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Abstract
This paper presents a model-agnostic search for narrow resonances in the dijet final state in the
mass range 1.8–6 TeV. The signal is assumed to produce jets with substructure atypical of jets
initiated by light quarks or gluons, with minimal additional assumptions. Search regions are
obtained by utilizing multivariate machine-learning methods to select jets with anomalous
substructure. A collection of complementary anomaly detection methods—based on
unsupervised, weakly supervised, and semisupervised algorithms—are used in order to
maximize the sensitivity to unknown new physics signatures. These algorithms are applied to
data corresponding to an integrated luminosity of 138 fb−1, recorded by the CMS experiment at
the LHC, at a center-of-mass energy of 13 TeV. No significant excesses above background
expectations are seen. Exclusion limits are derived on the production cross section of
benchmark signal models varying in resonance mass, jet mass, and jet substructure. Many of
these signatures have not been previously sought, making several of the limits reported on the
corresponding benchmark models the first ever. When compared to benchmark inclusive and
substructure-based search strategies, the anomaly detection methods are found to significantly
enhance the sensitivity to a variety of models.

Keywords: CMS, ML, anomaly, dijet, resonance

1. Introduction

Many models of physics beyond the standard model (BSM)
predict the existence of new particles with hadronic decays.
One of the most generic searches for new physics at particle

Original Content from this work may be used under the
terms of the Creative CommonsAttribution 4.0 licence. Any

further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

colliders is therefore a search for heavy resonances decaying
into two jets [1–8]. This search is sensitive to a wide range
of signals, but is dominated by an overwhelming back-
ground from quantum chromodynamics (QCD) multijet pro-
duction. To increase the sensitivity to specific decays, dedic-
ated searches at the CERN LHC have been performed that
require the jets to have a substructure and/or flavor content
compatible with W and Z bosons [9–11], Higgs bosons [12,
13], bottom quarks [14–17], or top quarks [18–20]. These
searches are able to exploit the expected signature of the tar-
geted signal to reduce the SM background and increase the
search sensitivity, but as a result they are no longer generic.

1 © 2025 The Author(s). Published by IOP Publishing Ltd
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It is not possible to perform dedicated searches for every pos-
sible signature, meaning many potential signals, whose pro-
duction cross sections may be below the sensitivity of inclus-
ive dijet searches, remain uncovered. These gaps in cover-
age could result in potential discoveries being missed if new
strategies are not employed. Model-agnostic searches based
on anomaly detection aim to fill in these gaps by achieving the
best combination of both sensitivity and generality by using
novel machine-learning (ML) techniques. These searches are
designed to be sensitive to a broad range of signatures, offer-
ing significant discovery potential. Such searches have been
proposed [21], and recently also performed by the ATLAS
Collaboration [22–25].

In this analysis, we present the first ever ML-based model-
agnostic search for BSM physics by the CMS Collaboration.
The search is for a narrow-width heavy resonance A with
TeV-scale mass, decaying into two other resonances, B and
C, in a dijet final state. It is based on proton–proton collision
data recorded with the CMS experiment [26, 27] in 2016–
2018 at a center-of-mass energy of 13 TeV, corresponding to
a total integrated luminosity of 138 fb−1 [28–30]. The B and
C particles could be either SM or BSM, but are assumed to
decay hadronically and have masses significantly smaller than
the mass of the A particle. The mass hierarchy results in the B
and C particles being produced with high Lorentz boost, such
that their decay products are contained in large-radius jets, as
illustrated in figure 1.Masses of theA particle in the range 1.8–
6 TeV are considered, with no specific requirements on the B
and C particle masses. The search methodology aims to max-
imize discovery potential for all BSM models matching these
criteria.

Though the search itself is model-agnostic, a set of bench-
mark models representing a wide range of signatures are used
to study performance and derive exclusion limits. Signatures
where the B and C jets have a varying degree of substructure,
consistent with two to six subjets (prongs), are considered.
Five different methods are used to design discriminating vari-
ables that are used to identify large-radius jets with a non-
QCD-like substructure. For each method, a requirement on its
corresponding anomaly discriminant is applied, enhancing the
fraction of anomalous events and, therefore, of potential new
physics in the signal region (SR). A resonance is searched for
in the SR by seeking a bump in the dijet mass spectrum on top
of the smoothly falling QCD background.

While all methods employ ML techniques and aim to
identify anomalous jets, they differ in the substructure inform-
ation utilized, aspects of their learning setup, and model archi-
tecture. Four of these methods proceed in a fully model-
agnostic fashion, without relying on any signal simulation, and
only make use of data events in the training of their anomaly
detection model. The fifth method is a hybrid approach and
utilizes signal simulation as a loose prior on what potential
anomalies may look like. These differences lead to varying
performance for signals of various cross section, mass, and
substructure. As the characteristics of the sought-after signal
are unknown, all five methods are pursued as complementary
approaches to provide broad coverage of potential anomalies.

Figure 1. Production of a dijet resonance, A, in a proton–proton
collision. The A resonance decays to two resonances B and C,
which in turn each decay to a jet with anomalous substructure
arising from multiple subjets.

All methods are found to significantly enhance the discovery
sensitivity to a much wider range of signal models than tradi-
tional substructure techniques.

The first application of anomaly detection at the LHC was
in a search for dijet resonances using weak supervision [22].
However, in that prior search, only the masses of the two jets
were used as input features to the anomaly detection algorithm.
The methods employed in the present analysis use signific-
antly larger feature sets, offering broader coverage for differ-
ent types of anomalies, which could manifest in observables
besides the jet mass, and significantly improving classification
performance. The other two uses of anomaly detection [23, 24]
considered different final states and are not directly compar-
able to this search. The former analysis looked for resonances
decaying to a Higgs boson plus a single anomalous jet, and
the latter searched for two-body resonances across a variety of
final states produced in association with a lepton. Furthermore,
this analysis goes significantly beyond these prior publica-
tions by including multiple different anomaly detection meth-
ods, each varying in their input observables, architectures, and
training paradigms, within a single search. This strategy max-
imizes the sensitivity to unknown physics signatures, where
the most effective approach is uncertain. For several of these
methods, this is their first application to LHC data, and they are
shown to have complementary sensitivity to different signals.
While this work was in peer review, an additional anomaly-
detection-based analysis from the ATLAS Collaboration has
appeared [25], emphasizing the importance and novelty of the
methods developed in the present work.

The paper is organized as follows. The CMS detector and
event reconstruction procedures are described in section 2.
Section 3 describes the benchmark signal models and sim-
ulated samples used in the testing of the anomaly detection
methods. Section 4 describes the basic event selection that is
applied prior to the anomaly detection methods. The details of
the five different anomaly detection approaches are described
in section 5 and the fit procedure is described in section 6.
Systematic uncertainties are detailed in section 7. Section 8
describes validation studies performed in simulation and data
control regions (CRs). The search results and interpretation are
presented in section 9 and a summary is given in section 10.
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Tabulated results are provided in the HEPData record for this
analysis [31].

2. The CMS detector and event reconstruction

The central feature of the CMS apparatus is a superconducting
solenoid of 6m internal diameter, providing a magnetic field
of 3.8 T. Within the solenoid volume are a silicon pixel and
strip tracker, a lead tungstate crystal electromagnetic calor-
imeter (ECAL), and a brass and scintillator hadron calori-
meter (HCAL), each composed of a barrel and two endcap
sections. Forward calorimeters extend the pseudorapidity cov-
erage provided by the barrel and endcap detectors. Muons are
measured in gas-ionization detectors embedded in the steel
flux-return yoke outside the solenoid. More detailed descrip-
tions of the CMS detector, together with a definition of the
coordinate system used and the relevant kinematic variables,
can be found in [26, 27].

Events of interest are selected using a two-tiered trigger
system. The first level, composed of custom hardware pro-
cessors, uses information from the calorimeters and muon
detectors to select events at a rate of around 100 kHz within
a fixed latency of about 4µs [32]. The second level, known as
the high-level trigger, consists of a farm of processors running
a version of the full event reconstruction software optimized
for fast processing, and reduces the event rate to around 1 kHz
before data storage [33].

The primary vertex (PV) is taken to be the vertex cor-
responding to the hardest scattering in the event, evaluated
using tracking information alone, as described in section
9.4.1 of [34]. A particle-flow (PF) algorithm [35] aims to
reconstruct and identify each individual particle in an event,
with an optimized combination of information from the vari-
ous elements of the CMS detector. The energy of photons
is obtained from the ECAL measurement. The energy of
electrons is determined from a combination of the electron
momentum at the PV as determined by the tracker, the energy
of the corresponding ECAL cluster, and the energy sum of
all bremsstrahlung photons spatially compatible with originat-
ing from the electron track. The energy of muons is obtained
from the curvature of the corresponding track. The energy of
charged hadrons is determined from a combination of their
momentum measured in the tracker and the matching ECAL
and HCAL energy deposits, corrected for the response func-
tion of the calorimeters to hadronic showers. Finally, the
energy of neutral hadrons is obtained from the corresponding
corrected ECAL and HCAL energies.

Jets are clustered from the PF candidates in an event using
the anti-kT jet finding algorithm [36, 37]. In this analysis,
large-radius jets with a distance parameter of R= 0.8 are used.
Jet momentum is determined as the vectorial sum of all particle
momenta in the jet, and is found from simulation to be, on aver-
age, within 5% to 10% of the true momentum over the entire
transverse momentum (pT) spectrum and detector acceptance
[38]. Additional proton–proton interactions within the same
or nearby bunch crossings (pileup) can contribute additional

tracks and calorimetric energy depositions, increasing the
apparent jet momentum. The pileup-per-particle identification
algorithm [38, 39] is used to mitigate the effect of pileup at the
reconstructed-particle level, making use of local shape inform-
ation, event pileup properties, and tracking information. A
local shape variable is defined, which distinguishes between
collinear and soft diffuse distributions of other particles sur-
rounding the particle under consideration. The former is attrib-
uted to particles originating from the hard scattering and the
latter to particles originating from pileup interactions. Charged
particles identified to be originating from pileup vertices are
discarded. For each neutral particle, a local shape variable
is computed using the surrounding charged particles compat-
ible with the PV within the tracker acceptance (|η|< 2.5), and
using both charged and neutral particles in the region outside
of the tracker coverage. The momenta of the neutral particles
are then rescaled according to their probability to originate
from the PV deduced from the local shape variable, supersed-
ing the need for jet-based pileup corrections [38].

Jet energy corrections are derived from simulation stud-
ies so that the average measured energy of jets becomes
identical to that of particle-level jets. In-situ measurements
of the momentum balance in dijet, γ+jet, Z+jet, and multijet
events are used to determine any residual differences between
the jet energy scale in data and in simulation, and appropri-
ate corrections are made [40]. Additional selection criteria are
applied to each jet to remove jets potentially dominated by
instrumental effects or reconstruction failures [38].

3. Signal models and simulated samples

Six different signal models of the A→ BC topology are used
throughout the analysis. A set of background simulations is
generated for use in the semisupervised method (section 5.3)
and for testing and validation of all anomaly detection meth-
ods. Except for the semisupervised method, these simulated
samples are used only for testing and sensitivity studies, and
the search itself is performed in a model-agnostic manner
based only on the recorded data sample.

3.1. Signal models

A set of simplified benchmark signal models is chosen to cover
a range of substructure topologies. The different signals are
categorized based on the number of hard prongs in the B and
C jets. For all signals, the masses of the heavy resonance A are
generated at 3 and 5 TeV. The B and C particles are generated
with masses of 25, 80, 170, and 400GeV, with some values
excluded for certain models due to kinematic constraints. Jet
substructure properties are not very sensitive to the spin and
coupling structure of the A, B or C particles. It is therefore
expected that the anomaly detection methods will have com-
parable sensitivities to signal models with B and C particles
with similar masses and decay chains to the ones chosen here.

The first signal model has a 1+2 prong topology that con-
sists of an excited quark resonance (Q∗), which decays into
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a quark and W ′ boson [41, 42]. The W ′ boson decays into
two light quarks with the same flavor composition as the SM
W boson. The second signal model has a 2+2 prong topo-
logy and consists of a heavy resonance X decaying to two
resonances, Y and Y ′, each of which then decays into two
light quarks. The third signal model has a 3+3 prong topology
and consists of a W ′ boson decaying into a vector-like quark
(B ′) and a top quark [43]. The B ′ then decays into a bottom
quark and a Z boson. The fourth signal model has a 2+4 topo-
logy and consists of a W ′

KK boson decaying into a radion (R)
and a W boson [44, 45]. The radion then decays into two W
bosons. The fifth signal model has a 5+5 topology and con-
sists of a Z ′ boson decaying into two vector-like quarks, T ′

[46, 47]. The vector-like quarks then decay into a top quark
and a Z boson. The last signal model has a 6+6 topology and
consists of a heavy spin-2 Randall–Sundrum graviton (GKK)
which decays into to two lighter Higgs-like scalars (H) [48].
The lighter Higgs-like scalar then decays into a top quark-
antiquark pair. In the rest of this paper, these signal models
are denoted Q∗ → qW ′ → 3q, X→ YY ′ → 4q, W ′ → B ′t→
bZt, WKK → RW→ 3W, Z ′ → T ′T ′ → tZtZ, and GKK →
HH→ 4t, respectively.

The W ′ → B ′t→ bZt process has been previously
searched for by the CMS Collaboration [49]. However, the
previous search did not consider the parameter space probed
in this analysis, where the B ′ is sufficiently light com-
pared to the W ′ so that its decay products are merged into
a single jet, and therefore did not have sensitivity for the
mass points chosen here for our benchmarks. Diboson res-
onance searches performed by the ATLAS [9] and CMS [10,
11] Collaborations have sensitivity to the 2+2 prong mode,
X→ YY ′ → 4q, for the case whereMY =MY ′ = 80GeV, but
do not have sensitivity for other Y and Y ′ mass combinations.
The WKK → RW→ 3W process was previously searched for
by the CMSCollaboration [50, 51] in the same boosted regime
as this analysis. Therefore, the inclusion of this signal in our
benchmarks allows a comparison of the sensitivity of anomaly
detection methods to a previous optimized dedicated search.
We note that the specific 3+3 (W ′ → B ′t→ bZt) and 5+5
(Z ′ → T ′T ′ → tZtZ) models chosen are excluded by searches
for the direct production of the vector-like quarks B ′ and T ′.
These searches have set lower limits on the B ′ and T ′ masses
above a TeV [52, 53]. However, the inclusion of such models
is still useful, as a demonstration of the sensitivity of the meth-
ods to the 3+ 3 and 5+ 5 prong topologies, which encompass
many other potential signal models.

3.2. Simulated samples

All signals are generated at leading order (LO) with
MadGraph5_amc@nlo version 2.6.5 [54], whereas a variety
of generators are used for different backgrounds. All samples
used the NNLONNPDF 3.1 parton distribution functions [55–
57] and interfaced to pythia version 8.240 [58], with the
underlying event tune CP5 [59] to simulate the parton shower
and hadronization.

Although this analysis targets hadronic final states, we did
not enforce hadronic-only decays of SM particles in the signal

simulation. Some sensitivity to semileptonic decays is retained
when the daughter particles are boosted such that the leptonic
decay products end up inside the jet along with hadronic decay
products.

Simulations of the QCDmultijet background are generated
using pythia description of 2→ 2 scattering at LO accuracy.
Additional jets in the simulated events arise from initial- and
final-state radiation, within a full parton shower provided by
the generator. The t̄t, tW, and single t production processes
are generated with the next-to-LO (NLO) generator powheg
v2.0 [60–62]. Simulated events originating from W+jets and
Z+jets are generated using MadGraph5_amc@nlo at LO
accuracy. Production of up to 3 (4) extra partons in the hard
process are considered for the W+jets (Z+jets) simulation.
Double counting, which occurs between the partons generated
by pythia and those of MadGraph5_amc@nlo, is elimin-
ated using the MLM method [63].

4. Basic event selection

For all anomaly detection methods, events were selected
online using a variety of different jet triggers, based on either
the highest (leading) jet pT or the scalar pT sum of all the jets
in the event (HT). The thresholds of these triggers increased
slightly in later data taking years, so that the same trigger rate
was maintained under higher instantaneous luminosity. The
thresholds of these leading-jet pT triggers (HT triggers) varied
from 450 (800)GeV in 2016 to 500 (1050)GeV in 2018.

Offline, events are selected requiring at least two jets with
pT > 300GeV and pseudorapidity |η|< 2.5. The two jets with
the highest pT in each event are selected as potential B and C
candidates, and are further required to have an invariant mass
mjj > 1455GeV in order to ensure the trigger is fully efficient.
Additional jets are ignored.

In the sought-after signal topology, the resonance A is pro-
duced via the s channel. The dominant QCD background pro-
ceeds via the t channel, which has an angular distribution peak-
ing towards large rapidity separation between the two jets. The
amount of QCD background is therefore reduced relative to
that of the signal by requiring the two jets to have a pseu-
dorapidity difference of ∆ηjj < 1.3. A signal-depleted CR is
constructed from events with 2.0< |∆ηjj|< 2.5 that also meet
additional requirements on the pT balance of the two jets. This
region is used to check that the analysis procedure does not
produce any spurious excesses of events.

This event selection is also used to define an inclusive
search strategy, which does not make any further selec-
tions, and therefore does not use substructure informa-
tion. This inclusive strategy is used as a reference when
evaluating the performance of the anomaly detection
methods.

5. Anomaly detection methods

The five anomaly detection methods are based on three dif-
ferent training paradigms for ML-based anomaly detection:
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unsupervised, weakly supervised, and semisupervised learn-
ing. Each method is described briefly here, with further details
reserved for appendix A.

5.1. Unsupervised method

The unsupervised learning algorithm attempts to construct a
model to identify anomalous jets without using any labeled
references. The method employed here consists of a vari-
ational autoencoder (VAE) [64] trained on a data sample dom-
inated by QCD jets. A quantile regression (QR) network is
then used to decorrelate the anomaly score of the VAE from
the dijet mass. This method is referred to as VAE-QR.

Autoencoders are a type of neural network which are
trained to compress inputs into a smaller representation
and decompress it to recover the original inputs. The VAE
employed here takes as input the 100 highest pT particles of
a jet, with the ordering obtained from a Cambridge–Aachen
[65] reclustering of the jet constituents. Each particle is rep-
resented as a set of three values, which are the x, y, and z com-
ponent of its momentum p⃗. The VAE is trained using jets from
the CR. It therefore learns how to perform this compression
and decompression on QCD background jets, but might fail in
performing this task as well on anomalous jets not present in
the training sample. Therefore, the difference between the ori-
ginal and autoencoded jets can be used as an effective anomaly
score, with higher values corresponding to more anomalous
events.

High invariant mass events are rare, being on the tail of
a steeply falling spectrum, and therefore constitute a small
fraction of the VAE’s training set. This would naturally cause
the VAE to find high invariant mass events anomalous, which
would distort the dijet mass distribution, making it difficult to
estimate the background and any potential signal. To decor-
relate the VAE’s anomaly score from the dijet invariant mass
a QR method [66] is used. The QR model is trained to find
the threshold on the anomaly score, as a function ofmjj, which
corresponds to a fixed data efficiency in the SR. Using a selec-
tion criterion defined in this way automatically preserves the
mjj shape of the inclusive sample. A selection corresponding
to the 10%most anomalous data is used for the generic model-
independent search. For the limit setting, where the signal is
known, three orthogonal categories are used to enhance sens-
itivity. They are defined as follows: the most anomalous 1%
of data, the data between the 5% and 1% percentile range, and
the data between the 10% and 5% percentile range. This mul-
ticategory approach cannot be used in the model-independent
search, because the relative signal yield in each category is sig-
nal dependent. To ensure that the full data set is used, and that
the VAE does not evaluate anomaly scores on events on which
the QR is trained, we use k-fold cross-validation, discussed in
appendix A.4. This is a method where the data set is divided
into k equal parts, and the model is trained k times, each time
using a different part as the test set and the remaining parts as
the training set.

5.2. Weakly supervised methods

In weakly supervised training, a signal versus background
classifier is trained exclusively on data, without the use of
any Monte Carlo simulation. This can be done using the
classification without labels (CWoLa) [67] paradigm, where
classification is performed between two groups of data events
rather than relying on individual event labels. This paradigm
requires two mixed samples of data events, chosen such that
one is a mixture of potential signal events and background
events, and the other is nearly pure background. For example,
our methods aim to construct the first sample so that it con-
sists of data events within the mass peak of a hypothetical res-
onance, and the second sample consists of background events
from the sidebands.

The classifier is trained to distinguish between events in
these two samples. If sufficient signal is present in the data
set, the classifier will learn to distinguish the signal from back-
ground, provided that the background composition in the two
samples is the same. These methods train directly on data
events in the SR of the analysis, and thus learn the specific
characteristics of the signal if it is present in the data set. A k-
fold cross-validation is used to ensure each weakly supervised
classifier does not evaluate anomaly scores of events on which
it is trained.

Three different methods based on weak supervision are
employed. These are CWoLa Hunting [68], Tag N’ Train
(TNT) [69], and classifying anomalies through outer density
estimation (CATHODE) [70].

All of the weakly supervised methods pursued in this ana-
lysis assume the signal is a narrow resonance, and use the
invariant mass of the two jets in their definition of the mixed
samples. These methods therefore assume a particular hypo-
thesis for the mass of the new resonance in order to construct
the samples for training. If a narrow resonance exists inside
the hypothesized region in sufficient abundance, the weakly
supervised training procedure will produce a classifier able
to discriminate between it and the QCD background. In the
absence of a signal, the two samples will both consist solely
of background events, and therefore be indistinguishable in
the training procedure. The resulting classifier will therefore
produce random results driven by the statistical fluctuations
between the two samples.

For all three weakly supervised methods, the training pro-
cedure is repeated for multiple hypotheses for the signal mass
in order to scan over the full dijet mass spectrum. The SR is
split into 8 nonoverlapping mjj windows to be used for the
training procedure. The mass resolution for a narrow fully
merged resonance varies from∼80 to∼200GeV over the con-
sidered mass range. The size of the signal windows is chosen
to be significantly larger than this resolution, such that a nar-
row resonance would be expected to be nearly fully contained
in a single bin. Two sets of windows with different centers are
defined in order to ensure no signals close to a window bound-
ary are missed. The two sets of window boundaries are [1350,
1650, 2017, 2465, 3013, 3682, 4500, 5500, 8000]GeV and
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[1492, 1824, 2230, 2725, 3331, 4071, 4975, 6081, 8000]GeV,
which are referred to as mass windows α and β, respectively.
Each SR is required to have both an upper and lower sideband
to be used as CRs. Therefore, the highest and lowest mass
regions in each set of windows are used only as sidebands,
resulting in 12 total SRs in which the training procedure is
performed. The CATHODE method does not use the highest
mass β SR due to the limited size of the data sample available
for training. The 1650–2017GeV region is the lowest mass SR
for all methods and the region from 4975–6081GeV (4500–
5500GeV) the highest mass SR for the CWoLa Hunting and
TNT methods (CATHODE method).

For CWoLa Hunting, the two mixed samples are obtained
directly from windows in dijet invariant mass. A potentially
signal-rich sample is defined as all events falling in a particu-
lar signal window, and the background-rich sample is defined
as events in the neighboring sideband windows. To account
for the statistical imbalance, events from the lower sideband
are reweighted in the training to match the total weight of the
upper sideband. Separate classifiers are trained for the heav-
ier and lighter jet in each event, as defined by each jet’s soft-
drop mass mSD [71], rather than a single classifier for the full
dijet system, as was done in [22, 68]. This allows an addi-
tional reweighting procedure during the training: jets in the
background-rich sample are reweighted to match the pT distri-
bution of jets in the SR. This procedure reduces the correlation
between the final anomaly score and mjj.

The classifiers take as input the mSD of the jet, the N-
subjettiness variables τ 21, τ 32, and τ 43 [72], the number of PF
candidates inside the jet nPF, the maximum b tagging score
from the DeepCSV algorithm [73] of the two leading sub-
jets of the large-radius jet, and a measure of the energy frac-
tion carried by leptons, the lepton subjet fraction (LSF3) [74].
The inclusion of soft-drop mass and N-subjettiness variables
helps to differentiate between nearly massless QCD jets and
significantly boosted resonances, and determines the number
of subjets in a jet, respectively. The count of PF candidates in
a jet detects jets with higher numbers of constituent particles,
while the LSF3 and b tagging score pinpoint jets containing
enhanced contributions from leptons and heavy-flavor quarks.

In TNT, the two mixed samples are defined in a similar
way to CWoLa Hunting, with one modification: an additional
unsupervised classifier, a jet-based autoencoder, is used to
increase the purity of the signal-rich sample. The method
assumes that for a true signal, both the B and C jets would
be anomalous. This implies a correlation between the B and
C jets for signal events present in the data: an anomaly in
one jet implies an anomaly in the other. This relationship is
not present for background QCD events in which the anomaly
scores of the two jets are uncorrelated. The procedure therefore
constructs a signal-enriched sample of C (B) jets, by utilizing
the anomaly scores of jet B (C). The criteria for constructing
the mixed sample now encompass not only an event’s position
within the mjj SR, but also the unsupervised anomaly score
of the jet not involved in the classifier’s training. This dual-
criterion approach markedly enhances the signal purity within
the signal-rich sample.

For each SR, a separate autoencoder is trained using events
from the corresponding sidebands. The autoencoder takes as
input an image representation of the jet [75, 76]. Internally,
the autoencoder works by compressing the image into a six-
dimensional latent space, before attempting to reconstruct the
original image. The difference between the original and recon-
structed images is used as the anomaly score. The anomaly
score of the autoencoder is evaluated on each jet in the event,
one at a time. This anomaly score is used in addition to the
dijet mass information to sort events into the signal-rich or
background-rich categories.

To construct the signal-rich and background-rich samples,
the two jets in each event are first randomly sorted into two
groups. The dijet mass of the event and the autoencoder score
of the jet from one group, are used to categorize jets of the
other group into mixed samples, and vice versa. The signal-
rich mixed sample of jets is defined as jets from the second
group, for which the jet in the first group is in the top 20%
of the autoencoder anomaly scores, and in an event that has
mjj within the SR. The background-rich mixed sample of jets
is defined as jets of the second group, coming from events
in the dijet mass sidebands, or which have jets from the
first group in the bottom 40% of the autoencoder anomaly
scores. The samples of categorized jets from both jet orderings
are then merged together to train a single weakly supervised
jet classifier, using identical network architecture, reweight-
ing schemes, and input variables as used for the CWoLa
Huntingmethod. Figure A1 in appendix A.2 shows a graphical
representation of this procedure.

For CATHODE, a dijet mass window is also used to define
the potentially signal-rich sample, but a different approach is
used for the background-rich sample. First, the conditional
probability density of background events as a function of
invariant mass is learned, using a normalizing flow generat-
ive model [77–85] trained on all events outside the signal win-
dow. This probability density is then interpolated into the sig-
nal window, and used to generate a sample of synthetic back-
ground events. An event-level weakly supervised classifier is
then trained to distinguish between data events from the SR
and the synthetic background sample.

This approach fully learns correlations between the input
features and mjj, allowing the use of variables that are sig-
nificantly correlated with mjj. The input variables used in
CATHODE are the mass of the heavier jet mj1 , the mass dif-
ference between the two jets ∆mj1j2 = mj1 −mj2 , and the N-
subjettiness variable τ 41 for each jet. This N-subjettiness vari-
able is found to perform the best for the signals under study.
An additional method,CATHODE-b, uses the same input vari-
ables as CATHODE, but also includes the b tagging DeepCSV
score of each leading jet. This variant is expected to have
higher sensitivity for processes yielding b jets, but worse sens-
itivity otherwise.

5.3. Semisupervised method

Finally, a semisupervised algorithm referred to as quasi-
anomalous knowledge (QUAK) [86] is used. This method
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seeks a middle ground between the fully model-agnostic
approach of the previous methods and a standard dedicated
search. In QUAK, density estimators are used to encode a
‘prior’ for the likely signature of a new physics signal, based
on labeled signal Monte Carlo samples. To help reject QCD
events, an additional density estimator trained on simulated
background events is used.

A normalizing flow is trained to estimate the probability
density of each event, based on the substructure information
of both jets. The substructure variables used are the same as
those used in theCWoLaHuntingmethod except amodifiedN-
subjettiness metric, τs =

√
τ21/τ1, and the ratio of the jet mass

and transverse momentum, ρ= mSD/pT, are used instead of
the LSF3 variable and soft-drop mass variables, respectively.

To maintain sensitivity to a broad class of signals, six
distinct flows are trained on combinations of signal samples
grouped according to the B and C particle masses. The out-
put of these six flows is then combined into one signal-like
score by adding together their scores raised to the fifth power,
weighted by the sign of each score. This relatively high power
is chosen so that the combined score is sensitive to very signal-
like events in any of the six flows. A single flow is also trained
for background events in simulation. A two-dimensional (2D)
QUAK space is formed, in which each event’s position is
defined by its background-like and signal-like scores. The
most anomalous events are expected to populate the region
with low background-like score and high signal-like score. For
a given mass hypothesis of the intermediate resonance, mA, a
template of background events is created by considering events
with dijet mass in the sidebands,mA − 900GeV< mjj < mA −
400GeV and mA + 200GeV< mjj < mA + 700GeV. The SR
is taken to bemA − 400GeV< mjj < mA + 200GeV. The tem-
plate itself is a binned 2D histogram of the QUAK space.
The QUAK space bins with an excess of events in the SR, as
opposed to the sidebands, are chosen for the selection. Events
from the full dijet mass spectrum which fall into these selected
QUAK bins are then utilized in the fit for a resonant signal.

A general search, referred to as ‘generic QUAK’, is per-
formed using a combination of all the benchmark signal
samples as a signal prior. Additionally, model-specific ver-
sions of the searches targeting each benchmark signal are per-
formed by usingQUAK with a signal prior consisting solely of
the targeted signal. Because it specifically targets each signal
separately, this latter method is expected to yield better per-
formance for the benchmark signals, but have worse general-
ization to unknown signals. It is used as a point of comparison
in evaluating performance of the anomaly detection methods.

6. Fit procedure

After the set of potentially anomalous events are selected for
each method, the resulting dijet invariant mass spectra are
scrutinized for the presence of a potential signal. In each spec-
trum, the SM background is expected to be smoothly falling,
while a signal with a narrow width is expected to peak at its
resonance mass.

The shape of the signal is modeled with a double Crystal
Ball function [87, 88] from fits to simulated narrow-width res-
onances. When the model-agnostic search is performed, the
shape of the X→ YY ′ → 4q signal model is used for the sig-
nal hypothesis. For limits on a particular signal model, a sig-
nal shape derived from dedicated simulations of that model is
used. The search is performed considering resonance masses
in the range 1.8–6 TeV in intervals of 100GeV. Simulations of
the X→ YY ′ → 4q signal for mA values of 2, 3, and 5 TeV
are interpolated and extrapolated to produce the signal shapes
covering the full range of mass hypotheses.

For the model-agnostic search, we test the effect of using
only the signal shape from the X→ YY ′ → 4q model, when
extracting signals produced by other models with different res-
onance shapes. It is found that the use of the X→ YY ′ →
4q signal shape in the extraction of a true W ′ → B ′t→
bZt, WKK → RW→ 3W, or GKK → HH→ 4t signal, each of
which produces a different signal shape, reduces the statistical
significance by less than 1 standard deviation (σ) as compared
to using the true resonance shape, which is deemed acceptable.

The background is modeled via a fit to data with the para-
meterization:

dN
dmjj

=
P0 (1− x)P1

(x)P2+P3 log(x)+P4 log2(x)
, (1)

where x= mjj/
√
s. This is from the same family of functional

forms as deployed in previous dijet searches [5–8]. The para-
meters P3 and P4 are initially fixed to zero, but allowed to be
nonzero if including them significantly improves the fit quality
as quantified through a Fisher F-test [89]. All the Pi selected
by the F-test are allowed to freely float in the final fit. As the
selection is done separately for each SR, the CWoLa Hunting,
TNT, CATHODE, and QUAK methods, this approach results
in a distinct mass spectrum for the search in each SR.

The F-test is repeated separately for each of these spectra.
To assess the quality of the fit, the χ2 per degree of freedom
is computed, and checked that it corresponds to a probability
value p> 0.05 of the data arising from the background-only
hypothesis. If the fit fails this quality check, the mjj range of
the fit is reduced and the fitting procedure is repeated until the
quality criterion is reached. Alternate functional forms of the
background parameterization were tried and used to test for
biases due to the parameterization choice. It was found that
the resulting bias on the inferred signal strength was 1 σ or
less, which was deemed acceptable. More details on this study
of potential fit bias are given in appendix D.

Evidence of a signal is determined from a likelihood ratio
test [90], comparing a background-only fit to the data and
a combined signal plus background fit. Upper limits are set
using the profile likelihood ratio as the test statistic with the
CLs criterion [91, 92]. Asymptotic formulae are used to sim-
plify calculations [93]. The CMS analysis tool Combine [94],
which is based on the RooFit [95] and RooStats [96] frame-
works, is used for all statistical results.
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7. Systematic uncertainties

Systematic uncertainties in the estimation of the background,
the modeling of the shape of the signal resonance, and the sig-
nal selection efficiency are considered. The former two are
intrinsic to the model-agnostic search, and therefore affect all
reported results. In contrast, the latter uncertainties are spe-
cific to the interpretation of the search under a particular sig-
nal model, and therefore only affect the derived exclusion
limits; they have no impact on the significances of reported
excesses.

As discussed in section 6, the parameters describing the
background shape are freely floating and constrained only by
the observed data in the SR. This allows for the uncertainty
in the background shape to be correctly accounted for in all
reported results. Uncertainties in the signal shapes arise from
uncertainties in the energy scale and resolution of jets. These
uncertainties are assessed by systematically varying jets by
the uncertainties in their energy scale and resolution. For each
variation, the signal shape is re-derived and the resulting shifts
in the parameters of the double Crystal Ball function are then
taken as uncertainties. The uncertainty in the location (width)
of the signal mass peak is found to be ∼2% (∼4%). These
uncertainties are then included as Gaussian-constrained nuis-
ances in the likelihood.

Systematic uncertainties in the selection efficiency are
assessed for each benchmark signal model. The dominant
affect comes from the uncertainty in the jet substructure mod-
eling, which affects the estimated efficiency of the anomaly
tag. A correction to, and uncertainty in, the jet substructure
modeling of each signal is applied based on themethod of [97].
The method is based on reclustering the jet’s constituents into
several subjets, such that each subjet captures a single prong.
Each subjet’s simulated radiation pattern in the Lund jet plane
[98] is corrected to match that of subjets from a data CR.
Uncertainties in the correction originate from statistical and
systematic components of the splitting frequency of the sub-
jets in data, and limitations of the reclustering procedure for
high-prong jets. The resulting uncertainties in the selection
efficiency range from 10% to 25%, increasing for signal mod-
els with larger numbers of prongs.

The simulation of subjet b tagging scores, used as inputs to
some of the anomaly detectionmethods, are corrected tomatch
the distribution observed in data CRs [73]. An uncertainty in
the modeling of this feature is assessed by varying the simu-
lated distribution according to the uncertainties in the correc-
tion. This results in an uncertainty of up to∼5% in the tagging
efficiency of signals which produce b jets. Other uncertain-
ties in the signal selection efficiency, including the modeling
of pileup, parton distribution functions, and renormalization
and factorization scales, are assessed, but found to be sub-
dominant. The weakly supervised methods receive an addi-
tional uncertainty in the selection efficiency of up to ∼10%
due to stochasticity of their training performance in data. The
estimation of the signal selection efficiencies and incorpora-
tion of the systematic uncertainties for these methods is dis-
cussed further in appendix C.

8. Performance and validation

The performance of the anomaly detection methods is verified
in a simulated pseudo-data set. The pseudo-data set is con-
structed by selectively sampling events from simulations of
different background processes, in proportion to their cross
sections, instead of the commonly used practice of apply-
ing event weights. This sampling procedure better captures
the data set size and statistical fluctuations that would be
present when the methods are being applied to data, both of
which affect the performance achieved when training neural
networks. The majority of the pseudo-data set consists of
QCD multijet events, with minor contributions from other
background processes. The combined fraction of W+jets and
Z+jets (t̄t, tW, and single t production) events varies from
∼2% (∼0.3%) at a dijet mass of 2 TeV to ∼4% (∼0.5%) at
a dijet of mass of 5 TeV. Due to the limited event count of
the QCDmultijet simulations, the pseudo-data sets correspon-
ded to an equivalent integrated luminosity of only 26.8 fb−1.
Versions of the pseudo-data set with different amounts of
injected signal events are constructed, and the search proced-
ure is repeated on each version. A background-only version of
the pseudo-data set is used to verify that no method produced
artificial excesses of events.

Pseudo-data sets with injected signals are used to test the
sensitivities of the anomaly detection methods. These data sets
are used to determine the expected statistical significance of
the signal as a function of the size of the injected signal.

The sensitivities of the anomaly detection methods are
compared to several standard methods to better contextualize
their performance. These comparisonmethods utilize the same
basic selection criteria, fitting procedure and statistical ana-
lysis as employed by the anomaly detection methods. The only
difference is slightly modified event selections. The inclus-
ive search (defined in section 4) is used as a comparison
model-agnostic approach. The first (second) model-specific
event selection is a typical substructure selection tailored to
2-prong (3-prong) signals and requires τ21 < 0.4 (τ32 < 0.65),
and mSD > 50GeV for both jets in the event. The final model-
specific event selection is intended to maximally exploit sig-
nal information to achieve superior sensitivity. For this, a ver-
sion of the QUAK procedure, which had a signal prior exactly
matching the injected signal is used.

Figure 2 shows simulations of the sensitivity of the search
methods, comparing the extracted p-value as a function of the
signal cross section for two benchmark signals, the 2+2 prong
X→ YY ′ → 4q and the 3+3 prong W ′ → B ′t→ bZt.

As expected, the inclusive search is sensitive to both mod-
els, but is unable to reach evidence or discovery-level sig-
nificances at the considered signal cross sections because of
the large QCD background. The two-prong (3-prong) targeted
selection is found to improve sensitivity beyond the inclus-
ive search for the 2-prong X→ YY ′ → 4q signal (3-prong
W ′ → B ′t→ bZt signal), but is found to be significantly worse
than the inclusive selection on the 3-prong (2-prong) signal.
In contrast, all anomaly detection methods are able to demon-
strate increased sensitivity above an inclusive search for both
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Figure 2. The p-values as a function of the injected signal cross sections for the different analysis procedures for two different signals:
(upper) the 2-prong X→ YY ′ → 4q signal with mX = 3TeV, mY = 170GeV, and MY ′ = 170GeV, and (lower) 3-prong W ′ → B ′t→ bZt
signal with MW ′ = 3TeV and MB ′ = 400GeV. Significance values larger than 7σ are denoted with downwards facing triangles.

signals. The relative performance of the anomaly detection
methods are seen to vary between the two signals and no single
method is seen to be optimal for both. The model-specific
QUAK search is found to yield the best sensitivity for both
signals as expected, reaching the discovery level at signific-
antly lower cross sections than othermethods. The sensitivities

of the weakly supervised methods are seen to depend nonlin-
early on the signal cross section, because the amount of signal
present in the data affects the training procedure and therefore
the signal selection efficiency.

A version of the CWoLa Hunting method similar to that
of [22], using only the jet masses as input features, was also
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tested on these same signals. Its performance was found not to
be competitive with the methods employed in this search, fail-
ing to reach the 3σ significance level for either signal model
in the cross section range considered. This illustrates the sig-
nificant gains provided by multivariate approaches employed
in this analysis as compared to prior work.

Interpretability studies are also performed to verify that if
a significant excess is seen by an anomaly detection method,
its basic properties could be understood. It is found that for
discovery-level signal strengths, the substructure properties
of the signal, such as the number of prongs and estimates of
the masses of the daughter particles, could be determined by
comparing the features of the excess events to those of back-
grounds. Such a characterization would allow follow-up stud-
ies, to verify its nature, including dedicated searches targeting
signal models matching the properties of the excess. Details of
these studies are given in appendix B.

The anomaly detection methods are also applied to the
signal-depleted CR in data. The fitting procedure is performed,
and it is verified that the background model described the
data well, and no method reported any significant excesses of
events.

9. Search results and interpretation

Following the validation in simulation and the data CR, the
methods are applied to the data SR. For the weakly supervised
methods, the training and selection procedures are repeated
multiple times to target each of the α and β SRs. For the
QUAK method, the selection is repeated targeting each mA

hypothesis. The fitted dijet invariant mass spectra after a selec-
tion from each of the anomaly detection methods are shown
in figures 3 and 4. Good agreement between the data and
background-only fits is observed for all methods. The largest
excesses of events seen by the CATHODE, CATHODE-b,
QUAK, and VAE-QR methods had local significances of 2.2,
2.9, 2.6, and 2.3σ at resonance masses of 2.3, 2.3, 4.7, and
4.9 TeV, respectively. The TNT and CWoLa Hunting methods
did not report any excesses of events larger than 1.5σ.

Having seen no significant excesses of events in the data,
studies are performed to evaluate the sensitivity of the search
procedure on a subset of the signal models. These bench-
mark signal models cover several different combinations of
the B and C particle substructure. The considered models
are X→ YY ′ → 4q, W ′ → B ′t→ bZt, WKK → RW→ 3W,
and GKK → HH→ 4t, which have 2+2, 3+3, 4+2, and 6+6
prongs in the substructure of the B and C particles, respect-
ively. The masses of the Y and Y’ particles are set to
170GeV, while the masses of the B ′, R, and H are set to
400GeV.

For each method, the selection efficiency on the bench-
mark signal models is evaluated. For the weakly supervised
methods, the signal efficiency is known to vary based on the
amount of signal present in the training data set, and therefore
depends strongly on the signal cross section. This dependence
necessitated a special procedure to evaluate the efficiency and

use it properly in deriving the exclusion limits. The proced-
ure involved injecting signals with various cross sections into
the data, and each time performing the full analysis proced-
ure, including the retraining of classifiers, to assess the sig-
nal efficiency at the injected cross section. This procedure is
described in detail in appendix C.

The discovery sensitivity of each method for the bench-
mark signals is then estimated. For each method, the signal
cross sections which would have led to an expected 3σ and
5σ excess are determined. The discovery sensitivities of the
anomaly detectionmethods are compared to those of an inclus-
ive search, and to traditional cutoff-based selections targeting
2-prong and 3-prong decays. The results are shown in figure 5.
It is found that the anomaly detection methods outperform the
traditional cutoff-based selections for all of the benchmark sig-
nals considered, and significantly improve upon the discov-
ery sensitivities of the inclusive search. The best performing
method varies across the different signals, illustrating the com-
plementarity of the different approaches. The largest improve-
ments are seen for the 6+ 6 prong GKK → HH→ 4t signal,
in which anomaly detection methods are found to reduce the
cross section needed for a 5σ discovery by a factor of 6.4 (2.9)
as compared to the inclusive (3-prong) selection. For every
benchmark signal considered, at least one anomaly detection
method is able to reach the 5σ level at a cross section below, or
approximately equal to, the expected 2σ upper exclusion limit
of the inclusive search.

Exclusion limits on the benchmark signal models are also
derived for each anomaly detection method. For the weakly
supervised methods, the estimated signal efficiencies used in
the limit setting are derived using the previously mentioned
procedure, in which signals with various cross sections are
injected into the data and the classifiers are retrained. These
efficiencies are used in conjunction with the observed data in
the SR to derive exclusion limits.

These exclusion limits are compared to those from an
inclusive dijet search, those from the traditional cutoff-based
methods, and those from the previous CMS WKK → RW→
3W search in the all-hadronic channel [51], for benchmark sig-
nals with resonance masses of 3 and 5 TeV in figure 6. It is
found that the expected limits of the anomaly detection meth-
ods improve upon those of the inclusive search and traditional
cutoff-based approaches for all benchmark signals. The largest
gains are seen for the GKK → HH→ 4t signal, where improve-
ments up to a factor of 7.1 (2.5) are seen when compared to
the inclusive (3-prong) selection. Larger gains from the anom-
aly detection methods are seen for the 3 TeV signals than the
5 TeV signals, because at lower masses the anomaly detec-
tion methods employ tighter selections, which more effect-
ively suppress the larger QCD backgrounds. As expected, the
previous CMS dedicated WKK → RW→ 3W search reports
significantly more stringent limits on the WKK → RW→ 3W
model than the anomaly detection methods.

Numerical limits on all considered signal models, includ-
ing, but not limited to, the benchmark set, are summarized in
tables 1 and 2. It is found that the anomaly detection meth-
ods do not improve with respect to the inclusive search for
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Figure 3. The dijet invariant mass spectrum and resulting background fit to the data for VAE-QR (upper left), CWoLa Hunting (upper right),
TNT (middle left), CATHODE (middle right), CATHODE-b (lower left), and QUAK (lower right). The shapes of two benchmark signals are
shown for the VAE-QR method; the signal shapes for the other methods are similar. For all methods besides the VAE-QR, separate selections
are applied for different signal mass hypotheses and the resulting mass spectra are fit separately. The figures show the fitted and observed
dijet mass distribution in the signal window of each selection, which results in a discontinuous distribution. The spectra in the α signal
regions (indicated by the vertical dotted lines) are shown for the weakly supervised methods and a similar selection of signal regions are
shown for the QUAK method.
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Figure 4. The dijet invariant mass spectrum and resulting background fit to the data for the β signal regions (indicated by the vertical dotted
lines) of CWoLa Hunting (upper), TNT (middle left), CATHODE (middle right), CATHODE-b (lower left), and a similar selection of signal
regions of QUAK (lower right). Separate selections are applied for different signal mass hypotheses and the resulting mass spectra are fit
separately. The figures therefore show the fitted and observed dijet mass distribution in the signal window of each selection, which results in
a discontinuous distribution. The CATHODE and CATHODE-b methods are not used in the highest mass window of the β signal regions
due to the limited number of data events. They therefore have one fewer signal region shown than the other methods.
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Figure 5. The discovery sensitivity for the process A→ BC, using the anomaly detection methods and a comparison to sensitivity of the
inclusive search. In all signal processes, the mass of the heavy resonance is set to mA = 3TeV. For the BSM daughter particles, the masses
of the Y and Y ′ are set to 170GeV, while the masses of the B ′, R, and H are set to 400GeV. In the upper panel, for each method, the cross
section, which would have led to an expected 3σ (5σ) excess, is shown as a cross (square) marker. Sensitivities from six anomaly detection
methods (six colors) are compared to an inclusive dijet search in which no substructure selection is made (black) and traditional substructure
selections targeting 2-prong (dark brown) or 3-prong (tan) decays. The expected 95% confidence level upper limits from the inclusive
search are also shown in the upper panel as a dashed line. For all signal models at least one anomaly detection method is able to achieve an
expected 5σ significance at a cross section at or below the upper limit of the inclusive search. Shown in the lower panel is the ratio of the
cross section sensitivity from the inclusive search to the corresponding sensitivity for each method.

some signals. Signals in which only one of the two jets has
a distinctive signature, such as the Q∗ → qW ′ → 3q signal or
the X→ YY ′ → 4q mass points that feature very light daugh-
ter masses, are found to be difficult for the anomaly detec-
tion methods. This is likely because for these signals one of
the two jets originates from a single parton, or lacks suffi-
cient jet substructure to be distinguished from a single parton,
which makes signal discrimination more challenging. For the
X→ YY ′ → 4q signal, this occurs because light daughters are
extremely boosted, making the 2-prong structure look similar
to a single prong. For example, for a 25GeV daughter from a

3TeV resonance, the typical separation ∆R between the two
quarks is only ∼0.03.

It is important to mention that these benchmark signals are
included in the signal prior of the generic QUAK method. In
contrast, they are not used by the other methods, except in the
procedure used to evaluate the signal efficiency. It is found
that when removing a given signal from the prior of the gen-
eric QUAK method, the sensitivity to that signal degraded by
∼30%. The results from the other methods may therefore gen-
eralize better to untested signals than the results of the generic
QUAK search.
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Figure 6. The upper limit at 95% confidence level on the cross section for the process A→ BC, is shown for each search method applied to
a variety of signal models. For a resonance mass mA = 3TeV (left) and mA = 5TeV (right), we show for each signal model (columns), and
search method (all colors), the observed limits (crosses), expected limits (squares), and their 68% expected central intervals (error bars). For
the BSM daughter particles, the masses of the Y and Y ′ are set to 170GeV, while the masses of the B ′, R, and H are set to 400GeV. Limits
from the anomaly detection methods (six colors) are compared to those from an inclusive dijet search in which no substructure selection is
made (black markers and horizontal lines), traditional substructure selections targeting 2-prong (dark brown) or 3-prong decays (tan), and
the observed limit from a previous CMS search [51] for the WKK → RW→ 3W model in the all-hadronic channel (gray).

Table 1. Limits on additional signal models and daughter mass combinations for a 3 TeV resonance mass. For each signal, the expected and
observed 95% CL upper limits on the signal cross section from the best performing anomaly detection method are reported. The expected
limit from the anomaly detection method is also compared to the expected limit of the inclusive search to quantify the improvement. For
some signals the anomaly detection methods do not improve with respect to the inclusive search. This is indicated by an improvement factor
less than one.

Model A→ BC (mA = 3TeV) Daughter masses (GeV) Method Exp. (Obs.) limit (fb)
Improv. factor
w.r.t. inclusive

Q∗ → qW ′ → 3q 25 CWoLa Hunting 61.1 (30.1) 0.3
80 CATHODE 46.2 (76.3) 0.4
170 CATHODE 48.7 (86.3) 0.4
400 CWoLa Hunting 45.8 (24.3) 0.5

X→ YY ′ → 4q 25, 25 CATHODE 7.4 (9.7) 0.9
25, 80 CATHODE 5.9 (8.2) 1.2
25, 170 CATHODE 8.3 (9.7) 0.8
25, 400 VAE-QR 13.6 (12.5) 0.6
80, 80 CATHODE 3.2 (4.3) 2.1
80, 170 CATHODE 4.5 (6.0) 1.5
80, 400 CATHODE 4.6 (6.0) 1.6
170, 170 QUAK 2.7 (2.5) 2.6
170, 400 CATHODE 4.3 (5.8) 1.7
400, 400 VAE-QR 2.1 (1.9) 4.2

W ′ → B ′t→ bZt 25 TNT 22.6 (13.9) 1.7
80 TNT 18.2 (11.3) 1.9
170 TNT 12.2 (7.3) 2.1
400 TNT 12.5 (7.0) 2.2

WKK → RW→ 3W 170 TNT 22.1 (15.2) 1.6
400 QUAK 19.7 (13.7) 1.8

Z ′ → T ′T ′ → tZtZ 400 TNT 39.1 (23.3) 3.5
GKK → HH→ 4t 400 VAE-QR 3.7 (3.2) 7.1
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Table 2. Limits on additional signal models and daughter mass combinations for a 5 TeV resonance mass. For each signal, the expected and
observed 95% CL upper limits on the signal cross section from the best performing anomaly detection method are reported. The expected
limit from the anomaly detection method is also compared to the expected limit of the inclusive search to quantify the improvement. For
some signals the anomaly detection methods do not improve with respect to the inclusive search. This is indicated by an improvement factor
less than one.

Model A→ BC (mA = 5TeV) Daughter masses (GeV) Method Exp. (Obs.) limit (fb)
Improv. factor
w.r.t. inclusive

Q∗ → qW ′ → 3q 25 QUAK 3.5 (3.1) 0.7
80 QUAK 3.2 (2.8) 0.8
170 QUAK 3.3 (3.6) 0.8
400 CATHODE 3.7 (3.6) 0.7

X→ YY ′ → 4q 25, 25 QUAK 1.7 (1.6) 0.5
25, 80 QUAK 1.3 (1.3) 0.7
25, 170 QUAK 1.1 (1.1) 0.8
25, 400 VAE-QR 1.0 (3.4) 0.9
80, 80 TNT 1.1 (1.2) 0.8
80, 170 QUAK 0.9 (1.0) 0.9
80, 400 VAE-QR 0.9 (3.0) 0.9
170, 170 CATHODE 0.6 (0.5) 1.6
170, 400 CATHODE 0.7 (0.6) 1.3
400, 400 CATHODE 0.4 (0.3) 2.4

W ′ → B ′t→ bZt 25 TNT 3.6 (5.2) 1.6
80 TNT 3.5 (5.0) 1.6
170 TNT 2.5 (3.4) 1.9
400 TNT 2.6 (3.2) 1.7

WKK → RW→ 3W 170 TNT 4.4 (5.9) 1.2
400 TNT 3.4 (4.1) 1.4

GKK → HH→ 4t 400 TNT 1.4 (1.9) 2.7

Table 3. For the A→ BC searches, the sensitivity improvement of the anomaly detection methods with respect to the best performing
comparison method. The considered comparison methods are the inclusive search, 2-prong targeted selection, and 3-prong targeted
selection. The fourth and fifth columns list, for each signal model, improvement factors on the exclusion limit for the best performing
anomaly detection method for signals at masses of mA = 3 and 5 TeV, respectively. This is quantified as the ratio of the expected upper limit
on the production cross section obtained by the anomaly detection method as compared to that of the inclusive search. The sixth column
lists the improvement factor on the 5σ discovery potential for the best performing anomaly detection method for each signal at mA = 3TeV.
This is quantified as the ratio of the cross section that would have led to a 5σ excess for the comparison method as compared to that of the
anomaly detection method.

Improvement factors in expected sensitivities

Process Comparison 95% CL limit 95% CL limit 5σ discovery
Prongs A→ BC method mA = 3TeV mA = 5TeV mA = 3TeV

2+ 2 X→ YY ′ → 4q 2-prong (τ21,mSD) 1.8 (QUAK) 1.4 (CATHODE) 2.9 (CATHODE)
3+ 3 W ′ → B ′t→ bZt 3-prong (τ32,mSD) 1.3 (TNT) 1.2 (TNT) 2.1 (TNT)
4+ 2 WKK → RW→ 3W Inclusive 1.5 (CWoLa Hunting) 1.4 (TNT) 2.6 (CWoLa Hunting)
6+ 6 GKK → HH→ 4t 3-prong (τ32,mSD) 2.5 (VAE-QR) 1.3 (TNT) 2.9 (TNT)

Except for WKK → RW→ 3W, none of the signals con-
sidered have been previously covered by dedicated searches
in the mass range considered in this analysis, making the
limits reported here the first of their kind. This broad range
of unique exploration is made possible by the combination
of flexibility and sensitivity within the anomaly detection
approach. Though it does not achieve the same sensitivity to

an individual model as a dedicated search, anomaly detection
offers enhanced sensitivity to a much larger class of models.

Improvements in the upper limits and discovery potential,
for the best performing anomaly detection method on each
signal, are summarized in table 3. The VAE-QR method is
found to improve the exclusion limits more than the discov-
ery potential. This is due to the advantage of the multicategory
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approach, which is used only in the limit setting, when the rel-
ative yields of the considered signal model in each category
are known, and is not used in the model-agnostic search. In
contrast, the weakly supervised methods are found to improve
the discovery sensitivity more than they improved the limits,
because their signal efficiency continues to improve with the
higher signal cross sections necessary for discovery. Overall,
the anomaly detection methods are seen to improve the dis-
covery sensitivity of all benchmark signals by at least a factor
of 2.1 (2.6) compared to a dijet search with (without) the use
of jet substructure information. This illustrates the potential of
anomaly detection methods to discover signals that may other-
wise be missed, and highlights their complementarity to dijet
searches that do use jet substructure information, those that do
not, as well as dedicated searches.

10. Summary

To summarize, we have presented a model-agnostic search
for new resonances in the dijet final state. The search is based
on 138 fb−1 of data collected at

√
s= 13TeV by the CMS

experiment. Five separate anomaly detection methods were
employed to improve sensitivity to signals that produce jets
with substructure distinct from that of QCD multijet events.
No significant excesses of events were observed by any of
the methods. The performance of the anomaly detection tech-
niques was illustrated on a set of benchmark narrow-resonance
signals covering awide range of substructure signatures. It was
found that the anomaly detection methods improved the dis-
covery sensitivity and expected limits on the benchmark sig-
nals. The anomaly detection methods were shown to enhance
the sensitivity by larger factors, and on a much wider class of
models, than traditional cutoff-based substructure selections,
but fell short of the sensitivity of a dedicated model-specific
search.

The performance of the anomaly detection methods on a
diverse set of benchmark models demonstrates the sensitivity
of the employed techniques to a wide class of dijet resonances
that have substructure and fall within the considered mass
range. By construction, these approaches have sensitivity to
an even broader class of models than the specific benchmarks
studied. The anomaly detection methods employed in this
search represent a significant step forward in the search for
new particles at the LHC in a model-agnostic fashion. Further
development and deployment of these techniques will play
a crucial role in maximizing the discovery potential of LHC
data.
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Appendix A. Details of anomaly detection methods

This section provides technical details of the anomaly detec-
tion methods employed in this analysis.

A.1. Unsupervised method details

The VAE used in the VAE-QR method is based on a one-
dimensional convolutional neural network [99] using the 100
highest pT individual PF constituents of the jet. The jet is
represented as a 100×3 matrix. For jets with less than 100
particles, the remaining entries in the matrix were filled with
zeros (zero padding). The size of the maximally compressed
representation (latent space) of the network is 12. During train-
ing, jets in the CR were selectively sampled so that their dis-
tribution matches the kinematics of jets in the SR. The total
loss function minimized during training consists of the sum of
the reconstruction loss, computed as the permutation-invariant
Chamfer distance [100] between the input and the output jet,
and the typical Kullback–Leibler regularization term of a VAE
[64], computed from the mean (µ) and variance (σ) vectors in
the latent space. The latter term is minimized when the dis-
tribution of latent representations is close to that of a multi-
dimensional Gaussian distribution. The two terms in the loss
function force the model to find a good compromise between

representing the different modes found in the data and hav-
ing a latent space with a regular structure. After training, the
loss computed on each jet is used as the anomaly score metric,
where high values correspond to signal-like events. The event-
level discriminator is built using the minimum loss of the two
jets, L1 and L2.

A.2. Weakly supervised method details

In the CWoLa Hunting method, fully connected feed-forward
neural networks were used for the classifiers applied to each
jet. The distribution of anomaly scores for each classifier were
used to convert each score of each jet into a percentile. The
event-level anomaly score is then defined as the maximum of
the percentile score for the two jets. A selection threshold on
the event-level anomaly score is defined based on its efficiency
in the sidebands of the targeted SR. Because the QCD back-
ground decreases at higher dijet masses, a higher selection effi-
ciency is used: efficiencies of 1%, 3%, and 5% were used for
SRs withmjj centers below 3100, between 3100 and 4500, and
above 4500GeV, respectively.

For TNT, in order to construct the jet images used by the
autoencoder, we follow [101] and apply preprocessing to the
jet constituents before pixelating. We center the image on the
pT centroid of the jet constituents, and then divide the image
into 32× 32 pixels. The image covers a region of η-ϕ space
with width ∆η =∆ϕ = 1.2 centered on the jet axis. In order
to reduce dependence on the pT of the jet, each image is nor-
malized so that the sum of all the pixel intensities is equal to
1. The autoencoder is constructed out of a series of convolu-
tional layers and fully connected layers, which compress the
input 32× 32 image into a latent space of size 6. The architec-
ture is then mirrored to decode the latent space back to the size
of the original image. A diagram of the TNT training algorithm
is shown in figure A1.

The selection of anomalous events is identical to that of the
CWoLa Hunting method, except that the final anomaly score
is defined as the multiplication of the percentile score of the
two jets rather than the maximum.

The normalizing flows used for CATHODE were trained
using 15 MADE blocks [77], each made of a single hidden
layer of 128 nodes. The loss function is the negative log like-
lihood of the transformed samples under a standard Gaussian
distribution. The flows were trained in data using all events
outside of the SR of interest. After training, the flows were
used to sample events in the SR, generating four times as many
events as there were in the actual data in this region, as was
done in [70]. The mjj distribution used for sampling is taken
from a kernel density estimation fit [102, 103] of the data mjj

distribution in the SR.
After sampling, a fully connected feed-forward neural net-

work classifier using three hidden layers of 64 nodes each and
ReLU activation [104] is trained to distinguish between the
synthetic events, discussed in section 5.2, and actual events
from the SR. The binary cross-entropy [105] loss function
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Figure A1. A flowchart outlining how the samples for the weakly supervised training were constructed in the TNT method. The two jets in
the dijet candidate were randomly assigned labels J1 and J2. For each event, the J1 (J2) jet is placed into either a signal-like or
background-like sample based on the autoencoder scores evaluated on the J2 (J1) jet. The samples of signal-like (background-like) J1’s and
signal-like (background-like) J2’s were merged together to construct a single sample of signal-like (background-like) jets. The TNT
classifier is then trained to distinguish between these two samples.

is used, with class weights to compensate for the imbalance
introduced by oversampling. The anomaly metric is then the
average score from this classifier over the 10 best epochs, as
quantified by the validation loss.

The sub-dominant t̄t, tW, single t production, Z+jets, and
W+jets backgrounds, will include jets that contain either a
boosted top quark, or a boosted W or Z boson, and these jets
are clearly distinct from those of the dominant QCD mul-
tijet background. The effect of this on the performance of the
CWoLa Hunting and TNT algorithms is tested using the simu-
lated pseudo-data set A version of the simulated pseudo-data
set without these backgrounds is constructed, and the same sig-
nal injection test described in section 8 is performed. The per-
formance of the two algorithms using this altered pseudo-data
set is found to be very similar to the performance on the ori-
ginal pseudo-data set, an indication these backgrounds have a
minor effect on anomaly detection performance.

A.3. Semisupervised method details

The QUAK method uses density estimators, trained on dedic-
ated signal and background simulations, to construct a mul-
tidimensional space with several ‘signal-like’ axes and one
‘background-like’ axis. Each density estimator is implemented
as a six-layer normalizing flow using autoregressive rational
quadratic spline transformations [83]. The background flow
is trained on a mixture of QCD, t̄t, and V+jets events.
The six signal flows were trained on combinations of sig-
nal samples pooled according to the B and C particle masses
(mB,mC): (80, 80), (80, 170), (80, 400), (170, 170), (170, 400),
and (400, 400)GeV. Each flow learns the multidimensional
probability distribution of its training sample. Once trained,
the flow can be used to evaluate the likelihood of any new
sample under this probability distribution. Each event in data
is assigned a ‘loss’ along each flow axis, defined as the negat-
ive log likelihood of the event evaluated by the correspond-
ing flow. The losses were decorrelated from mjj to prevent

sculpting of dijet spectra, transformed to have a Gaussian-
like shape using the Box–Cox transformation [106], and nor-
malized to have an average value of 0 and standard deviation
of 1. A single signal score is extracted by taking the ‘signed
L5 norm’ of the density scores from the six signal axes. The
signed L5 norm is defined as Lsgn

5 (x) = sgn(y)|y|1/5, where
y=

∑5
i=0 sgn(xi)|xi|5 and x is a vector of the six signal losses.

This is chosen to emphasize very signal-like or very anomal-
ous events, which should have large negative or positive losses,
respectively, along a particular axis or axes. The L5 norm was
chosen over the more familiar L2 norm by scanning over expo-
nents in the range 2–10 and observing improved performance
that leveled off near 5.

Events populate a 2D QUAK space, with positions determ-
ined by the background loss and combined signal losses.
The precise distribution of background events in this space is
determined from control samples in data by making a template
from events with mjj within the sideband intervals. Because
there is no straightforward single anomaly score from a 2D
distribution, a binned approach is used to determine the most
anomalous events. First, 50% of events were removed, based
on a selection on the background-like probability. The final
selection is determined based on the targeted signal resonance
mass mA. A 2D histogram representation of the QUAK space
with 500 bins is constructed from events within the sidebands
defined in section 5.3. The SR events were put into a sep-
arate histogram with the same binning. Events from the SR
were selected from bins corresponding to the least populated,
second-least populated, the third-least populated bins, (and
so on) from the sideband histogram. The procedure termin-
ates when at least 1500 events or at least 500([mA/TeV]− 3)3

events from the SR have been selected. All events that fall
into the bins selected in the above procedure were selected
for inclusion in the final fit. Studies in simulation and the data
sideband show that theQUAK selection has a higher efficiency
for t̄t events than for QCD multijet events, enhancing the rel-
ative contribution of this background. However, because the
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contribution of t̄t background prior to selection is quite small,
and t̄t events do not form a resonance peak in the dijet mass,
this behavior does not hinder the extraction of a signal.

A.4. Cross validation procedure

Since the weakly supervised methods and the QR technique of
the VAE-QR use data from the SR to train, a multifold cross-
validation scheme is used. The scheme ensures all data events
in the SR were used for the final search, while avoiding the
same data being used in both the training and evaluation of a
model.

For the training of the QR, the data were randomly split
into k= 20 equal subsamples (folds) and the QR network is
trained separately for each fold. For the selection of anomalous
events in each fold, the average of the QR networks trained in
the other nineteen folds, smoothed by a third-order polynomial
fit is used. The events selected from these 20 folds were then
combined for the final search. It was verified that this proced-
ure does not artificially diminish the size of localized excesses
should they be present in the data.

For the weakly supervised methods, the data were split
into five equal folds. Four of these folds were used to train
and validate a classifier which is then used to select the most
anomalous events in the remaining fold. The process is then
repeated four times, varying which folds were used for train-
ing and selection. The selected events from all five folds were
merged together before the fit to the dijet mass spectrum. In
addition, for increased stability of the training performance,
an ensemble of four models is used to define each anomaly
discriminant. The ensemble is constructed by varying which
of the four folds were used for training and which for valid-
ation. The final anomaly discriminant used in the fifth fold is
taken as the mean of the anomaly scores of the four different
models.

Appendix B. Signal interpretation studies

If one or more of the anomaly detection methods were to find a
statistically significant excess, it would be important to discern
its basic properties so that follow-up studies could be under-
taken. This type of study would validate that the properties of
the excess match a realistic new particle, rather than arising
from a subtle instrumental or reconstruction-related artifact
picked up by the anomaly detection method. If the basic sub-
structure properties of an excess are determined, a dedicated
search targeting a signal model with a matching signature
could be performed to verify the nature of the excess. Based
on studies in simulation, two types of analysis were found to
be effective to characterize its nature.

The first type of study is to plot the observables of the events
in the region of the excess, which have the highest anom-
aly score. These distributions of observables are then com-
pared to those of all events in the region of the excess, without

any anomaly score cutoff. Differences in these two distribu-
tions demonstrate the distinctive observables of the anomal-
ous events compared to standard events. It should be noted that
because the weakly supervised methods will learn to identify
the specific characteristics of the signal, they will preferen-
tially select background events that have observables similar
to that of the signal. This helps in identifying what observ-
ables the anomaly detection algorithm has learned are signal
like, but means these distributions cannot be used for a preci-
sion extraction of signal properties, because the background is
significantly biased.

An additional type of study is used to directly interpret the
anomaly detection model itself, by testing which input observ-
ables are most important to the network giving an event a high
anomaly score. This task requires special strategies for the
interpretation of an unknown excess, where one does not know
the true origin of any event. We use an interpretability tech-
nique called the permutation feature importance [107] which
is suitable for situations without labeled examples. For each
observable used as an input for the network, its permutation
score is computed as the average change in the anomaly score,
when the value of that observable is randomly replaced with
the value obtained from a different event. We assess the per-
mutation score on the set of events with the highest anomaly
scores, to determine which of their properties are most cru-
cial for the anomaly classification. For each high-anomaly-
score event, we swap one individual observable at a time with
the values obtained from 100 randomly selected events. We
then compute the average anomaly score variation across these
100 perturbations. This is then averaged across all events from
the high-anomaly-score sample to determine the permutation
score of that observable. This procedure is repeated to asses the
permutation score of all observables. We find the permutation
scores of unimportant observables to be small, but not exactly
zero, while the scores of important observables are generally
larger. We note that this method is not as useful in interpreting
the VAE-QR results, because for that method the input observ-
ables are 4-momenta of individual PF candidates, which are
difficult to connect to the physics properties of the signal.

The combination of these two types of studies makes it pos-
sible to identify characteristics of the signal in the case of an
excess. A demonstration of the first type of study applied to the
TNT method on theX→ YY ′ → 4q andW ′ → B ′t→ bZt sig-
nals are shown in figures B1 and B2, respectively. A demon-
stration of the second type of study is shown in figure B3. The
signal injections from the performance studies of section 8
were used to test the interpretability of the excesses that were
found. For the X→ YY ′ → 4q signal, the two pronged sub-
structure is clear from the low τ 21 score of the anomalous jets,
and the rough value of the Y mass can be identified from the
peak in jet mass at 170GeV. For the W ′ → B ′t→ bZt signal,
the three pronged substructure can be discerned from the low
τ 32 score. A high b tagging score indicates that both the B and
C particle decays produce b quarks, and the top quark mass
(170GeV) and B ′ mass (400GeV) can be seen from the peaks
in the jet mass distribution.

19



Rep. Prog. Phys. 88 (2025) 067802 The CMS Collaboration

Figure B1. Excess interpretation example for the TNT method trained on a simulated sample, with an injection an X→ YY ′ → 4q signal
with a cross section of 24 fb, MX = 3TeV, and MY/Y ′ = 170GeV. The plots compare the properties of the jets with the highest anomaly
score (blue) as compared to those for all jets in the region of the excess (red). The two-pronged nature of the anomaly is evident from the
low τ 21 scores, and the approximate mass of the Y and Y ′ resonance can be seen as a peak in the jet mass (mSD) distribution.

Figure B2. Excess interpretation example for the TNT method trained on a simulated sample, with an injection of a W ′ → B ′t→ bZt
signal with a cross section of 97 fb, MW ′ = 3TeV, and MB ′ = 400GeV. The plots compare the properties of the jets with the highest
anomaly score (blue) as compared to those for all jets in the region of the excess (red). The three-pronged nature of the signal is clear from
the low τ 32 scores, the presence of b tags from the high DeepCSV score, and peaks in the jet mass (mSD) at 170GeV and 400GeV indicate
the top quark and B ′ resonances.
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Figure B3. Excess interpretation examples for the TNT method trained on a simulated sample, with an injection of an X→ YY ′ → 4q
signal with a cross section of 24 fb (left) and a W ′ → B ′t→ bZt signal with a cross section of 97 fb (right). The sensitivity of the anomaly
score to the different input observables is assessed to aid in the determination of the properties of the excess. For the X→ YY ′ → 4q
injection, the τ 21 and jet masses are seen to be the most important observables. For the W ′ → B ′t→ bZt injection, the τ 32, jet masses, and b
tagging score are seen to be the most important observables.

Appendix C. Limit-setting procedure

For the weakly supervised methods, special procedures need
to be taken in the limit setting to account for nonstandard
dependencies. The procedure begins with a fit to the observed
mjj spectrum using the signal shape from the desired signal
model. An upper limit on the signal yield, obtained from one
such fit, corresponds to a number of signal events that needs
to be converted to a cross section by accounting for the lumin-
osity, acceptance, and efficiency. For a traditional analysis
with a fixed selection, the efficiency is a constant number that
depends only on the signal model. However, in weakly super-
vised methods, the event selection is adjusted dynamically
based on the presence of signal in data. This causes the sig-
nal efficiency to depend on several factors, including the total
size of the training data set, the amount of signal in the training
data set, and the distinctiveness of the signal as compared to
the background. The amount of signal in the training data set,
in particular, is directly related to the unknown signal cross
section σsig that one wishes to set a limit on. Therefore, when
setting the limit, the efficiency ϵ needs to be understood as
depending on σsig. This leads to the following relation between
the expected signal yield Nsig in the SR and the cross section:

Nsig (σsig) = σsig L A ϵ(σsig) , (C.1)

where L is the integrated luminosity, A is the acceptance, and
ϵ(σsig) is the efficiency as a function of the cross section. Given
an upper limit NUL on the signal yield, the corresponding limit
on the cross section is obtained by finding the σsig such that
Nsig(σsig) = NUL in the expression above. This is straightfor-
ward for theVAE-QR andQUAK methods that do not use weak
supervision and have a fixed signal efficiency, ϵ(σsig) = ϵ0,

as in this case equation (C.1) can be inverted explicitly. For
CWoLa Hunting, TNT, and CATHODE, the efficiency func-
tion is not known apriori and the inversion needs to be done
numerically. This appendix describes the procedure used to
evaluate ϵ(σsig) and obtain the limit on the cross section.

The dependence of the signal efficiency on σsig can be
understood as follows. If the signal cross section is very low,
such that there is no signal present in the SR, the training pro-
cedure produces an essentially random classifier. Therefore,
events selected as having high anomaly scores fall into a ran-
dom phase space region of the input variables. Typically, this
region is not signal-enriched and the selection on the anomaly
score has a very low signal efficiency, lower or similar to that
of background (1%–5%). If, on the other hand, there is a large
amount of signal present in the data, the weakly supervised
training procedure produces a classifier that correctly identi-
fies events from the signal phase space as the most anomalous.
Many signal events therefore pass the anomaly score selection
and the signal efficiency is significantly higher (20%–50%).
For intermediate signal strengths, the signal-finding perform-
ance of the classifier smoothly transitions between these two
extremes, resulting in an efficiency function similar to the one
shown in the upper panel of figure C1.

The efficiency functions of the weakly supervised methods
were calibrated by injecting each signal into the data at various
cross sections, performing the training procedure, and evaluat-
ing the efficiency using the full signal sample. To account for
the statistical fluctuations in the sampling, each injection was
repeated five times using different random signal events. The
average efficiency of these five runs was used as the estimate
of the signal efficiency at that cross section, and their envel-
ope was taken as an uncertainty in the efficiency due to ran-
dom variations in the sampling and training performance. For
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Figure C1. Diagram of the limit-setting procedure for the X→ YY ′ → 4q signal at 3 TeV with the CATHODE method. The upper panel
shows the estimated signal acceptance times efficiency as a function of the cross section injected in data. The shaded region in the upper
panel shows the total statistical and systematic uncertainty in the efficiency. The resulting Nsig(σsig) curve and its corresponding uncertainty
band from the efficiency are shown in blue in the lower panel. The expected and observed limits on the number of signal events are shown
as a horizontal solid black line and green dashed lines, respectively, and connected to the corresponding limits on the cross section (vertical
lines). The 68% confidence level band around the expected limit is displayed similarly.

both the expected and observed upper limit, a binary search
was used to solve equation (C.1) for the corresponding sig-
nal cross section, NUL = Nsig(σUL). The stopping condition of
the search procedure required both sides of the equation to
agree within 10%. The results of the search for one mass point
of the X→ YY ′ → 4q signal is shown in the lower panel of
figure C1. It should be emphasized that, due to the dependence
on the signal cross section, the phase space of events selected
by the classifiers trained on the data itself, differs from the
phase space selected by the classifiers trained with injected
signal used in this calibration.

The trained networks resulting from the injection of sig-
nal events in data can be affected by significant systematic
uncertainties. The impact of each source on the efficiency
was assessed using signal samples varied up and down by

one standard deviation. Retrainings were performed for all
sources affecting the input distributions of the neural networks
significantly. The dominant source arises from the correction
to signal modeling based on the Lund plane [97], followed by
the stochasticity of signal sampling for the injection. Other
modeling and experimental uncertainties were found to be
small. All sources were added in quadrature, and the final limit
was obtained by repeating the fit to data, with a log-normal
multiplicative nuisance parameter inserted in equation (C.1).

Injecting signal events directly into the data ensures that the
background distribution is modeled accurately, removing the
need for generating large SM event samples and estimating the
associated uncertainties. The calibration procedure is appro-
priate when no signal is present in the data. In the opposite
case, the estimation of the signal efficiencies would be biased
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by signal events present in the data, which could result in lim-
its with improper coverage. This bias was studied in simula-
tion, and its magnitude and direction were found to depend on
which signal was present in the data and in what amount. If the
features of the signal already present in the data matched those
of the signal being injected, the procedure would overestimate
the signal efficiency at a given cross section. Conversely, the
presence of a signal with features distinct from the signal being
injected, would in some cases result in an underestimated sig-
nal efficiency. It was found that for signals in data which pro-
duce excesses of ∼3 standard deviations or less, the amount
of bias in the signal efficiency estimate is less than∼20%, and
the resulting exclusion limits have proper coverage. Having
seen no excesses above this level in the search, the injection
procedure was determined to be valid for estimating the signal
efficiency and producing exclusion limits.

Appendix D. Study of potential fit bias

We test for potential bias in the extraction of a signal, due to
the chosen parameterization of the background, by comparing
against an additional functional form. Specifically, we com-
pare to the alternate functional form given by:

dN
dmjj

=
P0

(x)P1
exp

(
−P2x−P3 (x)

2 −P4 (x)
3
)
. (D.1)

We perform a test for potential bias, using the background-
only version of the simulated pseudo-data set described in
section 8. For each anomaly detection method, we perform
the full analysis procedure to select the final spectrum of
dijet masses. These distributions are then fit using the altern-
ate form of equation (D.1). Pseudo-data dijet mass distri-
butions of varying signal strength are then generated based
on the fitted parameterization and signal templates. These
pseudo-data distributions are then fit with the background
parameterization used in the search (equation (1)) plus a sig-
nal with varying signal strength parameter. The bias in the
extracted signal strength is computed as the average differ-
ence between the estimated signal strength parameter and
the true injected signal strength, divided by the uncertainty
in the estimated signal strength, across the different pseudo-
experiments. This test is performed for three different injec-
ted signal strengths: zero injected signal, an injection strength
resulting in approximately 2σ statistical significance of a sig-
nal, and an injection strength resulting in approximately 5σ
statistical significance of a signal. This procedure is per-
formed scanning over all the signal masses considered in the
search.

The computed biases, for the different chosen signal
strengths and resonance masses, were found to be close to zero
for all anomaly detection methods. Most biases were less than
0.5σ and no scenarios were found to produce biases of larger
than 1σ. The amount of bias due to the background paramet-
erization choice was therefore deemed acceptable.
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