer matrix is investigated in detail.

More recent studies focused on thermoforming simulations of FRPs include non-isothermal
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effects into their modeling frameworks (see e.g. Machado et al. [2016]; Guzman-Maldonado
et al. [2016]; Dörr et al. [2019]; Dörr [2021]; Maldonado et al. [2025]). However, with
the exception of Dörr et al. [2019]; Dörr [2021], these approaches are typically limited to
temperature regimes above the crystallization onset and thus do not account for process-induced
crystallization phenomena. Moreover, the majority of these studies rely on macroscopic
singlescale approaches (e.g. Vanclooster et al. [2009]; Khan et al. [2010]; Machado et al.
[2016]), while only a limited number incorporate mesoscopic effects in a hierarchical manner
for (woven) fiber-reinforced thermoplastics (e.g. Boisse et al. [2005]; Guzman-Maldonado
et al. [2016]; Dörr et al. [2019]; Dörr [2021]). To the author’s knowledge, a fully thermo-
mechanically coupled hierarchical modeling approach that accounts for both micromechanical
andmicrothermal effects aswell as the process-dependent evolution of thematerialmorphology
in terms of the crystallinity has not yet been established in the current literature.

1.3 Outline of the dissertation

The present cumulative dissertation is organized in the following manner. Chapter 2 is con-
cerned with the development and characterization of a thermo-mechanically coupled model
formulation for the polyamide 6 matrix. In Chapter 3, the matrix model is employed in the
context of a micromechanical analysis on repeating unit cells to generate an experimental and
virtual data base. Finally, in Chapter 4, a homogenized macroscopic approach for unidirec-
tionally fiber-reinforced polyamide 6 is proposed as an extension of the previously developed
theory. In this instance, the experimental and virtual data base fromChapter 3 is used for model
identification and the framework is employed to conduct a full thermoforming simulation.

In more detail, in Chapter 2 a comprehensive mechanical and thermal experimental study
on polyamide 6 blends is used to identify the dependencies of the material on the temperature,
strain rate, and the underlying morphology in terms of the degree of crystallinity. Therefore,
various loading conditions, such as monotonic and cyclic tension and compression, are tested,
and relaxation tests as well as a thermal analysis are conducted. The use of blends instead of
pure polyamide 6 ensures testing on a stable, temperature-independent crystalline state and,
simultaneously, extends the range of tested DOCs tremendously. Based on the experimental
findings, a thermo-mechanically coupled continuum approach is proposed, which combines
nonlinear visco-elastic and elasto-plastic effects. In this thermodynamically consistent frame-
work, the degree of crystallinity serves as a constant input quantity, which affects the overall
constitutive behavior. To account for the tension-compression asymmetry characteristic for
polymeric materials, a tension-compression asymmetry in yielding is incorporated via the
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choice of the yield surface incorporating a dependence on both the DOC and the temperature,
combined with nonlinear kinematic hardening of Armstrong-Frederick type and a nonlinear
relaxation behavior. In this way, the material behavior in terms of loading-rate dependency,
strain hardening and stress relaxation can be accurately predicted over a wide range of process
parameters.

Next, the polymeric matrix model is employed for a micromechanical and microthermal
analysis on repeating unit cells in Chapter 3. Therefore, firstly, various randomization methods
are tested to generate the unit cells and replicate the composites’ random fiber distribution with
a focus on process automation. A statistical evaluation is conducted to determine the size of the
unit cell, taking into account the statistical fluctuations related to the random fiber distribution.
Subsequently, the effective mechanical and thermal material properties are derived, combining
the aforementioned polyamide 6 matrix formulation with a thermo-elastic model for the glass
fibers. The virtual results of the micromechanical analysis are successfully compared to an
experimental study on glass fiber reinforced polyamide 6 at various temperatures. Thus,
enabling the development of a virtual and experimental data base for the identification of a
homogenized macroscopic material model in Chapter 4.

As previously mentioned, Chapter 4 is concerned with the extension of the polymeric
matrix model from Chapter 2 to a homogenized macroscopic approach for unidirectional
fiber-reinforced polyamide 6. The fiber-induced anisotropy is accounted for by an additional
transverse isotropic thermo-elastic energetic contribution in combination with a macroscopic
description for anisotropic thermal conduction. Furthermore, the crystallization kinetics are
introduced as an independent thermo-chemical process to include the impact of the temperature
history on the overall mechanical material behavior. Hence, the degree of crystallinity is
now treated as a temperature-rate-dependent internal variable to account for the evolution
of the underlying crystalline phase. The influence of the mechanical and thermal material
anisotropy on different phenomena such as thermal expansion, self-heating, and crystallization
is carefully examined in various numerical examples, including a 3D thermoforming simulation
in comparison to experimental results.
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16 2 A thermo-mechanically coupled constitutive model for semi-crystalline polymers at finite strains

2.1 Abstract

In the field of material modeling, thermoplastic polymers are often studied because of their
complexmaterial behavior and their prevalence in industry applications due to their low cost and
wide range of applications. Nowadays, where reusability becomes more and more important,
materials which can undergo reversible thermomechanical deformations are appealing for,
e.g., the construction of car body components. To predict such complex forming processes
with multiple influencing factors, such as temperature, strain rate or underlying material
morphology, model formulations are needed that account for these influences simultaneously
and are validated against experimental data. Unfortunately, up to now only a few contributions
are available which consider all these phenomena. In addition, the range of process parameters
considered is often narrow due to the experimental effort required for testing. This usually
results in limited predictive capabilities of the model. To overcome these limitations, in
this work, a thermo-mechanically coupled material model is developed, that accounts for the
underlying morphology in terms of the degree of crystallinity (DOC). The model formulation
is derived in a thermodynamically consistent manner, incorporating coupled nonlinear visco-
elastic and elasto-plastic material behavior at finite strains. To characterize and further validate
the model, mechanical as well as thermal experiments are conducted for polyamide 6 (PA6).
Here, a blending strategy of PA6 together with an amorphous co-polymer is introduced during
specimen production to achieve a wider range of stable DOCs(approximately 15%). The
model formulation is successfully applied to experimental results and its predictions are in
good agreement with experimental observations.
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¯(∗) Quantity in the reference configuration
ˆ(∗) Quantity in Nye Notation

(
(11), (22), (33), (12), (13), (23)

)T

2.2 Introduction

Polymers are marcomolecules consisting of repeating units (monomers) with linear, branched
or cross-linked structures. They are typically classified on the basis of their origin (synthetic,
natural, modified natural), the origin of their ressources (renewable, fossil), their biodegrad-
ability, or their physiochemical properties (thermoplastics, thermosets, elastomers) in terms
of their arrangement of monomers on the microlevel. The latter is of interest in industrial
applications, for example in automotive or aerospace industry, where polymers are used as
engineering materials due to their beneficial high strength to weight ratio, as well as their
eligibility for cost-effective mass-production. In contrast to three dimensional cross-linked
network structures, highly pronounced in thermosets and less distinct in elastomers, thermo-
plastics primarly consist of long linear or branched polymer chains without cross-links. This
underlying morphology allows for reversible thermoplastic deformations, needed for technical
forming or moulding processes, as e.g. for car components. Thermoplastics can either be
purely amorphous or semi-crystalline polymers (SCPs), depending on their chain morphology.
Amorphous polymers mainly consist of disordered (coiled) chains that undergo a change from
a glassy to a rubbery state around the glass transition temperature. In contrast, SCPs contain
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disordered (amorphous) and ordered (crystalline) regions, resulting in a recrystallization be-
havior during cool-down from the melt (Strobl [1997]; Cowie and Arrighi [2007]; Young and
Lovell [2011]). Hereby, the cooling rate and the production method (e.g. extrusion, injection
molding, blow molding, compaction etc.) have a crucial impact on the resulting degree of
crystallinity (DOC). In industrial applications, the process stability is most important, therefore
additives such as softening agents, stabilizers, crystallization agents, dyes or fillers to enhance
the mechanical properties are commonly used in plastics manufacturing. Nonetheless, these
are not the only influencing factors on the resulting material behavior. Besides production
parameters, temperature, heating or loading rate as well as moisture content or ageing fac-
tors, such as UV radiation or other environmental factors, can alter the material characteristics.
Hence, it is crucial to consider multiple influencing factors over a wide range when formulating
and identifying a material model to reliably predict the material behavior of plastics.

Over the past decades, multiple models were proposed to simulate the material behavior of
polymers under various influencing factors. Here, contributions for thermoplastic materials
are of particular interest. Based on the modeling approach by Haward and Thackray [1968] for
glassy polymers and the idea of a split into a molecular network as well as an intermolecular
resistance (Boyce et al. [1988]), several phenomenological models were developed for amor-
phous (e.g. Anand and Gurtin [2003]; Mulliken and Boyce [2006]; Barriere et al. [2019]) and
semi-crystalline (e.g Boyce et al. [2000]; Ayoub et al. [2010]; Felder et al. [2020a]) polymers.
Within the class of phenomenological models, the approaches differ between purely visco-
elastic formulations (e.g. Müller et al. [2011]; Kästner et al. [2012]) and models that cover
the elasto-visco-plastic material behavior (e.g. Lion [1997a]; Boyce et al. [2000]; Felder et al.
[2020a]). Several works additionally account for the Bauschinger-like effect upon unloading
(e.g. Anand et al. [2009]; Srivastava et al. [2010]; Krairi and Doghri [2014]).

Modeling the yielding behavior of thermoplastics requires the identification of an appropriate
yield surface. Here, the well-known von Mises yield criterion, which depends on a single
material parameter only (i.e. yield stress) and originates from the analysis of the inelastic
behavior of metals, is not suitable, since it neglects the hydrostatic pressure dependence known
for polymers, see for example Mears et al. [1969]; Ghorbel [2008]. Possible alternatives are,
for example, the Drucker-Prager yield surface Drucker and Prager [1952], or the paraboloid
yield surface by Tschoegl [1971]. Both offer the possibility to consider tension-compression
asymmetry in yielding, by introducing separate yield stresses in tension and compression. This
effect is also visible in experiments. Nguyen et al. [2016] showed e.g. a tension-compression
asymmetry in the onset of yielding for glassy polymers at room temperature, where the stiffer
compressive response resulted from the effect of hydrostatic pressure. The temperature and
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strain rate sensitivity of yielding under compression was discussed in Richeton et al. [2006].
However, the ratio of the tensile and compressive yield stresses is not affected by the strain
rate, as concluded by Ghorbel et al. [2014]. Manaia et al. [2020] investigated the mechanical
response of various semi-crystalline polymers and found out that PA6, among others, shows
a strain-rate dependent yielding together with a higher yield stress in compression. At higher
temperatures, Rae et al. [2007] tested the response of polyether-ether-ketone (PEEK) and
compared the resulting yield stresses in tension and compression. Their difference decreased
with increasing temperature, especially close to or above the glass transition. Further testing by
Ghorbel [2008] revealed that yield criteria based on the hydrostatic stress and second invariant
of the deviatoric stress are not sufficient to predict biaxial stress states or shear banding. In
these cases, the third invariant of the deviatoric stress needs to be considered as well. Another
possibility are yield criteria derived from mechanical testing, see e.g. Farrokh and Khan
[2010]. These approaches are, however, tailored to a specific material and can therefore not be
used for other cases.

Some works considered additional effects at the microlevel, as, for example, plastic flow
occurring via crystallographic slip in the crystalline phase (Van Dommelen et al. [2003]) or a
change of the plastic flow depending on the glass transition (Richeton et al. [2007]). Naturally,
the morphology of the underlying microstructure, e.g. crystal configuration, lamellae thick-
ness etc., has a significant influence on the overall material response. This motivated modeling
formulations that take into account molecular dynamics or the microstructual constituents, em-
ploying analytical or FE-based homogenization schemes to arrive at the macroscopic material
response, see e.g. Nikolov et al. [2002]; Bouvard et al. [2009]; Uchida and Tada [2013]; Popa
et al. [2014]; Pisani et al. [2019]. However, due to experimental limitations it is in general diffi-
cult and costly to obtain the required physical data for characterizing the microscopic material
behavior. Especially semi-crystalline polymers prove to be difficult in terms of their different
molecular arrangements. With the growing interest in artificial intelligence and machine learn-
ing, efforts have been made to use neural networks for describing the temperature dependence
of mechanical properties of polyurethane (Kopal et al. [2017]) and the temperature- and rate-
dependence of polypropylene in terms of a hybrid model approach, combining constitutive
and data-based modeling (Jordan et al. [2020]). Additional applications included material
development, as e.g. rubber blend optimization by tracing back targeted visco-elastic material
properties Román et al. [2022] or polymer identification Rabiej and Rabiej [2021]. Similar
to micromechanical approaches, the generation of experimental data sets remains cost- and
time-intensive.

The influence of the internal microstructure on the macroscopic material response is only
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taken into account in a limited number of works. For example, the amount of crystal volume
fraction was taken into account in Ayoub et al. [2010, 2011], who incorporated a two-phase
representation of the intermolecular resistance, whereas in Dusunceli and Colak [2008] and Re-
grain et al. [2009] mixture rules based on a crystallinity ratio were used to distinguish between
the amorphous and the crystalline phase. Hachour et al. [2014] developed a micromechanics-
based criterion for the yielding of SCPs, based on the amorphous volume fraction. In most
cases, however, crystalline and amorphous phases are treated in a smeared manner and the
degree of crystallinity serves as a constant input parameter, see e.g. Felder et al. [2020a].
Several works additionally considered the evolution of the DOC as a stress-free pre-process,
resulting during cool-down from the molten state (Felder et al. [2020b]), or elaborated a full
coupling scheme (e.g. Cundiff et al. [2022] based on Doufas et al. [2000]; Ahzi et al. [2003]).
However, the validation of such approaches remains cumbersome, since the DOC cannot be
measured directly during experimental testing and additional changes in the sample cannot be
excluded, if tested afterwards. Commonly, no further differentiation between fully extended
(α-form) and twisted (γ-form) polymer chains is made.

Thermal effects in semi-crystalline polymers need to be accounted for, due to the inherent
structural changes occuring at the lamallae level. In literature, multiple approaches exist for
polymers that take into account a coupling with the temperature field (e.g. Arruda et al.
[1995]; Anand et al. [2009]). Here, the approaches differ in terms of the treatment of thermal
softening with increasing temperature. Reese and Govindjee [1997] and Lion [1997b], for
example, considered material degradation, whereas in the works of e.g. Johlitz et al. [2010];
Johnsen et al. [2019]; Felder et al. [2020b], the material parameters themselves are dependent
on the temperature. In regards to the considered temperature range, Ames et al. [2009]
identified the model framework below the glass transition, whereas Shepherd et al. [2006]
considered processing cases close to the glass transition. In contrary, Srivastava et al. [2010]
conducted a modeling framework that spans a wide temperature range independent of the
phase change. Significant self-heating effects were visible in experiments from Ghorbel et al.
[2014] for polyamide (PA66), polymethylmethacrylate (PMMA) and polycarbonate (PC) and
in experiments from Krairi et al. [2019] for PA66 and polypropylene. In a recent publication,
Hao et al. [2022a] studied the material behavior of PA6 under large deformations including the
self-heating effect, prominent at high loading rates.

Other influencing factors were investigated in, for example, Sharma et al. [2020], who
investigated the effects of a change in moisture content on the mechanical properties of PA6
by coupling a nonlinear diffusion model with a visco-elastic material model. In Kehrer
et al. [2023], the thermoviscoelastic behavior of PA6 is explored by means of dynamical
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mechanical analysis (DMA) under varying moisture contents. Further, Rodriguez et al. [2020]
experimentally investigated the effect of UV-aging on polyethylene, whereas Bahrololoumi
et al. [2022] incoporated the effect of thermal-aging into a micromechanical constitutive
model. Besides the influence of environmental factors, multiple attempts were made to
model the failure regime of SCPs. Krairi and Doghri [2014] modeled e.g. ductile damage in
polypropylene, nylon 101 and high-density polyethylene, whereas Shen et al. [2019] introduced
a thermo-elastic-viscoplastic-damagemodel for PA6. A gradient-damage approachwas used in
Narayan andAnand [2021] to overcome pathological mesh-dependence issues in the simulation
of PMMA and polycarbonate (PC) fracture.

Concluding from the review above, considerable efforts were made in the experimental
and numerical analysis of SCPs. However, in most of these works the influencing factors
on the material behavior are considered separately. Only a few works consider multiple
influences at once. Especially regarding the temperature and process induced morphology, as
the degree of crystallinity, a strongly limited number of contributions is available that covers
their correlations over a wide process range (Felder et al. [2020a]). In these cases, mostly
the mechanical model response is investigated, whereas the influence of the DOC on the
thermal properties is neglected, in particular for temperatures above the glass transition. At
the same time, the considered range of process parameters in experimental testing is often
limited. Therefore, a broad overview of the material response is missing. As a result, material
models identified from experimental data are often valid only for small regions, e.g. a small
range of DOCs, limiting the predictive capability of the model for various applications and
process induced morphologies. Additionally, the production of temperature stable specimens
with a significant range of crystallinities remains a challenge, since quenching during cool-
down or post-production treatments, as for example anealing, yield only small changes in the
DOC that are unstable in temperature and time. Here, additives like crystallization agents or
fillers are needed, to achieve significant and stable changes in the materials’ crystal content.
Compounding such materials with designed properties is a separate research field in terms of
identification of a suitable blend partner, blend composition, mixing technology and chemical
reactions initiated between the components that may require the use of compatibilizers, see
e.g. Doshev et al. [2005]; Ozkoc et al. [2007]; Lin et al. [2020]; Perin et al. [2023]. Further
testing is required to validate the newly generated materials prior to mechanical testing, which
increases the experimental effort.

The objective of this work is to evaluate the influence and interplay between strain rate,
temperature and degree of crystallinity collectively over a wide range of process parameters
and develop a corresponding thermo-mechanical constitutive theory. Therefore, in a first step
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(see Sec. 2.3) a thermodynamically consistent finite strain formulation is derived, where the
temperature serves as an additional field variable. The degree of crystallinity is accounted as an
additional constant input quantity. In line with previous works, a coupled visco-elastic, elasto-
plasticmodel is developed that includes nonlinear kinematic hardening ofArmstrong-Frederick
type. The formulation is extended with a tension-compression asymmetry in yielding, neces-
sitating experimental results in tension and compression to characterize the model. Further,
the model is identified in a staggered manner with new experimental results from polyamide
6 cyclic-olefin-copolymer (COC) blends with a range of 15 % to 29% DOC (see Sec. 2.4).
Tension, compression and relaxation tests are carried out for temperatures below and above the
glass transition with an emphasis on a wide range of variation in the tested strains and strain
rates. Here, several functions for a nonlinear relaxation time are tested and compared to exper-
imental data. Additional thermal tests, as, for example, thermal conductivity measurements or
specific heat capacity measurements, are carried out to identify the models’ thermal properties
and their dependence on the underlying morphology. Following model verification, numerical
examples are shown and discussed in Sec. 2.5. Finally, a conclusion and outlook are given in
Sec. 2.6.

2.3 Constitutive modeling of semi-crystalline

polymers

The experimental findings of e.g. Felder et al. [2020a] imply that, to accurately represent the
material behavior of SCPs, a coupled visco-elastic, elasto-plastic framework, incorporating
nonlinear relaxation behavior as well as strain hardening, is required. To this end, the corre-
spondingmodeling strategy is presented in a schematic one dimensional rheological illustration
(Fig. 2.1 a) to allow a better understanding of the following derivation.

2.3.1 Kinematics

In the finite strain regime, the previous assumptions lead to a multiplicative decomposition of
the deformation gradient F into an elastic (Fe1) and a plastic (Fp) part (see e.g. Eckart [1948];
Kröner [1959]; Lee [1969]) as well as an elastic (Fe2) and viscous (Fv) contribution (see e.g.
Sidoroff [1974]; Lubliner [1985]; Lion [1997a]; Reese and Govindjee [1998])

F = Fe1 Fp = Fe2 Fv, (2.1)
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see Fig. 2.1. To model nonlinear kinematic hardening, an additional, physically motivated
split of the plastic deformation gradient Fp = Fpe Fpi is introduced, according to Lion [2000];
Dettmer and Reese [2004]. Naturally, the above decompositions of the deformation gradient
result in the local intermediate configurations ic1, icv1 and ic2 for plasticity, kinematic hardening
and viscosity, respectively, with rc defining the reference and cc the current configuration (cf.
Fig. 2.1).

Elasto-plastic model

Visco-elastic model

rc ccF

Fp

Fpe

Fpi
Fe1

Fv Fe2

ic1

ic2

ici1

a) b)

ψp(Cpe, χ, θ)

ψe1(Ce1, χ, θ)

ψe2(Ce2, θ)

Figure 2.1: a) Schematic illustration of the constitutive model b) Multiplicative splits of the
deformation gradient.

2.3.2 Helmholtz free energy

The total Helmholtz free energy per unit mass, as the state potential of the model, is expressed
in terms of physically reasonable deformation measures in the intermediate configurations.
Therefore, next to the symmetric right Cauchy-Green tensorC = F TF , the elastic and plastic
Cauchy-Green-like tensors

Ce1 = F T
e1 Fe1 = F−Tp C F−1

p , Cpe = F T
pe Fpe, Ce2 = F T

e2 Fe2 = F−Tv C F−1
v (2.2)

are introduced, according to Vladimirov et al. [2008]; Brepols et al. [2020]. Here, the general
form of the total Helmholtz free energy ψ is additively decomposed, following the idea
presented in Fig. 2.1

ψ(Ce1,Ce2,Cpe, χ, θ) = ψ1(Ce1,Cpe, χ, θ) + ψ2(Ce2, θ) + ψc(χ, θ), (2.3)
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whereψ1 andψ2 denote the energies related to the elasto-plastic and visco-elastic contributions,
respectively. Analogously to Anand et al. [2009]; Ames et al. [2009]; Felder et al. [2020b,
2022], the state potential is extended by a caloric contribution ψc in order to ensure flexibility
regarding the function for the heat capacity cT derived in Sec. 2.3.5. As indicated in (2.3), all
energetic contributions jointly depend on the temperature field via the absolut temperature θ.
The first term ψ1 contains an elastic part ψe1 based on the elastic right Cauchy-Green tensor
Ce1 and the degree of crystallinity χ

ψ1(Ce1,Cpe, χ, θ) = ψe1(Ce1, χ, θ) + ψp(Cpe, χ, θ), (2.4)

to account for the influence of the microstructural morphology. Note here that no distinction is
made between the underlying crystal configurations and that the DOC in this framework serves
as a constant input quantity. In addition, a defect energy ψp related to kinematic hardening
is introduced, depending on Cpe as well as χ. The energy related to viscous effects ψ2, is
expressed in terms of the elastic right Cauchy-Green-like tensor Ce2 as the sole deformation
measure.

2.3.3 Second law of thermodynamics: Clausius-Duhem inequality

To ensure non negative internal dissipation, the model equations need to fulfill the second
law of thermodynamics. Therefore, the state relations are derived from the local form of the
Clausius-Duhem inequality:

S :
1

2
Ċ − ρ0(ψ̇ + ηθ̇)− 1

θ
q0 · Grad(θ) ≥ 0. (2.5)

Here, S is the second Piola-Kirchhoff stress tensor, ρ0 represents the material density per unit
reference volume and η the entropy. The heat flux with respect to the reference configuration
is introduced as q0. Considering the assumed form of ψ1 and ψ2 in Eq. 2.3, the time derivative
of the Helmholtz free energy is expressed as

ψ̇ =
∂ψe1
∂Ce1

: Ċe1 +
∂ψp
∂Cpe

: Ċpe +
∂ψ2

∂Ce2

: Ċe2 +
∂ψ

∂θ
θ̇ (2.6)

The reader is kindly reminded that the derivatives with respect to χ vanish, since the DOC
is assumed to be constant in this constitutive framework. Now, using the chain rule of
differentiation and additionally the relation Lp = ḞpF

−1
p and Lpi = ḞpiF

−1
pi for the velocity
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gradients, the derivatives of Ce1 and Cpe can be reformulated as

Ċe1 = −LTpCe1 +F−Tp ĊF−1
p −Ce1Lp, Ċpe = −LTpiCpe +F−Tpi ĊpF

−1
pi −CpeLpi. (2.7)

Here, the identities Ḟ−1
p = −F−1

p Ḟ−1
p F−1

p and Ḟ−Tp = −F−Tp Ḟ T
p F

−T
p have been used for the

derivation of Ċe1 and Ḟpe
−1

= −F−1
pe Ḟ

−1
pe F

−1
pe and Ḟ−Tpe = −F−Tpe Ḟ T

pe F
−T
pe for the derivation

of Ċpe. The viscous deformation rate Ċe2 is derived analogously using the corresponding
inelastic velocity gradient Lv = Ḟv F

−1
v . In the next step, ψe1 is assumed to be an isotropic

function ofCe1, therefore coaxiality betweenCe1 and ∂ψe1/∂Ce1 can be shown. Together with
the relation for a scalar product of two second-order tensors (A : B = tr(ATB) = tr(ABT ))
this results in the identity

∂ψe1
∂Ce1

: Ce1Lp = Ce1
∂ψe1
∂Ce1

: Lp = Ce1
∂ψe1
∂Ce1

: Dp. (2.8)

Here, the velocity gradient Lp can be replaced by its symmetric part symLp = Dp, the plastic
rate of deformation tensor, since the product ofCe1 and ∂ψe1/∂Ce1 is symmetric. Analogously,
ψp and ψe2 are assumed to be isotropic functions of Cpe and Ce2, respectively. Thus, similar
relations as in Eq. 2.8 are obtained for these quantities. Now, the reformulated energy rate ψ̇
is inserted back into Eq. 2.5(

S − 2ρ0F
−1
p

∂ψe1
∂Ce1

F−Tp − 2ρ0F
−1
v

∂ψe2
∂Ce2

F−Tv

)
:

1

2
Ċ

+

(
2ρ0Ce1

∂ψe1
∂Ce1

− 2ρ0 Fpe
∂ψp
∂Cpe

F T
pe

)
: Dp +

(
2ρ0Cpe

∂ψp
∂Cpe

)
: Dpi

+

(
2ρ0Ce2

∂ψe2
∂Ce2

)
: Dv + ρ0

(
∂ψ

∂θ
+ η

)
θ̇ − 1

θ
q0 · Grad(θ) ≥ 0,

(2.9)

using the relation Ḋp =
1

2
F−Tp CpF

−1
p . For arbitrary Ċ, the second Piola-Kirchhoff stress

tensor S is chosen according to the Coleman-Noll procedure Coleman and Noll [1961] as

S = S1 + S2, (2.10)

where S1 and S2 represent the second Piola-Kirchhoff stresses corresponding to the elasto-
plastic and visco-elastic model, respectively

S1 = 2ρ0F
−1
p

∂ψe1
∂Ce1

F−Tp , S2 = 2ρ0F
−1
v

∂ψ2

∂Ce2

F−Tv . (2.11)
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In addition, definitions for the Mandel stressesM1 andM2 in the intermediate configurations
ic1 and ic2 are introduced

M1 = 2ρ0Ce1
∂ψe1
∂Ce1

, M2 = 2ρ0Ce2
∂ψ2

∂Ce2

. (2.12)

Moreover, the back stress X related to kinematic hardening in ic1 and the Mandel stress
corresponding to kinematic hardeningM1,kin follow to

X = 2ρ0 Fpe
∂ψp
∂Cpe

F T
pe, M1,kin = 2ρ0Cpe

∂ψp
∂Cpe

. (2.13)

The entropy is specified as
η = −∂ψ/∂θ (2.14)

to a priori fullfill the thermodynamic restrictions and a heat flux according to Fourier’s law in
the reference configuration

q0 = −J λT C−1 Grad(θ) (2.15)

is chosen with J = detF and λT (θ) denoting the temperature dependent heat conductivity.
ExploitingEq. 2.9, togetherwith Eq. 2.10 - 2.15 leads to a reduced formof theClausius-Duhem
inequality

(M1 −X) : Dp +M1,kin : Dpi +M2 : Dv ≥ 0. (2.16)

2.3.4 Evolution equations and proof of thermodynamic
consistency

2.3.4.1 Yield function and elasto-plastic evolution

FollowingTschoegl [1971];Ghorbel [2008];Melro et al. [2013b], a Tschoegl-type or paraboloid
yield criterion

Φp = 3J2 + (m− 1)σ0
t I1 −m (σ0

t )
2 ≤ 0 (2.17)

is considered, which includes a tension-compression asymmetry in yielding. It depends on
the first (I1 = tr(Σ)) and second (J2 = 1/2 tr(dev((Σ))2)) invariant of the relative stress
Σ = M1 − X and thus accounts for the effects of hydrostatic pressure on the yielding
behavior. The tension-compression flow asymmetry is introduced via the ratiom

m =
σ0
c (χ, θ)

σ0
t (χ, θ)

, (2.18)
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between the initial yield stresses in tension σ0
t and compression σ0

c . Note here that both
material quantities are assumed to depend independently on the degree of crystallinity and the
temperature, resulting in a varying ratiom with temperature evolution. Under the assumption
of associative plasticity, the evolution equation for the plastic strain rate follows to

Dp = λ̇p
∂Φp

∂Σ
= λ̇p

(
3 dev(Σ) + (m− 1)σ0

t I

)
, (2.19)

where λ̇p denotes the plastic multiplier. The evolution equation for Dpi is chosen to model
nonlinear Armstrong-Frederick kinematic hardening according to Armstrong et al. [1966]

Dpi = λ̇p
b

c
dev(M1,kin), (2.20)

with the corresponding material parameters b and c. Since the Mandel stress of kinematic
hardening depends on c (Eq. 2.37,2.39), the ratio b/c is introduced for dimensional reasons.
Finally, the Karush-Kuhn-Tucker conditions complete the constitutive equations for the elasto-
plastic model part, i. e.

λ̇p ≥ 0, Φp ≤ 0, λ̇p Φp = 0. (2.21)

2.3.4.2 Visco-elastic evolution

The evolution equation for the visco-elastic part in the intermediate configuration ic2 is chosen
according to Reese and Govindjee [1998]

Dv =
∂g

∂M2

=
1

2τµ2

dev(M2) +
1

9τK2

tr(M2) I, (2.22)

where g(M2) is a potential introduced in Reese and Govindjee [1998]. Thereby, the bulk
modulus K2(θ) as well as the shear modulus µ2(θ) are temperature dependent quantities
related to the material stiffness defined in Sec. 2.3.7. The relaxation time τ determines how
fast the material releases stresses and must therefore be larger than zero. In this work, τ(τ2, θ)

is chosen as a function of the Kirchhoff stress of the visco-elastic part (τ2) as well as the
temperature. For the specific function, the reader is referred to Sec. 2.4.

Note on thermodynamic consistency

For a more detailed derivation of the elasto-plastic part, the reader is kindly referred to
Vladimirov et al. [2008]; Brepols et al. [2020]. In these works, the classical von Mises
yield criterion is exploited, in a framework considering isotropic and kinematic hardening, to
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derive the plastic flow rule and prove the thermodynamic consistency. The thermodynamic
consistency of the constitutive model presented here can be shown in a similar manner, using
the approach of Reese and Govindjee [1998] for the visco-elastic part.

2.3.5 First law of thermodynamics: energy balance

In the following section, the local form of the energy balance with respect to the reference
configuration

ρ0 ė+ Div(q0)− S :
1

2
Ċ = 0 (2.23)

is evaluated to derive the heat generation in a thermodynamically consistent manner. Therefore,
the time derivative of the internal energy

ė = ψ̇ + η̇ θ + η θ̇ (2.24)

is exploited. Subsequently, the rate of the total Helmholtz free energy (Eq. 2.6) is inserted in
Eq. 2.23 and Eq. 2.14 is recalled to derive the entropy rate η̇ = −∂ψ̇/∂θ. Using the relations
derived in Eq. 2.7- 2.13 as well as Eq. 2.16, the partial differential equation for the temperature
field follows to

ρ0 cT θ̇ = re + rp + rv − Div(q0) (2.25)

re = θ

(
∂S1

∂θ
:

1

2
Ċ +

∂S2

∂θ
:

1

2
Ċ

)
(2.26)

rp =

(
M1 − θ

∂M1

∂θ

)
: Dp −

(
X − θ ∂X

∂θ

)
: Dp +

(
M1,kin − θ

∂M1,kin

∂θ

)
: Dpi

(2.27)

rv =

(
M2 − θ

∂M2

∂θ

)
: Dv (2.28)

Here, the specific heat capacity was introduced as

cT = −θ ∂
2ψ

∂θ2
. (2.29)

From Eq. 2.29 it can be seen, that the heat capacity in theory is a complex function of all
internal variables. However, coming back to the definition of the total Helmholtz free energy
in Eq. 2.3, a caloric energy term ψc was added to ensure flexibility regarding the function for
the heat capacity which otherwise would be a priori defined. In reality it is hard to asses these
energetic contributions experimentally for inelastic materials and thus derive the heat capacity
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in closed form Anand et al. [2009]; Ames et al. [2009]; Felder et al. [2022]. Therefore, in
this work, the heat capacity is approximated by a constant value cT = cT (χ, θ) for each DOC
and test temperature according to cited literature. In Sec. 2.4, experiments are conducted to
determine the specific heat capacity for the underlying morphology.

2.3.6 Representation of the constitutive equations in the
reference configuration

In the preceding sections, the constitutive equations of the model were derived in a thermo-
dynamically consistent manner, resulting in quantities in multiple configurations. However,
since the intermediate configurations are non-unique, all quantities defined with respect to ic1,
ici1 and ic2 can not be computed directly without further treatment (Holthusen et al. [2023]).
Thus, several pull-back operations are needed to arrive at unique and therefore calculable
quantities in the reference configuration. Simultaneously, this procedure allows the application
of an exponential map algorithm (Vladimirov et al. [2008]) to integrate the evolution equations
which automatically preserves the symmetry of the internal variables as well as the material’s
incompressibility.
Since ψe1 and ψe2 are isotropic functions of Ce1 and Ce2, respectively, one can directly show
that S1 andS2 are unique using the concept of invariants Spencer [1971]. Now, the relations
from Eq. 2.2 can be used to reformulate the Second Piola-Kirchhoff stresses in terms of C
and Cp or Cv. A similar observation can be made for the back stress tensor in the reference
configuration X̄ . The rates of the plastic and viscous right Cauchy-Green-like tensors are
defined as

Ċp = 2F T
p Dp Fp, Ċpi = 2F T

piDpi Fpi, Ċv = 2F T
v Dv Fv. (2.30)

Using the aforementioned relations together with Eq. 2.19, 2.20 and 2.22, the evolution
equations can be represented in the refererence configuration as

Ċp = 2 λ̇p F
T
p

∂Φp

∂Σ
Fp, Ċpi = 2 λ̇p

b

c
F T
pi dev(M1,kin)Fpi, Ċv = 2F T

v

∂g

∂M2

Fv. (2.31)
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Next, the thermodynamic driving forces of the elasto-plastic part are pulled-back to the refer-
ence configuration

M1 = 2 ρ0Ce1
∂ψe1
∂Ce1

= 2ρ0F
−T
p CF−1

p

∂ψe1
∂Ce1

F−Tp F T
p = F−Tp CS1F

T
p (2.32)

X = 2 ρ0 Fpe
∂ψp
∂Cpe

F T
pe = 2ρ0 Fp F

−1
pi

∂ψp
∂Cpe

F−Tpi F T
p = Fp X̄ F T

p

= F−Tp F T
p Fp X̄ F T

p = F−Tp Cp X̄ F T
p (2.33)

M1,kin = 2ρ0Cpe
∂ψp
∂Cpe

= 2ρ0 F
−T
pi Cp F

−1
pi

∂ψp
∂Cpe

F−Tpi F T
pi

= F−Tpi Cp X̄ F T
pi = F−Tpi Ykin F

T
pi (2.34)

showing thatM1 and C S1 as well asX and Cp X̄ are similar tensors 1 and share the same
eigenvalues. Now, the relative stress can be reformulated as

Σ = M1 −X = F−Tp (C S1 −Cp X̄)F T
p = F−Tp Y F T

p . (2.35)

Thus, since the yield function Φp is an isotropic function of Σ, it can equally be expressed as
Φp = Φp(Σ) = Φp(Y ). In the same manner, pull-back operations for the visco-elastic part
can be deduced (see Tab. 2.1), since it can be shown thatM2 andCS2 are similar. Regarding
the internal dissipative heat sources, pull-back operations need to be applied to rp and rv as
well. Here, it is made use of Eq. 2.30-2.34, to arrive at the final form. Finally, all quantities
are expressed in terms of C and the internal variables Cp, Cpi and Cv. An overview of the
constitutive equations in the reference configuration is given in Tab. 2.1.

2.3.7 Specific choice of the Helmholtz free energy

Until this point, the constitutive framework has been presented in a quite general manner, to
allow for a flexible adaption of the model to other polymeric materials. To proceed with the
identification of the model using the experimental results in Section 2.4, however, a particular
choice for the energetic contributions is required. Note, for consistency the subsequent energies
are expressed in terms of the elastic right Cauchy-Green tensorsCe1 andCe2 in the intermediate
configurations. They can of course be equivalently reformulated in terms of the corresponding
quantities of the reference configurations C,Cp and Cv as well.

1Two arbitrary tensors A and B are similar if A = CBC−1 holds for invertible C. By evaluating the
characteristic polynomial, it can be shown that A and B share the same eigenvalues and thus the same
physical interpretation. Consequently, the invariants ofA andB are interchangeable.
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For the elasto-plastic model part, the elastic contribution ψe1 is chosen as a compressible
Neo-Hookean-type energy

ψe1 =
µ1

2
(tr(Ce1)− 3)− µ1ln (Je1) +

Λ1

4
(det(Ce1)− 1− 2 ln(Je1))

− 3K1αT ∆θ ln(Je1), (2.36)

including the two Lamé constants µ1(χ, θ) and Λ1(χ, θ) dependent on the DOC and temper-
ature. Here, Je1 = det(Fe1) is the determinant of the elastic deformation gradient Fe1. The
elastic energy is extended by a term related to volumetric thermal expansion with the elasto-
plastic bulk modulus2 K1(θ), the coefficient of thermal expansion αT (θ) and the temperature
difference ∆θ = θ − θ0 between the current temperature θ and the reference temperature θ0.
Alongside the elastic energy, a nonlinear plastic defect energy is introduced to account for
kinematic hardening

ψp =
c

2
(tr(Cpe)− 3)− c ln(

√
Jpe), (2.37)

where Jpe = det(Cpe) holds. Here, c(χ, θ) and the second dimensionless parameter b(χ, θ),
that only shows up in the evolution equation of Dpi or Ċpi, are material parameters (cf.
Armstrong et al. [1966]). With Eq. (2.11) and (2.13), the second Piola Kirchhoff stress for
the elasto-plastic part and the thermodynamic conjugate force for kinematic hardening in the
reference configuration follow to

S1 = µ1(C−1
p −C−1) +

Λ1

2

(
det(C)

det(Cp)
− 1

)
C−1 − 3K1αT (θ − θ0)C−1 (2.38)

X̄ = c (C−1
pi −C−1

p ). (2.39)

Similar to ψe1, the visco-elastic energy contribution is defined as

ψ2 =
µ2

2
(tr(Ce2)− 3)− µ2 ln(Je2) +

Λ2

4
(det(Ce2)− 1− 2 ln(Je2))

− 3K2αT (θ − θ0)ln(Je2), (2.40)

where µ2(θ) and Λ2(θ) are the viscous Lamé constants and K2 is the visco-elastic bulk
modulus2. The determinant Je2 for volumetric thermal expansion is defined as Je2 = det(Fe2).

2The bulk moduliK∗, ∗ = 1, 2 are defined by the two Lamé constants µ∗ and Λ∗ asK∗ = Λ∗ +
2µ∗

3
.
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Following Eq. 2.11, the inelastic second Piola-Kirchhoff tensor Se2 takes the form

S2 = µ2(C−1
v −C−1) +

Λ2

2

(
det(C)

det(Cv)
− 1

)
C−1 − 3K2αT ∆θC−1. (2.41)

2.3.8 Numerical implementation

The presented thermo-mechanically coupledmodeling framework is implemented as a userma-
terial subroutineUMATandUMATHT into the commercial FEMsoftwareABAQUS/Standard.
During the solution of a thermo-mechanically coupled boundary value problem, at each Gaus-
sian integration point, the deformation gradientF , the temperature θ and the spatial temperature
gradient grad(θ) are passed down to the subroutine together with a vector containing all inter-
nal variables from the last converged time step. Here, for the time discretization of the local
residuals of Ċp, Ċpi and Ċv, the exponential map algorithm is exploited as an implicit time
integration scheme. The starting point is a reformulation of the evolution equations from Tab.
2.1:

Ċp = λ̇p f1(C,Cp,Cpi, θ) = λ̇p g1(C,Cp,Cpi, θ)Cp (2.42)

Ċpi = λ̇p f1,kin(C,Cp,Cpi, θ) = λ̇p g1,kin(C,Cp,Cpi, θ)Cpi (2.43)

Ċv = f2(C,Cv, θ) = g2(C,Cv, θ)Cv (2.44)

with the second order tensors

f1 = (6 dev(Y ) + 2 (m− 1)σ0
t )Cp, g1 = f1C

−1
p (2.45)

f1,kin = 2
b

c
dev(Ykin)Cpi, g1,kin = f1,kinC

−1
pi (2.46)

f2 =

(
1

τµ2

dev(CS2) +
2

9τK2

tr(CS2) I

)
Cv, g2 = f2C

−1
v (2.47)

To integrate equations (2.42) - (2.44), an exponential map algorithm proposed by Reese and
Christ [2008]; Vladimirov et al. [2008] is used. This leads to the final form of the discretized
evolution equations, displayed in a residuum format together with the yield surface:

r1,p = −C−1
p,n +U−1

p exp (∆λpU
−1
p f1U

−1
p )U−1

p = 0 (2.48)

r1,pi = −C−1
pi,n +U−1

pi exp (∆λpU
−1
pi f1,kinU

−1
pi )U−1

pi = 0 (2.49)

r1,σ = Φp = 0 (2.50)

r2,v = −C−1
v,n +U−1

v exp (∆tU−1
v f2U

−1
v )U−1

v = 0 (2.51)
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Here, the relations ∆λp = ∆t λ̇p, Up =
√
Cp, Upi =

√
Cpi and Uv =

√
Cv are introduced.

The indexn refers to quantities from the last time step, whereas quantities without indexn relate
to the current time step. For a more detailed description of the time integration procedure, the
reader is kindly referred to Vladimirov et al. [2008]; Brepols et al. [2020]. Due to the symmetry
of the internal variables, a system of 13 nonlinear equations, corresponding to the local plastic
residual vector r1,loc = (r1,p, r1,pi, r1,σ)T = 0 must be solved for the elasto-plastic part.
Using the Newton-Raphson scheme, the plastic solution vector x1,loc = (Û−1

p , Û−1
pi ,∆λp)

T is
obtained. This procedure requires an additional linearization of the residuals (for constant C
and θ) and the calculation of the Jacobian matrix J1 = ∂r1,loc/∂x1,loc. The latter is obtained
by automatic differentiation using the software AceGen (cf. Korelc [2009]). Likewise, for the
visco-elastic part a system of 6 nonlinear equations r2,loc = r2,v = 0 is solved for Û−1

v .
After local convergence is achieved, ABAQUS requires the Cauchy stress tensor σ and

the volumetric heat generation r from the UMAT and the heat flux q from the UMATHT
together with the material sensitivities for the global Newton iteration. The rate of the right
Cauchy-Green tensor needed for the calculation of the internal heat generation is approximated
by Ċ ≈ (C −Cn)/∆t. Since the heat generation and the heat flux are derived with respect
to the reference configuration (see Tab. 2.1), they firstly need to be related to the current
configuration

q = −λT grad(θ) (2.52)

r =
1

J
(re + r1 + r2). (2.53)

In terms of the material sensitivies, ABAQUS requires the material tangent modulus CσD =

1/J CτD (DDSDDE), which is related to the tangent modulus tensor CτD for the Jaumann rate
of the Kirchhoff stress tensor τ . The linearized incremental form of the Kirchhoff stress can
be expressed as

∆τ −∆Wτ − τ∆W T = CτD∆D, (2.54)

where ∆D and ∆W refer to the incremental symmetric and antisymmetric parts of the
incremental velocity gradient ∆L, respectively. Further, the thermal tangent modulus Cσ

θ

(DDSDDT) and the derivatives of the internal heat sources with respect to the strain increment
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Cr
D (DRPLDE) and the temperature Cσθ (DRPLDT) are needed:

∆σ = Cσ
θ ∆θ (2.55)

∆r = Cr
D : ∆D (2.56)

∆r = Cr
θ∆θ. (2.57)

These quantities are obtained in a consistent manner from the corresponding expressions in the
reference configuration utilizing the algorithmic differentiation tool AceGen. Thus, quadratic
convergence within the global Newton-Raphson iteration is achieved. The push forward
operations can be found in Appendix 2.7.1 alongside a more detailed derivation of the tangent
operators.



2.3 Constitutive modeling of semi-crystalline polymers 35

Table 2.1: Overview over the constitutive equations in the reference configuration.
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Ċ

+
∂
S

2

∂
θ

:
1 2
Ċ
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2.4 Parameter identification procedure

In this section, a staggered parameter identification scheme is described, to obtain a set of
material parameters for each test temperature. Therefore, firstly the experimental data base is
discussed (see Sec. 2.4.1), followed by a successive model characterization with a focus on
the dependence on the degree of crystallinity and the temperature.

2.4.1 Experimental data base

2.4.1.1 Specimen preparation

All experimental results used in this work for model identification purposes were conducted
at the Institute of Mechanics, University of the German Federal Armed Forces, Munich.
To that end, the required test specimens were injection moulded at Polymer Service GmbH
Merseburg (PSM) as type 1A and 1BA specimens ofDINEN ISO527-2:2012. In the following,
1BA specimens were used for monotonic tension as well as relaxation tests, whereas the 1A
specimens were used to cut smaller specimens (10x4x50 mm3) from the middle section for
compression tests in line with DIN EN ISO 604:2003. Prior to specimen production, the
PA6 type B granulate, kindly provided by Bond Laminates (Lanxess), was compounded with
an amorphous co-polymer (cyclic olefin copolymer (COC), type: Topas 9506F-500) in four
different ratios PA6:COC (1:0, 0.85:0.15, 0.70:0.30, 0.55:0.45). The test specimens were
then injection moulded from the granulates. The idea of this blending technique is to achieve
different thermally stable volume-crystallinities with a wide range of DOCs, where the change
in DOC stems purely from the change in the PA6 mass content to the total compound mass.
The resulting material behavior of the blends should therefore reflect the material behavior of
pure PA6. Consequently, the blend partner COC was chosen to have a similar glass transition
temperature compared to PA6, as well as a stiffness around 4 GPa which corresponds to
the stiffness of the amorphous phase of pure PA6 below Tg. Below the glass transition, the
material behavior of the blends is influenced by both the amorphous and the crystalline phase.
In this case, the similarity of the chosen blend partner to the amorphous PA6 phase should
result in a comparable material behavior to pure PA6. Above the glass transition, the stiffness
of the amorphous phase reduces to individual MPa, therefore the crystalline phase is mainly
responsible for thematerial performance. Here, the blending technique should enable testing on
a broad variety of DOCs, while at the same time post crystallization is avoided. Other methods
that alter the DOC, as for example quenching at the end of the injection moulding process or
post-processing methods, like annealing, where the specimens are stored at high temperatures
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for several hours to enforce further crystallization, result in recrystallization when tested above
the glass transition. Here, annealed specimes behave more thermally stable compared to
quenched specimens, however, the change in DOC in annealed specimens is only minor and
unpredictable. On the other hand, the use of blends should ensure a broad, predictable and
most important controllable variety of DOCs, outweighing the complex manufacturing. After
the production process, the specimens were stored in a dry chamber (MP Dry Cabinet IV ST)
at 40◦ C, until the moisture content, obtained from an Aquatrack measurement, measured less
then 0.1 %.

Blend ratio [%] DOC [%]
PA6 COC 1st heating run 1st cooling run 2nd heating run
100 0 29 40 40
85 15 24 34 34
75 25 18 28 28
55 45 15 24 24
0 100 < 1 < 1 < 1

Table 2.2: Differential scanning caliometry (DSC) results for four different blends as well as
pure COC. Experimental results from green colored blends are used for model
identification, blue colored blends are used for verification purposes.

2.4.1.2 Differential scanning caliometry (DSC)

In a first step, the degree of crystallinity of each blend was determined by differential scanning
caliometry (DSC), using a Q2000 machine from TA instruments. Samples of between 5 and
8 mg were cut from the 1BA specimens and heated up from room temperature way above
the melting point with a constant heating rate of 10 K/min, repeating the process for each
blend. The heat absorption during the endothermic melting of the crystalline regime or, more
specifically, the integrated heat flow over time of themelting peak yielded the change in specific
enthalpy ∆Hm. Together with the specific fusion enthalpy for a hypothetical 100% crystalline
material as ∆H0 = 190 J/g from Campoy et al. [1998], the absolute DOC is obtained by

χ =
∆Hm

∆H100
0

. (2.58)

In this way, the four DOCs 0.29, 0.24, 0.18 and 0.15 (from highest to lowest PA6 content)
were obtained, which will be used for model identification and verification. It should be noted
that the DOC for pure PA6 multiplied by the respective blend ratio corresponds well with the
measured DSC results for the three blends. Therefore, the authors conclude that the DOC



38 2 A thermo-mechanically coupled constitutive model for semi-crystalline polymers at finite strains

of polyamide 6 blends can be approcimated with the DSC results for pure PA6 together with
the respective blend ratio leading to a possible reduction in experimental effort. Additional
measurements conducted by PSM Merseburg GmbH in the first cooling and second heating
run confirmed a predictable DOC based on blending ratios. The reproducible DOCs measured
0.4, 0.34, 0.28 and 0.24 from highest to lowest PA6 content. Further, a DSC measurement on
pure COC showed a DOC lower then 1% which confirmed that the addition of the co-polymer
does not change the resulting crystallization behavior in the specimens. An overview of the
DSC results for all four PA6 blends as well as COC can be found in Tab. 2.2. For model identi-
fication and verification, the DSC results from the first heating run are used. These results were
obtained from samples untreated after injection moulding and therefore contain the production
history in terms of, e.g. cooling rate. Since no further (thermal) treatment is applied on the
remaining test specimens, the DOC of the first heating run reflects the experimentally tested
material morphology. In addition, the glass transition temperature was identified from DSC
results. All specimens showed a glass transition temperature at around 58◦C, independent
of the blend ratio, which supports the hypothesis of an unaltered caloric material behavior
through the blending strategy.

2.4.1.3 Monotonic tension tests

For the mechanical tests, a Zwick/Roell Z020 machine with 2000 N and 500 N force sensors
was used, together with a temperature furnace for the test temperatures above room temper-
ature. Preliminary simulations by Kulkarni et al. [2022] identified the relevant magnitude of
experimental inputs such as for example strain and strain rates. Concomitant, the specimens
were subjected to displacement controlled loading at various loading rates between 0.05 and
1 % per second. Each loading procedure was repeated several times for all four blends at
temperatures below and above the glass transition, namely at 23◦ C, 50◦ C, 100◦ C, 130◦ C and
150◦ C.
In Fig. 2.2, the results of the monotonic uniaxial tension tests above the glass transition (Tg)
for an exemplary loading rate of 0.05 % per second are shown for a stretch of approximately
20%. The true (Cauchy) stress over the logarithmic strain in the loading direction is determined
under the assumption of incompressible material behavior, which is reasonable comparing the
experimentally determined Poisson’s ratio (cf. Sec. 2.4.2). The interested reader is referred to
Appendix 2.7.3 for the conversion between engineering (1. Piola-Kirchhoff) and true (Cauchy)
stress. In addition, the true stress relation allowed for the investigation of self-heating effects
at higher loading rates, which generally lead to thermal softening in polymers. This effect
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Figure 2.2: Monotonic uniaxial extension: Experimental true strain and stress curves at ε̇x ≈
0.0005 s−1 for multiple degrees of crystallinity (DOC) and temperatures above the
glass transition regime.

cannot be accurately identified using the engineering (1. Piola-Kirchhoff) stress, since relat-
ing the current force to the reference area results in additional geometric softening at high
strains. As a result, both effects overlap and no clear distinction can be made. Here, the
dashed lines represent the mean values used in the following sections for identification (green)
and validation (blue), whereas the deviation of the experimental results is plotted in terms of
minimum and maximum values. Note here that the number of tests per DOC and temperature
was too small for the calculation of further statistical measures (e.g. standard deviation) with
a useful significance. As expected, a pronounced influence of the temperature and the degree
of crystallinity on the material response is visible, in line with e.g. Richeton et al. [2006];
Shan et al. [2007]; Parodi et al. [2018]; Felder et al. [2020a]. An increase in temperature
led to a decrease in the overall material stiffness, whereas an increase in crystallinity resulted
in a higher initial stiffness, hardening and yield stress. In addition, a gradual roll-over to
yielding is apparent, therefore the yield stress in tension cannot be determined directly from
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Figure 2.3: Monotonic uniaxial extension: Experimental true strain and stress curves at ε̇x ≈
0.0005 s−1 for multiple degrees of crystallinity (DOC) and temperatures below the
glass transition regime.

the peak in the stress-strain curve, nor from the intersection of the initial slope and the hard-
ening slope (e.g. Rae et al. [2007]). Hence, it is chosen as an additional fitting parameter for
the identification of the plastic regime. Note here that a similar observation is made for the
compressive yield stress, see Fig. 2.6. Below the glass transition, the influence of the DOC is
less pronounced, see Fig. 2.3, which can be related to a lower chain mobility in the amorphous
phase (Felder et al. [2020a]). Interestingly, at 23◦ C the blends of PA6 and COC failed earlier
than the samples consisting of pure PA6 with a higher total stiffness. This effect can be related
to the additional phase boundaries introduced by creating blends. Although binding agents
were introduced during compounding to prevent this effect, the apparent heterogeneity of the
blends contradicts the hypothesis of an unaltered material behavior below the glass transition
temperature. To investigate the material behavior of PA6 for a wide range of crystallinities
below the glass transition, other methods as for example the addition of nucleation agents (see
e.g. Mudra and Balázs [1998]; Nagarajan et al. [2000]; Menyhárd and Varga [2006]) to pure
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PA6 or different compatibilizers in the blends could be tested to improve the results. At 50◦

C, the experimental results showed the distinct influence of the crystallinity at large strains
above 5%. Similar to the test results above Tg, the total stress increased with increasing DOC.
However, this trend was not visible in the elastic regime and equally during plastic yielding
(see Fig. 2.3). Here, the results from the two blends with the highest COC content (χ = 0.18

and χ = 0.15) differed severly from the results for χ = 0.29 and χ = 0.24 for all measured
strain rates. Both curves showed a high initial stiffness and a first yield point, followed by
a stress reduction and a second yielding around 10 % strain. This effect is similar to the
double yield (DY) phenomenon, reported for amorphous polymers (Boyce et al. [1988]) and
polyamide 6 in e.g. Luo et al. [2009]; Parodi et al. [2018]; Hao et al. [2022a]. The first yield
point is related to the amorphous phase (Van Dommelen et al. [2003]), whereas the second
yield point corresponds to the crystalline regime Hao et al. [2022a]. At this point, it is unclear
why this effect was only visible for the two lowest DOCs, however, the authors believe that it
could be related to the higher amount of amorphous phase in these specimens. Nevertheless,
micromechanical analysis, as for example the determination of crystal configurations via X-ray
diffraction and DSC (Fornes and Paul [2003]) or aditional density measurements, would be
necessary, to further investigate whether the observed effects are related to the blend compo-
sition. In the elastic regime, the influence of the DOC on the initial stiffness differed from the
observations made for the other test temperatures. Here, especially for χ = 0.29 and χ = 0.24

a softening in the elastic regime is visible, before the onset of yield is reached. To investigate
this phenomenon, an additional dynamic mechanical analysis (DMA) was conducted to deter-
mine the storage modulus (stored elastic energy) over the temperature (see Appendix 2.7.2).
Here, the decrease in material stiffness started already at around 45◦C with a slightly later
beginning with decreasing DOC. The glass transition temperature obtained from DMA lies
around 58◦C as determined in the DSC tests. The authors therefore conclude, that the tests
at 50◦C were conducted in the glass transition regime of the specimens, where changes in the
underlying morphology of the amorphous phase led to a change in the initial stiffness. Here,
the glass transition started earlier for blends with a higher DOC, consequently this effect was
more pronounced for these blends since their stiffness degradation was further along.

The influence of the loading rate on the material behavior of PA6 is depicted in Fig. 2.4
for various temperatures and a DOC of χ = 0.29. Here, four different strain rates in the
range of nearly two decades were tested. In line with findigs from Shan et al. [2007]; Felder
et al. [2020a], the initial elastic material response appeared to be mainly independent of the
strain rate, especially below the glass transition. In the visco-elastic, elasto-plastic regime, an
increasing velocity led to an increase of hardening, especially for temperatures below Tg. In
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Figure 2.4: Monotonic uniaxial extension: Results for χ = 0.29 at various temperatures and
strain rates.

this temperature regime, the failure behavior is affected as well, with a premature failure at
high loading rates, corresponding to the increase in the yield stress (cf. χ = 0.29 and ε̇x =

0.01 s−1 ). Above the glass transition, the influence of the strain rate is less pronounced.
These observations correspond with those of Shan et al. [2007], who stated that the yield
stress increased logarithmically with an increasing loading rate and that the influence of the
velocity reduces in general with increasing temperatures. In addition, thermal softening due
to dissipative effects related to material self-heating is observed at higher strain rates (see
e.g. Maurel-Pantel et al. [2015]). This effect is mainly visible for temperatures below Tg,
where the slope of the stress-strain curve for ε̇x = 0.001 s−1 decreased, compared to the curve
corresponding to a velocity of ε̇x = 0.0005 s−1. The curves intersect already at moderate
strains of approximately 7%. For temperatures above Tg, this intersection is slightly delayed to
strains of around 15%, nontheless, also here self-heating is prominent. To further investigate
this effect, experiments using infrared thermography (IR) would be necessary, as done for
example in Felder et al. [2020a].

2.4.1.4 Relaxation tests

Moreover, longterm relaxation test data was obtained at all test temperatures and various
strains, to provide additional insight into the time dependent material response. To investigate
the visco-elastic regime, relaxation tests at 1% strain were carried out, whereas the visco-
elastic, elasto-plastic regime was tested at around 19% strain. The experimental results are
shown in Fig. 2.5 for exemplary temperatures of 130 ◦C and 150 ◦C. Noteworthy, due to the
extensive relaxation times (cf. Fig. 2.5), it was not possible to repeat this test with the current
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set of specimens. In contrast to e.g. Felder et al. [2020a], the total relaxation time throughout
all samples was very high, with a low initial relaxation time and therefore sudden stress
reduction in the beginning of the relaxation step. Similar to the tension tests, a temperature
depencence was present also in the relaxation tests, where the relaxation time decreased with
increasing temperature (see also Sec. 2.4.3). Furthermore, the amount of stress relaxation in
the beginning of the relaxation step increased notably at higher strains. This influence, as well
as the impact of the degree of crystallinity that is not visible directly from the experimental
results, is studied in detail in Sec. 2.4.3., where a post-processing method by Amin et al.
[2006] is applied to the experimental data.
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Figure 2.5: Longterm stress relaxation: Experimental true stress over time curves for multiple
degrees of crystallinity (DOC) at small strains and 150◦ C and finite strains and
130◦ C.

2.4.1.5 Compression tests

To obtain insights into the deformation under compression, monotonic uniaxial compression
tests were conducted at various temperatures for χ = 0.29 and χ = 0.15. Therefore, additional
samples were cut with a cross-section of approximately 3.77 x 10 mm2 and tested at ε̇x =

0.0005 s−1 with a Zwick/Roell Z020machine under 23◦ C and 130◦ C.Additionalmeasurements
were carried out at PSM for temperatures of 100◦ C and 150◦ C. However, no complete data
set for all DOCs was available at the present point of time. The experimental results are
displayed in Fig. 2.6. Here, a significant stiffening at high strains, typical for materials under
compression, can be observed for all specimens, except for χ = 0.15 at 150◦ C. Similar to
the results in tension, no yield stress was directly detectable from the stress-strain curve for
temperatures above the glass transition. The observed influence of temperature and degree of
crystallinity is in agreement with the tensile results, where an increasing temperature led to a
decrease in stiffness and an increasing DOC resulted in a generally stiffer material response.
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Further tests for the remaining blend ratios and test temperatures are necessary to confirm these
findings in the future.
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Figure 2.6: Compression tests for χ = 0.29 and χ = 0.15 at various temperatures below and
above the glass transition.

2.4.1.6 Thermomechanical analysis (TMA)

To conclude the set of experimental results, additional measurements were conducted to obtain
insights into the thermal properties of the material. A thermomechanical analysis (TMA)
was conducted on a TMA/SDTA841e fromMettler Toledo to obtain the coefficient of thermal
expansion (CTE) αT . The results are shown in Fig. 2.7 a), where the thermal expansion
is plotted against the temperature for all DOCs. The corresponding plot of the evaluated
CTE (gradient of the graph of dimensional change vs. temperature) plotted over the DOC
can be found in Sec. 2.4.5. The CTE generally depends on the glass transition, since thermal
expansion is enforced bymolecularmotions andmobility which are low in the glassy state of the
amorphous phase and higher in the rubbery state above the glass transition. Thiswas also visible
in the experimental results (cf. Fig. 2.7), where the thermal expansion increased significantly
above the glass transition. The dependence of the CTE on the DOC was not pronounced
below the glass transition, whereas above Tg a decrease of αT with increasing DOC was
visible. In semi-crystalline polymers, the crystalline phases are interspersed with amorphous
regions, therefore their thermal expansion behavior is more complex as in purely amorphous
polymers. For example, amorphous regions close or connected to the crystalline phases, the
so-called rigid amorphous phase, show less thermal mobility than the bulk amorphous phase
(e.g. Menczel and Prime [2009]; Saba and Jawaid [2018]). In addition, the amorphous blend
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partner COC adds separate amorphous regions with particular characteristics, therefore the
combatibility of the two materials was important during blend composition.

2.4.1.7 Specific heat capacity

To determine the specific heat capacity and its dependence on temperature and DOC, the DSC
measurements conducted at PSMMerseburg were evaluated further. To that end, the evolution
of the specific heat capacity with increasing temperature is shown in Fig. 2.7 b) for all four
blend ratios. The heat capacity can then be identified as the tangent to the experimental curve,
with the remaining changes corresponding to structural changes associated with melting of
the crystalline phase. There is no clear dependence on the DOC in the experimental results.
However, the specific heat increases linearly with increasing temperature, with a lower total
value below the glass transition (see Fig. 2.7).
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Figure 2.7: a) Thermomechanical analysis (TMA): Thermal expansion over the temperature
for all blends. b) Specific heat capacity from DSC measurements for all blends.
The trend lines are of the form cT (χ) = c1χ+ c2.

2.4.1.8 Thermal conductivity measurement

The thermal conductivity λT was measured using theHot-Discmethod, in which a temperature
sensor is placed between two samples that are subjected to a defined heating protocol. Subse-
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quently, the thermal conductivity was derived from the temperature profile over the time as the
average of several measurements. To that end,Hot-Discmeasurements were taken for multiple
test temperatures and a DOC of χ = 0.29, as well as all DOCs at a temperature of 130◦ C, see
Fig. 2.8. The experiments showed an inconclusive dependence of the thermal conductivity on
the temperature (see Fig. 2.8 a), where the thermal conductivity firstly increased with increas-
ing temperature and then decreased for all temperatures above the glass transition. The thermal
conductivity can be related to the product of thermal diffusivity, density and specific heat ca-
pacity (see eg. dos Santos et al. [2013]). While the heat capacity increases with increasing
temperature (cf. Fig. 2.7), the thermal diffusivity as well as the density decrease simulta-
neously (cf. dos Santos et al. [2005, 2013]). Consequently, the effect of the temperature on
the thermal conductivity can be related to the change in the afforementioned quantities. Here,
further measurements on the density and thermal diffusivity at various temperatures and for
all other DOCs would be necessary to clearly explain the changes in the thermal conductivity.
Since the changes in the thermal conductivity with increasing temperature are only small, the
temperature dependence is neglected in this work. In terms of the crystal content, an increase
with increasing DOC is visible. Consequently, for the identification procedure described in
Sec. 2.4.5, the thermal conductivity is assumed to depend only on the DOC, hence λT (χ).
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Figure 2.8: Thermal conductivity measurements: a) for χ = 0.29 and various temperatures b)
for all blends at 130◦ C. The linear trend line is of the form λT (χ) = c1χ+ c2.

2.4.1.9 Density measurements

Lastly, density measurements were carried out at room temperature, using a gas pycnometer
by the company Anton Paar. The resulting density showed an increase with increasing DOC
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(see Fig. 2.9) which was expected due to the higher density of crystalline phases compared to
amorphous regions.
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Figure 2.9: Density measurements at room temperature. The linear trend line is of the form
ρ(χ) = c1χ+ c2.

2.4.2 Elastic constants

The elastic constants, in terms of the Youngs’ modulus and the Poisson’s ratio, are obtained
from the initial elastic response from uniaxial monotonic tension tests at all respective test
temperatures. Here, the total Young’s Modulus Etot(χ, θ) is determinded for each blend,
according to DIN EN ISO 527-2:2012, and plotted over the DOC in Fig. 2.10. Next, the
dependence of Etot on the DOC is examined, therefore the Trust-Region algorithm in the
software tool MATLAB is exploited. The data shows an exponential relation of the form

Etot(χ, θ) = C1(θ) exp(C2(θ)χ). (2.59)

Here, C1 and C2 are temperature dependent material parameters. Interestingly, the nonlinear
dependence ofEtot on the DOC is more pronounced for temperatures above the glass transition.
As suspected, at 50◦ C no trend is found, due to the differences in the elastic regime between
the samples with different COC content (cf. Fig. 2.3), which is related to testing in the
glass transition region. Therefore, during identification, for the temperature of 50◦ C only two
DOCs will be considered, i.e. χ = 0.29 and χ = 0.24. From the experimentally identified
Etot, the Youngs’ moduli E1 and E2 for the elasto-plastic and visco-elastic part, respectively,
are determined using longterm relaxation data at small strains. With regard to Felder et al.
[2020a], who conducted cylic loading-unloading-recovery experiments at room-temperature
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for polyamide 6 with 23 %DOC, it can be concluded that at 1% strain the material still behaves
visco-elastically and no plastic deformation has occured yet. Hence, the equilibrium stress,
measured at the end of the relaxation step, is assumed to correspond soley to the elastic spring
of the elasto-plastic part of the model (see Fig. 2.1). Concomitant, E1 is determined using Eq.
2.38 and the relations for the Lamé constants3. Interestingly enough, the ratio mE between
the Young’s modulus of the elasto-plastic part E1 and the total Young’s modulus Etot is found
to be crystallinity dependent, with values ranging from 0.5 for χ = 0.15 to approx. 0.72 for
χ = 0.29. This finding corresponds to the blend composition and, for example, the density
measurements, where a lower DOC means a higher content of amorphous phase and therefore
increased viscous behavior. A clear dependence on the temperature is not visible, therefore
this influence is neglected. The ratio mE(χ) is approximated by a linear function and the
Young’s modulus for the elasto-plastic term is determined according to E1 = mE Etot. The
Youngs’ modulus for the visco-elastic part followed from E2 = Etot − E1.
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Figure 2.10: Crystallinity dependence of the total Young’s modulus below and above the glass
transition temperature.

To obtain the Poisson’s ratio, 2D measurements evaluated using digital image correlation
(DIC) are necessary. The corresponding tests were conducted using a Limess Q400 system.
Following Sec. 2.3 and the assumptions made therein, the Poission’s ratio is chosen to be
constant in this work, i.e. νtot(θ) = ν1 = ν2. No trend on the DOC was visible in the
experimental results, therefore the dependence on the crystallinity is neglected. Furthermore,
3The 1. Lamé constant is calculated using the relation λ = (Etotνtot)/((1 + νtot)(1 − 2νtot)) and the shear
modulus as (2. Lamé constant) µ = Etot/(2(1 + νtot)).
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the dependence of the Poission’s ratio on the temperature is observed to be relatively small
above the glass transition, thus a constant value of νtot,Above Tg = 0.45 is concluded, which
is close to incompressible material behavior. For temperatures below Tg, the experimentally
determined Poission’s ratio was lower compared to the results above the glass transition.
However, the experimental data showed a pronounced strain rate dependence that is not yet
clarified. Therefore, the Poission’s ratio below the glass transition is approximated with
νtot,Below Tg = 0.35.

2.4.3 Viscous quantities: Nonlinear relaxation function

To represent the relaxation behavior of semi-crystalline polymers, a single Maxwell element
in combination with a constant relaxation time τ generally is not sufficient (see e.g. Reese
and Govindjee [1997]; Lion [1997a]; Amin et al. [2006]). Therefore, other approaches must
be utilized, as for example combining several Maxwell elements or employing a nonlinear
relation for the relaxation time (e.g. Lion [1997b]; Amin et al. [2006]; Felder et al. [2020a]).
In this work, the latter approach is chosen, since the addition of further Maxwell elements
increases the number of material parameters significantly. With the governed elastic constants,
a post-processing scheme, originally proposed by Amin et al. [2006] for the identification of
the viscosity and adapted for the relaxation time in the three-dimensional case by Felder et al.
[2020a], is applied. Here, longterm relaxation test data at large strains (see Fig. 2.5) is used
for identification purposes, whereas results at small strains and stepwise tests are utilized for
model validation. The relaxation tests at small total strains were explicitly excluded from
identification where possible, since Felder et al. [2020a] concluded that the nonlinearity of the
relaxation time is more pronounced at finite strains. At 23◦ C only experimental data at small
strains was available, due to early failure in three of the four blends.
To this end, a uniaxial tension test is conducted, where the loading direction coincided with the
direction of the principal stretch λx. The specimen is loaded until a maximum total strain of
approximately 19% is reached, followed by a constant displacement (u = constant) during the
relaxation step. At the termination point of the experiment, stress equilibrium was assumed,
where the remaining or equilibrium stress (σ1,x) corresponded to the contribution of the elasto-
plastic part of the model. Note here that a polynomial function is fitted to the results to
reduce the oscillations in the experimental data, related to readjustments of the machine during
testing. In general, experimental noise likely yields non-physical results and results in spikes
when evaluating the relaxation time. During testing, DIC is used to obtain two-dimensional
deformation data in terms of the stretches in the principal directions λx and λy to determine the
deformation gradient F for every experimental time step. In the third direction, the evolution
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of the stretch λz is assumed to be equal to λy, according to Felder et al. [2020a]. Subsequently,
the true (Cauchy) stress σx in loading direction is obtained by relating the machine force to
the current area A = A0 λy λz, which is calculated using the reference area A0, as well as
the corresponding stretches in y- and z-direction. The overstress σ2,x in loading direction
corresponding to the visco-elastic part is then calculated at each experimental time step by
σ2,x(t) = σx(t)− σ1,x and used together with the deformation gradient F as input data for the
post-processing scheme. The associated coefficient matrices read:

F =

 λx 0 0

0 λy 0

0 0 λz

 , σ2(t) =

 σx(t)− σ1,x 0 0

0 0 0

0 0 0

 (2.60)

From the experimental data, the second Piola-Kirchhoff stress during the relaxation step is
obtained by a pull-back operation S2(t) = J F−1σ2(t)F−T . Subsequently, Eq. 2.41 is
solved for the viscous right-Cauchy-Green like tensor Cv at each experimental time step. The
corresponding evolution of the viscous stretch λv,x in loading direction over the time is shown
in Fig. 2.11 exemplary for all DOCs at 100◦ C. Exploiting the exponential map algorithm, Eq.
2.31 is integrated over the time

Cv = exp
(

∆t

(
1

τ µ2

dev (CS2) +
2

9 τ K2

tr (CS2) I

))
Cv,n (2.61)

and further solved for the relaxation time τ . Here, the index (∗)n indicates quantities from
the last converged time step tn, whereas quantities from the current time step tn+1 are given
without index. Since the coefficient matrices from the preceding time step are known and all
tensor valued quantities commute, Eq. 2.61 can be solved in terms of a system of scalar-valued
equations. The resulting relaxation time at each experimental time step is plotted in Fig. 2.11
over the Kirchhoff stress τ2,x for an exemplary temperature of 100◦ C. Similar to Amin et al.
[2006]; Felder et al. [2020a], a nonlinear relation of the relaxation time is observed, despite
the slight noise in the data. However, no clear dependence of the relaxation time on the DOC
is visible in the results of the post-processing procedure (see Fig. 2.11), the same holds for
the other test temperatures. Thus, the relaxation time is concluded to be independent of the
DOC. Furthermore, a significant decrease of the relaxation time with increasing temperature
is observed as well as a nonlinear dependence on the overstress (see Fig. 2.11). These findings
motivate the use of a nonlinear function for the relaxation time, depending on the temperature
and the overstress.

Following the findings from Ricker et al. [2023], who investigated various functions for the
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Figure 2.11: Results of the visco-elastic post-processing procedure: Inelastic stretch over time
and relaxation time over Kirchhoff stress at 100◦ C for all DOCs.

viscosity in the context of viscoelasticity models for rubber and brain tissue, several functions
for the relaxation time are identified with the results from the post-processing method and
compared to experimental data. Here, only functions are tested that showed an improvement
in Ricker et al. [2023] for rubber compared to a constant viscosity and that have a relatively
low number of material parameters (see Tab. 2.3). A constant relaxation time serves as the
benchmark. Functions 2-4 depend purely on the stress in terms of the Kirchhoff overstress
τ2, whereas in function 5 an additional dependence on the total deformation in terms of the
left Cauchy-Green tensor B = FF T is introduced. From function 6 onwards, a dependence
on the inelastic deformation is assumed. Here, it is made use of the equivalence of the norm
||Bv|| = ||Cv|| and ||B−1

v || = ||C−1
v || as well as the trace I1,v = tr(Bv) = tr(Cv). Unlike

all other functions, function 6 contains a dependence on the visco-elastic Mandel stressM2

which can be related to the viscous Kirchhoff stress asM2 = F T
e2τ2F

−T
e2 . Therefore,M2 and

τ2 share the same eigenvalues and ||M2|| = ||τ2|| holds. Additionally, a modified version of
the function from Lion [1997a] is proposed in function 7, depending on the Kirchhoff stress
τ2 and the inelastic deformationB−1

v . An overview of the functions adapted for the relaxation
time is given in Tab. 2.3. For a detailed description and investigation of further functions for
the viscosity, the reader is kindly referred to Ricker et al. [2023] or the literature cited therein.

To identify the function best suited to describe the present behavior of the relaxation time,
the Trust-Region algorithm is exploited inMATLAB. A least squares problem is solved, where
the residual is defined as the sum of the squared differences between the experimentally
post-processed relaxation time τ (see Fig. 2.11) and the corresponding function value (see
Tab. 2.3). In accordance with Ricker et al. [2023], the range of feasible material parameter
values for the identification procedure is chosen such that the second law of thermodynamics
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No. Name & source for corresponding
viscosity function Relaxation time function [s] Para.

1 Const. relaxation time τ0 1

2 Power law Norton [1929] τ0 ||τ2||−δ 2

3 Exponential law, Schmid and Boas [2013] τ0 exp(−δ ||τ2||) 2

4 Hyperbolic sine power law, Garofalo [1963] τ0 (sinh(δ ||τ2||))−γ, γ > 0 3

5 Amin and Lion, Amin et al. [2006] τ0
||B||γ
||M2||δ

3

6 Lion, Lion [1997a] τ0 exp
(
−δ ||M2||
||B−1

v ||3
)

2

7 Modified Lion τ0 ||Bv||γ exp(−δ ||τ2||) 3

8 Bergström & Boyce Bergström and Boyce [1998] τ0 ||τ2||−δ
(√

I1,v

3
− 1 + ϕ

)γ
,

ϕ = 0.01 (const.)
3

Table 2.3: Overview of investigated functions for the relaxation time, based on Ricker et al.
[2023] (Para. stands for number of material parameters).

is satisfied (τ > 0). The fitting results for all functions are shown in Fig. 2.12 together
with the corresponding fitted material parameters. Note here that each function was identified
simultaneously for all DOCs. Function 1 with a constant relaxation time clearly yielded an
insufficient approximation of the nonlinear behavior of the relaxation time. Thus, it served
as the reference solution for the comparison. In contrast, all other tested functions showed a
significant improvement. The power law-type functions 2, 5 and 8 are, however, inferior to the
exponential approaches as well as to the hyperbolic sine power law (function 4), which behaves
like a power law for small stresses and as an exponential law for large stresses. Interestingly, the
identified parameters for the relaxation time τ0 in function 3, 4 and 6 (cf. Fig. 2.12), reflected
the extrapolated value for the relaxation time at the termination point of the relaxation step,
where the overstress is zero. Hence, this value could be determined during post-processing,
reducing the number of material parameters during identification. The errors for function 3, 4
and 6 are almost identical (cf. Fig. 2.12), therefore these approaches can be seen as equally
suited to model the nonlinear relaxation time. In combination with the findings about the
initial relaxation time τ0 and considering the number of material parameters, function 3 and 6
are best suited. However, function 7 shows an even lower error, compared to function 3 and
6. Here, the influence of the inelastic deformation is considered, depending on the exponent
γ, whereas function 6 assumed a constant ratio between overstress and viscous deformation.

For a temperature of 23◦ C, longterm relaxation data was only available at a total strain of
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No. τ0 [s] δ γ
1 6866.265 - -
2 6315.281 0.7069 -
3 14168.876 0.7741 -
4 14168.876 18.6377 0.0415
5 874.003 0.7069 3.2029
6 14509.6144 4.4946 -
7 1035.2382 0.75906 4.30
8 148999.982 0.6817 0.8754

Figure 2.12: a) Identification results for the nonlinear relaxation time functions from Tab. 2.3
at 100◦ C normalized to a constant relaxation time. b) Corresponding material
parameters.

0.5 %. Applying the post-processing scheme to the experimental data, a rather linear relation
for the relaxation is visible (see Fig. 2.13), similar to the results of Felder et al. [2020a]. When
comparing different nonlinear functions for the relaxation time, this resulted in a comparatively
weaker improvement, compared to the constant relaxation time (see Fig. 2.13). Here, the use of
multiple Maxwell elements with different relaxation time functions could improve the results.
However, this investigation is beyond the scope of this paper. Function 8 performed worse
than the benchmark test and is therefore excluded from the plot. In the case of small strains,
function 7 yielded similar improvement, compared to function functions 3, 4 and 6. Finally,
function 7 is identified for all remaining tests temperatures and further implemented in a
ABAQUS user material subroutine UMAT. The comparison of the identification results at the
other test temperatures is given in Appendix 2.7.5 and the corresponding material parameters
for function 7 in Tab. 2.5.

2.4.4 Plastic material parameters

In the final identification step for the mechanical parameters of the isothermal model, the re-
maining parameters related to plastic deformations are characterized. These are the parameters
c(χ, θ) and b(χ, θ) that describe the nonlinear kinematic hardening behavior. Due to the incon-
clusive data for the yield stresses in tension and compression above the glass transition, also
the parameters σt(χ, θ) and σc(χ, θ) are still undetermined. Therefore, a nonlinear multi curve
fitting procedure in MATLAB is used together with monotonic tensile data to identify these
four parameters for all DOCs at each test temperature. A least-squares problem is formulated,
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Figure 2.13: Results of the visco-elastic post-processing procedure: a) Relaxation time over
Kirchhoff stress at 23◦ C for all DOCs. b) Fitting results for the nonlinear
relaxation time functions from Tab. 2.3.

where the error is defined as the squared difference between the experimental true stress in
loading direction and the Cauchy stress obtained from a single element test. Thus, in each iter-
ation of the optimization, ABAQUS and the corresponding UMAT are called with the current
set of plastic parameters. The boundary value problem for the single element test is displayed
in Fig. 2.25 in the Appendix. For the discretization in ABAQUS, a single C3D8T element is
used together with isothermal boundary conditions. Concerning the optimization, the genetic
algorithm is used in series with the Downhill-Simplex algorithm. This procedure is favorable,
since the parameter range, apart from the yield stresses, is kept relatively large and for the
Downhill-Simplex algorithm alone no restrictions can be applied to the parameter domain.
Consequently, also negative, non-physical values are possible. Furthermore, convergence is
unlikely if the initial parameters are too far away from their final values. The genetic algorithm
therefore narrows down the range of possible solutions and its best fitted parameter set serves
as the starting values for the Downhill-Simplex algorithm. In contrast to the gradient based
Levenberg-Marquardt algorithm or the closely related Trust-Region algorithm, the genetic
algorithm as well as the geometrical Downhill-Simplex algorithm are gradient free and due to
their construction not restricted in the direction of the iteration. Thus, in comparison they are
more robust when used in combination with numerical simulations.

Similar to [Johlitz et al., 2010], who investigated the thermo-viscoelasticmaterial behavior of
polyurethane and introduced temperature dependent shift functions to relate the identified value
at room temperature to higher temperatures, in this work a function for each material parameter
depending on the DOC is identified. In this way, a parameter set for each test temperature is
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found. Therefore, in a first step single fits at each constant temperature and for each DOC need
to be conducted using the aforementioned nonlinear optimization procedure. Besides the yield
stresses, for which the parameter range can be restrained by identifying the intersection of the
initial slope of the stress-strain curve with the inconclusive hardening slopes, the parameter
range for the hardening parameters is kept large for the identification. The resulting plastic
parameters for each blend are subsequently plotted against the degree of crystallinity (see
Fig. 2.14). Now, the dependence of each parameter on the DOC can be determined as a
post-processing step, by exploiting the Trust-Region algorithm in MATLAB. As done in all
previous identification steps, the blend with χ = 0.18 is not considered for identification and
serves for validation purposes. Here, a linear ansatz is chosen and the identified relation is
visualized exemplary for a temperature of 100◦ C in Fig. 2.14. For the identification, only
experimental curves from three degrees of crystallinity (χ = 0.15, 0.24, 0.29) are taken into
account. Notably, the identified parameters for χ = 0.18 are overall in good agreement with
the parameters of the other DOCs. Only for the kinematic hardening parameter c a higher
deviation is visible which is also apparent in the result for χ = 0.15. The results for the other
temperatures above the glass transition can be found in Appendix 2.7.6. For the temperatures
below Tg, the fitting results are not visualized, since at 23◦ C three of the four blends failed
before significant plastification, therefore the parameters, apart from the onset of yielding, are
identified with a single fit for χ = 0.29. At 50◦ C the blends with χ = 0.18 and χ = 0.15 were
excluded from identification, since inconclusive material behavior occured, related to testing
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in the glass transition regime. Thus, only two blends remain for the characterization, therefore
the fitted linear trend line agrees perfectly with the results, leaving no possibility for validation.
The identified parameters for the linear functions for all plastic parameters are listed in Tab.
2.5.

2.4.5 Thermal quantities

To obtain an expression for the coefficient of thermal expansion, it is calculated by αT =

∆L/∆T from the thermal expansion curve in Fig. 2.7 for every blend at each test temperature.
Here, ∆L is the thermal expansion, L is the initial length of the specimen and ∆T the
temperature difference. Next, the Trust-Region algorithm is exploited in the commercial
software tool MATLAB to describe αT as a function of the degree of crystallinity for each test
temperature separately. Again, χ = 0.18 is only used for validation purposes. The results are
shown in Fig. 2.15, where it can be seen that the characterized curves are in good agreement
with the experimental results. However, it is not clear as to why the behavior at 100◦ C differs
so much from the remaining temperatures above Tg. A possible explanation could be changes
in the ratio of the amorphous to the crystalline phase, related to post-crystallization.

α
T
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]
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θ = 23◦ C
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θ = 130◦ C

θ = 150◦ C

x10−6
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Figure 2.15: Coefficient of thermal expansion at different temperatures and DOCs. The linear
trend line is of the form αT (χ) = c1χ+ c2.

Concerning the specific heat capacity cT , the results of the identification procedure were
already shown in Fig. 2.7. The corresponding material parameters are summarized in Tab.
2.4. Note here that no clear dependence on the DOC is present. For the thermal conductivity,
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a multifit using the Trust-Region algorithm in MATLAB is conducted, corresponding to Sec.
2.4.4. The results of the fitting procedure are visualized in Fig. 2.8. An overview of the
thermal parameters including the density is given in Tab. 2.4.

2.4.6 Identification results

The results of the identification procedure can be seen in Fig. 2.16 for all temperatures
above the glass transition and in Fig. 2.17 for the temperatures below Tg. Good agreement
of the identification results with the experimental data can be observed, which is especially
remarkable keeping in mind the extensive range of DOCs to be described by the model. The
model prediction for χ = 0.18 also captures the experimental results well, especially the elastic
regime and the onset of yielding. However, at large strains the deviation between model and
experiment is notable. This can be traced back to the deviation between the function for each
plastic parameter compared to the plastic parameters obtained in a single fit for χ = 0.18 (cf.
Fig. 2.14 and 2.27). For instance, at a temperature of 100◦ C, the initial elastic response as well
as the yield stress are accurately captured. However, the prediction of the hardening slope is
inaccurate, since the hardening parameter c is not in good agreement with the single fit results
(cf. Fig. 2.14). Similar observations can be made for the other temperatures above Tg, though
here, additionally the onset of yielding differs from the identified relation through the multifit.

Below Tg, the results for a temperature of 23◦ C in Fig. 2.17 are in good agreement
with the experimental data. Here, the elastic regime as well as the onset of yielding are
accurately captured. Regarding the hardening slope, only results for one blend were available
for identification, therefore, naturally, the hardening behavior is well represented. For a
temperature of 50◦ C, the model response already differs from the experimental results in the
elastic regime, though the hardening behavior is well captured. This difference results from
a material softening visible in the experimental data (see Sec. 2.4.1) and the DMA results
in Appendix 2.7.2, where the slope of the experimental curve flattens compared to the initial
material stiffness before the onset of plastic yielding is reached at around 2.5 % strain. The
authors believe, that this behavior is related to testing in the glass transition regime. Since the
gradual transition of the underlying morphology of the amorphous phase and its associated
effect are however not incorporated in the model formulation the difference is expected.
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Figure 2.16: Monotonic, uniaxial extension: Identification results for multiple degrees of crys-
tallinity (DOC) and temperatures above the glass transition regime.

Table 2.4: Set of thermal material parameters at different temperatures.

Function Parameter at: 23◦ C 50◦ C 100◦ C 130◦ C 150◦ C
αT (χ) = c9(θ)χ+ c10(θ) c9[10−4/K] -0.2601 -0.3586 -5.857 -3.336 -2.238

c10[10−4/K] 0.8756 1.218 3.122 2.565 2.431
cT (χ) = c11(θ) θ + c12(θ) c11[J/gK2] 0.00471 0.00401 0.00401 0.00401 0.00401

c12 [J/gK] 1.25313 1.52299 1.52299 1.52299 1.52299
λT (χ) = c13χ+ c14 c13[W/mK] 0.4338 0.4338 0.4338 0.4338 0.4338

c14[W/mK] 0.1855 0.1855 0.1855 0.1855 0.1855
ρ0(χ) = c15χ+ c16 c15 [g/mm3] 0.4878 0.4878 0.4878 0.4878 0.4878

c16 [g/mm3] 0.9897 0.9897 0.9897 0.9897 0.9897
Remark: The reader is kindly reminded, that although some coefficients of the identified
functions determining the material parameters, are negative, the material parameters themselves
are always positive for the range of DOCs (χ = 0.15− 0.29) the model spans.
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Figure 2.17: Monotonic uniaxial extension: Identification results for multiple degrees of crys-
tallinity (DOC) and temperatures below the glass transition regime.

2.4.7 Model validation

In order to validate the proposed constitutive framework, further results are compared to the test
data. Therefore, only experimental data that has not been used for identification is compared to
the corresponding model response. The boundary value problem, in terms of a single element
test, is given in Fig. 2.25 in the Appendix. In a first step, the model prediction for the long-term
relaxation behavior corresponding to Fig. 2.5 is shown for χ = 0.18 and all temperatures above
the glass transition. It should be emphasized that the relaxation function was identified with
experimental results for the other three blends only. Therefore, the specimens were loaded
with ε̇x = 0.01 s−1 to a strain level of approximately εx = 0.19 and subsequently relaxed for
32000 s. The corresponding model response for χ = 0.18 is given in Fig. 2.18. Overall the
model prediction is in good agreement with the experimental data, especially at 100◦ C.

To validate the small strain regime, a stepwise loading-unloading test is carried out for a
DOC of 29% at 130◦ C. Here, the specimen undergoes a stepwise deformation of εx = 0.01,
until a maximum strain of εmax,x is reached (see Fig. 2.19). Subsequently, the specimen is
unloaded at the same pace up into the compression regime. The corresponding loading rate
was ε̇x = 0.0001 s−1 and the specimen was held at constant strain for 15000 s in each step.
In comparison to the experimental results, the model prediction underestimated the material
behavior, especially at larger strains. However the shape of the model curve corresponds well
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Table 2.5: Set of mechanical material parameters at different temperatures.

Function Parameter at: 23◦ C 50◦ C 100◦ C 130◦ C 150◦ C
Etot(χ) = C1(θ) exp(C2(θ)χ) C1 [MPa] 2397 2270* 143.1 96.875 102.1
E2 = Etot − E1 C2 [-] 0.9106 -0.8716* 5.133 5.565 5.373
E1 = mE(χ)Etot mE [-]
mE = 107.143χ+ 38.935
νtot(θ) = ν1 = ν2 [-] 0.35 0.45 0.45 0.45 0.45
σ0
c = c1(θ)χ+ c2(θ) c1 [MPa] 72.19 138.8 26.95 20.86 13.19

c2 [MPa] 41.96 -21.913 -3.192 -2.969 -1.436
σ0
t = c3(θ)χ+ c4(θ) c3 [MPa] 72.19 131.24 25.38 20.27 12.93

c4 [MPa] 41.96 -20.984 -3.006 -2.884 -1.407
c = c5(θ)χ+ c6(θ) c5 [MPa] c = 17.756** 20.86 834.5 597.3 523.8

c6 [MPa] 92.213 -94.56 -69.42 -67.89
b = c7(θ)χ+ c8(θ) c7 [-] b = 1.276** 0 355.4 150.2 196.3

c8 [-] 60.438 -53.15 -22.39 -28.3
τ = τ0(θ) ||Bv||γ(θ) exp(−δ(θ) ||τ2||) τ0 [s] 1853.653 1511.952 1035.238 737.245 573.899

γ [-] 4.57 4.416 4.3 4.872 4.289
δ [-] 0.539 0.814 0.759 0.866 0.873

* inconsistent results due to testing in the glass transition regime
** constant values obtained for χ = 0.29 only, due to early failure of the remaining blends
Remark: The reader is kindly reminded, that although some coefficients of the identified functions
determining the material parameters, are negative, the material parameters themselves are always positive
for the range of DOCs (χ = 0.15− 0.29) the model spans.

to the experimental data. The authors believe that this behavior results from the identification
and characterization process to finite strain data only. As previously seen for small strain test
data at 23◦ (cf. Fig. 2.13), the nonlinear function for the relaxation time does not fit the
linear relation between relaxation time and stress. As suggested in Ricker et al. [2023], the use
of a second Maxwell element, identified with the relaxation behavior at small strains, could
lead to an improvement. Moreover, it should be noted that the corresponding strain rate of
ε̇x = 0.0001 s−1 has not been used for identification of either tensile, compressive or relaxation
data and differs by two decades from the strain rate used for identification of the relaxation
function (ε̇x = 0.01 s−1).

Besides stepwise tests at small strains, also stepwise tests at large strains were conducted for
ε̇x = 0.0001 s−1 (see Fig. 2.20). Therefore, the specimens were exposed to a maximum strain
of εmax,x = 0.16, distributed over four load steps of 4 % strain each. The holding period was
15000 s per step. Again, the model predictions are less accurate, while the shape of the curves
is in good agreement. Nevertheless, the predictions are good, keeping in mind that the strain
rate is two decades lower than the one used for identification. Compared to the small strain
case in Fig. 2.19 for the same strain rate, the experimental results for the large strain case are
in better agreement with the test data. This supports the findings made in Sec. 2.4.3 that the
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Figure 2.18: Long-term stress-relaxation at finite strains for temperatures above Tg. Experi-
mental stress over time data and corresponding model predictions (χ = 0.18).

chosen function for the relaxation time works best for finite strains. As mentioned earlier, the
addition of further Maxwell elements could improve the model results.
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Figure 2.19: Stepwise long-term stress-relaxation at small strains for χ = 0.29 at 130◦ C. Ex-
perimental strain and stress over time data and corresponding model predictions.

The validation for the tensile tests is already given in Fig. 2.16 and 2.17 for χ = 0.18.
Overall, as discussed in Sec. 2.4.6, the prediction is in good agreement with the experimental
results. Especially the elastic regime and the onset of yielding are accurately captured, only
the hardening behavior is underestimated. Unfortunately, it was not possible to validate the
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compression regime, since all available test data was used for identification. In the future,
further compression tests on the remaining blends and temperatures are planned to close this
gap.

σ
x
[M

Pa
]

t [s] t [s]
Legend:

θ = 130◦C

ε̇x ≈ 0.0001 s−1

ε x
[%

]

χ = 0.29

χ = 0.24

χ = 0.15

Model prediction
Experimental average

Figure 2.20: Stepwise long-term stress-relaxation at large strains for multiple DOCs at 130◦ C.
Experimental strain and stress over time data and corresponding model predic-
tions.

2.5 Numerical example

To demonstrate the capabilities of the developed and validated constitutive framework in
capturing the material response in multi-axial stress-states, a structural example at ambient
(θ = 23◦ C) and elevated (θ = 100◦ C) temperature is conducted. To this end, type 1BA (ISO
527-2:2012) specimens were modified by drilling a circular hole with approximately 1mm
diameter into the center of the measurement area (cf. Fig. 2.21). Here, various DOCs were
tested to validate the model response. At room temperature, only the highest DOC (χ = 0.29)
was tested, since the other DOCs suffered from early failure (cf. Fig. 2.3). For a temperature
of 100◦ C, three DOCs were tested, χ = 0.29 and χ = 0.24 which served for identification
purposes and χ = 0.18 that is used for prediction only. The loading rate was controlled by the
cross head speed of the Zwick/Roell Z020 machine and prescribed to ε̇x ≈ 0.0005 s−1. During
testing, the heterogeneous strain field around the hole was measured using the Q-4xx Istra 4D
digital image correlation (DIC) system. The corresponding measurment area is highlighted in
light blue in Fig. 2.21. Each experiment was repeated only two to three times due to good
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reproducibility and only small scatter in the recorded force over time data (cf. Fig. 2.21).
To reduce computation time, the symmetry of the specimen is exploited. Consequently,
only one eigth of the specimen is modeled. The corresponding specimen dimensions were
approximated from ISO 527-2:2012. Similar to Felder et al. [2020a], at the boundary of the
measurement area, the evolution of the cross section was calculated from the initial cross
section A0 = 5 · 2mm2 and the measured mean stretch in y-direction by A(t) = λy(t)

2A0.
Note here, that the assumption λy(t) ≈ λz(t) is made in line with the findings from Felder
et al. [2020a]. In this way, the evolution of the true stress in longitudinal direction could be
computed from the recorded force data and the deformed cross section as σx(t) = F (t)/A(t).
In the following, the respective true stress over time relation served as a traction boundary
condition for the finite element model. In Fig. 2.21, the geometry for the FEM simulation is
presented, where reduced eight-node solid elements (C3D8RT) from the ABAQUS/Standard
element library are used for discretization. Note here, that for visualization purposes a coarse
mesh is shown. Prior to obtaining the simulation results, a mesh convergence study was
conducted and a finer mesh distribution was chosen. The corresponding material parameters
for each DOC are taken from Tab. 2.5 and 2.4.

Fig. 2.22 and 2.23 show the comparison of the true strain contours in longitudinal (x) and
transverse (y) direction, obtained from both, the finite element simulation and the DIC images.
For χ = 0.29 at room temperature two time steps A (t = 25 s) and B (t = 50 s), highlighted
in Fig. 2.21 are presented. At 100◦ C, the results are shown at t = 75 s (point C) and t = 150

s (point D) for all three DOCs and at t = 225 s (point E) for χ = 0.24 only.
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Figure 2.21: Top: Geometry and boundary value problem of type 1BA (ISO 527-2:2012) with
circular hole, including DIC measurement area. Bottom: Recorded force data for
various DOCs at room (θ = 23◦C) and elevated (θ = 100◦C) temperature. Note:
The orange area indicates where the evaluation of the DIC measurement was not
possible or only possible with the exclusion of larger areas around the hole, due
to large deformations and flaked off DIC pattern.
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Figure 2.22: True strain contours in longitudinal and transverse direction: Comparison between
experiment and model response for different temperatures and DOCs. Note here
that the red and blue coloured values correspond to the simulation extrema in the
area close to the hole.
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Since the area close to the hole cannot be evaluated in the DIC data due to the chosen facet
size and since therefore no strains are available, this area is excluded from the comparison with
a light-gray patch. The size of the light-gray patch was chosen such that any area of the DIC
where no strain data was available at that experimental time step was covered. Consequently,
the patch size increased with increasing time (cf. Fig. 2.22 and 2.23). For the contour plots
of the simulation, the chosen patch was mirrored at the x-axis and the legend of the DIC
results was adopted for plotting. In the region close to the hole, however, the extreme values of
the simulations occur. Thus, the extrema are included in red and blue colour next to the legends.

Figure 2.23: True strain contours in longitudinal and transverse direction: Comparison between
experiment and model response for different temperatures and DOCs. Note here
that the red and blue coloured values correspond to the simulation extrema in the
area close to the hole.

The predicted strain fields in longitudinal and transverse direction are in vergy good agree-
ment with the experimental results. Considering the formation of a multi-axial strain field close
to the hole, the prediction is especially impressive, since the constitutive model was identified
with uniaxial test data only. In addition, for model identification no DIC data apart from the
Poisson’s ratio was available and the true stress-strain data was obtained via the assumption of
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incompressibility. In terms of the results for χ = 0.18 (cf. Fig. 2.22) which is used purely for
model validation, no big differences compared to the other DOCs can be observed, confirming
the validity of themodel for polyamide 6. Forχ = 0.24 at 100◦ C, a third time stepE at t = 225

is evaluated. Here, the deformation of the specimen in the region close to the hole was already
very large, therefore a bigger area needed to be grayed out. To provide a better understanding,
the resulting deformation of the specimen after testing is visualized in a photograph in Fig.
2.23. In addition, for this time step the temperature field is given as well, indicating a slight
increase in temperature for the whole specimen originating from the area close to the hole,
where large strains in longitudinal direction are present. Infrared thermography measurements
during mechanical testing would be needed to validate this result in the future, which is caused
by dissipative heating.

2.6 Conclusion and outlook

In this work, a thermo-mechanically coupled constitutive framework was presented to predict
the material behavior of semi-crystalline polymers at finite strains. To this end, a visco-elastic
and an elasto-plastic contribution were combined to capture the complex nonlinear material be-
havior. Hereby, the derivation of the model equations was carried out in a thermodynamically
consistent manner. To account for the Bauschinger effect, nonlinear kinematic hardening of
Armstrong-Frederick type was incorporated together with a tension-compression asymmetry
in yielding. The corresponding yield surface incorporates a hydrostatic pressure sensitivity,
typically observed in polymers. Besides the strain-rate dependency, the temperature was con-
sidered as an influencing factor, therefore the temperature-field was fully coupled with the
mechanical part of the model to account for self-heating effects. Moreover, the degree of crys-
tallinity served as a constant input parameter to predict the effect of the underlying material
morphology on the material behavior, as well as the interplay between the biphasic microstruc-
ture and applied thermal conditions. The implementation in the commercial FEM software
ABAQUS/Standard, together with the use of the algorithmic differentiation tool ACEGEN,
provided a flexible framework for current and future model adjustments.
To identify and validate the constitutive framework, an extensive experimental study was con-
ducted, including a wide range of temperatures, finite strains as well as strain rates over two
decades. Here, a novel blending technique was used during specimen production to achieve
a wide range of degress of crystallinitys that were stable regarding time and temperature. In
total, a range of approximately 15 %DOC, ranging from χ = 0.15 to χ = 0.29, was realized in
the specimens. However, the addition of a co-polymer also had negative effects on the material
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response. Monotonic tensile tests, revealed that the material strength below the glass transition
regime is drastically reduced due to the increasing number of phase boundaries. Above Tg
no such effects were visible. In order to investigate the complex visco-elastic, elasto-plastic
material behavior, different loading procedures (i.e. monotonic tension, monotonic compres-
sion and relaxation tests) were conducted. The set of experimental data was completed by
thermal experiments (i.e. TMA, DSC, Hot-Disc measurements, density measurements). The
conducted experimental study provided important insights into the complex dependencies of
temperature, strain rate and DOC and closed several gaps left in earlier works. Nonetheless,
also further questions arose, especially related to the field of blend production. Here, further
additives should be tested in the future. Especially the comparison of blends produced with
a co-polymer or with crystallizations agents could be of interest when it comes to producing
specimens with a wide range of DOCs. In addition, the influence of adding different com-
patibilizers on the material response below the glass transition regime should be examined
carefully.
Based on the experimental data base, a successive identification procedure for the proposed
framework was presented to obtain a set of material parameters for each test temperature. At
the same time, various functions for a nonlinear relaxation time were compared to a benchmark
test to identify the best suited relation. Lastly, against the odds, the evaluation of the crys-
tallinity dependence of the thermal quantities revealed that the influence was less pronounced
as in the mechanical tests, apart from the thermal expansion coefficient.
Subsequently, validation studies were performed that showed good agreement with the exper-
imental data in the case of monotonic tension. The prediction for the relaxation tests was,
however, less accurate for strain rates that were not used during identification. Probably, this
can be accounted to the range of two decades that were considered during experimental test-
ing. Overall, the constitutive framework was able to predict the material behavior of PA6, as
demonstrated in the structural examples, where experimental data for various DOCs and tem-
peratures was considered. Here, the temperature field was visualized as well, demonstrating a
slight increase in the overall specimen temperature due to dissipation.

In the future, forming experiments are planned, where large variations in temperature
during the heating, consolidation and cooling steps will demonstrate the need for the thermo-
mechanical coupling in a more elaborate way. Furthermore, the experimental data set will be
completed with additional compression tests for the remaining blends and cyclic tension and
compression tests to analyze the hysteresis loop. Further, experiments onmore complex loading
scenarios, as for example pure shear, are planned to validate the choice of the yield surface
with respect to experimental findings. Finally, crystallization kinetics will be incorporated
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into the constitutive framework to study the effect of strain induced crystallization as well as
cold-crystallization for further use in thermoforming simulations.

2.7 Appendix

2.7.1 Consistent tangent operators

In this section, the computation of the consistent tangent operators required by ABAQUS
(cf. Sec. 2.3.8) is discussed in more detail. Since all model quantities are computed in the
reference configuration (cf. Sec. 2.3.6), push forward operations are needed before use in
ABAQUS. Without further derivation, the linearization of the weak forms of the balance of
linear momentum as well as the energy balance are given as

∆S = KE

[
1

2
∆C

]
+Kθ∆θ (2.62)

∆r = LE :
1

2
∆C + Lθ∆θ. (2.63)

The Jaumann rate of the Kirchhoff stress tensor from Eq. 2.54 can be reformulated to

τ −Wτ − τW T = τ̊ +Dτ + τD = CτD[D], (2.64)

using the Lie derivative (̊∗) of the Kirchhoff stress (cf. Stein and Sagar [2008])

τ̊ = F

(
d

dt
(F−1τF−T )

)
︸ ︷︷ ︸

Ṡ

F T = ∆τ̇ −Lτ − τLT . (2.65)

With the definition of the stress rate of the second Piola-Kirchhoff tensor Ṡ = 1/2KE[Ċ]

and the rate of deformation Ċ = 2F TDF , the material tangent modulus CτD can now be
calculated. The push forward operations for the remaining three material sensitivies are
defined in the following

Cσ
θ =

1

J
F Kθ F

T (2.66)

Cr
D =

2

J
F LE F

T (2.67)

Cr
θ =

1

J
Lθ. (2.68)
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Here, the algorithmic tangents corresponding to the stress increment ∆S and the derivatives
related to the increment of the internal heat generation ∆r are expressed as
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To indicate which variables are held constant for the respective partial derivative, the set
Γ = {C,U−1

p ,U−1
v , θ} was introduced for the stress. Likewise, for the internal heat gener-

ation the set Υ = {C,U−1
p ,U−1

pi , λp,U
−1
v , θ} was introduced for brevity and a more clear

representation. As dicussed in detail in Sec. 2.3.8, the automatic differention tool AceGen is
used to obtain the partial derivatives for the algorithmic tangents. Here, firstly the functions for
the stress and the internal heat generation are implemented and C,U−1

p ,U−1
pi , λp,U

−1
v and θ,

as well as all internal variables from the last converged time step, serve as input quanti-
ties. Consequently, the derivatives of S and r can be obtained rather easily after reaching
local convergence. In the next step, the remaining derivatives of the two solution vec-
tors x1,loc = (Û−1

p , Û−1
pi , λp)

T and x2,loc = (Û−1
v )T with respect to the global unknowns

xglo = (C, θ)T are derived. For the elasto-plastic part, an additional linearization of the
converged local residual vector r1,loc = (r1,p, r1,pi, r1,σ)T is performed and implemented in
AceGen.
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Using the relation above, the incremental change of the local elasto-plastic variables x1,loc

with respect to an incremental change of the global variables x1,glo can be expressed by
J = −J−1

1 J2. From this expression, the remaining derivatives for the elasto-plastic part can
be exracted. The derivatives for the visco-elastic part are obtained in the same manner and
therefore not further discussed.

2.7.2 Dynamical Mechanical Analysis (DMA)

The DMA tests were conducted on a TA instruments AR-G2 rheometer.
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Figure 2.24: Dynamical mechanical analysis - Storage modulus for various DOCs.

2.7.3 Conversion between engineering and true stress

The engineering or nominal stress in terms of the 1. Piola-Kirchoff stress (P ) is converted to
the true (Cauchy) stress (σ) under the assumption of perfect incompressibility

J = det(F ) = 1. (2.74)
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Using Eq. 2.74, the deformation gradient for uniaxial monotonic tension or compression can
be obtained by means of the experimentally measured stretch in loading (x-) direction

F = Fexp =

 λx 0 0

0 1/
√
λx 0

0 0 1/
√
λx

 . (2.75)

Now, the true (Cauchy) stress is calculated by a pushforward of the 1. Piola-Kirchhoff to the
current configuration

σ = J−1P F T . (2.76)

Here, P is the engineering or nominal stress,

P = Pexp =

 F/A0 0 0

0 0 0

0 0 0

 , (2.77)

which, in the case of uniaxial tension or compression, is the current experimentally measured
force (F ) in loading (x-) direction over the reference cross section (A0).

2.7.4 Single element boundary value problem
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ux

Figure 2.25: Single element test - Boundary value problem for a uniaxial monotonic ten-
sion/compression test.
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2.7.5 Results at remaining temperatures for the comparison of
different nonlinear functions for the relaxation time
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Figure 2.26: Fitting results for different nonlinear functions for the relaxation time: a) and b)
above the glass-transition regime c) at 50◦ C. Note here that due to the reduced
set of experimental data (only χ = 0.29 and χ = 0.24 were considered at this
temperature), a comparatively better fit is achieved.
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2.7.6 Results at remaining temperatures for the parameter
identification from single curve fits
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Figure 2.27: Results for the parameter identification from single curve fits for temperatures
above Tg. The linear trend line is of the form (•) = c1 χ + c2, with (•) =
σt, σc, c, b. Note here that the fit for parameter b is weighted for both temperatures
to avoid a function that leads to negative results for χ = 0.15.
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3.1 Abstract

Achieving process stability in the thermoforming of fiber reinforced polymer materials (FRPs)
for aerospace or automotive manufacturing is usually associated with a costly trial-and-error
process, where experimental boundary conditions and other influencing factors, such as, for
example, material composition, need to be adjusted over time. This is especially true when
material phenomena on themicrolevel, such as the crystallization kinetics of the polymermatrix
or resulting stresses from temperature gradients, are the cause of the process instability. To
reduce the experimental effort and reliably predict thematerial behavior during thermoforming,
finite element simulation tools on multiple scales are a useful solution. Hereby, incorporating
micromechanical phenomena into the model approaches is crucial for an accurate prediction by
further reducing the deviation between simulation and experiment, in particular with regard to
the underlying nonlinearmaterial behavior. In this work, unit cell simulations on themicroscale
of a unidirectional glass fiber reinforced polymer (UDGFRP) are conducted to predict effective
thermomechanical properties of a single material ply and ascertain the effect of individual ply
constituents on the homogenized material behavior. The polymeric matrix material model
used was identified in a prior publication with experimental data at various temperatures for
polyamide 6 blends with varying degrees of crystallinities. Various randomization methods
are tested to generate the unit cells and replicate the composites’ random fiber distribution,
with a focus on process automation. The simulative results are successfully compared to
an experimental study on glass fiber reinforced polyamide 6 tested at various temperatures,
demonstrating the potential of the approach to reduce both time and cost required for material
characterization. Finally, the unit cells are used to generate a database to predict untested load
cases that will be used in future work to characterize a homogenized macroscopic material
model.

3.2 Introduction

Nowadays, fiber reinforced polymers (FRPs) are extensively used in applications where good
thermomechanical properties are required in combination with weight savings and cost-
effective mass production. These composite materials are manufactured with a broad variety
of constituents and more and more often recyclability and reusability are key factors for the de-
sign process. However, despite their popularity in industry and cross-sector usage the accurate
prediction and performance of forming processes such as e.g. thermoforming often remains
a process of trial and error. In many cases, the final product exhibits unwanted deformations
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after forming that need to be eradicated with time-consuming and costly experiments until all
process parameters are dialed in. Especially, the complex behavior of the polymeric matrix
material undergoing a second order phase change around the glass transition regime is difficult
to predict and still an ongoing research topic on its own today (see e.g. Hadipeykani et al.
[2020]; Xie et al. [2020]). In the case of a semi-crystalline polymer matrix, the recrystallization
during cooling is another process that is crucial not only for the resulting material performance
but also for the interplay between fiber and matrix at their interface is a challenging factor.

Experimentally obtained results for one specific FRP system cannot be extrapolated to
other configurations with different fiber volume fractions or constituent properties, such as
for example the matrix degree of crystallinity (DOC). Therefore, to characterize material
model formulations for various material systems, experiments need to be repeated, leading to
a massive investment for model identification and verification (see e.g. Naya et al. [2017]).
To consider micromechanical effects, which are often critical to understanding material failure
during a forming process, additional experiments are required to account for the individual
constituents, even though the material behavior of the composite may already be known. In
addition, the simultaneous consideration of an increasing number of boundary conditions
and material phenomena, such as temperature, moisture content, environmental factors, time-
dependent material behavior, underlying morphology, kinematic rotation of the fibers during
forming, or damage, dramatically increases the number of experiments required. Consequently,
computational approaches are needed to reduce the set of experiments without compromising
on data and at the same time increasing the reusability for different material systems through
a universal approach.

To investigate micromechanical effects and further incorporate them on the macrolevel
without conducting new experiments, several computational approaches exist Geers et al.
[2010]. Classical, fully coupled modeling schemes such as FE2 (see e.g. Feyel and Chaboche
[2000]; Schröder [2014]; Raju et al. [2021]) or FE-FFT (see e.g. Spahn et al. [2014]; Schneider
[2021]; Gierden et al. [2022]) pass the macroscopic deformation to the microscale in every
Gauss point, where an additional boundary value problem is solved on a unit cell. The
resulting stress state as well as the tangent operator are transferred back to the macroscale as
volume averages over the microscopic domain to achieve a global solution. Herein, several
contributions also address multiphysical problems such as, for example, thermomechanical
coupling (see e.g. Özdemir et al. [2008]; Temizer and Wriggers [2011]; Li et al. [2019];
Wicht et al. [2021]; Schmidt et al. [2023]) or damage (see e.g. Spahn et al. [2014]). These
approaches are known to predict the macroscopic material behavior with a high degree of
accuracy, provided that there is sufficient separation of scales. However, the computational
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cost is usually very high (cf. Geers et al. [2010]). Another method to achieve the homogenized
macroscopic solution are uncoupled multiscale approaches, where numerical simulations on a
representative part of the composite microstructure are used as virtual experiments to generate
input data for the characterization of the material models on the macroscale (see e.g. Naya
et al. [2017]). Thereby, the homogenized microscopic response in terms of e.g. effective
material properties is in close agreement with experimental data on the higher scale given
an appropriate choice of the microscopic domain. In addition to the lower computational
cost associated with the uncoupled solution, complex experimental stress or strain conditions
such as multiaxial loadings can be reproduced without the corresponding experimental effort.
Furthermore, varying boundary conditions can easily be applied on the microstructure and
their effect on the macroscale can be investigated in detail.

In the context of FRPs, computational micromechanics have been used intensively to study
the composites failure behavior. Melro et al. [2013b], for example, developed a constitutive
damage model for an epoxy matrix that was used in a micromechanical analysis with unidi-
rectional (UD) fiber reinforcement to predict ply properties in Melro et al. [2013a]. Apart
from the matrix damage, the delamination between fibers and matrix at their interface was
studied using cohesive zone elements. Similar investigations were conducted by Naya et al.
[2017], who further incorporated a cohesive damage-friction model for fiber matrix debonding
and validated the numerical results against experimental data. Interfiber/interlaminar failure
prediction was studied by Hinton et al. [2004]; Daniel et al. [2009], whereas Selmi et al.
[2011] used mean-field homogenization to investigate the biaxial yield as well as the plastic
regime of short glass fiber reinforced polyamide. More recent publications from Poggenpohl
et al. [2022b,a] focused on the development of a homogenization approach for the failure zone
of carbon fiber reinforced polymers (CFRPs). The generation of statistically equivalent fiber
distributions in unit cells was discussed by e.g. Vaughan and McCarthy [2010]; Wang et al.
[2016]; Bargmann et al. [2018], while the influence of the shape of the individual fibers on
the resulting macroscopic material behavior was investigated by, for example, Herráez et al.
[2016]. The influence of the fiber volume content and the fiber length distribution on the
elastic and thermoelastic behavior of short fiber composites were studied by Hine et al. [2002],
whereas the influence of the thermal history on the interfacial properties of carbon fiber re-
inforced polyamide 6 composites was studied by Li et al. [2016]. In terms of multiphysical
micromechanical investigations, especially regarding the thermomechanical behavior of FRPs,
only a few contributions are available, where, to the authors’ knowledge, the influence of the
DOC is not taken into account yet. Therefore, in this work, a micromechanical analysis will
be conducted on glass fiber reinforced polyamide 6 repeating unit cells (RUCs) and extended
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to account for the effective thermal material response in order to generate a virtual data basis
for the identification of a homogenized macroscopic material model. For validation purposes,
an experimental study is carried out on the composite.

In contrast to existing publications, this approach employs a thermomechanically coupled
matrixmaterial formulation developed by Reuvers et al. [2024a]; Kulkarni et al. [2022, 2023] in
a preceding step. This formulation has been validated through extensive mechanical and ther-
mal experimental studies conducted on polyamide 6 blends. Its applicability is demonstrated
across a wide range of crystallinities and temperatures. Consequently, the authors are able
to generate virtual composite data for a wide range of matrix degrees of crystallinity (DOCs)
and temperatures after validating the results of the micromechanical analysis for one DOC.
This approach thus leads to a significant decrease in the overall experimental effort without
any compromise to the experimental findings. In other words, the presented approach allows
for the generation of experimental data in a virtual manner, thereby enabling the testing of a
broad variety of boundary conditions or load cases that would otherwise require an extensive
amount of time if tested experimentally. Furthermore, the integration of further micromechan-
ical phenomena related to the polymeric matrix, such as damage or moisture dependence, is
straightforward. The same methodology can be applied to other semi-crystalline thermoplastic
composite materials in the future.

The accompanying experimental preparation and procedure are stated in Sec. 3.3, where
a direction dependent mechanical and thermal analysis is carried out. Next, in Sec. 3.4
the thermodynamically consistent, thermomechanically coupled material model formulation
for the polyamide 6 matrix is briefly summarized. Here, the degree of crystallinity serves
as a constant input variable. Visco-elastic and elasto-plastic contributions are combined
together with a nonlinear kinematic hardening of Armstrong-Frederick type and a tension-
compression asymmetry in yielding. In Sec. 3.5, the generation of repeating unit cells is
discussed using various different randomization methods with a focus on process automation.
Moreover, a statistical analysis is carried out to determine the resulting mesh and RUC size.
The identification of the matrix model with experiments carried out on polyamide 6 blends
in Reuvers et al. [2024a] is briefly summarized in Sec. 3.6 together with an extension of the
parameter range to account for the composite material. Subsequently, the numerical results are
compared to experimental findings to examine the validity of the RUCs. Further mechanical
and thermal numerical results enrich the data basis for the characterization of a macroscopic
material model formulation. Finally, in Sec. 3.7 a conclusion is drawn, and an outlook is
given.
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3.3 Experimental investigation

3.3.1 Specimen preparation

The objective of the experimental investigation was to obtain engineering stress-strain data for
various constant temperatures and strain rates in the direction of the fibers (x-direction) and
perpenpendicular to them (y- and z-direction). Therefore, unidirectionally (UD) fiber rein-
forced plates were manufactured by Bond Laminates (Lanxess) as 102-RGUDm317 Tepex®

dynalite sheets with 40 % fiber volume content and a polyamide 6 matrix1. To ensure com-
parability with the experiments conducted to characterize the existing matrix material model
(see Reuvers et al. [2024a]), the same PA6 granulate was used for the production of the plates.
Here, randomly distributed UD roving glass fibers with a diameter of approximately 17 µm
were used for UD tape production and stacked in 16 or 32 layers for manufacturing to achieve
two material thicknesses of 5 and 10 mm, respectively. In the following, the 5 mm plates were
used for all tension and bending tests as well as for the thermomechanical analysis (TMA) and
the dynamical mechanical analysis (DMA), whereas the 10 mm plate served for compression
and conduction tests. After production, the plates were cut into 100x5x10 mm3 and 100x5x20
mm3 specimens for the tension tests in fiber direction and perpendicular to it, in line with DIN
EN ISO 527-5. Note here that all tests under varying fiber angle were performed with the latter
specimen size as well. For the compression tests, smaller samples with 10x10x10 mm3 were
needed according to DIN EN ISO 604. For the three-point bending experiments in y- and z-
direction, the specimens were cut into strips of 100x15x5mm3 in line with DIN EN ISO 14125.
An overview of the sample geometries and the coordinate system that will be used throughout
this work is provided in Fig. 3.1. For cutting, a diamond saw was utilized together with a water
jet for cooling purposes, since the heat generated during sawing could potentially alter the
degree of crystallinity of the polyamide 6 matrix. Afterwards, the wet specimens were stored
in a MP Dry Cabinet IV ST (MP Elektronik Technologie, Svitávka, Czech Republic) until the
moisture content obtained from an Aquatrack (Brabender (Anton Paar), Duisburg, Germany)
measurement was less than 0.1 %. Until testing, the specimens were stored in vacuum sealed
aluminum bags to prevent water absorption due to the hygroscopic matrix material.

1The thermal histories associated with the production of the tape and laminate are not available due to the
commercial nature of the product.
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Figure 3.1: Schematic overview of the sample geometries and mechanical test cases.

3.3.2 Differential scanning calorimetry

Prior to the mechanical and thermal experimental investigations, the degree of crystallinity
of the composite was determined via differential scanning calorimetry (DSC) at the Polymer
Service GmbH Merseburg (PSM) Germany. For this procedure, only a small fraction of
material (ideally < 10 mg) is needed. However, due to the random dispersion of the glass
fibers in the polyamide 6matrix, cutting and testing a small part of a specimen does not guaranty
the desired 40 % fiber volume content in the probe. To overcome this problem and to achieve
sample material with the correct fiber volume content, slices from four different measurement
positions of a specimen were taken and subsequently ground to powder. Next, a fraction of the
powder was used for the DSC analysis and afterwards burned via thermogravimetric analysis
(TGA) to determine the true amount of glass fibers in the tested sample. As can be seen in
Tab. 3.1, the four locations yielded similar results in the DSC analysis and the TGA confirmed
that the correct amount of fibers was met when calculating the volume percentage with the
fiber density. Next, the melting enthalpy ∆Hm obtained from the integrated area under the
peak of the heat flow over time of the first and second heating run was corrected with the
PA6 mass fraction to resemble a material with 100 % PA6 content (∆H100,PA6

m ). Together with
the specific fusion enthalpy for a hypothetically 100 % crystalline material (∆H100

0 = 190 J/g
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from Campoy et al. [1998]), the absolute DOC of the matrix was calculated by

χ =
∆H100,PA6

m

∆H100
0

. (3.1)

The mean value for the first heating run of the four test locations was found to be χ ≈ 0.41.
This value will be used in the following to obtain the matrix properties together with the results
of the identification procedure in Reuvers et al. [2024a].

Similar to Reuvers et al. [2024a] for pure PA6, the glass transition temperature of the
composite was around 58◦ C. The authors anticipated this outcome, given that the same PA6
granulate was used for specimen production and the glass fibers behave purely amorphously.

Weight[mg] Melting enthalpy [J/g] GF content [mass-%] corrected melting enthalpy [J/g] DOC [%]
1.HR 2. HR 1.HR 2. HR 1.HR 2. HR

M1 6.48 29.77 30.36 0.6274 79.90 81.48 42.05 42.88
M2 6.72 28.26 28.75 0.6334 77.09 78.42 40.57 41.28
M3 7.68 27.27 29.04 0.6396 75.67 80.58 39.82 42.41
M4 7.10 31.39 31.46 0.6047 79.41 79.59 41.79 41.89
Avg. 7.00 29.173 29.903 0.6263 78.015 80.017 41.06 42.11

Table 3.1: Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA):
Results and average at four different measuring locations.

3.3.3 Microscopic examination

To gain a direct insight into the materials’ microstructure for the unit cell generation in Sec.
3.5, microscopic in-ply images were taken on a Zeiss Axiophot (Zeiss, Oberkochen, Germany)
microscope with ProgRes SpeedXT Core 5 (Jenoptik, Jena, Germany) camera at the Institute
of Mechanics, University of the German Federal Armed Forces, Munich. Therefore, a small
sample of the composite material was enclosed in epoxy, and further ground and polished with
a LaboSystem LaboPol-30 and LaboForce-100 (Struers, Champigny sur Marne cedex, France)
machine until a clear image was visible under the microscope. In Fig. 3.2, two material
sections are shown with different magnification. As indicated in the picture, the glass fibers
are randomly distributed in the polyamide 6 matrix. Additionally, supporting fibers in weft
direction are visible, which are necessary to ensure stability during the production process.
According to the manufacturer specifications, only three percent of the total fiber volume
content are supporting fibers, hence, these fibers are neglected for the unit cell generation in
Sec. 3.5. Moreover, the glass fibers show a variation in cross-sectional area. To incorporate
this phenomenon, further microscopic images on a range of samples would be necessary in
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combination with statistical investigations which is beyond the scope of this work. Therefore,
the authors chose to approximate the cross section of the glass fibers as circular disks with a
constant diameter of 17 µm according to the manufacturer. Interestingly enough, in the left
image in Fig. 3.2 a laminate like pattern is visible, where layers consisting predominantly of
matrix material separate layers including fibers.

y

z

500µm 50µm

PA6 Matrix

Glass Fiber

Supporting
Fibers

Figure 3.2: Microscopic pictures showing the random fiber distribution and the layer structure
of the composite.

This effect stems from the production process, where firstly prepregs are produced out of a
single layer of unidirectional glassfibers coated with PA6 powder. In the next processing step,
several prepreg rolls are layered and combined to a composite during an impregnation and
consolidation step. Here, the PA6 powder melts under temperature and forms the matrix. The
application of pressure ensures an air pocket free composite in which every fiber is surrounded
by the thermoplastic matrix. In our case, 16 and 32 layers were realized for a resulting
composite thickness of 5 and 10 mm, respectively. Naturally, the layered structure remains
even after consolidation, resulting in areas where only matrix material is present.

3.3.4 Mechanical testing

3.3.4.1 Experimental setup and boundary conditions

For the mechanical tests, a ZwickRoell Z005 (ZwickRoell, Ulm, Germany) universal testing
machine was utilized together with a 10 kN force cell. Additionally, a temperature furnace



84 3 Experimental investigation and micromechanical analysis of glass fiber reinforced polyamide 6

(ZwickRoell, Ulm, Germany) was incorporated in the experimental set-up for all test tem-
peratures above room temperature. Monotonic, uniaxial tension tests were conducted in fiber
direction (x-direction) and perpendicular to the fibers (y-direction) as displayed in Fig. 3.1
together with cyclic tests in both directions. In addition, monotonic uniaxial compression
tests (z-direction) were performed to complete the set of in-plane material characteristics and
determine differences in the material related to the loading direction. Here, cyclic tests were
conducted as well. For all compression tests, a load string with a reversal cage was used that
converts tensile forces to a compressive load to reduce the effort in changing the experimental
set-up from tension to compression. In addition, a lubricant was used to reduce bulging of the
specimens in line with DIN EN ISO 604.

To gain insight into the material behavior for multiaxial strain states, monotonic tension tests
under varying fiber angle (15◦, 30◦, 45◦, 60◦) were conducted as well at room temperature and
one elevated temperature (150◦). For these tests, material from a second order was used that
was made several month after the first one, thus a comparison between first and second batch
of material will be given as well.

To obtain non-tactile displacement measurements, an ARAMIS 4M (Zeiss, Oberkochen,
Germany) digital image correlation (DIC) system was exploited during testing. Therefore, the
specimens were primed with a white color coat, on which graphene speckles were applied
in a secondary step to generate a stochastic pattern visible for the DIC system. Outside the
temperature furnace, 3D DIC measurements were taken with two cameras for all tension tests,
while testing at elevated temperatures required changing to a 2D set-up with one camera due to
the small window of the temperature furnace and the reflections caused by the window pane.
In these cases, major attention was paid to achieve a perpendicular alignment between the
specimen surface and the camera lens with a translative motion test serving as a verification.
The effect of barrel distortion or thinning of the specimen (change in distance to the camera)
that could lead to differences between 2D and 3D measurements was tested in advance with
several 2D room temperature tensile tests in the temperature furnace compared to the 3D results
outside the temperature chamber (see Fig. 3.6 a). In general, the 2D measurements resulted
in a softer material behavior compared to the measurements with two cameras. The deviation
in y-direction is negligible, in x-direction, however, a significant change in stiffness is present.
The authors believe that this difference does not only result from the change between 2D and
3D DIC measurements but is influenced by several factors such as the window pane of the
temperature chamber and the smaller specimen size. As a consequence of the blurring effect
of the window pane and the increased distance between camera and specimen, it was necessary
to adjust the stochastic pattern to a coarser grid. This resulted in a reduction in the number of
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interpretable data points, particularly in x-direction, where the number of available data points
was significantly decreased due to the smaller specimen dimensions. Without the change
in speckle size, however, the camera was unable to focus, and thus the adjusted stochastic
pattern served to mitigate the issue caused by the temperature furnace. Though explainable,
the measurement differences will be visible in the upcoming results in fiber direction and need
to be interpreted with care. Here, a better camera system and more light sources, especially in
the blue light range, could lead to an improvement. Additionally, indirect lighting from the side
window of the temperature furnace could be considered. In terms of the compression tests,
only 2D DIC measurements were possible at room temperature since the distance between
the specimen and the camera needed to be reduced due to the small specimen size. For
the compression tests above room temperature, unfortunately, no DIC measurements were
possible. This can be attributed mostly to the reversal cage that caused severe shadowing on
the backwards offset specimen in combination with the light sources arranged at an angle to
the window pane to reduce reflection. The use of compression plates that were not available at
that time would improve the set-up and reduce shadowing. Nonetheless, the increased distance
between the camera and the specimen due to the temperature furnace would need to be resolved
as well.

In total, experiments were conducted at three distinct temperatures, both below and above the
glass transition temperature of thematrix material (Tg ≈ 58◦ C, cf. Reuvers et al. [2024a]): 23◦

C, 100◦ C, and 150◦ C. The heating time for achieving a homogeneous temperature distribution
across the specimens measured 15 minutes prior to testing for the tensile specimens and 30
minutes for the compression specimens due to the increased thickness. To allow for thermal
expansion, the tension specimens were clamped only at the upper part during heating.

To ensure comparability with the tests conducted in Reuvers et al. [2024a], two strain rates
(ε̇tmin = 2.1mm/min and ε̇tmax = 4.2mm/min) were prescribed for all tension tests independent
of the fiber direction to study the rate dependent material behavior that is reported for PA6
(see e.g. Shan et al. [2007]; Ayoub et al. [2011]). Hereby, the loading rate was controlled by
the cross head speed of the machine. In terms of the loading rate for the compression tests
ε̇cmin = 0.3mm/min and ε̇cmax = 3.0mm/min were used. Converted to the dimensions of the
respective specimens, the lowest loading rate for each test corresponds to 0.0005s−1, as used
for the experiments on PA6 blends in Reuvers et al. [2024a]. The tests were terminated once
the specimen broke or the maximum force of the testing machine (5 kN) was reached. Each
procedure was repeated three to four times. The strain data was obtained using the DIC data
averaged over the whole specimen domain, whereas the force data was taken directly from the
ZwickRoell machine. To avoid effects due to imperfect stochastic pattern or imperfections
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during cutting, the area close to the specimen edge was excluded from the evaluation of the
DIC measurements. All results are given in terms of engineering stress (P = F/A0) ,defined
as the current force F divided by the undeformed cross-sectional area A0, over engineering
strain (ε = ∆L/L) ,defined as the ratio of the change in length ∆L to the original length of
the specimen L.

Lastly, three-point bending tests were conducted at room temperature in x- and y-direction
to determine the Young’s modulus in bending as well as the flexural stress-strain response of
the material. Here, DIC measurements were omitted, due to the short distance between load
cell and cross head in this set-up which reduces the slip significantly.

3.3.4.2 Experimental results

Fig. 3.3 shows the results for the monotonic tension tests in and perpendicular to the fiber
direction at room and elevated tests temperatures. Here, the experimental average is given
together with the deviation in terms of maximum and minimum stress of the test series. In
fiber direction (x−direction), the material response is linear at room temperature and only
slightly nonlinear for elevated temperatures due to the high material stiffness and the machine
limit of 5 kN. A clear temperature dependence is visible in y-direction, where a higher
temperature generally leads to a reduction in material stiffness. The temperature dependence
in x−direction most likely results from the difference in 2D between 3D DIC measurements,
as discussed in Sec. 3.3.4.1. Furthermore, the strain rate dependence is more pronounced at
higher temperatures. Unfortunately, the tests in x−direction for the lowest strain rate at 150◦ C
are not usable since the exposure to temperature during pre-heating, combined with the longer
testing time, led to sliding of the specimens in the clamping area. After testing, shear marks
were visible on the specimens in the clamping area (see Fig. 3.3), where the bracket was in
contact with the fibers due to the increased viscosity of the PA6matrix at 150◦ C. Consequently,
the low friction resistance of the glass fibers compared to the polymer matrix caused sliding.
A reinforcement with CFK at the clamping area did not improve the test results. Consequently,
they were left out of the plot. Here, pneumatic grips might improve the test situation. For
the tests with higher velocity, the problem was less pronounced due to the reduced contact
time. Note here that sliding occurred only in fiber direction. Compared to the tests in fiber
direction, in transverse direction, the temperature dependence of the material response is more
pronounced in line with Gröger et al. [2021] who tested the same material system. Here, the
matrix material, which shows a pronounced temperature sensitivity (cf. Shan et al. [2007];
Felder et al. [2020a]; Reuvers et al. [2024a]) in the considered temperature range, dominates the
material response. Moreover, a more gradual roll-over to yielding is observed for temperatures
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above the glass transition, where a highly nonlinear material response is visible. Overall, the
strain rate dependence is more distinct in y-direction. Similarly to the results in x-direction,
the sensitivity to the loading velocity increases with increasing temperature. Fiber sliding
was observed in both directions, especially at room temperature, where the matrix material is
less ductile. Here, the debonding or rupture of individual fibers led to kinks in the individual
force displacement curves and, therefore, resulted in a higher deviation at elevated strains. In
compression, the tests were conducted at two different strain rates with a decade difference.
Therefore, here the dependence of thematerial response on the loading rate is more pronounced
compared to the tensile tests.
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Figure 3.3: a) Montonic, uniaxial extension in fiber direction. *Results only available for
ε̇ ≈ 0.001 s−1 due to sliding at the clamp. b) Montonic, uniaxial extension results
in transverse direction. c) Monotonic, uniaxial compression in transverse direction
for various strain rates.

In Fig. 3.4, the boundary conditions as well as the results for the stepwise cyclic tension tests
are shown for an exemplary temperature of 150◦C. During the experimental procedure, the
specimens were subjected to displacement controlled loading followed by an unloading step
until the force equaled zero. A subsequent recovery step to distinguish between time-dependent
and time-independent remaining deformations was omitted here due to the extensive relaxation
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Figure 3.4: a) Cyclic tension results in fiber and transverse direction at 150◦C. b) Boundary
conditions for the cyclic tension tests.

times of the matrix material detected in Reuvers et al. [2024a]. The target displacements
were determined based on the machine results from the monotonic tension tests to ensure
comparability between the varying material directions. Moreover, high displacements were
deliberately omitted to avoid slipping at the clamping areas, as observed in the monotonic
tension tests (cf. Fig. 3.3). Due to the lower stiffness perpendicular to the fiber direction,
an additional load step with ui/umax,i = 1% was included to determine the elastic regime.
The results of the cyclic tension tests at elevated temperature (see Fig. 3.4) show a distinct
nonlinearity in the loading and unloading paths in both directions, however, more pronounced
perpendicular to the fiber direction. In fiber direction, no remaining deformation is present
for the first two load cycles. Thus, the authors conclude that plastic deformation occurs
from the third load cycle onwards. The remaining deformation at the end of the loading-
unloading procedure, however, measured only 0.1 %. Perpendicular to the fiber direction,
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plastic deformations were already visible in the 5 % load step, corresponding to the lower
material stiffness in y-direction. Here, the final strain after testing measured approximately
1 %. Interestingly enough, the hysteresis energy (area under the curve of each load step)
seemed to increase with increasing deformation, especially for the results in y-direction. This
observation suggests a deformation dependent visco-elastic material behavior as indicated by
e.g. Reese and Govindjee [1998]; Lion [1999]; Holmes et al. [2006]; Amin et al. [2006] for the
viscosity of polymeric materials and experimentally detected for PA6 by Felder et al. [2020a];
Reuvers et al. [2024a].
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Figure 3.5: Experiments under varying fiber angle a) Material stiffness at various temperatures
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In Fig. 3.5, the results for the experiments under varying fiber angle are shown. Firstly,
the average material stiffness in GPa for each fiber angle is calculated from the monotonic
tension tests according to DIN EN ISO 527-5 and plotted over the fiber angle. A severe and
nonlinear reduction in material resistance is visible between the stiffness in fiber direction (◦)
and perpendicular to it (90◦). Initially the material stiffness reduces drastically between fiber
angles of 0◦ and 30◦. Afterwards, the changes are only marginal, suggesting that between
45◦ and 90◦ the matrix material dominates the material response. Interestingly enough, the
influence of the fibers on the overall material response appears to be temperature dependent.
With increasing temperature, the fiber influence vanishes already at 30◦ which could be related
to a weakened fiber-matrix-interface due to the increased matrix ductility. This trend, however,
is only visible in the material stiffness and does not translate to the maximum force of the
material shown in Fig. 3.5 b). Here, the fiber influence is still clearly visible at 30◦. Note here
that the test in fiber direction (0◦) is left out since the machine maximum (≈ 5 kN) is already
reached for a fiber angle of 15◦. In both comparisons, the results for 90◦ lie slightly above the
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minima at 60◦ which can be attributed to testing on two material batches. During specimen
production, the use of the diamond cutting blade, together with a water jet for cooling purposes,
led to more offcuts. Consequently, a second order of material needed to be placed to substitute
the loss. To ensure comparability, monotonic tension tests in x- and y−direction were repeated
with the second batch and compared to the results for the first batch, see Fig. 3.6 b. In fiber
direction, no difference apart from the expected material scatter is visible. On the contrary,
perpendicular to the fiber direction the response of the second batch appears to be slightly
softer. The authors believe that the changes in the two batches stem purely from the polyamide
6 matrix and are therefore only prominently visible when testing perpendicular to the fibers,
since the fibers themself dominate in this case. Though the orders were placed at different
times, with significant temporal distance inbetween, the authors suspect that inconsistency in
the individual components (PA6 granulate, roving glass sheets) is most likely not the reason for
the differences. During production, the polyamide 6 matrix undergoes a phase transition from
melt to solid and, additionally, crystallizes over a period of time. Here, the cooling rate mainly
determines the resulting amount of crystalline phase. In contrast, the fibers do not change their
material characteristics during the consolidation process. Moreover, the tested plates are not
mass produced but rather a custom-built research material due to the non-standard material
thickness. This high plate thickness could lead to unwanted temperature gradients during
cooling down from the melt, and therefore to an inhomogeneous crystallization distribution.
For this reason, the authors believe that the crystal configuration most likely differs between
the plates and that the variance in the two batches (and most likely the majority of the material
scatter as well) stems from the polyamide 6 matrix. Nonetheless, the differences between both
material batches are negligibly small, and can only be seen in Fig. 3.5 where results from both
batches are combined. In all other figures, either results from batch one or batch two are used.

The results of the three-point bending tests are shown in Tab. 3.2. Here, the test data at room
temperature was enriched with results conducted at the Polymer Service Merseburg GmbH
(PSM) at room and elevated test temperatures in line with DIN EN ISO 14125. The Young’s
modulus in bending Ef in x- and y-direction was measured together with the flexural strength
σfM and the corresponding strain εfM . Where available, the breaking stress σfB and strain
εfB are provided as well. Each test was repeated at least five times, hence all values are given
as the statistical mean and the standard deviation s is shown as well below the results.

The results from Tab. 3.2 support the findings from the tensile tests in Fig. 3.3 and 3.5,
where the material stiffness is temperature dependent and an increase in temperature generally
leads to a decrease in material stiffness, especially perpendicular to the fibers. This relation
holds for the maximum stress and the failure stress as well. However, here the temperature
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(outside the temperature furnace) DIC measurements at room temperature. b)
Comparison of different material batches in x- and y-direction.

dependence is pronounced in x-direction as well. Moreover, at room temperature the failure
behavior is brittle corresponding to σfM = σfB, whereas for elevated temperature a more
ductile failure is observed. In x- direction, the material failed due to a combination of tension
and compression, whereas in y-direction a tension failure was observed independent of the
temperature.

3.3.5 Thermal analysis

The thermal analysis of the material was conducted at the Institute of Mechanics, University of
the German Federal Armed Forces, Munich and Polymer Service GmbH Merseburg (PSM).

To obtain insights into the expansion of the material under temperature, a thermomechanical
analysis was conducted on a TMA/SDTA841e fromMettler Toledo (Mettler Toledo, Columbus,
USA) in all three material directions. In Fig. 3.7 a, the resulting coefficients of thermal
expansion (CTEs) αT are plotted over the temperature. Here, the thermal expansion in fiber
direction (x-direction) is least pronounced and reflects the lower thermal expansion of glass
fibers according to the manufacturer (α = 4.9 − 5.1 10−6/K) and in line with experiments
from Segal [1979]. Additionally, no distinct temperature influence is observed in this direction.
On the other hand, the in-plane thermal expansion coefficients react sensitively to temperature,
especially above the glass transition. However, interestingly enough, the thermal expansion
in y- and z-direction does not coincide. Considering the microscopic images in Fig. 3.2, the
authors believe that this observation is related to the production process (cf. Sec. 3.3.3), where
the consolidation of prepregs results in a layer structure in z-direction. Consequently, in this
direction, the polymeric matrix behavior is most pronounced, leading to an increased thermal
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Temperature Direction Ef σfM εfM σfB εfB
[◦C] [MPa] [MPa] [%] [MPa] [%]
23 x 30531 850 2.78 850 2.78

s 650 28.3 0.11 28.8 0.092
23 y 7327 96.3 1.97 96.3 1.97

s 303 3.22 0.146 3.22 0.146
100 x 27388 353 1.40 285 2.53

s 916 17.5 0.04 32.5 0.0923
100 y 2445 57.2 4.07 52.8 4.24

s 82 1.34 0.17 2.52 0.21
150 x 25415 269 1.47 242 2.85

s 609 4.91 0.78 13.7 0.11
150 y 1738 43.0 3.85 37.8 4.03

s 64 2.81 0.41 4.36 0.38

Table 3.2: Three-point bending results in x- and y-direction at room and elevated temperatures.

expansion together with a strong temperature dependence above the glass transition, in line
with the results for pure PA6 in Reuvers et al. [2024a]. In y-direction, the CTE lies in-between
the results for the other two directions.

The thermal conductivity was measured on a Hot-Disk TPS 2500S (Hot Disk, Gothenburg,
Sweden). For testing, the 1DHot-Diskmethodwas employed, utilizing a sensorwith a diameter
of 12.8 mm. This was deemed an appropriate choice given that larger sensors generally yield
more accurate results. Themethod requires a cylindrical specimenwith a diameter that is 2 mm
greater than that of the sensor. Consequently, only the thickness direction (z-direction) was
tested using the measured composite density of ρ = 1.8 g/cm3 since the maximum thickness of
the composite plate measured 10 mm in total. It it important to note that smaller sensors were
available for testing, however, they did not produce reliable results for the polymeric material,
which is generally low in conductivity. In Fig. 3.7 b, the resulting thermal conductivity is
plotted over the temperature. The composites’ thermal conductivity is higher compared to
that of pure PA6 which can be attributed to the influence of the glass fibers (λglass fiber ≈ 1.28

W/mK). Similar to the results in Reuvers et al. [2024a] for PA6, the influence of temperature
on the resulting thermal conductivity is negligible, see also Kugele [2020]. Therefore, from
this point onwards, a transverse thermal conductivity of λT,⊥ = λT,y = λT,z = 0.6365 W/mK
is used in all calculations. Additionally, the authors expect to see no significant difference
between the results in fiber and transverse direction in line with results from Kalaprasad et al.
[2000] since the heat conductivity of the glass fibers is isotropic. To verify the assumption,
virtual thermal experiments on the unit cell will be conducted in Sec. 3.6.2 in all material
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Figure 3.7: Thermal analysis a) Direction dependent coefficient of thermal expansion (TMA
measurement) b) Thermal conductivity measurement in z-direction c) Specific heat
capacity from DSC measurements in the second heating run.

directions. Furthermore, the specific heat capacity is derived from the second heating run of
the composite DSC experiments in Sec. 3.3.1. Here, the tangent to the experimental curve
yields the specific heat capacity above and below the glass transition Tg, which increases with
increasing temperature (see Fig. 3.7 c). Note here that the steep incline of the heat capacity
after the melting of the crystalline phase is unexpected. Generally, the slope of cT should
be approximately equal below and above the glass transition. Thus, the authors suspect that
structural changes might be the reason for this uncertainty.
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3.4 Polymeric matrix material model formulation

The following section provides a brief overview of thematerial model utilized for the polyamide
6 matrix. For a more detailed description, the reader is kindly referred to Reuvers et al.
[2024a], where the full derivation of the framework is presented together with the numerical
implementation as a user material subroutine UMAT and UMATHT for the commercial finite
element method (FEM) software Abaqus/Standard (Dassault Système, Vélizy-Villacoublay,
France). Throughout the text, the subsequent notational conventions are employed:

a,A Scalar quantity
a First order tensor
A Second order tensor
I Identity tensor
A Fourth order tensor
˙(∗) Total derivative with respect to time

(A)T Transpose ofA
(A)−1 Inverse ofA
tr(A) Trace ofA
det(A) Determinant ofA

dev(A) A− 1

3
tr(A)I

Grad(A) Gradient ofA with respect to the reference configuration
Div(A) Divergence ofA with respect to the reference configuration
: Double contraction
¯(∗) Quantity in the reference configuration

To accurately capture the material behavior of semi-crystalline polymers (SCPs), a coupled
visco-elastic, elasto-plastic framework is chosen, according to Reuvers et al. [2024a]. A
schematic overview in the form of a 1D rheological representation of the model assumptions
is provided in Fig. 3.8. Here, a multiplicative split of the deformation gradient F

F = Fe1 Fp = Fe2 Fv, (3.2)

into elastic (Fe1) and plastic (Fp) (see e.g.Eckart [1948]; Kröner [1959]; Lee [1969] ) as well
as an elastic (Fe2) and viscous (Fv) part (see e.g. Sidoroff [1974]; Lubliner [1985]; Lion
[1997a]; Reese and Govindjee [1998]) is introduced. Further, an additional split of the plastic
part of the deformation gradient Fp = Fpe Fpi (cf. Lion [2000]; Dettmer and Reese [2004]) is
performed to model nonlinear kinematic hardening.

The Helmholtz free energy per unit mass is expressed in terms of symmetric elastic de-
formation measures only, namely the elastic right Cauchy-Green tensors Ce1 , Cpe and Ce2
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Figure 3.8: a) Schematic illustration of the constitutive model b) Multiplicative splits of the
deformation gradient (reference (rc) and current (cc) configurations, local inter-
mediate configurations ic1, ici1 and ic2 for plasticity, kinematic hardening and
viscosity).

defined as

Ce1 = F T
e1 Fe1, Cpe = F T

pe Fpe, Ce2 = F T
e2 Fe2. (3.3)

Here, C = F TF denotes the right Cauchy-Green tensor and Cp = F T
p Fp the plastic right

Cauchy-Green tensor. Following the assumptionsmade in Fig. 3.8, the total specificHelmholtz
free energy

ψ(Ce1,Ce2,Cpe, χ, θ) = ψ1(Ce1,Cpe, χ, θ) + ψ2(Ce2, θ) + ψc(θ) (3.4)

is additively decomposed into elasto-plastic (ψ1) and visco-elastic (ψ2) energetic contributions
accompanied by an unspecified caloric part ψc to ensure flexibility regarding the choice of the
function for the heat capacity cT (cf. Felder et al. [2022]; Reuvers et al. [2024a]). Here, the
first term ψ1 contains an elastic part ψe1 as well as a defect energy ψp related to kinematic
hardening

ψ1(Ce1,Cpe, χ, θ) = ψe1(Ce1, χ, θ) + ψp(Cpe, χ, θ), (3.5)

both dependent on the crystallization state of the material via the degree of crystallinity χ. The
energy contributions related to the elasto-plastic model part ψ1 are chosen as a compressible



96 3 Experimental investigation and micromechanical analysis of glass fiber reinforced polyamide 6

Neo-Hookean-type energy ψe1 in combination with a nonlinear plastic defect energy ψp to
account for Armstrong-Frederick kinematic hardening

ψe1 =
µ1

2
(tr(Ce1)− 3)− µ1ln (Je1) +

Λ1

4
(det(Ce1)− 1− 2 ln(Je1))

− 3K1αT ∆θ ln(Je1), (3.6)

ψp =
c

2
(tr(Cpe)− 3)− c ln(

√
Jpe). (3.7)

Here, Je1 = det(Fe1) is the determinant of the elastic part of the deformation gradient Fe1 and
Jpe = det(Cpe) holds. In terms of the material quantities, the two Lamé constants µ1(χ, θ)

and Λ1(χ, θ) are introduced in ψe1 and c(χ, θ) in the defect energy ψp. The expression for the
elastic energy ψe1 in Eq. 3.6 is extended with a term related to volumetric thermal expansion
incorporating the elasto-plastic bulk modulus2 K1(θ), the coefficient of thermal expansion
αT (θ) and the temperature difference ∆θ = θ − θ0 between the current temperature θ and the
reference temperature θ0. All material properties of the elasto-plastic part depend on both the
DOC and temperature. Similarly to Eq. 3.6, the visco-elastic part of the Helmholtz free energy
ψe2 is defined as

ψ2 =
µ2

2
(tr(Ce2)− 3)− µ2 ln(Je2) +

Λ2

4
(det(Ce2)− 1− 2 ln(Je2))

− 3K2αT (θ − θ0)ln(Je2), (3.8)

where µ2(θ) and Λ2(θ) are the visco-elastic Lamé constants and K2 is the visco-elastic bulk
modulus2. Furthermore, Je2 = det(F2) holds. As indicated in Eq. 3.4, all energetic contribu-
tions jointly depend on the temperature θ.

Next, the constitutive equations are derived from the local form of the Clausius-Duhem
inequality

S :
1

2
Ċ − ρ0(ψ̇ + η θ̇)− 1

θ
q0 · Grad(θ) ≥ 0. (3.9)

Here, S is the second Piola-Kirchhoff stress tensor and ρ0 represents the material density per
unit reference volume. The entropy is introduced via the parameter η and the heat flux in
the reference configuration is denoted by q0 with the temperature dependent heat conductivity
λT (θ). Following several mathematical operations (cf. Reuvers et al. [2024a]) the stress
quantities are introduced as:

2The bulk moduliK∗, ∗ = 1, 2 are defined by the two Lamé constants µ∗ and Λ∗ asK∗ = Λ∗ +
2µ∗

3
.
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Second Piola-Kirchhoff stresses:

S1 = 2ρ0F
−1
p

∂ψe1
∂Ce1

F−Tp , S2 = 2ρ0F
−1
v

∂ψ2

∂Ce2

F−Tv

Mandel stresses:

M1 = 2ρ0Ce1
∂ψe1
∂Ce1

, M2 = 2ρ0Ce2
∂ψ2

∂Ce2

.

Back stress:

X = 2ρ0 Fpe
∂ψp
∂Cpe

F T
pe

Mandel stress related to kinematic hardening:

M1,kin = 2ρ0Cpe
∂ψp
∂Cpe

In terms of the evolution equations (see Tab. 3.3) a Tschoegl-type or paraboloid yield
criterion (see e.g. Tschoegl [1971]; Ghorbel [2008]; Melro et al. [2013b]) is adopted for the
elasto-plastic part introducing the initial yield stress in compression σ0

c and tension σ0
t . For the

evolution of plasticity an associative flow rule is chosen together with the classical evolution
equation for nonlinear Armstrong-Frederick kinematic hardening (Armstrong et al. [1966]).
Here, the plastic multiplier λ̇p is introduced, as well as the hardening material parameters b
and c. The evolution equation for the visco-elastic part is based on a potential from Reese and
Govindjee [1998]. For the specific choice of the nonlinear function for the relaxation time τ ,
the reader is kindly referred to Sec. 3.6. In addition, the local form of the energy balance

ρ0 (ψ̇ + η̇ θ + η θ̇) + Div(q0)− S :
1

2
Ċ = 0 (3.10)

is evaluated, to determine the internal heat sources. Above, the time derivative of the in-
ternal energy ė = ψ̇ + η̇ θ + η θ̇ is already incorporated. In line with e.g. Felder et al.
[2020b, 2022]; Reuvers et al. [2024a], the heat capacity is approximated by a constant value
cT = −θ (∂2ψ)/(∂θ2) = cT (χ, θ) in this work and determined experimentally. The specific
expression for cT above and below the glass transition regime can be found in Tab. 3.8. An
overview of the equations in their final form in the reference configuration is provided in Tab.
3.3.

3.5 Generation of repeating unit cells and comparison

of different randomization methods

In this section, the generation of repeating unit cells (RUCs) is described in detail. Various ran-
domization methods for the distribution of unidirectional glass fibers are tested and compared
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Table 3.3: Overview over the constitutive equations in the reference configuration.
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to microscopic pictures of the PA6 composite material used for the experiments in Sec. 3.3.
Furthermore, mesh and size convergence studies are conducted to identify a valid RUC that
will be used for comparison with the experimental results. Throughout the generation of the
RUCs, the focus lied on the process automation to minimize the effort for e.g. the convergence
studies. Therefore, the Abaqus - Python interface was used to generate a plug-in application
that allows for automatic RUC generation and testing with mechanical and thermal periodic
boundary conditions (PBCs).

3.5.1 Unit cell generation

The automatic generation of repeating unit cells is separated into three main steps. Firstly, the
random distribution of theUDfibers is carried out using three different randomizationmethods.
Next, the geometry of the unit cell is generated, followed by the automatic generation of the
mesh and the corresponding periodic boundary conditions (PBCs). The input parameters for
the Abaqus-Python plug-in are the constant fiber volume fraction ϕf = 40 % and the diameter
of the roving glass fibers (17 µm) as well as the number of fibers nf that determine the size
of the RUC. The fibers are modeled as cylinders under the assumption of a perfectly round
cross-section, and no inhomogeneities along the fiber direction. Note here that the fibers in
weft direction needed for structural support during production (approximately 3 % of the total
fiber volume content) are neglected. Moreover, the height and width of the RUCs are chosen
to be equal, in that way, the dimensions of the RUC are a priori known when evaluating the
input quantities given above. Three different randomization schemes are used to generate
the random fiber distribution, namely the so-called randomized method (see e.g. Poggenpohl
et al. [2022b]), the random sequential adsorption (RSA) method (see e.g. Hinrichsen et al.
[1986]) and a variation of the RSA method based on microscopic images, which is referred to
as clustered RSA (CRSA) in the following.

The randomized method is based on a repetition of a regular grid of initally two fibers that
resemble square closest packing in 2D (see Fig.3.9 a)). Each fiber is shifted by a random value
with respect to its original position. Hereby, the shift is restricted such that overlapping of the
individual fibers is prevented (see Fig. 3.9 a)). The number of fibers for this randomization
method is limited to certain even numbers (nf,randomized = 2n2, n ∈ N), based on the base cell
for square closest packing and the restriction to quadratic RUC dimensions.

RUCs resulting from the random sequential adsorption method consist of sequentially gen-
erated random fiber coordinates within the limits of the RUC size. Each fiber is placed in
the RUC and only those fibers are adsorbed that do not overlap with already existing ones
(see Fig. 3.10 a)). Otherwise, the coordinates are discarded, and new ones are generated
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Figure 3.9: Random fiber distribution generated with a) randomized method (blue box marks
base cell of two fibers) b) random sequential adsorption (RSA) method c) clustered
RSA (CRSA) method.

until the desired fiber volume fraction is reached (see Fig. 3.9 b)). In addition, narrow gaps
between the fibers and small or rather sharp matrix regions in the corners or the edges (see Fig.
3.10 b)) that lead to insufficient mesh quality or problems during mesh creation are prevented
as well. This step is especially important since the mesh is generated automatically with a
predefined element size. Therefore, mesh refinement in those areas is a priori not possible and
would require manual intervention. In comparison, the RSA method shows a higher degree of
clustering, whereas the fiber distribution in the RUCs generated with the randomized method
is more even. These differences are reflected in the resulting RUC behavior and, therefore,
as well in the resulting effective material properties of the composite, as will be shown in
Sec. 3.5.3. Generally, both methods are suited to describe a random fiber distribution and
the choice should be made on the basis of microscopic pictures. If, for instance, the fiber
content is relatively high, however, the randomized method is the preferred choice since a valid
fiber distribution with the RSA method is unlikely or requires various attempts that result in
increased computation time. A saturation in the RSA approach with circular disks is reached
with a maximum fiber volume fraction of approximately 54.7 % according to the literature (cf.
Feder [1980]; Hinrichsen et al. [1986]). Comparing the microscopic images in Fig. 3.2 with
images of RUCs with both randomization methods, the authors conclude that the RSA method
better approximates the visible clustering of fibers. Nonetheless, areas can be indicated where
no fibers are prominent, similar to a laminate structure. This effect stems from the production
process, as discussed in Sec. 3.3.3. However, the laminate like structure is not incorporated
in the RUCs yet. Thus, a third set of RUCs is generated for comparison using a variation of
the RSA method, here referenced as clustered RSA (CRSA). To achieve a higher degree of
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fiber clustering, the assumption is made that the majority of the fibers lie in the middle of the
RUC, while the upper and lower edge consists mainly of matrix material, see Fig. 3.9 c) for a
visual reference. To achieve a random fiber distribution in each part, the RSA method is used.
The resulting new parameters, namely the height of the middle area Hmid = H − Hedge and
the fiber volume content in this part ϕmid = ϕfibers − ϕedge of the RUC need to be determined.
Here, values between 0.5 and 0.9 for the ratio of Hmid/H and values between 0.75 and 0.95
for the ratio of the fiber volume fraction ϕmid/ϕfibers are realized in a preliminary parametric
study and further tested and visually compared to the microscopic pictures. In addition, it
is made sure that the resulting RUC behavior differed from that of the RUCs generated with
the RSA method, resulting in Hmid/H = 0.6 and ϕmid/ϕfibers = 0.9. It should be noted that
the clustered RSA method results in varying material behavior in y- and z-direction (see Sec.
3.5.3), thus thwarting the assumption of transversal isotropy. Consequently, experiments in all
three directions are necessary to validate this method.

H

LL

yy

zz

a) b)

1 1.1
22.1

a > 2R

Figure 3.10: a) Rejection of overlapping fibers after projection b) Abortion of fiber coordinates
that lead to narrow gaps and sharp corners to circumvent poor mesh quality.

After the fiber distributions are found and the geometries are generated using a sequence
of boolean cuts, the mesh is generated automatically using eight node hexahedral elements
with reduced integration (C3D8RT) from the Abaqus element library. Their performance has
been compared to fully integrated elements for several uniaxial strain states combined with
the RSA method. Here, the computation time of the reduced elements was significantly lower
compared to the fully integrated elements, especially, due to the large history array of the
complex nonlinear matrix material model. In the next step, periodic boundary conditions are
created from the node set, applying Abaqus specific so-called equation constraints at the edges,
faces and vertices of theRUC thatmirror the local fluctuations of the current configuration at the
respective boundaries. More specifically, PBCs prescribe a constant difference in displacement
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and / or temperature between nodes that share the same reference coordinates in all but one
direction (see e.g. Miehe [2002]; Kanit et al. [2003]; Nguyen et al. [2011]). Hereby, the
difference in displacement and / or temperature can either be zero or non-zero depending on
the applied far field strain or temperature state. During the generation of the PBCs it is made
sure that no node is over-constraint by excluding the respective nodes from the node sets of
the edges, faces and vertices. For a detailed description on how to apply Abaqus specific
displacement equation constraints, the reader is kindly referred to Omairey et al. [2019]. An
example for temperature equation constraints can be found in Tian et al. [2019].

The material model formulation used for the polyamide 6 matrix material can be found in
Sec. 3.4 with the experimentally identified mechanical parameters in Appendix 3.8.1. For
the fibers, an isotropic linear thermo-elastic material model from the Abaqus material library
was chosen for simplicity, since the glass fibers behave purely elastically over the considered
temperature range (θ = 23− 150◦ C). The corresponding material parameters can be found in
Sec. 3.6.

3.5.2 Homogenization scheme

Based on the hypothesis of equal virtual work density on themicroscopic (∗m) andmacroscopic
(∗M ) level, the Hill-Mandel condition (see Hill [1963, 1967]) with the thermal extension by
Özdemir et al. [2007] states the equivalence of the product of the volume averages and the
volume average of the products for a representative volume on the micro level

δWM = {δWm}Ω0 (3.11)

⇔
{Pm}Ω0 : {δFm}Ω0 − {q0,m}Ω0 · {Gradm(θm)}Ω0 = {Pm : δFm}Ω0 − {q0,m · Gradm(θm)}Ω0 ,

(3.12)

with the microscopic first Piola-Kirchhoff stress tensor Pm and the conjugated deformation
gradientFm as well as themicroscopic heat flux q0,mwith respect to the reference configuration
and the temperature gradient Gradm(θm). In line with Özdemir et al. [2007], the time variation
of the heat storage on the microscale is neglected due to the negligibly small representative
volume. Here, {∗}Ω0 denotes the volume average

{∗}Ω0 =
1

VΩ0

∫
Ω0

(∗)dV, (3.13)



3.5 Generation of repeating unit cells and comparison of different randomization methods 103

with VΩ0 as the volume of Ω0. The displacement as well as the temperature PBCs described
in Sec. 3.5.1 are known to satisfy the Hill-Mandel condition (cf. Van der Sluis et al. [2000];
Özdemir et al. [2007]). Consequently, the stress of a macroscale material point PM complies
with the averaged stress of a volume element on the microscale and the same relation holds for
the heat flux

PM = {Pm}Ω0 (3.14)

q0,M = {q0,m}Ω0 . (3.15)

Using Abaqus specific equation constraints, PM is obtained from the reaction force of the
corresponding reference point divided by the reference area (see e.g. Omairey et al. [2019]).
To obtain the elastic effective material parameters in the three material directions, six uniaxial
strain states are applied successively on the RUCs under isothermal conditions at each test
temperature. The corresponding tensile or shear loading conditions are shown schematically
in Fig. 3.11 together with the associated material parameters. The macroscopic heat flux
q0,M equally follows from the averaged heat flux over the RUC domain, assuming stationary
heat conduction. In order to obtain the direction dependent effective thermal conductivity a
temperature gradient is applied successively on two opposing sides in each material direction
(cf. Tian et al. [2019]). Since the effect of the temperature on the conductivity of the GFRP is
negligibly small (cf. Sec. 3.3.5), the effective thermal conductivity is calculated in Sec. 3.6
independently of the temperature.

3.5.3 Statistical evaluation

In this section, the representativeness of the RUCs is examined in a statistical manner. There-
fore, several convergence studies are conducted to investigate the fluctuations introduced by the
random fiber distributions. Note here that the investigations are carried out up to 5%maximum
strain in line with the experimental results of Sec. 3.3. To model larger deformations, these
convergence studies need to be extended to verify the RUCs. This is, however, omitted here to
reduce the computational effort.

Mesh convergence study

For the mesh convergence study, three RUC geometries generated with the randomization
methods from Sec. 3.5.1 are considered. The corresponding in-plane dimensions are derived
from the number of fibers and the fiber volume fraction (ϕ = 40 %) and measure 116.7 µm x
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Figure 3.11: Schematic representation of the boundary conditions in terms of the six uniaxial
strain states for deriving the effective elastic material properties. a) Monotonic,
uniaxial tension b) Pure shear

116.7 µm for the RSA and CRSA method with nf = 24 and 101.07 µm x 101.07 µm for the
randomized method with nf = 18. In fiber direction, only one element over the thickness is
considered, which results in a material behavior comparable to plane strain. Different mesh
sizes ranging from 1 to 3 µm are evaluated in steps of 0.5 µm. Regarding the boundary
conditions, a constant temperature of 150◦ C is chosen since at elevated temperatures, plastic
yielding in the PA6 matrix occurs already at small strains compared to room temperature (cf.
Tab. 3.9). Here, the highest DOC of the matrix χ = 0.29 is used to determine the matrix
material parameters from Tab. 3.9. Monotonic, uniaxial tension in y-direction is the tested
load case (see Fig. 3.11 a2). The simulations are terminated at a strain of 5% and the resulting
stresses and strains are computed as volume averages of the whole domain Ω0. In Fig. 3.12 a),
the homogenized stresses at maximum strain are shown over the element size for the different
randomization methods.

For the RSA and the CRSA method, a pronounced mesh dependence is visible, whereas the
results of the randomized method show almost instantaneously converged behavior. This can
be attributed to the lower amount of fiber clustering in the randomized method. Comparing the
RSA based methods in more detail, a direct correlation between the amount of fiber clustering
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and the mesh convergence is visible. The higher the amount of fiber clustering, the smaller
element size is needed to achieve a converged result. Next, to determine the mesh size at which
convergence is achieved, the relative errors are computed as the difference in the resulting
homogenized stress from the current mesh size compared to the stress of the next coarser
mesh. Here, a change < 1 % is regarded as a converged solution. Overall, mesh convergence
is achieved for all three fiber distributions. In terms of the randomized method, an element
size of 2.5 µm is already assumed to show the converged solution, whereas for the RSA and
CRSA method a size of 1.0 µm is sufficient. Therefore, a mesh size of 1.0 µm is adopted for
the subsequent simulations.
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b) c)
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Figure 3.12: a) Mesh convergence study b) Size convergence study: Tension in y-direction
(Standard deviation indicated by the error bars) c) Size convergence study: Pure
shear in yz-direction (Standard deviation indicated by the error bars). For the
corresponding periodic boundary conditions, the reader is referred to Fig. 3.11.
P 5
∗ indicates the engineering stress (1. Piola-Kirchhoff stress) at 5% strain.
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Size convergence study

A size convergence study is performed for varying sizes of RUCs generated with all three
randomization methods. Again, the number of fibers nf is used as a measure for the overall
RUC size since the fiber volume fraction and the fiber diameter are assumed to be constant.
Due to the random fiber distribution, for every randomization method and number of fibers,
10 different RUCs are generated. Hence, the average is used for comparison together with
the standard deviation indicated by the error bars. The RUCs are tested in in-plane tension
(y-direction) and in-plane shear (yz-direction) (see Fig. 3.11 a2 and b3). Further, in-plane
tension simulations in z-direction are conducted for the CRUCs to investigate their direction
dependence. Similar to the convergence study for the mesh density, the stresses and strains are
computed as volume averages of the whole domain Ω0 and the computation is terminated at a
maximum strain of 5%.

The results of the size convergence study are shown in Fig. 3.12 b) and c) for both loading
cases. In line with the results for the mesh density study, the randomized method yields almost
instantaneously converged results for all RUC sizes. Moreover, compared to the other two
methods, the standard deviation is very small, due to the low amount of fiber clustering. In
contrast to the RSA based methods, the material response in y-direction is less stiff for the
randomized method, whereas in the case of pure shear, the stiffest material response is present.
Thus, a direct correlation between the amount of fiber clustering and the overall in-plane
material response can be drawn, where a higher amount of clustering generally leads to a
higher difference between tensile and shear behavior.

In terms of the convergence criterion, the deviation to the previous realization is adopted as
previously done for the mesh convergence study. Consequently, nf = 18 can be regarded as
the converged RUC size for the randomized method. Compared to the randomized method,
the RSA and the CRSA method show pronounced differences between the shear and tensile
response. Here, the CRSA method results in a slightly stiffer material behavior, especially
in the tensile load case. In general, the standard deviation decreases with increasing RUC
size and similar to the mesh convergence study, the amount of fiber clustering influences the
convergence rate. At 24 fibers, convergence is reached for the RSA method, whereas 32 fibers
are needed for the clustered RSA method in z-direction. Interestingly enough, in y-direction
convergence for the CRSA is already reached for 24 fibers. Additionally, in this direction, the
unit cell response is similar to the RSA method. In the following, nf = 32 is chosen for all
unit cells as the common denominator.
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3.6 Unit cell identification and validation against

experimental results

3.6.1 Parameter identification

In Reuvers et al. [2024a], the thermomechanically coupled matrix model for polyamide 6
was developed, characterized and validated with mechanical and thermal experimental data.
Therefore, a staggered parameter identification procedure was used on the isothermal model
to obtain a set of mechanical and thermal material parameters for each test temperature. Here,
a novel blending technique of the polymer PA6 together with cyclic olefin copolymer (COC)
during specimen production allowed testing on a broad variety of stable DOCs. The resulting
material model is valid for DOCs between 15% and 29%. In the following, a brief overview
of the identification scheme is given:

1. The total Young’s modulus Etot was obtained from the initial slope of the true stress-
strain relations for different DOCs. Next, the exponential dependence of the Young’s
modulus on the crystallinity was found using nonlinear regression. In contrast to the
Young’s modulus, the Poisson’s ratio calculated via the negative ratio of the measured
transverse and longitudinal strain, showed no clear dependence on the DOC. Hence, it
was chosen as a constant νtot.

2. Based on a post-processing scheme introduced by Amin et al. [2006], uniaxial long-term
relaxation tests at various strain states revealed a nonlinear dependence of the relaxation
time τ on the visco-elastic overstress τ2 and the corresponding strain state represented by
the visco-elastic right Cauchy-Green tensorCv (see Fig. 3.13). Similar to the Poisson’s
ratio, no clear dependence on the DOC was visible, in line with the assumption of the
visco-elastic part corresponding mainly to the amorphous response of the material. For
the relaxation time, the power-law-type function τ = τ0||Bv||γexp(−δ||τ2||)was chosen.
Here, a dependence on the visco-elastic left Cauchy-Green tensor Bv = FvF

T
v and the

Kirchhoff overstress τ2 was introduced. The temperature dependent material parameters
τ0(θ), γ(θ) and δ(θ) were identified using nonlinear curve fitting.

3. Above room temperature, it was not possible to directly obtain the yield stress in tension
σ0
t and compression σ0

c from monotonic or cyclic tension and compression test. Hence,
these material parameters together with the parameters related to nonlinear Armstrong
Frederick hardening (b, c) were identified using a nonlinear multiple curve fitting pro-
cedure. Firstly, the ideal parameters for each DOC were governed using a single fit
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Figure 3.13: Results of the visco-elastic post-processing procedure fromReuvers et al. [2024a]:
Inelastic stretch over time and relaxation time over Kirchhoff stress for an exem-
plary temperature of 100◦C and various DOCs χ.

independent of the crystallinity. Next, the results for each parameter were plotted over
the DOC and a linear trend line was identified using a multi curve fit. In this way,
the dependence on the DOC was found and incorporated into the model for each test
temperature.

4. Finally, the parameters related to the thermal characteristics of the model as the conduc-
tivity λt, specific heat capacity cT , the thermal expansion coeffcient αT and the density
ρ0 were determined experimentally. Similar to the Young’s modulus, a dependence on
the DOC was found using linear regression.

Parameter 23◦ C 100◦ C 150◦ C
Etot [MPa] 3800 832.0 484.89
νtot [-] 0.35 0.45 0.45
σ0
t [MPa] 25.0 2.6 2.51
c [MPa] 17.756 162.39 171.25
b [MPa] 1.276 147.445 158.90
τ = τ0(θ) ||Bv||γ(θ) exp(−δ(θ) ||τ2||) τ0 [s] 1853.653 1035.238 573.899

γ [-] 4.57 4.3 4.289
δ [-] 0.539 0.759 0.873

Table 3.4: Mechanical matrix material parameters for χ = 0.41 at all test temperatures.

The complete set of mechanical and thermal parameters for the matrix material model up
to a DOC of 29% is provided in Tabs. 3.9 and 3.8 in the Appendix. In the current work, the
DSC results of the composite material revealed a DOC of χ ≈ 0.41 (cf. Sec. 3.3), which
is beyond the identified parameter range. The extrapolated parameters from Tabs. 3.9 and
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3.8 were tested for their suitability and compared to the experimental results from Sec. 3.3,
however, only the thermal parameters as well as the crystallinity independent parameters for
the visco-elastic branch were suitable. In Reuvers et al. [2024a], DIC was used only for the
visco-elastic tests to exploit the post-processing procedure by Amin et al. [2006]. All other test
results were converted to true stress and strain results under the assumption of incompressibilty.
Hence, it is reasonable that extrapolated values from these results do not correspond to the
current experimental data, which was obtained using DIC in all test cases. To obtain suitable
parameters for the Young’s modulus, the yield stress as well as the two hardening parameters,
nonlinear curve fitting was used. Due to the lack of compression data above room temperature,
the tension-compression asymmetry in yielding was neglected (m = 1.0). An overview of the
mechanical parameters for a DOC of χ ≈ 0.41 is presented in Tab. 3.4. For the glass fibers,
the temperature independent parameters were supplied by the manufacturer and can be found
in Tab. 3.5.

Efiber νfiber αT,fiber cT,fiber λT,fiber ρ0,fiber
[GPa] [-] [10−6/K] [J/gK] [W/mK] [g/cm3]
73 0.22 5.0 803 1.35 2.58

Table 3.5: Mechanical and thermal glass fiber material parameters.

3.6.2 Comparison of RUC and experimental results as well as
further numerical calculations

Mechanical results

In order to derive the effective mechanical material properties and compare the results to
the experimental findings from Sec. 3.3, the six uniaxial strain states (see Fig. 3.11) are
applied successively on the RUCs. For each randomization method, 10 different RUCs are
evaluated under isothermal conditions. The averaged results are shown in Tab. 3.6 for the
three test temperatures together with the standard deviation s. Generally, the material stiffness
tensor of transverse isotropic materials is defined by the following five material parameters:
Exx, Eyy, νxy, Gxy, Gyz, where the symmetry between y- and z-direction is already exploited.
This symmetry is, however, weakened for the CRSAmethod, where a high degree of clustering
in z−direction leads to differences in the in-plane material characteristics. Consequently, the
resulting material behavior from the CRSA method is orthotropic and defined by the following
nine material constants: Exx, Eyy, Ezz, νxy, νxz, νyz, Gxy, Gxz, Gyz. In Tab. 3.6, all nine
material constants are presented for completeness, even though in the case of the randomized
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or RSA method the material constants are reduced to six. As expected, the material stiffness in
x-direction is higher compared to the stiffness in y- and z-direction due to the dominant fiber
influence. Moreover, the dependence on the temperature is least pronounced in fiber direction,
which corresponds to the finding of Gröger et al. [2021] and the three-point-bending tests in
Sec. 3.3. A more detailed overview of the reduction in material stiffness with increasing
temperature is presented in Fig. 3.14, where the experimental material stiffness from tensile
and three-point-bending tests are compared to the simulative results. The simulative results at
room temperature are in good agreementwith the experimental data. Above the glass transition,
the predicted material stiffness in fiber direction deviates from the tensile response as expected
due to the 2D measurement error discussed in Sec. 3.3. Interestingly enough, the temperature
dependence in x-direction is more pronounced for the results of the bending tests compared to
the RUC results and findings from Gröger et al. [2021]. The authors suspect that this softening
might be related to delamination effects at the interface between fibers and matrix, which could
be confirmed by a microscopic examination of the test specimens directly after testing or DIC
measurements during testing. Another possibility could be a reduction in stiffness of the glass
fibers resulting from the temperature increase. For example in Jenkins et al. [2015] a reduction
in fiber stiffness was reported after thermal conditioning for 25 minutes at 200◦C, suggesting
that the stiffness decreased already between room and elevated temperatures. Hereby, the
thermal conditioning time is similar to the heating phase for the experiments in Sec. 3.3. This
decrease in fiber stiffness is, however, not accounted for in the RUC simulations (cf. Tab. 3.5)
due to the lack of data from the manufacturer.

As indicated in Tab. 3.6, the material stiffness in y- and z-direction as well as the shear
moduliGxy andGzx show no significant deviation for the randomization and the RSA method.
The high degree of fiber clustering in the CRSA method, however, leads to pronounced
differences at room temperature that are negligible above the glass transition.

The Poisson’s ratios νxy and νxz correspondwellwith the experimental findings fromSec. 3.3
above the glass transition. However, at room temperature, the RUC results show an increased
lateral contraction compared to the experimental results. Interestingly enough, below the glass
transition, the Poisson’s ratios νxy and νxz are independent of the randomization method, and
the differences at higher temperatures are only minor. In terms of the standard deviation,
the results correspond with those of the convergence studies in Sec. 3.5, where the standard
deviation of the randomized method is smaller compared to the RSA and CRSAmethods. This
finding translates to the stress fields for an exemplary temperature of 100◦C in Fig 3.15 and
ε = 0.25, where the randomized method shows the most homogeneous stress distribution in all
directions. Hereby, stress peaks are mainly visible in regions with increased fiber clustering.
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Randomization method Exx Eyy Ezz νxy νxz νyz Gxy Gzx Gyz

n = 10 [MPa] [MPa] [MPa] [-] [-] [-] [MPa] [MPa] [MPa]
23◦C Randomized 31350.23 7417.33 7460.11 0.29 0.29 0.50 45.50 44.99 6651.27

s 0.249 21.651 27.396 0.0003 0.0003 0.002 0.153 0.133 24.391
RSA 31352.74 8374.29 8388.99 0.29 0.29 0.44 46.31 46.46 5847.62

s 0.345 188.741 154.343 0.006 0.006 0.011 0.615 0.804 148.625
CRSA 31332.06 8871.82 8463.88 0.29 0.29 0.43 44.59 49.06 5667.99

s 34.717 131.550 104.993 0.001 0.001 0.010 0.367 0.622 79.094
100◦C Randomized 29563.95 1776.92 1779.63 0.35 0.35 0.78 9.78 9.94 1465.10

s 0.259 6.280 6.697 0.0007 0.0007 0.002 0.027 0.036 10.883
RSA 29567.14 2219.74 2223.35 0.35 0.35 0.72 10.19 10.21 1236.72

s 0.485 84.704 80.705 0.004 0.004 0.012 0.206 0.147 52.849
CRSA 29547.14 2390.97 2350.33 0.34 0.36 0.71 10.94 9.72 1171.88

s 33.877 76.597 70.923 0.003 0.003 0.010 0.175 0.096 26.188
150◦C Randomized 29351.08 1123.51 1127.57 0.35 0.35 0.79 5.76 5.85 1020.05

s 0.232 5.794 6.465 0.0007 0.0007 0.002 0.016 0.022 7.690
RSA 29353.08 1447.69 1450.47 0.35 0.35 0.73 6.01 6.02 835.92

s 0.365 62.314 58.262 0.004 0.004 0.012 0.125 0.089 39.207
CRSA 29332.82 1584.72 1538.37 0.34 0.36 0.72 6.46 5.72 791.60

s 33.817 54.129 48.874 0.003 0.003 0.010 0.106 0.058 19.882

Table 3.6: Effective elastic material parameters for various material directions and randomiza-
tion methods at temperatures below and above the glass transition. The standard
deviation is indicated by s.

This phenomenon is particularly evident in the CRSA method, where slight band formation is
also visible in the yy- and xy-directions. In fiber direction, no significant differences between
the stress fields of all randomization methods are present in line with the results for the material
stiffness Exx in Tab. 3.6. Here, the fibers are the load bearing component, as indicated by the
stress field.

A detailed comparison of experimental and simulative results beyond the elastic material
regime is presented in Fig. 3.16 for the material response perpendicular to the fibers at all
respective test temperatures. The results for the RSA and CRSAmethod are in good agreement
with the experimental data, whereas the randomized method yields a softer material response
similar to the convergence study results from Sec. 3.5. Consequently, the authors conclude that
both the RSA and theCRSAmethod are eligible for the presentmaterial. For a further selection,
additional tests, such as for example, shear tests or a detailed microscopic examination of the
underlying fiber distribution beyond the investigations in Sec. 3.3 would be necessary, which
was, however, beyond the scope of this work. Nonetheless, both RSA and CRSA method yield
valid results in comparison to the experiments and can be used to generate a data basis for the
identification of the macroscopic material model.
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Figure 3.14: Comparison of experimental and simulativematerial stiffness inx- and y-direction
for various temperatures and randomization methods.

Thermal results

To determine the effective thermal conductivity tensor from the averaged heat flux over the
RUC domain a series of n = 10 tests is performed for each randomizationmethod. Therefore, a
temperature difference∆T = 1K is successively applied in x-, y- and z-direction under steady-
state heat transfer conditions as stated in Sec. 3.5. In Reuvers et al. [2024a], the conductivity
of the polyamide 6 matrix was found to be dependent on the degree of crystallinity, however,
the temperature influence was negligibly small (cf. Tab. 3.8). For the conductivity of the glass
fibers no temperature influence is reported by the manufacturer in the considered temperature
range. Consequently, the effective thermal conductivity tensor of the composite is derived only
at room temperature. The results of the computations are given in Tab. 3.7 as the mean value
together with the standard deviation s. For all computations, the off-diagonal entries of the
thermal conductivity tensor were four or more orders of magnitude smaller than the entries on
the main diagonal and are, thus, considered as null λxy = λyx = λxz = λzx = λyz = λzy ≈ 0.
Hence, only the conductivities in x-, y- and z-direction are presented.
Similar to the mechanical results, the in-ply conductivities for the randomized and RSA

methods are approximately equal, with the randomized method having the lowest standard
deviation. For the CRSA method, the thermal conductivity in z-direction is higher compared
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Figure 3.15: Exemplary in-plane stress fields (Cauchy stress) for all three randomization meth-
ods at ε = 0.025 and 100◦C after application of the far field strains in the
corresponding material directions.
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Figure 3.16: Comparison of experimental and simulative results perpendicular to the fiber
direction for various temperatures and randomization methods.

Randomization method λxx λyy λzz
n=10 [W/mK] [W/mK] [W/mK]

Randomized 0.7991 0.5919 0.5894
s 0.0015 0.0009 0.0008

RSA 0.8040 0.5947 0.5944
s 0.0028 0.0033 0.0035

CRSA 0.8022 0.5840 0.6073
s 0.0042 0.0028 0.0026

Table 3.7: Effective thermal conductivity for various material directions and randomization
methods (s denotes the standard deviation). λxy = λyx = λxz = λzx = λyz =
λzy ≈ 0.

to the conductivity in y-direction, which can be attributed to the higher degree of cluster-
ing resulting in a layered structure. Generally, all results in y- and z-direction correspond
well with the experimentally determined values in z-direction of 0.5889 W/mK for 23◦ and
0.6365 W/mK as the median over all test temperatures (cf. Fig. 3.7). In fiber direction, the
thermal conductivity is fiber dominated and, thus, higher compared to the in-ply results for
all randomization methods. Interestingly enough, the anisotropic thermal conductivity is not
material-induced but rather geometry induced since both material constituents are thermally
isotropic on their own. To give an insight on local differences between the randomization
methods, exemplary heat flux fields resulting from the application of a temperature difference
in x-, y- and z-direction are shown in Fig. 3.17. Here, the in-ply heat flux field of the ran-
domized method is the most homogeneous, whereas directional dependencies can clearly be
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indicated for the RSA and CRSA method. Slight band formation is visible for the RSA and
CRSA method in y- and z-direction throughout all realizations, however, most pronounced
for the heat flux of the CRSA RUC in y-direction, resulting from the high degree of fiber
clustering. In x-direction, the heat flux fields of all randomization methods show no significant
differences, consistent with the findings in Tab. 3.7.

Figure 3.17: In-plane heat flux field for all three randomization methods after application of a
1K temperature difference in in x-, y- and z-direction.



116 3 Experimental investigation and micromechanical analysis of glass fiber reinforced polyamide 6

3.7 Conclusion and outlook

In this work, a computational micromechanics framework was presented, incorporating ther-
mal and mechanical effects on the microscale to predict the homogenized material behavior of
an experimentally tested glass fiber reinforced polyamide 6 single ply. To this end, monotonic
and cyclic experimental tests were conducted in various material directions, e.g. tension,
compression and bending, including testing at various temperatures and strain rates. The
results showed the materials’ direction dependency due to the unidirectional reinforcement
and confirmed the temperature and strain rate dependency mainly perpendicular to the fibers,
where the polyamide 6 material dominates the material response. Additional tensile tests
under varying fiber angle displayed the nonlinear influence of the fiber angle on the composite
material behavior. Furthermore, the material was thermally characterized, including a TMA,
DSC and Hot-Disc measurements indicating a temperature influence on the thermal material
parameters. Next, a thermomechanically coupled material model formulation for the PA6
matrix was summarized that captures the nonlinear visco-elastic, elasto-plastic material be-
havior, incorporating the Bauschinger effect via nonlinear kinematic hardening together with a
tension-compression asymmetry in yielding. The degree of crystallinity enters the constitutive
equations as a constant input quantity to account for the effect of the underlying material mor-
phology on the overall material behavior, as well as the interplay between the biphasic matrix
microstructure and applied thermal conditions. In Reuvers et al. [2024a], the model formula-
tion was already identified for polyamide 6 blends for a range of DOCs between 15 and 29%
and extended up to 41 % in this contribution with the presented experimental results. Together
with an elastic material model for the glass fibers, the presented matrix model formulation
was used in the context of repeating unit cell simulations. Therefore, various randomization
methods were tested during the generation of the unit cells to predict the random fiber distri-
bution. Here, the focus lied on process automation. Consequently, a plug-in was developed
using the Abaqus-Python interface. In the following, a statistical investigation, where the
Hill-Mandel condition was exploited to obtain homogenized mechanical and thermal results
indicated the necessary mesh and unit cell size to achieve converged results. The comparison
of experimental and numerical mechanical and thermal results showed a strong agreement and
confirmed the applicability of the repeating unit cells. In terms of the mechanical results,
the RSA and CRSA methods were found to reflect the material behavior best, whereas the
effect of the randomization method ,for example, on the effective thermal parameters was
negligible. In general, the authors would recommend to use the CRSA method, which showed
to be more accurate regarding the production induced orthotropic material behavior and the
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visual comparison with the microscopic images. Moreover, the high amount of fiber clustering
might be able to reproduce delamination phenomena if damage effects were incorporated in
the matrix material. In the present case, however, the small plate thickness limited completing
the mechanical and thermal experimental study for all three material directions. Thus, the
RSA method provides a simpler solution, with the reduction from orthotropic to transversely
isotropic material behavior. In the future, the established and experimentally validated unit
cells will be used for the development of a broad data basis for the single ply response of
glass fiber reinforced polyamide 6, enabling testing on additional temperatures and strain rates.
Furthermore, previously unseen loading conditions, as for example shear, can be examined
without the accompanying experimental effort. The concept can also be adjusted to cater for
alteredmaterial design, as for example, using a different fiber volume content or exchanging the
underlyingmaterial constituents, given that the knowledge of their individual material behavior
is known. This data basis will then be used in an upcoming publication to identify a homog-
enized macroscopic material model, accounting for the underlying micro-thermomechanical
effects through the presented framework. The macromodel will be tested in the context of
thermoforming simulations to demonstrate the enhancements made through the inclusion of
the crystallinity dependence and the thermo-mechanical coupling in the formulation.

3.8 Appendix

Table 3.8: Set of thermal material parameters at different temperatures from Reuvers et al.
[2024a].

Function Parameter at: 23◦ C 50◦ C 100◦ C 130◦ C 150◦ C
αT (χ) = c9(θ)χ+ c10(θ) c9[10−4/K] -0.2601 -0.3586 -5.857 -3.336 -2.238

c10[10−4/K] 0.8756 1.218 3.122 2.565 2.431
cT (χ) = c11(θ) θ + c12(θ) c11[J/gK] 0.00471 0.00401 0.00401 0.00401 0.00401

c12 [J/gK] 1.25313 1.52299 1.52299 1.52299 1.52299
λT (χ) = c13χ+ c14 c13[W/mK] 0.4338 0.4338 0.4338 0.4338 0.4338

c14[W/mK] 0.1855 0.1855 0.1855 0.1855 0.1855
ρ0(χ) = c15χ+ c16 c15 [g/mm3] 0.4878 0.4878 0.4878 0.4878 0.4878

c16 [g/mm3] 0.9897 0.9897 0.9897 0.9897 0.9897
Remark: The reader is kindly reminded, that although some coefficients of the identified
functions determining the material parameters, are negative, the material parameters themselves
are always positive for the range of DOCs (χ = 0.15− 0.29) the model spans.
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3.8.1 Mechanical and thermal material parameters for the
polyamide 6 matrix model

Table 3.9: Set of mechanical material parameters at different temperatures for a range of DOC
between 15 and 29% from Reuvers et al. [2024a].

Function Parameter at: 23◦ C 50◦ C 100◦ C 130◦ C 150◦ C
Etot(χ) = C1(θ) exp(C2(θ)χ) C1 [MPa] 2397 2270* 143.1 96.875 102.1
E2 = Etot − E1 C2 [-] 0.9106 -0.8716* 5.133 5.565 5.373
E1 = mE(χ)Etot mE [-]
mE = 1.07143χ+ 0.38935
νtot(θ) = ν1 = ν2 [-] 0.35 0.45 0.45 0.45 0.45
σ0
c = c1(θ)χ+ c2(θ) c1 [MPa] 72.19 138.8 26.95 20.86 13.19

c2 [MPa] 41.96 -21.913 -3.192 -2.969 -1.436
σ0
t = c3(θ)χ+ c4(θ) c3 [MPa] 72.19 131.24 25.38 20.27 12.93

c4 [MPa] 41.96 -20.984 -3.006 -2.884 -1.407
c = c5(θ)χ+ c6(θ) c5 [MPa] c = 17.756** 20.86 834.5 597.3 523.8

c6 [MPa] 92.213 -94.56 -69.42 -67.89
b = c7(θ)χ+ c8(θ) c7 [-] b = 1.276** 0 355.4 150.2 196.3

c8 [-] 60.438 -53.15 -22.39 -28.3
τ = τ0(θ) ||Bv||γ(θ) exp(−δ(θ) ||τ2||) τ0 [s] 1853.653 1511.952 1035.238 737.245 573.899

γ [-] 4.57 4.416 4.3 4.872 4.289
δ [-] 0.539 0.814 0.759 0.866 0.873

* inconsistent results due to testing in the glass transition regime
** constant values obtained for χ = 0.29 only, due to early failure of the remaining blends
Remark: The reader is kindly reminded, that although some coefficients of the identified functions
determining the material parameters, are negative, the material parameters themselves are always positive
for the range of DOCs (χ = 0.15− 0.29) the model spans.
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4.1 Abstract

In order to achieve process stability in the industrial thermoforming of fiber reinforced poly-
mers (FRPs), typically, cost- and time-intensive trial-and-error-processes are required. The
experimental boundary conditions, as well as the material composition and component design
optimization, are highly dependent on material phenomena related to various material scales
and constituents. It is therefore necessary to develop finite element constitutive models that are
validated against experimental results and incorporate various material phenomena in order to
reduce the experimental effort and evaluate the composite’s performance with reliable predic-
tions. In this work, an existing thermo-mechanically coupled constitutive model for polyamide
6 is extended in a thermodynamically consistent manner to represent the anisotropic com-
posite behavior, including anisotropic conduction, thermal expansion as well as internal heat
generation associated with irreversible processes. Furthermore, the crystallization process
is incorporated using experimental standard (S-DSC) and flash (F-DSC) differential scan-
ning calorimetry results. The thermal and mechanical model parameters of the homogenized
macroscopic material formulation are identified and the model response is successfully vali-
dated with a data base comprising both experimental and virtual results. Finally, the model
capabilities are assessed in several thermo-mechanical structural computations, including a 3D
thermoforming example in comparison with experimental results. In particular, the influence
of the anisotropy on material self-heating, thermal expansion and the resulting crystalline state
is investigated, demonstrating the potential of this new approach to efficiently and accurately
predict FRPs in the future. Our source code, data, and exemplary input files are available under
https://doi.org/10.5281/zenodo.15052983.

https://doi.org/10.5281/zenodo.15052983


4.2 Introduction 121

4.2 Introduction

Fiber-reinforced polymers (FRPs) are now prevalently employed in applications that neces-
sitate superior thermo-mechanical properties alongside weight reduction and cost-effective
mass production. These composite materials are fabricated using a diverse array of con-
stituents, especially semi-crystalline thermoplastics as matrix materials, with recyclability and
reusability increasingly becoming pivotal considerations in the design process. Despite their
widespread adoption across various industries, the precise prediction and optimization of form-
ing processes, such as thermoforming or injection molding, frequently remain dependent on
trial and error methodologies. Often, the resulting products exhibit undesirable deformations
post-forming, necessitating extensive and costly experimental adjustments to refine the process
parameters. The intricate behavior of the polymeric matrix material, which undergoes a second
order phase transition around the glass transition temperature, poses significant challenges for
accurate prediction and remains an active area of research (see, e.g., Srivastava et al. [2010];
Hadipeykani et al. [2020]; Xie et al. [2020]). In instances involving a semi-crystalline poly-
mer matrix, the non-isothermal crystallization process during cooling is crucial not only for
the complex interaction between fiber and matrix at their interface but also for the material’s
ultimate performance and subsequent processing ability, further complicating the forming pro-
cess (see e.g. Yoshida et al. [2022]). In this context, the formation of crystal phases occurs
within a temperature environment that is both temporally and locally evolving. This has a
significant impact on the relevant parameters for the heat transfer and thus, ultimately, the
temperature field within the polymer. In turn, the temperature field determines the process of
crystallization, resulting in a two-way coupling of the temperature field and the crystallization
process (cf. Dietz [1981]; Ayoub et al. [2011]). Consequently, the need arises for including a
macroscopic description of the crystallization process into the thermo-mechanically coupled
material model for the resulting composite.

Naturally, the morphology of the underlying microstructure has a significant influence on
the resulting material response as well (cf. e.g. Ayoub et al. [2011]; Dörr [2021]). Especially,
since FRPs are industrially processed at high temperatures near the melt with the objective of
achieving a stable crystalline state upon cooling. The resulting degree of crystallinity (DOC)
is, however, mostly determined prior to or after the application of mechanical loadings and not
during the experimental procedure itself. To this end, in this work on unidirectionally glass
fiber reinforced polyamide 6 two decoupled processes are considered, similar to (Felder et al.
[2020b]). At first, the non-isothermal crystallization from the melt is treated as a thermo-
chemical problem, where stress-free conditions are assumed based on a relaxed static melt to
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obtain the evolution of theDOC (χ̇ ≥ 0 andσ ≈ 0). Thus, changes in the crystal configurations
or inhomogeneous crystal phases can be identified based on, for example, varying cooling rates
or temperature gradients inside the composite resulting from e.g. anisotropic thermal behavior
of the composite. Furthermore, analyzing the exothermic latent heat during crystallization in a
fully coupled scheme is crucial for the identification of local temperature gradients within the
material. To this end, the crystallization kinetics are incorporated bymeans of a non-isothermal
modification of the Avrami equation (cf. Avrami [1939]; Nakamura et al. [1973]; Felder et al.
[2020b]), introducing a cooling rate dependency and simultaneously taking into account the
backcoupling with the temperature field. The model is identified with S-DSC and F-DSC data
from Kulkarni et al. [2023]. Subsequently, the thermo-mechanical problem of the composite
is solved, where the DOC enters the model as a constant input quantity, similar to, for example,
Felder et al. [2020b]; Ayoub et al. [2011]; Abdul-Hameed et al. [2014] and external mechanical
and thermal boundary conditions are applied (χ̇ = 0 and arbitrary σ).

Once the resulting crystalline state of the material is reached, the mechanical response
of the composite is characterized by a nonlinear transversely isotropic material behavior.
Additionally, thermo-mechanical coupling effects occur in terms of material self-heating and
associated thermal softening, especially at high loading rates (see e.g. Krairi et al. [2019];
Felder et al. [2020a,b]; Hao et al. [2022a]). In the past, the primary focus has been on the
derivation of suitable material formulations, predominantly related to the polymer matrix,
due to its complex nonlinear material behavior. Some examples include phenomenological
models incorporating viscous or visco-plastic effects (see e.g. Boyce et al. [2000]; Ayoub
et al. [2010]; Krairi and Doghri [2014]; Felder et al. [2020a]) as well as fewer available
extensions to thermo-mechanically coupled approaches in e.g. Khan et al. [2006]; Anand
et al. [2009]; Srivastava et al. [2010]; Shen et al. [2019]; Felder et al. [2020b], to name
a few. For the composite, several micromechanical approaches exist, where unit cells or
representative volume elements are employed to generate a homogenizedmacroscopic material
response (see e.g. González and LLorca [2007]; Melro et al. [2013a]; Naya et al. [2017];
Bahloul et al. [2021]; Reuvers et al. [2024b]). These approaches are however more suited
for investing micromechanical phenomena and gathering virtual or effective material data
and are not feasible for investigating forming processes due to their extensive computational
cost. In addition, again only a few of these works consider non-isothermal conditions. For
engineering applications, macromechanical polymer composite models were proposed by, for
example Reese [2003b]; Mehdipour et al. [2019] as well as data-driven approaches using
neural networks, see El Kadi [2006]; Dey et al. [2023]. More recent studies on thermoforming
simulations include several non-isothermal effects in their macroscopic approaches (see e.g.



4.2 Introduction 123

Machado et al. [2016]; Guzman-Maldonado et al. [2016]; Dörr et al. [2019]; Dörr [2021],
however, apart from Dörr et al. [2019]; Dörr [2021]) they are limited to temperatures above
the crystallization onset. The present work is settled in between engineering application
and sophisticated, physics-based model development. In contrast to Dörr et al. [2019]; Dörr
[2021], who incorporated the evolution of crystallinitymainly to account for the phase transition
between themolten and the solid state, in this work, the resulting absolute degree of crystallinity
enters the thermo-mechanical formulation as a constant input quantity. Moreover, in contrast
to Dörr et al. [2019]; Dörr [2021], the present work exploits the concept of structural tensors
(see e.g. Boehler [1979]; Zhang and Rychlewski [1990]; Reese et al. [2001]; Reese [2003b])
to model anisotropy. For polymeric materials this idea was adopted in, for example, Holzapfel
and Gasser [2001]; He et al. [2021]. Another popular application is the field of biomechanics
in, for example, human tissues (see e.g. Taç et al. [2024]; Martonová et al. [2024]). In
Vladimirov et al. [2010], the concept of structural tensors has been used to model anisotropic
finite elasto-plasticity, whereas Reese et al. [2021] utilized structural tensors to model damage
in elasto-plasticmaterials. However, with regard to the extension of this approach to anisotropic
thermal problems, very few contributions have been made thus far. In this context, Al-Kinani
[2014] introduced amacroscopic description of the heat flux for transversely isotropicmaterials
and further extended the theory to model anisotropic thermal expansion employing a split of
the deformation gradient into a thermal and a mechanical part. This split is well-known in the
literature to model thermo-mechanically coupled problems (see e.g. Stojanovic et al. [1964];
Lu and Pister [1975]; Lion [1997a]; Felder et al. [2022]). Besides the split of the deformation
gradient, other approaches employ a general representation of the twice integrated heat capacity,
where a suitable choice of the internal energy is necessary to include thermal expansion into
the free energy (see e.e. Chadwick [1974]; Reese [2003a]). Both methods are commonly
used in thermo-mechanically coupled material formulations, however, in this work the thermal
expansion term will be introduced via the choice of the internal energy. For anisotropic
materials, this was previously done briefly in Groß et al. [2019, 2020] and further works of the
authors, who introduced a fiber deformation tensor based on a structural tensor. However, no
numerical investigations regarding the thermal anisotropy were conducted and the suitability of
the chosen thermal energetic terms were not evaluated. To the authors’ knowledge, there is no
comparable constitutive framework available in the literature, which investigates anisotropic
thermal problems together with the corresponding complex mechanical and crystallization
interactions related to fiber-reinforced semi-crystalline polymers (FRSCPs). Moreover, the
presented material formulation is experimentally verified over multiple material scales and
incorporates micro-thermo-mechanical phenomena over an unprecedentedly wide range of
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process parameters.
In the following, the anisotropic thermo-chemically, thermo-mechanically coupled material

model is presented in Sec. 4.3 as an extension of the model by Reuvers et al. [2024a]. The
unidirectional (UD) fiber-induced anisotropy is accounted for by an additional anisotropic
thermo-elastic energetic contribution together with macroscopic anisotropic thermal conduc-
tion. A novel aspect of this work is the formulation of the anisotropic thermal expansion term
based on a general derivation of the internal energy. In addition, the crystallization process is
introduced in a thermodynamically consistent manner according to Felder et al. [2020b]. A
comparison of the model response to experimental and virtual composite data is shown in Sec.
4.4 for various fiber angles, following model identification for a wide range of crystallinities
between 15 and 40 %. The capabilities of the model, to accurately predict anisotropic thermal
expansion as well as self-heating are presented in Sec. 4.5, together with further complex
structural examples covering the influence of the thermal anisotropy on the crystallization
behavior as well as thermo-mechanical loading scenarios and a 3D thermoforming example in
comparison to experimental results. Finally, a conclusion is drawn in Sec. 4.6 and an outlook
on future model applications and enhancements is given.

4.3 Constitutive equations

This work is thought out as the final step of an approach for developing a valid macroscopic
material model for fiber-reinforced polymers in the context of thermoforming, incorporating
computational micromechanics and virtual material testing to reduce the experimental effort
necessary for characterizing the material formulation for a wide range of crystalline states.
Consequently, the thermo-mechanically coupled model equations presented here, are an ex-
tension of an already existing and experimentally characterized material model from Reuvers
et al. [2024a]. The adjustments include the extension from isotropic to anisotropic thermo-
mechanical material behavior to account for the reinforcing agent. It is assumed that a perfect
bond between fibers and the matrix is achieved due to the application of bonding agents during
production. Consequently, delamination effects are not considered in this work as well as
residual stresses resulting from thermal gradients and the different mechanical and thermal
properties of the constituents. The reader is kindly reminded that the DOC is introduced as
a constant input quantity for the thermo-mechanically coupled material model. Its absolute
value is determined through an independent thermo-chemical process, similar to Felder et al.
[2020b], which represents the crystallization of the polymer matrix from the molten state.
In the following, the equations related to the crystallization from the static melt (χ̇ ≥ 0 and
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σ ≈ 0) are denoted with I. For the equations related to the thermo-mechanical behavior of
the composite (χ̇ = 0 and arbitrary σ), the prefix II is introduced. Throughout the text, the
following notational conventions are employed:

a,A Scalar quantity sym(A)
1

2
(A+AT )

a First order tensor dev(A) A− 1

3
tr(A)I

A Second order tensor Grad(A) Gradient ofA with respect to the reference configuration
I Identity tensor grad(A) Gradient ofA with respect to the current configuration
A Fourth order tensor Div(A) Divergence ofA with respect to the reference configuration
˙(∗) Total derivative with respect to time : Double contraction

(A)T Transpose ofA |A|
√
tr(ATA)

(A)−1 Inverse ofA (∗)n Quantity from last converged time step
tr(A) Trace ofA ¯(∗) Quantity in the reference configuration
det(A) Determinant ofA

4.3.1 Kinematics

In line with Reuvers et al. [2024a], the deformation gradient F is split into an elastic (Fe1) and
plastic (Fp) (see e.g. Eckart [1948]; Kröner [1959]; Lee [1969] ) as well as an elastic (Fe2)
and a viscous (Fv) part (see e.g. Sidoroff [1974]; Lubliner [1985]; Lion [1997a]; Reese and
Govindjee [1998])

F = Fe1 Fp = Fe2 Fv (4.1)

to account for the visco-elastic, elasto-plastic material behavior of the polymeric matrix. An
additional split of the plastic deformation gradientFp = Fpe Fpi according to e.g. Lion [2000];
Dettmer and Reese [2004] is introduced to model nonlinear kinematic hardening. Thus, the
following local intermediate configurations ic1, ici1 and ic2 are introduced (cf. Fig. 4.1).

4.3.2 Helmholtz free energy

The total Helmholtz free energy is expressed in terms of the right Cauchy-Green tensor
C = F TF and the elastic right Cauchy-Green like tensors of the intermediate configurations
as

Ce1 = F T
e1 Fe1 = F−Tp C F−1

p , Cpe = F T
pe Fpe = F−Tpi Cp F

−1
pi ,

Ce2 = F T
e2 Fe2 = F−Tv C F−1

v , (4.2)

where Cp = F T
p Fp denotes the plastic right Cauchy-Green tensor. To consider the fiber

induced anisotropy resulting in transversely isotropic material behavior, a structural tensor
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Elasto-plastic model

Visco-elastic model

Anisotropic elastic model

rc ccF

Fp

Fpe

Fpi
Fe1

Fv Fe2

ic1

ic2

ici1

a)

b)

c) x
y

z
m0

M0 = m0 ⊗m0

ψp(Cpe, χ, θ)

ψe1(Ce1, χ, θ)

ψe2(Ce2, θ)

ψ3(C,M0, θ)

ϕxy

ϕz

Figure 4.1: a) Schematic illustration of the constitutive model, b) Multiplicative splits of the
deformation gradient (rc-reference and cc-current configuration), c) Definition of
the structural tensorM0 in the reference configuration.

M0 = m0 ⊗m0 is introduced in the reference configuration. Here,m0 denotes a first order
tensor oriented in the direction of the fibers as

m0 =
(
cos(ϕxy)cos(ϕz)

)
e1 +

(
sin(ϕxy)cos(ϕz)

)
e2 +

(
sin(ϕz)

)
e3, (4.3)

with the fiber angles ϕxy and ϕz according to Fig. 4.1 c. Consequently, two additional
invariants (Eq. 4.5) are defined (see e.g. Spencer [1971]; Reese [2003b]; Holthusen et al.
[2020]) that extend the set of the conventional ones (Eq. 4.4)

I1 = tr(C), I2 =
1

2

(
tr(C)2 − tr(C2)

)
, I3 = det(C) (4.4)

I4 = tr(CM0) = λ2
F , I5 = tr(C2M0). (4.5)

Please note thatM0 = M 2
0 holds, therefore no further invariants depending onM 2

0 need to
be considered. Here, the fourth invariant can be interpreted as the squared stretch in fiber
direction λ2

F . In line with Fig. 4.1 and the assumption of two independent processes (I
Thermo-chemical crystallization of the polymer melt and II Thermo-mechanical composite
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behavior), the Helmholtz free energy is defined as an additive decomposition

I ψ(χ, θ) = ψχ(χ, θ) + ψc(θ), (4.6)

II ψ(C,Ce1,Ce2,Cpe, χ, θ,M0) = ψ1(Ce1,Cpe, χ, θ) + ψ2(Ce2, θ)

+ ψ3(I1, I4, I5,M0, θ) + ψc(θ),
(4.7)

whith the chemical potential ψχ depending on the absolute degree of crystallinity χ. Here,
ψ1 and ψ2 denote the elasto-plastic and visco-elastic energetic contributions, respectively, and
ψ3 incorporates the fiber induced anisotropy. The elasto-plastic energetic part, ψ1 is further
decomposed into an elastic ψe1 and a plastic ψp part

ψ1(Ce1,Cpe, χ, θ) = ψe1(Ce1, χ, θ) + ψp(Cpe, χ, θ), (4.8)

depending on the constant absolute DOC χ. Finally, an unspecified caloric part ψc is added to
both state potentials in order to ensure flexibility regarding the choice of the function for the
heat capacity cT (cf. Felder et al. [2022]; Reuvers et al. [2024a]). As indicated in Eq. 4.6 and
4.7, all energetic contributions jointly depend on the temperature θ. It should be noted that the
free energy of crystallization is related solely to the polymeric matrix material, as the fibers
are not subjected to the formation of crystalline structures and remain unaltered throughout the
process. Although, several contributions in the literature report the fibers as nucleation agents
(see e.g. Klein et al. [1995]; Manchado et al. [2000]), DSC tests on fiber-reinforced and pure
polyamide 6 samples did not support these findings. Thus, the influence of the reinforcement
on the crystallization is neglected.

4.3.3 Second law of thermodynamics: Clausius-Duhem inequality

In order to derive thermodynamically consistent constitutive equations, the local form of the
Clausius-Duhem inequality with respect to the reference configuration

I −ρ0(ψ̇ + η θ̇)− 1

θ
q0 · Grad(θ) ≥ 0, (4.9)

II S :
1

2
Ċ − ρ0(ψ̇ + η θ̇)− 1

θ
q0 · Grad(θ) ≥ 0, (4.10)

is evaluated separately for the two processes. Here, the second Piola-Kirchhoff stress tensor S
is introduced along with the entropy η as well as the material density per unit reference volume
ρ0 and the heat flux in the reference configuration q0. Inserting the time derivative of Eq. 4.6
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and 4.7 in Eq. 4.9 and 4.10, respectively, yields

I −ρ0

(
∂ψ

∂θ
+ η

)
θ̇ − ρ0

∂ψ

∂χ
χ̇− 1

θ
q0 · Grad(θ) ≥ 0, (4.11)

II S :
1

2
Ċ − ρ0

(
∂ψ

∂Ce1

: Ċe1 +
∂ψ

∂Cpe

: Ċpe +
∂ψ

∂Ce2

: Ċe2

)
− ρ0

(
∂ψ

∂I1

∂I1

∂C
+
∂ψ

∂I4

∂I4

∂C
+
∂ψ

∂I5

∂I5

∂C

)
: Ċ − ρ0

(
∂ψ

∂θ
+ η

)
θ̇ − 1

θ
q0 · Grad(θ) ≥ 0.

(4.12)

After a series of mathematical operations (cf. Reuvers et al. [2024a]), Eq. 4.12 is reformulated
and the following stress quantities are introduced for the thermo-mechanically coupled process
II. The second Piola-Kirchhoff stress S1 and the Mandel stress M1 corresponding to the
elasto-plastic part are defined as

S1 = 2ρ0F
−1
p

∂ψe1
∂Ce1

F−Tp , M1 = 2ρ0Ce1
∂ψe1
∂Ce1

, (4.13)

together with the back stress X related to kinematic hardening and the Mandel stressM1,kin

corresponding to kinematic hardening

X = 2ρ0 Fpe
∂ψp
∂Cpe

F T
pe, M1,kin = 2ρ0Cpe

∂ψp
∂Cpe

. (4.14)

Similarly, the second Piola-Kirchhoff stress S2 and the Mandel stressM2 related to the visco-
elastic part follow to

S2 = 2ρ0F
−1
v

∂ψ2

∂Ce2

F−Tv , M2 = 2ρ0Ce2
∂ψ2

∂Ce2

. (4.15)

Lastly, the second Piola-Kirchhoff stress tensor S3 incorporating the fiber induced anisotropy
is defined as

S3 = 2ρ0

(
∂ψ3

∂I1

I +
∂ψ3

∂I4

M0 +
∂ψ3

∂I5

(CM0 +M0C)

)
. (4.16)

Here, the partial derivatives of the invariants are already evaluated. Since the Clausius-Duhem
inequality must hold for arbitrary processes, the total second Piola-Kirchhoff stress tensor S
and the entropy are chosen following the Coleman-Noll procedure (Coleman and Noll [1961])
as

S = S1 + S2 + S3, η = −∂ψ/∂θ. (4.17)
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Moreover, the heat flux in the reference configuration is introduced according to Duhamel’s
law as

q0 = −κ0 Grad(θ), (4.18)

where the thermal conductivity tensor κ0 is defined according to Al-Kinani [2014] as

κ0 = J
(
I−1

4 (λT,f − λT,n)M0 + λT,nC
−1
)
. (4.19)

Here, J = det(F ) and the thermal conductivities λT,f and λT,n along the fiber direction and
normal to it are introduced as positive scalar quantities. For glass fiber reinforced polyamide 6
λT,f > λT,n holds. Consequently, κ0 is positive definite, fulfilling the entropy inequality. For
a more detailed derivation of the transverse isotropic heat flux, the reader is kindly referred to
Appendix 4.7.1. Inserting the relations from Eqs. 4.17 and 4.18 into Eq. 4.11 and Eqs. 4.13
to 4.18 back into Eq. 4.12 leads to the reduced forms of the dissipation inequality

I −ρ0
∂ψ

∂χ
χ̇ ≥ 0, (4.20)

II (M1 −X) : Dp +M1,kin : Dpi +M2 : Dv ≥ 0, (4.21)

where D(∗) = sym(L(∗)) denotes the symmetric part of the corresponding velocity gradient
L(∗) = Ḟ(∗)F

−1
(∗) with (∗) = {p, pi, v}.

4.3.4 Evolution equations

To ensure positive internal dissipation, a set of evolution equations is chosen, which fulfills the
remaining dissipation inequality in Eqs. 4.20 and 4.21.

4.3.4.1 Non-isothermal crystallization kinetics (I)

The evolution equation for the non-isothermal crystallization kinetics is derived from the
experimentally determined relative degree of crystallinity

χc(t) =

∫ t
ton
ḣ(t)dt

∆hm
(4.22)

that lies between zero (fully amorphous state) and one (end of the crystallization process) for
any arbitrary time step. The change in the specific enthalpy ∆hm is obtained by integrating the
specific heat flux curve ḣ(t) from differential scanning calorimetry (DSC) results inbetween
the onset ton and end tend time of the crystallization process. Relating the specific enthalpy at
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time t to the specific fusion enthalpy of a 100% crystalline material ∆h100
0 , yields the absolute

degree of crystallinity

χ(t) =

∫ t
ton
ḣ(t)dt

∆h100
0

= χc(t)
∆hm
∆h100

0

. (4.23)

Here, the value of ∆h100
0 = 190 J/g is adopted from Campoy et al. [1998]. Numerically, in

the present work, the relative degree of crystallinity is approximated by means of the modified
Nakamura-Ziabicki model (cf. Nakamura et al. [1973]; Ziabicki [1976])

χc = 1− exp
(
−
∫
t

Kc dt

)nA

(4.24)

based on the well-known Avrami equation (see Avrami [1939, 1940] and Appendix 4.7.2) with
the Avrami index nA and an empirical function for the crystal growth rate

Kc = Kmax exp
(
−4ln(2) (θ − θmax)2

D2

)
. (4.25)

All three material parameters Kmax, θmax and D are directly related to the results of the DSC
analysis (cf. Kulkarni et al. [2023]). Finally, the relation for the evolution of the absolute
degree of crystallinity is obtained by the time derivative of Eq. 4.23 together with Eqs. 4.24
and 4.25

χ̇ = nAKc(1− χc)
(∫ t

ton

Kc dt

)nA−1
∆hm
∆h100

f

. (4.26)

4.3.4.2 Thermo-mechanical composite behavior (II)

For the elasto-plastic part, a Tschoegl-type yield criterion (see e.g. Tschoegl [1971]; Ghorbel
[2008]; Melro et al. [2013b]) is adopted

Φp = 3J2,p + (m− 1)σ0
t I1,p −m (σ0

t )
2 ≤ 0, (4.27)

using the first (I1,p = tr(Σ)) and second (J2,p = 1/2 tr((dev(Σ))2)) invariant of the relative
stress Σ = M1 −X . Here, the ratio m = σ0

c (χ, θ)/σ
0
t (χ, θ) between the initial yield stress

in compression σ0
c and tension σ0

t introduces a tension-compression flow asymmetry known
for polymeric materials (Ghorbel [2008]). Under the assumption of associative plasticity,
the plastic flow rule and the evolution equation for modeling nonlinear Armstrong-Frederick
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kinematic hardening (Armstrong et al. [1966]) follow to

Dp = λ̇p
∂Φp

∂Σ
= λ̇p

(
3 dev(Σ) + (m− 1)σ0

t I

)
, Dpi = λ̇p

b

c
dev(M1,kin), (4.28)

with the plastic multiplier λ̇p and the material parameters b(χ, θ) and c(χ, θ) depending on
the DOC and the temperature. To conclude the set of elasto-plastic evolution equations, the
Karush-Kuhn-Tucker conditions λ̇p ≥ 0, Φp ≤ 0, λ̇p Φp = 0 are introduced. Subsequently,
the evolution of the visco-elastic part is chosen from Reese and Govindjee [1998] as

Dv =
1

2τµ2

dev(M2) +
1

9τK2

tr(M2) I, (4.29)

where K2(θ) and µ2(θ) denote the temperature-dependent bulk1 and shear moduli, related to
the material stiffness by the Lamé constants. The relaxation time τ is chosen as a nonlinear
function

τ = τ0 |Bv|γ exp(−δ |τ2|) (4.30)

of the norm of the viscous left Cauchy-Green tensor Bv = FvF
T
v as well as of the viscous

Kirchhoff stress τ2 based on an experimental post-processing scheme by Amin et al. [2006],
exploited inReuvers et al. [2024a]. In Eq. 4.30, the temperature-dependentmaterial parameters
τ0(θ), γ(θ) and δ(θ) are introduced.

4.3.5 First law of thermodynamics: energy balance

The heat generation due to the exothermic crystallization process, elastic, viscous and plastic
effects are derived from the local form of the energy balance in the reference configuration

I ρ0 (ψ̇ + η̇ θ + η θ̇) + Div(q0) = 0, (4.31)

II ρ0 (ψ̇ + η̇ θ + η θ̇) + Div(q0)− S :
1

2
Ċ = 0. (4.32)

Here, the time derivative of the internal energy ė = ψ̇ + η̇ θ + η θ̇ with the entropy rate as
η̇ = −∂ψ̇/∂θ is already included. Analogously to Sec. 4.3.3, several mathematical operations
are utilized to reformulate Eqs. 4.31 and 4.32 in order to derive the corresponding expressions

1The bulk moduliK∗, ∗ = {1, 2} are defined by the two Lamé constants µ∗ and Λ∗ asK∗ = Λ∗ +
2µ∗

3
.
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for the temperature field

I ρ0cT θ̇ = rχ − Div(q0), (4.33)

II ρ0 cT θ̇ = re + rp + rv − Div(q0). (4.34)

Here, the following abbreviations for heat generated due to the formation of crystals rχ, the
elastic re, plastic rp and viscous rv heat generation terms

I rχ= ρ0

(
−∂ψ
∂χ

+ θ
∂2ψ

∂θ

)
χ̇ (4.35)

II re = θ

(
∂S1

∂θ
+
∂S2

∂θ
+
∂S3

∂θ

)
:

1

2
Ċ (4.36)

II rp =

(
M1 − θ

∂M1

∂θ

)
: Dp −

(
X − θ ∂X

∂θ

)
: Dp +

(
M1,kin − θ

∂M1,kin

∂θ

)
: Dpi

(4.37)

II rv =

(
M2 − θ

∂M2

∂θ

)
: Dv (4.38)

are introduced and the heat flux is defined according to Eq. 4.18. Noteworthy, anisotropic
elastic heat generation follows naturally from the anisotropic definition of the stress in Eq.
4.16. Furthermore, the specific heat capacity is introduced as

cT = −θ ∂
2ψ

∂θ2
. (4.39)

In line with e.g. Felder et al. [2020b, 2022]; Reuvers et al. [2024a], in the following the heat
capacity is approximated by a constant value cT = cT (χ, θ).

4.3.6 Specific energy choice

The authors would like to note that the prior derivation was performed in a general manner
to allow for flexibility regarding the specific choice of the energy terms in order to account
for a multitude of unidirectional reinforced composite materials. In order to conclude the
constitutive framework, a set of energies is chosen that is suitable for modeling glass fiber
reinforced polyamide 6.
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4.3.6.1 Free energy related to crystallization (I)

The free energy related to the crystallization process is chosen as

ψχ =
ρ0,m

ρ0

∆h100
f

θ − θon
θon

χ, (4.40)

in line with Kulkarni et al. [2023]; Felder et al. [2020b]; Kelly et al. [2016]. Here, the phase
transformation from the purely amorphous melt is initiated as soon as the onset temperature is
reached (θ ≤ θon) and the corresponding free energy becomes negative (see e.g. Turnbull and
Fisher [1949]; Mandelkern et al. [1954]). Thus, the temperature ratio (θ− θon)/θon essentially
serves as a switch. Moreover, the ratio between the density of the polymeric matrix ρ0,m and
the density of the composite ρ0 is introduced. Now, using Eq. 4.23 together with Eq. 4.40,
a relation between the heat signal obtained through the DSC experiments per unit time and
reference volume and the heat source rχ = ρm,0 ∆h100

f χ̇ = ρm,0 ḣ is found according to Zinet
et al. [2010]; Kugele et al. [2017].

4.3.6.2 Free energies related to the thermo-mechanical composite behavior (II)

With regard to the elasto-plastic part, a compressible Neo-Hookean-type energy with an
additional term for isotropic volumetric thermal expansion is chosen for ψe1 alongside a
nonlinear plastic defect energy ψp to model Armstrong-Frederick kinematic hardening

ψe1 =
µ1

2
(tr(Ce1)− 3)− µ1ln (Je1) +

Λ1

4
(det(Ce1)− 1− 2 ln(Je1))

− 3K1αT,n (θ − θ0) ln(Je1), (4.41)

ψp =
c

2
(tr(Cpe)− 3)− c ln(

√
det(Cpe)). (4.42)

Here, Je1 = det(Fe1) is the determinant of the elastic part of the deformation gradient.
Besides, the two Lamé constants µ1(χ, θ) and Λ1(χ, θ), the elasto-plastic bulk modulus K1

and the thermal expansion coefficient αT,n perpendicular to the fiber direction are introduced
as material quantities. Furthermore, c(χ, θ) and the dimensionless parameter b(χ, θ) the latter
of which only shows up in the evolution equation (cf. Eq. 4.28) are the material parameters
related to nonlinear kinematic hardening. Thus, the second Piola Kirchhoff stress S1 as well
as the thermodynamic conjugate force of kinematic hardening in the reference configuration
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follow to

S1 = µ1(C−1
p −C−1) +

Λ1

2

(
det(C)

det(Cp)
− 1

)
C−1 − 3K1αT,n(θ − θ0)C−1 (4.43)

X̄ = c (C−1
pi −C−1

p ). (4.44)

For the visco-elastic part, the energy ψe2 is defined as a compressible Neo-Hookean-type
energy as well, extended with a thermal expansion term

ψ2 =
µ2

2
(tr(Ce2)− 3)− µ2 ln(Je2) +

Λ2

4
(det(Ce2)− 1− 2 ln(Je2))

− 3K2αT,n(θ − θ0) ln(Je2),
(4.45)

where µ2(θ) and Λ2(θ) are the viscous Lamé constants,K2 the visco-elastic bulk modulus and
Je2 = det(Fe2) holds. Hence, the viscous second Piola Kirchhoff stress follows to

S2 = µ2(C−1
v −C−1) +

Λ2

2

(
det(C)

det(Cv)
− 1

)
C−1 − 3K2αT,n (θ − θ0)C−1. (4.46)

Lastly, the energy related to the anisotropic contribution of the fibers is chosen as

ψ3 =
1

α
Kani1 (I4 − 1)α +

1

β
Kani2 (I5 − 1)β +

1

ζ
Kcoup (I1 − 3)ζ(I4 − 1)ζ

−Ktherm (αT,f − αT,n) (θ − θ0)
√
I4,

(4.47)

with the stiffness-like material parametersKani1, Kani2,Kcoup andKtherm, the exponents α, β
and ζ as well as the thermal expansion coefficient in fiber direction αT,f . The mechanical part
of the anisotropic energy ψ3 is chosen based on Reese et al. [2001]; Holthusen et al. [2020],
whereas the term related to anisotropic thermal expansion is newly introduced by the authors.
Note here that in order to ensure a stress-free state for C = I and θ = θ0, it is necessary that
the exponents are selected to α, β, ζ ≥ 2 (see e.g. Holthusen et al. [2020]). In contrast to Eqs.
4.41 and 4.45, where a volumetric thermal expansion was introduced, the expansion term of
the anisotropic energy part ψ3 is chosen depending on the stretch in fiber direction λF =

√
I4

via the invariant I4. Thus, the resulting thermal expansion from Eq. 4.47 occurs solely in
fiber direction. The total anisotropic volume-temperature relation can be calculated from Eq.
4.17 and is similar to the one by Al-Kinani [2014], who initially proposed the concept of
transversely isotropic thermal expansion in the context of a split of the deformation gradient
into a thermal and mechanical part. In this work, however, the deformation gradient F and the
temperature θ are introduced as individual and independent state variables. Consequently, the
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Helmholtz free energy is chosen based on a generalized approach, where the twice integrated
specific heat capacity is the starting point. This well-known approach has been developed
for isotropic thermo-elastic rubberlike materials in Chadwick [1974] and was extended to
isotropic thermo-viscoelastic materials in Reese [2003a]. In Chadwick [1974], two physically
motivated assumptions are introduced that result in restrictions for the choice of the free
energy density. Both criteria were adopted for the extension of the theory to anisotropic
thermo-elastic material behavior in Eq. 4.47. Although, in this case, the postulated volume-
temperature relation reduces to a stretch-temperature relation through the fourth invariant to
introduce transverse anisotropy. Since the corresponding expansion term is invented by the
authors and the concept of anisotropic thermo-elasticity has not been discussed in detail in the
literature yet, a detailed numerical investigation is performed in Sec. 4.5. Finally, following,
Eq. 4.47, the second Piola Kirchhoff stress tensorS3 incorporating the fiber induced anisotropy
takes the form

S3 =Kani1 (I4 − 1)α−1M0 +Kani2 (I5 − 1)β−1(CM0 +M0C)

+Kcoup (I1 − 3)ζ−1(I4 − 1)ζI +Kcoup (I1 − 3)ζ(I4 − 1)ζ−1M0

− 1

2
Ktherm (αT,f − αT,n) (θ − θ0) (

√
I4)−1M0.

(4.48)

Note on thermodynamic consistency and algorithmic treatment

For the proof of thermodynamic consistency and the numerical implementation into an Abaqus
mechanical (UMAT) and thermal (UMATHT) user material subroutine exploiting an expo-
nential mapping algorithm for the thermo-mechanical process, the reader is kindly referred to
Reuvers et al. [2024a], where the model formulation for the polymeric matrix material was
derived in detail. Note here that the automatic differentiation tool AceGen Korelc [2009] was
used to obtain the material sensitivities. The extension to a transversely isotropic material
formulation for modeling unidirectional fiber-reinforced polymers through the addition of an
elastic energy ψ3(C,M0, θ) a priori fulfills the second law of thermodynamics as shown in
Eq. 4.17. Moreover, the thermodynamic consistency of the transversely isotropic heat flux
q0 was ensured by a suitable choice for the thermal conductivity tensor κ0 in Eq. 4.19 in
the Appendix. Consequently, the extended model formulation satisfies the entropy inequality
principle. The pull-back of the model equations allows the application of the exponential
map algorithm which automatically preserves the symmetry of the internal variables and the
material’s incompressibility (cf. Vladimirov et al. [2008]). Hence, only the quantities with
respect to the reference configuration are derived from the specific choice of the Helmholtz free
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Table 4.1: Overview over the constitutive equations in the reference configuration.
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energy. A comprehensive overview of the thermo-mechanical model equations in the refer-
ence configuration is provided in Tab. 4.1. For the algorithmic treatment of the crystallization
process, the reader is kindly referred to Appendix 4.7.3. The thermodynamic consistency of
the crystallization process is fulfilled since χ̇ ≥ 0 holds and the derivative of the energy related
to crystallization ψχ with respect to χ is negative for θ < θon. The authors would like to
kindly remind the reader that the crystallization process is by choice direction-dependent and
the thermodynamic consistency only holds for the crystallization from the melt. Modeling the
melting of the crystalline phase would require a fully coupled scheme that is out of the scope
of this work.

4.4 Parameter identification

4.4.1 Non-isothermal crystallization kinetics (I)

S-DSC F-DSC

Experimental data

Cooling rate [◦C/s]

Training results

Prediction

χ
c

[-
]

χ
c

[-
]

t [s] θ [◦C]

150 100 70 50
30
20
15
10

7
5

0.25

0.17

0.08

0.03

Figure 4.2: Identification results and predictions for training with S-DSC and F-DSC data.

The material parameters of the crystallization process are identified based on S-DSC and
F-DSC results by Kulkarni et al. [2023] for cooling rates between 0.033 to 3000◦C/s. For
more informations on the experimental procedure and an in-depth discussion of the results,
the reader is kindly referred to the aforementioned literature resource. The experimentally
determined enthalpy of fusion for the S-DSC and F-DSC tests can be found in Fig. 4.17 a) in
the Appendix 4.7.4. It should be noted that the enthalpy of fusion for cooling rates lower than
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0.25 ◦C/s was approximately constant, thus, the value of 57.9 J/g is adopted for all S-DSC
tests. An overview of the crystallization onset temperatures θon read off from the DSC curves is
presented in Fig. 4.17 b) in the Appendix. The remaining material parametersKmax, θmax, D

and nA are determined by a neural network using a combination of feed-forward and recurrent
layers in the TensorFlow environment to calculate the mean squared error (MSE) between
the model and experimentally determined relative DOC. In contrast to Felder et al. [2020b];
Kulkarni et al. [2023], who determined an individual set of parameters per cooling rate, a linear
cooling rate dependency of type 〈•〉 = wi θ̇+bi is introduced for each material parameter in the
present work. Thus, the quality of the fit is slightly compromised compared to the individual
parameter sets, however, the amount of model parameters is significantly reduced. The results
of the identification procedure are presented in Fig. 4.2 for the S-DSC and F-DSC tests. Here,
data from cooling rates that were used for identification are shown in green, whereas previously
unseen data is shown in blue. Moreover, an overview over the parameters is shown in Tab.
4.2. Note here that the constituents of the material quantities were not constrained during the
training process. Thus, the resulting parameters and their trends should not be interpreted
according to the physical meaning stated in for example Kugele [2020]. Rather, they should
be regarded as numerical input values for an empirical function.

S-DSC wi bi F-DSC wi bi
Kmax 0.1159 0.005328 Kmax 0.1123 0.0307
D̂∗ -0.1198 0.04084 D̂∗ 2.45 10−6 -0.0009
θmax -42.7741 197.5829 θmax -0.54258 166.0976
nA - 2.95638 nA -0.0053 2.9815

Table 4.2: Identification results for the modified Nakamura-Ziabicki model. The material
parameters are approximated by 〈•〉 = wi θ̇ + bi. ∗D̂ = −4ln(2)/D2.

4.4.2 Thermo-mechanical composite behavior (II)

In order to identify the macroscopic material model from Sec. 4.3, experimental data and data
generated through virtual experiments from Reuvers et al. [2024a,b] are used. In these works
a data base was successively established, commencing with the derivation and experimental
identification of a thermo-mechanically coupled material formulation for polyamide 6 blends
in Reuvers et al. [2024a]. The model formulation was then employed on the composite’s
mesoscale to generate repeating unit cells (RUCs) with different randomization methods for
a single material ply in Reuvers et al. [2024b]. The RUC results were validated against an
experimental study on glass fiber reinforced polyamide 6. Furthermore, the RUC generated
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with the random sequential adsorption (RSA) method was utilized to construct a virtual data
base for the transverse isotropic composite. In this way, data was obtained for a variety of
temperatures both below and above the glass transition regime, as well as for a broad range of
crystallinities between 15% and 41%. In the following, the crystallinity-independent viscous
parameters from Reuvers et al. [2024a] will be used during the identification process, as no
supplementary relaxation tests were conducted on the composite. Moreover, the assumption of
σ0
c = σ0

t is made, due to the lack of compression data above room temperature. The parameter
Kcoup is maintained constant during identification, as a parameter study conducted prior to
model identification revealed a negligibly small influence under tension. The impact of this
material quantity is more pronounced under shear states, which fall beyond the scope of this
work. A nonlinear curve fitting procedure in MATLAB is employed to identify the remaining
mechanical material parameters, specifically E1, E2, σ

0
t , c, b,Kani1 and Kani2. Therefore, the

average engineering stress and strain material data of ten RUCs from Reuvers et al. [2024b]
with a fiber angle of 0◦ and 90◦, are used to calculate the mean squared error. Here, the
genetic algorithm is chosen in conjunction with the Downhill-Simplex algorithm for parameter
optimization. For a detailed description of the fitting procedure, the reader is kindly referred to
Reuvers et al. [2024a]. Prior to model identification, a mesh convergence study is conducted
up to 5% strain for monotonic tension. The results indicate that for a fiber angle of 0◦ and
90◦ a single element with unhindered lateral contraction is sufficient to obtain a converged
solution. For the identification procedure, isothermal conditions are assumed, consequently, a
C3D8 element is selected. Finally, the strain rate for identification is chosen as ε̇x = 0.0005

s−1, in accordance with the experimental results from Reuvers et al. [2024a,b]. Since, the
experimental study from Reuvers et al. [2024b] was conducted using digital image correlation
(DIC), whereas in Reuvers et al. [2024a] DIC was used only for the visco-elastic tests to
exploit the post-processing scheme by Amin et al. [2006], a difference between the local and
global experimental measurements is observed. Moreover, the DOC of the composite tested
in Reuvers et al. [2024b] is higher (χ = 0.41) than the range tested in Reuvers et al. [2024a]
(χ = 0.15 − 0.29). It is likely that this discrepancy is due to production in two different
facilities and the blend partner that was incorporated in Reuvers et al. [2024a] in order to
achieve stable varying DOCs. These deviations inevitably impact the previous identifications
of the matrix material model and, ultimately, the results of the virtual RUC experiments. To
address these differences in identifying the macroscopic material model and simultaneously
ensure the reproducibility of a wide range of DOCs, in the following, two parameter sets
will be identified for each temperature. The first will be applied for χ = 0.41, while the
second will encompass χ = 0.15 − 0.29. In Fig. 4.3 the results of the model identification
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Figure 4.3: Identification results and model prediction for χ = 0.41 under various fiber angles
0◦ ≤ ϕxy ≤ 90◦ (ϕz = 0◦) and temperatures. Note here that results from ten RUCs
were used to calculate the average.

procedure are shown for 23◦C, 100◦C and 150◦C and a DOC of χ = 0.41 as engineering
stress P over engineering strain ε. Here, the experimental data and data generated through
virtual experiments are shown in blue and black colored dashed lines, while the identification
results are indicated with a solid green line. In general, the identified fiber angles of 0◦ and
90◦ correspond well with the RUC data for all three temperatures. To demonstrate the model’s
predictive capabilities, various fiber angles between 0◦ and 90◦ are tested and compared to
experimental data for χ = 0.41 (cf. Fig. 4.3). In this case, 125 C3D8 elements are required
to achieve a converged solution due to the inhomogeneous stress state resulting from the fiber
influence. The model prediction is in line with experimental results above 45◦ fiber angle,
where the material response is dominated by the polymeric matrix material. Below 45 ◦ fiber
angle, the deviation between simulation and experiment is more pronounced, especially in the
nonlinear hardening regime. Moreover, in this regime, the initial model response is overly stiff
compared to the experimental measurements (see Fig. 4.4 a)). Here, including the structural
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tensor in the yield function or the energy of the elasto-plastic part could improve the results,
specifically the transition between the visco-elastic and the visco-elastic, elasto-plastic regime.
However, it remains unclear whether the relaxation behavior is influenced by the reinforcement
as well. Consequently, relaxation tests need to be conducted prior to improving the model
formulation. With regard to the results for χ = 0.15 − 0.29, three crystallinities are used for
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Figure 4.4: a) Comparison of material stiffness for χ = 0.41 at various temperatures and
fiber angles 0◦ ≤ ϕxy ≤ 90◦ (ϕz = 0◦). b) Comparison of material stiffness for
χ = 0.15− 0.29 at ϕxy = 0◦ and ϕz = 0◦ for various temperatures.

identification purposes, with one DOC reserved for verification (χ = 0.18), similar to Reuvers
et al. [2024a]. For these DOCs only virtually generated RUC data is available with 0◦ and
90◦ fiber angle. Consequently, a single element test is sufficient for identification purposes.
The virtual data was obtained using ten RUCs generated with the RSA method from Reuvers
et al. [2024b] together with the identified matrix material model from Reuvers et al. [2024a].
Hence, the averaged RUC response is used for model identification and the standard deviation
is provided in the corresponding plots as well. Since the fiber properties are independent of
the DOC, the parametersKani1 andKani2 are already known from the identification procedure
for χ = 0.41. Therefore, only the parameters related to the elasto-plastic part (σ0

t , c, b,) as well
as the Young’s moduli E1 and E2 need to be determined using nonlinear optimization. The
results of the identification procedure are shown as engineering stress over strain in Fig. 4.5
for ϕxy = 90◦ and as a comparison between material stiffnesses for ϕxy = 0◦ in Fig. 4.4 b).
As anticipated, good agreement between the virtual experiment and the simulation is observed
for all three test temperatures (cf. Fig. 4.5). The model also captures the unseen DOC of
χ = 0.18 well, especially at 150◦ C. Conversely, in fiber direction, the deviation between the
model response and the virtual experiment increases with decreasing DOC (see. Fig. 4.4 b)).
This effect can be attributed to the crystallinity-dependent isotropic part of the formulation,
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which results in a reduction in stiffness with decreasing DOC. Concurrently, the parameters
Kani1 and Kani2, which contribute to the overall material stiffness via the anisotropic part of
the formulation, are assumed to be constant. In light of the findings presented in Fig. 4.4 b),
it may be beneficial to revisit the crystallinity dependence of the model formulation in future
work. This could be achieved by either modifying the nonlinear crystallinity dependence of
the material parameters or by incorporating the structural tensor into the elasto-plastic and / or
visco-elastic part of the formulation. The authors would recommend the latter approach, as the
results presented in Fig. 4.3 demonstrate the necessity for the inclusion of the structural tensor
into the elasto-plastic part as well to accurately capture the yielding and hardening behavior
for fiber angles between 0◦ and 45◦ .
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Figure 4.5: Identification results and model prediction for χ = 0.15 − 0.29 at ϕxy = 90◦ and
ϕz = 0◦ for various temperatures. Note here that results from ten RUCs were used
to calculate the average and standard deviation.

An overview of the mechanical material parameters for χ = 0.41 as well as χ = 0.15−0.29.

is provided in Tab. 4.3. It should be noted that the authors by no means claim that the identified
parameter set is unique, given that the parameters of the visco-elastic branch were adopted
from Reuvers et al. [2024a] and the identification was performed using only tensile data from
a single strain rate. To improve the identification results, experimental data for multiple
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strain rates, relaxation tests on the composite level and additional loading scenarios such as
compression or shear would be necessary. Including these tests would, however, significantly
increase the identification time. Moreover, prior to improving the identification procedure,
the limitations of the presented formulation for fiber angles between 0◦ and 90◦ should be
addressed. Therefore, the authors consider to use iCANNs (inelastic constitutive artificial
neural networks) in the future for simultaneous model discovery and identification (see e.g.
Holthusen et al. [2024]; Boes et al. [2024]; Holthusen et al. [2025a,b]) to accelerate model
development. In order to identify the thermal stiffness-like parameterKtherm, ideally, an optical

23◦ C 100◦ C 150◦ C
Function Parameter χ = 0.41 χ = 0.15− 0.29 χ = 0.41 χ = 0.15− 0.29 χ = 0.41 χ = 0.15− 0.29
Etot = C1(θ)exp(C2(θ)χ) C1 = [MPa] 9306 4969 2324 500.9 1447 316

C2 =[-] 0 0.8184 0 3.632 0 4.33
mE = 1.07142χ+ 0.38935 [-] - - -
Eχ=0.15−0.29

1 = mE(χ)Etot [MPa] - - -
Eχ=0.15−0.29

2 = Etot − E1 [MPa] - - -
Eχ=0.41

1 =konst. [MPa] 6514.2 - 1626.8 - 1012.9 -
Eχ=0.41

2 =konst. [MPa] 2791.8 - 697.2 - 434.1 -
νtot [-] 0.35 0.35 0.45 0.45 0.45 0.45
σ0
t = C3χ+ C4 C3 =[MPa] 0 95.22 0 33.86 0 21.57

C4 =[MPa] 10.769 17.27 1.694 -4.428 1.562 -2.863
c = C5χ+ C6 C5 =[MPa] 0 399.1 0 1431 0 1359

C6 =[MPa] 2266.497 -2.474 508.224 -85.72 433.439 -198.1
b = C7χ+ C8 C7 =[MPa] 0 -3376 0 842.7 0 677.2

C8 =[MPa] 19.898 1169 255.216 188.4 309.959 -101.3
τ = τ0(θ) ||Bv||γ(θ) exp(−δ(θ) ||τ2||) τ0 [s] 1853.653 1853.653 1035.238 1035.238 573.899 573.899

γ [-] 4.57 4.57 4.3 4.3 4.289 4.289
δ [-] 0.539 0.539 0.759 0.759 0.873 0.873

Kani1 [MPa] 3571.390 3571.390 3263.886 3263.886 3255.794 3255.794
Kani2 [MPa] 2048.122 2048.122 2569.630 2569.63 2647.884 2647.884
Kcoup* [MPa] 100 100 100 100 100 100
Ktherm = χKtherm,0* Ktherm,0[MPa] ND 25862 ND 6897 ND 4138
Remark: The reader is kindly reminded, that, although some coefficients of the identified functions determining the material parameters,
are negative, the material parameters themselves are always positive for the range of DOCs the model spans.
*not experimentally determined, ND = not determined

Table 4.3: Mechanical composite material parameters for χ = 0.41 and χ = 0.15− 0.29 at all
test temperatures.

measurement would be conducted, wherein the specimen is placed onto a heating table/plate
and the actual deformation field is recorded using DIC (see e.g. Dudescu et al. [2013]; Singer
et al. [2019]). This approach allows for the determination of the thermal expansion in both
material directions. Subsequently, nonlinear optimization can be utilized to identify Ktherm.
Since, the aforementioned experimental results are, however, not available to the authors and
the results from the thermo-mechanical analysis are by no means sufficient to identifyKtherm,
artificial values in the order of magnitude of the remaining material stiffnesses are introduced.
Noteworthy, a parameter study of the stiffness-like parameter Ktherm is not performed in the
current manuscript. The reader is kindly advised to carefully review their chosen parameter
set, as thermal shrinkage might occur in fiber direction upon heating beyond the thermo-elastic
regime, due to the complex interplay between visco-elastic, elasto-plastic and anisotropic
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mechanical and thermal phenomena. The remaining thermal composite material parameters
are presented in Tab. 4.4 and are derived directly from the experimentally and the virtually
generated data from Reuvers et al. [2024b]. As shown previously in Reuvers et al. [2024a], the
influence of the DOC on the thermal matrix parameters is negligibly small. For the composite,
this influence is even less pronounced due to the reinforcing fibers, and will thus be neglected.
Consequently, only the temperature dependence will be considered.

Parameter 23◦ C 100◦ C 150◦ C
αT,n [10−6/K] 53 82 96
αT,f [10−6/K] 1 7 9
λT,n [W/mK] 0.59 0.59 0.59
λT,f [W/mK] 0.80 0.80 0.80
cT (θ) [J/gK] 0.798989 0.6162 0.98295
ρ0 [g/cm3] 1.8 1.8 1.8

Table 4.4: Thermal composite material parameters independent of the DOC at all test temper-
atures.

4.5 Numerical examples

In this section, the model’s capabilities to capture the coupling effects between, thermal,
chemical and mechanical influencing factors are assessed, following the identification with
experimental results. Sec. 4.5.1 addresses the thermo-mechanical coupling in terms ofmaterial
self-heating in a single element computation. Subsequently, anisotropic thermal expansion and
anisotropic heat generation are investigated in Sec. 4.5.2. The influence of the anisotropic
thermal field on the crystallization behavior is studied in Sec. 4.5.3 by solving a staggered
thermo-mechanically coupled boundary value problem. Finally, in Sec. 4.5.4 a complete
thermoforming procedure is performed together with a comparison of the experimental and
numerical results formodel verification. For all computations, fully integratedC3D8Telements
are used and the fiber angle ϕz is set to zero. The temperature-dependent material parameters
are linearly interpolated between the identified values fromTabs. 4.3 and 4.4. Note here that the
presented material parameters are not extrapolated beyond the identification range presented
in Sec. 4.4. Therefore, in scenarios with boundary conditions outside the identification limits,
the closest identified parameters are used to prevent errors due to extrapolation as, for example,
negative values.
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4.5.1 Material self-heating

To study the influence of the fibers on the internal self-heating, a single C3D8T element with
unit length is subjected to monotonic, uniaxial extension with a loading rate of ε̇xx = 0.01 s−1

until 15% strain. Subsequently, a relaxation step is introduced, where the strain is held
constant for an additional 10 seconds. Two fiber angles are tested at θ = 150◦ C, namely
ϕxy = 90◦ and ϕxy = 0◦, since all other fiber angles require multiple elements due to a
resulting inhomogeneous stress state. Further fiber directions are investigated in a structural
example in Sec. 4.5.2 and Sec. 4.5.3. For both computations, adiabatic conditions are
assumed, meaning that no heat in- nor outflow at the surfaces of the specimen is permitted.
The material parameters are chosen from Tabs. 4.3 and 4.4 for a DOC of 29%. Fig. 4.6,

Figure 4.6: Single element subjected to monotonic, uniaxial extension (εmax
xx = 0.15) followed

by a relaxation step under adiabatic conditions (θ = 150◦ C, χ = 0.29). Left:
tension normal to fiber direction ϕxy = 90◦. Right: tension in fiber direction
ϕxy = 0◦. Top: Cauchy stress σxx over time in longitudinal direction and resulting
change in temperature ∆θ. Bottom: Corresponding internal heat generation rint
and decomposition into elastic re, plastic rp and viscous rv parts.

shows the resulting Cauchy stress in x-direction, together with the corresponding change in
temperature (top) and the depicted heat generation (bottom) for ϕxy = 90◦ (left) and ϕxy = 0◦
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(right).
In the visco-elastic regime, thermo-elastic inversion is visible with a corresponding negative

change in temperature, depending on the fiber angle ϕxy. This effect is more pronounced for
ϕxy = 90◦, where the material response in x-direction is dominated by the matrix material,
due to the significantly higher coefficient of thermal expansion and the reduced influence of the
fibers. Upon reaching the initial yield stress, plastic flow occurs, resulting in heat generation
due to plastic dissipation rp, independent of the fiber direction, together with a significant
decrease in the elastic cooling. Compared to the plastic heat generation, the heat generated by
viscous effects is significantly smaller. This finding is in line with Reese [2003a], where the
loading rate was identified as the main influence on viscous thermal heating. At the start of
relaxation, the plastic heat generation is reduced to almost zero, accompanied by a positive or
negative jump in the elastic heat generation, depending on the fiber direction. Ultimately, at the
end of the relaxation step, the total internal heat generation reduces to almost zero. With regard
to the change in temperature, an increase with decreasing fiber angle is visible. For a fiber angle
of 90◦, the thermo-elastic cooling superimposes the viscous and plastic heat dissipation far
into the visco-elastic, elasto-plastic regime. To validate the proposed formulation, a uniaxial
tensile test would need to be conducted together with infrared thermography measurements.
It should, however, be noted, that this example is of academic nature and rather a test of the
material formulation itself, since the applied maximum strain lies beyond the fracture strain of
the composite (cf. Reuvers et al. [2024b]).

4.5.2 Dogbone specimen: Anisotropic thermal expansion and
material self-heating

In order to verify the novel theory chosen tomodel anisotropic thermal expansion, the structural
example of an I-shaped specimen (type 1BA DIN EN ISO 527-2:2012) is investigated. The
dimensions and boundary conditions are shown in Fig. 4.7 on the left with the experimental
measurement length indicated in blue color. Here, the lower part of the specimen is fixed in
all three principal directions. In a first series of computations, a mesh convergence study is
conducted forϕ = 75◦ andϕ = 45◦ using C3D8T elements. In this case, only the displacement
step between the times t2 and t3 as shown in Fig. 4.7 is considered. The results demonstrate
a clear convergence trend (see Fig. 4.18 a in the Appendix), consequently, a structured mesh
consisting of 13328 elements is assumed to be sufficient for the following considered problem.
Subsequently, a more complex loading scenario is considered in order to account for thermal
expansion. Initially, the specimen with a DOC of 29 % is heated up from room temperature
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(θ = 23◦ C) up to 50◦ C. Next, the temperature boundary conditions are held constant for 60
s to ensure a homogeneous temperature distribution within the structure. During the heating
phase, the elongation in y-direction is constrained, resulting in the evolution of compressive
stresses (see Fig. 4.7 on the lower right), which reach an almost constant value once the
steady-state solution is obtained. Lastly, the temperature boundary conditions are removed and
the upper part of the specimen is moved in y-direction with a loading speed of approximately
0.01 s−1 until a displacement of uy = 6.0 mm is reached.

Figure 4.7: I-shaped specimen, geometry, boundary conditions and applied loading procedure
(left). Resulting reaction forceF over time and temperature increase due to internal
heat generation during loading for varying fiber angles (right).

In Fig. 4.7 on the lower right, the reaction force in y-direction is displayed over time for
varying fiber angles ϕxy between 0◦ and 90◦. To increase the readability of the plot, the
reaction forces are shown up to 3000 N. Above this number, only the maximum reaction force
at t3 is provided for 75◦ and 90◦ fiber angle. As expected, the reaction force first decreases
during the heating phase, due to the hindered expansion in vertical direction. This effect
is most pronounced when the fibers are orientated perpendicular to the loading direction
(ϕxy = 0◦), due to the higher thermal expansion of the polyamide 6 matrix compared to the
glass fibers (cf. 4.7 upper left). As the fiber angle increases, the absolute value of the reaction
force exhibits a nonlinear decrease. The lowest compressive reaction force is observed for a
fiber angle of ϕxy = 90◦, where the fibers are aligned with the loading direction. From the



148 4 An anisotropic thermo-mechanically coupled constitutive model for glass fiber reinforced polyamide 6

results presented in Fig. 4.7, the authors conclude that the proposed formulation is indeed
able to capture anisotropic thermal expansion. Moreover, comparing the magnitude of the
negative reaction force with the tensile results, it becomes evident that thermal expansion
plays a significant role in polymeric materials, particularly when considering the relatively
modest applied temperature gradient. As a next step, the proposed ansatz must be validated
with experimental DIC results. In addition, the formulation needs to be carefully examined
with regard to the potential presence of residual internal stresses at the interface of the two
constituents, which are common in polymeric composites with contrasting thermal properties.
The homogenized approach might underestimate this phenomenon. Introducing a thermal
coupling term, similar to the mechanical coupling term in Eq. 4.47, could be considered in
future investigations.

Next the displacement is applied, which results in a complex interplay between different
coupling phenomena. After the thermo-elastic inversion, the internal heat generation increases,
leading to an increase in the temperature, here, shown in the upper right of Fig.4.7 for the center
of the specimen. The corresponding contour plots for the internal heat generation rint and true
strain in loading direction at the end of the loading procedure (t3 = 960 s) are shown in Fig.
4.8 for all tested fiber angles. In general, the internal heat generation is most pronounced when
the fibers are aligned with the loading direction and decreases significantly with decreasing
fiber angle, in line with the findings from Sec. 4.5.1. The dissipated heat is strongly associated
with the strain field (cf. Fig. 4.8), where high local strains lead to increased heat generation.
In addition, the strain contours align with the prescribed fiber angles.

4.5.3 Thermo-mechanically coupled boundary value problem

This section is concerned with a thermo-mechanically coupled boundary value problem from
Felder et al. [2020b] to provide a direct comparison between the isotropic theory and the
composite formulation presented in this work, which incorporates fiber-induced anisotropy.
To this end, a symmetric plate with hole is subjected to a multi-step loading procedure (see Fig.
4.9). Contrary to Felder et al. [2020b], the whole structure is modeled, due to the anisotropic
nature of the composite material model. Furthermore, multiple computations are conducted
with varying fiber angles ϕxy to investigate the influence of anisotropic heat conduction on the
crystallization process. Prior to testing, a convergence studywas conducted (see Fig. 4.18 in the
Appendix) on the displacement step, where 30760 fully integrated C3D8T elements were found
to yield a converged solution. The mechanical and thermal boundary conditions are provided
in Fig. 4.9, together with the loading procedure. Following the classical thermoforming
process, the edges of the structure are first cooled down from a temperature close to the melt
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Figure 4.8: Contour plots for internal heat generation rint and true strain in y-direction at
t3 = 960 s for all tested fiber angles. The experimental measurement length L0 is
highlighted for reference.

(200 ◦C) with varying cooling rates between 0.17 and 100 K/s, incorporating both S-DSC and
F-DSC results. Once the target temperature of 100 ◦C is reached (t1), the temperature is held
constant for 180 s until t2, in order to ensure a homogeneous distribution. Subsequently, the
temperature boundary conditions are removed and a displacement is applied with a constant
loading rate of 0.01 1/s until ux = 0.6 mm (t3) is reached. Lastly, the displacement is
held constant for an additional 60 s to allow for stress relaxation. Fig. 4.10 illustrates the
distribution of the absolute degree of crystallization χ, at the end of the holding step (t2)
for four cooling rates θ̇ = {0.17, 10, 50, 100} K/s and a fiber angle of 90◦. Similar to the
findings of Felder et al. [2020b], higher cooling rates result in a heterogeneous distribution of
crystals, due to temperature gradients and non-constant cooling rates, whereas for the lowest
(S-DSC) cooling rate an almost uniform distribution arises. In general, the DOC increases with
decreasing cooling rate. Noteworthy, for all F-DSC rates, the majority of the crystallization
occurs after the cooling step, between t1 and t2. Moreover, the released heat of fusion from the
crystallization process increases with increasing cooling rate (cf. Fig 4.11 b), especially during
the initial cooling step. This finding is reflected in the exemplary evolution of the temperature
and DOC over time for one Gauss point, displayed in Fig. 4.10. Here, the typical crystallization
kinetics for varying thermal treatments (i.e. higher overall degree of crystallinity and higher
crystallization onset temperature for lower cooling rates) are depicted and the heat of fusion
can be detected from the visible temperature rise after the crystallization onset. Noteworthy,
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Figure 4.9: Plate with hole: geometry, boundary conditions and applied loading procedure.

the magnitude of the internal heat, generated during crystallization rχ, is significantly higher
compared to plastic and viscous dissipative phenomena. The influence of the fiber angle on the

Figure 4.10: Resulting total degree of crystallinity for varying S-DSC and F-DSC cooling rates
and evolution of the DOC for selected cooling rates.
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crystallization process is illustrated in Fig. 4.11 a. Overall, the resulting degree of crystallinity
is similar for all fiber angles and the influence of the thermal anisotropy on the resulting
thermo-mechanical composite behavior in terms of the reaction force between t2 and t4 is
negligibly small. However, local differences in the absolute DOC are clearly visible (cf. Fig.
4.11 a) and increase with increasing cooling rate. The authors believe that this is a result of the
uniform temperature boundary conditions, which superimpose the influence of the anisotropic
heat flux. Certainly, non-uniform temperature boundaries would result in more pronounced
local differences and, consequently, differences in the resulting thermo-mechanical composite
behavior. During the commercial thermoforming process the structure will most likely undergo
a uniform thermal treatment. Therefore, the authors believe that it would be sufficient to neglect
the fiber influence on the crystallization process in scenarios characterized by uniform thermal
boundary conditions, where the objective is to determine the resulting DOC e.g. for later use
as a constant input quantity. The dependence of the macroscopic mechanical response on the

Figure 4.11: a) Comparison of the resulting degree of crystallinity for varying fiber angles.
b) Comparison of the internal heat generation due to crystallization for varying
cooling rates.

underlyingmicrostructure and the fiber angle is clearly visible in the reaction force time relation
provided in Fig. 4.12. Overall, the stiffness, the yield stress and the hardening stress increase
with increasing degree of crystallinity. These effects are, however, more pronounced for higher
fiber angles, whereas with decreasing fiber angle differences between the varying cooling rates
are mostly visible in the relaxation step (t3 − t4), where the resulting change in the reaction
force is related purely to the visco-elastic model part. Note here that the reaction force for
ϕxy = 90◦ between t2 and t3 is reduced due to the choice of hardening parameters. In contrast
to Felder et al. [2020b], the temperature distribution is not provided, since notable changes in
the thermal field due to inelastic deformation are observed only for a fiber angle of 15◦. Similar
to the findings in Sec. 4.5.1, the heat generated through inelastic phenomena is superimposed
by thermo-elastic inversion. This effect was not reproduced by Felder et al. [2020b], who
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neglected the elastic heat generation. Consequently, the overall change in temperature in this
study is significantly higher. Furthermore, compared to Felder et al. [2020b], a significantly
broader range of DOCs is investigated in this work, due to the composition of blends and the
conduct of S-DSC and F-DSC tests.

Figure 4.12: Reaction force time relation for various fiber angles and S-DSC as well as F-DSC
cooling rates.

4.5.4 Thermoforming simulation in comparison to experimental
results

In order to validate the proposed framework, a 3D thermoforming simulation on glass fiber
reinforced polyamide 6 is conducted and, subsequently, compared to experimental results. The
corresponding experiments are conducted at the University of the German Federal Armed
Forces in Munich. To ensure comparability between the simulation and the experiment, the
UD-reinforced composite material from Reuvers et al. [2024b], with a thickness of 5 mm,
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which was employed prior to generating the data base (cf. Sec. 4.4.2) is used for testing. A
schematic drawing of the experimental forming setup as well as the corresponding dimensions
for the numerical boundary value problem are presented in Fig. 4.13. Note here that for all
experimental procedures and simulations, the fiber direction is aligned with the x-axis (cf. Fig.
4.13 b).

Figure 4.13: a) Experimental setup. *The grippers have been replaced with paper clips for
testing. b) Geometry and boundary conditions. Symmetry boundary conditions
are applied in x- and y-direction of the plate. The springs are neglected, since the
simulation does not account for gravity effects. Instead, boundary conditions in
y- and z-direction are applied to mimic the effect of the springs holding the plate
in plane.

Prior to the forming procedure, the plate is stored in a Nabertherm TR 60 drying oven until
a homogenous plate temperature of 230◦ C is reached. A K-type thermocouple is inserted
into the center of the plate through a 1 mm hole, thus enabling the temperature evolution to
be monitored during the forming process. To ensure a smooth transition between the oven
(θ = 230◦ C) and the Zwick/Roell Z020 machine (θ = 21◦ C), equipped with aluminum punch
and die, the plate is fixed in a specimen holder prior to heating. In order to prevent sagging
of the specimen due to the high viscosity of the matrix material close to the melting point in
combination with gravity, four springs are attached to the frame and the plate, each with a
force below 1 N (cf. Fig. 4.13 a). In this way, a quick manual transfer to the Zwick/Roell Z020
machine is ensured, while the heat loss of the plate is limited. Once the frame is in place,
the forming is conducted with a displacement-controlled punch movement, together with a
maximum prescribed compressive force of 3750 N. After the mold is closed, the force is held
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constant for an additional 60 seconds to ensure cooling of the plate and, therefore, allow for
crystallization of the polymeric matrix material. The maximum prescribed force is determined
through a series of preliminary tests, where a higher compressive force resulted in extensive
overflow or spillage of the material at the open sides of the mold in x- and y-direction. In
the course of these experiments, the optimal temperature for both the punch and the die is
determined as well, with room temperature yielding the most precise forming results. Note
here that in industrial forming processes, punch and die, by default, are cooled down below
room temperature after mold closure, which could not be replicated with the existing laboratory
equipment.

The resulting plate deformation, after removal from the mold, is shown in Fig. 4.14.
Overflow at the open sides of the mold and slight distortions within the plate are visible. These
effects aremost likely related to unsuitable fixtures of the specimen holder and themagnitude of
the applied force. Given the limited laboratory facilities compared to an industrial production
environment, the results are nonetheless impressive. The experimentallymeasured temperature
evolution in the center of the plate is displayed in Fig. 4.15 b. Here, the temperature increase
after the closing of the mold is related to the latent heat released during crystallization. It
should be noted that the experiment was terminated after reaching 50◦ C in the center of the
plate, which is significantly lower than the end temperature of crystallization tend (cf. Fig.
4.2).

As shown in Fig. 4.13 b, symmetry conditions are exploited for the numerical boundary
value problem. Consequently, only one quarter of the plate is computed, which significantly
reduced the computation time. Moreover, in addition to the corresponding symmetry boundary
conditions, fixtures in y- and z-direction are applied at the outer edge of the plate to mimic the
effect of the springs holding the plate in the yz-plane (cf. Fig. 4.13 b). In this way, the initial
bending of the plate into a v-shape is constrained in a manner analogous to the experimental
procedure. Since the proposed model framework is formulated in two separate processes
(I: thermo-chemical crystallization from the melt, II: thermo-mechanical composite behavior,
cf. Sec. 4.3), two separate computations are performed: firstly purely mechanical forming
(II) and, subsequently, cooling and crystallization (I). In comparison with the experimentally
obtained temperature curve, the temperature change in the center of the specimen before mold
closure is negligible, with the predominant temperature change occurring once the mold is
fully closed and the plate is in contact with punch and die. Therefore, the authors’ believe
that the separation in two computations is reasonable. Note here that in order to model the
thermoforming process in a single computation, a fully thermo-chemo-mechanically coupled
model formulation would be necessary, which is beyond the scope of the work and would
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Figure 4.14: Resulting deformation and von Mises stress contours after forming (t = 10 s) in
comparison to the experimental result. A) Anisotropic material behavior without
friction B) Isotropic material behavior including friction.

require re-development of the formulation.
In the context of the mechanical forming, the loading is applied force-controlled, since

Abaqus does not allow for displacement-controlled loading, together with a maximum pre-
scribed force. Moreover, preliminary numerical studies have demonstrated that applying the
corresponding experimental displacement instead of the force, results in excessive contact
forces and, thus, a comparison with the experimental results is unfeasible. With regard to the
mechanical contact conditions, hard contact is chosen in normal direction together with friction
in tangential direction. The corresponding coefficient of friction (µ = 0.0507) is taken from
experimentally obtained values by Dörr [2021]. Note here that for the experiments in Dörr
[2021] steel was used together with fiber reinforced PA6, as opposed to the aluminum fixtures
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Figure 4.15: a) Punch displacement over time in comparison to experimental displacement.
(A) Anisotropic material behavior without friction (B) Isotropic material behav-
ior including friction. b) Temperature evolution in the middle of the plate im
comparison to temperature sensor measurements. (C) Punch and die θ̇ = 0 (D)
Punch and die θ̇ 6= 0.

in the current work. During the computations, the anisotropic material model in combination
with friction resulted in an overly stiff material response, and, thus, in an incomplete forming
due to the relatively low compressive force. Therefore, two computations were conducted,
firstly, anisotropic material behavior without friction (A) and, secondly, isotropic material
behavior including frictional effects (B). A relatively fine discretization was needed for the
computation including anisotropic material behavior (80000 elements, structured mesh), since
the high stiffness contrast between x- and y- direction is prone to buckling effects.

The resulting mechanical deformation of the composite is shown in Fig. 4.14 for both
computations in comparison to the experimental result. Although both material configurations
result in a deformed shape similar to the experiment, the deformation of the computation
with isotropic material behavior and frictional effects (B) is more pronounced, especially with
regard to the rounded corners, where the plate is bent. Furthermore, in these areas, the resulting
von Mises stress is significantly higher for the anisotropic computation, which is the result
of an overly stiff material response. This finding is reflected in the punch displacement over
time (cf. Fig. 4.15 a). Here, the maximum punch displacement (t = 10 s) of the anisotropic
calculation is lower than the isotropic value. Moreover, the initial punch displacement rate for
the isotropic calculation is similar to the experimental findings, whereas the punch displacement
for the anisotropic plate evolves slower and more non-linearly.

In comparison to the experimental result, the isotropic solution is able to capture the initial
displacement increase, aswell as themaximumpunch displacement, despite the high stiffness of
the Young’s modulus (cf. Tab. 4.3) and the difference in the boundary conditions. Conversely,
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the anisotropic solution is not able to capture the features of the experiment due to the overly
stiff material response resulting from the fibers. The authors’ believe that the fibers do not
transfer a significant amount of load during the experimental forming procedure, due to the high
viscosity of the polymeric matrix close to the melting point. This is, however, not reflected in
the identified material formulation, where the composite has a high stiffness in fiber direction
even at high temperatures (cf. Fig. 4.4 b). In addition, no experimental data is available
for temperatures beyond 150◦ C and the extrapolated material parameters, similarly, result in
a high stiffness in fiber direction. Consequently, the true material behavior most likely lies
in between the presented results. In future studies, it is imperative to identify the material
formulation at temperatures proximate to the melting point of the polymeric matrix. However,
the corresponding experiments will be challenging due to the increased viscosity.

Figure 4.16: Resulting degree of crystallinity (DOC) after forming. D) Punch and die θ̇ 6= 0.

With regard to the thermo-chemical calculation, isothermal deformable bodies with rigid
constraints are used to approximate punch and die, thereby facilitating heat transfer between
the different constituents. The gap conductance between tools and plate is adopted from Dörr
[2021] measuring 1.05 mW/K. It should be emphasized that the corresponding experiments
were conducted between steel and polyamide 6. In this study, the effects of radiation and
convection are not considered, since the majority of the surface of the plate is enclosed by the
punch and die. Moreover, in order to speed up the calculation, a coarser mesh discretization
is chosen (10000 elements), compared to the mechanical computations. The corresponding
temperature conditions for the plate (θ = 230◦ C) and punch/die (θ = 21◦ C) are applied
instantaneously and heat conduction is allowed for 60 s thereafter. Two computations are
conducted. Firstly, punch and die are held constant at θ = 21◦ C during the whole simulation
(C) (θ̇ = 0). For the second computation, no temperature boundaries are applied at the
reference points of the rigid bodies, apart from the initial temperature field, to allow for heat
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up (D) (θ̇ 6= 0). During the experimental procedure, the tools are allowed to heat up, however,
the thermal mass is higher due to the adjacent fixtures that are not included in the simulation.
Moreover, in reality, punch and die are exposed to room temperature air, therefore, radiation
and convection will lead to significant heat loss that is not accounted for in the presented
computations.

An overview of the resulting crystalline state (t = 60 s) is provided in Fig. 4.16. Since
the differences in the resulting DOC for calculations C and D are negligible, only the results
from calculation D are shown. As anticipated, the crystallization process resulted in a higher
DOC in the central region of the plate (cf. Fig. 4.16). This phenomenon can be attributed to
the reduced cooling rate within the material relative to the exterior surface, which is directly
exposed to the room temperature fixtures. The evolution of the temperature in the center of the
plate is presented in Fig. 4.15 b, together with the experimentally obtained curve. Compared
to the experiment, the plate cools down faster during both simulations. This effect is directly
related to the choice of the gap conductance. To improve the results, thermal measurements
need to be taken experimentally to determine the correct gap conductivity. Similar to the
temperature evolution during the experimental procedure, a temperature increase related to
exothermic crystallization is visible for both numerical examples. Here, the temperature
increase is significantly higher and the crystallization occurs faster, shown by the narrowing
of the peak, which is a result of the higher cooling rate. Overall, the differences between
simulation C and D are negligible during the crystallization process, indicated by the uniform
crystallization peak. After crystallization is finished, the temperature evolution in the center of
the plate of simulation D is, however, slowed down, due to temperature compensation between
plate, punch and die. Thus, the final thermal state at t = 60 s for simulation D is closer to the
experimentally measured value.

4.6 Conclusion and outlook

In this work, a finite strain, thermo-mechanically coupled constitutive framework was proposed
for the analysis, prediction and optimization of glass fiber reinforced semi-crystalline polymers
during the thermoforming process. This work is the conclusion of several experimental and
simulative investigations on the individual constituents and multiple material scales, result-
ing in a validated and thermodynamically consistent composite model. To account for the
fiber induced anisotropy, a thermo-mechanically coupled material framework for the polymer
matrix was extended by exploiting the concept of structural tensors, introducing transversally
anisotropic conduction, thermal expansion and internal heat sources. Moreover, the crystal-
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lization process of the matrix material during cool-down from the melt was incorporated into
the proposed formulation as a seperate thermo-chemical process. In order to complete model
identification, the mechanical and thermal material parameters were subsequently identified
with experimental and virtual data over multiple material levels. The model prediction was
in good agreement with the experimental results, especially for higher fiber angles. However,
in order to improve the results for lower fiber angles, the introduction of the structural tensor
in the visco-elastic and / or elasto-plastic part of the formulation should be considered in the
future, once the corresponding experiments are available. Nonetheless, it is remarkable that
the framework is able to successfully predict fiber angles beyond 0◦ and 90◦, given that only
data on uniaxial stress states was available for identification purposes.

The capabilities of the proposed framework were assessed in multiple numerical examples,
firstly presenting the influence of the fiber angle on material self-heating. Next, the new
approach regarding anisotropic thermal expansion was verified with a thermo-mechanically
coupled boundary value problem with varying fiber angles. A multi-step loading procedure
was applied on a plate with hole, where the phenomenological approach allowed to visualize
the complex crystallization process on the microscale. Throughout multiple computations with
varying fiber angles, the influence of the reinforcement on the resulting degree of crystallinity
was evaluated. Moreover, the predicted heat of fusion from crystal growth was identified as an
important influencing factor, especially for high cooling rates. The influence of the DOC on
the macroscopic material response was mainly visible for high fiber angles or relaxation states.
Compared to existing formulations, a significantly larger range of DOCs was depicted, due to
blend composition and different DSC tests in preliminary works. Finally, a 3D thermoforming
procedure was conducted and compared to experimental results, demonstrating the ability of
the framework to successfully predict industrial forming processes. To the authors’ knowledge,
there exists no comparable experimentally validated constitutive framework for fiber-reinforced
semi-crystalline polymers in the literature, which accounts for the crystallization kinetics aswell
as anisotropic thermal and mechanical behavior and the corresponding complex interactions
over multiple material scales. Therefore, the authors’ believe that this formulation provides a
flexible and promising basis for further research.

In the future, the homogenized approach should be revised with regard to residual thermal
stresses at the interface between fibers and matrix, resulting from contrasting thermal proper-
ties. As previously stated, incorporating the structural tensor in different parts of the model
formulation might be necessary to improve the model response for inhomogenous stress states,
depending on the application. Therefore, more complex structural problems resembling real
themoforming processed should be computed and verified with experimental data. In order
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to improve model identification, the experimental and virtual data base needs to be enriched
with combined loading procedures and further experiments on the thermal expansion behavior.
Based on promising results in the literature (see e.g. Flaschel et al. [2021, 2023]; Holthusen
et al. [2024]; Boes et al. [2024]; Holthusen et al. [2025a,b]), neural networks could be intro-
duced to facilitate model discovery and detect so far concealed or overlooked material effects
in the experimental results, while at the same time reducing the identification effort. Besides,
the thermo-mechanical model improvements, the presented macroscopic crystallization for-
mulation does not yet account for the formation of local nuclei, different crystal configurations
or cold crystallization. Especially the latter is of high importance for thermoforming with high
cooling rates and would require a fully coupled modeling scheme.
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4.7 Appendix

4.7.1 Transversely isotropic heat flux

The Cauchy heat flux vector q is introduced according to Duhamel’s law as

q = −κ grad(θ), (4.49)

where κ denotes the symmetric second order thermal conductivity tensor with respect to the
current configuration. Next, in order to describe transversely isotropic materials, where the
thermal conductivity in fiber direction λT,f differs from the orthogonal directions λT,n, the
conductivity tensor is defined as

κ = (λT,f − λT,n)m⊗m+ λT,nI = (λT,f − λT,n)M + λT,nI, (4.50)

in line with e.g. Al-Kinani [2014]; Tröger and Hartmann [2022]. Here, M is the structural
tensor with respect to the current configuration, which is given by

M = m⊗m = F M0F
T 1

C : M0

with m = F m0
1

|Fm0|
. (4.51)

Using the Piola transformation q0 = J F−1 q with J = det(F ) as well as the relation
grad(θ) = F−T Grad(θ), the heat flux in the reference configuration follows to

q0 = −J F−1

(
(λT,f − λT,n)M + λT,nI

)
F−T Grad(θ) = −κ0 Grad(θ). (4.52)

The heat conductivity tensor with respect to the reference configuration κ0 can be rewritten to

κ0 = J F−1

(
(λT,f − λT,n)M + λT,nI

)
F−T

= J

(
(λT,f − λT,n)F−1MF−T + λT,n F

−1F−T
)

= J

(
I−1

4 (λT,f − λT,n)M0 + λT,nC
−1

)
,

(4.53)

using Eq. 4.51 together with the relation for the fourth invariant I4 = tr(CM0).



162 4 An anisotropic thermo-mechanically coupled constitutive model for glass fiber reinforced polyamide 6

4.7.2 Avrami equation

In the field of material science, the Avrami equation (cf. Avrami [1939, 1940]) is a widely
used mathematical model for describing isothermal phase transformations. In the context of
polymer crystallization, the model describes the transformation from the amorphous phase
to the thermodynamically more stable crystalline phase. The relative degree of crystallinity
defined as 0 ≤ χc(t) ≤ 1 at time t is expressed as

χc = 1− exp(−K tnA). (4.54)

Here, K is the temperature-dependent crystallization rate constant and nA the Avrami index
which contains information on nucleation and growth geometry Di Lorenzo and Silvestre
[1999]. For information on the limitations of the isothermal theory, the reader is kindly
referred to Wunderlich [1976].

4.7.3 Algorithmic implementation of the crystallization process

The backward Euler method is used to discretize the evolution equation for the total degree of
crystallinity (cf. Eq. 4.26), yielding

χ = χn + ∆t nAKc exp
((
−
∫ t

ton

Kc dt

)nA
)

︸ ︷︷ ︸
(1−χc)

(∫ t

ton

Kc dt

)nA−1
∆hm
∆h100

f

. (4.55)

Next, the integrals are approximated by means of the trapezoidal rule

∫ t

ton

Kc(θ) dt =

∫ tn

ton

Kc(θ) dt︸ ︷︷ ︸
In

+

∫ t

tn

Kc(θ) dt ≈ In +
N∑
i=2

Kc(θi) +Kc(θi−1)

2
(ti − ti−1),

(4.56)
with the approximated solution of the last converged time step In. The current time step ∆t is
further divided into N subtimesteps with linear interpolation of the temperature in-between.
As soon as the onset temperature θon is reached and the crystallization process is initiated, the
onset time ton is determined.
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4.7.4 Crystallization enthalpy and onset temperature

Figure 4.17: a) Enthalpy of fusion for S-DSC and F-DSC data (*For cooling rates lower than
0.25◦C/s the enthalpy of fusion remained almost constant, thus the value of 57.9
J/g is adopted for all S-DSC tests), b) Crystallization onset temperature for S-DSC
and F-DSC data.

4.7.5 Convergence study results

ϕxy = 75◦

ϕxy = 45◦

ϕxy = 15◦

ϕxy = 30◦

a) b)

R
el

.e
rr

or
[%

]

R
ea

ct
io

n
fo

rc
e

[N
]

nelem [-]nelem [-]

Figure 4.18: Convergence studies for a) Dogbone specimen with ϕxy = 45◦ and 75◦ for various
numbers of elements nelem (1752, 3600, 8496, 13328, 28688). b) Plate with hole
with ϕxy = 15◦ and 30◦ for various numbers of elements nelem (12804, 16884,
30760, 59576).





5 Conclusions and Outlook

The present dissertation was concerned with a bottom-up multi-step process across various
scales for the development of a multiphysics modeling approach for fiber-reinforced polymers.
In order to capture industrial (thermo-)forming processes, important corresponding coupling
phenomena as well as phase transformations were taken into account, both numerically and
experimentally.

Starting on the microscale, in the first article, a thermo-mechanically coupled constitutive
model for polyamide 6 blends was proposed, identified, and validated. To this end, a nonlinear
visco-elastic and elasto-plastic contribution were combined in a thermodynamically consistent
manner. To account for theBauschinger effect, nonlinear kinematic hardeningwas incorporated
together with a tension-compression asymmetry in yielding, where the hydrostatic pressure
sensitivity was included and the yield criterion accounts for the DOC and the temperature.
The temperature field was fully coupled with the mechanical part of the model to account
for self-heating effects, as well as thermal expansion and thermal softening. Finally, the
material parameters were assumed to be functions of the temperature as well as the degree
of crystallinity, which served as a constant input quantity. Based on the analysis of an
extensive experimental study at various temperatures, comprising tensile and compression
loading conditions, relaxation tests, and a thermal analysis, the temperature-dependent effect
of the degree of crystallinity was investigated. To this end, a novel blending technique
was introduced –compounding polyamide 6 with an amorphous co-polymer– to achieve a
particularly broad range of degrees of crystallinity (ranging from χ = 0.15 to χ = 0.29), which
are stable regarding time and temperature. Continuingwith the aim of reproducing awide range
of processing conditions, strain rates over two decades, and temperatures below and above the
glass transition regime were tested. The experimental study provided important insights into
the complex dependencies of the material on the temperature, strain rate, and DOC and closed
several gaps left in earlier works. Interestingly, apart from thermal expansion, the dependence
of themechanicalmaterial behavior on theDOCwasmore pronounced compared to the thermal
material response. Regarding the blending technique, unfortunately, side effects were visible
during testing, for example, a reduced material strength below the glass transition regime,

165
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related to the increasing number of phase boundaries. In the future, further additives should be
tested for compounding in terms of co-polymer choice and the application of compatibilizers.
Moreover, the use of crystallization agents instead of blending techniques could be investigated
to maintain the broad range of crystallinities without compromising the experimental results,
especially below the glass transition. In order to obtain a set of material parameters for each
test temperature, a successive identification procedure was proposed, testing various nonlinear
functions for the relaxation time. Here, the identification proved to be more difficult compared
to studies that took into account a smaller range of crystallinities. In the future, the optimization
algorithms and the identification procedure could be revised to achieve more accurate results.
Moreover, the presented article was mostly limited to a linear dependence on the DOC. Here,
the use of nonlinear dependencies in terms of power laws or higher-order polynomial functions
could improve the identification results even further. Nonetheless, the identification results
were in very good agreement with the experimental data. In terms of model validation and
prediction, the structural example was reflected well. However, the relaxation behavior was
reproduced less accurately compared to the tensile results, which can be related to the wide
range of strain rates (two decades) that were considered.

In Chapter 3, the polymeric matrix model was employed in a computational micromechanics
framework, analyzing mechanical and thermal effects of fiber-reinforced polyamide 6. There-
fore, firstly, an experimental study on unidirectionally glass fiber reinforced polyamide 6 was
conducted, incorporating monotonic and cyclic tension, compression, and bending tests at var-
ious temperatures, strain rates, and material directions. Since the dependence on the DOC was
already investigated in the previous experimental study (cf. 2), only one DOC was taken into
account, which significantly reduced the overall experimental effort. The experimental study
revealed the materials’ direction dependency and the nonlinear influence of the fiber angle. As
expected, the materials’ dependence on the temperature, as well as the strain rate, was more
pronounced perpendicular to the fibers. Moreover, the material was thermally characterized.
In order to perform the micromechanical and microthermal analysis, repeating unit cells were
generated with a focus on process automization. Several randomization methods were im-
plemented to reflect the random fiber distribution, and their effect on the resulting material
behavior was statistically evaluated. The comparison of the effective material response of the
micromechanical and microthermal analysis with the experimental results showed a strong
agreement and, thus, confirmed the applicability of micromechanics to generate virtual data.
In order to set up a data base for model identification of the homogenized macromodel, the
virtual experiments were carried out to reflect the considered range of DOCs and load cases.
In the future, the present study should be extended even further to account for varying fiber
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volume fractions. Accordingly, the macroscopic material model maintains its validity in the
context of material optimization and altered part design.

As the final step of the hierarchical multiscale approach, a thermo-mechanically coupled
constitutive theory for glass fiber reinforced polyamide 6was proposed in Chapter 4. Therefore,
thematrix framework fromChapter 2was extendedwithmechanical and thermal anisotropy and
characterized with the virtual and experimental data base from 3. Moreover, the crystallization
kinetics were incorporated by means of a non-isothermal modification of the Avrami model
to account for microstructural phase transformations. Throughout the multi-step process,
the emphasis was placed on preserving the validity of the employed models across a broad
spectrum of processing conditions. Consequently, both S-DSC and F-DSC results were utilized
to identify the crystallization process. The results of the identification procedure generally
were in good agreement with the virtual and experimental data base. However, for fiber
angles between 0◦ ≤ ϕxy ≤ 45◦, it was evident that further model refinement was needed.
In the future, incorporating the structural tensor in different parts of the model towards a
more phenomenological approach might improve the results for inhomogeneous stress states.
Nonetheless, the results were remarkable considering that only data for uniaxial stress states
(ϕxy = 0◦ and ϕxy = 90◦) was used for model identification. In order to evaluate the
capabilities of the presented constitutive framework, a series of numerical examples were
conducted. The presented study investigated the influence of the fiber-induced anisotropy on
the mechanical and thermal composite response, as well as the crystallization behavior, with
a focus particularly on anisotropic material self-heating and anisotropic thermal expansion.
Finally, a thermoforming simulation is conducted and, subsequently, compared to experimental
results, demonstrating the ability of the framework to successfully predict industrial forming
processes. Thus, concluding the objective of the hierarchical multiscale approach.

Overall, the aim of maintaining a wide range of processing conditions (specifically for
the degree of crystallinity, strain rate, and temperature) throughout a hierarchical multiscale
approach is reached. Moreover, the number of experiments could be successfully reduced
by focusing on individual constituents and pivotal influencing factors on each material scale
while simultaneously introducing elaboratematerialmodeling schemes and virtual experiments
where needed. Clearly, the studies on each material level will help to reduce the number of
experiments in the future by indicating which effects and constituents have the highest impact.
Nonetheless, further research in this field is undoubtedly necessary, as indicated in different
places throughout the conclusion. Obviously, the experimental study should be extended to
account for shear- and combined loading procedures, such as, for example, combined cyclic
tension and compression tests. Based on these results, a more accurate or experimentally
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determined yield criterion could be proposed. Moreover, the quality of the compression
resultsmust be improved by revising the current experimental set-up. In terms of the considered
processing conditions, the employed test temperatures were limited to a range between 23◦ C
and 150◦ C. Thus, limiting the abilities of the framework to accurately predict thermoforming
at a temperature of around 230◦ C. Consequently, in the future, it is imperative to include
experiments at temperatures close to the melting point. The corresponding tests will, however,
be extremely challenging due to the increased viscosity of the material.

From a modeling perspective, the influence of the pressure on the crystallization process
should be considered in future works given the predominant processing conditions during ther-
moforming. Moreover, inter- and intraply delamination effects are not accounted for yet. Most
importantly, the current macroscopic modeling framework consists of two decoupled processes
(I Thermo-chemical crystallization of the polymer melt and II Thermo-mechanical solidified
composite behavior). Therefore, the presented thermoforming simulation was conducted in
two separate computations. The derivation of a thermodynamically consistent thermo-chemo-
mechanically coupled constitutive theory in the future would be desirable.

Apart from the aforementioned experimental and modeling considerations, especially model
identification on multiple material levels proved to be very time-consuming and repetitive as a
result of thewide range of process parameters. Moreover, the aforementioned proposed changes
to the formulation would require recalibration. To overcome this problem and, simultaneously,
reduce the time needed for model identification and verification, neural networks should be
considered in the future. Promising results in the literature (see e.g. Flaschel et al. [2021,
2023]; Holthusen et al. [2024]; Boes et al. [2024]; Holthusen et al. [2025a,b]) demonstrated
their ability to facilitate model development while identifying the material parameters at the
same time through sufficient training. Additionally, in this way, concealed or overlooked
material effects in the experimental results might be detectable. The challenge for these
novel approaches certainly will be the choice of experiments that are used for training, the
quality of the experimental data, and the associated postprocessing. Moreover, currently model
discovery is restricted to mechanical, phenomenological single scale models. The literature
review provided in the introduction already discussed several hierarchical and concurrent
multiscale approaches successfully incorporating neural networks by, for example, replacing
micromechanics. The application in the context ofmodel discovery is, however, yet unexplored,
similar to multiphysical material behavior incorporating coupling effects. Therefore, a key
future task is to develop strategies for incorporating data from multiple scales as well as
multiphysics into constitutive artificial neural networks.
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