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We present a proof showing that the weak error of a system of n interacting stochastic particles
approximating the solution of the McKean–Vlasov equation is O(n−1). Our proof is based on the
Kolmogorov backward equation for the particle system and bounds on the derivatives of its solution which
we derive more generally using the variations of the stochastic particle system. The convergence rate is
verified by numerical experiments which also indicate that the assumptions made here and in the literature
can be relaxed.
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1. Introduction

For a : R
d × R → R

d, κ1, κ2 : R
d × R

d → R and σ : R
d × R → R

d×d′
, t ≥ 0 and {W(s)}s≥0

being a d′-dimensional Wiener process defined on some probability space with the natural filtration, we
consider the following McKean–Vlasov equation:

Z(t) = ξ +
∫ t

0
a

(
Z(s),

∫
Rd

κ1(Z(s), z)μs(dz)
)

ds

+
∫ t

0
σ

(
Z(s),

∫
Rd

κ2(Z(s), z)μs(dz)
)

dW(s),

(1)

where μs denotes the law of Z(s) for all s ≥ 0, and ξ denotes a random initial state whose law is μ0 and is
assumed to be independent of the Wiener process, W. We focus on one-dimensional interaction kernels
κ1, κ2 : R

d × R
d → R for clarity of presentation since high-dimensional kernels can be treated in a
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2 A.-L. HAJI-ALI ET AL.

similar way; see Remark 2.6. For a(x, y) = y, with σ being constant and κ1 being bounded and Lipschitz,
(Sznitman, 1991, Theorem I.1.1) shows the existence and uniqueness of a strong solution to Equation
(1). A recent analysis yielded the same result in (Mishura & Veretennikov, 2021, Proposition 2) when
the initial condition ξ has a finite fourth moment, a(x, y) = σ(x, y) = y, under uniform non-degeneracy
conditions on κ2, and when for all x, x′, y ∈ R

d, there exists a constant C > 0 such that

|κ1(x, y)| + |κ2(x, y)| ≤ C(1 + ‖x‖),
|κ2(x, y) − κ2

(
x′, y

)| ≤ C (1 + ‖y‖2) ‖x − x′‖.

Crisan & Xiong (2010) also shows the existence and uniqueness result for κ2 = 0 and a particular form
of a. Existence of weak solutions was also shown by Hammersley et al. (2021) under certain measure-
dependent Lyapunov conditions. De Raynal (2020); Raynal & Frikha (2021b) further showed strong and
weak existence for less smooth, but bounded, drift and diffusion coefficients. In the current work, we do
not focus on the existence of solutions to Equation (1) and instead assume the existence of weak solutions
and consider strong approximations of Z using a system of n Itô stochastic differential equations (SDEs),
also known as an interacting stochastic particle system, with pairwise interaction kernels:

Xn
i (t) = ξi +

∫ t

0
a

⎛⎝Xn
i (s),

1

n

n∑
j=1

κ1

(
Xn

i (s), Xn
j (s)

)⎞⎠ds

+
∫ t

0
σ

⎛⎝Xn
i (s),

1

n

n∑
j=1

κ2(Xn
i (s), Xn

j (s))

⎞⎠dWi(s),

(2)

for i ∈ {1, 2, . . . , n}, where ξi are i.i.d. and have the same law, μ0, and {Wi(s)}s≥0 are independent
d′-dimensional Wiener processes and independent of {ξi}n

i=1. In other words, the law μt for t ≥ 0 is
approximated by an empirical measure based on the particles Xn(t) := {Xn

i (t)}n
i=1. It should be noted

that these particles are identically distributed but not independent.
For Zn := (Zi)

n
i=1 being n independent samples of the solution to the McKean–Vlasov equation (1)

and a function g : Rd×n → R, the weak error at time t is defined as the absolute difference |E [
g(Xn(t))

]−
E
[
g(Zn(t))

]|. The weak error was established to be O(1/n) in, e.g. (Kolokoltsov, 2010, Chapter 9) and
(Mischler et al., 2013, Theorem 6.1). These works assume that κ2 ≡ 0 and build upon semigroup theory
in measure-valued function spaces to prove their results. On the other hand, Bencheikh & Jourdain (2019)
employ a similar methodology to the current work but assumes that κ1 and κ2 in (1) do not depend on
the state Z. There is an increasing interest in extending proofs of strong and weak convergence in more
general settings with nonlinear drift/diffusion coefficients. To that end, works such as (Szpruch & Tse,
2021, Theorem B.2), (Chassagneux et al., 2022a, Theorem 2.17) and Raynal & Frikha (2021a) use Lions-
derivatives as defined by Cardaliaguet (2010) to bound derivatives with respect to measures in a master
equation for probability measure, see also Lasry & Lions (2007); Chassagneux et al. (2022b). For a more
exhaustive literature review, see Chassagneux et al. (2022a).

In Section 2, we present a new method to show the rate of weak convergence. The principal steps
involve using the Kolmogorov backward equation to represent the weak error and the stochastic flows
and the dual functions to bound the weights in the resulting dual weighted residual representation. Using
the Kolmogorov backward equation to estimate the weak error in SDEs goes back to the ideas of Talay &
Tubaro (1990), who estimated the time discretization error for uniform deterministic time-steps. Bally
& Talay (1995, 1996), extended the analysis to approximations with non-smooth observables and the
probability density of the solution at a given time. Kloeden & Platen (1992) generalized the analysis by
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WEAK CONVERGENCE IN THE PARTICLE LIMIT OF MCKEAN–VLASOV EQUATION 3

Talay & Tubaro (1990) to weak approximations of a higher order. Later, in a series of works inspired
by Talay & Tubaro (1990), the authors developed methods based on stochastic flows and dual functions
to bound the weights in the resulting dual-weighted residual representation. This approach provided the
analysis for the weak approximation of SDEs using non-uniform, possibly stochastic, time-steps, see
Szepessy et al. (2001); Moon et al. (2005); Mordecki et al. (2008); Bayer et al. (2010). Furthermore, the
same analysis line was also used for adaptive Multilevel Monte Carlo, Hoel et al. (2014, 2016).

The closest inspiration for deriving the weak convergence rate goes back to the use of the men-
tioned techniques in the context of multiscale approximation. Those works derived macroscopic SDEs
continuum models by choosing their drift and diffusion functions to minimize the weak error in the
given macroscopic observables when compared with a given base model. Particularly, Katsoulakis &
Szepessy (2006) employed master equations with long-range interaction potentials as a base model as
the stochastic Ising model with Glauber dynamics, whereas Schwerin & Szepessy (2010) determined
the stochastic phase-field models from atomistic formulations by coarse-graining molecular dynamics
to model the dendritic growth of a crystal in an under-cooled melt. Systems of coupled SDEs with
increasing size could also be useful for approximating a non-Markovian behaviour. For example, Bayer
et al. (2022) investigated weak convergence rates for a rough stochastic volatility model emerging in
mathematical finance, namely, the rough Bergomi model. As in this study, the analysis in Bayer et al.
(2022) also employed a dual-weighted representation of the weak error, yielding an error expansion
that characterizes the weak convergence rate. A similar method was also used in Bencheikh & Jourdain
(2019) for a special case of (1) in which κ1 and κ2 do not depend on the state Z, i.e. κ·(x, y) = κ·(y). A
key difference to our methodology is that in Bencheikh & Jourdain (2019), the Kolmogorov backward
equation involves μt, the law of, Z(t) while we instead utilize the Kolmogorov backward equation for
the particle system (2).

In Section 3 we prove the technical results that are needed for the preceding analysis. In particular,
we determine sufficient conditions to bound derivatives of the solution to the Kolmogorov backward
equation for a generic multidimensional SDE by bounding moments of the first, second, and third
variations of the SDE. Finally, in Section 4 we numerically study the weak error of a particle
approximation to the solution of the McKean-Vlasov equation. In particular, we show numerically that
the weak convergence rate is the same for an example stochastic particle system that does not satisfy
the regularity conditions of our theory or those of others in the literature cited above. Therefore, further
work is necessary to extend the existing results.

In what follows, we will use the notation A � B to denote that there is a constant 0 < c < ∞ which
is independent of n, the size of the particle system Equation (2), such that A ≤ cB. For a multi-index
� ∈ N

n, n ∈ N, define the derivative

∂ |�|

∂x�
:= ∂ |�|∏n

j=1 ∂x
�j
j

,

where |�| = ∑n
i=1 �i. Let ‖·‖ denote the Euclidean norm and let Cb(R

n;Rm) denote the space of bounded
continuous functions u ≡ (ui)

m
i=1 : Rn → R

m with the usual norm

‖u‖Cb(R
n;Rm) :=

m∑
j=1

sup
x∈Rn

|uj(x)|.
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4 A.-L. HAJI-ALI ET AL.

Let also Cb(R
n;R) = Cb(R

n). When u has continuous, bounded derivatives up to order k, define the
extended semi-norm

|u|Ck
bd(R

n;Rm) =
m∑

j=1

∑
�∈Nn,1≤|�|≤k

∥∥∥∥∥∂ |�|uj

∂x�

∥∥∥∥∥
Cb(R

n ;Rm)

.

and the norm ‖u‖Ck
b(R

n;Rm) = ‖u‖Cb(R
n;Rm) + |u|Ck

bd(R
n;Rm). For a matrix x ∈ R

d×n, we denote its

components as x =
(

xi,j

)
i={1,...,n},j={1,...,d} ∈ R

d×n. Similarly for a function u : R
d×n → R, we

will use the notation ∇u =
(

∂u
∂xi,j

)
i={1,...,n},j={1,...,d} for its gradient.

2. A Bound on the Weak Error

In this section, we prove that the weak error as defined in the introduction is O(1/n). We start by stating
boundedness and convergence results involving only samples of Z, the solution to the McKean-Vlasov
equation Equation (1).

PROPOSITION 2.1. Assume that weak solutions to Equation (1) exist and let {Zi}n
i=1 be n independent

processes each satisfying Equation (1) with independent underlying Wiener processes. Let κ : R
d ×

R
d → R be a Lipschitz continuous function, i.e. there exists a constant C such that

|κ(x, y) − κ(x′, y′)| ≤ C
(‖x − x′‖ + ‖y − y′‖) for all x, x′, y, y′ ∈ R

d.

Let p ∈ {1, 2, . . .}, then for any i ∈ {1, . . . , n}, we have

E

⎡⎢⎣
∣∣∣∣∣∣1n

n∑
j=1

κ(Zi(t), Zj(t)) −
∫
Rd

κ(Zi(t), z)μt(dz)

∣∣∣∣∣∣
2p
⎤⎥⎦ � n−p E

[∥∥Z(t)
∥∥2p

]
. (3)

Moreover, assuming that a, σ , κ1 and κ2 in Equation (1) are Lipschitz continuous, we have

sup
0≤s≤t

E
[
‖Z(s)‖2p

]
� 1 + E

[
‖ξ‖2p

]
. (4)

The hidden constants in Equations (3) and (4) depend only on d, p, t and the Lipschitz constants.

Proof. The moment boundedness result in Equation (4) with Lipschitz assumptions is classical Sznitman
(1991) using Itô’s formula, Young’s and Grönwall’s inequalities. The proof of Equation (3) for general
p is fairly technical and we include it in Appendix A. We list here the proof for p = 1 to showcase the
main ideas. First, we set, without loss of generality, i = 1 and let

Δjκ :=
∫
Rd

κ(Z1(t), z)μt(dz) − κ(Z1(t), Zj(t)). (5)
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WEAK CONVERGENCE IN THE PARTICLE LIMIT OF MCKEAN–VLASOV EQUATION 5

Expanding the square

E

⎡⎢⎣
⎛⎝1

n

n∑
j=1

Δjκ

⎞⎠2
⎤⎥⎦ = 1

n2

n∑
j=1

n∑
j′=1

E
[
ΔjκΔj′κ

]
.

When j �= j′ and are both different from 1, we have

E
[
ΔjκΔj′κ

]
= E

[
E
[
Δjκ | Z1(t)

]
E
[
Δj′κ | Z1(t)

]]
= 0,

since, for a given Z1(t), Δjκ and Δj′κ are conditionally independent and E
[
Δjκ | Z1(t)

]
= 0 when j �= 1.

When j = j′, we bound using the Lipschitz assumption on κ ,

E
[
(Δjκ)2

]
≤ E

[(∫
Rd

C
∥∥∥z − Zj(t)

∥∥∥μt(dz)
)2

]

≤ 4C2 E
[∥∥Z(t)

∥∥2
]

.

A similar bound can be obtained when 1 ∈ {j, j′} by using Hölder’s inequality. Substituting back yields
the claim. �

LEMMA 2.2. Assume that weak solutions to Equation (1) exist and let Zn = {Zi}n
i=1 be n independent

processes each satisfying Equation (1) with independent underlying Wiener processes, κ : Rd ×R
d → R

be a Lipschitz continuous function and f : Rd × R → R be twice differentiable in the second argument
and satisfying ∣∣∣∣∂f (x, y)

∂y

∣∣∣∣ + ∣∣∣∣∂2f (x, y)

∂y2

∣∣∣∣ ≤ C̃(1 + ‖x‖ + |y|), (6)

for all x ∈ R
d and y ∈ R. Then, for any g ∈ C1

b(R
d×n) and any i ∈ {1, . . . , n} we have∣∣∣∣∣∣E

⎡⎣⎛⎝f

(
Zi(t),

∫
Rd

κ(Zi(t), z)μt(dz)
)

− f

⎛⎝Zi(t),
1

n

n∑
j=1

κ(Zi(t), Zj(t))

⎞⎠⎞⎠g
(
Zn(t)

)⎤⎦
∣∣∣∣∣∣

� n−1 ‖g‖C1
b(Rd×n)

(
1 + E

[
‖ξ‖4

])
.

(7)

The hidden constant in Equation (7) depend only on C̃, d, t and the Lipschitz constant of κ .

Proof. Without loss of generality, we fix i = 1 and define

Δf := f

(
Z1(t),

∫
Rd

κ(Z1(t), z)μt(dz)
)

− f

⎛⎝Z1(t),
1

n

n∑
j=1

κ(Z1(t), Zj(t))

⎞⎠.
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6 A.-L. HAJI-ALI ET AL.

For Δjκ as defined in Equation (5), let

Dn = 1

n

n∑
j=1

Δjκ ,

then by Taylor expanding, we can bound

∣∣E [
Δf g(Zn(t))

]∣∣ ≤ ∣∣E [
f (Z1(t)) Dn g(Zn(t))

]∣∣ + ‖g‖Cb(R
d×n)E

[∣∣∣f (Z1(t))
∣∣∣D2

n

]
, (8)

where, for all x ∈ R
d,

f (x) := ∂f

∂y

(
x,
∫
Rd

κ(x, z)μt(dz)
)

,

and f (x) :=
∫ 1

0
(1 − s)

∂2f

∂y2

(
x, sDn +

∫
Rd

κ(x, z)μt(dz)
)

ds.

Since κ is Lipschitz continuous, implying linear growth, we have for any x ∈ R
d,∣∣∣∣∫

Rd
κ(x, z)μt(dz)

∣∣∣∣ �
∣∣∣∣∫

Rd
(1 + ‖x‖ + ‖z‖)μt(dz)

∣∣∣∣
� 1 + ‖x‖ + E [‖Z(t)‖].

(9)

Using Equation (9), we can also conclude that, for any j ∈ {1, . . . , n},∣∣∣Δjκ

∣∣∣ � 1 + ‖Z1(t)‖ + ‖Zj(t)‖ + E [‖Z(t)‖]. (10)

Using Equations (6) and (9) yields the following bounds for any x ∈ R
d,

|f (x)| � 1 + ‖x‖ + E [‖Z(t)‖], (11)

|f (x)| � 1 + ∣∣Dn

∣∣ + ‖x‖ + E [‖Z(t)‖]. (12)

Using Equation (12), Hölder’s inequality for probability measures, Equation (3) for p = 2 and the fact
that xr ≤ 1 + x for 0 ≤ r ≤ 1 and x ∈ R+ yields

E
[∣∣∣f (Z1(t))

∣∣∣D2
n

]
� (1 + E [‖Z(t)‖]) E

[
D2

n

]
+ E

[
|Dn|3

]
+ E

[
‖Z1(t)‖D2

n

]
≤ (1 + E

[
‖Z(t)‖4

]1/4
)
(
E
[
D4

n

])1/2 +
(
E
[
D4

n

])3/4 +
(
E
[
‖Z(t)‖4

])1/4(
E
[
D4

n

])1/2

� n−1
(

1 +
(
E
[
‖Z(t)‖4

])1/4
)

E
[
‖Z(t)‖4

]1/2 + n−3/2 E
[
‖Z(t)‖4

]3/4 + n−1 E
[
‖Z(t)‖4

]3/4

� n−1
(

1 + E
[
‖Z(t)‖4

])
.
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WEAK CONVERGENCE IN THE PARTICLE LIMIT OF MCKEAN–VLASOV EQUATION 7

Furthermore, using the definition of Dn,

∣∣E [
f (Z1(t)) Dn g

(
Zn(t)

)]∣∣ ≤ 1

n

∣∣E [
f (Z1(t))

(
Δ1κ

)
g(Zn(t))

]∣∣
+ 1

n

n∑
j=2

∣∣∣E [
f (Z1(t)) Δjκ g(Zn(t))

]∣∣∣. (13)

Here, using Equations (10) and (11), Jensen’s inequality and Hölder’s inequality for probability measures
yields ∣∣E [

f (Z1(t))
(
Δ1κ

)
g
(
Zn(t)

)]∣∣ ≤ ‖g‖Cb(R
d×n) E

[|f (Z1(t))|
∣∣Δ1κ

∣∣]
� ‖g‖Cb(R

d×n) E
[
(1 + ‖Z1(t)‖ + E

[‖Z1(t)‖
]
)2
]

� ‖g‖Cb(R
d×n)

(
1 + E

[
‖Z(t)‖2

]
+ (E [‖Z(t)‖])2

)
� ‖g‖Cb(R

d×n)

(
1 + E

[
‖Z(t)‖4

])
,

(14)

and for j = {2, . . . , n}, using a Taylor expansion of g,∣∣∣E [
f (Z1(t)) Δjκ g

(
Zn(t)

)]∣∣∣ ≤
∣∣∣E [

f (Z1(t)) Δjκ g(Zn−j(t))
]∣∣∣

+
∣∣∣∣E [

f (Z1(t)) Δjκ (Zn(t) − Zn−j(t))
T
∫ 1

0
∇g

(
sZn(t) − (1 − s)Zn−j(t)

)
ds

]∣∣∣∣. (15)

Here, Zn−j(t) = (Z1(t), . . . , Zj−1(t), 0, Zj+1(t), . . . , Zn(t)) ∈ R
d×n is the same as Zn(t) but with the j’th

entry replaced by 0. Note that

E
[
f (Z1(t)) Δjκ g(Zn−j(t))

]
= E

[
f (Z1(t)) E [[]

]
Δjκ | Z1(t) g(Zn−j(t))

]
= 0, (16)

as Zj(t) has law μt and is independent of Zn−j and of Z1(t). Using Equations (10) and (11) and Hölder’s
inequality for probability measures, we bound

∣∣∣∣E [
f (Z1(t)) Δjκ (Zn(t) − Zn−j(t))

T
∫ 1

0
∇g

(
sZn(t) − (1 − s)Zn−j(t)

)
ds

]∣∣∣∣
≤

d∑
i=1

∥∥∥∥∥ ∂g

∂xj,i

∥∥∥∥∥
Cb(R

d×n)

E
[∣∣f (Z1(t))

∣∣ |Δjκ| ‖Zj(t)‖
]

�
d∑

i=1

∥∥∥∥∥ ∂g

∂xj,i

∥∥∥∥∥
Cb(R

d×n)

(
1 + E

[
‖Z(t)‖4

])
.

(17)
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8 A.-L. HAJI-ALI ET AL.

Substituting Equations (16) and (17) into Equation (15), and the result and Equation (14) into Equation
(13), and then substituting the result into Equation (8) and using Equation (4), we arrive at the claimed
result. �

We now state the main result of the paper, which will also depend on the technical bounds that will
be derived in Section 3.

THEOREM 2.3 (Weak convergence result). Assume that weak solutions to (1) exist and let Zn = {Zi}n
i=1

be n independent processes each satisfying Equation (1) with independent underlying Wiener processes.
Assume that

|a|C3
bd(R

d×R ;Rd) + |σ |C3
bd(R

d×R ;Rd×d′
)
+ |κ1|C3

bd(R
d×Rd) + |κ2|C3

bd(R
d×Rd) < ∞, (18)

and let Xn = {Xn
i }n

i=1 satisfy Equation (2). Then for g : Rd×n → R with continuous bounded derivatives
up to the third order and any T > 0, we have

∣∣E [
g(Xn(T)) − g(Zn(T))

]∣∣ �
(

1 + E
[
‖ξ‖4

])
n−1 |g|C3

bd(R
d×n). (19)

Proof. Let a ≡ (aj)
d
j=1 for aj : R

d × R → R and Σ ≡ (Σj,j′)
d
j,j′=1 := σ Tσ for Σj,j′ : R

d × R → R.
For x ≡ (xi)

n
i=1 ≡ (xi,j)i∈{1,...,n},j∈{1,...,d}, define the operators (recall that μt is the law of Z(t))

Ln =
n∑

i=1

d∑
j=1

[
aj

(
xi,

1

n

n∑
i′=1

κ1(xi, xi′)

)
∂

∂xi,j

+ 1

2

d∑
j′=1

Σj,j′

(
xi,

1

n

n∑
i′=1

κ2(xi, xi′)

)
∂2

∂xi,j∂xi,j′

]

and L∞ =
n∑

i=1

d∑
j=1

[
aj

(
xi,

∫
Rd

κ1(xi, z)μt(dz)
)

∂

∂xi,j

+ 1

2

d∑
j′=1

Σj,j′

(
xi,

∫
Rd

κ2(xi, z)μt(dz)
)

∂2

∂xi,j∂xi,j′

]
.

Consider the value function u satisfying the PDE

∂u

∂t
(t, x) + Lnu(t, x) = 0, for 0 ≤ t < T and x ∈ R

d×n

and u(T , x) = g(x) for x ∈ R
d×n.

(20)

Under Equation (18), a strong solution for Equation (2) exists and is unique (Friedman, 1975, Theorem
1.1 in Chapter 5) and u(t, x) = E

[
g(Xn(T)) | Xn(t) = x

]
, see (Friedman, 1975, Theorem 6.1 in Chapter

5). Given the existence of a solution to Equation (1) and its law, and recalling that the coefficients
a and σ in Equation (1) are integrable and square-integrable, respectively, due to Equation (18) and
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WEAK CONVERGENCE IN THE PARTICLE LIMIT OF MCKEAN–VLASOV EQUATION 9

Equation (4), we define U(t) := u(t, Zn(t)) and apply Itô’s formula (Friedman, 1975, Theorem 5.3 in
Chapter 4) to arrive at

E
[
g
(
Zn(T)

)] − E
[
g
(
Xn(T)

)] = E [U(T) − U(0)]

=
∫ T

0
E
[(
L∞ − Ln

)
u(t, Zn(t))

]
dt.

(21)

The last equality is satisfied under the boundedness conditions in Equation (18), the integrability of Z,
and the boundedness of the derivatives of u, which we will establish later. Then

E
[(
L∞ − Ln

)
u(t, Zn(t))

] =
n∑

i=1

d∑
j=1

E

[
Δiaj

∂u

∂xi,j
(t, Zn(t))

]

+ 1

2

d∑
j′=1

E

[
ΔiΣj,j′

∂2u

∂xi,j∂xi,j′
(t, Zn(t))

]
,

(22)

where for f ≡ aj, κ ≡ κ1 and f ≡ Σj,j′ , κ ≡ κ2, we define

Δif := f

(
Zi(t),

∫
Rd

κ(Zi(t), z)μt(dz)
)

− f

⎛⎝Zi(t),
1

n

n∑
j=1

κ(Zi(t), Zj(t))

⎞⎠. (23)

Using the triangle inequality, Lemma 2.2 and Equation (4), we bound∣∣E [(
L∞ − Ln

)
u(t, Zn(t))

]∣∣
� n−1

(
1 + E

[
‖Z(t)‖4

])⎛⎝ n∑
i=1

d∑
j=1

⎛⎝∥∥∥∥∥∂u(t, ·)
∂xi,j

∥∥∥∥∥
C1

b(Rd×n)

+
d∑

j′=1

∥∥∥∥∥ ∂2u(t, ·)
∂xi,j∂xi,j′

∥∥∥∥∥
C1

b(Rd×n)

⎞⎠⎞⎠
� n−1

(
1 + E

[
‖ξ‖4

])
|u(t, ·)|C3

bd(R
d×n).

It remains to show the bound |u(t, ·)|C3
bd(R

d×n) � |g|C3
bd(R

d×n) for t ≤ T . To that end, we use
Proposition 3.3 in the following section with an appropriate definition of ν and ς in terms of a and
σ , respectively, since Assumption 3.1 is satisfied for q = 3 given Equation (18); see the discussion after
Assumption 3.1. �

COROLLARY 2.4. From the previous theorem, we can readily deduce that under the same conditions and
for an integer k ≤ n and g : Rk×d → R, we have∣∣E [

g(Xn
1(T), Xn

2(T), . . . , Xn
k (T)) − g(Z1(T), Z2(T), . . . , Zk(T))

]∣∣
� 1

n

(
1 + E

[
‖ξ‖4

]) (
d k + 2

3

)
max

�∈Ndk ,1≤|�|≤3

⎛⎝∥∥∥∥∥∂ |�|g
∂x�

∥∥∥∥∥
Cb(R

k×d)

⎞⎠.
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10 A.-L. HAJI-ALI ET AL.

Corollary 2.4 is useful when k is independent of n. For example, for g̃ : Rd → R, let

g(Xn(T)) := 1

n

n∑
i=1

g̃(Xn
i (T)).

Then, assuming that |g̃|C3
bd(R

d) and E
[‖ξ‖4

]
are finite, Corollary 2.4 immediately implies that

∣∣E [
g(Xn(T)) − g(Zn(T))

]∣∣ = ∣∣E [
g̃(Xn

1(T)) − g̃(Z(T))
]∣∣ = O(n−1).

REMARK 2.5. In the special case when κ2 = 0, we can relax Equation (18) and only assume that

|a|C2
bd(R

d×R;Rd) + |σ |C2
bd(R

d×R;Rd×d′
)
+ |κ1|C2

bd(R
d×Rd) < ∞. (24)

The result would then also involve only the first and second derivatives of g,

∣∣E [
g(Xn(T)) − g(Zn(T))

]∣∣ � n−1
(

1 + E
[
‖ξ‖4

])
|g|C2

bd(R
d×n),

thus recovering a similar result to the one obtained, e.g. in (Kolokoltsov, 2010, Chapter 9).

REMARK 2.6 (Multi-dimensional interaction kernels). The result of Theorem 2.3 can be extended to multi-
dimensional kernels, κ1, κ2 : Rd × R

d → R
m, for some integer m, assuming that

|a|C3
bd(R

d×Rm ;Rd) + |σ |C3
bd(R

d×Rm ;Rd×d′
)
+ |κ1|C3

bd(R
d×Rd ;Rm) + |κ2|C3

bd(R
d×Rd ;Rm) < ∞,

The proof would follow the same steps by extending the proof of Lemma 2.2 to f : R
d × R

m → R.
Such an extension can be done by either considering Euclidean norms in the proof of Lemma 2.2, or
by adding and subtracting appropriate terms in Equation (7), so that we have m differences each having
only one component of the interaction kernel being approximated, and apply Lemma 2.2 directly to each
difference.

3. Moments Bounds for SDE Variations with Sobolev-Bounded Coefficients

In this section, for T > 0 and (t, x) ∈ [0, T] × R
n, we consider a general SDE of the form

Xt,x(s) = x +
∫ s

t
ν(τ , Xt,x(τ ))dτ +

∫ s

t
ς(τ , Xt,x(τ ))dW(τ ), s ∈ [t, T], (25)

with drift coefficient ν ≡ (νi)
n
i=1 : [0, T]×R

n → R
n, a diffusion coefficient ς ≡ (ςim)i∈{1,...,n},m∈{1,...,n′} :

[0, T] × R
n → R

n×n′
, and W is a vector of n′ independent standard Wiener processes over a

probability space (Ω ,F ,P) with the natural filtration. The main results of this section are Lemma 3.2
and Proposition 3.3 with the latter being used in the final step of the proof of Theorem 2.3. Note that the
system that we consider in Theorem 2.3 is Equation (2) which is a specific example of Equation (25) with
n ← nd. However, we prove the results more generally for Equation (25) to emphasize that the particular
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WEAK CONVERGENCE IN THE PARTICLE LIMIT OF MCKEAN–VLASOV EQUATION 11

structure of Equation (2) is irrelevant as long as Assumption 3.1 is satisfied. Additionally, the results in
this section could be useful beyond the current work. In what follows, for any f : [0, T] × R

n → R,
define the extended norm

‖f ‖∞ := ‖f ‖L∞([0,T];Cb(R
n)) := sup

0≤s≤T
‖f (s, ·)‖Cb(R

n).

For brevity of presentation, we will define for the coefficients ν and ς in Equation (25) and for an integer
r ≥ 0,

‖ν‖Dr ,∞ := ‖∂ν‖Dr−1,∞ +
∑

�∈Nn,|�|=r

max
i∈{1,...,n}
s.t. �i=0

∥∥∥∥∂rνi

∂x�

∥∥∥∥∞
(26)

where ∂ν =
(

∂νi
∂xi

)n

i=1
and ‖∂ν‖D−1,∞ := 0. Similarity, we define

‖ς‖Dr ,�2∞ := ‖∂ς‖Dr−1,�2∞
+

∑
�∈Nn,|�|=r

max
i∈{1,...,n}
s.t. �i=0

⎛⎝ n′∑
m=1

∥∥∥∥∂rςim

∂x�

∥∥∥∥2

∞

⎞⎠1/2

(27)

where ∂ς =
(

∂ςim
∂xi

)
i={1,...,n},m={1,...,n′} and ‖ς‖D−1,�2∞ := 0. Finally, for the process Xt,x in Equation (25),

we define for any p ≥ 1,

‖Xt,x‖Dr ,L∞([t,T];Lp(Ω ,P)) := ‖∂Xt,x‖Dr−1,L∞([t,T];Lp(Ω ,P))

+
∑

�∈Nn,|�|=r

max
i∈{1,...,n}
s.t. �i=0

sup
t≤s≤T

E

[∣∣∣∣∣∂rXt,x
i

∂x�
(s)

∣∣∣∣∣
p]1/p (28)

where ∂Xt,x =
(

∂Xt,x
i

∂xi

)n

i=1
and ‖Xt,x‖D−1,L∞([t,T];Lp(Ω ,P)) := 0.

ASSUMPTION 3.1 (Bounded derivatives). For an integer q we assume that ν : [0, T] × R
n → R

n and
ς : [0, T] × R

n → R
n×n′

satisfy
q∑

r=1

‖ν‖Dr ,∞ + ‖ς‖Dr ,�2∞ < Cq,

for some constant Cq > 0 independent of n.

The previous assumption deserves some explanation. For example, focusing on the drift coefficient
ν, the definition in Equation (26) for r = 1 simplifies to

‖ν‖D1,∞ = max
i

∥∥∥∥∂νi

∂xi

∥∥∥∥∞
+

n∑
�=1

max
i �=�

∥∥∥∥ ∂νi

∂x�

∥∥∥∥∞
,

and ‖ς‖D1,�2∞ expands similarly. Hence, a sufficient condition for Assumption 3.1 when q = 1 is to
bound ⎛⎝ n′∑

m=1

∥∥∥∥∂ςim

∂x�

∥∥∥∥2

∞

⎞⎠1/2

+
∥∥∥∥ ∂νi

∂x�

∥∥∥∥∞
≤
{

C̃1 i = �,

C̃1 n−1 i �= �,
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12 A.-L. HAJI-ALI ET AL.

for all i ∈ {1, . . . , n} and some constant C̃1 > 0. For r = 2, the definition Equation (26) simplifies to

‖ν‖D2,∞ = max
i

∥∥∥∥∥∂2νi

∂x2
i

∥∥∥∥∥∞
+

n∑
�=1

max
i �=�

∥∥∥∥ ∂2νi

∂xi∂x�

∥∥∥∥∞
+

n∑
�=1

n∑
�′=1

max
i/∈{�,�′}

∥∥∥∥ ∂2νi

∂x�∂x�′

∥∥∥∥∞
,

and an additional condition on the second derivatives would be required Assumption 3.1 when q = 2,
e.g. ⎛⎝ n′∑

m=1

∥∥∥∥∂rςim

∂x�

∥∥∥∥2

∞

⎞⎠1/2

+
∥∥∥∥ ∂2νi

∂x�∂x�′

∥∥∥∥∞
≤

⎧⎪⎨⎪⎩
C̃2 i = � = �′

C̃2 n−1 i = � �= �′ or i �= � = �′

C̃2 n−2 i, �, �′ are distinct,

for all i ∈ {1, . . . , n} and some constant C̃2 > 0. In general, for any integer q > 0, a sufficient condition
for Assumption 3.1 is⎛⎝ n′∑

m=1

∥∥∥∥∥∂ |�|ςim

∂x�

∥∥∥∥∥
2

∞

⎞⎠1/2

+
∥∥∥∥∥∂ |�|νi

∂x�

∥∥∥∥∥∞
≤ C̃q n1−|�+ei|0 for all i ∈ {1, . . . , n} and � ∈ N

n : |�| ≤ q,

for a constant C̃q > 0 and where ei is the i’th unit vector and |�|0 denotes the number of non-zero
elements of �.

LEMMA 3.2 (Lp bound of stochastic flows). Let Assumption 3.1 be satisfied for q ∈ {1, 2, 3} and for Xt,x

in Equation (25) and any p ≥ 2 then there exists constants Kq,p, independent of n and x, such that

‖Xt,x‖Dq,L∞([t,T];Lp(Ω ,P)) ≤ Kq,p.

Proof. The proof is in Appendix B. �

PROPOSITION 3.3 (Bounds on derivatives of the value function). Let u : [0, T] × R
n → R satisfy the

Kolmogorov backward equation on (t, x) ∈ [0, T) × R
n,

∂u

∂t
(t, x) +

n∑
i=1

νi(t, x)
∂u

∂xi
(t, x) + 1

2

n∑
i=1

n∑
j=1

⎛⎝ n′∑
m=1

ςim(t, x)ςjm(t, x)

⎞⎠ ∂2u

∂xi∂xj
(t, x) = 0

and u(T , x) = g(x).

(29)

Assume that the coefficients, {νi}n
i=1 and {ςim}i∈1,...,n,m∈1,...,n, satisfy Assumption 3.1 for q ∈ {2, 3} and

that g has continuous bounded derivatives up to order q. Then, for some constant Dq, independent of n,
there holds

|u(t, ·)|Cq
bd(R

n) ≤ Dq |g|Cq
bd(R

n).

Proof. First note that under Assumption 3.1 for q = 2, u satisfies for all t ∈ [0, T] and x ∈ R
n (Friedman,

1975, Theorem 6.1 in Chapter 5)

u(t, x) = E
[
g(Xt,x(T))

]
. (30)
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WEAK CONVERGENCE IN THE PARTICLE LIMIT OF MCKEAN–VLASOV EQUATION 13

Next, we differentiate u with respect to the initial conditions and exchange the differentiation with the
expectation in Equation (30) (Friedman, 1975, Theorem 5.5 in Chapter 5). Then, we bound

n∑
j=1

∣∣∣∣ ∂u

∂xj
(t, x)

∣∣∣∣ =
n∑

j=1

∣∣∣∣∣∣E
⎡⎣ n∑

i=1

∂g

∂xi
(Xt,x(T))

∂Xt,x
i

∂xj
(T)

⎤⎦
∣∣∣∣∣∣

≤
n∑

j=1

n∑
i=1

∥∥∥∥ ∂g

∂xi

∥∥∥∥
Cb(R

n)

E

[∣∣∣∣∣∂Xt,x
i

∂xj
(T)

∣∣∣∣∣
]

≤
n∑

i=1

∥∥∥∥ ∂g

∂xi

∥∥∥∥
Cb(R

n)

⎛⎝ n∑
j=1

E

[∣∣∣∣∣∂Xt,x
i

∂xj
(T)

∣∣∣∣∣
]⎞⎠

≤
⎛⎝ n∑

i=1

∥∥∥∥ ∂g

∂xi

∥∥∥∥
Cb(R

n)

⎞⎠⎛⎝max
i

n∑
j=1

E

[∣∣∣∣∣∂Xt,x
i

∂xj
(T)

∣∣∣∣∣
]⎞⎠

≤ K1,2

⎛⎝ n∑
i=1

∥∥∥∥ ∂g

∂xi

∥∥∥∥
Cb(R

n)

⎞⎠,

by Lemma 3.2. Similarly,

n∑
j=1

n∑
j′=1

∣∣∣∣∣ ∂2u

∂xj∂xj′
(t, x)

∣∣∣∣∣ ≤
n∑

j=1

n∑
j′=1

∣∣∣∣∣∣E
⎡⎣ n∑

i=1

∂g

∂xi
(Xt,x(T))

∂2Xt,x
i

∂xj∂xj′
(T)

⎤⎦
∣∣∣∣∣∣

+
n∑

j=1

n∑
j′=1

∣∣∣∣∣∣E
⎡⎣ n∑

i=1

n∑
i′=1

∂2g

∂xi∂xi′
(Xt,x(T))

∂Xt,x
i

∂xj
(T)

∂Xt,x
i′

∂xj
(T)

⎤⎦
∣∣∣∣∣∣

≤
⎛⎝ n∑

i=1

∥∥∥∥ ∂g

∂xi

∥∥∥∥
Cb(R

n)

⎞⎠⎛⎝max
i

n∑
j=1

n∑
j′=1

E

[∣∣∣∣∣ ∂2Xt,x
i

∂xj∂xj′
(T)

∣∣∣∣∣
]⎞⎠

+
⎛⎝ n∑

i=1

n∑
i′=1

∥∥∥∥∥ ∂2g

∂xi∂xi′

∥∥∥∥∥
Cb(R

n)

⎞⎠
⎛⎜⎝max

i

n∑
j=1

E

⎡⎣(∂Xt,x
i

∂xj
(T)

)2
⎤⎦1/2

⎞⎟⎠
2

≤ (K2
1,2 + K2,2)

⎛⎝ n∑
i=1

∥∥∥∥ ∂g

∂xi

∥∥∥∥
Cb(R

n)

+
n∑

i=1

n∑
i′=1

∥∥∥∥∥ ∂2g

∂xi∂xi′

∥∥∥∥∥
Cb(R

n)

⎞⎠.

It is easy to see that the previous proof extends to q = 3 as well. �

4. Numerical Verification

In this section, we present a numerical study of the weak error of a particle approximation of the solution
of a simple McKean–Vlasov equation. For r ∈ N and x ∈ R, consider the function

ψr(x) :=
{(

1 − x2
)r |x| ≤ 1,

0 |x| > 1.
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14 A.-L. HAJI-ALI ET AL.

FIG. 1. A histogram of the values of {Xn
i (1)}n

i=1 which follows the system of SDEs in Equation (2) with Equation (31). Here, the
values were approximated using the Euler–Maruyama time-stepping scheme with 64 uniform time-steps and n = 2, 048.

and note that ψ0 is discontinuous while for r > 0 and all k < r the k’th derivative of ψr exists is uniformly
bounded, and the (r−1)’th derivative is Lipschitz continuous. Subsequently, consider the particle system
Equation (2) with d = 1 and Xi(0) being uniformly distributed in [−1, 1], and for x, y ∈ R set

a(x, y) := 2(x − 0.2) + y,

σ(x, y) := 0.2(1 + y),

κ1(x, y) := ψ1(10|x − y|)
and κ2(x, y) := ψ1(5|x − y|).

(31)

Note that the previous a, σ , κ1, and κ2, the latter two being only Lipschitz continuous, do not satisfy the
conditions of Theorem 2.3. Nevertheless, existence and uniqueness of solutions to Equation (1) with the
coefficient in Equation (31) can be established using, e.g. the results in De Raynal (2020); Raynal &
Frikha (2021b). To approximate solutions to Equation (2), we use an Euler–Maruyama time-stepping
scheme with a fixed number of time-steps.

We consider the sequence of systems, denoted by Xn, satisfying Equation (2) with an increasing
number of particles, n. See Fig. 1 for a histogram of the values of Xn

i (1) for n = 2, 048 and using 64
uniform time-steps in an Euler-Maruyama scheme. We also consider the discontinuous function g(x) =
ψ0(10|x − 0.2|) and plot in Fig. 2 the quantities

(
E
[
(X2n

i − Xn
i )2])1/2

and |E [
g(X2n

i ) − g(Xn
i )
]|. The

same convergence behaviour of these quantities was obtained with different numbers of uniform time-
steps. Even though κ1 and κ2 are only Lipschitz continuous and g is discontinuous, the observed weak
convergence rate is still O(n−1), as predicted by Theorem 2.3 when κ1, κ2, and g were assumed to be
three-times differentiable. Hence, it may be that the assumptions required by Theorem 2.3 and similar
proofs in the literature can be relaxed by exploiting, e.g. the smoothness of the probability density.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
at/advance-article/doi/10.1093/im

am
at/hxaf015/8210981 by Aachen U

niversity, G
M

B user on 02 Septem
ber 2025



WEAK CONVERGENCE IN THE PARTICLE LIMIT OF MCKEAN–VLASOV EQUATION 15

FIG. 2. Convergence rates Xn
i (1) which follows the system of SDEs in Equation (2) with Equation (31) and g(x) = ψ0(10|x−0.2|).

Here, the values were approximated using the Euler–Maruyama time-stepping scheme with N = 64 time-steps. Note that the rates
are consistent with the predicted rates in Theorem 2.3 even though the coefficients of the SDE do not have sufficient smootheness
as required by the theorem.
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A. Proof of Proposition 2.1

We include a technical proof showing Equation (3) in Proposition 2.1 for general p ∈ {1, 2, . . .}. We first
state a result bounding the cardinality of sets of multi-indices that do not contain unique indices.

LEMMA A1 (Multi-indices with no unique indices). Given a set I and integer p ≥ 2, let Ip be the
p-ary Cartesian power of I. Define the set of multi-indices with repeated indices as:

JIp =
{
(k1, k2, . . . , kp) ∈ Ip : ∀ j ∈ {1, . . . , p} ∃ j′ ∈ {1, . . . , p} \ {j} s.t. kj = kj′

}
. (A.1)

Then, there exists a constant cp such that

|JIp | ≤ cp |I|�p/2�. (A.2)
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Proof. We can directly compute that |JI2 | = |JI3 | = |I|. Then, assuming that the result is true for p,
we consider JIp+2 by counting cases where any index, i, is repeated j times,

|JIp+2 | = |I| +
|I|∑
i=1

p∑
j=2

(
p + 2

j

)
|J

(I\{i})p+2−j |

= |I| +
|I|∑
i=1

p−2∑
j=0

(
p + 2

j + 2

)
|J

(I\{i})p−j |

≤ |I| +
|I|∑
i=1

p−2∑
j=0

(
p + 2

j + 2

)
cp−j(|I| − 1)�

p−j
2 �

≤ |I| + |I|1+�p/2�
p−2∑
j=0

(
p + 2

j + 2

)
cp−j(|I| − 1)�

p−j
2 �−�p/2� =: cp+2 |I|�1+p/2�.

�
Proof of Equation (3) in Proposition 2.1. We again set, without loss of generality, i = 1, denote I :=
{1, . . . , n} and recall the definition in Equation (5) to write

E

⎡⎢⎣
⎛⎝1

n

n∑
j=1

κ(Z1(t), Zj(t)) −
∫
Rd

κ(Z1(t), z)μt(dz)

⎞⎠2p
⎤⎥⎦ = E

⎡⎢⎣
⎛⎝1

n

∑
j∈I

Δjκ

⎞⎠2p
⎤⎥⎦

= n−2p
∑

k∈I2p

E

⎡⎣ 2p∏
j=1

Δkj
κ

⎤⎦
Let I2p = U1,−1 ∪ U1,1 ∪ JI2p with JI2p is as defined in Equation (A.1), i.e. the set of all multi-indices
from I2p with no unique indices, U1,1 is the set of multi-indices with exactly one unique index equal to
1, and U1,−1 is the set of multi-indices with at least one unique index different from 1. For k ∈ U1,−1,
i.e. there is an � ∈ I \ {1} such that k� �= kj for all j �= �, we have

E

⎡⎣ 2p∏
j=1

Δkj
κ

⎤⎦ = E

⎡⎣Δk�
κ

2p∏
j=1,j �=�

Δkj
κ

⎤⎦ = E

⎡⎣E
[
Δk�

κ | Z1(t)
]

E

⎡⎣ 2p∏
j=1,j �=�

Δkj
κ | Z1(t)

⎤⎦⎤⎦ = 0,

since, given Z1(t), Δk�
κ is independent of {Δkj

κ}n
j=1,j �=� and E

[
Δ�κ | Z1(t)

] = 0. For other k ∈ JI2p ∪
U1,1, we bound using Hölder’s inequality and the Lipschitz assumption on κ ,

E

⎡⎣ 2p∏
j=1

Δkjκ

⎤⎦ ≤
2p∏

j=1

E
[
(Δjκ)2p

]1/(2p) ≤ 22p C2p E
[
‖Z(t)‖2p

]
.

Finally noting, by Lemma A.1, that∣∣JI2p

∣∣ ≤ c2p np,∣∣U1,1

∣∣ = 2p
∣∣∣J(I\{1})2p−1

∣∣∣ ≤ 2p c2p−1 (n − 1)(2p−1)/2 ≤ 2p c2p−1 np,
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we conclude that

E

⎡⎢⎣
⎛⎝1

n

n∑
j=1

Δjκ

⎞⎠2p
⎤⎥⎦ � n−p sup

0≤t≤T
E
[
‖Z(t)‖2p

]
.

�

B. Proof of Lemma 3.2

We first note the following inequality for any index sets I and J and any sequence {ai,j}i∈I,j∈J ,⎛⎝∑
j∈J

(∑
i∈I

ai,j

)2
⎞⎠1/2

≤
∑
i∈I

⎛⎝∑
j∈J

a2
i,j

⎞⎠1/2

, (B.1)

which can be shown by expanding the square and using Hölder’s inequality. Using Equation (B.1)
and Jensen’s inequality, we can show the following inequality for any random variables (Yi)i∈I and
measurable sequence {ai,j}i∈I,j∈J and p ≥ 1

E

⎡⎢⎣
⎛⎝∑

j∈J

(∑
i∈I

ai,jYi

)2
⎞⎠p/2

⎤⎥⎦ ≤ E

⎡⎢⎣
⎛⎜⎝∑

i∈I

⎛⎝∑
j∈J

a2
i,j

⎞⎠1/2

|Yi|
⎞⎟⎠

p⎤⎥⎦

≤
⎛⎜⎝∑

i∈I

⎛⎝∑
j∈J

a2
i,j

⎞⎠1/2
⎞⎟⎠

p−1 ∑
i∈I

⎛⎝∑
j∈J

a2
i,j

⎞⎠1/2

E
[|Yi|p

]

≤
⎛⎜⎝∑

i∈I

⎛⎝∑
j∈J

a2
i,j

⎞⎠1/2
⎞⎟⎠

p

max
i∈I

E
[|Yi|p

]
.

(B.2)

In addition, note that for a positive sequence {ai,j}i∈I,j∈J , we have

max
i∈I

∑
j∈J

ai,j ≤ max
i∈I

ai,i + max
i∈I

n∑
j∈J ,i �=j

ai,j ≤ max
i∈I

ai,i +
∑
j∈J

max
i∈I,j �=i

ai,j (B.3)

B.1 First variation

First, note that the process
∂Xt,x

i
∂xj

exists under Assumption 3.1 for q = 1 and satisfies for s ≥ t the SDE

∂Xt,x
i

∂xj
(s) =�i,j +

∫ s

t

n∑
k=1

∂νi

∂xk
(τ , Xt,x(τ ))

∂Xt,x
k

∂xj
(τ ) dτ

+
n′∑

m=1

∫ s

t

n∑
k=1

∂ςim

∂xk
(τ , Xt,x(τ ))

∂Xt,x
k

∂xj
(τ ) dWm(τ ),
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WEAK CONVERGENCE IN THE PARTICLE LIMIT OF MCKEAN–VLASOV EQUATION 19

where�i,j = 1 whenever i = j and zero otherwise, cf. (Friedman, 1975, Theorem 5.3 in Chapter 5). By
Itô’s formula

E

[∣∣∣∣∣∂Xt,x
i

∂xj
(s)

∣∣∣∣∣
p]

≤�i,j + p
∫ s

t
E

⎡⎣∣∣∣∣∣
n∑

k=1

∂νi

∂xk
(τ , Xt,x(τ ))

∂Xt,x
k

∂xj
(τ )

∣∣∣∣∣
∣∣∣∣∣∂Xt,x

i

∂xj
(τ )

∣∣∣∣∣
p−1

⎤⎦ dτ

+ p(p − 1)

2

∫ s

t

n′∑
m=1

E

⎡⎣( n∑
k=1

∂ςim

∂xk
(τ , Xt,x(τ ))

∂Xt,x
k

∂xj
(τ )

)2∣∣∣∣∣∂Xt,x
i

∂xj
(τ )

∣∣∣∣∣
p−2

⎤⎦ dτ .

(B.4)

For the term involving νi, using Young’s inequality, we can bound

E

⎡⎣∣∣∣∣∣
n∑

k=1

∂νi

∂xk
(τ , Xt,x(τ ))

∂Xt,x
k

∂xj
(τ )

∣∣∣∣∣
∣∣∣∣∣∂Xt,x

i

∂xj
(τ )

∣∣∣∣∣
p−1

⎤⎦
≤ E

⎡⎣( n∑
k=1

∥∥∥∥ ∂νi

∂xk

∥∥∥∥∞

∣∣∣∣∣∂Xt,x
k

∂xj
(τ )

∣∣∣∣∣
) ∣∣∣∣∣∂Xt,x

i

∂xj
(τ )

∣∣∣∣∣
p−1

⎤⎦
≤ 1

p
E

[ (
n∑

k=1

∥∥∥∥ ∂νi

∂xk

∥∥∥∥∞

∣∣∣∣∣∂Xt,x
k

∂xj
(τ )

∣∣∣∣∣
)p]

+ p − 1

p
E

[∣∣∣∣∣∂Xt,x
i

∂xj
(τ )

∣∣∣∣∣
p]

.

(B.5)

By using Jensen’s inequality, Equation (B.2) and Assumption 3.1, we can further bound

E

[ (
n∑

k=1

∥∥∥∥ ∂νi

∂xk

∥∥∥∥∞

∣∣∣∣∣∂Xt,x
k

∂xj
(τ )

∣∣∣∣∣
)p]

≤ 2p−1

∥∥∥∥∥∂νi

∂xj

∥∥∥∥∥
p

∞
E

[∣∣∣∣∣∂Xt,x
j

∂xj
(τ )

∣∣∣∣∣
p]

+ 2p−1E

⎡⎣ ⎛⎝ n∑
k=1,k �=j

∥∥∥∥ ∂νi

∂xk

∥∥∥∥∞

∣∣∣∣∣∂Xt,x
k

∂xj
(τ )

∣∣∣∣∣
⎞⎠p⎤⎦

≤ 2p−1

∥∥∥∥∥∂νi

∂xj

∥∥∥∥∥
p

∞
E

[∣∣∣∣∣∂Xt,x
j

∂xj
(τ )

∣∣∣∣∣
p]

+ 2p−1Cp
1 max

k �=j
E

[∣∣∣∣∣∂Xt,x
k

∂xj
(τ )

∣∣∣∣∣
p]

.

(B.6)

For the term involving ςi·, using Young’s inequality and bounding the derivatives of ςi·,

E

⎡⎢⎣
⎛⎝ n∑

k=1

∂ςim

∂xk
(τ , Xt,x(τ ))

∂Xt,x
k

∂xj
(τ )

⎞⎠2∣∣∣∣∣∂Xt,x
i

∂xj
(τ )

∣∣∣∣∣
p−2

⎤⎥⎦

≤ 2

p
E

⎡⎢⎢⎣
⎛⎜⎝ n′∑

m=1

⎛⎝ n∑
k=1

∥∥∥∥∂ςim

∂xk

∥∥∥∥∞

∣∣∣∣∣∂Xt,x
k

∂xj
(τ )

∣∣∣∣∣
⎞⎠2

⎞⎟⎠
p/2

⎤⎥⎥⎦ + p − 2

p
E

[∣∣∣∣∣∂Xt,x
i

∂xj
(τ )

∣∣∣∣∣
p]

.

(B.7)
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Using Jensen’s inequality and Equation (B.2) and Assumption 3.1, we can further bound

E

⎡⎢⎢⎣
⎛⎜⎝ n′∑

m=1

⎛⎝ n∑
k=1

∥∥∥∥∂ςim

∂xk

∥∥∥∥∞

∣∣∣∣∣∂Xt,x
k

∂xj
(τ )

∣∣∣∣∣
⎞⎠2

⎞⎟⎠
p/2

⎤⎥⎥⎦

≤ 2p−1

⎛⎝ n′∑
m=1

∥∥∥∥∂ςim

∂xj

∥∥∥∥2

∞

⎞⎠p/2

E

⎡⎣∣∣∣∣∣∂Xt,x
j

∂xj
(τ )

∣∣∣∣∣
p⎤⎦

+ 2p−1E

⎡⎢⎢⎣
⎛⎜⎝ n′∑

m=1

⎛⎝ n∑
k=1,k �=j

∥∥∥∥∂ςim

∂xk

∥∥∥∥∞

∣∣∣∣∣∂Xt,x
k

∂xj
(τ )

∣∣∣∣∣
⎞⎠2

⎞⎟⎠
p/2

⎤⎥⎥⎦

≤ 2p−1

⎛⎝ n′∑
m=1

∥∥∥∥∂ςim

∂xj

∥∥∥∥2

∞

⎞⎠p/2

E

⎡⎣∣∣∣∣∣∂Xt,x
j

∂xj
(τ )

∣∣∣∣∣
p⎤⎦ + 2p−1Cp

1 max
k �=j

E

[∣∣∣∣∣∂Xt,x
k

∂xj
(τ )

∣∣∣∣∣
p]

.

(B.8)

Combining Equation (B.6) with Equation (B.5) and Equation (B.8) with Equation (B.7) and substituting
the result into Equation (B.4) and simplifying yield

E

[∣∣∣∣∣∂Xt,x
i

∂xj
(s)

∣∣∣∣∣
p]

≤ �i,j+c1

∫ s

t
E

[∣∣∣∣∣∂Xt,x
i

∂xj
(τ )

∣∣∣∣∣
p]

dτ

+c2 Cp
1

∫ s

t
max
k �=j

E

[∣∣∣∣∣∂Xt,x
k

∂xj
(τ )

∣∣∣∣∣
p]

dτ

+c2 ap
i,j

∫ s

t
E

⎡⎣∣∣∣∣∣∂Xt,x
j

∂xj
(τ )

∣∣∣∣∣
p⎤⎦ dτ ,

(B.9)

where

c1 := p(p − 1)

2
,

c2 := p 2p−1

and ap
i,j :=

∥∥∥∥∥∂νi

∂xj

∥∥∥∥∥
p

∞
+
⎛⎝ n′∑

m=1

∥∥∥∥∥∂ςim

∂xj

∥∥∥∥∥
2

∞

⎞⎠p/2

,

so that maxi ai,i + ∑n
j=1 maxi �=j ai,j ≤ C1 by Assumption 3.1. Then, taking the maximum over all i in

Equation (B.9), we arrive at

max
i

E

[∣∣∣∣∣∂Xt,x
i

∂xj
(s)

∣∣∣∣∣
p]

≤ 1 + (
c1 + 2Cp

1c2

) ∫ s

t
max

i
E

[∣∣∣∣∣∂Xt,x
i

∂xj
(τ )

∣∣∣∣∣
p]

dτ ,
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WEAK CONVERGENCE IN THE PARTICLE LIMIT OF MCKEAN–VLASOV EQUATION 21

and using Grönwall’s inequality yields

max
i

E

[∣∣∣∣∣∂Xt,x
i

∂xj
(s)

∣∣∣∣∣
p]

≤ exp
(
(c1 + 2Cp

1c2)(s − t)
) =: D1, (B.10)

for all t ≤ s ≤ T . Taking the maximum over all i �= j in Equation (B.9), we arrive at

max
i �=j

E

[∣∣∣∣∣∂Xt,x
i

∂xj
(s)

∣∣∣∣∣
p]

≤ (c1 + c2Cp
1)

∫ s

t
max
i �=j

E

[∣∣∣∣∣∂Xt,x
i

∂xj
(τ )

∣∣∣∣∣
p]

dτ

+ c2

(
max
i �=j

ap
i,j

)∫ s

t
E

[∣∣∣∣∣∂Xt,x
j

∂xj
(τ )

∣∣∣∣∣
p]

dτ .

Using Grönwall’s inequality and Equation (B.10) yields

max
i �=j

E

[∣∣∣∣∣∂Xt,x
i

∂xj
(s)

∣∣∣∣∣
p]

≤ c2

(
max
i �=j

ap
i,j

)
exp

(
(c1 + c2Cp

1)(s − t)
)∫ s

t
E

[∣∣∣∣∣∂Xt,x
j

∂xj
(τ )

∣∣∣∣∣
p]

dτ

≤ c2

(
max
i �=j

ap
i,j

)
exp

(
(c1 + c2Cp

1)(s − t)
) (∫ s

t
D1dτ

)
=: D̃1

(
max
i �=j

ap
i,j

)
. (B.11)

Finally, using Equations (B.10) and (B.11) we arrive at:

‖Xt,x‖D1,L∞([t,T];Lp(Ω ,P)) = max
i

sup
t≤s≤T

E

[∣∣∣∣∣∂Xt,x
i

∂xi
(s)

∣∣∣∣∣
p]1/p

+
n∑

j=1

max
i �=j

sup
t≤s≤T

E

[∣∣∣∣∣∂Xt,x
i

∂xj
(s)

∣∣∣∣∣
p]1/p

≤ D1/p
1 + D̃1/p

1

n∑
j=1

max
i �=j

ai,j

≤ D1/p
1 + D̃1/p

1 C1

=: K1,p. (B.12)

B.2 Second variation

In this section, we simplify the presentation by using D2 to denote constants depending only on t, T , p,
and C2 and independent of n. Observe that these constants might change their values from one line to the

next. Again, note that the process

{
∂2Xt,x

i
∂xj∂xj′

(s)

}
s∈[t,T]

exists under Assumption 3.1 for q = 2 and satisfies
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22 A.-L. HAJI-ALI ET AL.

for s ∈ [t, T] the SDE

∂2Xt,x
i

∂xj∂xj′
(s) =

∫ s

t

n∑
k=1

∂νi

∂xk
(τ , Xt,x(τ ))

∂2Xt,x
k

∂xj∂xj′
(τ ) dτ

+
∫ s

t

n∑
k=1

n∑
k′=1

∂2νi

∂xk∂xk′
(τ , Xt,x(τ ))

∂Xt,x
k

∂xj
(τ )

∂Xt,x
k′

∂xj′
(τ ) dτ

+
n′∑

m=1

∫ s

t

n∑
k=1

∂ςim

∂xk
(τ , Xt,x(τ ))

∂2Xt,x
k

∂xj∂xj′
(τ ) dWm(τ )

+
n′∑

m=1

∫ s

t

n∑
k=1

n∑
k′=1

∂2ςim

∂xk∂xk′
(τ , Xt,x(τ ))

∂Xt,x
k

∂xj
(τ )

∂Xt,x
k′

∂xj′
(τ ) dWm(τ ),

cf. (Friedman, 1975, Theorem 5.4 in Chapter 5). By Itô’s formula,

E

[∣∣∣∣∣ ∂2Xt,x
i

∂xj∂xj′
(s)

∣∣∣∣∣
p]

≤ p
∫ s

t
E

[
(f1 + f3)

∣∣∣ ∂2Xt,x
i

∂xj∂xj′
(τ )

∣∣∣p−1
]

dτ

+ p(p − 1)

2

∫ s

t
E

[
(f2 + f4)

∣∣∣ ∂2Xt,x
i

∂xj∂xj′
(τ )

∣∣∣p−2
]

dτ ,

(B.13)

where

f1 :=
∣∣∣∣∣

n∑
k=1

∂νi

∂xk
(τ , Xt,x(τ ))

∂2Xt,x
k

∂xj∂xj′
(τ )

∣∣∣∣∣,
f2 :=

n′∑
m=1

(
n∑

k=1

(
∂ςim

∂xk
(τ , Xt,x(τ ))

)
∂2Xt,x

k

∂xj∂xj′
(τ )

)2

,

f3 :=
∣∣∣∣∣

n∑
k=1

n∑
k′=1

∂2νi

∂xk∂xk′
(τ , Xt,x(τ ))

∂Xt,x
k

∂xj
(τ )

∂Xt,x
k′

∂xj′
(τ )

∣∣∣∣∣
and f4 :=

n′∑
m=1

(
n∑

k=1

n∑
k′=1

(
∂2ςim

∂xk∂xk′
(τ , Xt,x(τ ))

)
∂Xt,x

k

∂xj
(τ )

∂Xt,x
k′

∂xj′
(τ )

)2

.

As before, the first step is to apply Young’s inequality to each of the previous integrands. For integers
qu ∈ {1, 2} and u ∈ {1, 2, 3, 4}, we have

E

[
fu

∣∣∣∣∣ ∂2Xt,x
i

∂xj∂xj′
(τ )

∣∣∣∣∣
p−qu

]
≤ qu

p
E
[
f p/qu
u

] + p − qu

p
E

[∣∣∣∣∣ ∂2Xt,x
i

∂xj∂xj′
(τ )

∣∣∣∣∣
p]

. (B.14)
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WEAK CONVERGENCE IN THE PARTICLE LIMIT OF MCKEAN–VLASOV EQUATION 23

We now turn our attention to bounding E
[
f p/qu
u

]
by primarily using Jensen’s inequality and Equation

(B.2). We present the proof bounding E
[
f p/2
2

]
and E

[
f p/2
4

]
, Bounding E

[
f p
1

]
and E

[
f p
3

]
is analogous,

E
[
f p/2
2

]
≤ E

⎡⎢⎣
⎛⎝ n′∑

m=1

(
n∑

k=1

∥∥∥∥∂ςim

∂xk

∥∥∥∥∞

∣∣∣∣∣ ∂2Xt,x
k

∂xj∂xj′
(τ )

∣∣∣∣∣
)2

⎞⎠p/2
⎤⎥⎦

≤ 3p−1
∑

k∈{j,j′}

⎛⎝ n′∑
m=1

∥∥∥∥∂ςim

∂xk

∥∥∥∥2

∞

⎞⎠p/2

E

[∣∣∣∣∣ ∂2Xt,x
k

∂xj∂xj′
(τ )

∣∣∣∣∣
p]

+ 3p−1E

⎡⎢⎣
⎛⎜⎝ n′∑

m=1

⎛⎝ ∑
k∈{1,2,...,n}\{j,j′}

∥∥∥∥∂ςim

∂xk

∥∥∥∥∞

∣∣∣∣∣ ∂2Xt,x
k

∂xj∂xj′
(τ )

∣∣∣∣∣
⎞⎠2

⎞⎟⎠
p/2⎤⎥⎦

≤ 3p−1
∑

k∈{j,j′}

⎛⎝ n′∑
m=1

∥∥∥∥∂ςim

∂xk

∥∥∥∥2

∞

⎞⎠p/2 (
E

[∣∣∣∣∣ ∂2Xt,x
k

∂xj∂xj′
(τ )

∣∣∣∣∣
p])

+ 3p−1Cp
1 max

k∈{1,2,...,n}\{j,j′}
E

[∣∣∣∣∣ ∂2Xt,x
k

∂xj∂xj′
(τ )

∣∣∣∣∣
p]

, (B.15)

where we used Equation (B.2) in the last step. On the other hand,

E
[
f p/2
4

]
≤ E

⎡⎢⎣
⎛⎝ n′∑

m=1

(
n∑

k=1

n∑
k′=1

∥∥∥∥ ∂2ςim

∂xk∂xk′

∥∥∥∥∞

∂Xt,x
k

∂xj
(τ )

∂Xt,x
k′

∂xj′
(τ )

)2
⎞⎠p/2

⎤⎥⎦

≤ 4p−1

⎛⎝ n′∑
m=1

∥∥∥∥∥ ∂2ςim

∂xj∂xj′

∥∥∥∥∥
2

∞

⎞⎠p/2

E

[∣∣∣∣∣∂Xt,x
j

∂xj
(τ )

∂Xt,x
j′

∂xj′
(τ )

∣∣∣∣∣
p]

+ 4p−1E

⎡⎢⎣
⎛⎜⎝ n′∑

m=1

⎛⎝ n∑
k′=1,k′ �=j′

∥∥∥∥∥ ∂2ςim

∂xj∂xk′

∥∥∥∥∥∞

∂Xt,x
k′

∂xj′
(τ )

⎞⎠2
⎞⎟⎠

p/2∣∣∣∣∣∂Xt,x
j

∂xj
(τ )

∣∣∣∣∣
p
⎤⎥⎦

+ 4p−1E

⎡⎢⎣
⎛⎜⎝ n′∑

m=1

⎛⎝ n∑
k=1,k �=j

∥∥∥∥∥ ∂2ςim

∂xk∂xj′

∥∥∥∥∥∞

∂Xt,x
j

∂xk
(τ )

⎞⎠2
⎞⎟⎠

p/2∣∣∣∣∣∂Xt,x
j′

∂xj′
(τ )

∣∣∣∣∣
p
⎤⎥⎦

+ 4p−1E

⎡⎢⎣
⎛⎜⎝ n′∑

m=1

⎛⎝ n∑
k=1,k �=j

n∑
k′=1,k′ �=j′

∥∥∥∥ ∂2ςim

∂xk∂xk′

∥∥∥∥∞

∂Xt,x
k

∂xj
(τ )

∂Xt,x
k′

∂xj′
(τ )

⎞⎠2
⎞⎟⎠

p/2⎤⎥⎦. (B.16)
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24 A.-L. HAJI-ALI ET AL.

Looking at each term separately and using the bound on the first variation Equation (B.12),

E

[∣∣∣∣∣∂Xt,x
j

∂xj
(τ )

∂Xt,x
j′

∂xj′
(τ )

∣∣∣∣∣
p]

≤
⎛⎝E

⎡⎣∣∣∣∣∣∂Xt,x
j

∂xj
(τ )

∣∣∣∣∣
2p
⎤⎦⎞⎠1/2⎛⎝E

⎡⎣∣∣∣∣∣∂Xt,x
j′

∂xj′
(τ )

∣∣∣∣∣
2p
⎤⎦⎞⎠1/2

≤ K2p
1,2p.

Moreover, using Hölder’s inequality, Equation (B.2) and the bound on the first variation Equation (B.12),
we write

E

⎡⎢⎣
⎛⎜⎝ n′∑

m=1

⎛⎝ n∑
k′=1,k′ �=j′

∥∥∥∥∥ ∂2ςim

∂xj∂xk′

∥∥∥∥∥∞

∂Xt,x
k′

∂xj′
(τ )

⎞⎠2
⎞⎟⎠

p/2∣∣∣∣∣∂Xt,x
j

∂xj
(τ )

∣∣∣∣∣
p
⎤⎥⎦

≤
⎛⎜⎝ n∑

k′=1

⎛⎝ n′∑
m=1

∥∥∥∥∥ ∂2ςim

∂xj∂xk′

∥∥∥∥∥
2

∞

⎞⎠1/2
⎞⎟⎠

p⎛⎝max
k′ �=j′

E

⎡⎣∣∣∣∣∣∂Xt,x
k′

∂xj′
(τ )

∣∣∣∣∣
2p
⎤⎦⎞⎠1/2

E

⎡⎣∣∣∣∣∣∂Xt,x
j

∂xj
(τ )

∣∣∣∣∣
2p
⎤⎦1/2

≤ Kp
1,2p

⎛⎜⎝ n∑
k′=1

⎛⎝ n′∑
m=1

∥∥∥∥∥ ∂2ςim

∂xj∂xk′

∥∥∥∥∥
2

∞

⎞⎠1/2
⎞⎟⎠

p⎛⎝max
k′ �=j′

E

⎡⎣∣∣∣∣∣∂Xt,x
k′

∂xj′
(τ )

∣∣∣∣∣
2p
⎤⎦⎞⎠1/2

,

and

E

⎡⎢⎣
⎛⎜⎝ n′∑

m=1

⎛⎝ n∑
k=1,k �=j

n∑
k′=1,k′ �=j′

∥∥∥∥ ∂2ςim

∂xk∂xk′

∥∥∥∥∞

∂Xt,x
k

∂xj
(τ )

∂Xt,x
k′

∂xj′
(τ )

⎞⎠2
⎞⎟⎠

p/2⎤⎥⎦

≤
⎛⎜⎝ n∑

k=1,k �=j

n∑
k′=1,k′ �=j′

⎛⎝ n′∑
m=1

∥∥∥∥ ∂2ςim

∂xk∂xk′

∥∥∥∥2

∞

⎞⎠1/2
⎞⎟⎠

p

max
k,k′

k �=j,k′ �=j′
E

[∣∣∣∣∣ ∂Xt,x
k

∂xj
(τ )

∂Xt,x
k′

∂xj′
(τ )

∣∣∣∣∣
p]

≤ Cp
2

⎛⎝max
k,k �=j

E

⎡⎣∣∣∣∣∣ ∂Xt,x
k

∂xj
(τ )

∣∣∣∣∣
2p
⎤⎦⎞⎠1/2⎛⎝ max

k′,k′ �=j′
E

⎡⎣∣∣∣∣∣∂Xt,x
k′

∂xj′
(τ )

∣∣∣∣∣
2p
⎤⎦⎞⎠1/2

.

Hence

E
[
f p/2
4

]
≤ 4p−1

(
K2p

1,2p Fς1,i,j,j′ + Kp
1,2p Fς2,i,j,j′ + Kp

1,2p Fς2,i,j′,j + Cp
2 F3,j,j′

)
≤ D2

(
Fς1,i,j,j′ + Fς2,i,j,j′ + Fς2,i,j′,j + F3,j,j′

)
,
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WEAK CONVERGENCE IN THE PARTICLE LIMIT OF MCKEAN–VLASOV EQUATION 25

where

Fς1,i,j,j′ :=
⎛⎝ n′∑

m=1

∥∥∥∥∥ ∂2ςim

∂xj∂xj′

∥∥∥∥∥
2

∞

⎞⎠p/2

,

Fς2,i,j,j′ :=
⎛⎜⎝ n∑

k′=1

⎛⎝ n′∑
m=1

∥∥∥∥∥ ∂2ςim

∂xj∂xk′

∥∥∥∥∥
2

∞

⎞⎠1/2
⎞⎟⎠

p⎛⎝max
k′ �=j′

E

⎡⎣∣∣∣∣∣∂Xt,x
k′

∂xj′
(τ )

∣∣∣∣∣
2p
⎤⎦⎞⎠1/2

,

and F3,j,j′ :=
⎛⎝max

k �=j
E

⎡⎣∣∣∣∣∣ ∂Xt,x
k

∂xj
(τ )

∣∣∣∣∣
2p
⎤⎦⎞⎠1/2⎛⎝max

k′ �=j′
E

⎡⎣∣∣∣∣∣∂Xt,x
k′

∂xj′
(τ )

∣∣∣∣∣
2p
⎤⎦⎞⎠1/2

.

Note that, using Assumption 3.1,

n∑
j=1

max
i �=j

Fς1,i,j,i +
n∑

j=1

n∑
j′=1

max
i/∈{j,j′}

Fς1,i,j,j′

≤
n∑

j=1

max
i �=j

⎛⎝ n′∑
m=1

∥∥∥∥∥ ∂2ςim

∂xi∂xj

∥∥∥∥∥
2

∞

⎞⎠p/2

+
n∑

j=1

n∑
j′=1

max
i/∈{j,j′}

⎛⎝ n′∑
m=1

∥∥∥∥∥ ∂2ςim

∂xj∂xj′

∥∥∥∥∥
2

∞

⎞⎠p/2

≤ Cp
2.

Similarly, using Assumption 3.1, Equations (B.3) and (B.12),

n∑
j=1

max
i �=j

Fς2,i,j,i +
n∑

j=1

n∑
j′=1

max
i/∈{j,j′}

Fς2,i,j,j′

=
⎛⎜⎝ n∑

j=1

max
i �=j

n∑
k′=1

⎛⎝ n′∑
m=1

∥∥∥∥∥ ∂2ςim

∂xj∂xk′

∥∥∥∥∥
2

∞

⎞⎠1/2
⎞⎟⎠

p

×
⎛⎜⎝max

i,k′

⎛⎝E

⎡⎣∣∣∣∣∣∂Xt,x
k′

∂xi
(τ )

∣∣∣∣∣
2p
⎤⎦⎞⎠1/2

⎞⎟⎠

+
⎛⎜⎝ n∑

j=1

max
i �=j

n∑
k′=1

⎛⎝ n′∑
m=1

∥∥∥∥∥ ∂2ςim

∂xj∂xk′

∥∥∥∥∥
2

∞

⎞⎠1/2
⎞⎟⎠

p

×
⎛⎜⎝ n∑

j′=1

max
k′ �=j′

⎛⎝E

⎡⎣∣∣∣∣∣∂Xt,x
k′

∂xj′
(τ )

∣∣∣∣∣
2p
⎤⎦⎞⎠1/2

⎞⎟⎠
≤ 2Cp

2 Kp
1,2p.

Additionally, using Equation (B.12),

n∑
j=1

n∑
j′=1

F3,j,j′ ≤
⎛⎜⎝ n∑

j=1

max
k �=j

⎛⎝E

⎡⎣∣∣∣∣∣ ∂Xt,x
k

∂xj
(τ )

∣∣∣∣∣
2p
⎤⎦⎞⎠1/2

⎞⎟⎠
p⎛⎜⎝ n∑

j′=1

max
k′ �=j′

⎛⎝E

⎡⎣∣∣∣∣∣∂Xt,x
k′

∂xj′
(τ )

∣∣∣∣∣
2p
⎤⎦⎞⎠1/2

⎞⎟⎠
≤ K2p

1,2p.
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Similarly, we bound E
[
f p
3

]
to arrive at

E
[
f p
3

] ≤ D2

(
Fν1,i,j,j′ + Fν2,i,j,j′ + Fν2,i,j′,j + F3,j,j′

)
,

where

Fν1,i,j,j′ :=
∥∥∥∥∥ ∂2νi

∂xj∂xj′

∥∥∥∥∥
p

∞

and Fν2,i,j,j′ :=
(

n∑
k′=1

∥∥∥∥∥ ∂2νi

∂xj∂xk′

∥∥∥∥∥∞

)p
⎛⎝max

k′ �=j′
E

⎡⎣∣∣∣∣∣∂Xt,x
k′

∂xj′
(τ )

∣∣∣∣∣
2p
⎤⎦⎞⎠1/2

.

Therefore we can find bi,j,j′ such that∫ s

t
E
[
f p
3

] + (p − 1)E
[
f p/2
4

]
dτ ≤ bp

i,j,j′ , (B.17)

which satisfy

n∑
j=1

(
max
i �=j

bi,j,i

)
+

n∑
j=1

n∑
j′=1

(
max
i/∈{j,j′}

bi,j,j′

)
≤ D2. (B.18)

We use Equations (B.15) and (B.17) in Equation (B.14) and the result in Equation (B.13) and simplify
to arrive at

E

[∣∣∣∣∣ ∂2Xt,x
i

∂xj∂xj′
(s)

∣∣∣∣∣
p]

≤ D2

∫ s

t
E

[∣∣∣∣∣ ∂2Xt,x
i

∂xj∂xj′
(τ )

∣∣∣∣∣
p]

dτ

+ D2

∫ s

t
max

k∈{1,2,...,n}\{j,j′}
E

[∣∣∣∣∣ ∂2Xt,x
k

∂xj∂xj′
(τ )

∣∣∣∣∣
p]

dτ

+ D2 ap
i,j

∫ s

t
E

[∣∣∣∣∣ ∂2Xt,x
j

∂xj∂xj′
(τ )

∣∣∣∣∣
p]

dτ

+ D2ap
i,j′

∫ s

t
E

[∣∣∣∣∣ ∂2Xt,x
j′

∂xj∂xj′
(τ )

∣∣∣∣∣
p]

dτ

+ bi,j,j′ .

(B.19)

Recall that

ap
i,j :=

∥∥∥∥∥∂νi

∂xj

∥∥∥∥∥
p

∞
+
⎛⎝ n′∑

m=1

∥∥∥∥∥∂ςim

∂xj

∥∥∥∥∥
2

∞

⎞⎠p/2

,
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and maxi ai,i + ∑n
j=1 maxi �=j ai,j ≤ 2C1. Then, taking the maximum over all i in Equation (B.19) and

using Grönwall’s inequality yield

max
i

E

[(
∂2Xt,x

i

∂xj∂xj′
(s)

)p]
≤ D2, (B.20)

for all j, j′ ∈ {1, . . . , n}. Setting j′ = i and taking the maximum over i �= j in Equation (B.19) yield

max
i �=j

E

[∣∣∣∣∣∂2Xt,x
i

∂xj∂xi
(s)

∣∣∣∣∣
p]

≤ D2

∫ s

t
max
i �=j

E

[∣∣∣∂2Xt,x
i

∂xj∂xi
(τ )

∣∣∣p] dτ

+D2

(
max
i �=j

ap
i,j

)∫ s

t
max

i
E

[∣∣∣∣∣ ∂2Xt,x
j′

∂xj′∂xi
(τ )

∣∣∣∣∣
p]

dτ

+D2

∫ s

t
max
i �=j

E

[∣∣∣∣∣∂2Xt,x
i

∂xj∂xi
(τ )

∣∣∣∣∣
p]

dτ

+ max
i �=j

bp
i,j,i.

Using Equation (B.20) to bound the second term, followed by Grönwall’s inequality and then taking the
p’th root and summing over j yields

n∑
j=1

max
i �=j

E

[∣∣∣∣∣∂2Xt,x
i

∂xi∂xj
(s)

∣∣∣∣∣
p]1/p

≤ D2

⎛⎝ n∑
j=1

(
max
i �=j

ai,j

)
+

n∑
j=1

(
max
i �=j

bi,j,i

)⎞⎠ ≤ D2, (B.21)

where we used Equation (B.18). Finally, taking the maximum over i /∈ {j, j′} in Equation (B.19),

max
i/∈{j,j′}

E

[∣∣∣∣∣ ∂2Xt,x
i

∂xj∂xj′
(s)

∣∣∣∣∣
p]

≤ D2

∫ s

t
max
i/∈{j,j′}

E

[∣∣∣ ∂2Xt,x
i

∂xj∂xj′
(τ )

∣∣∣p] dτ

+ D2

(
max
i �=j

ap
i,j

)∫ s

t
E

[∣∣∣∣∣ ∂2Xt,x
j

∂xj∂xj′
(τ )

∣∣∣∣∣
p]

dτ

+ D2

(
max
i �=j′

ap
i,j′

)∫ s

t
E

[∣∣∣∣∣ ∂2Xt,x
j′

∂xj∂xj′
(τ )

∣∣∣∣∣
p]

dτ

+ max
i/∈{j,j′}

bp
i,j,j′ .
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Then, using Grönwall’s inequality, taking the p’th root and summing over j and j′ yield

n∑
j=1

n∑
j′=1

max
i/∈{j,j′}

E

[∣∣∣∣∣ ∂2Xt,x
i

∂xj∂xj′
(s)

∣∣∣∣∣
p]1/p

≤ D2

⎛⎝ n∑
j=1

max
i �=j

ai,j

⎞⎠⎛⎝max
j

n∑
j′=1

sup
t≤τ≤s

E

[∣∣∣∣∣ ∂2Xt,x
j

∂xj∂xj′
(τ )

∣∣∣∣∣
p]1/p

⎞⎠
+ D2

⎛⎝ n∑
j′=1

max
i �=j′

ai,j′

⎞⎠⎛⎝max
j′

n∑
j=1

sup
t≤τ≤s

E

[∣∣∣∣∣ ∂2Xt,x
j′

∂xj∂xj′
(τ )

∣∣∣∣∣
p]1/p

⎞⎠
+ D2

n∑
j=1

n∑
j′=1

(
max
i/∈{j,j′}

bi,j,j′

)
.

The result follows by Equation (B.18), and since
∑n

j=1 maxi �=j ai,j ≤ C1 and, by Equation (B.3), Equation
(B.20) and Equation (B.21),

max
j

n∑
j′=1

sup
t≤τ≤s

E

[∣∣∣∣∣ ∂2Xt,x
j

∂xj∂xj′
(τ )

∣∣∣∣∣
p]

≤ max
j

sup
t≤τ≤s

E

[∣∣∣∣∣∂
2Xt,x

j

∂xj∂xj
(τ )

∣∣∣∣∣
p]

+
n∑

j′=1

max
j �=j′

sup
t≤τ≤s

E

[∣∣∣∣∣ ∂2Xt,x
j

∂xj∂xj′
(τ )

∣∣∣∣∣
p]

≤D2.

B.3 Third variation

The result for the third variations can be proven similarly and is omitted here.
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