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A B S T R A C T

The wear resistance of physical vapor deposition (PVD) coatings is heavily influenced by their elastic and plastic 
properties. These properties serve as essential inputs for finite element method (FEM) simulations of the ther
momechanical load experienced by the coating during the cutting process to predict tool wear, including the 
elastic modulus for the characterization of elastic properties and parameters of the Ludwik-Hollomon model for 
plastic behavior. In this study, machine learning models are developed to directly map load-depth curves from 
nanoindentation to elastic modulus and Ludwik-Hollomon parameters of the coating. A FEM simulation model of 
nanoindentation is employed to generate a dataset comprising load-depth curves from a wide range of input 
mechanical properties. For each definition of mechanical properties, simulations of nanoindentation at two 
different indentation forces are run to generate the dataset. Several machine learning models including support 
vector regression (SVR), multilayer perceptron (MLP), long short-term memory (LSTM) and gated recurrent unit 
(GRU) are then trained, validated and compared using this dataset. The inputs to these models consist of 
simulated load-depth curves, with the target being mechanical properties of coatings. Among these machine 
learning models, SVR achieves the best accuracy for predicting elastic modulus and GRU achieves the best ac
curacy for predicting plastic properties. Ultimately, a hybrid model combining SVR and GRU is used to predict 
mechanical properties of TiAlCrN coatings using experimental load-depth curves. FEM simulations using the 
predicted mechanical properties show good alignment with nanoindentation experiments at two different forces. 
The determined properties can serve as input parameters for FEM models simulating thermomechanical load 
during the cutting process.

1. Introduction

Coatings deposited via physical vapor deposition (PVD) are exten
sively used to protect cutting tools from high thermomechanical load 
during the cutting process [1]. A commonly used approach to predict 
tool wear during the cutting process involves first simulating thermo
mechanical load experienced by the coating using finite element method 
(FEM), followed by tool wear calculation based on the simulated load [2,
3]. Such simulations can also help deeper insights into the underlying 
tool wear mechanisms. A prerequisite for accurately simulating the 
thermomechanical load is a precise evaluation of the mechanical prop
erties of coatings, including both elastic and plastic behavior. Conven
tional tensile and compression tests commonly used to obtain 
stress-strain curves of bulk materials are difficult to apply to PVD 
coatings, which are at a quite different length scale. Therefore, 

developing a universally applicable approach for accurately character
izing stress-strain relationship of coatings is significant.

Nanoindentation is commonly used to assess coating mechanical 
behavior under external loads. During nanoindentation, the indenter 
penetrates deeper into the coating under increasing loads and will be 
withdrawn during an unloading phase. Throughout nanoindentation, 
sensors continuously monitor the load and indentation depth in real- 
time. Load-depth curves can be generated from measurements for 
further analysis. In the initial phase, at low load, the coating undergoes 
elastic deformation. Young’s modulus E serves as an indicator for 
evaluating the elastic deformation behavior during this phase. As the 
external load increases, ceramic nitride PVD coatings, though not 
metals, exhibit plastic deformation through a grain boundary sliding 
(GBS) mechanism [4]. While the mechanisms of plastic deformation 
differ between metals and ceramic coatings, models describing the 
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plastic deformation behavior of metals, e.g., Voce model and 
Ludwik-Hollomon model remain potential candidates for describing the 
plastic behavior of ceramic coatings [5]. The main challenge is that, 
unlike Young’s modulus E, which can be directly calculated from 
load-depth curves in nanoindentation using Oliver-Pharr method [6], 
parameters of the plastic Voce and Ludwik-Hollomon models cannot be 
derived from load-depth curves.

To address this issue, several analytical methods based on experi
mental nanoindentation data have been developed to extract the stress- 
strain curve from load-depth curves of nanoindentation. In Ref. [7] the 
stress-strain curve is derived from the nanoindentation load-depth data 
by refining the definition of indentation strain and correcting the 
effective zero-point of contact, based on Hertz’s theory [8] and addi
tional geometrical approximations. This approach involves two steps: 
first determining the effective zero-point and then estimating the con
tact radius. A major constraint of this approach is the significant addi
tional experimental workload. To obtain each point on the stress-strain 
curve, a complete loading-unloading cycle should be performed at a 
specific load level, requiring multiple nanoindentation tests at various 
loads to construct the full curve.

Apart from analytical methods, several inverse approaches using 
FEM have also been developed. In these approaches, the nano
indentation process is simulated using FEM with manually initialized 

coating parameters based on literature. These parameters are then 
iteratively adjusted to achieve a good alignment between the experi
mental and simulated results. The criteria for a good match could be 
based on either load-depth curves or the residual indent profiles [5,9]. 
The iterative adjustment of coating parameters can be performed 
manually, guided by the analysis of the relation between load-depth and 
stress-strain. In Ref. [10] the plastic tangent moduli M is determined step 
by step, at each small increment of indenter penetration, the 

Fig. 1. The illustration of holistic methodology.

Table 1 
Process parameters used for depositing the TiAlCrN coatings.

Process parameter Unit Value

Process gas ​ Ar
Reactive gas ​ N2

Argon flow jAr ml/min 200
Nitrogen flow jN2 ml/min Pressure under control
Pulse frequency f Hz 2000
Pressure p mPa 520
Substrate bias UB V − 60
Heating power PH W 8800
Power HPPMS-TiAl48 PHPPMS-TiAl48 W 7000
Power HPPMS-TiAl20 PHPPMS-TiAl20 W 7000
Power dcMS-Cr PdcMS-Cr W 300
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corresponding plasticity tangent moduli is iteratively adjusted until the 
simulated indentation force matches the experimental result. Using the 
tangent moduli obtained at each step together with the strain read from 
the simulation model, the stress for each step can be calculated. 
Repeating this process yields the complete stress-strain curve in the end. 
In Ref. [11], parameters of the Ludwik-Hollomon model for direct cur
rent magnetron sputtering (dcMS) and high-power pulse magnetron 
sputtering (HPPMS) CrAlN coatings are iteratively adjusted by focusing 
on the simulation at two key points: full load and the half of the 
maximum force during the loading curve. The drawback of this manual 
approach is that the optimization process lacks rigorous mathematical 
support. Therefore, the required number of iterations highly depends on 
the experimenter’s experience.

Apart from the manual approach, the parameters could also be 
automatically optimized utilizing mathematical optimization algo
rithms. In Ref. [12], the parameters of the Swift unsaturated hardening 
model and the Voce saturated hardening model for the TiN coating are 
optimized using the Levenberg-Marquardt algorithm, with the optimi
zation target set to minimize the mean squared error between experi
mental and simulated load-depth curves. Another algorithm is 
Nelder-Mead optimization algorithm, which is used in Ref. [5] to 
determine parameters of the Ludwik-Hollomon model for as-received Cu 
and annealed Cu. The limitation of these methods lies in the lack of prior 
knowledge in material science. When using the initialized parameters, 
the first 30–40 iterations exhibit a significant deviation between the 
experimental results and the simulation. The fine-tuning begins after 40 
iterations. In the end, it takes more than 50 iterations for the iterative 
adjustment to converge, making the process time-consuming [5,12].

In the past decade, machine learning, particularly deep learning 
based on large-scale deep neural networks, has made significant prog
ress and achieved remarkable advancements in applications e.g., 
autonomous driving [13] and medical diagnosis [14]. Machine learning 
can generate an accurate map from input features to target outcomes, 
provided there is sufficient training data. The machine learning method 
has also been combined with the inverse FEM-approach to determine 
plastic properties of the coating. In Ref. [15], a Support vector regressor 
(SVR) is trained to predict load-depth curves from the parameters of the 
first term of the Johnson-Cook model, using FEM-simulated data for 
training. Given a load-depth curve, the Johnson-Cook parameters can 
then be optimized via Particle Swarm Optimization (PSO) to make the 
SVR-predicted load-depth curve closely match the given one. However, 
this approach is limited by the low precision of the load-depth curve 
prediction. In Ref. [15], the reported prediction error ranges from − 22 
mN to 18 mN for nanoindentation at Fmax = 40 mN. There are several 

similar studies testing models only on the simulation data, without the 
application on real experimental data [16,17].

Despite progress in combining machine learning with inverse FEM 
for plastic parameters determination, a research gap remains in devel
oping models with sufficient accuracy for real-world applications. 
Bridging this gap requires addressing several key questions. The first 
question is to choose the most appropriate model among the wide range 
of classical machine learning algorithms and deep learning neural net
works. Moreover, it remains an open question to improve model per
formance from the feature level. For practical deployment, the minimum 
amount of training data required to ensure reliable predictions should be 
known to minimize development time. Finally, the model with good 
prediction accuracy on simulation data should be validated on real 
experimental data and its generalization ability should be tested.

This work aims to develop a model which can accurately map 
experimental load-depth curves to stress-strain relationship of PVD tool 
coatings. In this work, Hooke’s stress-strain relation is employed to 
define the elastic stress-strain relationship of coatings: 

σ = Eε 1 

where E is the Young’s modulus.
Additionally, the Ludwik-Hollomon model is used to define the 

plastic stress-strain relationship of coatings: 

Fig. 2. Preprocessing of experimental nanoindentation data: outlier removal and computation of the average load-depth curve from the remaining measurements.

Fig. 3. FEM simulation of the nanoindentation process, incorporating the 
spherical indenter, the coating and the substrate.
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σ = A + Bεn 2 

where A represents the yield stress, B is the coefficient, and n is the 
exponent.

The task is then to directly predict the three parameters E, A and B 
from load-depth curves using machine learning, with n fixed as n = 0.4. 
The rationale for setting n = 0.4 is explained in Section 2.4. The holistic 
methodology is illustrated in Fig. 1.

The first step involves generating the dataset by setting various 
combinations of three parameters, i.e., E, A and B in a FEM model and 
running simulations of nanoindentation. Using the simulated dataset, 
machine learning models are trained, validated and tested in the second 
step. This study presents a comprehensive comparison of various 
models, including classical machine learning algorithms and deep 
learning neural networks with different structures, to develop a model 
with high prediction accuracy. The models evaluated include the Sup
port vector regressor (SVR), multilayer perceptron (MLP) and two 

recurrent neural networks (RNN) variants: long-short term memory 
(LSTM) and gated recurrent unit (GRU). Their performance is further 
assessed on datasets with varying sizes to examine the effect of data 
quantity on model performance. A hybrid model combining models 
showing best performance in evaluation is chosen for application.

Furthermore, feature study is done to investigate how to improve 
model performance from the feature level and shows that using simu
lated load-depth curves under two maximum forces as input data can 
increase the prediction accuracy of B compared to using only a single 
load-depth curve. The feature importance of each depth value is also 
investigated using least absolute shrinkage and selection operator 
(Lasso) algorithm [18].

Finally, the hybrid model trained on simulation data is applied to 
experimental nanonindentation data. The predicted coating parameters 
are given to the FEM simulation model to see the alignment between 
experimental and simulated load-depth curves. In this study, the 
developed model is used to investigate mechanical properties of several 
TiAlCrN coatings with varying coating thicknesses, validating the 
generalization of the approach.

2. Experimental details

2.1. Coating deposition

The TiAlCrN coating requiring investigation is deposited on the 
cemented carbide substrate (WC-Co with 6 wt% Co) supplied by 
CERATIZIT GmbH, Luxemburg, using an industrial CC800/9 HPPMS 
coating unit from Cemecon AG, Würselen, Germany. Two HPPMS power 
supplies are connected to TiAl48 and TiAl20 targets, while a dc power 
supply is connected to the Cr target during the coating deposition. The 
process parameters are shown in Table 1. By adjusting the coating 
deposition time, coatings with three different thicknesses are achieved 
for further investigation of the model’s generalization ability to coatings 
with varying thicknesses.

2.2. Coating characterization

The morphology of the coating is evaluated using scanning electron 
microscopy (SEM) at Central Facility for Electron Microscopy GFE, 
RWTH Aachen University, where the chemical composition is also 
determined using energy dispersive X-ray spectroscopy (EDX). The 
experimental load-depth curves from nanoindentation are obtained 
using a TI950 Triboindenter from Bruker Corporation, Billerica, Mas
sachusetts, USA, equipped with a spherical indenter of tip radius r = 10 
μm. Nanoindentations are conducted on the TiAlCrN coating using the 
maximum forces of Fmax = 70 mN as well as Fmax = 150 mN. The selected 
force in this range is intended to minimize the effect of the surface 
roughness and crack behavior during nanoindentation. The nano
indentation process comprises sequential loading process and unloading 
process. During loading, the indentation force gradually increases from 
F = 0 mN to Fmax over 5 s. This is followed by a 3-s holding period before 
the unloading phase, in which the force is continuously reduced from 
Fmax to F = 0 mN over 5 s. Fifty indentations should be performed on the 
coating. The processing of these fifty indentations as experimental data 
is illustrated in Fig. 2. Among these indentations, several outliers are 
identified and excluded. The remaining curves, representing the main 
cluster, were retained for further analysis. An average load-depth curve 
is then calculated from the remaining indentation curves of the main 
cluster to statistically characterize the elastic and plastic behavior of the 
coating.

2.3. Finite element simulation

In addition to real nanoindentation experiments, the nano
indentation process is also simulated using FEM with Abaqus 6.14 from 
Dassault Systèmes, France. The FEM simulation model is depicted in 

Fig. 4. Distribution of values used to select E, A and B as inputs for FEM 
simulations to generate the dataset.
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Fig. 3. To reduce computational demands, only a small specimen of the 
coating and the substrate having contact with the indenter is modeled. 
The length-to-width ratio of the modeled specimen remains consistent 
with the original sample. The specimen measures 20 μm in both length 
and width and 10 μm in height. As shown in Fig. 3, the coating thickness 
is initially set to s = 3 μm, a typical value for PVD coatings used in 
cutting tools. This study first focuses on predicting the mechanical 
properties of PVD coatings with thickness close to this value. Subse
quently, an investigation explores whether a model trained using 
simulation data with this specific thickness can be generalized to coat
ings with different thicknesses.

To simplify the model, both the “substrate” and “coating” segments 
are assumed to have uniform material properties throughout. The elastic 
properties of both the coating and the substrate are assumed to adhere to 
Hooke’s stress-strain relation shown in Eq. (1). Elastic modulus E is 
required to define elastic properties. And the model used to describe the 
plastic properties of the coating and the substrate is the Ludwik- 
Hollomon model shown in Eq. (2). The yield stress A, coefficient B 
and exponent n are then required to define the plastic properties. Pois
son’s ratio of the coating is set to ν = 0.25 and Poisson’s ratio of the 

substrate is set to ν = 0.21. The elastic modulus of the substrate in the 
simulation model is set to be E = 600 GPa provided by the producer. The 
Ludwik-Hollomon model parameters of the substrate is set to be A = 1.3 
GPa, B = 12.0 GPa and n = 0.5 following [19]. The density of the coating 
is calculated by measuring the samples’ mass before coating, after 
etching, and after coating. Based on the calculated value the density is 
set to 6.2 g/cm3. The density of the substrate comes from the producer 
and is set to 14.88 g/cm3.

Different friction coefficients between the coating and the substrate 
ranging from 0.05 to 0.2 are tested, and the resulting indentation depths 
are compared. The results show no significant difference between 
various friction coefficients. However, a noticeable difference is 
observed when the interface is assumed to be ideal, with no friction. 
Therefore, the friction coefficient between the coating and the indenter 
is set to be μ = 0.1.

The substrate and the coating are discretized using cubic meshes, 
incorporating gradient meshing to have finer mesh near the indenter, as 
shown in Fig. 3. A mesh convergence study is first conducted to assess 
the impact of mesh size on indentation depths during the simulation. 
According to the results of the mesh convergence analysis, the gradient 
mesh size is finally set to be between 0.1 μm and 2 μm to achieve a 
balance between the simulation accuracy and the computation speed. 
The indenter is made of diamond, whose elastic modulus is set to E =
1200 GPa. The indenter is discretized using irregular meshes.

Explicit methods are used to solve the equations iteratively with time 
steps in Abaqus. By solving these equations, states of the system at time 
steps during the loading and unloading of nanoindentation can be 
simulated.

2.4. Dataset generation

As the first step of the holistic methodology shown in Fig. 1, the 
dataset is generated using the built FEM simulation model. The research 
first focuses on properties of coatings with a thickness of s = 3 μm, which 
is a common coating thickness of PVD. Therefore, all simulation models 
used to generate the dataset have a coating thickness of s = 3 μm. The 
dataset is generated by altering the mechanical properties of the coating. 
Three parameters including elastic modulus E, yield stress A, and coef
ficient B are randomly selected from a wide range with the exponent n 
fixed as n = 0.4. Distributions of selected values are shown in Fig. 4. For 
each parameter set, simulations at two load levels Fmax = 70 mN and 
Fmax = 150 mN are run.

The reason for fixing n = 0.4 is that the coefficient B and exponent n 
are strongly coupled, jointly defining how stress increases with strain 

Fig. 5. Nearly identical simulated load-depth curves generated from different (B, n) pairs with identical E and A in simulations (E = 360 GPa, A = 6.5 GPa).

Fig. 6. Selection of depth values corresponding to specific indentation loads 
during both the loading and the unloading phase as input feature for machine 
learning models.
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after the stress reaches the yield stress. For a given pair (B, n), a change 
in n can be compensated by a corresponding change in B, resulting in a 
similar plastic stress-strain behavior. Consequently, load-depth curves 
generated from these different (B, n) pairs, despite having individual 
parameter values, appear nearly identical. For example, as shown in 
Fig. 5, three simulated load-depth curves generated using different 
combinations of (B, n) are almost indistinguishable. This implies that 
multiple (B, n) pairs can plausibly fit the same load-depth curve, making 
a simultaneous prediction of (B, n) almost impossible.

Since the ultimate goal is to capture the plastic stress-strain behavior 
beyond the yield stress rather than precisely predict individual (B, n) 
pairs, and diverse plastic stress-strain behaviors of the coating can 
already be represented by variability of B values, decoupling B and n to 
focus on a precise prediction of B is a more practical solution. The fixed 
value of n = 0.4 is chosen based on our previous works [20,21], where n 
values for nitride PVD coatings are determined using inverse 
FEM-simulations to be between 0.3 and 0.5.

The load-depth curve for each simulation with coating properties 
defined by three randomly chosen parameters is recorded. Each simu
lation takes around 20 min. Finally, the dataset consisted of 350 pairs of 
“material parameters: load-depth curve”.

2.5. Machine learning model

As the second step of the holistic methodology shown in Fig. 1, 
machine learning models are trained to predict the material parameters 
from load-depth curves. Therefore, the output data of machine learning 
models are material parameters, i.e., three parameters E, A and B. The 
input data consists of depths at specific loads from both load-depth 
curves using the maximum indentation forces of Fmax = 70 mN and 

Fig. 7. Model structures of the four machine learning models, using depth values as input features and predicting E, A and B as output targets.

Table 2 
Coating characterization of TiAlCrN coatings.

Coating ID5280 ID5320 ID5403

Coating thickness s [μm] 2.1 2.9 3.8
Ti content [at %] 36.1 36.9 36.3
Al content [at %] 58.9 57.9 58.5
Cr content [at %] 5.0 5.2 5.2
Average line roughness Ra [μm] 0.02 0.02 0.02
Indentation modulus EIT [GPa] 348.3 ± 15.9 351.3 ± 22.4 368.8 ± 20.6
Indentation hardness HIT [GPa] 33.8 ± 2.8 30.9 ± 3.6 34.4 ± 3.34

Fig. 8. Morphology of TiAlCrN coatings on the WC-Co substrate with coating thicknesses of s = 2.1 μm, s = 2.9 μm and s = 3.8 μm.
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Fmax = 150 mN. The way to choose data from load-depth curve is shown 
in Fig. 6. During the loading process, depths are selected at 10 %, 20 %, 
30 % and so on, up to 100 % of the maximum forces. During the 
unloading process, depths are chosen at 90 %, 80 %, 70 % and so forth, 
down to 0 % of the maximum force. For the load-depth curve at each 
maximum indentation force 20 depths are chosen as input features. 
From two load-depth curves 40 features are achieved.

Depending on how these depths are used as features in the model, 
different machine learning model approaches are explored. Fig. 7
summarizes all these model structures and corresponding data feeding 
methods. One approach involves feeding all depth values directly into 
the model simultaneously. For this approach SVR and MLP are tested. 
However, since nanoindentation is a sequential process and load-depth 
curves represent sequential data, an alternative approach is to input the 
depths sequentially. At each recurrent step, two depth values are entered 
into the model, each corresponding to depths at a specific proportion of 
the maximum force on two different load-depth curves. Based on this 
method, two variants of RNN, i.e., LSTM and GRU could be used. These 
RNN models with gated structure could mitigate the vanishing gradient 
problem during the training of the traditional RNN models [22].

3. Results

3.1. Coating characterization

The characterized properties of TiAlCrN coatings are outlined in 
Table 2. The morphology of coatings with different coating thicknesses 
under SEM is shown in Fig. 8. Coating thicknesses are determined under 
SEM, yielding measurement values of s = 2.1 μm, s = 2.9 μm and s = 3.8 
μm. The indentation modulus EIT and the indentation hardness HIT of the 
TiAlCrN coating polished prior to nanoindentation are measured using 
the nanoindentation with Berkovich indenter under Fmax = 8 mN.

3.2. Comparison of machine learning models

Machine learning models are implemented using Python program
ming language. The machine learning models, whose structures are 
illustrated in Fig. 7, are trained, tested and compared using simulation 
data. Among the 350 samples, 10 % are first randomly selected as test 
data. The remaining 90 % are used to determine the optimal hyper
parameters via 5-fold cross-validation. In this process, the dataset is 
divided into 5 equal folds: in each iteration, four folds of the data are 
used for training the model and one fold for validation. This is repeated 
five times, with each fold used as the validation set. The average vali
dation accuracy across all folds is then calculated, and the hyper
parameter setting that yields the highest average accuracy is selected as 
the final hyperparameter. The determined hyperparameters for each 
model are shown in Table 3.

After selecting the best hyperparameters for four models, these four 
models with their best hyperparameters are then applied to the test data 
and compared. The loss function used as evaluation criteria is mean 
absolute percentage error (MAPE) to assess relative error. Greater MAPE 
indicates bigger prediction errors. The comparison of the four models on 
the test set is presented in Table 4.

Elastic modulus E is clearly the easiest parameter to predict. All 
models achieve a MAPE of less than 1 %, with SVR performing best at 
0.12 %. Given the complexity of the prediction task and the size of the 
dataset, this result is reasonable, as SVR is well-suited for small datasets 
and robust against overfitting [23]. The strong influence of modulus E 
on depth variations during elastic deformation likely provides distinct 
features that models can effectively utilize.

Yield stress A is the second easiest parameter to predict, with all 
models achieving a MAPE below 5 %. GRU works best for the prediction 
of the yield stress A with an accuracy of 1.87 %. Yield stress A strongly 
affects the proportion of the plastic deformation, which could be shown 
by the residual indentation depth [24]. And the maximum indentation 
depth is also strongly affected by the yield stress. These features could 
give valuable information that aids the models in making accurate 
predictions.

However, coefficient B is the most difficult to predict. All models 
exhibit a MAPE of over 5 % when predicting B, with MLP and LSTM 
exceeding 15 %. Similar to the prediction of the yield stress A, SVR and 
GRU perform better in predicting the coefficient B. Among all models, 
GRU achieves the highest prediction accuracy in predicting B. The 
reason could be that GRU efficiently uses sequential information, which 
is likely beneficial for predicting B, as this parameter B depends on 
complex, deeply embedded patterns in the input features.

3.3. Data size effect

To investigate the impact of dataset size on model performance, the 
models are trained on progressively smaller subsets of the data, and their 
prediction accuracy is evaluated on the test set. The smaller datasets, 
consisting of 63, 126, 189 and 252 samples, are randomly selected from 
the original train-validation set. Models are then trained on these 
smaller subsets, and their corresponding test MAPE are shown in Fig. 9.

For SVR, the prediction accuracy of all three parameters steadily 

Table 3 
Determined optimal hyperparameters for each model.

Model Hyperparameters

SVR Prediction of E: radial basis function (RBF) as the kernel function, 
Regularization parameter C = 1000, Kernel coefficient γ = ‘scale’, Penalty 
coefficient: ε = 0.001
Prediction of A: radial basis function (RBF) as the kernel function, 
Regularization parameter C = 10, Kernel coefficient γ = ‘auto’, Penalty 
coefficient: ε = 0.001
Prediction of B: radial basis function (RBF) as the kernel function, 
Regularization parameter C = 5, Kernel coefficient γ = ‘scale’, Penalty 
coefficient: ε = 0.001

MLP Prediction of E: 2 hidden layers, 128 units in the first layer, 64 units in the 
second layer, dropout rate 0.3, Adam optimizer, learning rate 0.001, weight 
decay 0.00001, training epochs 200, batch size: 32
Prediction of A: 2 hidden layers, 128 units in the first layer, 64 units in the 
second layer, dropout rate 0.3, Adam optimizer, learning rate 0.0005, 
weight decay 0.0001, training epochs 150, batch size: 8
Prediction of B: 2 hidden layers, 128 units in the first layer, 64 units in the 
second layer, dropout rate 0.3, Adam optimizer, learning rate 0.001, weight 
decay 0.0001, training epochs 200, batch size: 32

LSTM Prediction of E: 2 hidden layers, each layer 128 units, dropout rate 0.3, 
Adam optimizer, learning rate 0.0005, weight decay 0.00001, training 
epochs 200, batch size: 32
Prediction of A: 3 hidden layer, each layer 128 units, dropout rate 0.3, 
Adam optimizer, learning rate 0.0005, weight decay 0.00001, training 
epochs 150, batch size: 32
Prediction of B: 1 hidden layer, each layer 32 units, dropout rate 0.3, Adam 
optimizer, learning rate 0.001, weight decay 0.00001, training epochs 150, 
batch size: 16

GRU Prediction of E: 2 hidden layers, each layer 32 units, dropout rate 0.3, Adam 
optimizer, learning rate 0.001, weight decay 0.00001, training epochs 150, 
batch size: 8
Prediction of A: 1 hidden layer, each layer 64 units, dropout rate 0.3, Adam 
optimizer, learning rate 0.01, weight decay 0.00001, training epochs 100, 
batch size: 32
Prediction of B: 2 hidden layer, each layer 128 units, dropout rate 0.3, Adam 
optimizer, learning rate 0.001, weight decay 0.00001, training epochs 150, 
batch size: 16

Table 4 
MAPE for the prediction of three parameters using four machine learning 
models.

E A B

SVR 0.12 % 2.54 % 12.18 %
MLP 0.90 % 3.84 % 16.08 %
LSTM 1.35 % 4.12 % 20.90 %
GRU 0.87 % 1.87 % 6.81 %
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Fig. 9. Prediction MAPE of models when they are trained using a smaller dataset.
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improves with increases in dataset size. For MLP, the prediction accu
racy of E is already high with 63 samples and does not improve further 
with larger datasets, whereas the prediction of A and B benefits from 
more data, showing a sharp increase once the dataset exceeds 252 
samples. For LSTM, increasing the dataset yields little additional ad
vantages. For GRU, accurate prediction of E is achieved with 63 samples, 
while a substantial improvement in predicting of A and B occurs when 
the dataset size reaches 252 samples. Notably, 252 appears to be a 
critical point: at this dataset size, the prediction accuracy of SVR, MLP 
and GRU for A and B rises sharply and then stabilizes.

3.4. Feature engineering

Feature engineering is an important step in understanding which 
input features are used by the model for prediction. As a first step, the 
necessity of using nanoindentation data obtained under two different 
maximum forces should be validated. Since SVR yields the best perfor
mance for the prediction of E and GRU excels in predicting A and B, a 
hybrid model is further investigated, with SVR used for E prediction and 
GRU for A and B. The hybrid model with optimal hyperparameters is 
trained using datasets containing load-depth curves under a single force 
(Fmax = 70 mN), a single force (Fmax = 150 mN) and both forces. The 
prediction accuracies on the test set are then compared. The results are 
presented in Table 5. The results show that the prediction accuracy for E 
does not change significantly when using data from only a single force. 
This suggests that a single load-depth curve provides sufficient infor
mation for predicting E. In contrast, accurately determining A and B 
from a single curve appears to be more challenging. Prediction accu
racies for the yield stress A and coefficient B greatly increases when data 

from an additional load-depth curve is included.
To gain deeper insight into which features are selected by the model 

when data from two load-depth curves are provided, the least absolute 
shrinkage and selection operator (Lasso) algorithm is employed. Lasso 
uses L1 regularization parameters within a linear SVR framework to 
identify the most influential features [18]. In this study, Lasso is used to 
evaluate the importance of each feature, i.e., the depth value, when in 
total 40 depth values from two load-depth curves are input to the model. 
The results are shown in Fig. 10.

The results indicate that features from both curves are significant for 
the prediction. The features used to predict E focus on the initial 
deformation phase, depths at maximum forces and the residual inden
tation depth at Fmax = 70 mN, particularly the initial deformation phase, 
where elastic deformation plays an important role. The prediction of the 
yield stress A relies more on the unloading phase, especially the 
unloading phase at Fmax = 70 mN. The prediction of B incorporates an 
even greater number of depth values from the unloading phase, notably 
the last four depth values at both maximum loads. The initial loading 
phase, which is dominated by elastic deformation, contributes not much 
to the prediction of B.

3.5. Model performance on experimental data

After investigating the models on simulation data, the model should 
be applied to experimental data, as the third step of the holistic meth
odology shown in Fig. 1. This task is more challenging, as real coatings 
are not as ideal as those in the simulations. The non-ideal deformation 
behavior in real experiments could result in irregular depth values [25], 
which, in turn, could affect the predictions of machine learning models. 
For the real coating, nanoindentation data with two maximum forces, 

Table 5 
Comparison between MAPE using load-depth curves from different forces.

Used load-depth curves E A B

Single force Fmax = 70 mN 0.13 % 3.15 % 19.97 %
Single force Fmax = 150 mN 0.15 % 4.25 % 18.56 %
Two forces 0.12 % 1.87 % 6.81 %

Fig. 10. Feature importance for predicting each target variable (E, A and B) using the Lasso algorithm to the SVR model, where taller bars indicating 
greater importance.

Table 6 
Predicted parameters for the TiAlCrN coating.

E [GPa] A [GPa] B [GPa]

TiAlCrN, s = 2.9 μm 343 7.6 6.8
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Fmax = 70 mN and Fmax = 150 mN, are used as input for the machine 
learning models, same as the procedure using simulation data, as shown 
in Fig. 6. The input experimental load-depth curves are mean curves 
from 50 measurements, as illustrated in Fig. 2. The trained hybrid model 
combining SVR and GRU is first applied to a TiAlCrN coating with a 
coating thickness of s = 2.9 μm, which is close to the coating thickness of 
s = 3 μm in the simulation model to generate the dataset. The predicted 
parameters for the TiAlCrN coating with the coating thickness of s = 2.9 
μm are shown in Table 6.

As the final step of the holistic methodology shown in Fig. 1, simu
lations are conducted using the predicted parameters, and the compar
ison between experimental and simulated load-depth curves is shown in 
Fig. 11. Simulated curves align well with experimental curves under 
Fmax = 70 mN and Fmax = 150 mN. The shaded area in the figure in
dicates the confidence intervals of experimental and simulated curves. 
For experimental load-depth curve, the confidence interval is calculated 
based on the standard deviation of depth values at specific loads. The 
confidence region for the simulated curve considers the prediction error 
of the hybrid model, especially the prediction error of coefficient B.

To evaluate if the model can generalize to coatings with different 
thicknesses, experimental nanoindentation data under two maximum 
forces, Fmax = 70 mN and Fmax = 150 mN, from TiAlCrN coatings with 
thicknesses of s = 2.1 μm and s = 3.8 μm is further provided to the 
trained hybrid model. The parameters predicted by the model are pre
sented in Table 7.

Using the predicted parameters, the simulation model is first run still 
with the coating thickness of s = 3 μm to assess whether experimental 
data from a different coating thickness affects the prediction due to 
potential different deformation behavior. Subsequently, the coating 
thickness in the simulation model is adjusted to the actual values of s =
2.1 μm and s = 3.8 μm. The alignment between the experimental load- 
depth curve and the simulated load-depth curves at s = 3 μm and the 
actual coating thicknesses is shown in Fig. 12.

For the coating with a thickness of s = 2.1 μm, the simulation at Fmax 
= 70 mN shows good agreement with the experimental load-depth 
curve. At Fmax = 150 mN, the simulation using a thickness of s = 3 μm 
also aligns well with the experimental data, indicating that the machine 
learning model provides an accurate prediction. However, the simula
tion using the actual coating thickness exhibits a generally good match 
but shows a larger deviation toward the end of the unloading phase. At 
Fmax = 150 mN, the maximum indentation depth reaches 242 nm, 
exceeding 10 % of the coating thickness. In this case, the coating 
thickness could have an influence on the prediction. When the coating 
thickness is increased to s = 3.8 μm, the maximum indentation depth 
remains below 10 % of the coating thickness, even at Fmax = 150 mN. 
Under these conditions, there is almost no difference between the 

simulation model using s = 3 μm and s = 3.8 μm, and both curves closely 
follow the experimental data. In summary, the machine learning model 
trained on simulation data with a single thickness can be generalized to 
predict properties for coatings with different thicknesses, particularly 
for those with a larger thickness.

The holistic approach is sensitive to the quality of the experimental 
data provided. In real nanoindentation experiments, load-depth curves 
can be influenced by various factors, such as the surface roughness, 
grain size variations, indentations near grain boundaries, and three- 
dimensional coating defects. These factors can lead to abnormal curve 
features, such as pop-in or pop-out events [26]. In this study, data pre
processing is performed, and outliers are removed. Although a few 
curves exhibiting pop-in or pop-out events remained. The influence of 
these events appeared negligible after calculating the mean load-depth 
curve from over 40 remaining curves.

To further evaluate the robustness of the model in cases where only 
limited load-depth curves are available and the input curve contains 
pop-in or pop-out events, we test the trained hybrid model with an 
experimental load-depth curve exhibiting a pop-in event at Fmax = 70 
mN, alongside the calculated mean load-depth curve under Fmax = 150 
mN for the coating with a thickness of s = 2.9 μm. The predicted pa
rameters are shown in Table 8.

The simulated load-depth curves obtained using the predicted pa
rameters are compared with the experimental curves in Fig. 13. In this 
case, the residual indentation depth under Fmax = 70 mN is even larger 
than that under Fmax = 150 mN, which is a contradiction that can 
confuse the model. Although the model responds reasonably by reducing 
the yield stress A and increasing the coefficient B, the overall agreement 
between experiment and simulation remains unsatisfactory. This case 
demonstrates that the model is sensitive to inconsistencies in experi
mental data. Therefore, careful preprocessing is essential for the suc
cessful application of the approach, including performing sufficient 
repetitions of nanoindentation and rigorously removing outliers. 
Moreover, incorporating controlled disturbances into the simulated 
training data could be a potential solution to enhance the robustness of 
the trained model.

Fig. 11. Comparison between experimental and simulated load-depth curves using predicted values of E, A and B for the coating properties in the simulation model.

Table 7 
Predicted parameters for TiAlCrN coatings with different thicknesses.

E [GPa] A [GPa] B [GPa]

TiAlCrN, s = 2.1 μm 376 8.4 6.6
TiAlCrN, s = 3.8 μm 349 7.3 8.4
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4. Discussion

In our work, machine learning models demonstrate their ability to 
directly predict mechanical properties from nanoindentation load-depth 
curves. For predicting the elastic modulus E, a simple and overfitting- 
resistant machine learning model SVR, can already achieve good per
formance. GRU works better for more challenging prediction tasks of A 
and B.

Fig. 12. Comparison between the experimental load-depth curve and the simulated curves at a coating thickness of s = 3 μm and at the actual coating thickness.

Table 8 
Predicted parameters given a load-depth curve with pop-in events.

E [GPa] A [GPa] B [GPa]

TiAlCrN, s = 2.9 μm 367 4 11

Fig. 13. Comparison between simulated and experimental load-depth curves when the model is given the data with abnormal events.
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The advantages and limitations of this approach should also be dis
cussed. Compared with the analytical approach like in Ref. [7], the 
experimental work load of the approach in this study is relatively low, 
requiring just nanoindentation at two force levels and minimal manual 
calculations and analysis. Compared with inverse FEM simulations using 
manual parameter adjustment, the proposed approach is fully automatic 
and does not rely on user experience.

Compared with inverse FEM simulations based on automatic opti
mization, each method has its own advantages and limitations 
depending on the application scenario. For example, in Ref. [5], 90 it
erations are required to achieve convergence. In Ref. [12] convergence 
is reached after 60 iterations. The initial phase of the machine learning 
approach involves running hundreds of simulations to generate a dataset 
for the model training, which is time-consuming. Therefore, if the goal is 
to determine properties of only a single coating. Inverse FEM-simulation 
based on automatic optimization is preferable. However, for more than 
10 coatings, the average number of simulations per coating in the ma
chine learning approach can be reduced to around 20–30, which is much 
lower than more than 50 simulations typically required for automatic 
optimization approach. A promising future direction is to combine both 
approaches. Machine learning approach can provide better initial 
parameter estimates for automatic optimization, greatly reducing the 
number of iterations. Another limitation of the proposed approach is its 
sensitivity to load-depth curves exhibiting abnormal events, which re
stricts its applicability to coatings with rough surfaces or many 3D 
defects.

In the present study, the exponent n is fixed at n = 0.4 during dataset 
generation. The effect of this fixed value on prediction accuracy should 
be examined to determine whether an optimal n exists for maximizing 
model performance. Furthermore, current study focuses on coatings 
deposited on a single WC-Co substrate. Future research should aim to 
extend the approach to coatings on different substrates to enhance its 
applicability in real-world scenarios.

5. Conclusion

In this study, we aim to develop a model capable of accurately pre
dicting the elastic modulus and Ludwik-Hollomon model parameters 
from nanoindentation load-depth curves. Four machine learning models 
are compared, leading to a hybrid model combining SVR and GRU, 
achieving the highest prediction accuracy across all target parameters. It 
is also validated in this study that using load-depth curves under two 
maximum forces is significant for improving the prediction accuracy. 
The developed model is validated with experimental data from three 
coatings with different thicknesses, confirming its generalization capa
bility. However, approach exhibits reduced robustness when applied to 
experimental data with abnormal curve features, a limitation that 
should be addressed in future research. The proposed approach offers a 
promising means of obtaining plastic parameters of coatings, which are 
often missed in thermomechanical load simulations in cutting process 
required for tool wear prediction. Incorporating this approach into such 
simulations is expected to improve the accuracy of tool wear 
predictions.
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