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ABSTRACT

The Euclid mission is generating a vast amount of imaging data in four broadband filters at a high angular resolution. This data will allow for the
detailed study of mass, metallicity, and stellar populations across galaxies that will constrain their formation and evolutionary pathways. Trans-
forming the Euclid imaging for large samples of galaxies into maps of physical parameters in an efficient and reliable manner is an outstanding
challenge. Here, we investigate the power and reliability of machine learning techniques to extract the distribution of physical parameters within
well-resolved galaxies. We focus on estimating stellar mass surface density, mass-averaged stellar metallicity, and age. We generated noise-free
synthetic high-resolution (100 pc× 100 pc) imaging data in the Euclid photometric bands for a set of 1154 galaxies from the TNG50 cosmological
simulation. The images were generated with the SKIRT radiative transfer code, taking into account the complex 3D distribution of stellar pop-
ulations and interstellar dust attenuation. We used a machine learning framework to map the idealised mock observational data to the physical
parameters on a pixel-by-pixel basis. We find that stellar mass surface density can be accurately recovered with a ≤0.130 dex scatter. Conversely,
stellar metallicity and age estimates are, as expected, less robust, but they still contain significant information that originates from underlying
correlations at a sub-kiloparsec scales between stellar mass surface density and stellar population properties. As a corollary, we show that TNG50
follows a spatially resolved mass-metallicity relation that is consistent with observations. Due to its relatively low computational and time re-
quirements, which has a time-frame of minutes without dedicated high performance computing infrastructure once it has been trained, our method
allows for fast and robust estimates of the stellar mass surface density distributions of nearby galaxies from four-filter Euclid imaging data. Equiv-
alent estimates of stellar population properties (stellar metallicity and age) are less robust but still hold value as first-order approximations across
large samples.

Key words. methods: statistical – galaxies: general – galaxies: photometry

1. Introduction

Understanding the underlying processes that drive galactic
evolution through cosmic time has been one of the burning
issues in astrophysics for the past decades. An important class
of constraints for galaxy evolution theories is scaling rela-
tions between the physical properties of galaxies. For exam-
ple, galaxy stellar mass, considered one of the fundamental
parameters of galaxies, has been found to be tightly corre-
lated with star-formation rate (SFR; Brinchmann et al. 2004;
Whitaker et al. 2012; Speagle et al. 2014; Watkins et al. 2022;
Chamba et al. 2022; Popesso et al. 2023) as well as with gas
phase (Lequeux et al. 1979; Tremonti et al. 2004; Ly et al. 2016;
Zahid et al. 2017) and stellar metallicity (Kauffmann et al. 2003;
Gallazzi et al. 2005). These correlations are well reproduced by
observations of large data sets of galaxies (for a detailed review,
see Maiolino & Mannucci 2019, and references within).

Due to observational constraints, early scaling relations were
formulated by treating each galaxy as a single observational
point (e.g. Schmidt 1959; Faber 1973; Lequeux et al. 1979).
However, galaxies themselves are complex systems, and tak-
ing into account the powerful interplay between stars, gas, and
dust in a galactic disc, the existence of scaling relations on
sub-kiloparsec scales (Rosales-Ortega et al. 2012; Sánchez et al.
2013; Gao et al. 2018) becomes an even more powerful diagnos-
tic of galaxy evolution.

A number of large imaging and integral-field spectroscopic
surveys have become available in the recent years, and others
will soon become operational, including Mapping Nearby
Galaxies at Apache Point Observatory (MaNGA; Bundy et al.
2015; Abdurro’uf et al. 2022a), the Vera C. Rubin Observa-
tory’s Legacy Survey of Space and Time (LSST; Ivezić et al.
2019), and the Euclid Wide Survey (EWS; Laureijs et al. 2011;
Euclid Collaboration: Scaramella et al. 2022). These surveys
will provide detailed insight into thousands of nearby galax-
ies. Therefore, developing methods to accurately determine
spatially resolved galaxy properties, such as stellar mass and
surface density, is of great importance. Recent studies have shown
that the structural properties of the stellar components in galaxies
are also related to those of the surrounding dark matter halos (e.g.
Salucci 2019). This entanglement is thought to be due to tuned
baryonic feedback or due to specific properties of the dark parti-
cles. This link between the luminous and the dark components of

galaxies could make the availability of these observational prop-
erties a primary task in observational cosmology.

Traditionally, the physical properties of galaxies are
estimated by fitting template spectral energy distributions
(SEDs) to the observations (Walcher et al. 2011; Conroy 2013;
Pacifici et al. 2023). SED fitting is usually applied to the global
integrated SEDs of galaxies, and the result is an estimate of the
main global physical properties, such as stellar mass, SFR, stel-
lar metallicity, star-formation history (SFH), and level of dust
attenuation (e.g. Leja et al. 2017, 2019; Nersesian et al. 2019).
More recently, SED fitting has also been applied at resolved
scales, that is, to individual pixels, yielding distributions of these
physical properties at kiloparsec or sub-kiloparsec scales (e.g.
Zibetti et al. 2009; Viaene et al. 2014; Sorba & Sawicki 2015;
Abdurro’uf et al. 2021, 2022b, 2023).

Several issues arise due to the assumptions that have to
be made when deriving the physical properties of galaxies.
For example, as the main component of light produced within
the galaxy, evolutionary tracks of stars can be used to fit the
SEDs of stellar populations (so-called isochrone synthesis, e.g.
Charlot & Bruzual 1991; Bruzual & Charlot 1993, 2003). How-
ever, complications occur from, among other issues, the incom-
plete libraries of stellar spectra (e.g. the lack of rest-frame UV
libraries), which could be used to obtain accurate galactic param-
eters for high-redshift galaxies (Pellerin & Finkelstein 2010).
Another common issue arises from the limitations of our under-
standing of the complex history in the interaction between the
interstellar medium (ISM) and stars (e.g. Matteucci 2008) as
well as modelling of the short and complex evolutionary tracks
of the short-lived and difficult to observe high-mass stars.

Another complicating factor is the effect of interstellar
dust. The contribution of interstellar dust to galaxy SEDs con-
sists of two effects: attenuation of the intrinsic UV to near-
IR (NIR) emission and thermal emission in the mid-IR (MIR)
to milimetre regime. In SED fitting, the former is typically
accounted for using a parameterised attenuation curve (e.g.
Calzetti et al. 2000; Charlot & Fall 2000; Lo Faro et al. 2017;
Salim et al. 2018; Decleir et al. 2019), whereas the latter effect
is taken into account using empirical or radiative transfer-based
template SEDs (e.g. Dale & Helou 2002; Lagache et al. 2004;
Siebenmorgen & Krügel 2007; Law et al. 2018). However, our
understanding of the complex dust contribution in the ISM is
very incomplete, leaving a number of open questions, such as
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the details of the shape, composition, size distribution, fluffi-
ness, and formation and destruction processes of interstellar dust
(e.g. Draine 2003; Galliano et al. 2021). The attenuation curve
and dust emission libraries are limited by the parameter space
they were derived from, and linking dust attenuation and dust
emission is complex due to non-linear radiative transfer effects
(Baes & Dejonghe 2001; Steinacker et al. 2013). Even with the
number of large-scale panchromatic and spectroscopic surveys
increasing the understanding of the complex dust grain physics
in recent years, there is still a great diversity both in extinction
and attenuation curves that contributes to the uncertainty of the
properties derived via SED fitting (Salim & Narayanan 2020).

On top of that, SED fitting is usually computationally
demanding, especially when investigating a large parameter
space. Scaling up these methods becomes unfeasible if one is
to effectively analyse the vast amount of data that will become
available with the upcoming surveys. This points to the neces-
sity of exploring alternative methods, and one such method that
has been employed in recent years is machine learning (ML). In
this work, we focus on supervised ML, which learns the rela-
tionship between a set of input parameters and a target via a set
of examples (for a review on different ML algorithms and their
applications in astronomy, we recommend Baron 2019, and ref-
erences within).

One of the early issues in astronomy addressed by ML
has been measuring the photometric redshift of galaxies
due to the difficulty of gaining true values of other galac-
tic parameters from observations (Tagliaferri et al. 2003;
Collister & Lahav 2004; D’Abrusco et al. 2007; Carliles
et al. 2010; Hildebrandt et al. 2010; Abdalla et al. 2011;
Cavuoti et al. 2012; Brescia et al. 2013; Sadeh et al. 2016;
D’Isanto & Polsterer 2018; Leistedt et al. 2023; Alsing et al.
2023, 2024), with some attempts to infer SFRs from photometric
data (e.g. Stensbo-Smidt et al. 2017; Delli Veneri et al. 2019).
In recent years, a number of authors have focused on data from
cosmological simulations (Lovell et al. 2019; Gilda et al. 2021;
Simet et al. 2021) and observational data (Acquaviva 2015;
Surana et al. 2020; Iglesias-Navarro et al. 2024; Alsing et al.
2024), demonstrating that ML techniques can accurately recover
a number of galactic parameters even on limited data sets
and with much smaller computational and time requirements.
One interesting application of ML is to infer hard to measure
observations (for example far-IR Luhman et al. 2003), thus
bridging the gap in the galactic spectral libraries on both global
(Dobbels et al. 2020) and resolved (Dobbels & Baes 2021)
scales. Interestingly, in Dobbels & Baes (2021) the authors find
no significant dependence of the prediction by the ML algorithm
on the pixel scale of the observations in their work.

These recent successful developments in deploying ML to
solve astronomical problems have a potential to be very signifi-
cant for the Euclid mission (Euclid Collaboration: Mellier et al.
2025). Successfully launched on 1 July 2023, it has started to
generate a vast amount of imaging data in four broadband filters.
In particular, the Euclid Wide Survey (Laureijs et al. 2011) is
expected to detect ∼2× 109 galaxies up to z ∼ 3, with the major-
ity of galaxies at z ∼ 1 (Euclid Collaboration: Scaramella et al.
2022). Mapping the distribution of the physical properties of
these galaxies as a function of cosmic time, and the correlation
between them, offers an additional constraint to the scaling rela-
tions for theories of galaxy formation and evolution. At the same
time, the Euclid surveys will spatially resolve tens of thousands
of nearby galaxies to kiloparsec or sub-kiloparsec scales. Gener-
ating physically resolved maps at kiloparsec scales of the most
important physical properties of galaxies offers valuable input to

galaxy evolution theories. The sheer amount of data makes ML
techniques a necessary tool to efficiently generate physical maps
at high spatial resolution.

There have been a number of attempts to test the feasibility of
ML methods on simulated Euclid data, for example, modelling
photometric redshift (Euclid Collaboration: Desprez et al. 2020),
galaxy classification (Euclid Collaboration: Humphrey et al.
2023), identification of galaxy-galaxy strong lensing events
(Euclid Collaboration: Leuzzi et al. 2024), deriving galaxy
properties (Euclid Collaboration: Bretonnière et al. 2022,
2023; Euclid Collaboration: Bisigello et al. 2023; Euclid
Collaboration: Aussel et al. 2024), and inferring global physical
parameters of galaxies (Euclid Collaboration: Enia et al. 2024).
The studies demonstrate that ML could be a viable alternative
to traditional methods; however, caution should be taken into
account due to the high impact of the parameter space on the
algorithm’s predictive power and the difficulty of interpreting the
results, both of which are common pitfalls with ML.

In this work, we expand on the approach explored by
Euclid Collaboration: Bisigello et al. (2023), who attempted to
infer galaxy physical properties with deep ML from mock
Euclid magnitudes and H-band images. We focus on the spa-
tially resolved distribution of physical properties within nearby
galaxies. More specifically, we investigate to which degree we
can infer physical property maps from sets of synthetic Euclid
images of galaxies extracted from the TNG50 cosmological
hydrodynamical simulation (Pillepich et al. 2019). We employ
two ML methods, random forest (RF) and a deep neural network
(DNN), and we compare them to an ordinary least squares linear
regression (LR). We focus on stellar mass surface density (Σ?),
stellar-mass-averaged stellar metallicity (Z?), and stellar-mass-
averaged stellar age (t?). The workflow of the entire ML process
described in this work can be seen in Fig. 1. In this work, we
focus on noise-free data; however, we plan to include noise and
test this relationship on more realistic simulated data as well as
on actual Euclid observations.

This paper is organised as follows: In Sect. 2, we introduce
the synthetic images and describe the steps undertaken to prepare
them for the ML method. In Sect. 3, we describe the ML algo-
rithms considered in this work and the metrics used to analyse
the viability of this method. Section 4 contains the estimates of
galaxy properties, while Sect. 5 focuses on the underlying pro-
cesses that drive these results, including a focused discussion
on the effects of the underlying resolved mass-metallicity rela-
tion. The main findings and the future outlook are summarised
in Sect. 6.

2. Data

2.1. The TNG50 simulation

IllustrisTNG (Springel et al. 2017; Pillepich et al. 2017, 2018;
Naiman et al. 2018; Marinacci et al. 2018, hereafter TNG) is a
publicly available state-of-the-art large-volume magnetohydro-
dynamics cosmological simulation that uses the moving mesh
code AREPO (Springel 2010) to model the formation and evo-
lution of galaxies in a ΛCDM universe. As a successor of the
Illustris project (Vogelsberger et al. 2014; Genel et al. 2014), it
offers an upgrade and refinement in its treatment of cosmic mag-
netism, supermassive black holes, galactic winds, and stellar
evolution (Weinberger et al. 2016). The TNG project consists of
three runs: TNG50, TNG100, and TNG300. They are defined
by the size of their physical simulation box with side lengths of
50, 100, and 300 Mpc, respectively (Nelson et al. 2019a). Out of
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Random forest

Linear regression

Deep neural network

EvaluationPre-processingSimulated data

Validation data

Train data Model

Test data

Evaluation

Fig. 1. Workflow of the entire ML process described in this work.

the three, the highest-resolution TNG50 (Pillepich et al. 2019;
Nelson et al. 2019b) is best suited for the purpose of our work.
It follows the evolution of a cubic volume of 51.7 comoving
Mpc on the side, with cosmological parameters based on the
Planck mission (Planck Collaboration XIII 2016): Ωm = 0.3089,
Ωb = 0.0486, ΩΛ = 0.6911, H0 = 100 h km s−1 Mpc−1 with
h = 0.6774, and a Chabrier (2003) initial mass function (IMF).
It reaches a baryonic mass resolution of 8.5 × 104 M� and the
average cell size of 70–140 pc in the star-forming regions of
the galaxies. For more details on this simulation, we refer to
Pillepich et al. (2019).

2.2. Synthetic images

Our data set consists of 1154 galaxies at z = 0 with a total
mass range between 109.8 M�, and 1012 M� extracted from the
TNG50 simulation. Based on this set of galaxies, Baes et al.
(2024) recently released an image atlas, the TNG50-SKIRT
Atlas, which contains synthetic high-resolution images in 18
broadband filters from UV to NIR wavelengths. The images are
generated with the SKIRT radiative transfer code (Baes et al.
2011; Camps et al. 2015; Camps & Baes 2020) and take into
account different stellar populations, absorption and scattering
by ISM dust, and localised dust attenuation in star-forming
regions. The atlas contains images for each galaxy at five dif-
ferent projections, where the angle of the first projection is arbi-
trarily determined, and the other four are spread over a unit
sphere in a way to maximise the angular separation between
them (Tammes 1930). Beside the dust-obscured images, the
atlas also contains dust-free images in all 18 bands, as well as
matching maps of the stellar mass surface density, dust mass
surface density, and mass-weighted stellar age and metallicity.
These physical parameter maps were generated by projecting
the 3D physical fields such as the stellar mass density on the
observer’s plane of the sky, using the ‘probe’ functionality in the
SKIRT code (Camps & Baes 2020). The sample contains 869
star-forming galaxies and 285 quiescent galaxies (for a charac-
terisation of the sample, see Fig. 1 in Baes et al. 2024).

We extend the TNG50-SKIRT Atlas image database
presented in Baes et al. (2024) with additional synthetic

images in the four Euclid broadband filters, that is,
the optical IE band of the VIS instrument (Cropper
et al. 2018; Euclid Collaboration: Mellier et al. 2025)
and the YE, JE, and HE bands of the NIR NISP instru-
ment (Euclid Collaboration: Schirmer et al. 2022; Euclid
Collaboration: Jahnke et al. 2024). The images are generated
in a similar way as for the original atlas: we use SKIRT to
generate both dust-obscured and dust-free images, but now
with the Euclid transmission curves. Apart from that, all other
settings, such as the observer positions, the spatial resolution,
and the field of view, remain identical as for the original
images (see Baes et al. 2024, Table 2). The additional SKIRT
simulations were run on the supercomputer facilities of the
Vlaams Supercomputer Centre (VSC)1.

All maps and images have a pixel scale of 100 pc and
a field of view of 160 kpc on the side, corresponding to
1600 × 1600 pixels in size, thus ensuring the outer regions of
even the most extended galaxies are covered. Except for the pres-
ence of Monte Carlo noise in dust-obscured images, the images
are noise-free.

For this work, we opt only for galaxies belonging to one ran-
domly chosen projection (O5), since the first projection angle is
arbitrary, thus ensuring a similar randomness in the inclination
of the observations. Of course, we can assume that the projection
angle affects the accuracy of the result, but our choice is moti-
vated by the real world scenario of observing a large number of
galaxies. Additionally, we decide to infer the galaxy parameters
on a pixel-by-pixel basis which, due to the high resolution of
the images, gives us a high number of data points. Due to this
wealth of data, the inclusion of other angles should not offer any
additional information for the ML method explored here, but it
might prove its usefulness in, for example, training a convolu-
tional neural network since in that case each data point would
have to be a tuple consisting of a number of neighbouring pix-
els, thus decreasing the number of available data points from this
data set significantly; however that is beyond the scope of this
work. Regardless, we test whether the inclusion of other projec-
tions would affect the result on a subset of 200 randomly selected
galaxies using a DNN (for the description, see Sect. 3.1). At five

1 https://www.ugent.be/hpc/en/infrastructure/overview.
htm
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angles each, the total data set consists of 1000 “unique” observa-
tions. The results are shown in Appendix A. For all three target
parameters, the differences in accuracy of inferred galaxy prop-
erties are negligible.

2.3. Data pre-processing

The SKIRT generated mock images contain Monte Carlo noise,
which increases towards fainter surface brightness levels. To
assess the reliability of the surface brightness levels, we select
a sample of ten galaxies for which we re-ran the SKIRT
simulations with the reliability statistics module switched on.
The result of these additional simulations are diagnostic statis-
tics on the reliability of the Monte Carlo simulation in each
pixel (for detailed information on this procedure, we refer to
Camps & Baes 2018, 2020). Based on these statistics, we cre-
ated a mask in the HE-band images that removes all pixels where
the Monte Carlo results are deemed unreliable. The motivation
behind the choice of the HE band was twofold. Traditionally, stel-
lar mass is reconstructed as the stellar mass-to-light ratio (that is,
the ratio between stellar mass and light that reaches the observer)
from the optical-near-IR colour (Zibetti et al. 2009, 2020). The
variations in this ratio are smaller at longer wavelengths due to
NIR being dominated by the light from the low-mass long-lived
stars, as well as the lower dust extinction at those wavelengths
(Bell & de Jong 2001), making the HE band at 1.65 µm close to
the ideal choice for reconstructing stellar mass (Walcher et al.
2011). The second reason for this choice, as it will be discussed
in detail in Sect. 5.3, comes from the fact that it is the most
important feature when modelling both Σ? and Z?. The appli-
cation of this mask translates to the removal of all pixels where
IHE ≤ 0.55 MJy sr−1, which removes a large fraction of the pixels
in the outskirts of the images. The full data set of pixels surviv-
ing this clipping still consists of more than 71 million individual
pixels.

We convert both the surface brightness levels and the galac-
tic parameters onto logarithmic scale, thus avoiding issues that
could occur due to the large dynamic range. Surface brightness
levels are in units of MJy sr−1. The Σ? is in units of M� pc−2

and spans seven orders of magnitude in total (from −2.5 dex to
5.3 dex); however, 99% of all points span three (from 0 dex to
3 dex). The Z? is dimensionless but normalised with Z� = 0.02 in
the analysis, and spans less than two orders of magnitude (from
−2.8 dex to −1.1 dex), with 99% of all points spanning only from
−2.2 dex to −1.2 dex. The t?, in units of Gyr, spans two orders of
magnitude in total (from −3.3 dex to 1.1 dex), and less than one
for the inner 99% of all pixels within the test set (from 0.2 dex to
1.1 dex). Afterwards, we normalise the data in such a way that all
the values lie between zero and one (a standard procedure when
preparing a data set for ML problems) using the linear transfor-
mation

Xstd =
X − Xmin

Xmax − Xmin
, (1)

where Xmin and Xmax are the minimal and maximal value of the
training set range, respectively.

Finally, we opt to split our data on a galaxy instead of a pixel
basis. This translates to a random fraction of ∼10% of galax-
ies, equalling to a total of 115 entire galaxies (of which 86 are
star-forming and 29 are quiescent) being selected into the test
set, which is never seen by any of the algorithms during training.
The remaining 90% (totalling 1039 galaxies, of which 783 are
star-forming and 256 are quiescent) is used by the algorithm for
training. However, 20% of pixels are randomly set aside for the

Table 1. Hyper-parameter setup for the RF algorithm.

Hyper-parameter Setup

Number of trees in the forest 100
Minimum number of samples required in a leaf 12
Minimum number of samples to split a node 20
Maximum depth of the tree 80
Maximum number of samples at base estimator 2 000 000
Loss function MSE

validation of the algorithm during training. This split is random
and changes at each run of the algorithm. The total data distribu-
tion can be seen in Fig. 2.

3. Methods

3.1. Machine learning approach

We tested two supervised ML algorithms, namely an RF and
a DNN, to map Euclid mock observations of nearby galax-
ies to galactic physical parameters on a pixel-by-pixel basis,
and to analyse the relationship between them. We compare
these two algorithms against a baseline, namely an ordinary
least squares linear regression, which is modelled from the
Python SciPy library as implemented in Python scikit-learn
(Pedregosa et al. 2011) and concerns the linear component of
this relationship.

The two ML algorithms concern the non-linear compo-
nent of this relationship. For the first one, we selected RF, an
ensemble method algorithm (Breiman 2001) from the Python
scikit-learn library. The RF algorithm builds a forest of deci-
sion trees, where each decision tree starts at the root node and
then recursively splits until the minimum node size is reached.
At each node, it selects a random given subset of variables, deter-
mines the best variable at this node, and splits it into two daugh-
ter nodes, then it averages the output of an ensemble of such trees
to make a prediction (Hastie et al. 2009; James et al. 2023). RF
is one of the most robust methods for ML, as it was designed to
avoid over-fitting (the algorithm becoming too good at predicting
values on the set it was trained on, but bad at generalising on new
data), and it requires minimal user input when tuning the hyper-
parameters (for instance, the size of the decision tree, number of
samples contained within a leaf, etc.). Prior to this choice, we
tested a number of different algorithms from the scikit-learn
Python library on a subset of our data set, and did not notice
any major effect on the accuracy of our predictions. The addi-
tional benefit of RF when compared to other ML algorithms that
show similar speed and accuracy is its ability to determine fea-
ture importance, which offers a certain degree of interpretability
and helps in the analysis of the results.

When building the RF, we started with a brute force approach
at tuning the hyper-parameters using the scikit-learn mod-
ule GridSearchCV on a subset of 20% randomly selected pix-
els of the training set, followed by manual tuning on the entire
data set until we converge to a solution that minimises compu-
tational requirements without sacrifices to the accuracy of the
prediction (using metrics described in Sect. 3.3). As a final step
for this method, we perform a k-fold cross-validation across the
entire training set, which consists of 1039 whole galaxies. In the
cross-validation procedure, we bin the data into k (in this case
k = 10) bins that consist of random ∼10% (∼104) galaxies. We
set aside one bin as a validation set, train the algorithm on the
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Fig. 2. Normalised distribution of log10 M?, log10 Z?, and log10 t? global values of the galaxy properties for the entire data set, training set, and
test set (see legend).

remaining nine bins, and repeat the aforementioned process in a
loop through all ten bins. This is a standard procedure for hyper-
parameter tuning for RF, but it is also a useful additional step
to avoid any possibility of over-fitting that might occur with the
sample selection itself, as there is always a small risk of the algo-
rithm behaving well on one validation set, but not on the others.

The RF setup used in this work is described in Table 1. We
limit the maximum size of a sub-sample required to build one
tree to two million, as this quantity is the most responsible for
high memory requirements of RF. We decrease this value from
the size of the full set until we reach the minimum at which the
accuracy of the algorithm is not affected. We test the RF on a
desktop machine to determine feasibility of modelling galactic
parameters in optimal amount of time without requiring dedi-
cated infrastructure. With the final model, we are able to train
the algorithm on the entire data set in less than an hour on an
11th generation Intel i7 2.30 GHz 16-core laptop with 62.5 GiB
memory and 128 GiB swap.

The third and final approach consists of building a DNN
using the Google Python library TensorFlow (Abadi et al.
2015). An artificial neural network is a type of a ML technique
that is inspired by the functioning of neurons in a biological
brain. It consists of a series of layers of a certain width, that
is the number of neurons within a layer. The architecture of a
DNN used in this work is summarised in Table 2 and consists
of six layers. The first layer is the input layer, its size is deter-
mined by the number of features loaded into the algorithm. This
is followed by four hidden layers that consist of 64 neurons each,
which are fully connected with all the neurons in the previous
and following layers. Each neuron receives a signal in the form
of all the features (xi) whose number is determined by the first
layer, multiplies them by a certain weight (wi), which is different
for each feature, and is arbitrarily determined at the initialisa-
tion of the network. The weighted features are then summed up
together with a bias (b). A final, single output layer returns the
predictions of a single of the three galaxy parameters (ŷ). Each of
these transformations would be linear; however, a non-linear so-
called activation function is then applied on this output, returning
a non-linear transformation:

ŷ = f

 n∑
i=1

(wi × xi) + b

 . (2)

The most common activation function used for regres-
sion problems (e.g. Dahl et al. 2013; Zeiler et al. 2013;

Krizhevsky et al. 2017), as well as in this work, is a recti-
fied linear unit activation function (ReLU; Nair & Hinton 2010;
Glorot et al. 2011).

The network takes a sub-sample of 8192 points from our data
set. This batch sub-sample is then propagated through the net-
work, obtaining predicted values of the target parameter, which
is then assessed for accuracy against a true value in this batch
via a loss function. For the loss function we choose the mean
squared error (MSE). MSE calculates the average of a squared
distance between the predicted and the real value, it is the most
common loss function used for regression problems, and it has
proven to work the best in our case as well. The result of this
comparison between the predicted and true values in the batch
determine the direction in which the weights are updated, and
this information is then back-propagated through the network.
This process is repeated until the entire data set is used.

Another important hyper-parameter in building a DNN is the
learning rate, which determines the size of the step the algo-
rithm takes in the optimisation process (Murphy 2012). Instead
of choosing a constant learning rate, we decide to implement a
learning rate scheduler, whose main function is decreasing the
network training time. The network starts with a learning rate
of 10−4, a lower end of a fairly common starting point. This
learning rate is then multiplied by 0.8 every time the loss func-
tion does not improve for more than 300 iterations. A learning
rate that is too low requires a large number of iterations before
the network converges, and it also increases the risk of the net-
work becoming stuck in a local minimum, and never reaching a
global one. On the contrary, a learning rate that is too high can
cause the network to overshoot, that is arbitrarily jump between
points without ever “settling” at a minimum. A learning rate
scheduler is a simple way to circumvent that common down-
fall while still benefiting from increased performance earlier in
the learning. And finally, we also set an early stop, signalling
to the algorithm to stop its learning process if the loss function
hasn’t decreased for 2000 iterations. Even though it is rather
large, this value allows the learning rate scheduler at least five
updates, allowing it to decrease to around one third of its initial
value. From our tests, this is a large enough number of epochs to
ensure the best result, but it also still decreases the training time
significantly.

For the optimiser, that is the algorithm which dynamically
adjusts the learning rate for each parameter, we choose Adam
(adaptive moment estimation; Kingma & Ba 2015), which has
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Table 2. Hyper-parameter setup for the DNN.

Hyper-parameter Setup

Number of hidden layers 4
Neurons per layer 64
Training epoch 10 000
Activation function ReLU
Batch size 8192
Optimiser Adam
Initial learning rate 10−4

Learning rate scheduler patience 300
Learning rate scheduler factor 0.8
Loss function MSE
Early stop 2000

shown superior performance for large data sets (Duchi et al.
2011). For the details on how DNNs function, we recommend
Goodfellow et al. (2016).

Unlike RF, a DNN requires a high level of engagement when
tuning its hyper-parameters and its training is much more com-
putationally demanding. In this work, it requires a dedicated
GPU architecture to be viable, and was run on the supercom-
puter facilities of the VSC2. In case of all three galaxy parame-
ters, specifically the ones that show strong non-linearity, a DNN
might offer a better performance over RF, but at the expense of
computational power, though as it will be shown in this work, the
difference between the predictive power of an RF and a DNN is
negligible. Regardless, we present the results of both non-linear
methods.

3.2. Input data

The input features from the mock observations consist of four
Euclid bands. To test our three ML methods, we organised them
into the following three different categories:

– Each of the single bands, and we selected the best fit (accord-
ing to metrics presented in Sect. 3.3), which is HE in all cases.

– All four bands: IE, YE, JE, HE.
– Four bands, IE, YE, JE, HE, as well as six colours modelled

from them: (IE − YE), (IE − JE), (IE −HE), (YE − JE), (YE −HE),
and (JE − HE).

3.3. Metrics of model reliability

Throughout this work, we use a number of metrics to deter-
mine the reliability of ML. The coefficient of determination (R2;
Wright 1921) is a commonly used term in regression analysis
that can span from −∞ to +1, where the latter denotes a model
that perfectly matches the ground truth. R2 determines how much
the dependent variable, which in the case of ML is the predic-
tion of the model, is determined by the independent variable, or
the ground truth. R2 is considered one of the most informative
metrics in regression ML (Chicco et al. 2021). It is calculated as
follows:

R2 = 1 −
∑n

i=1(ŷi − yi)2∑n
i=1(y − yi)2 , (3)

2 Specifically, the accelgor GPU cluster with the NVIDIA Ampere
A100 GPU and no parallelisation.

where yi is the actual i-th value, ŷi is the predicted i-th value, and
y is the mean of true values, which is defined as

y =
1
n

n∑
i=1

yi. (4)

The root-mean-square error (RMSE) of the estimation deter-
mines how much the predicted value deviates from the ground
truth,

RMSE =

√√
1
n

n∑
i=1

(ŷi − yi)2, (5)

and it can span from zero to +∞, with the former denoting the
case where the prediction perfectly matches the ground truth.
The RMSE is monotonically anti-correlated to R2.

The normalised median absolute deviation (NMAD) repre-
sents a mean absolute deviation that is normalised by a factor of
∼1.4826, and it is considered the equivalent of standard devia-
tion that is more resilient to outliers (Höhle & Höhle 2009),

NMAD = 1.4826 ×median |ŷi − yi|. (6)

The bias is represented as

〈∆Y〉 = median (ŷi − yi) , (7)

where Y denotes any of the target galaxy properties (that is, Σ?,
Z?, or t?).

We calculated the fraction of catastrophic outliers ( fout), that
is, the number of predicted values that are approximately two
times (0.3 dex) above or below the ground truth, matching the
uncertainties at recovering stellar mass values via traditional
methods (Conroy 2013),

fout =
n
(∣∣∣ŷ−i yi

∣∣∣ > 0.3 dex
)

ntot
· (8)

And finally, we calculated the Pearson correlation coefficient
(ρ; Pearson 1895):

ρ =

1
n
∑n

i=1 (yi − y)
(
ŷi − y∗

)
σyσŷ

, (9)

where y is the mean of true values (yi); y∗ is the mean of pre-
dicted values (ŷi), as defined in Eq. (4); and σy and σŷ are the
standard deviations of true and predicted values, respectively.

Additionally, as is visible in Fig. 2, there is a slight bias,
especially for Z? and t?, in the distribution of the test set. To
confirm that this bias does not affect the final result, we calculate
the metrics of model reliability on both the test and the training
sets. The difference between them is minor (within 10%). The
values are shown in Appendix B.

3.4. Reliability of a machine learning algorithm

To assess the reliability of a ML algorithm, there are two types
of uncertainties: aleatoric and epistemic. Aleatoric (statistical)
uncertainty is caused by the presence of random noise in the data
set, that is, the irreducible noise from observations, while epis-
temic (systemic) is caused by the lack of knowledge of the best
model (Hüllermeier & Waegeman 2021). To assess the former,
we would be required to perform the same ML procedure on ide-
alised data, as well as the data with added noise. Since the goal of
this work is to examine the amount of physical information that
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can be extracted from the Euclid observations, and the feasibility
of using ML in that process, we are currently only working with
idealised data. Introducing noise into the data set would com-
plicate the relationships between the observations and physical
parameters with additional variables, so this type of uncertainty
cannot be assessed. In the future, we plan to adapt this data set
to the actual observations, making this type of error assessment
possible. Epistemic uncertainty, on the other hand, informs us of
how uncertain the model is about its prediction (Kendall & Gal
2017), and is assessed by running the same algorithm on the
same data set a certain number of times. In this work, we opt
for ten.

As a deterministic model (that is, an algorithm that creates
the same prediction on the same set of data every time), the
ordinary least squares linear regression has an epistemic error of
zero. RF and DNN, on the other hand, build a model that is con-
ditional on the previous decisions made on the data set, giving
them a certain level of randomness that will change the model
on every new run during training.

In case of our two ML algorithms, the situation is more com-
plicated due to the algorithms requiring a validation set during
training, and the way this validation set is created. While the
test data is set to the bin consisting of ∼10% (i.e. 115) whole
galaxies, the training data is randomly split into a training and
validation set used by the algorithm in a 80%/20% ratio.

Additionally, each of the two ML algorithms contribute to
the uncertainty due to the stochasticity of the learning process
itself. In case of RF, the uncertainty is related to the fact that, for
each time the tree splits, a random set of features is selected for
training, leading to a different path from the root node to the final
leaf. However, in all cases this uncertainty is very small, in the
worst case scenario being when the standard deviation (±1σ) is
only ∼2% of the mean of R2. In all other cases, it is 20–100 times
smaller.

Every time a DNN is initialised, it starts with a different ran-
domly assigned set of weights with which it updates the training
data, that is the algorithm starts at a different, random starting
point in the optimisation process, and for every epoch, it shuffles
the set of samples anew, which affects the update of the weights,
and maps a different path through the optimisation. However,
these values are still fairly small, with a first standard deviation
accounting for 5% of the mean of R2, a slightly higher value
when compared to RF, but still low, and over 20 times higher
than the second largest error.

4. Results

In this section, we describe the results for each of our three
target values: stellar mass surface density (Σ?), stellar-mass-
averaged stellar metallicity (Z?), and stellar-mass-averaged stel-
lar age (t?). These values were inferred using three methods:
ordinary least squares LR and two ML algorithms, namely, RF
and DNN. Each algorithm was trained independently for three
different selections of input values: single HE band, all four
Euclid bands, and when using four Euclid bands and six colours
modelled from them. Altogether, this totals to 27 separate cases,
as shown in Table 3.

4.1. Stellar mass

Most of the information on stellar mass can be gained from the
NIR 1.65 µm HE band (Zibetti et al. 2009; Walcher et al. 2011).
In our case, when modelling Σ? using just one Euclid band, the
strongest relationship shown is between Σ? and the HE-band sur-

face brightness (R2 ≈ 0.85), regardless of the algorithm, pointing
to a very strong linear relationship between HE and Σ?. When
we model Σ? using all four Euclid bands, the increase in accu-
racy is lower for LR (R2 ≈ 0.873), and higher for RF and DNN
(R2 ≈ 0.927). This indicates that there is a certain non-linear
component to the relationship between the other three bands
and Σ? that is uncovered similarly well by both non-linear algo-
rithms, with the RMSE for DNN with four Euclid bands being
0.130 dex. The addition of six colours modelled from the four
Euclid bands does seem to offer a minor benefit (R2 ≈ 0.908) for
LR, but not for RF or DNN.

We show the relationship between the true Σ? and the pre-
dicted Σ? in the case of using only the four Euclid bands for
all three methods in Fig. 3. The diagonal line marks the iden-
tity, with two additional dashed lines on each side that mark fout
(Eq. (8)). For higher values of Σ?, the scatter is fairly low, espe-
cially in case of RF and DNN. However, in all three methods, the
scatter increases as Σ? decreases, especially at Σ? ≤ 30 M� pc−2.
This is expected, as all our observations were clipped for values
IHE ≤ 0.55 MJy sr−1. With the strong linear relationship between
Σ? and HE, the effect of this clipping is fairly prominent as a
lower boundary for inferred Σ? ≈ 4 M� pc−2 for LR. Simulta-
neously, we can expect a stronger effect of Monte Carlo noise
at lower surface brightnesses, increasing the uncertainty of ML
predictions. For RF and DNN the fout ≈ 3%, but over double that
value ( fout ≈ 7%) for LR (Table 3).

In conclusion, Σ? can be inferred with a high accuracy from
Euclid observations using ML (with the Pearson ρ coefficient
spanning from 0.923–0.963 in all cases). While the most infor-
mation is extracted from the Euclid HE band that scales with Σ?
in a linear fashion, the other three bands offer additional non-
linear information that justifies the usage of non-linear ML algo-
rithms such as RF or DNN.

4.2. Stellar metallicity

Stellar metallicity can be extracted from the spectral absorption
features (line-strength indices, e.g. Maiolino & Mannucci 2019)
in the optical range of the spectrum. However many of these opti-
cal absorption lines are narrow and shallow, making them diffi-
cult to measure (Ditrani et al. 2023). For Euclid only the IE band
covers the optical range of the spectrum, but due to its broadness,
it would make inferring Z? with Euclid imaging very difficult.

The process of predicting Z? in this work follows similar
steps to Σ?. Out of the single band fits, the most important fea-
ture for predicting metallicity is the HE band (R2 ≈ 0.36 for
LR and RF, and R2 ≈ 0.39 for DNN), pointing to a mild but
mostly linear relationship between Z? and HE. Similarly to Σ?,
the accuracy increases when all four Euclid bands are used, and
the gain is much higher for RF and DNN (R2 ≈ 0.595) than
LR (R2 ≈ 0.417), pointing to the relationship between Z? and
the other three Euclid bands to fall in a more non-linear regime,
similarly to Σ?. The inclusion of colours offers a small benefit to
LR (R2 ≈ 0.435), but extremely minor to RF, and none to DNN.
We recover Z? with a RMSE < 0.1 dex in all cases, with the best
case scenario being with a DNN (RMSE = 0.076 dex), in case
when four Euclid bands are used.

We plot the relationship between the true and predicted Z? in
Fig. 3. The relationship is somewhat similar to Σ?, where highest
values show the least amount of scatter, which again increases
steadily until Z? ≈ 0.5 Z�. Compared to the prediction of Σ?, the
inferred value of Z? shows a much larger scatter. RF and DNN
perform significantly better than LR, which seems to struggle
with inferring values for Z? < 0.4 Z�. Even for higher ranges
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Table 3. Accuracy scores (as defined in Sect. 3.3) for the three galaxy properties (Σ?, Z?, and t?) for the three methods (ordinary least squares LR,
and two ML algorithms, RF and DNN) for the three distinct cases (single HE, four Euclid bands, and four Euclid bands as well as the six colours
modelled from them).

Target Algorithm Input features R2 RMSE fout NMAD 〈∆Y〉 ρ

IHE 0.852 0.186 0.0757 0.1676 −0.1676 0.923
LR Bands 0.873 0.147 0.0725 0.1455 −0.0055 0.935

Bands + colours 0.908 0.150 0.0645 0.1410 −0.0059 0.939

IHE 0.853 0.185 0.0758 0.1685 −0.0185 0.923
Σ?/

(
M� pc−2

)
RF Bands 0.927 0.130 0.0325 0.1102 −0.0021 0.963

Bands + colours 0.927 0.130 0.0324 0.1102 −0.0022 0.963

IHE 0.854 0.185 0.0736 0.1673 −0.0193 0.924
DNN Bands 0.927 0.130 0.0322 0.1090 −8.45 × 10−5 0.963

Bands + colours 0.927 0.130 0.0322 0.1089 −8.03 × 10−5 0.963
IHE 0.358 0.096 0.0047 0.0937 −0.0142 0.598

LR Bands 0.417 0.091 0.0030 0.0863 −0.0063 0.655
Bands + colours 0.435 0.095 0.0024 0.0857 −0.0075 0.666

IHE 0.356 0.096 0.0050 0.0947 −0.0141 0.590
Z? RF Bands 0.592 0.077 0.0007 0.0725 0.0016 0.769

Bands + colours 0.595 0.077 0.0007 0.0724 0.0020 0.770

IHE 0.385 0.096 0.0048 0.0938 −0.0145 0.599
DNN Bands 0.595 0.076 0.0007 0.0720 0.0029 0.773

Bands + colours 0.595 0.076 0.0007 0.0719 0.0028 0.773
IHE 0.010 0.163 0.0509 0.1586 −0.0435 0.104

LR Bands 0.199 0.146 0.0368 0.1335 −0.0206 0.467
Bands + colours 0.162 0.150 0.0354 0.1328 −0.0216 0.476

IHE 0.014 0.162 0.0509 0.1576 −0.0424 0.096
t?/Gyr RF Bands 0.382 0.128 0.0285 0.1008 −0.0061 0.618

Bands + colours 0.381 0.129 0.0286 0.1007 −0.0051 0.618

IHE 0.130 0.162 0.0498 0.1584 −0.0430 0.130
DNN Bands 0.382 0.128 0.0281 0.0997 −0.0024 0.622

Bands + colours 0.382 0.128 0.0280 0.0994 −0.0025 0.623

Notes. Left to right: Target; ML algorithm; input features; coefficient of determination (R2); root-mean-square error (RMSE); number of catas-
trophic outliers ( fout); normalised median absolute deviation (NMAD); and bias (〈∆Y〉, where Y represents the target galaxy property); Pearson ρ
coefficient. All values are defined in Sect. 3.3.

(where Z? ≥ 1 Z�), RF and DNN capture the distribution of
Z? much more accurately and with a lot less scatter. When only
HE is used, fout ≈ 0.5% (Table 3), a value similar to all three
methods. This value halves with the inclusion of additional data
for LR ( fout ≈ 0.25%), and drops seven-fold for RF and DNN
( fout ≈ 0.07%). It is important to note that the range for Z? is
much smaller than Σ?, making these results seem better in com-
parison, when in fact Σ? is inferred better in all cases. For details
on the different ranges of our target values, we refer to Sect. 2.3.

We conclude that Z? can be inferred from Euclid observa-
tions with a fairly high accuracy, but the prediction is less robust
than in case of Σ? (Pearson correlation coefficient ρ = 0.77 for
Z?, compared to ρ = 0.96 for Σ?). Similarly to Σ?, the informa-
tion contained in the Euclid HE band is related to Z? in a linear
fashion, while the other three bands contain the information in a
more non-linear regime.

4.3. Stellar age

The procedure for modelling stellar ages is tightly entangled
with Z? and requires the information located in the 4000 Å
Balmer break (Poggianti & Barbaro 1997) which is outside of
the Euclid observational window for local Universe galaxies. As

was the case with Z?, Euclid observations do not carry enough
information to directly extract stellar ages for our data set either.

When using a single Euclid band to model t?, the predictions
are equivalent to random chance (R2 ≈ 0), as shown in Table 3.
The other two attempts yield similar results, with RF and DNN
both offering a slightly higher accuracy than LR; however, these
values are still low (R2 < 0.4), giving credence to the conclusion
that t? cannot be accurately modelled from Euclid observational
data alone. As with Z?, RF and DNN can mimic the distribution
of t? values somewhat, but the accuracy is too low for them to
be a feasible method of modelling t? with Euclid observations.

While the scatter is lower for the higher range of ages, it
shows an offset where regardless of the algorithm, t? is system-
atically under-predicted, worsening with increasing age (Fig. 3).
On the lower side of the range, the scatter quickly increases,
making predictions for regions with t? ≤ 9 Gyr extremely dif-
ficult, and for regions with t? ≤ 2.5 Gyr predictions are almost
impossible. Neither algorithm seems to be able to recover these
ages accurately at all. When only HE band is used to model
t?, fout ≈ 5%, regardless of the algorithm. Additional features
decrease this number somewhat for LR ( fout ≈ 3.5%), and more
for RF and DNN ( fout ≈ 2.8%). However, the range for t? is
very small (spanning from ∼0–12.7 Gyr in our entire data set, as
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Fig. 3. Predictions for Σ? (top), Z? (middle), and t? (bottom) using the four Euclid bands as the input features for the three models: linear regression
(left), RF (middle), and DNN (right) as a function of their true value. A diagonal line marks the identity, and the additional two dashed lines mark
the limit for the catastrophic outliers (instances where the predicted value is two times larger or smaller than the true value). Running medians,
with their 16th and 84th percentiles are marked with large blue points with error bars.

discussed in Sect. 2.3), making the definition of fout very broad
in the case of this galaxy property. If we take a narrower limit
(for example, 0.2 dex, i.e. ∼1.5 times higher or lower than the
true values), for the best case scenario (DNN with all input fea-
tures), fout increases to over 10%.

In conclusion, while some information can be inferred (ρ ≈
0.62 for the best case scenario, a DNN using the four Euclid

bands), t? cannot be accurately predicted from the Euclid obser-
vation with ML.

4.4. Example galaxies

In this section we present two galaxies taken from the test
set whose properties were inferred with a DNN using the four
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Fig. 4. Mock observations for our example galaxies TNG 539333 (top) and TNG 294869 (bottom) in four Euclid bands. From left to right: IE, YE,
JE, and HE. The bottom-right corner of the leftmost image for each galaxy shows the 1 kpc scale, which is equal to ten pixels with a 100 pc side.

Table 4. Accuracy scores (as defined in Sect. 3.3) for the three galaxy properties (Σ?, Z?, and t?) using four Euclid bands and a DNN for the two
example galaxies TNG 539333 and TNG 294869.

Galaxy Pixel count Target R2 percentile RMSE NMAD 〈∆Y〉 ρ

Σ?/
(
M� pc−2

)
0.973 87 0.078 0.0518 −0.0016 0.995

TNG 539333 54 030 Z? 0.682 90 0.053 0.0502 −0.0259 0.878
t?/Gyr −2.653 26 0.059 0.0628 0.0349 0.013
Σ?/

(
M� pc−2

)
0.890 12 0.115 0.1140 0.0702 0.968

TNG 294869 76 151 Z? 0.192 41 0.062 0.0629 −0.0337 0.693
t?/Gyr −2.520 28 0.117 0.1185 0.0717 0.082

Notes. Left to right: Galaxy; number of pixels; target; coefficient of determination (R2); the percentile of the coefficient of determination for that
galaxy; root-mean-square error (RMSE); normalised median absolute deviation (NMAD); and bias (〈∆Y〉, where Y represents the target galaxy
property); Pearson ρ coefficient.

Euclid bands. As a reminder, when splitting our data set into
training and test sets, we ensured to select the whole galax-
ies, meaning the test set consists of all pixels belonging to 115
whole galaxies, which were not involved in training of any of the
algorithms.

We present these two galaxies, TNG 539333 as an example
of a more accurately predicted galaxy, and TNG 294869 as a
less accurately predicted galaxy. To select these two galaxies,
we used the following procedure: first we chose the top and the
bottom quantile of R2 values for Σ?, and visually inspected them,
opting for galaxies that are somewhat face-on, which also have
complex features visible; after we located at least 10 of such
galaxies for each of the two categories, we randomly selected
one. The full disc mock observations in the four Euclid bands
for these two galaxies can be seen in Fig. 4. We show a full disc
map for both the true and predicted values of Σ?, Z? and t?, as
well as their residuals, and radial profiles which were extracted
with circular annuli as both galaxies are relatively face on. We
focus our analysis in the inner region marked by the dashed cir-
cle and line in the residuals map and radial profile respectively.

This area spans the radius equalling 12 kpc for TNG 539333 and
13 kpc for TNG 294869. Each point in the radial profile repre-
sents a median with error bars that mark the 16th and 84th per-
centile of values within a 1.5 kpc bin of the galactocentric radius.
The metrics of accuracy (as described in Sect. 3) for each galaxy
are presented in Table 4.

4.4.1. TNG 539333

In Fig. 5, we plot the full disc of TNG 539333 as an exam-
ple of a good prediction by the algorithm. This galaxy is pro-
jected face-on, with a total stellar mass of 5.6 × 1010 M� and
stellar half-mass radius of 4.4 kpc. It is a star-forming (SFR ≈
5.54 M� yr−1) galaxy. It has a bright central bar where Σ? is
predicted quite accurately (median with 16th and 84th percentile
scatter being −0.007+0.052

−0.067 dex for the inner 12 kpc). The Σ? is
mildly overestimated throughout the bright inner region of the
disc, overestimating the complex spiral structure seen in the
inner part of the disc. This then reverses into a very a mild
underestimation for the outer disc, which increases with radius,
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Fig. 5. Full disc map of galaxy TNG 539333 (O5 projection) for log10

[
Σ?/

(
M� pc−2

)]
(left), log10 (Z?/Z�) (middle), and log10

(
t?/Gyr

)
(right) as

an example of a more accurate model. From top to bottom: The top row shows the actual values for each property followed by the model created
by a DNN algorithm on four Euclid bands, and the third row shows the residuals, where points in red (blue) represent pixels where the actual
values are higher (lower) than those in the model. Histograms contained in the lower right corner of the residual maps show the distribution of
error prediction (log10 yi − log10 ŷi, where yi is the actual i-th value, and ŷi is the predicted i-th value of the pixel), dashed lines mark the 16th and
84th percentile of the distribution for the pixels contained within the dashed circle of a 12 kpc radius. Bottom row shows radial profiles for the true
(red) and predicted (blue) values where large points mark the median, and error bars mark the 16th and 84th percentile of the distribution contained
within the radial bin, as well as their residuals plotted underneath.
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Fig. 6. Same as Fig. 5 but for the galaxy TNG 294869. The dashed circle marks the 13 kpc radius.

towards the sparser regions more affected by the Monte Carlo
noise. With an R2 ≈ 0.973, it is in fact predicted slightly better
than the general sample (where R2 ≈ 0.927). The radial profile
is accurately recovered, with a bright central region, followed
by a stronger drop towards the inner ∼3 kpc, but it has a gener-

ally linear decrease throughout the remainder of the disc. The
central region of the modelled profile is very well recovered,
followed by an over-prediction that shows the strongest differ-
ence with a maximum of 0.18 dex at around 3 kpc. After ∼6 kpc,
the radial profiles mostly begin to overlap, with the difference
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between them increasing mildly towards the noisy edges of the
full disc map.

Z? is under-predicted through most of the galactic disc
(−0.028+0.043

−0.039 dex), with the inner more metal rich spiral arms
not being as prominent in the model as they are on the actual
map. The actual map of TNG 539333 shows the entire disc to
be of a higher metallicity than the model, except for the area
directly around the galactic bar, which is predicted to be more
metal rich. At the very outer, noisy regions, as with Σ?, the rela-
tionship starts to mildly reverse. In essence, while the Z? map
manages to recover a number of galactic features seen in the
actual map, they are not as prominent, nor do they extend as far
into the disc, and in fact assume a shape more reminiscent of the
predicted Σ? map than the features seen in the actual Z? map.
With R2 ≈ 0.682, the Z? is predicted with a higher accuracy
than that shown in the general sample (R2 ≈ 0.595, as seen in
Table 3). The radial profile is somewhat similar to Σ?, with a
slightly stronger dip separating the central bin from the remain-
der of the disc where the profile shows a steady decline. The Z?
is systematically under-predicted through the entire profile, with
the highest difference being 0.056 dex at ∼6 kpc, prominent as a
spiral feature that is not well recovered in the full disc maps.

Of the three properties, t? is predicted with the lowest accu-
racy (−0.041+0.048

−0.039 dex), in fact, with R2 ≈ −2.653 (Table 4), the
prediction is worse than that expected of a random chance. Most
features in the actual map are not being mimicked by the model.
For example, the central region shows several large spiral arms
expanding beyond the galactic bar filled with young stars, but the
model only manages to mimic the shape of the galactic bar some-
what, and fails at the remainder of the structure, with the only
older feature visible being the most prominent, extended spiral
arm. This makes the model predict t? rather accurately around
the galactic bar, but it over-predicts the ages strongly outside of
this small ring, and under-predicts the ages inside the bar. The
algorithm manages to mildly mimic the spiral structure outside
of the central region populated with old stars, since the structure
is visible both for Σ? and Z?, but t? is over-predicted and very
flat throughout the entire disc. The shape of the radial profile is
not that well recovered either. We expect an older central bin,
followed by a steady, mild decrease to ∼4 kpc, then a mild rever-
sal. The modelled radial profile shows a younger centre which
jumps to higher values at around 2 kpc, and remains fairly flat
throughout the disc. The highest difference (∼0.082 dex) is seen
at the very centre.

We stress once more that Σ? spans a wider range compared to
Z? and t?, as described in Sect. 2.3. These differences should be
considered in regard to the results, meaning that Σ? is recovered
more accurately than Z? and t? even if it presents with a higher
scatter. In fact, the Pearson ρ coefficient (Table 4) shows a strong
correlation with Σ? (ρ ≈ 0.995), followed by Z? (ρ ≈ 0.878)
which is still recovered better than the general sample. However,
ρ ≈ 0.013 for t? points to stellar ages not being well recovered
for that galaxy at all.

4.4.2. TNG 294869

TNG 294869 (Fig. 6) is an example of a galaxy in which some
of the parameters are recovered less accurately. It is a moder-
ately star-forming (SFR ≈ 3.04 M� yr−1) galaxy with total stellar
mass 2.37 × 1010 M� and stellar half-mass radius 8.6 kpc. This
galaxy has a bright centre with visible spiral arms, a feature
where the algorithm generally struggles more in other galax-
ies as well. Both arms extend out of the disc; however, the
bottom arm extends further. The Σ? is predicted rather accurately

(−0.052+0.074
−0.086 dex scatter for the inner 13 kpc), but on a somewhat

lower scale in comparison to TNG 539333, and with R2 ≈ 0.890
(Table 4), it shows lower accuracy in comparison to the entire
test sample. In most regions, except for a few inner spiral fea-
tures, the algorithm over-predicts Σ? and this inaccuracy grows
further out, a feature visible in the radial profiles as well. The Σ?
takes the maximum in the central bin both for the true values, as
well as the model, followed by a stronger decrease until ∼4 kpc
where the decline somewhat evens out. The highest difference
(∼0.29 dex) is seen in the central bin, as the algorithm seems
to struggle the most with the central region of the galaxy. With
ρ ≈ 0.968, this galaxy shows a very similar correlation between
predicted and true values for Σ? as compared to the full sample.

Z? model shows a somewhat larger scatter to TNG 539333
(0.033+0.045

−0.047 dex). However, as with TNG 539333, Z? shows
somewhat of a reversal in the predicted values when compared to
Σ?. The innermost area of the galaxy shows a spherical feature
populated with high metallicity stars. The shape of this feature
is predicted by the algorithm; however, the values of Z? belong
to the most under-predicted values in the entire galaxy. The stark
contrast between the central bright feature, followed by a much
darker, metal poor disc is not recovered, as it seems that the Z?
map is again a scaled version of the Σ? map, where this contrast
between the centre and the remainder of the disc is not as promi-
nent. In fact, a number of bright, overestimated pixels around
the bright centre seen on the predicted Σ? map are also visible
on the Z? map, albeit scaled down. In all, Z? is not well pre-
dicted, with R2 ≈ 0.192 (Table 4), which is significantly lower
than the entire test sample. The radial profile for Z? assumes a
shape similar to Σ? but with a steeper drop from the metal-rich
central region; however, the area with r ≥ 4 kpc is somewhat
constant for the rest of the radial profile. The Z? radial profile
is rather well recovered in this area as well, and the highest dif-
ference (0.13 dex) belongs to the central bin. Similar to Σ?, the
Pearson correlation coefficient (Table 4) ρ ≈ 0.693 is fairly close
to the full test set (ρ ≈ 0.773).

Surprisingly, the actual spiral structure outside of the very
centre seen in the t? map is copied quite well, albeit mostly in
reverse. The algorithm over-predicts the age in the outer parts of
the galaxy, while under-predicting it in the spiral arms, with a
R2 ≈ −2.520 (Table 4), pointing to the algorithm not being able
to predict t? with any accuracy. Though interestingly, this value
is somewhat better than for TNG 539333. Stellar age seems
rather flat in the central region, while the actual map has visi-
ble structure, with younger stars concentrated in the very centre,
surrounded by a thick disc of older stars. The algorithm shows
a younger, albeit much smaller area at the very centre in a few
pixels; however, it struggles with the shape of the entire struc-
ture. The distant spiral arms in the outermost area of the galaxy
show some of the youngest ages in the entire galaxy that the
algorithm seems to struggle the most with, showing some of the
largest under-predictions. However, it is worth noting, as seen in
Fig. 3, lower values of t?, especially t? ≤ 2.5 Gyr, are very badly
recovered regardless of the ML algorithm employed. In the case
of this galaxy, the outermost regions fall within that range. t? for
TNG 294869 shows the highest scatter (−0.044+0.076

−0.078 dex) out of
all six cases discussed here, pointing to age being recovered the
least accurately when taking into account that it also spans the
smallest range. The radial profile is not that well recovered. The
central bin is strongly over-predicted, with the highest difference
(0.13 dex) in the entire disc. The model shows a young centre,
with age that decreases consistently until ∼6 kpc, where it then
reverses and continues increasing, but with a very high scatter in
the outer bins. The true values, on the other hand, show a young
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central bin, followed by a jump in age at the second bin (∼2 kpc),
and a decrease similar to the model. However, this decrease con-
tinues throughout the disc with a somewhat less steep fall at
r ≥ 4 kpc, but there is no reverse as there is in the model at
r ≈ 7 kpc. With ρ ≈ 0.082, this galaxy, as well as TNG 539333
show a much lower correlation for t? when compared to the full
test set.

It is worth noting that Z? is fairly under-predicted, while Σ?
and t? are both under-predicted for both of our example galax-
ies. In general, the trend for the entire test set, in case of RF and
DNN for when at least all four Euclid bands are used, shows the
reversal in the bias for Z? in comparison to Σ? and t? (Table 3).
Not shown here, but when visually inspecting full disc maps of
other test set galaxies, this trend was noticeable, though some-
times it is reversed, that is Z? may be generally over-predicted,
which is followed with Σ? and t? being under-predicted for the
same galaxy.

4.5. Effects of the projection angle: Face-on versus edge-on

When inferring galaxy properties, the orientation of the observed
galaxy should be taken into account. Each of the galaxies in
the TNG50-SKIRT atlas is projected at five random angles
fixed with respect to the simulation volume. When training our
machine learning algorithm, we only use one image per galaxy;
however, in case of our two example galaxies, we can directly
compare inferred galaxy properties both in face-on and edge-on
cases, as shown in Fig. 7.

The total accuracy scores for the edge-on case (Table 5)
do not deviate much from the face-on case for either galaxy;
however, the distribution of the pixels throughout the galactic
disc does. For example, in TNG 539333, Z? is under-predicted
throughout most of the disc in the face-on projection, but in the
edge-on case, it shows a strong over-prediction above and below
the galactic disc. Similarly, t? is over-predicted through most of
the disc, which slowly turns into an under-prediction at the very
edges in the face-on case, but in the edge-on case we can also
observe a strong under-prediction above and below the disc.

TNG 294869 shows a similar behaviour as well, where the
edge-on case prediction behaves quite similarly to its face-on
counterpart, while showing a strong deviation from the fit in
the area above and below the galactic disc. In these two exam-
ple galaxies we can conclude that, even if the DNN can predict
galaxy properties quite well, as is the case for Σ?, for example, it
struggles in the outer parts of the edge-on cases. In fact, it is the
edge-on cases where it becomes very prominent that the Z? and
t? maps behave in a manner very similar to a scaled version of
the Σ? map. This shows quite strongly in the residuals maps for
Z? and t?, specifically as the true values for these two properties
have a much stronger gradient throughout the galactic disc when
compared to Σ?, causing a very strong under- or over-prediction
in the edge-on cases of both galaxies.

5. Discussion

5.1. Non-linearity and the importance of colour

We use three different methods to predict Σ?, Z?, and t?, and to
test the linearity of their relationship in regard to Euclid obser-
vations. We compare our results in three different approaches:
using a single (best) Euclid band which in all cases proves to
be HE (though in the case of stellar age, a single band cannot be
used to model it, with R2 ≈ 0 in all cases), using all four bands,
and using ten features, consisting of four bands and six colours

modelled from them. The choice for this approach was partly
inspired by Acquaviva (2015), where the author shows that it is
possible to recover gas-phase metallicity from SDSS five-band
photometry with a RMSE < 0.1 dex, regardless of the ML algo-
rithm chosen. They attempt to include both colours and squared
colours into their input features, and show that, after M?, (g − i)
colour is the most important feature for low-z, and (g − z)2 for
high-z test sets. Our results behave differently, as the inclusion
of colour does not offer any additional benefit for any of the
galaxy parameters (at least in the case of RF and DNN, which
out-compete LR in every case). We believe that the difference
lies in the fact that Acquaviva (2015) was using optical colours,
which contain information on metallicity (Sanders et al. 2013),
while in our case, we are using IR colours which do not seem
to contain any additional information that the algorithms cannot
already glean from the information contained in the four Euclid
bands. While in this work we focus on the four Euclid bands,
as well as colours modelled from them, we did also test whether
additional information can be inferred from squared colours. The
results are shown in Appendix C. The improvements to the accu-
racy of our method are negligible, and for that reason we do not
include them in the main analysis.

Unfortunately, it can be difficult to disentangle the underly-
ing processes that drive a ML algorithm to make the predictions
that it makes. However, in this case, we assume that the reason
why the six additional colours do not offer any additional benefit
comes from the fact that they are easily derived from the four
Euclid bands (essentially by dividing two input features), which
should make them easily inferred by the algorithm, and thus they
do not offer any new information that cannot already be extracted
from the four bands during training. We test this by building a
model that predicts Euclid colours from the four bands, and in all
cases the algorithm converges very quickly with the worst accu-
racy (R2 = 0.9981, RMSE = 0.0113 dex) belonging to IE − HE.
The results can be seen in Appendix D. Either way, the addition
of six colours offers negligible benefits for RF at best, and while
in the case of DNN it helps the network to converge faster during
training, their inclusion becomes negligible during deployment,
and then it even comes with an additional computational cost,
however minor, that would have to be expended on the creation
of the colour maps for the new data. That is why, in the following
discussion, we focus solely on the case of the four Euclid bands.

Regardless of the choice of ML algorithm, Σ? of the sim-
ulated galaxy is predicted with a very high level of accuracy
(R2 = 0.927, RMSE = 0.130 dex, ρ = 0.963), followed by
Z? (R2 = 0.595, RMSE = 0.076 dex, ρ = 0.773), then t?
(R2 = 0.382, RMSE = 0.128 dex, ρ = 0.623) which neither of
the approaches is able to predict accurately. Of course, we would
like to stress once more that Σ? range spans several orders of
magnitude more than the other two properties (Sect. 2.3), mak-
ing the Z? and t? models seem better in comparison in regard to
the values of RMSE if that is not taken into account. Addition-
ally, the Pearson correlation coefficient, ρ shows a clearer pic-
ture, pointing to a strong correlation between inferred and real
Σ?, followed by Z?, and then t? which is very hard to infer with
ML.

Σ? shows a very strong linear relationship with the HE-band
surface brightness, and this is a preferred band regardless of the
choice of the algorithm. The accuracy increases with the addition
of the other three Euclid bands, but the increase is higher in the
case of RF and DNN, pointing to the fact that their relationship to
Σ? comes with more non-linear features. The case is similar for
Z?; however, the accuracy using only the HE-band surface bright-
ness is low enough that the addition of the other three bands
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Table 5. Accuracy scores (as defined in Sect. 3.3) for the three galaxy properties (Σ?, Z?, and t?) using four Euclid bands and a DNN for the
galaxy TNG 539333 O2 projection and TNG 294869 O1 projection as an example of edge-on cases.

Galaxy Pixel count Target R2 RMSE NMAD 〈∆Y〉 ρ

Σ?/
(
M� pc−2

)
0.971 0.098 0.0852 −0.0489 0.994

TNG 539333 30 171 Z? 0.665 0.081 0.0673 0.0394 0.893
t?/Gyr −1.522 0.097 0.0878 −0.0155 −0.345

Σ?/
(
M� pc−2

)
0.963 0.093 0.0991 0.0298 0.983

TNG 294869 38 116 Z? 0.175 0.089 0.1041 0.0664 0.769
t?/Gyr −0.918 0.130 0.1479 0.0778 0.015

Notes. Left to right: Galaxy; number of pixels; target; coefficient of determination (R2); root-mean-square error (RMSE); normalised median
absolute deviation (NMAD); and bias (〈∆Y〉, where Y represents the target galaxy property); Pearson ρ coefficient.
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Fig. 7. Full disc map of galaxy TNG 539333 O2 projection (upper) and TNG 294869 O1 projection (lower) for log10
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(middle), and t?/Gyr (right) as an example of edge-on projection. From top to bottom: The top row shows the actual values for each property
followed by the model created by a DNN algorithm on four Euclid bands, and the bottom row shows the residuals, where points in red (blue)
represent pixels where the actual values are higher (lower) than those in the model. Histograms contained in the lower left or right corner of the
residual maps show the distribution of error prediction (log10 yi − log10 ŷi, where yi is the actual i-th value, and ŷi is the predicted i-th value of the
pixel), dashed lines mark the 16th and 84th percentile of the distribution.
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creates a much better prediction, pointing to a stronger non-
linear relationship between the features. ML performs poorly
inferring t?, regardless of the choice of algorithm.

5.2. Mass-metallicity relation

Generally, stellar metallicity is a difficult quantity to model, as
it requires high-resolution observations in the optical range. The
fact that any of the ML algorithms are capable of modelling it
with such accuracy from Euclid observations requires a more
focused discussion.

Stellar metallicity scales primarily with stellar mass (and
quantities strongly related to it). This so-called stellar mass-
metallicity relation (sMZR; for an overview, see Sect. 5.1.1 in
Maiolino & Mannucci 2019) is originally based on global val-
ues due to the historical lack of spatially resolved data (e.g.
González Delgado et al. 2014), which makes it difficult to deter-
mine the influence of local processes within galaxies. This rela-
tionship also appears when modelling stellar metallicity using
ML. For example, Simet et al. (2021) use a neural network to
predict the distribution of metallicity on semi-analytic galaxies
tuned to match CANDELS observations (Lu et al. 2014), and
they find a strong relationship between stellar mass and stel-
lar metallicity in the simulations, which influences the accuracy
of their stellar metallicity predictions, even though the algo-
rithm itself is not aware of the complexity of underlying pro-
cesses which guide this relationship. Acquaviva (2015), build-
ing on the work by Sanders et al. (2013) on the SDSS-DR7
(Abazajian et al. 2009) data, test the non-linearity of a relation-
ship between a number of input features and gas-phase metal-
licity on the same data set. In the performance diagnostics of
their non-linear extremely randomised trees (ERT) estimator,
they show that mass is the most important feature for predict-
ing gas-phase metallicity; however, information about luminos-
ity, colours, and squared colours is required to better constrain
the relationship.

Our data is spatially resolved at 100 pc × 100 pc pixel scale,
and yet we notice a similarly strong relationship between Σ? and
Z? that positively affects the accuracy of predicting stellar metal-
licity. While the relationship between stellar mass and gas-phase
metallicity in the TNG has been discussed before (Torrey et al.
2019), in this section we focus on the relationship between Σ?
and Z? found in the simulation. We plot Z? against Σ? in Fig. 8
for our entire data set (left), as well as for the test data set, plot-
ting the predicted Z? values (top right), as well as the true Z?
values (bottom right), against true Σ?. We calculate a running
median, 16th and 84th percentile (light-blue points with error
bars) for each of the Σ? bins, showing a strong relationship
within the TNG50 simulation itself. We notice a tighter relation-
ship between the predicted Z?, when compared to the true Z?,
and Σ?, giving credence to our assumption that the surprisingly
high accuracy of modelling Z? is explained with this underlying
Σ?–Z? relation.

We also plot a number of examples from the literature
over the entire data set. For example, González Delgado et al.
(2014) investigate the relationship between stellar metallicity
and local mass surface density in 300 CALIFA integral survey
(Sánchez et al. 2012) spheroidal and disc dominated galaxies.
They find that metallicity in galaxies is driven by both global
(M?) and local (Σ?) processes, and conclude that the local Σ? is
an important driver of Z? in galaxies everywhere but their inner-
most, densest regions. Zibetti & Gallazzi (2022) use more than
600 000 individual regions of ∼1 kpc linear size from a sample
of 362 galaxies from the CALIFA integral survey as well, and

Table 6. Coefficients for the ordinary least squares LR, as used in
Eq. (10), with Euclid bands in units of MJy sr−1.

Ŷ IIE IYE IJE IHE b

Σ?/
(
M� pc−2

)
−11.113 4.941 2.156 7.924 1.446

Z? −4.823 0.549 −0.318 3.178 0.045
t?/Gyr −8.035 1.058 0.031 3.870 3.650

investigate how local properties are affected by both the local
stellar mass surface density, as well as the global stellar mass.
The authors derive a local stellar mass surface density-r-band
light weighted metallicity relation with a <0.1 dex scatter, inde-
pendent of stellar age, beyond a slightly higher (≤0.1 dex) metal-
licity at younger regions. In an earlier work, Zibetti et al. (2020)
already analysed a sample of 69 early-type galaxies from the
CALIFA survey, noting that the stellar metallicity and local mass
surface density relation is tighter (0.07 dex) than the relation
between galactocentric radius and Z? (0.10 dex), which points
to stellar mass surface density being a better predictor of stellar
metallicity than radial distance. Neumann et al. (2021) analyse
more than 2.6 million spatial bins from 7439 nearby galaxies
in the SDSS-IV MaNGA survey (Bundy et al. 2015) and derive
a local stellar mass surface density-metallicity relation (rMZR),
while also noting a positive trend of stellar age with both stellar
mass surface density and stellar metallicity. Baker et al. (2022)
discuss local mass-gas metallicity relation as well, and mention
gas-stellar metallicity correlation derived by Kauffmann et al.
(2003). However, Sánchez (2020) warn that the local stellar
metallicity-Σ? depends strongly on galaxy mass and morphol-
ogy, properties which we do not consider in this procedure.

MZR has been taken as prior in some SED fitting codes
on global scales (e.g. Webb et al. 2020; Bellstedt et al. 2021;
Thorne et al. 2022; Euclid Collaboration: Abdurro’uf et al., in
prep.), with some promising results, especially in cases where
photometry is too poor to measure metallicity. However, while
the derived relations may show marginally improved results in
extracting stellar metallicity, a caution should be taken since the
relation itself can be affected by sample selection and methodol-
ogy used.

While taking into account a number of issues with photomet-
ric based SED fitting (see, for example Nersesian et al. 2024, and
references within), the strong relationship we find between Σ?
and Z? on local scales in TNG50, as well as in several surveys
outlined earlier makes for an interesting case for the addition of
a rMZR prior to the SED fitting procedure to better constrain
stellar metallicities on resolved scales.

5.3. Linear regression as a baseline

Using ordinary least squares LR, which assumes a simple linear
relationship between the input features and the output target, we
can extract the slopes for each of our input parameters, as well
as the intercept, used to model our target feature

log10 Ŷ =

4∑
i=1

ai log10 Xi + b, (10)

where Ŷ is the modelled galaxy property (target:
Σ?/

(
M� kpc−2

)
, Z?, or t?/Gyr), and X are the observa-

tional surface brightnesses of the four Euclid bands (input
features: IE, YE, JE, and HE) in units of MJy sr−1. We show these
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the median, 16th and 84th percentile of the values of log10 Z? per each log10 Σ? bin. Left: The entire data set, consisting of 71 120 654 individual
pixels. Only areas with ≥1000 pixels are included. Full, dashed, dash-dotted, and dotted lines represent fits from González Delgado et al. (2014),
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values in Table 6. HE most strongly correlated with all three
galaxy properties, while IE shows the strongest anti-correlation.
However, as discussed in Sect. 4, HE shows a strong linear
relationship with Σ?, while other relationships fall into a more
complex, non-linear regime.

5.4. Interpretability of machine learning predictions

Machine learning could offer a fast alternative to traditional
methods when predicting galaxy parameters from mock obser-
vations, and with modern libraries does not come with a steep
learning curve. Prior to our choice of RF, and DNN as the algo-
rithms used to constrain galactic parameters from Euclid obser-
vations, we tested a number of other ML algorithms (AdaBoost,
Extremely randomised trees, Ridge regression, Support vector
machine, and MLPRegressor from the scikit-learn Python
library) on a subset of our data set, and they all showed a sim-
ilar level of accuracy with the default values of their hyper-
parameters. It is highly unlikely that the choice of algorithm
would have a drastic effect on the final result, with the excep-
tion of the linear methods, as a number of relationships within
our data set are non-linear, an effect that most likely stems from
the fact that galaxies are complex systems with a complex for-
mation and evolution history.

To test the non-linear component we choose RF, as it is a
fairly beginner-friendly algorithm well guarded from user error,
and is inherently good at avoiding over-fitting. In our case it also
shows really high accuracy that can compete with a far more
complex and computationally demanding DNN. RF takes up to
several hours to train on an average desktop machine on a sample
of over 1000 resolved galaxies when used out-of-the-box, and in
this work we dedicated an effort to refine its hyper-parameters

until the learning process took less than an hour without any
losses to the accuracy.

In fact, due to its speed and interpretability, it should be a
preferred algorithm for this work, since a DNN introduces a lot
of complexity that is much harder to disentangle with the current
tools. One of the main issues with using ML in general arises due
to the opaque way in which ML algorithms operate. The goal of
this work also extends to understanding the relationship between
the observations and the galaxy properties that were mapped to
them.

5.4.1. Random forest and feature importance

As an ensemble method, RF offers feature importance (Gini
index; Jost 2006), which ranks the features according to how
much they contribute to the final prediction of the algorithm.
The algorithm also introduces a certain level of randomness
into feature selection, meaning that at each start of training, the
algorithm chooses a new, random subset of input features, thus
avoiding the possibility of a strong feature taking over during
training, but also removes the requirement of having to shuf-
fle features when loading them into the algorithm to avoid the
risk of the first loaded feature being assigned higher importance
than the ones loaded later. The values for feature importance
are shown in Fig. 9. HE ranks as by far the most important fea-
ture for Σ?, and as we have seen earlier, mostly relates to Σ?
in a linear regime; however, the rest of the bands do offer an
additional non-linear information that increases the predictive
power for RF. The situation is somewhat similar, albeit weaker,
for Z?, which is an expected result due to the resolved mass-
metallicity relation inherent in the cosmological simulation.
None of the Euclid bands show a strong importance in modelling
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Fig. 9. Feature ranking for RF predictions of Σ?, Z?, and t?. HE is ranked
as the most important feature for Σ? and Z? (91.5% and 58.6% respec-
tively), while IE (36.8%) and HE (32.7%) are the two most important
features for t?.

t?, and t? cannot be recovered accurately with ML from Euclid
observations.

5.4.2. Choice of algorithm and missing data

In addition to feature importance offered by the RF, we also used
the leave-one-feature-out (LOFO) method to assess the amount
of information contributed to our result from each of the four
Euclid surface brightnesses. In this method, we repeat the ML
algorithm training process for each of the three galaxy param-
eters, but each time we leave out one of the four input features
and compare the changes in the accuracy on a metric of choice.
In our case, we decided on RMSE:

LOFOX =
RMSEX − RMSE

RMSE
, (11)

where X is one of the input features left out during training (IE,
YE, JE, or HE). We show the results in Table 7. We repeat the same
procedure for both our ML algorithms, RF and DNN. For RF,
the accuracy of the prediction is most strongly affected with the
removal of IE, with LOFOIE being at least several times higher
than the next highest value), and then HE, but in the case of the
latter, the decrease is very minor. This is followed by JE, and then
YE, whose removal has the smallest effect on RMSE for each of
the three galaxy parameters. This may seem to contradict the
feature importance values shown in Sect. 5.4.1, pointing to the
necessity of using several methods when trying to interpret a ML
model.

We explore this further in Fig. 10, where we plot the dis-
tribution of both the true and the inferred values for our entire

data set. There it becomes obvious that the removal of IE mostly
affects the lower part of the distribution in case of all three galaxy
parameters, while the effect of other three Euclid bands seems
very minor and spread through the distribution. Only in case of
Z? does HE have a prominent effect mostly on the lowest end.

DNN behaves quite similar to RF for most of our target val-
ues, except in the case where we try to predict t? without includ-
ing the IE. As mentioned earlier, t? cannot be inferred accurately
even when using the entire data set, and the removal of YE, JE,
or HE has only a minor effect on the already quite low accuracy.
However, as most information on the lower end of the distribu-
tion seems to be contained within IE, this effect is very strong in
the case of RF, where the Pearson ρ coefficient drops from 0.6 to
0.36, while in the case of DNN ρ remains quite high at 0.59. We
believe this makes a strong case for considering different algo-
rithms when trying to infer data with ML. While both RF and
DNN show similar results when using the entire data set and,
as we mentioned earlier (Sect. 5.4), due to its speed and better
interpretability, RF should be the better choice of an algorithm
for our work, LOFO analysis shows the superior power of neural
networks when managing missing data.

Unlike RF, DNN requires a dedicated computer architecture.
Still, the algorithm was trained in under three days on the VSC
Tier dedicated GPU machine. Once trained, the model can easily
be saved and deployed on new galaxies, as well as new computer
infrastructure. In fact, it only takes several minutes to finish mod-
elling a map of a single galaxy on a sub-kpc (100 pc×100 pc) res-
olution on an 11th generation Intel i7 2.30 GHz 16-core laptop,
something that is unfortunately still not possible with traditional
methods, such as SED fitting. As the most complex method of
the three used in this work, DNN is also hardest to interpret,
but with the recent advances in ML, a number of methods have
been developed to offer better interpretability of various algo-
rithms, which should make using neural networks to solve astro-
physical problems more feasible in the future (for an overview
on interpreting neural networks, see e.g. Vilone & Longo 2021;
Longo et al. 2024).

Regardless, as our results show, the choice of the algorithm
only has a very minor effect on the accuracy of inferring galaxy
parameters from Euclid observations on the full data set, with the
differences only becoming prominent in the case of missing data
and hard to infer values. All of these properties need to be taken
into account when choosing the best machine learning algorithm
for the task.

6. Summary

In this work, we have tested the viability of using supervised ML
to map mock Euclid observations of nearby galaxies with galaxy
parameters extracted from the Illustris TNG50 simulation and
processed by the Monte Carlo radiative transfer code SKIRT on
sub-kiloparsec scales. We tested three distinct methods, an ordi-
nary least squares LR and two ML algorithms (RF and DNN)
with three different choices of input parameters, single Euclid
band, all four Euclid bands, and ten input parameters consisting
of both the four Euclid bands and six Euclid colours modelled
from them, for three galaxy parameters, stellar mass surface den-
sity, mass-averaged stellar metallicity, and stellar age.

We showed that when using a single band, the HE band per-
forms the best when predicting Σ? and Z? in the case of all three
algorithms. It is the most important input feature according to
RF and has the second-strongest effect on the accuracy during
the LOFO analysis. On the other hand, IE is shown to be the sec-
ond most important feature when building a tree in RF, but it
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Table 7. Accuracy scores (as defined in Sect. 3.3 for the three galaxy properties (Σ?, Z?, and t?) for the LOFO analysis for the two ML algorithms
(RF DNN).

RF DNN

Target Feature R2 RMSE LOFO fout NMAD 〈∆Y〉 ρ R2 RMSE LOFO fout NMAD 〈∆Y〉 ρ

Σ?/
(
M� pc−2

)
IE 0.872 0.1727 0.3199 0.0712 0.1502 −0.0066 0.934 0.872 0.1724 0.3250 0.0706 0.1498 −0.0063 0.934
YE 0.920 0.1365 0.0431 0.0379 0.1143 −0.0010 0.959 0.912 0.1428 0.0975 0.0450 0.1173 −0.0034 0.955
JE 0.918 0.1383 0.0570 0.0400 0.1143 −0.0010 0.958 0.918 0.1379 0.0597 0.0397 0.1140 −0.0009 0.958
HE 0.912 0.1432 0.0944 0.0450 0.1171 −0.0013 0.955 0.913 0.1427 0.0966 0.0445 0.1169 −0.0020 0.955

Z? IE 0.477 0.0866 0.1274 0.0029 0.0806 0.0007 0.692 0.479 0.0864 0.1327 0.0029 0.0802 0.0011 0.694
YE 0.549 0.0804 0.0469 0.0009 0.0758 0.0000 0.743 0.524 0.0826 0.0823 0.0012 0.0784 −0.0023 0.726
JE 0.544 0.0808 0.0524 0.0010 0.0763 0.0000 0.740 0.546 0.0806 0.0567 0.0010 0.0761 0.0003 0.741
HE 0.531 0.0820 0.0678 0.0012 0.0769 0.0000 0.731 0.533 0.0818 0.0723 0.0012 0.0768 0.0011 0.732

t? /Gyr IE 0.123 0.1531 0.1861 0.0462 0.1252 −0.0123 0.359 0.338 0.1330 0.0355 0.0317 0.1046 −0.0072 0.587
YE 0.349 0.1319 0.0215 0.0305 0.1045 −0.0081 0.595 0.351 0.1317 0.0255 0.0303 0.1043 −0.0079 0.597
JE 0.349 0.1319 0.0219 0.0307 0.1042 −0.0073 0.596 0.351 0.1317 0.0256 0.0306 0.1039 −0.0070 0.597
HE 0.336 0.1332 0.0321 0.0319 0.1049 −0.0073 0.585 0.337 0.1331 0.0360 0.0318 0.1047 −0.0070 0.586

Notes. Left to right: Target; Euclid surface brightness removed for LOFO analysis; coefficient of determination (R2); root-mean-square error
(RMSE); LOFO importance; fraction of catastrophic outliers ( fout); normalised median absolute deviation (NMAD); and bias (〈∆Y〉, where Y
represents the target galaxy property); Pearson ρ coefficient.

has the strongest effect in the LOFO analysis, showcasing the
importance of using several methods when trying to analyse ML
results. Specifically, IE seems to carry the most information from
the lower end of the distribution for all three galaxy parameters,
while HE affects the entire range. Any single band cannot be used
to model stellar age (with R2 ≈ 0 in all four cases).

We showed that the accuracy of modelling Σ? with only the
HE band is very high, with similar values of R2 for all three algo-
rithms, pointing to a strong linear relationship between Σ? and
the HE-band surface brightness. However, the accuracy increases
slightly with the introduction of the three other bands, with this
increase being higher in the case of RF and DNN, indicating that
the information gained from the IE, YE, and JE bands belongs to
a more non-linear regime. The introduction of colour does not
offer any significant increase to accuracy, pointing to the fact
that ML can extract all the necessary information from the four
Euclid bands.

We also presented full disc maps of our model for two exam-
ple galaxies: TNG 539333, which represents a better outcome,
and TNG 294869, as an example of a worse outcome. We note
that the model performance struggles around more complex fea-
tures (for example, spiral arms or dusty features) and on the out-
skirts of the galactic disc with low surface brightness, where the
effects of Monte Carlo noise become more prominent. Addition-
ally, we compared both face-on and edge-on projections for these
galaxies and showed that even in cases of good prediction, the
algorithm struggles in the outer parts of the edge-on cases, that
is, the most distant regions above and below the galactic disc.

As expected, we cannot model stellar age from the Euclid
observations; however, we do get an unexpectedly high accu-
racy when modelling Z?, and the behaviour of the predictions is
similar to Σ?. We would not expect to be able to extract the infor-
mation on Z? from the Euclid observations due to the fact that
Z? is extracted from spectral absorption features in the optical
regime, which only the IE-band covers, but the IE-band itself is
too broad. However, we noticed a strong relationship between
Σ? and Z? within the TNG50 simulation, which explains the
unexpected quality of the Z? prediction. We compared this find-
ing to earlier studies done on simulated (EAGLE) and observa-
tional (CALIFA, MaNGA) data. While the MZR is a well-known
galactic relation on global data, in this work we hypothesise that

this relation could be used on resolved (sub-kiloparsec) data as
well.

7. Implications for Euclid

With the observations of thousands of nearby galaxies that we
expect to get access to with Euclid, traditional methods used to
extract galaxy parameters, such as SED fitting, become unfea-
sible due to their large computational time requirements. In this
work, we offer an alternative method that has become standard
in analysing large amounts of data. We trained two distinct ML
algorithms on mock images of 1154 nearby galaxies extracted
from the TNG50 simulation, compared them to an ordinary least
squares LR, and showed that it is possible to map Euclid obser-
vations to stellar mass surface density on the sub-kiloparsec level
with a high accuracy in a short amount of time. We also showed
that though mapping Euclid observations to stellar metallicity
and age is less robust, the information still holds value as a first-
order approximation of stellar metallicities across large samples.

It is nevertheless important to stress that this work was per-
formed on idealised data. The ML procedure offers a very lim-
ited ability to analyse the underlying relationship between the
input parameters and the output targets. The goal of this work
was to focus on the pure physical properties, as this is the nec-
essary first step in trying to apply machine learning algorithms
to real life data. The inclusion of noise could potentially intro-
duce additional complex underlying relationships that could be
difficult to properly account for without the baseline set here.
For this reason, we could not determine the aleatoric uncer-
tainty of our algorithms. As a reminder, there are two types
of uncertainties possible in an ML procedure: epistemic uncer-
tainty, which is caused by the stochasticity present in the algo-
rithm itself and informs one of how uncertain the algorithm is
in its prediction, and aleatoric uncertainty, which is caused by
the presence of observational noise in the data set. For a dis-
cussion on epistemic uncertainty, which has been assessed in
this work, we refer to Sect. 3.4. We plan to assess the aleatoric
uncertainty in the future, for which we will have to perform the
entire ML procedure first on idealised data and then on data with
noise added to it. This will require adding a field of stars to
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Fig. 10. Same as Fig. 3 but for LOFO analysis. Left to right: Predicted value when all four Euclid bands are used followed by four cases where the
model was trained without one of the Euclid bands (marked in the upper-left corner). The LOFO importance is shown at the far right, calculated
as Eq. (11). For each of the three target values, the top row shows the case when using RF and the bottom row when using DNN.

mimic the presence of contaminants, Poissonian noise to mimic
effects of photon shot noise, Gaussian noise to simulate obser-
vational background, and RMS noise to assign uncertainties to
the images themselves. For details on this procedure, we refer
to Euclid Collaboration: Merlin et al. (2023). The resolution of
the images will differ from the current 100 pc × 100 pc once the
Euclid PSF is taken into account, potentially affecting the accu-
racy of our method. However, we have performed some initial
tests on different resolutions, and they have shown that the effects
of resolution should be very minor at best.

Additionally, we have treated each pixel as an individual
data point, ignoring the spatial information that could be gar-

nered from the neighbouring pixels. This information could be
accessed, for instance, via a CNN setup, which we plan to deploy
in a future work. That way, having both the information con-
tained in individual pixels as well as when including the spa-
tial information from the neighbouring pixels, we should be able
to gain a better understanding of how much spatial information
contributes to the accuracy of inferring galaxy parameters with
ML.

Another potential way to improve these results would be to
take advantage of the relationships between our three targets and
use chained regression (e.g. Euclid Collaboration: Humphrey
et al., in prep.). In our initial tests, the inclusion of Σ? in the
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input features increased the accuracy in modelling Z?, and the
inclusion of Z? increased the accuracy in t?. We also plan to
combine the Euclid data with other (specifically optical) data
to test how much we can increase the accuracy of ML at pre-
dicting galaxy properties from observations. We are also aware
of the fact that algorithms on simulated data might not transfer
well into actual observations (e.g. Zanisi et al. 2021, where the
authors notice a discrepancy between simulated galaxies from
TNG50/TNG100 simulations, and SDSS). And finally, we will
test our model on actual observations and compare it with tradi-
tional methods currently being developed (Euclid Collaboration:
Abdurro’uf et al., in prep.; Euclid Collaboration: Nersesian et al.,
in prep.) in order to see how feasible it is to use supervised ML to
accurately infer galaxy parameters, such as Σ?, Z?, and t?, from
actual Euclid observations.
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Appendix A: Effect of including additional
projection angles

Here, we use a subset of 200 randomly selected galaxies to test
whether the inclusion of other projections would affect the pre-
diction accuracy of our ML algorithm. As a test set, we set
aside 50 random galaxies, each of them at one random projection
angle, totalling ∼ 2.7 million pixels. The remaining 150 galaxies
are used to train the algorithm. First, we use only one projection
angle O1, then two (O1 and O2), in each step adding an addi-
tional angle projection until all five projection angles (O1–O5)
are used. The accuracy scores are located in Table A.1.

Table A.1. Coefficient of determination (R2) for a DNN using the four
Euclid surface brightnesses on a subset of 200 randomly selected galax-
ies and including different projections.

Projection angles Pixel count R2 (Σ?) R2 (Z?) R2 (t?)

O1 8 912 000 0.9319 0.5452 0.3009
O1, O2 17 774 522 0.9322 0.5484 0.3015
O1, O2, O3 26 411 564 0.9320 0.5899 0.3116
O1, O2, O3, O4 34 809 544 0.9323 0.5490 0.3115
O1, O2, O3, O4, O5 43 214 225 0.9324 0.5529 0.3116

Appendix B: The effect of sample bias

There is a slight bias between our training and test sets, as shown
in Fig. 2. For this reason, we apply our trained algorithms on both
the test and the training sets. The accuracy scores between these
two sets, shown in Tab. B.1, are within the 10% difference.

Table B.1. Accuracy scores (as defined in Sect. 3.3) for the three target
galaxy properties (Σ?, Z?, and t?) inferred using the four Euclid surface
brightnesses for the training and test sets with the RF ML algorithm.

Train Test Diff. (%)

Target R2

Σ? /
(
M� pc−2

)
0.937 0.927 1

Z? 0.606 0.592 2.4
t? /Gyr 0.419 0.382 9.7
Target RMSE
Σ? /

(
M� pc−2

)
0.1219 0.1308 6.8

Z? 0.0805 0.0765 5.2
t? /Gyr 0.1279 0.1285 9.7
Target ρ

Σ? /
(
M� pc−2

)
0.968 0.963 0.5

Z? 0.778 0.771 0.9
t? /Gyr 0.647 0.622 4

Notes. Left to right: targets; coefficient of determination (R2); root-
mean-square error (RMSE); Pearson ρ coefficient.

Appendix C: The effect of squared colours

As this work was partly inspired by Acquaviva (2015), we also
test the effect of using squared colour could offer a higher accu-
racy when inferring galaxy parameters from mock Euclid obser-
vations. We used our DNN set-up, as described in Table 2 in

Sect. 3.1.The results are shown in Table C.1. The differences, if
any, are minor at best, once again giving credence to our conclu-
sion that it is possible to infer galaxy parameters using only the
four Euclid bands, as the algorithm is capable of extracting all
of the information contained within them, without the need of
modelling additional colours.

Table C.1. Accuracy scores (as defined in Sect. 3.3) for the three target
galaxy properties (Σ?, Z?, and t?) inferred using the four Euclid surface
brightnesses, six colours modelled from them, and six squared colours
using a DNN.

Target R2 RMSE fout NMAD 〈∆Y〉 ρ

Σ? /
(
M� pc−2

)
0.927 0.130 0.0325 0.1088 0.0020 0.963

Z? 0.595 0.076 0.0007 0.0719 0.0024 0.773
t? /Gyr 0.382 0.128 0.0281 0.0994 −0.0017 0.623

Notes. Left to right: Target; coefficient of determination (R2); root-
mean-square error (RMSE); fraction of catastrophic outliers ( fout); nor-
malised median absolute deviation (NMAD); and bias (〈∆Y〉, where Y
represents the target galaxy property); Pearson ρ coefficient.

Appendix D: Inferring colours from Euclid surface
brightnesses

Here, we test the accuracy of inferring the six colours modelled
with the four Euclid surface brightnesses using a DNN with the
same set-up as Table 2. In all cases, the network converges very
quickly (in under 100 epochs), and with the accuracy shown in
Table D.1, we conclude that using colours to infer galaxy param-
eters does not offer any additional benefit to our method.

Table D.1. Accuracy scores (as defined in Sect. 3.3) for the six Euclid
colours inferred from the four Euclid brightnesses using a DNN.

Target colour R2 RMSE

(IE − YE) 0.999 0.004
(IE − JE) 0.999 0.003
(IE − HE) 0.998 0.011
(YE − JE) 0.999 0.009
(YE − HE) 0.999 0.005
(JE − HE) 0.999 0.005

Notes. Left to right: Target colour; coefficient of determination (R2);
root-mean-square error (RMSE).
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