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Preparation of an Al-Ni alloy for transmission electron microscopy (TEM) by focused ion beam (FIB) milling
using Ga™ ions induced phase transformations, risking misinterpretation: from FCC Al-Ni solid solution to FCC
Al-Ni and orthorhombic Al3Ni phases. Upon milling a nanolaminated AlgsNis - AlOy thin film with Ga™ ions, local
Ga segregations of up to 15 at.% and the concurrent formation of orthorhombic regions are observed. This is
consistent with density functional theory calculations indicating that the orthorhombic structures with and
without Ga are more stable than the corresponding FCC compositions probed here. In contrast, Xe' plasma FIB
preparation did not alter the microstructure and the maximum Xe-content reached only 0.2 at.%. TEM-analysis
did not reveal significant strain differences of the Al-Ni solid solution and Al3Ni. Hence, we recommend the use of
Xe"-pFIB for sample preparation of alloys which are sensitive to Ga-induced phase transformations such as
AlgsNis to prevent misinterpretation.

Gallium
Focused Ion Beam (FIB) sample preparation

Both micromechanical testing and high spatial resolution analysis of
materials require the preparation of geometrically-tailored specimens.
Focused Ion Beam (FIB) microscopes of various kinds were introduced as
sample preparation methods for such nanoscale structures. Options arise
among highly localised sputtering from ion bombardment with either Ga
in conventional FIB [1-4]; or Xe, Ne, He, O, and N-based plasma FIB
(pFIB) systems and cryo-(p) FIB to avoid Ga contamination [5,6] and to
slow down Ga diffusion [7], respectively.

Researchers have repeatedly shown that Ga'-FIB preparation of
stainless steel triggers phase transformation from an austenitic parent
lattice towards ferrite [6,8-11]. In fact, Knippling et al. [8] first linked
the FIB-induced transformation in austenitic 316L steels to the austenite
stability influenced by ion dose and crystallographic orientation.
Transformation was observed at FIB parameters of 30 kV and 100 pA at
ion doses of roughly 10'® ions cm 2 [8], in the case of 304 stainless steel,

* Corresponding authors.

even with Xe" ions [6], due to a coupled chemical and atomic rear-
rangement upon bombardment with keV energy ions [9-11]. Chemi-
cally, duplex stainless steel was reported to transform due to Ga-induced
ferrite stabilisation, while the austenite grain orientation determined ion
channelling — stronger transformation tendencies were linked to lesser
ion channelling [11]. On the other hand, phase transformation was
derived from collision-triggered atomic rearrangement, i.e. defect for-
mation in the form of increasing dislocation density, especially in
austenite grains of crystal orientations less conducive to ion channelling.
Stopping and Range of Ions in Matter (SRIM) simulations [12] correctly
predicted the shorter transformation depth where ions actively change
the microstructure of Xe™ compared to Ga' ions, due to a lesser sample
strain by reduced Xe implantation and hence a lower far field stress
effect [9].

Upon interaction of high energy ions with Aluminium, Ga®'
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bombardment has been reported to induce an amorphous Ga-rich sur-
face layer and atomic Ga segregation along the grain boundaries [4,
13-18]. Ga'-irradiation during FIB microscopy causes Ga-induced
liquid metal embrittlement (LME), grain boundary dewetting and
crack formation [19], as well as formation of a low-melting Al-Ga
eutectic [20]. Yet, there are only a few studies that actively discuss the
in-volume modification of Al through Ga. 30 kV Ga'-FIB preparation
was reported to induce strong segregation of Ga at incoherent Al3Mgy
particles occupying the grain boundaries in AA 5083 Al alloy [13]. Ruan
et al. [15] highlighted the implantation of Ga in nanocrystalline Al-Mn
during Ga'-FIB sample preparation following the Thompson needle
preparation method [21]. Atom probe tomography (APT) revealed Ga
segregation with highly localised content up to 3 at.% in the Mn-rich
transformed amorphous Al-Mn region. Moreover, Gault et al. [4] re-
ported high-density dislocation regions and high-angle grain boundaries
in Als(Sc,Zr) and Al-Mg-Zn-Cu, respectively, as more likely to be deco-
rated by Ga. Ga'-FIB prepared polycrystalline Al micropillars, even
polished with low 2-5 kV, showed reduced mechanical properties
compared to Xe-pFIB micropillar fabrication [22,23].

Fortunately, in recent years, alternative preparation by cryo-Ga*-FIB
and Xe"-pFIB showed prevented Ga decoration of interfaces in Al [4,5,7,
17,23]. Lilensten and Gault [7] applied cryo- Ga*-FIB preparation of
6016 aluminium and APT to show significant reduction of Ga at an Al
grain boundary by more than 15 at.% to roughly 0.25 - 0.5 at.%. Indeed,
cryo- Ga™-FIB preparation at ca. 82 K reduced the diffusion coefficient of
Ga in Al by roughly ten orders of magnitude and hence enables sub-
stantially reduced Ga-decoration at the Al Grain Boundary [7,20,24].

b XRD: As-deposited
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Xe'-pFIB preparation of polycrystalline Al is reported to not generate Xe
enrichments at interfaces such as grain boundaries, and additionally
induces comparable lattice distortions in the crystal lattice as conven-
tional Ga'-FIB, based on SRIM calculations [4,5].

Here we advance evidence that conventional Ga*-FIB TEM sample
preparation of nanocrystalline Al alloys is even able to induce phase
transformation similarly to the austenitic stainless steel case [6,8-11].
Upon Ga'-FIB preparation of nanolaminated AlgsNis — AlOy thin films
(bilayers: 25 — 1 nm thick; total film thickness 3 um; see Fig. 1a), an
unexpected heterogeneous microstructure was observed. The detailed
purpose and investigation of this nanolaminated AlgsNis — AlOy thin film
will be the subject of a later work. To the current purpose, room tem-
perature TEM samples were prepared by both Ga™-FIB as well as
Xe'-pFIB, and their crystallography and chemistry were subsequently
analysed by (scanning)TEM (S/TEM). The thin films were deposited by
means of combined hybrid physical vapour (PVD) and atomic layer
deposition (ALD) in a SwissCluster AG SC-1 cluster deposition chamber,
similarly to several previous publications by the co-authors [25-28].
Conventional “lift-out” procedures [2,29] were applied to prepare
site-specific TEM specimens. FIB parameters applied for the preparation
of the specimens can be found in Table 1. Samples were prepared using a
TESCAN LYRA3 FIB-SEM in the case of Ga'-FIB and a ThermoFisher
Scientific Helios 5 Hydra DualBeam pFIB-SEM equipped for Xe milling.
Finally, TEM was conducted on a ThermoFisher aberration corrected
(probe) Themis 200 G3 operated at 200 kV. Analysis of S/TEM images
and selected area electron diffraction (SAED) patterns was conducted
using the CrysTBox software [30].
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Fig. 1. Overall scope of the current investigation: (a) targeted AlgsNis — AlOx (25 — 1 nm) thin film architecture, (b) Bragg-Brentano XRD of as-deposited AlgsNis —
AlO, sample, (c) lateral FCC Al grain size derived from XRD in (b) as well as from Dark Field TEM by Ga™ and Xe"- FIB prepared samples, (d) FIB arrangement and
representative HAADF-STEM image from Ga'-FIB indicating the phase transformation, and (e) FIB arrangement and representative HAADF-STEM image from

Xe"-pFIB.
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Table 1
Applied FIB parameters for TEM-specimen preparation.
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FIB System Trenching Thinning Polishing Total Ion Dose
(kV / nA) (kV / nA / ° Overtilt) (kV / nA / ° Overtilt) (derived from [31])
(ions x cm’z)
Ga'-FIB 30/10 30/1-0.03/1-15 5/0.03/5 ~ 6.0x10"°
Xe"-pFIB 30/ 65 30/1-01/1-2 5/0.03/5 ~ 7.7x10"°

The diffractogram in Fig. 1b confirms the dominant (111) FCC Al
texture of the AlgsNis — AlOy thin film, corresponding to the crystalline
AlgsNis solid solution, while the AlOy interlayers are reported to be X-
ray amorphous. The peak at 20 = 34.8° stems from the Cu K § (111) FCC
Al. The out-of-plane grain size was controlled to be 25 nm from the
deposition rate; the lateral grain sizes measured by different routes are
depicted in Fig. 1c. A FCC Al crystallite size of roughly 7.9 & 0.8 nm was
derived from the Bragg Brentano X-ray Diffraction (XRD) applying the
Scherrer equation with Shape Factor equal to 1, corrected by a LaBg
standard at 20 = 40°. The High Angle Annular Dark Field (HAADF)
STEM imaging from a Ga'-FIB prepared TEM specimen in Fig. 1d em-
phasizes the heterogeneity resulting from this preparation routine,
showing both a fine- and a coarse-grained region of 8.9 + 2 nm and 23.6
+ 6.9 nm, respectively. In contrast, the HAADF-STEM overview image of
a Xe'-pFIB prepared TEM specimen, Fig. le, confirms the imprint of a
homogenous microstructure with as-mentioned lateral grain size of 8.95
+ 1.8 nm, being in good agreement with the results from XRD and DF-
TEM of the fine-grained region when prepared with a Ga*-FIB.

The in-depth S/TEM analysis of the Ga™-FIB and Xe'-pFIB prepara-
tion of TEM specimens is displayed in Fig. 2. The HAADF-STEM images
in Fig. 2a shows a representative region of the Ga*-FIB prepared AlgsNis
— AlOy thin film: two different microstructures are evident. The SAED
patterns in Fig. 2b confirms FCC Al in one region, whereas SAED of the
altering microstructure in Fig. 2d displays more features. In fact, the d-
spacings of 0.216 nm and 0.133 nm do not correspond to FCC Al, but
rather match the {112} and {242} planes of orthorhombic Al3Ni [30,
32]. Additionally, Fast Fourier Transformation (FFT) of HR-STEM im-
ages of the coarse-grained transformed region confirms the presence of
both FCC Al and orthorhombic Al3Ni as illustrated in Fig. 2¢ and e,

Ga*- FIB — S/TEM

respectively.

The Energy Dispersive X-ray Spectroscopy (EDS) maps of the Ga*
FIB-prepared thin film cover both coarse-grained and fine-grained mi-
crostructures, as visualised in Fig. 2f-h. Beyond the well-reported
segregation of Ga at Al interfaces [4,13-18], Fig. 2g confirms the pref-
erential Ga decoration of the coarse-grained region and nearby AlOy
interlayers. In fact, the fine-grained FCC Al microstructure shows a ho-
mogenous distribution of roughly 1.3 at.% Ga in the Al matrix and Al-Al
grain boundaries. However, confident determination of grain boundary
segregation is impeded by the grain size versus specimen thickness yield.
The nearby amorphous AlOy interlayers apparently contain approxi-
mately 1.3at.% of Ga, although again this analysis is complicated by
considering the 1 nm thickness with respect to 50 — 80 nm lamella
thickness. In contrast, the coarse-grained region with both FCC Al and
orthorhombic Al3Ni grains exhibits a more heterogeneous Ga distribu-
tion. While the coarse Al and Al3Ni grains incorporate already more Ga
> 5 at.%, the Ga decoration of the Al-Al3Ni and Al3Ni-Al3Ni grain
boundaries reaches up to 12 and 15 at.%, respectively. Therefore, Ga can
be found preferentially in the proximity of the Al3Ni grains. Considering
the stable AlOy layer thickness, no clear change in chemistry or crys-
tallography of the AlO through Ga incorporation can be concluded. For
visualisation of corresponding STEM-EDS maps including the Al- and
O-mapping, the reader is referred to the supplementary material (Suppl.
1). In good agreement with the crystallographic analysis, Fig. 2¢c and e
clearly link the presence of both Al and Al3Ni phases to local Ni and Ga
agglomeration. The Ni-content according to STEM-EDS reaches up to 15
at.% in regions containing AlgNi grains identified by diffraction,
whereas the coarse FCC Al grains become Ni-deficient with only 1.5 at.%
of Ni.

Xe* - pFIB — S/TEM

(200 GT

(223)

2= [011)

Fig. 2. (a-h)S/TEM investigation of Ga™'-FIB prepared specimen: (a) HAADF-STEM overview image, fine grain region (b) SAED pattern and (c) HR-STEM image
with FFT pattern, coarse grain (d) SAED pattern and (e) HR-STEM image with FFT pattern, as well as (f) magnified HAADF-STEM image with corresponding (g) Ga
EDS map, and (h) Ni EDS map. (i - n) S/TEM investigation of Xe*-pFIB prepared specimen: (i) HAADF-STEM overview image, (j) SAED pattern, (k) HR-STEM
image with FFT pattern, as well as (1) zoomed-in HAADF-STEM image with corresponding (m) Xe EDS map and (n) Ni EDS map.
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In contrast, Fig. 2i - n shows representative S/TEM images of a
nearby region of the same thin film when the TEM specimen was pre-
pared by Xe™-pFIB. The HAADF-STEM image illustrated in Fig. 2i shows
only a single microstructure type: similar to the fine-grained region of
the Ga™-FIB prepared specimen. Namely, a homogenous lateral and out-
of-plane Al grain size of 8.9 + 2 nm and 25 nm, respectively, as well as
intact 1 nm amorphous AlOy. Additionally, both the SAED and FFT
images in Fig. 2j and Fig. 2k confirm the crystal structure to be solely
FCC Al. Hence, the Ga™- and Xe™-FIB prepared AlgsNis — AlO, show
distinct microstructure and crystallography. XRD indicates that FCC Al
is the sole crystalline phase present in the as-deposited state. Fig. 2m
confirms homogenous but marginal Xe-contents of roughly 0.2 at.% in
AlgsNis - AlOy by STEM-EDS after Xe™-pFIB preparation — negligible
within the accuracy of STEM-EDS [33]. Additionally, the Ni-profile of
the corresponding sample in Fig. 2n shows homogenous Ni-distribution
of ca. 5 at.%, agreeing with the fine-grained FCC Al in Fig. 2h in the case
of Ga™-FIB. Hence, the fine-grained microstructure can be linked to a
Algy-Nis solid solution incorporating roughly 5 at.% of oxygen (sup-
plementary material). We therefore conclude that Ga'-irradiation of
metastable Al-Ni during conventional FIB milling procedures triggers a
phase transformation from FCC Al to orthorhombic Al3Ni, along with
coarsening of the remaining FCC phase: this can be avoided by Xe"-pFIB
preparation.

Based on the observations, either bombardment kinetics or chemical
stabilisation through ion implantation can be analysed as a trans-
formation trigger as in previous stainless steel studies [6,9,10]. The
SAED of both Ga'™ and Xe'-FIB prepared AlgsNis — AlOy thin films
indicate that ion bombardment does not give rise to a noticeable atomic
rearrangement (e.g. Frenkel defects) of the FCC Al lattice. In fact, the
calculated spacings of respective {111}, {002}, {022}, and {113} FCC Al
planes do not deviate between Ga' and Xe™-FIB prepared AINi — AlO
thin films with 0.232 nm, 0.201 nm, 0.142 nm, and 0.121 nm, respec-
tively. Rather, these match (within 0.17%) calculated lattice plane
spacings of the FCC AlgsNis solid solution derived from Vegard’s law
with lattice parameters of 0.404 nm and 0.348 nm for FCC Al and FCC
Ni, respectively. XRD from Fig. 1 confirms the (111) FCC Al to possess a
lattice spacing of roughly 0.234 nm, showing 0.86% deviation from
TEM-derived 0.232 nm. Additionally, SAED analysis of the {112} and
{242} peaks of Al3Ni grains also indicate no significant atomic rear-
rangement. FFT analysis of the HR-STEM images from the two Ga'-FIB
fine- and coarse-grained FCC Al, as well as the Xe*-pFIB FCC Al, simi-
larly do not show atomic rearrangement differences between the two
preparation routes. The {111} and {200} FCC Al planes in every case
show less than 1% deviation between (un-)transformed regions. It is
worthwhile mentioning that Shimizu et al. [10] linked conventional
TEM-derived 1% strain (of atomic rearrangement), and the related hy-
drostatic stress field from > 10 at.% Ga in the lattice, to causing phase
transformation in austenitic steel. However, strain calculation based on
conventional S/TEM usually only allows strain determination with an
accuracy of > 2% strain [34], whereas high angular resolution Trans-
mission Kikuchi Diffraction (TKD) allows accuracies of up to < 0.2%
strain [34-36]. Here, the effective use of TKD is prevented by the
ultra-fine grain size here of only 10 nm. Zhong et al. [5] justified phase
transformation in Al by ion bombardment-induced atomic rearrange-
ment through 30 kV Ga™ and 30 kV Xe™. SRIM calculations determined
the average energy transfer to Al to be 4.48 keV/ion and 4.79 keV/ion at
89° incidence, for 30 kV Ga™ and 30 kV Xe™ respectively [5]. Thus, both
irradiation by 30 kV Ga™ and 30 kV Xe™ should trigger transformation
equivalently. However, there is no phase transformation visible in the
case of Xe'-pFIB prepared AlgsNis - AlO,, but only through Ga'-FIB
preparation. Hence, both the theoretical SRIM modelling from the work
of Zhong et al. [5] and S/TEM-imaging refute atomic arrangement dif-
ferences between Ga™ and Xe™ in Al, but the phase transformation here
only occurs due to Ga't, and not Xe™, irradiation. These results give a
first hint that the phase transformation of nanocrystalline FCC Al to
coarser-grained FCC Al and orthorhombic Al3Ni is due to Ga acting as an
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Al3Ni stabiliser.

Hence, the alternative trigger for phase transformation could be a
thermodynamically stabilised microstructure through either Ga or Xe
implantation [9,11,37]. We focus on the crystalline Al-Ni layers due to
the fact that the amorphous AlOy does not show phase transformation
despite Ga agglomeration around the interface. It is worthwhile
mentioning that the FIB “lift-out” and “thinning” process with Ga™ and
Xe™ induce lamella-adjacent ion doses of roughly 6x10'° and 7.7 x10'°
ions cm ™2, respectively. These values were derived from the bombarded
area at respective current visible in Table 1 during milling and polishing.
In this case, 10 nA trenching in case of Ga'-FIB induces lamella-adjacent
Ga™ doses of roughly 9x10'® jons cm ™2 when milling a 20x20 pym?
rectangle at a depth of roughly 15 um for in total 600 s for both sides. Ion
doses per preparation step can be found in the Supplementary Material.
Here, the calculated Xe™ dose is slightly higher (28%), which might have
larger atomic rearrangement, but only Ga triggers phase transformation.
Ga'-bombardment of a previously Xe*-pFIB prepared TEM lamella was
carried out here to determine the critical preparation step. The findings
are displayed in the Supplementary Material: it confirms that 30 kV
Ga'-bombarding according to the “thinning” procedure did not trigger
any Ni diffusion or Ga incorporation despite Ga doses of up to 9x 107
ions cm ™2,

Density Functional Theory (DFT) calculations were carried out to
determine the formation enthalpy of both orthorhombic and FCC Al3Ni
models. Calculations covered a supercell of Al4gNij6, a FCC Al reference
cell, as well as ~ 5 at.% Ga-containing supercells AlssNijeGas,
Al4gNiisGas, AlgyNij4Gas, and AlsgNij3Gag compounds. DFT simula-
tions were performed with the Vienna Ab Initio Simulation Package
(VASP) [38,39]. The various compositions were chosen to represent
STEM-EDS measured Ga concentration levels for Al or Ni sublattice
atoms. The distribution of the Ga atoms, while replacing Al or/and Ni,
were achieved by the special quasi-random structure (SQS) method [40]
to simulate random mixing. Fig. 3 suggests that all calculated com-
pounds, despite FCC Al-Ni, are thermodynamically stable, with ortho-
rhombic Al3Ni (£Al4gNijg) the most stable. It is evident that Ga
incorporation in either Al or Ni sublattices leads to the formation of
metastable phases, stabilizing the orthorhombic phases more than the
FCC phases. The most stable configuration among the metastable phases
was achieved when replacing Ga on the Al sublattice in the case of
orthorhombic AlssNi;¢Gas. The marginal energetic penalty of 13 meV in
the case of orthorhombic AlssNijgGas when replacing Ga onto Al
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Fig. 3. Enthalpy of formation of FCC and orthorhombic Al3Ni (modeled with
AlygNijg supercell) and ~ 5 at.% Ga-containing compounds modeled with
supercell AlysNijeGas, AlsgNiisGas, AlyyNij4Gas, and AlygNij3Gas calculated by
density functional theory, insets showing representative 16 atoms cell.
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sublattice atom sites poses a weak thermodynamic barrier to the for-
mation of metastable Ga-containing Al-Ni compounds. Regarding the
thermodynamics of orthorhombic Al3Ni formation, Michaelsen et al
[41] derived the activation energy of formation of orthorhombic Al3Ni
to be 1.5 eV, whereas formation was not observed at T < 500 K [42].
Larsen et al. [43] showed that Al3Ni is kinetically impeded to form from
elemental multilayered Al/Ni films even under incident 500 keV Xe™"
irradiation due to a limited amount of collision cascades. Only ion
irradiation at T > 400 K allowed exceeding the kinetic barrier to form
crystalline Al3Ni when the Ni-content of Al-Ni is below 30 at.%. Building
on the work of Meingailis [44] and Ishitani and Kaga [45], we calculated
that Ga* bombardment (10 nA, 30 kV) on Al-based materials, with a
~125 nm beam spot and ~6.5 A cm™ current density, could cause a
local temperature rise of approximately 50 K. Using the diffusion data
from Peterson and Rothman [24], the bulk diffusion coefficient of Ga in
Al-based materials at 323 K is estimated to be 8.23x10~ 2> m? s’l, while
the grain boundary diffusion coefficient is about 13 orders of magnitude
higher [20]. Consequently, micron-scale Ga diffusion laterally and
in-depth is anticipated, consistent with the diffusion behavior observed
during conventional Ga*-FIB lamella preparation of Al at room tem-
perature, where diffusion coefficients of 5.57x107%” m? s~! [7] and
5.83x107° m? s [20] are reported for bulk and grain boundary,
respectively. Ultimately, transformation of the metastable AlgsNis solid
solution towards a Ga-containing orthorhombic Al3Ni phase could be
triggered through a combined thermodynamic and kinetic effort
through keV energy excitation with subsequent lattice vibrations and
the chemical effect of Ga stabilizing the orthorhombic Al3Ni,
respectively.

A recent study of Jimenez et al. [46] of nanolaminated elemental
Al-Ni thin films did not show any phase transformation with either
Ga'-FIB or Xe'-pFIB preparation. While the authors claim that Ga*-FIB
preparation “could” lead to the presence of Ga-containing AI-Ni in-
termetallics at the AI-Ni interface, the findings here clearly prove the
modification of an Al-Ni solid solution through Ga incorporation.

Hence, employing Ga'-FIB as a preparation method for high spatial
resolution microscopy of multi-element Al-alloys might introduce arte-
facts beyond surface and interface decoration.

Lilensten and Gault [7] proposed cryo-Ga'-FIB as a go-to technique
for preparation of Al samples for high-resolution microscopy without
interface decoration of Ga. APT-reported 0.25 - 0.5 at.% of Ga however
lay quite in the range of Xe-contents in this study and access to cryo-FIB
equipment may nowadays be similarly as challenging as to a Xe"-pFIB.
Either way, a lack of quantitative data from the modelling of local
annealing effects by either Ga™ or Xe™ ion bombardment impedes the
analysis of thermal effects upon bombardment. Nevertheless, the po-
tential phase transformation due to the high diffusivitiy of Ga at Al in-
terfaces clearly needs to be avoided to prevent false interpretation.

In conclusion, we report a phase transformation in an Al-Ni alloy
caused by Ga' irradiation, and thus recommend Xe'-pFIB preparation
instead to avoid sample modification by Ga. The evidence shows that
conventional Ga*-FIB TEM sample preparation is able to induce phase
transformations in nanocrystalline Al alloys. Thus, we expand the scope
of observed phase transformation by Ga*-FIB bombardment beyond
previously reported austenitic stainless steels [6,8-11]. This is a critical
advancement that reveals previously unreported transformation in
Al-alloys by Ga™*-FIB, whereas transformation can be avoided in this case
through Xe'-pFIB preparation. Ultimately, Ga'-FIB preparation may
indeed affect a range of metastable solid solutions produced by
magnetron sputtering, such as the FCC AlgsNis here that has a low en-
ergy barrier for phase transformation.
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