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Abstract
We realise the Bott-Samelson resolutions of type A Schubert varieties as quiver Grass-
mannians. In order to explicitly describe this isomorphism, we introduce the notion of a
geometrically compatible decomposition for any permutation in the symmetric group Sn .
For smooth type A Schubert varieties, we identify a suitable dimension vector such that the
corresponding quiver Grassmannian is isomorphic to the Schubert variety. To obtain these
isomorphisms, we construct a special quiver with relations and investigate two classes of
quiver Grassmannians for this quiver.
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1 Introduction

Schubert varieties first appeared at the end of the 19th century in the context of Schubert
calculus, whose purpose is to determine the number of solutions of certain intersection prob-
lems, and have become some of the best understood examples of complex projective varieties.
They have recently been linked to degenerate flag varieties and quiver Grassmannians. Two
examples of such connections are in [11], where the authors show that any type A or C degen-
erate flag variety is isomorphic to a Schubert variety in an appropriate partial flag manifold,
and later in [10], which proves that some Schubert varieties arise as irreducible components
of certain quiver Grassmannians. The Bott-Samelson(-Demazure-Hansen) varieties provide
natural resolutions of Schubert varieties. They were introduced independently by Demazure
and Hansen, and named Bott-Samelson by Demazure [14].

Given a quiver Q and a Q-representation M , the quiver Grassmannian Gre(M) is the
projective variety parametrising subrepresentations N ⊆ M of dimension vector e. They
first appeared in [12, 29] and have since been extensively studied, for instance as a tool in
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cluster algebra theory [4] or for studying linear degenerations of the flag variety [7, 8, 17, 18].
Notably, every projective variety arises as a quiver Grassmannian [26], or, more generally,
as a quiver Grassmannian of every wild quiver [27].

In this paper, we construct a special quiver with relations and a rigid representation for
this quiver, to then consider the quiver Grassmannian that corresponds to opportune choices
of a dimension vector for the quiver. We show how this quiver Grassmannian can realise the
Bott-Samelson resolution for Schubert varieties and how, for a different dimension vector,
it is isomorphic to a chosen smooth Schubert variety. Firstly, in Definition (4.2), we define
the special class of quivers with relations (�, I ) and a (�, I )-representation M . Given the
ambient dimension n + 1 = 4, then (�, I ) and M are
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Here, each map ιi+1,i denotes the inclusion of Ci into C
i+1 represented (with respect to

a chosen basis) by the matrix

ιi+1,i =
[ 1 0 ... 0

0 1 ... 0
... ... ... ...
0 0 0 1
0 0 0 0

]
.

Because of the shape of this particular quiver, it is convenient to visualise it as a grid,
or matrix, and denote its vertices by double indices (i, j). Consequently, given M as above
(and analogously for any other (�, I )-representation), we denote by Mi, j the vector space
associated to vertex (i, j).

Our first result is the following:

Theorem 1 (Proposition 4.4) M is a rigid representation of (�, I ).

In Corollary 4.6, we deduce from Theorem 1 that any quiver Grassmannian associated to
the (�, I )-representation M is a smooth and irreducible variety.

We then consider a Schubert variety Xw in the flag varietyFln+1, for any fixed permutation
w ∈ Sn+1, and define the dimension vector rw for (�, I ) according to w.

Theorem 2 (Theorem 5.19) The quiver Grassmannian Grrw (M) is isomorphic to any Bott-
Samelson resolution of Xw associated to a geometrically compatible decomposition of w.

As part of the proof of Theorem 2 (see Theorem 5.19) we give an explicit description of
the isomorphism between the Bott-Samelson resolution of Xw and our quiver Grassmannian
Grrw (M). We remark that the quiver, the representation and the corresponding quiver Grass-
mannian we use are different from the ones that are obtained from the realisation of projective
varieties as quiver Grassmannians given in [26]. This allows us not only to exploit an alge-
braic property of the representation M (i.e. its rigidity) to deduce geometrical properties of
the associated variety Grrw (M), but also to give a straightforward correspondence between
the points of Grrw (M) and those of the Bott-Samelson resolution of Xw which relies only
on the combinatorial definition of the latter (see Definition 5.5).
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Quiver Grassmannians for the Bott-Samelson Resolution

Finally, we make use of a combinatorial characterisation of smooth Schubert varieties:
it was first proved in [24] that a Schubert variety Xw is smooth if and only if w avoids
the patterns [4231] and [3412], and this criterion was later characterised in [21] in terms of
the conditions that define the flags in Xw . We exploit this characterisation and provide an
explicit isomorphism between a fixed smooth Schubert variety and the quiver Grassmannian
Grew (M) of (�, I ), for a special dimension vector ew:

Theorem 3 (Theorem 6.4) If w ∈ Sn+1 avoids the patterns [4231] and [3412], the quiver
Grassmannian Grew (M) is isomorphic to the Schubert variety Xw .

Future perspectives The topics and results of this paper raise a few natural questions. Firstly,
can we describe linear degenerations of Schubert varieties (or of their Bott-Samelson resolu-
tions) in the sense of [6]? A discussion on this will appear in a follow-up paper in preparation,
based on the PhD thesis by the author of this paper (see [23]). Then, we might ask if it is
possible to find a map between the desingularisations constructed in [9] and the realisation
of the Bott-Samelson resolutions presented in this paper.

Further, it is reasonable to consider the action of the one-dimensional torus C∗ on the
representation M in the sense of [8] and prove that it extends to an action on the quiver
Grassmannian. We can then investigate whether this action induces a cellular decomposition
of the quiver Grassmannian in terms of attracting sets.

The paper is organised as follows: Sections 2 and 3 are dedicated, respectively, to basic
facts about quiver Grassmannians and about Schubert varieties in the flag variety of type
A. In Section 4, we define the quiver (�, I ), its representation M and prove Theorem 1.
Section 5 is mainly concerned with proving that all permutations admit a certain reduced
decomposition, called geometrically compatible decomposition, in order to prove Theorem
2. In Section 6, we define a special dimension vector for (�, I ) and prove Theorem 3.

2 Background on quiver Grassmannians

We first collect some facts about quiver representations and quiver Grassmannians. Standard
references are [13, 28].

Definition 2.1 A finite quiver Q = (Q0, Q1, s, t) is given by a finite set of vertices Q0, a
finite set of arrows Q1 and two maps s, t : Q1 → Q0 assigning to each arrow its source,
resp. target.

Definition 2.2 A relation on a quiver Q is a subspace of the path algebra of Q spanned by
linear combinations of paths with common source and target, of length at least 2. Given a
two-sided ideal I of KQ generated by relations, the pair (Q, I ) is a quiver with relations
and the quotient algebra KQ/I is the path algebra of (Q, I ).

A system of relations for I is defined as a subset R of ∪i, j∈Q0 i I j , where i denotes the
trivial path on vertex i , such that R, but no proper subset of R, generates I as a two-sided
ideal. For any two vertices i and j , we denote by r(i, j, R) the cardinality of the set R ∩ i I j ,
which contains those elements in R that are linear combinations of paths starting in i and
ending in j . If Q contains no oriented cycle, then the numbers r(i, j, R) are independent of
the chosen system of relations (see for instance [3]), and can therefore be denoted by r(i, j).
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Definition 2.3 Given a quiver Q, the finite-dimensional Q-representation M over an
algebraically closed field K is the ordered pair ((Mi )i∈Q0 , (M

α)α∈Q1), where Mi is a finite-
dimensionalK-vector space attached to vertex i ∈ Q0 andMα : Ms(α) → Mt(α) is aK-linear

map for any α ∈ Q1. The dimension vector of M is dimM := (dimK Mi )i∈Q0 ∈ Z
|Q0|
≥0 .

A subrepresentation of M , denoted by N = ((Ni )i∈Q0 , (M
α �Ns(α)

)α∈Q1), is a Q-
representation such that Ni ⊆ Mi for any i ∈ Q0 and Mα(Ns(α)) ⊆ Nt(α) for any α ∈ Q1.

From now on, we consider only bound quivers in the sense of Schiffler (see [28, Definition
5.1]).

The finite-dimensional Q-representations over K form a category, denoted by repK(Q),
where a morphism φ between M and M ′ in repK(Q) is given by linear maps φi : Mi →
M ′

i ∀i ∈ Q0 such that φt(α) ◦ Mα = M ′α ◦ φs(α). Similarly, the category repK(Q, I )
consists of the finite-dimensional representations of Q that satisfy the relations in I . It is
known (see [28, Theorem 5.4] for a proof) that repK(Q) is equivalent to the category A-mod
of finite-dimensional modules over the path algebra A = KQ of Q. Furthermore, repK(Q)

is Krull-Schmidt ([28, Theorem 1.2]) and hereditary ([28, Theorem 2.24]).

Definition 2.4 A representation P ∈ repK(Q) is called projective if the functor Hom(P,−)

maps surjective morphisms to surjective morphisms. Dually, I ∈ repK(Q) is called injective
if the functor Hom(−, I ) maps injective morphisms to injective morphisms.

If Q is a quiverwithout oriented cycles, then to each vertex i ∈ Q0 corresponds exactly one
indecomposable projective representation, denoted by P(i). Such projective representations
are easy to describe: the basis of the vector space P(i)k at vertex k is given by the set of
all possible paths from vertex i to vertex k, and the actions of the maps between the vector
spaces are induced by the concatenation of paths. Dually, for every vertex i ∈ Q0 there is
exactly one indecomposable injective representation I (i), whose basis for each vector space
I (i)k is given by the set of all possible paths from vertex k to vertex i and whose maps act
by concatenation of paths.

The following result holds in any additive category.

Proposition 2.5 [28, Proposition 2.7] Let P, P ′, I and I ′ be representations of Q. Then:

(1) P ⊕ P ′ is projective ⇐⇒ P and P ′ are projective;
(2) I ⊕ I ′ is injective ⇐⇒ I and I ′ are injective.

Definition 2.6 Given a Q-representation M , a projective resolution of M is an exact
sequence

. . . −→ P3 −→ P2 −→ P1 −→ P0 −→ M −→ 0,

where each Pi is a projective Q-representation. An injective resolution of M is an exact
sequence

0 −→ M −→ I0 −→ I1 −→ I2 −→ I3 −→ . . . ,

where each Ii is an injective Q-representation.

Definition 2.7 The projective dimension of M is the smallest integer d such that there exists
a projective resolution of the form

0 → Pd → Pd−1 → · · · → P1 → P0 → M → 0.

The injective dimension of M is the smallest integer d such that there exists an injective
resolution of the form

0 → M → I0 → I1 → · · · → Id−1 → Id → 0.
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Quiver Grassmannians for the Bott-Samelson Resolution

For M, N ∈ repK(Q) we use the standard notation

[M, N ] := dimK HomQ(M, N ), [M, N ]1 := dimK Ext1Q(M, N ).

We call a representation M rigid if it has no self-extensions, which means [M, M]1 = 0.
Finally, we denote by

〈M, N 〉 = [M, N ] − [M, N ]1
the Euler-Ringel form of Q, which can be computed (see for instance [3] for details) via the
bilinear form 〈−,−〉 : Z|Q0| × Z

|Q0| → Z defined as

〈dM ,dN 〉 = 〈dimM,dim N 〉 :=
∑
i∈Q0

dM
i dN

i −
∑

α∈Q1

dM
s(α)d

N
t(α). (2.8)

For a quiver with relations (Q, I ) and no oriented cycles, the Euler-Ringel form is given
by

〈dM ,dN 〉 =
∑
i∈Q0

dM
i dN

i −
∑

α∈Q1

dM
s(α)d

N
t(α) +

∑
i, j∈Q0

r(i, j)dM
i dN

j . (2.9)

More background and details can be found for instance in [3, Section 2.2] or [15]. To simplify
notation, we will sometimes denote a Q-representation M by its tuple of vector spaces
(Mi )i∈Q0 when the assignment of the linear maps is clear from context.

Definition 2.10 Consider a quiver Q, a Q-representation M and a dimension vector e ∈ Z
Q0≥0

such that ei ≤ dim Mi ∀i ∈ Q0. The quiver Grassmannian Gre(M) parametrises the
subrepresentations N of M with dim Ni = ei for all i ∈ Q0.

Analogous to Grassmannians and flag varieties, non-empty quiver Grassmannians can be
realised as closed subvarieties of products of Grassmannians, via the closed embedding

ι : Gre(M) →
∏
i∈Q0

Gr(ei , Mi )

which sends a subrepresentation N of M to the collection of ei -dimensional subspaces Ni

of Mi .

Example 2.11 (The flag variety of type A) In [8, Proposition 2.7], the authors realise the
(linear degenerate) flag variety of type A as quiver Grassmannians associated to certain
representations of the equioriented quiver of type An . In particular, the complete flag variety
Fln+1 in C

n+1 can be realised as follows.
Consider the quiver with n vertices, labelled from 1 to n, and n − 1 arrows of the form

i → i + 1. We fix the dimension vector e = (1, 2, . . . , n) and the representation M with
Mi = C

n+1 for i = 1, . . . , n and Mα = id for all arrows α:

C
n+1

• C
n+1

• ...
C
n+1

• .
id id id

The quiver Grassmannian Gre(M) consists precisely of the subrepresentations N of M with
dim(Ni ) = i , i.e. full flags of vector subspaces.

3 Background on Schubert Varieties

Given any v1, . . . , vr in C
n+1, we denote by 〈v1, . . . , vr 〉 their C-linear span. To define

Schubert varieties in Fln+1, we first fix a basisB = {b1, b2, . . . , bn+1} ofCn+1 and denote by
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F• the standard flag 〈b1〉 ⊆ 〈b1, b2〉 ⊆ · · · ⊆ 〈b1, b2, . . . , bn+1〉 and by Sn+1 the symmetric
group on n + 1 elements. More facts and details about Schubert varieties can be found for
instance in [20, Part III].

Definition 3.1 For w ∈ Sn+1, the Schubert cell X◦
w is

X◦
w = {V• ∈ Fln+1 : dim(Fp ∩ Vq) = #{k ≤ q : w(k) ≤ p}, 1 ≤ p, q ≤ n + 1}.

Definition 3.2 The Schubert variety Xw is defined as the closure in Fln+1 of the cell X◦
w ,

that is

Xw = {V• ∈ Fln+1 : dim(Fp ∩ Vq) ≥ #{k ≤ q : w(k) ≤ p}, 1 ≤ p, q ≤ n + 1}.

For the purposes of this paper, we consider the intersections Fp∩Vq instead of the standard
Vp ∩ Fq in the definition of Schubert varieties, and to simplify the notation we write rw

p,q for
the numbers #{k ≤ q : w(k) ≤ p}.

We observe that the conditions on the intersections between the Fp and the Vq imply, for
each pair p, q , one of the following : Fp ⊂ Vq , Fp ⊃ Vq , Fp = Vq or Fp ∩ Vq = U with
0 ≤ dim(U ) < min{p, q}. A minimal set of conditions that imply all the conditions defining
a Schubert variety Xw has been described in terms of essential sets of the permutationw (see
[19, Section 3] or [21, Section 4]). Each Schubert variety Xw is an irreducible subvariety of
Fln+1, and its dimension is given by the number of inversions in w, called length:

�(w) = #{i < j : w(i) > w( j)}.
The length of a permutation w is also the minimal number of simple transpositions needed
to form a decomposition of w, called reduced decomposition: w = s�(w) · · · s1, where si
denotes the swap of i and i + 1. We recall that, in general, a permutation admits more than
one reduced decomposition.

The length of w is closely related to the numbers rw
p,q appearing in Definition 3.1. In fact,

it is easily recovered by representing each flag V• ∈ X◦
w via a certain matrix, as explained

in [20, Section 10.2], and counting how many entries of this matrix are arbitrary complex
numbers.

Given u, w ∈ Sn+1, we say that the relation u ≤ w holds under the Chevalley-Bruhat
(partial) order if a reduced expression of w contains a subexpression which is a reduced
expression for u. The Schubert variety Xw consists of the cell X◦

w , which is open and dense
in Xw , and of the cells corresponding to permutations that are smaller than w with respect
to the Chevalley-Bruhat order ≤ on Sn+1: Xw = �u≤w X◦

u .
We represent a permutation w in Sn by listing its (naturally) ordered images, that is, its

one-line notation w = [w(1)w(2) . . . w(n)].

Example 3.3 For e = [1 2 . . . n + 1] and w0 = [n + 1 n . . . 1] in Sn+1, it is easy to compute
from Definition 3.2 the Schubert varieties of minimal and maximal dimension, respectively
Xe = {F•} and Xw0 = Fln+1.

Smooth Schubert varieties were characterised combinatorially in [24]: a Schubert variety
Xw is smooth if and only if w avoids the patterns [4231] and [3412]. We recall that a
permutation w = [w(1)w(2) . . . w(n)] avoids a pattern π if no subsequence of w has the
same relative order as the entries of π . In [21, Theorem 1.1], the authors prove that this
pattern-avoiding condition is equivalent to Xw being defined by non-crossing inclusions:
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Quiver Grassmannians for the Bott-Samelson Resolution

Definition 3.4 ([21, Section 1])ASchubert variety Xw isdefinedby inclusions if the defining
conditions on eachVq (seeDefinition 3.2) are a conjunction of conditions of the formVq ⊆ Fp

and Vq ⊇ Fs , for some p and s. A pair of conditions Vq ⊂ Fp and Fp′ ⊂ Vq ′ is crossing if
q < q ′ and p > p′.

If Xw is defined by inclusions and its conditions do not contain any crossing pair, then
Xw is defined by non-crossing inclusions.

Example 3.5 All permutations in S3 are defined by non-crossing inclusions.
In S5, the permutation w = [31542] avoids both patterns [4231] and [3412], which

means that Xw is defined by non-crossing inclusions. We can compute these inclusions using
Definition 3.2: a flag V• is in Xw if and only if

V1 ⊆ F3, F1 ⊆ V2 ⊆ F3, F1 ⊆ V3, F1 ⊆ V4.

The same conditions can be described without redundancy as F1 ⊆ V2 ⊆ F3, which is a pair
of non-crossing inclusions.

A permutation in S5 that yields crossing inclusions is τ = [45312], which contains the
pattern [3412]. A flag V• is in Xτ if and only if V1 ⊆ F4 and F1 ⊆ V4. Finally, the permutation
π = [53421] in S5 contains the pattern [4231] and defines a non-trivial condition on Xπ that
is not an inclusion: a flag V• is in Xπ if and only if dim(F3 ∩ V2) ≥ 1.

4 A Special Quiver With Relations and a Special Representation

We now define a quiver with relations and construct a rigid representation for this quiver. This
will then be exploited in Sections 5 and 6, together with two different, appropriate choices
of dimension vectors, to recover the Bott-Samelson resolution for Schubert varieties and to
realise smooth Schubert varieties as the corresponding quiver Grassmannian, respectively.

The following construction of the quiver and its special representation depends on the fixed
ambient dimension n + 1 but not on the chosen Schubert variety (that is, it’s independent of
the specific permutation w in Sn+1).

Given n ∈ N≥2, we consider the following quiver � = (�0, �1) :
(1,1)• (1,2)• ...

(1,n)•

(2,1)• (2,2)• ...
(2,n)•

... ... ... ...

•
(n+1,1)

•
(n+1,2)

... •
(n+1,n)

where each vertex in �0 is labelled by a pair (i, j), for i = 1, . . . , n+1 and j = 1, . . . , n.
We denote by α

(k,l)
(i, j) the arrow going from vertex (i, j) to vertex (k, l).

Then, we consider the following relations on �:

α
(i+1, j+1)
(i, j+1) α

(i, j+1)
(i, j) = α

(i+1, j+1)
(i+1, j) α

(i+1, j)
(i, j) (4.1)
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for i = 1, . . . , n, j = 1, . . . , n − 1, and denote by I the ideal of C� generated by these
relations. We write (�, I ) for the quiver with relations:

(1,1)• (1,2)• ...
(1,n)•

(2,1)• (2,2)• ...
(2,n)•

... ... ... ...

•
(n+1,1)

•
(n+1,2)

... •
(n+1,n)

� � �

� � �
� � �

Now, we define the (�, I )-representation M = ((Mi, j )(i, j)∈�0 , (M
α)α∈�1) as

Mi, j = C
i , Mα =

{
ιi+1,i if s(α) = (i, j), t(α) = (i + 1, j)

id if s(α) = (i, j), t(α) = (i, j + 1)
(4.2)

where ιi+1,i denotes the inclusion of Ci into C
i+1, represented with respect to the chosen

basis B = {b1, b2, . . . , bn+1} by the matrix ιi+1,i =
[ 1 0 ... 0

0 1 ... 0
... ... ... ...
0 0 0 1
0 0 0 0

]
.

The relations imposed on � are trivially satisfied by the representation M :

C• C• ...
C•

C
2

• C
2

• ...
C
2

•

... ... ... ...

C
n+1

• C
n+1

• ...
C
n+1

•

id

ι2,1

id

ι2,1

id

ι2,1
ι2,1�

id

ι3,2

�
id

ι3,2

�
id

ι3,2 ι3,2�
id

ιn+1,n

�
id

ιn+1,n

�
id

ιn+1,n
ιn+1,n�

id

�
id

�
id

.

We nowwant to show that M is a rigid representation of (�, I ). To do so, we first consider
the following subquiver �′ of �

(1,1)• (2,1)• (3,1)• · · · (n+1,1)•ι2,1 ι3,2 ι4,3 ιn+1,n
,

i.e. the equioriented Dynkin quiver An+1, and call M ′ the restriction of the representation M
to �′:

C• C
2

• C
3

• · · · C
n+1

•ι2,1 ι3,2 ι4,3 ιn+1,n
.

Lemma 4.3 M ′ is a rigid representation of �′.
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Quiver Grassmannians for the Bott-Samelson Resolution

Proof The representation M ′ is the direct sum of the indecomposable projective representa-
tions P(i) of An+1, which are of the form:

P(i) : 0•
1

· · · C•
i

· · · C•
n+1

0 0 id id

for i = 1, . . . , n+1.More precisely,M ′ = ⊕n+1
i=1 P(i). By Proposition 2.5,M ′ is projective,

which implies that Ext1
�′(M ′, M ′) = 0. ��

Proposition 4.4 M is a rigid representation of (�, I ).

Proof Consider �′ and M ′ as in Lemma 4.3 and the functor

	 : repC(�′) → repC(�, I )

defined on R ∈ repC(�′) as follows. For all i = 1, . . . , n + 1 and j = 1, . . . , n, we set
	(R)i, j = Ri . For each arrow i → i + 1 in �′ and j = 1, . . . , n, the map 	(R)i, j →
	(R)i+1, j is defined as the map Ri → Ri+1. Finally, for each i = 1, . . . , n + 1 and
j = 1, . . . , n − 1, the map 	(R)i, j → 	(R)i, j+1 is idRi . From the definition of 	, it
follows that 	(M ′) = M . As shown in [25, Lemma 2.3, Lemma 2.5], 	 is an exact, fully
faithful functor that takes projective objects to projective objects. This implies ([25, Corollary
2.6]) that Exti(�,I )(	(V ),	(W )) ∼= Exti

�′(V ,W ) for every V ,W ∈ repC(�′) and i ≥ 0. In
particular, we have

Ext1(�,I )(M, M) ∼= Ext1�′(M ′, M ′) = 0.

��
We will prove in Corollary 4.6 that all quiver Grassmannians Gre(M) associated to M ,

independently of the dimensionvector e, are smooth, irreducible projective varieties of dimen-
sion 〈e,dim M − e〉. The smoothness and irreducibility of quiver flag varieties were already
investigated in [30, Theorem 4.12] using a scheme theoretic approach. Here, we provide an
alternative proof exploiting instead the rigidity of the representation M together with a few
homological properties. For this purpose, we prove the following facts (see Definition 2.7
for projective and injective dimension of a representation):

Proposition 4.5 Given (�, I ) and M as above,

(1) the projective dimension of M is 0;
(2) the injective dimension of M is 1.

Proof (1) The representation M is a projective representation of (�, I ), and therefore has
projective dimension equal to zero, because it is a direct sum of projective (�, I )-
representations (by Proposition 2.5). Let us denote by P(i, j) the indecomposable
projective representation of (�, I ) at vertex (i, j); then, M = P(1, 1) ⊕ P(2, 1) ⊕
· · · ⊕ P(n, 1) ⊕ P(n + 1, 1).

(2) In order to show that the injective dimension of M is one, we construct an injective
resolution of M (see Definition 2.6). We define the injective representations I0, I1 of
(�, I ) as the following sums of indecomposable injective representations:

I0 =
n+2⊕
i=1

I (n + 1, n), I1 =
n+1⊕
i=1

I (i, n).
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Then, the sequence

ε : 0 M I0 I1 0
f g

where f is the injective map embedding M into I0 and g is the surjective map projecting
I0 onto I1 (which implies Im( f ) = M = ker(g)) is a short exact sequence.

��
Corollary 4.6 Given (�, I ) and M as above, the quiver Grassmannian Gre(M), if not empty,
is a smooth and irreducible projective variety for any dimension vector e. Its dimension is
〈e,dim M − e〉.
Proof As shown in Proposition 4.4, M is a rigid representation of (�, I ), therefore the irre-
ducibility ofGre(M) follows directly from [5, Proposition 38]. In order to prove the remaining
claims, we show that all hypotheses of [9, Proposition 7.1] hold. The representation M has
projective dimension zero, since it is a projective representation of (�, I ), and its injective
dimension is one (see Proposition 4.5). It is straightforward to verify that the quotient alge-
bra C�/I has global dimension two, since it can be realised as the tensor product of two
well-known path algebras. Namely, we consider the path algebra of the cartesian product of
an equioriented An quiver and an equioriented An+1 quiver and take the quotient over the
commutativity relations on all resulting squares. It is known that the global dimension of the
path algebra of any type An quiver (for n ≥ 2) is one (see, for instance, [28, Section 2.2]).
Then, we apply [2, Theorem 16] and obtain that the global dimension of C�/I is the sum of
the global dimensions of the path algebras of the two quivers of type An . ��

5 Recovering the Bott-Samelson Resolution for Schubert Varieties

We consider the quiver (�, I ) and its representation M constructed in the previous section,
and fix a permutation w in Sn+1. The conditions that define the elements V• in Xw are of the
form dim(Fp ∩ Vq) ≥ #{k ≤ q : w(k) ≤ p}, for 1 ≤ p, q ≤ n + 1 (see Definition 3.2).
Notice that for q = n + 1 and any p these conditions are trivial, since n + 1 is the dimension
of the ambient space Cn+1, and therefore it is enough to consider q = 1, . . . , n.

Now we define the dimension vector rw = (rw
i, j ) for the quiver (�, I ) as

rw
i, j := #{k ≤ j : w(k) ≤ i}, i = 1, . . . , n + 1, j = 1, . . . , n. (5.1)

Before introducing the Bott-Samelson resolution for Schubert varieties, let us make a few
remarks about this definition for the dimension vector rw , in particular about how its entries
change as we move from w to permutations that are bigger than w with respect to the Bruhat
order in Sn+1. The following lemma describes which (unique) row and which columns of
the dimension vector are affected, and how they change, when we left-multiply by a simple
transposition which increases by one the length of the permutation we are considering.

Lemma 5.2 Consider r ŵ
p,q = #{ j ≤ q : ŵ( j) ≤ p} for 1 ≤ p, q ≤ n + 1 and a fixed

ŵ ∈ Sn+1 (seeDefinition 3.2). Then, for a simple transposition si such that �(si ŵ) = �(ŵ)+1,
the numbers rsi ŵp,q = #{ j ≤ q : si ŵ( j) ≤ p} are given by{

rsi ŵp,q = r ŵ
p,q − 1 if p = i and qi ≤ q < qi+1

rsi ŵp,q = r ŵ
p,q otherwise

where qi = ŵ−1(i) and qi+1 = ŵ−1(i + 1).
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Proof It is straightforward to verify that, since si only swaps i and i + 1, the count is not
affected when p �= i or when p = i and q < qi or q ≥ qi+1.

If p = i and qi ≤ q < qi+1, there is exactly one j that satisfies j ≤ q ∧ ŵ( j) ≤ p but
not j ≤ q ∧ si ŵ( j) ≤ p, that is j = qi , and so in this case the count decreases by one. ��
Example 5.3 We fix ŵ = [34251] ∈ S5 and compute the corresponding dimension vector rŵ

according to the definition given in (5.1):

rŵ =

⎛
⎜⎜⎜⎜⎝
0 0 0 0
0 0 1 1
1 1 2 2
1 2 3 3
1 2 3 4

⎞
⎟⎟⎟⎟⎠ .

Then we apply s3, obtaining w := s3ŵ = [43251], and we know from Lemma 5.2 that rw

differs from rŵ only at entry rw
3,1:

rw =

⎛
⎜⎜⎜⎜⎝
0 0 0 0
0 0 1 1
0 1 2 2
1 2 3 3
1 2 3 4

⎞
⎟⎟⎟⎟⎠ .

Remark 5.4 An important consequence of Lemma 5.2 is that some information about the
reduced decompositions of w can be read directly off the corresponding dimension vector.
In Example 5.3, we can compare rw to the dimension vector corresponding to the identity in
S5:

rid =

⎛
⎜⎜⎜⎜⎝
1 1 1 1
1 2 2 2
1 2 3 3
1 2 3 4
1 2 3 4

⎞
⎟⎟⎟⎟⎠

and observe that rw
2,2 = r id2,2 − 2. By Lemma 5.2, this can only happen if the simple transpo-

sition s2 appears at least two times in any reduced decomposition of w. Similarly, we deduce
that s1, s3 and s4 appear at least one time in any reduced decomposition of w. The converse
is also true: if a simple transposition si appears k times in all reduced decompositions of a
given permutation w (that is, there are k instances of si that are not part of any braid si si+1si
or si+1si si+1), then there exists an entry in the i-th row of the dimension vector rw that has
decreased by k from its value in rid. We do not include a proof of this statement as it is not
relevant to the purpose of this section, but an idea of the strategy can be found in the proof
of Theorem 5.18, since knowing that these k instances of si are not part of any braid allows
us to describe which simple transpositions can appear between them.

In order to show that the quiver Grassmannian Grrw (M) is isomorphic to certain Bott-
Samelson resolutions of Xw , we recall the following definition of Bott-Samelson varieties:

Definition 5.5 ([22,Definition 3.1])Given a permutationw ∈ Sn+1 of length N and a reduced
decomposition w = siN · · · si1 , the Bott-Samelson variety BS(siN · · · si1) is a subvariety of
(Fln+1)

N defined as follows:

BS(siN · · · si1) = {(V 0• , V 1• , . . . , V N• ) ∈ (Fln+1)
N : V k−1

i = V k
i ,∀k = 1, . . . , N ,

∀i = 1, . . . , n, i �= ik}
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where V 0• = F• = 〈b1〉 ⊆ 〈b1, b2〉 ⊆ · · · ⊆ 〈b1, b2, . . . , bn+1〉, the standard flag in
Fln+1.

Example 5.6 We fix again the permutation w = [43251] ∈ S5 from Example 5.3 and its
reduced decomposition w = s1s2s3s1s2s1s4. The elements V •• of BS(s1s2s3s1s2s1s4) are
given by tuples of seven complete flags, each living in Fl5, of the following form:

〈b1〉 ⊆ 〈b1, b2〉 ⊆ 〈b1, b2, b3〉 ⊆ V 1
4 , V 4

1 ⊆ V 3
2 ⊆ V 5

3 ⊆ V 1
4 ,

V 2
1 ⊆ 〈b1, b2〉 ⊆ 〈b1, b2, b3〉 ⊆ V 1

4 , V 4
1 ⊆ V 6

2 ⊆ V 5
3 ⊆ V 1

4 ,

V 2
1 ⊆ V 3

2 ⊆ 〈b1, b2, b3〉 ⊆ V 1
4 , V 7

1 ⊆ V 6
2 ⊆ V 5

3 ⊆ V 1
4 .

V 4
1 ⊆ V 3

2 ⊆ 〈b1, b2, b3〉 ⊆ V 1
4 ,

Remark 5.7 Bott-Samelson varieties provide an explicit desingularisation for typeASchubert
varieties: the desingularisationmapBS(siN · · · si1) → Xw sends the tuple (V 0• , V 1• , . . . , V N• )

to its last entry V N• .
As shown in [1, Chapter 18, Lemma 2.1, Lemma 2.3], the Bott-Samelson varieties cor-

responding to different reduced decompositions of the same permutation w are birational,
since they are all birational to the Schubert variety Xw . It is known that Bott-Samelson
varieties corresponding to reduced decompositions that differ only by a commutation move
are isomorphic (see [16, Section 2]). If two reduced decompositions of a permutation differ
by braid moves, it is not true in general that the corresponding Bott-Samelson varieties are
isomorphic.

In order to show that the quiver GrassmannianGrrw (M) is birational to anyBott-Samelson
resolution of Xw , it is enough to pick an opportune reduced decomposition of w.

Remark 5.8 To recover certain Bott-Samelson resolutions of Schubert varieties via quiver
Grassmannians, we started by defining a quiver and a representation for this quiver (in
Section 4) which only depend on the ambient dimension n+1. Then, we fixed a permutation
w ∈ Sn+1 and computed the dimension vector rw according toDefinition 3.2.We remark that,
given aBott-Samelson variety, we can find an immediate realisation as a quiverGrassmannian
for the grid. Here, we show this through an example and discuss how it differs from our
construction.

For instance, consider the permutation w = [43251] ∈ S5 from Example 5.3, its reduced
decomposition w = s1s2s3s1s2s1s4 and the corresponding Bott-Samelson variety described
in Example 5.6. We construct the following quiver Q and Q-representation:

C• C
5

• C
5

• C
5

• C
5

• C
5

• C
5

• C
5

•
C
2

• C
5

• C
5

• C
5

• C
5

• C
5

• C
5

• C
5

•
C
3

• C
5

• C
5

• C
5

• C
5

• C
5

• C
5

• C
5

•
C
4

• C
5

• C
5

• C
5

• C
5

• C
5

• C
5

• C
5

•

ι5,1

ι2,1

0

id

id

id id

0

id

id

id

id

id

0

id

ι5,2

ι3,2

id

id

0

id id

id

id

id

id

0

id

id

id

ι5,3

ι4,3

id

id

id

id id

id

id

0

id

id

id

id

id

0 id id id id id id

and consider the following dimension vector:

bs1s2s3s1s2s1s4 =

⎛
⎜⎜⎝
1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4

⎞
⎟⎟⎠ .
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Then, each flag V j• in BS(s1s2s3s1s2s1s4) is realised in the j-th column of Q. The iden-
tity maps corresponding to horizontal arrows impose the inclusion conditions between the
appropriate subspaces of the flags V j• , while the zero maps point to the free subspaces
V 1
4 , V 2

1 , V 3
2 , V 4

1 , V 5
3 , V 6

2 and V 7
1 , in order.

In this construction, the entries of the considered dimension vector do not depend on w.
The number of columns of Q and of the dimension vector, on the other hand, depends on the
length of w, and the representation of Q can only be constructed after choosing a specific
reduced decomposition of w. Different choices of reduced decompositions yield different
Q-representations.

More significantly, we cannot apply to this Q-representation the same arguments as in
Section 4. There, we proved the rigidity of the representation M for the quiver with relations
(�, I ). By Corollary 4.6, every quiver Grassmannian for the representation M is smooth and
irreducible, and its dimension is given by the Euler-Ringel form of (�, I ). This means that,
using our construction,we realise the chosenBott-Samelson variety as a quiverGrassmannian
that is part of a larger family of varieties which share some common, desirable properties.

Definition 5.9 Let w ∈ Sn+1 and denote by R = (Rp,q), for p = 1, . . . , n + 1 and q =
1, . . . , n, an element of Grrw (M).

• We denote by Mw the nonordered multiset [rw
p,q ] for all the p, q such that⎧⎪⎨

⎪⎩
rw
p,q < p

rw
p,q > rw

p−1,q

rw
p,q > rw

p,q−1

. (5.10)

• We call a reduced decomposition w = siN · · · s2s1 geometrically compatible if
[iN , . . . , i2, i1] and Mw coincide as nonordered multisets.

Remark 5.11 The numbers contained in Mw are the dimensions of exactly those subspaces
Rp,q ofCp that are not trivial and do not coincide with a subspace to their left or above them.
Fixing an element R in the quiver Grassmannian Grrw (M) means precisely to make a choice
for all such subspaces Rp,q . Hence the name "geometrically compatible" decomposition: it
is a reduced decomposition ofw from which we can read the dimensions of all the subspaces
that are relevant to determine R.

Because of the geometrical significance of the conditions given in (5.10), we will inter-
changeably refer to the rw

p,q and to the Rp,q that satisfy these conditions.

Example 5.12 We consider w = [43251] and the corresponding dimension vector rw as in
5.3. Given any subrepresentation R in Grrw (M), the subspaces whose dimensions satisfy all
conditions in (5.10) are R2,3, R3,2, R4,1, R3,3, R4,2, R4,3 and R5,4. Their dimensions are, in
order, 1,1,1,2,2,3, and 4, so a geometrically compatible decomposition of w contains three
s1, two s2, one s3 and one s4. The decomposition w = s1s2s3s1s2s1s4 considered in 5.6 is
geometrically compatible, while, for instance, w = s3s1s2s1s3s2s4 is not.

Now we want to show that all permutations admit a geometrically compatible decompo-
sition. To do so, firstly we characterise the multiset Mw, that is, what follows from the fact
that a certain Rp,q is not a trivial subspace of Cp in terms of the reduced decompositions of
w.

Recall that the length of a permutation w can be equivalently defined as the number of
inversions appearing in w or as the number of simple transpositions that form any reduced
decomposition of w.
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Lemma 5.13 Given w ∈ Sn+1 and a subrepresentation R = (Rp,q) in Grrw (M), with p =
1, . . . , n + 1 and q = 1, . . . , n, the cardinality of Mw is exactly the length of w.

Proof We denote by N the length of w and write w = siN · · · s2s1. By Lemma 5.2, the
left-multiplication of each sik results in a new subspace (namely Rik+1,qik

, for qik as in the
notation of Lemma 5.2) satisfying the conditions in (5.10).

On the other hand, applying one simple transposition cannot cause two new subspaces to
satisfy the conditions in (5.10): all the affected entries of the dimension vector decrease by
the same amount (by one), and the absolute difference between neighbouring entries of rw

is always zero or one (this follows from Definition 3.2).
The claim follows by iterating this argument on each sik , for k = 1, . . . , N . ��

Lemma 5.14 Letw ∈ Sn+1 and R any subrepresentation inGrrw (M). If the numbers inMw

are all distinct, then w admits a geometrically compatible decomposition.

Proof In order for a subspace of dimension d to satisfy the conditions in (5.10), the simple
transposition sd must appear at least once in any reduced decomposition of w. If this is not
the case, by Lemma 5.2 the d-th row of rw is equal to the d-th row of rid, which implies that
all subspaces appearing in R of dimension d have to coincide with Cd - and therefore do not
satisfy the conditions in (5.10). The result then follows immediately from Lemma 5.13. ��
Remark 5.15 A straightforward consequence of Lemma 5.2 is that if the reduced decompo-
sitions of w ∈ Sn+1 consist of all distinct simple transpositions, then they are geometrically
compatible. As shown in the lemma, each of these transpositions sik affects the correspond-
ing row of the dimension vector, resulting in the subspace Rik+1,qi (which has dimension ik)
satisfying the conditions in (5.10).

Remark 5.15 and Lemma 5.14 describe the same situation, but from two different per-
spectives: in the first case we assume the numbers inMw to be all distinct, and this allows us
to write down a reduced decomposition of w, in the second case we already have a reduced
decomposition of w and deduce that it is also geometrically compatible.

We recall the following notation from Lemma 5.2: if we left-multiply a permutation w by
a simple transposition s j , we denote by q j the pre-image w−1( j) of j via w.

Lemma 5.16 Let w ∈ Sn+1 with reduced decomposition w = siN . . . si1 , s j be a simple
transposition such that �(s jw) = �(w) + 1. Let R j+1,q j be the subspace that satisfies the
conditions in (5.10) if R is any subrepresentation inGrrs jw (M) (but does not satisfy them if R
is inGrrw (M)). Then, the dimension of R j+1,q j is ĵ for some ĵ ≤ j . In particular, ĵ < j can
only happen if all reduced decompositions of s jw are of the form s jw = s j siN . . . sik . . . si1 ,
where ik = j for some k such that it �= j + 1 for all k < t < N.

Proof A subspace Rp,q can satisfy the conditions in (5.10) only if p ≥ dim(Rp,q) + 1, and
we know from Lemma 5.2 that the only effect of s j on the corresponding dimension vector
is to decrease certain entries in row j by one. By Definition 5.1 of the dimension vector, all
entries are bounded by their corresponding numbers of row and column. This implies that
a dimension j ′ can only appear from row j ′ downwards, and so the dimension of R j+1,q j

cannot be greater than j .
For the second statement, we know that an index k such that ik = j exists: otherwise, as

stated in Remark 5.15, if the simple transpositions appearing in the reduced decomposition
of s jw are all distinct, then the dimension of R j+1,q j is j . Then, we suppose that s j+1 occurs
between these two instances of s j and look at which entries of the dimension vector decrease
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when w is left-multiplied by s j . According to Lemma 5.2, the entries in columns q j and
q j + 1 (and possibly more) decrease by one. This meanins that the subspace R j+1,q j , for
R ∈ Grrs jw (M), cannot satisfy the conditions in (5.10), which contradicts the assumption.��
Remark 5.17 Lemma 5.16 characterises when it is possible to perform braid moves in a
decomposition ofw ∈ Sn+1 in terms of the numbers contained inMw. The second statement
in Lemma 5.16 implies that if a transposition si appears k times in all reduced decompositions
of w (i.e. these k instances of si are not part of any braid move) then there are (at least) k
subspaces Rp,q of dimension i that satisfy the conditions in (5.10). On the other hand, if
we apply s j after w and obtain a reduced decomposition of s jw that is not geometrically
compatible, we know that it is possible to perform a braid move on s j s j−1s j . This follows
from the fact that we can move s j to the right via commutation until we find an instance of
s j−1, and similarly move the second instance of s j to the left until s j−1 (s j+1 cannot occur
in between by Lemma 5.16).

For instance, we saw in Example 5.12 a reduced decomposition for w = [43251] that
is not geometrically compatible: w = s3s1s2s1s3s2s4. We obtain w = s1s3s2s3s1s2s4 by
commutation on the two occurrences of s3, then perform a braid move as described above
and get w = s1s2s3s2s1s2s4. Finally, we perform a braid move on s2s1s2 and obtain the
geometrically compatible decomposition of w shown in Example 5.12: w = s1s2s3s1s2s1s4.

Theorem 5.18 All permutations admit a geometrically compatible decomposition.

Proof We consider a permutation w ∈ Sn+1 and denote by mi (w) the multiplicity of si in
a given reduced decomposition of w (i.e. how many times si appears in this given reduced
decomposition). Then, we consider the total number of repetitionsm = ∑

i mi (w) and define
t = �(w) − m. We prove the statement by double induction on t and m.

The base case of the induction (t = 1 and m = 0) and the induction step on t (t ≥ 1 and
m = 0) follow directly from Remark 5.15: a reduced decomposition ofw without repetitions
consists of distinct simple transpositions, and is therefore geometrically compatible.

For the induction step on m we show that, if a permutation with m ≥ 0 repetitions admits
a geometrically compatible decomposition, then a permutation withm+1 repetitions admits
a geometrically compatible decomposition (for any t ≥ 1). Let w = siN . . . si1 with m
repetitions be a geometrically compatible decomposition of w. For R ∈ Grrw (M), let di
denote the number of subspaces Rp,q of dimension i that satisfy the conditions in (5.10).
Since the fixed decomposition of w is geometrically compatible, we havemi (w) = di for all
i .

Let thenw′ := s jw = s j siN . . . si1 such thatw
′ hasm+1 repetitions, which means j = ik

for some k, and such that �(w′) = �(w) + 1. If the corresponding new free subspace appear-
ing in R has dimension j , then this reduced decomposition of w′ is already geometrically
compatible. If not, then by Lemma 5.16 the dimension of the new free subspace must be
ĵ < j , and therefore d ĵ has increased by one. As described in Remark 5.17, we move s j
via commutation and perform a braid move: w′ = s j siN . . . si1 = siN . . . s j s j−1s j . . . si1 =
siN . . . s j−1s j s j−1 . . . si1 ,which impliesm j (w

′) = m j (w)−1 andm j−1(w
′) = m j−1(w)+1.

Now, if ĵ = j−1we have againmi (w
′) = di for each i , meaning that this reduced decompo-

sition ofw′ is geometrically compatible. Otherwise, we denote by ŵ the subword ofw starting
from the second instance of s j−1: ŵ = s j−1 . . . si1 and observe that ŵ has m repetitions.
Therefore, by the induction hypothesis, ŵ admits a geometrically compatible decomposition.

We know that the current decomposition of ŵ is not geometrically compatible, because
the number of s ĵ appearing in ŵ is d ĵ −1. The geometrically compatible decomposition of ŵ
must then be obtained by performing a sequence of braid moves until the braid s ĵ+1s ĵ s ĵ+1 =
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s ĵ s ĵ+1s ĵ . Each braid move decreases by one the number of sl+1 and increases by one the

number of sl , for j − 2 ≤ l ≤ ĵ . Since the number of all other transpositions appearing in ŵ

(and in w′) is not changed during this process, in the end we get mi (w
′) = di for all i , which

means that we obtained a geometrically compatible decomposition of w′. ��
Theorem 5.19 Given a permutation w ∈ Sn+1 and a geometrically compatible decomposi-
tion w = siN · · · s1, the Bott-Samelson resolution BS(siN · · · si1) of the Schubert variety Xw

is isomorphic to the quiver Grassmannian Grrw (M).

Before proving Theorem 5.19, we introduce the main tool for constructing the explicit
isomorphism between the Bott-Samelson resolution and the quiver Grassmannian. Given a
geometrically compatible decomposition w = siN · · · s1, we define the map ϕw according to
the correspondence between the ordered set of indices of the transpositions appearing in w

and the vector space Rp,q for any R ∈ Grrw (M):

ϕw : {iN , . . . , i1} → {n + 1} × {n}
ik �→ (p(k), q(k)) := (ik + 1 + nk, ik + mk)

(5.20)

with nk := #{ j : j < k, i j = ik} and mk := #{ j : j > k, qi j ≤ q(k) < qi j+1}, where qi j
and qi j+1 are defined as in Lemma 5.2. The map ϕw provides the explicit correspondence
between the points of the Bott-Samelson resolution and the subrepresentations in the quiver
Grassmannian. We illustrate this in the following example.

Example 5.21 Given a permutation w′, the map ϕw defined in Equation (5.20) describes
explicitly which subspace Rp,q , for R ∈ Grrw (M), becomes a nontrivial subspace of Ci

when si is applied to w′, with �(w) = �(w′) + 1. Consider the geometrically compatible
decompositionw = s1s2s3s1s2s1s4 of Example 5.12, where s1 appears three times, as si2 , si4
and si7 . The images of i2, i4 and i7 via themapϕw defined in (5.20) are (i2+1+n2, i2+m2) =
(2, 3), (i4+1+n4, i4+m4) = (3, 2) and (i7+1+n7, i7+m7) = (4, 1). The one-dimensional
subspaces R2,3, R3,2 and R4,1, which correspond respectively to the subspaces V 2

1 , V
4
1 and

V 7
1 considered in Example 5.6, are placed at the red vertices of (�, I ):

C• C• C• C•
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•
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5
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id

ι2,1

id

ι2,1

id

ι2,1 ι2,1�
id

ι3,2

�
id

ι3,2

�
id

ι3,2 ι3,2�
id

ι4,3

�
id

ι4,3

�
id

ι4,3 ι4,3�
id

ι5,4

�
id

ι5,4

�
id

ι5,4 ι5,4�
id

�
id

�
id

Proof of Theorem 5.19 We prove the statement by induction on the length of w ∈ Sn+1. For
w = id, the corresponding Bott-Samelson resolution and quiver Grassmannian coincide
since they consist of a single point.

We then denote w′ = siN−1 · · · si1 and assume BS(siN−1 · · · si1) ∼= Grrw′ (M), where the
isomorphism is given by ϕw′ , defined in Eq. 5.20. Thismeans that the explicit correspondence
between an element V •• ∈ BS(siN−1 · · · si1) and a subrepresentation R′ ∈ Grrw′ (M) is V b

a =
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R′
p(b),q(b), therefore they are defined by the same inclusion conditions. We now consider

w = siN w′ such that �(w) = �(w′) + 1. The image of iN via ϕw is (p(N ), q(N )) =
(iN + 1+ nN , iN +mN ): we need to show that the subspace Rp(N ),q(N ) is isomorphic to the
subspace V N

iN
, whose defining conditions are V b

a ⊆ V N
iN

⊆ V c
d for b, c < N and a < iN < d .

By the induction hypothesis, the subspaces Rp(b),q(b) and Rp(c),q(c) realise respectively V b
a

and V c
d for all such a, b, c, d . We observe that the dimension of Rp(N ),q(N ) is iN due to the

choice of a geometrically compatible decomposition of w. The statement then follows from
the fact that R is a subrepresentation of M , which implies Rp,q ⊆ Rp(N ),q(N ) ⊆ Rp′,q ′ for all
p ≤ p(N ), q ≤ q(N ), p′ ≥ p(N ), q ′ ≥ q(N ) and so in particular for p = p(b), q = q(b),
p′ = p(c), q ′ = q(c). ��

Corollary 5.22 The Bott-Samelson resolutions corresponding to different reduced decom-
positions of the same permutation are birational (see Remark 5.7), therefore they are all
birational to Grrw (M).

6 Realisation of Smooth Schubert Varieties

In Section 5, we recovered the Bott-Samelson resolution for Schubert varieties by defining
the dimension vector rw for the quiver (�, I ) as

rw
i, j = #{k ≤ j : w(k) ≤ i}

for all i, j . In this section, we give a construction for a different dimension vector for the
quiver (�, I ), denoted by ew, and show how the corresponding quiver Grassmannian realises
the Schubert variety Xw if it is smooth, i.e. if w is pattern-avoiding. We recall from Section
3 that a permutation w ∈ Sn+1 corresponds to a smooth Schubert variety if and only if it
avoids the patterns [4231] and [3412], and that this is equivalent to Xw being defined by
non-crossing inclusions (see Definition 3.4).

Consider again the quiver (�, I ) and its representation M constructed in Section 4, and
fix a permutation w in Sn+1 that avoids the patterns [4231] and [3412]. For i = 1, . . . , n + 1
and j = 1, . . . , n, we now define the dimension vector ew = (ew

i, j ) for the quiver (�, I ) as:

⎧⎪⎨
⎪⎩
ew
i, j := rw

i, j if rw
i, j = min{i, j}

or rw
i, j = 0

ew
i, j := max{ew

i−1, j , e
w
i, j−1} if 0 < rw

i, j < min{i, j}
. (6.1)

Notice that the value of rw
1,1 is either 0 or 1 (according to w) and falls therefore under the first

case of Definition (6.1), meaning that ew
1,1 is well-defined.

Example 6.2 We compute the conditions defining the flags V• in Xw for w = [65124837] ∈
S8 according to Definition 3.2. These conditions are of the form dim(Fp ∩ Vq) ≥ rp,q , for
1 ≤ p, q ≤ n + 1, where rp,q := #{k ≤ q : w(k) ≤ p}. We write the value of each rp,q as
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the entry of a matrix: ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 1 1 1 1
0 0 1 2 2 2 2
0 0 1 2 2 2 3
0 0 1 2 3 3 4
0 1 2 3 4 4 5
1 2 3 4 5 5 6
1 2 3 4 5 5 6
1 2 3 4 5 6 7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since w avoids the patterns [4231] and [3412], Xw is smooth and defined by non-crossing
inclusions. These inclusions, which follow from the inequalities above, are:

V1 ⊂ F6, V2 ⊂ F6, F1 ⊂ V3 ⊂ F6, F2 ⊂ V4 ⊂ F6,

F2 ⊂ V5 ⊂ F6, F2 ⊂ V6, F6 ⊂ V7.
(6.3)

The corresponding dimension vector ew obtained from Eq. 6.1 is

ew =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 1 1 1 1
0 0 1 2 2 2 2
0 0 1 2 2 2 3
0 0 1 2 2 2 4
0 0 1 2 2 2 5
1 2 3 4 5 5 6
1 2 3 4 5 5 6
1 2 3 4 5 6 7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

By reading each entry ew
i, j as the dimension of the intersection Fp ∩ Vq and comparing ew

with the defining conditions in (6.3), we see how ew encodes the same information on V•.

Theorem 6.4 If w ∈ Sn+1 avoids the patterns [4231] and [3412], the quiver Grassmannian
Grew (M) is isomorphic to the Schubert variety Xw . The isomorphism is given by

ψ : Grew (M) → Xw

N �→ N•
(6.5)

where N• = Nn+1,1 ⊆ Nn+1,2 ⊆ · · · ⊆ Nn+1,n.

Proof By the definition of M and ew, we have

Nn+1, j ⊆ Nn+1, j+1, dim(Nn+1, j ) = j

for all j , implying N• ∈ Fln+1. Since w avoids the patterns [4231] and [3412], all flags
V• = V1 ⊆ V2 ⊆ · · · ⊆ Vn in Xw are defined by conditions of the following form: for
each q ∈ {1, . . . , n}, Vq is defined by Fp′

q
⊆ Vq ⊆ Fpq for some pq , p′

q . These conditions
are equivalent, respectively, to dim(Fp′

q
∩ Vq) = min(p′

q , q) = p′
q and dim(Fpq ∩ Vq) =

min(pq , q) = q . The definition of the dimension vector ew (in the first line of (6.1)) imposes
on N• exactly these conditions, meaning that Fp′

q
⊆ Nn+1,q ⊆ Fpq for all q and the

corresponding p′
q , pq . The statement follows from the fact that, whenever the condition

dim(Fi ∩ Vj ) ≥ #{k ≤ j : w(k) ≤ i} is not defining for V• (i.e. it is redundant), the
corresponding subspace Ni, j in N• is set to either Ni−1, j or Ni, j−1 (second line of (6.1)).��
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Remark 6.6 In Theorem 5.19, we proved that the quiver Grassmannian Grrw (M) is iso-
morphic to the Bott-Samelson resolutions of Xw corresponding to geometrically compatible
decompositions ofw (see Definition 5.9). In general, the Bott-Samelson resolution of a Schu-
bert variety (seeDefinition 5.5) is not a strict resolution, meaning that it is not an isomorphism
over the smooth locus of the Schubert variety.

This implies that the quiver Grassmannians Grrw (M) and Grew(M) are generally not
isomorphic, even if the fixed Schubert variety is smooth.
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