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Abstract

The interaction of particles with the carrier fluid in multiphase flow is of fun-
damental importance in various applications. This includes, for example, natural
phenomena such as volcanic eruptions or technical systems such as industrial com-
bustion plants. In the latter context, the particles serve as energy carriers releasing
their chemically stored energy during the combustion process for further usage. Due
to the negative environmental impact of fossil fuels, intensive efforts are being made
to switch to sustainable alternatives such as biomass. In contrast to coal particles,
which are predominantly spherical, biomass particles often have elliptical shapes.
This anisotropic geometry leads to different aerodynamic interactions which influence
the combustion process.

Despite the high level of detail of fully-resolved simulations, comprehensive studies
regarding non-spherical particles are rare in the scientific literature. The complex
dynamics and high computational costs pose significant computational challenges
such that reduced models are often used in their place. The present work aims to
fill this gap by investigating fully-resolved numerical simulations of particle-laden
flows within pipe and free jet flow with non-spherical particles. The turbulence
dynamics, the interaction between the particles and the flow field, and the influence
of the particle properties on the flow geometry are investigated. The numerical
analysis uses a finite volume method with a level-set/cut-cell method to ensure that
all geometries are fully resolved and that mass, momentum, and energy are conserved.
This allows precise quantification of the surface forces acting on the particles and
their interaction with the surrounding fluid. In this work, spherical and ellipsoidal
particles are investigated under turbulent flow conditions.

In addition, the temperature differences between particles in the aspect ratio
range 1 ≤ β ≤ 8 and the carrier fluid are analyzed in the context of combustion
systems. A correlation equation for the calculation of the Nusselt number is presented.
Subsequently, an efficient conjugate heat transfer model is presented which captures
the thermodynamic processes within solid bodies. This model considers the thermal
processes within particles as well as the local temperature gradients at the surfaces
of the particles. Finally, the new methodology is used to evaluate the accuracy of
Lagrange point-particle models which are often used to simulate complex particle-
laden systems.
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Zusammenfassung

Die Wechselwirkung zwischen Partikeln und dem Trägerfluid in Mehrphasenströ-
mungen ist in verschiedenen Anwendungsfällen von elementarer Bedeutung. Dies
umfasst beispielsweise natürliche Phänomene wie Vulkanausbrüche oder auch techni-
sche Systeme wie industrielle Verbrennungsanlagen. Im letzteren Kontext fungieren
die Partikel als Energieträger die ihre gespeicherte Energie während des Verbrennungs-
prozesses zur weiteren Nutzung freisetzen. Angesichts des negativen Umwelteinflusses
fossiler Brennstoffe wird intensiv daran gearbeitet, auf nachhaltige Alternativen wie
Biomasse umzusteigen. Im Gegensatz zu Kohlepartikeln, die überwiegend sphärisch
sind, weisen Biomassepartikel häufig elliptische Formen auf. Diese anisotropische
Geometrie führt zu unterschiedlichen aerodynamischen Wechselwirkungen, die den
Verbrennungsprozess beeinflussen.

Trotz der hohen Relevanz vollständig aufgelöster Simulationen sind umfassende
Studien im Hinblick auf nicht-spärische Partikel in der wissenschaftlichen Literatur
selten. Die komplexen Dynamiken und die hohen rechnerischen Ressourcen stellen
signifikante Herausforderungen bei der Berechnung dar, sodass häufig Ersatzmodelle
mit reduzierter Genauigkeit verwendet werden. Die vorliegende Arbeit zielt darauf
ab, diese Lücke zu schließen, indem vollständig aufgelöste Simulationen elliptischer
partikelbeladener Strömungen innerhalb einer Rohrströmung und einem Freistrahl
untersucht werden. Es werden die Turbulenzdynamiken, die Wechselwirkungen zwi-
schen Partikeln und Strömung, sowie der Einfluss der Partikeleigenschaften auf die
Strömungsgeometrie untersucht.

Die numerische Analyse verwendet ein Finite-Volumen-Verfahren mit einer Level-
Set/Cut-Cell-Methode, um sicherzustellen, dass alle Geometrien vollständig aufgelöst
sind und der Erhalt von Masse, Impuls, und Energie gewährleistet ist. Dies ermöglicht
die präzise Quantifizierung der Oberflächenkräfte, die auf die Partikel wirken, sowie
deren Wechselwirkungen mit dem umgebenden Fluid. Sowohl sphärische als auch
ellipsoide Partikel werden unter turbulenten Strömungsbedingungen untersucht.

Darüber hinaus werden im Kontext von Verbrennungssystemen die Temperatur-
unterschiede zwischen nicht-spärischen Partikeln im Seitenverhältnis 1 ≤ β ≤ 8
und dem Trägerfluid analysiert. Eine Korrelationsgleichung zur Berechnung der
Nusselt-Zahl wird vorgestellt. Anschließend wird ein effizientes Modell der konju-
gierten Wärmeübertragung präsentiert, welches die thermodynamischen Vorgänge
innerhalb der Partikel erfasst. Dieses Modell berücksichtigt nicht nur das thermische
Verhalten innerhalb fester Körper, sondern auch lokale Temperaturgradienten an
den Oberflächen der Partikel.

Abschließend wird die neue Methodik zur Bewertung der Genauigkeit von Lagrange-
Punkt-Partikelmodellen verwendet welche häufig zur Simulation komplexer Partikel-
beladener Systeme eingesetzt werden.
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Nomenclature

All variables presented in this nomenclature are expressed in non-dimensional form
unless stated otherwise. The procedure and reference quantities employed for the
non-dimensionalization are detailed in the Appendix.

Latin symbols
a Vector of acceleration
A Surface area
a Speed of sound
a, b, c Ellipsoidal semi-axes
C Reconstruction constants
cp Heat capacity
D Pipe diameter
d Diameter
deq Volume-equivalent diameter
E Total Energy
e Specific internal energy
Ek Kinetic Energy
ei Unit vector
F Flux vector
F Force
g Gravity vector
R Rotation matrix
H Flux tensor
h Specific enthalpy, convective heat transfer coefficient
h Width of Cartesian cell
k Thermal conductivity
m Mass
I Unit tensor
L, l Length
ṁ Mass flux
n Normal vector
N Generic counter
Nn Number of reconstruction neighbors
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Nomenclature

P Primitive variables
p Pressure
PDF Probability density function
Q Conservative variables
q Specific heat flux
Q Total heat flux
R Orthogonal matrix, rotation matrix
R Residual operator
r Radius
R Ideal gas constant
SD Standard deviation
sf Cartesian surface
Sλ Sutherland constant heat conductivity
Sµ Sutherland constant viscosity
T Torque
T Temperature
t Time
ts Time step
u Velocity vector
u, v, w Velocity in Cartesian x, y, and z-direction
V Volume
W Diagonal weight matrix
x Coordinate vector
x, y, z Cartesian directions
xi Cartesian direction

Greek symbols
α Runge-Kutta coefficients, step size
β Particle aspect ratio
φ Angle [◦]
χ Upwind coefficient
Γ Surface of embedded bodies
γ Ratio of specific heats
ε Vector of quaternions
ε Rate of particle-induced fluid dissipation
εi Quaternion
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Nomenclature

ζ Volume loading
µ Dynamic viscosity
ψ Rate of kinetic energy transferred
Ψ Level-set
ρ Density
τ Time shift
τ Stress tensor
∆t Time step size
∆x Mesh spacing
ω Angular velocity
τ Relaxation time

Dimensionless numbers
Fo Fourier number
Ma Mach number
Nu Nusselt number
Pr Prandtl number
Re Reynolds number
St Stokes number

Subscripts
(·)0 State of rest
(·)abs Absolute value
(·)avg Averaged value
(·)body Value of embedded body
(·)p Particle p
(·)C In cell center
(·)cl Centerline
(·)f Fluid domain
(·)G Ghost cell
(·)I Image variable
(·)∞ Freestream value
(·)max Maximum
(·)min Minimum
(·)ni i-th neighbor cell
(·)ref Reference value

xiii



Nomenclature

(·)s Solid domain
(·)Γ At cell surface
(·)sub Sub step
(·)τ Friction value
(·) Matrix

Superscripts
∂ Partial differential operator
(̃·) Dimensional variable
(·)inv Inviscid
(·)L Left
(·) Time average
∇ Nabla operator
(·)+ Pseudo-inverse
(·)′ Fluctuation
(·)R Right
(·)vis Viscous
(̂·) Particle-aligned reference frame

Abbreviations
AIA Aerodynamisches Institut Aachen
AME Adaptive mesh extension
AMR Adaptive mesh refinement
AUSM Advection upstream splitting method
CFD Computational Fluid Dynamics
CFL Courant-Friedrichs-Lewy
CHT Conjugate heat transfer
DLB Dynamic Load Balancing
DNS Direct Numerical Simulation
DPFS Direct Particle-Fluid Simulation
FV Finite Volume
FVMB Finite Volume for Moving Boundaries
HPC High Performance Computing
IBM Immersed-Boundary Method
LES Large-eddy simulation
MILES Monotone integrated large-eddy simulation

xiv



Nomenclature

MPI Message Passing Interface
MUSCL Monotone upstream-centered scheme for conservation laws
RK Runge-Kutta
RMS Root-mean-square
RWTH Rheinisch-Westfälische Technische Hochschule Aachen

xv





1 Introduction

In the context of daily live, particle-laden flows are encountered in numerous situations.
Volcanic eruptions, sandblasting, and particle-laden flows in industrial combustion
plants are only a few examples. In the latter, the particles function as energy carriers
releasing their stored energy during the combustion process and thereby facilitate
the conversion to usable energy, heat, or locomotion.

As of today, coal is the most used raw material for energy conversion [92]. Being
used for centuries, coal has been a key driver of industrialization. However, this
comes at great disadvantage. Approximately one-third of all global CO2 emissions
can be attributed to the energy processes derived from coal [92]. The growing
demand for environmentally friendly and sustainable energy conversion necessitates
the substitution of fossil fuels with alternative energy sources.

Biomass, which consists of wood chips, tree bark, or wheat, among many others, is
a raw material that is largely independent of geographical conditions due to its broad
availability. The utilization of this raw material is predominantly climate-neutral as
only the previously bound CO2 is released [34, 54]. Hence, biomass has emerged as
an environmentally friendly alternative to coal in recent years. Another significant
advantage of using biomass for industrial energy processes is the manner in which it
is stored. Similar to coal, biomass is utilized in particle form. Consequently, this
renewable raw material is effectively a drop-in replacement for particle-based fossil
fuels such as coal in industrial combustion plants.

However, biomass is a natural product and as such, its particles retain a fibrous
structure. Despite pre-processing, the particle shape can be described as ellipsoidal
rather than spherical [34]. Consequently, biomass particles possess significantly
different aerodynamic properties compared to spherical particles. These particles have
orientation-dependent dynamics due to their anisotropic shape inducing additional
rotational forces. While the behavior of spherical particles in freestream conditions
and in the context of combustion engines is well understood [7, 24, 75, 119], the
available literature shows that there are hardly an detailed results on non-spherical
particles.

In the combustion of fine-scale fuels in industrial combustion plants, solid coal or
biomass particles are blown into a combustion chamber where they burn off with
the addition of air. Part of the combustion air is blown in together with the fuel
in the primary flow which forms a turbulent, two-phase free jet when it enters the
combustion chamber. The jet flow determines the flame geometry because the mixing
behavior of air and fuel affects the dwell times of dust particles in the combustion
chamber, their heating rates, the chemical reactions on their surfaces and thus,
the overall combustion process. These configurations often involve high Reynolds
number environments and are associated with substantial turbulence. The presence
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1 Introduction

of particles, irrespective of their shape, exerts a modulation on the behavior of the
carrier flow [75]. As demonstrated by Einstein, the viscosity of the fluid is subject to
alteration by the particles [22]. Additionally, the particle motion is not only governed
by the fluid motion, but also by the particle inertia, thereby increasing the complexity
of the multiphase interactions even further [66, 67]. Due to the relative movement
between the particles and the fluid, the different phases continuously exchange kinetic
energy, impact the turbulent structures, and modulate the dissipation rate of the
fluid [100]. This leads to an imbalance in the distribution of kinetic energy in the
individual scales and a reorganization of the energy cascade [97, 100]. For example,
research has shown that the turbulence intensity of the carrier fluid can either be
increased or decreased by the presence of spherical particles depending on various
parameters [31, 83, 102, 109, 111]. To this day, very little investigation has been
conducted on the impact of ellipsoidal particles.

In the context of industrial combustion plants, the influence of particles in carrier
flows extends to the domain of the thermal dynamics. The exchange of thermal
energy occurs via radiation, conduction, and convection [72, 96, 106]. Given the
pivotal role of temperature on the properties of the fluid, it is imperative to undertake
a thorough examination of this parameter. It is therefore paramount to include the
temperature as an explicit parameter in the investigation of fully-resolved particles.

The anisotropic particle shape results in different particle behavior in comparison
to spherical particles [34]. Therefore, models employed to simulate particle-laden
flows must account for the anisotropic particle shape. Fully-resolved simulations
are computationally expensive and thus, investigations are frequently based on
Lagrangian point-particle models [7]. These models include significant simplifications
to reduce the computational complexity and thus, the overall load [25]. Therefore,
such models can only be approximations of the actual behavior. The simplifications
often include, among others, that the particle shape is spherical. Although steps have
been taken to further develop models for point-particle models, these investigations
are still incomplete [26].

In this thesis, simulations of fully-resolved particles of spherical and ellipsoidal
shape in isothermal and non-isothermal flow conditions are conducted to further
advance these investigations. To this end, a series of modifications to the in-house
simulation framework m-AIA are made and novel models are introduced. The results
are documented in [58–60] upon which this thesis is based on.

In Kiwitt et al. [59], the interaction of spherical and ellipsoidal particles in turbulent
pipe-jet flow in isothermal conditions is investigated. Preferential particle statistics
inside the pipe are analyzed and the subsequent impact on free jet flow is discussed.
Results of the kinetic energy budget of the multiphase configuration are shown and
the impact on the jet geometry is discussed. The varying effect of the different
particle aspect ratios on the fluid is highlighted and discussed.

Subsequently, the focal point of the investigations changes from isothermal to
non-isothermal, i.e., the impact of temperature gradients is considered.

Kiwitt et al. [58] presents a novel correlation equation for the prediction of the
Nusselt number of ellipsoidal particles in uniform flow in non-isothermal setups.
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More than 6 600 fully-resolved simulations are computed to cover a wide range of
Reynolds numbers Re, particle angles φ, particle aspect ratios β, and temperature
ratios TR between the particle and the fluid. The resulting flow and temperature
fields are analyzed and used to derive a correlation equation for use in Lagrangian
point-particle models, thereby enhancing the accuracy of these models.

In Kiwitt et al. [60], an efficient method for the computation of heat exchanges
between a carrier fluid and the embedded moving bodies is derived. The conjugate
heat transfer (CHT) method utilizes an iterative algorithm to minimize the differences
of the heat fluxes at the interface line, thereby guaranteeing accurate results and
ensuring an energy-conserving method. Several test problems are shown to provide a
thorough validation of the method for static, shape-transforming, and moving bodies
of complex arbitrary geometries. Benchmark results show the high performance in
parallel computing systems. The method is used to discuss the accuracy of the heat
transfer dynamics in Lagrangian point-particle models.

The thesis is organized as follows. Ch. 2 presents the mathematical models used
for description of the fluid and particle dynamics. The governing equations of the
fluid and solid phases are highlighted and the quantification of the interphase energy
exchange is outlined. Ch. 3 presents the numerical methods. The finite volume
method and the cut-cell method are outlined and modifications and enhancements
necessary for the computation of the aforementioned problems are described. The
chapter finishes by presenting the parallelization and coupling strategies. In Ch. 4 the
numerical setup is validated for the different configurations involving particle-laden
pipe and free jet flow, as well as non-isothermal setups. Ch. 5 shows the results for
the investigation of the isothermal particle-laden pipe-jet flow. The pipe and the
free jet domain are discussed separately and the particle distribution inside the pipe
is related to the free jet fluid flow. Ch. 6 discusses non-isothermal setups. A novel
correlation equation for the Nusselt number is presented and an efficient approach
to conjugate heat transfer investigates the accuracy of assumptions commonly made
in Lagrangian point-particle models. The results of the numerical investigations
are summarized in Ch. 7 where conclusions are drawn and an outlook for further
research objectives is presented.
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2 Mathematical model

The mathematical formulations governing the fluid and the solid phases are presented,
and the formulations used to describe the particle motions are outlined. The equations
to compute the energy transfer between the different phases are described and the
methodology of the fluid-solid interface is highlighted.

2.1 Fluid phase
The flow of a viscous, compressible fluid is determined by the conservation of mass,
momentum, and energy in a control volume V (t) with surface A(t) in non-dimensional
form by

d

dt

∫
V (t)

QdV +
∮
∂V (t)

(
Hinv − Hvis

)
· ndA = 0 (2.1)

with Q = [ρ, ρu, ρE]T being the vector of conservative variables and n being the
outwards-facing normal vector. The conservative variables Q are the density ρ, the
velocity vector u, and the total energy ρE = ρe + 1

2ρu2 with the specific internal
energy e.

The flux tensors Hinv and Hvis denote the inviscid and viscous flux tensors and
are given by

Hinv − Hvis =

(
ρ(u − u∂V )

ρu(u − u∂V ) + pI
ρE(u − u∂V ) + pu

)
−

1
Re0

(
0
τ

τu − q

)
(2.2)

in arbitrary Lagrangian-Eulerian formulation (ALE) [41]. The flux tensors are
computed using the pressure p, the control volume surface velocity u∂V , and the
unit tensor I.

The stress tensor in a Newtonian fluid at zero bulk velocity is given by

τ = µ(T )(∇u + (∇u)T ) −
2
3
µ(T )(∇ · u) I (2.3)

with the viscosity µ(T ) [2]. The dynamic viscosity µ(T ) is computed by Sutherland’s
Law [107, 117] which reads

µ(T ) = T 3/2 1 + Sµ/T0

T + Sµ/T0
(2.4)

5



2 Mathematical model

with the Sutherland constant Sµ, the reference temperature T0, and the fluid
temperature T derived from the equation of state Eq. 2.8. The reference temperature
in all configurations is T0 = 273.15 K unless noted otherwise.

The heat flux is based on Fourier’s law

q = −
1

Pr0(γ − 1)
k(T )∇T (2.5)

which derives the thermal conductivity k(T ) from the Sutherland law [107, 117]

k(T ) = T 3/2 1 + Sk/T0

T + Sk/T0
(2.6)

using the Sutherland constant Sk.

In order to efficiently solve the equations, all variables are given in their non-
dimensional form. The non-dimensionalization of the variables is described in
Appendix A.

The Reynolds number and the Prandtl number are given by

Re0 =
ρ0a0Lref

µ0
and Pr = cpµ0

k0
(2.7)

with the reference length Lref , the speed of sound a0 =
√
γp0/ρ0 computed using

the heat capacity ratio γ = 1.4 for air, and the specific heat cp at constant pressure.
The set of equations is closed by the ideal gas law in non-dimensional form which

reads
γp = ρT. (2.8)

2.2 Solid phase
An arbitrarily shaped, rigid, or deformable body of volume {v|v ∈ V (t)} with the
surface Γ(t) = δV (t), propagating through a fluid of volume V at time t is considered.

Thermal conduction in such solid phase is described by the conservation of enthalpy
without heat sources

d

dt

∫
V (t)

ρhdV +
∮

∂V (t)

[ρhu − Forefkp(T )∇T ] · ndA = 0, (2.9)

with the specific enthalpy h and the Fourier number Foref

Foref =
ks,ref ts

ρrefL
2
ref

cp
(2.10)

6



2.2 Solid phase

.

.

(a) β = 1

.

(b) β = 4 (c) β = 8

Fig. 2.1: Investigated are spherical and ellipsoidal particles in the aspect ratio range 1 ≤ β ≤ 8.

where the time scale can be chosen as, e.g., ts = Lref/uref .
The quantity ks,ref represents the reference thermal conductivity of the solid

body.
In the fluid domain, Fourier’s law Eq. 2.5 is used to determine the heat flux, where

the thermal conductivity is formulated as a function of the local temperature Eq. 2.4.
In the case of phase changes, relevant in solidification or evaporation systems, the
thermal conductivity possesses a strongly non-linear distribution as a function of the
temperature.

The non-linear thermal conductivity in the solid phase can be accounted for by
using piecewise analytical functions or look-up tables for the determination of kp(T ).
An example of such an analytical function is given in Mason et al. [69] for biomass
particles. However, a detailed discussion of phase changes in the solid phase is
beyond the scope of this thesis.

In the present thesis, the focus is on particles of spherical or ellipsoidal shape.
These are characterized by the aspect ratio

β = c

a
(2.11)

with the condition
x2

a2 + y2

b2 + z2

c2 = 1, (2.12)

where a, b, and c are half the length of the principal axes. Spherical particles are
described by uniform axis length, i.e., a = b = c resulting in β = 1. In this thesis
only prolate ellipsoidal particles are investigated where the two minor axes are equal,
i.e., a = b and c > a (β > 1). Examples are given in Fig. 2.1
To ensure that all particles, irrespective of their aspect ratio, have the same mass,
the individual axis lengths a, b, and c are scaled such that all particles have the same

volume, i.e., Veq = 4π
3 ·a ·b ·c = 4π

3 ·
(
deq

2

)3
, which is based on the volume-equivalent

diameter deq describing the diameter of a sphere with the same volume.

The particle motion in this thesis is unrestricted and non-forced, i.e., free motion
of arbitrarily shaped geometries is considered. The motion is determined by the
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2 Mathematical model

mechanical loads on the surfaces of the bodies, resulting in translational and rotational
movement.

The linear movement of the particle center of mass is expressed by Newton’s
second law which describes the linear acceleration

m
dup

dt
−mg = Fp (2.13)

using the particle mass m, the derivative of the particle velocity dup
dt

, and the vector
of gravitational forces g. The subscript (·)p denotes the particle quantities.

The torque exerted by the fluid on the particle is given by

Î
dω̂

dt
+ ω̂ ×

(
Îω̂
)

= T̂ p (2.14)

with the angular velocity ω̂ and is considered in a particle-aligned reference frame
indicated by the superscript (̂·).

x

y

z

φ

ẑŷ

x̂

Fig. 2.2: Global coordinate system (x, y, z), particle fixed coordinate system (x̂, ŷ, ẑ), and
inclination angle φ. The aspect ratio β is the ratio of the major axis c in red and the
minor axis a in blue limited by the particle dimensions. The angle φ is in relation to
the streamwise flow direction.

The global coordinate system (x, y, z) is fixed at the global fluid center of mass,
whereas the particle frame of reference (x̂, ŷ, ẑ) is fixed at the particle center of mass
of each particle as illustrated in Fig. 2.2. The relative rotation between the two
coordinate systems is given by a quaternion-based notation [103].

The force Fp acting on the surfaces of the bodies Γ(t) is described by the pressure
and shear-stress distributions which are integrated over all surfaces. The force

Fp =
∮

Γp

(−pn + τ · n) dA, (2.15)

8



2.3 Multiphase energy exchange

and the torque

T p =
∮

Γp

(x − xp) × (−pn + τ · n) dA (2.16)

with the distance between the particle center of mass and the surface position x−xp,
are related to the bodies center of mass and are used to determine the mechanical
loads on the bodies.

2.3 Multiphase energy exchange

The conservative exchange of mass, momentum, and energy is ensured by the interface
line between the fluid and the solid phase. In the case of solids, there is no transfer of
mass, i.e., the mass of the particles is constant and mass transfers, such as those that
occur during combustion or phase changes, are not considered. This is expressed by
the fluid velocity at the surface

u(x, t) = up + ωp × (x − rp) (2.17)

such that the mass flux vanishes.
The transfer of momentum is calculated by considering the shear stresses and the

pressure forces on the individual particle surfaces. Considering the identity

(a × b) · c = (b × c) · a (2.18)

with Eq. 2.15 for the linear forces and Eq. 2.16 for the rotational forces, the transfer
rate of kinetic energy transferred from the particle to the fluid is given by

ψ(t) =
Np∑
p=1

ψp = −
Np∑
p=1

(Fp · up + Tp · ωp). (2.19)

The dissipation rate of the fluid kinetic energy is described by the inner tensor
product A : B = AijBji, i.e.,

ε(t) =
∫
Vf

ε(t)dV =
∫
Vf

[τ : (∇u) − (∇ · u)p] dV, (2.20)

in the fluid control volume Vf . The control volume Vf =
∑

p
\Γp with the volume

surrounding the particle
∑

p
and the particle volume Γp encapsulates the particles

and the fluid within a certain volume of the particle surfaces. The control volume is
attached to the moving surface of the particle. For more detail the reader is referred
to Schneiders et al. [100].

9
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The energy exchange at the particle surfaces can be positive or negative, i.e.,
energy can be transferred from the particle to the fluid and vice versa. On the other
hand, the particle-induced dissipation rate on the fluid is always considered positive.
In this thesis, the notation that a positive sign of ψ(t) results in energy transferred
from the particle to the fluid is considered.

The temporal change of total kinetic energy Ek =
∫
γ

1
2 ρu2dV inside the fluid

domain is governed by the exchange of kinetic energy ψ(t) between the particle and
the fluid, and the fluid dissipation ε(t). The rate of energy change inside the fluid is
therefore described by the equation

∂Ek

∂t
= ψ(t) − ε(t). (2.21)

The transfer of thermal energy differs significantly from the transport of kinetic
energy. As expressed in Eq. 2.19 and Eq. 2.20, the transport of kinetic energy Ek is
mainly caused by pressure and shear forces at the surfaces due to relative motion
between the particle and the local carrier fluid. In contrast, the exchange of thermal
energy across material interface boundaries is driven by the temperature gradient
∇T as evidenced in Ch. 3.6 and Eq. 2.5. The coupling of the viscosity and the
temperature within the fluid is described by the Sutherland law Eq. 2.4.

The transfer of thermal energy occurs by three primary mechanisms: conduction,
convection, and radiation.

Inside the fluid domain, convection is the main driver of thermal energy exchange
as visible in Eq. 2.1. In the solid phase, conduction is the predominant mechanism
(Eq. 2.9). On the interface line, i.e., the coupling of the different phases, convection
and radiation are responsible for the bulk of the exchange. However, radiation has
been neglected in all cases.

In the isothermal setup, the particle surfaces are considered adiabatic or isothermal

adiabatic k(T ) ∂T
∂n

= 0, x ∈ Γ(t), (2.22)

isothermal T (x) = TΓ, x ∈ Γ(t). (2.23)

Due to the non-linearity and the high complexity of the interaction in non-
isothermal setups, the exchange of thermal energy cannot be described directly. For
this reason, a new coupling method was developed and will be described in more
detail in Ch. 3.6.
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2.4 Fluid-solid interface line

The particle Stokes number based on the time scale τ0 = D/u of the turbulent
flow in the exit cross section of the pipe at x/D = 0 used in Ch. 5 is

St0 = Re

18
·
ρp

ρf
·
(
deq

D

)2
(2.24)

as commonly seen in the analysis of interaction between particle and free jet flow [62].
The quantity deq is the volume-equivalent particle diameter and ρp

ρf
is the ratio of

particle and fluid densities.
The heat transfer between a solid boundary and the surrounding fluid is quantified

by the dimensionless Nusselt number

Nu =
hLref

k
=
QLref

k A∆T
, (2.25)

with the convective heat transfer coefficient h, the temperature difference between
the surface and the fluid ∆T , and the total heat flux Q =

∮
A

q(x) · n dA integrated
over the surface area A in the normal direction n.

2.4 Fluid-solid interface line

The individual surfaces of all bodies are described by a signed-distance level-set
function Ψ(x, t). The distance of each cell to the nearest surface is calculated
following the convention that values Ψ(x, t) > 0 are outside of a body and values
Ψ(x, t) < 0 are inside of a body. The position of the surfaces is represented by
the zero contour, i.e., Ψ(x, t) = 0. The bodies and the corresponding surfaces are
advanced in time by the transport equation

∂Ψi
∂t

+ uΓ,i(t) · ∇Ψt = 0 (2.26)

with uΓ,i(t) being the respective surface velocity.
For solid simple geometries, an analytical level-set approach can be used. This

makes the reconstruction of the level-set field trivial and allows for optimizations in
how the field advances in time. The reconstruction of the field at each time step is
based on the following steps:

1. The relative position, i.e., the position in x, y, and z direction, the particle
orientation, and the radii of the particles are given in vector notation. With this,
the particle surface contour and the corresponding surface locations are well defined.

2. The particle surface contour is computed and the distance of each cell to the
nearest surface is obtained by minimizing the distance of the cell center coordinate

11
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to the closest bodies nearby

Ψ(x, t) = min x − xΓ

> 0 x ∈ Vf (t),
= 0 x ∈ Γ(t),
< 0 x ∈ Vp(t),

(2.27)

with the cell position x and the surface position xΓ.

In the present work, a multi level-set approach is used for all applications. This
means that each cell calculates and stores N level-set values. The individual level-set
values refer to different bodies, so that the reconstruction of the bodies in densely
populated areas and in complex geometries remains sharp and accurate [32]. A
combined level-set field, the zero level-set field Ψ0(x, t), is constructed from all
interface elements

Ψ0(x, t) = min

(
N∑
i=1

Ψi(x, t)

)
, (2.28)

and

Ψ0(x, t) = −

√√√√ N∑
i=1

Ψi(x, t) (2.29)

if all level-set fields Ψi(x, t) < 0, to simplify the prescription of the interface line.
For the consideration of several particles in narrow areas or the calculation of

complex geometries, the information of all level-set fields is used to ensure a sharp
resolution. The analytical approach to the level-set field allows simplifications in
how the field is advanced in time. The method and the changes are described in
more detail in Ch. 3.3.3.1.

To advance each particle in time and space, all acting forces on the particle surfaces
are integrated and reduced to its center of mass (cf. Ch. 2.2). The new particle
position and orientation are used for the derivation of Ψ(x, t+1) in the next timestep.
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3 Numerical method

The numerical realization of the isothermal and non-isothermal setups is conducted
by coupled multiphysics solvers in an immersed-boundary framework.

The solvers utilize various numerical methods to compute distinct aspects of
multiphase flows. A finite volume formulation is employed to compute the fluid
phase. Two novel solvers are developed for modeling the particle dynamics: a
parallel particle solver and an enthalpy solver. The particle solver tracks the particle
movement while the enthalpy solver models heat dynamics within fully-resolved
bodies of arbitrary shape. All computations are conducted on a joint Cartesian grid.

More details are given in the following. First, the underlying joint grid approach is
presented, and the adaptive mesh refinement and the mechanism used to offset the
varying workload of each subdomain, i.e., the load balancing algorithm, are described.
Afterwards, the different numerical methods are discussed and the corresponding
formulations are presented. In closing, the coupling approach of the multiphysics
problems is outlined and the approach to the application of boundary conditions is
presented.

3.1 Cartesian grid

The investigations in this work are conducted within the open-source simulation
framework m-AIA (multiphysics-Aerodynamisches Institut Aachen, https://git.
rwth-aachen.de/aia/m-AIA/m-AIA) that uses a joint Cartesian grid [63]. This joint
grid encompasses the entire domain of interest and is adapted by the various solvers
and parallelized by the message passing interface (MPI) standard. The joint grid
can be adapted in full or in parts by the individual solvers as exemplarily shown in
Fig. 3.1 where the domain of interest discussed in Ch. 5 is split into two distinct sub-
domains.

A hierarchical Cartesian mesh structure is used which features an octree data
structure [36]. To be more precise, in three-dimensional configurations an octree data
structure is used which reduces to a quadtree structure in two-dimensional space
and to a binary tree in one-dimensional space. The hierarchical structure is such
that information, as, e.g., parent-child relationships, cell levels, and more, are readily
available. All mesh cells can be refined or coarsened. A two-dimensional visualization
of a quadtree is illustrated in Fig. 3.2, where 2n child cells are added or removed
to or from a cell for an n-dimensional case. The extension to a three-dimensional
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3 Numerical method

Joint grid

Pipe domain

Jet domain

Fig. 3.1: Multi-solver approach. A joint grid is split up into distinct domains which are subse-
quently adapted by different solvers. A mapping from each solver subdomain to the
joint grid is kept which simplifies the linking of cells within different solvers.

octree is analogous. Additionally, neighboring relations are stored to derive spatial
relationships in n-dimensional space.

ln

ln+1

ln+2

5.8... ...

1.0 1.3

0.8 0.9 0.3 0.6

2.6 0.9

Fig. 3.2: Quadtree structure of the hierarchical Cartesian mesh. The numbers next to each
node in the quadtree indicate cell weights, which approximate the total computational
workload of a cell and are accumulated up the tree. The partition level ln+1 is used
for the grid decomposition as indicated by the different node colors. The bold lines
indicate that the cell branch is assigned to multiple solvers. The varying workload of
the leaf cells is caused by the varying amount of computational work for each cell. For
example, boundary cells show increased weights in comparison to regular grid cells due
to additional computations.

The flexibility of the octree structure facilitates the expansion of individual
branches, thereby generating varying levels of branch depths and cell refinement lev-
els. This process is referred to as adaptive mesh refinement and is further explained
in Ch. 3.1.2.
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3.1 Cartesian grid

With the aforementioned structure, the grid allows easy decomposition for massively
parallel systems while maintaining good flexibility.

3.1.1 Domain decomposition
The size of the simulations examined in this thesis exceeds O(109) cells, necessitating
the implementation on high-performance computing systems. To this end, the
domain of investigation must be parallelized to maintain optimal performance and to
efficiently address the integration tasks. The decomposition of the grid into multiple
subdomains, as exemplarily depicted in Fig. 3.3a, facilitates the efficient execution of
the integration tasks by allocating distinct MPI computing cores to each subdomain.
The Message Passing Interface (MPI) is a standardized communication protocol that
enables parallel processes running on distributed computing systems to exchange data
efficiently. It provides a framework for developing high-performance applications by
supporting point-to-point and collective communication between multiple processes.

1 1024
MPI rank

(a) Resulting distribution of the pipe domain from
the Hilbert curve for 1024 computing cores.

A B

(b) Space-filling Hilbert curve through a two-
dimensional locally refined grid. The different
colors result in distinct subdomains assigned
to individual MPI ranks.

Fig. 3.3: General approach and exemplary result of the domain decomposition of the joint
Cartesian grid. A space-filling Hilbert curve reduces the decomposition of the three-
dimensional grid into a one-dimensional problem. All cells along the curve are weighted
and used for the decomposition to divide the domain into approximately evenly weighted
chunks.

The decomposition of the joint grid is conducted by marking the grid cells by a
space-filling one-dimensional curve on a pre-defined partition level, the Hilbert curve
(see Fig. 3.3b). The space-filling curve reduces the three-dimensional physical space
to a one-dimensional curve which preserves locality such that compact domains
are achieved [73]. Each cell is assigned a weight that represents its respective
workload which is accumulated up the tree branches to the partition level. The
cells at the partition level are assigned a unique Hilbert id and subsequently split
into approximately even lengths. These chunks are assigned to all available MPI
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3 Numerical method

ranks based on the accumulated weights along the curve. This results in balanced
workloads across all MPI ranks, thereby ensuring symmetrical computation times
across the subdomains. This approach minimizes the exchanges between neighboring
domains and enhances the overall efficiency.

The mechanism facilitates compact subdomains throughout all solvers which allows
the direct in-memory exchange of data. Due to the partitioning of the joint mesh,
cells assigned to multiple solvers will be allocated to the same MPI rank. Especially,
the cells cut by body surfaces which belong to multiple domains are guaranteed to
be located on the same MPI rank. Therefore, the data exchange between the fluid
and solid domain, which is necessary for the formulation of the boundary conditions
shown in Ch. 3.6, does not involve any communication between parallel partitions
and can be performed by local memory transfer.

Unlike other coupling approaches for conjugate heat transfer, such as segregated
solvers or overset meshes, no communication or other computationally expensive
procedures such as frequent determination of grid connections or global communi-
cation are required. This significantly improves the performance of the coupling
methodology for massively parallel HPC systems.

For simulations with high local refinement levels, a large number of leaf cells can
be associated with a single partition level cell, for which the computational work
may become larger than the average work load. In such cases, a partition level shift
is used for the domain decomposition to achieve a better load distribution. In this
approach, the Hilbert curve traverses down the octree of the mesh such that a cell of
a higher refinement level than the partition level is used for the decomposition as
shown in Fig. 3.4.

ln

ln+1

ln+2

... ...

1.0 1.3

0.8 0.9 0.3 0.6

2.6 0.9

partition cells

Fig. 3.4: Hierarchical quadtree structure of the hierarchical Cartesian mesh, the partition cells
are indicated by the dashed line. The partition level shifts the local level of partition
cells such that a finer granular decomposition is ensured.

This shift is performed locally, for which an example is shown in Fig. 3.4, where the
cells at the higher level are traversed by the Hilbert curve used for the decomposition.
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A finer granular decomposition can then be performed such that a better workload
balance is achieved.

3.1.2 Adaptive mesh refinement
The octree structure of the grid stores the domain in a hierarchical tree, thereby
facilitating the derivation of parent-child relationships. The structure is exploited
with individual branches of the tree deviating from an isotropic grid refinement, i.e.,
undergoing further refinement or coarsening. An example of the resulting domain
is given in Fig. 3.5. The local alteration of the grid is referred to as adaptive mesh
refinement (AMR).

Cells can be refined or coarsened as shown in Fig. 3.3. In the case of, e.g.,
refinement, a cell is split into halves in each spatial direction, i.e., 2n child cells are
added to a cell in n-dimensional space. This process ensures the maintenance of the
grid’s structural integrity, leading to a well-defined and fully operational grid.

Fig. 3.5: Locally adapted mesh. The immediate area around the particle interface lines is refined
to the highest level to ensure the proper resolution of all boundary layer phenomena.
During the simulation run, additional refinement based on statistical sensors adapts
the flow field.

The mesh is locally refined or coarsened based on runtime statistics defined by
each cell, so called sensors. This allows the adaptation of the grid based on the
instantaneous flow solution. To elaborate, a cell is further refined if its cell value
exceeds the multiple of the root mean square (RMS) of all cells for the given property.
To illustrate an example, a cell is further refined if its temperature derivative exceeds
a pre-defined multiple of the statistical RMS value of all cells. A common approach
involves further refining the grid where the solution exhibits increased complex
dynamics and steep derivatives while simultaneously coarsening less dynamic areas.
This approach reduces the overall workload in comparison to an isotropic grid at
the highest refinement level while maintaining high accuracy in complex parts of the
grid.
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Additionally, static refinement sensors refine the cells independent of the RMS
values. This is, for example, employed in the refinement of moving bodies as found in
this thesis. The area surrounding the moving particles is always refined to the highest
refinement level to ensure the proper resolution of all boundary layer phenomena
and the stark gradients therein, see Fig. 3.5.

However, due to the varying work loads imposed by the additional computations,
such as boundary cells or varying grid tree depths, the computational time of the
individual MPI subdomains may increase over time. MPI synchronization then
results in large idle times and wasted computational resources. To address this, an
advanced load-balancing algorithm is employed which will be outlined next.

3.1.3 Dynamic load balancing
Due to the varying complexity of the computational tasks within the different
subdomains, the runtime of the individual subdomains will eventually differ. For
example, the boundary cell generation and the ensuing cut face intersection increase
the computational complexity and thus, the local work load. Additionally, memory
constraints of HPC systems will lead the simulation to run out of memory and crash.
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Fig. 3.6: Load distribution of 512 MPI ranks before and after balancing. The ideal workload
is w = 1.0 for all ranks. The occasional high workloads result in large idle times
throughout all domains slowing down the overall computation.

This phenomenon is particularly evident in the context of the free movement
of particles, where the trajectory of the particles is not known in advance. An
example load distribution is given in Fig. 3.6. The computationally most expensive
performance and memory operations in this thesis are the generation of the cut
cells, the varying workload due to adaptive mesh refinement, and the overlap of
cells assigned to multiple solvers (see Ch. 3.5). To counteract the time-dependent
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3.2 Parallel particle tracking

change of workload, an algorithm to periodically redistribute the grid throughout all
available MPI ranks is supported, termed dynamic load balancing [77, 114].

The redistribution of cells between the different MPI subdomains is analogous to
the initial grid decomposition. The partition cells are traversed by a Hilbert curve
and subsequently evaluated for their accumulated workload [77, 114]. Two different
approaches for the evaluation of the total workload are considered:

• Static cell weights [114]. Cell properties are associated with a static weight
value. For instance, a cell that functions as a boundary cell exhibits elevated
levels of complexity and computational demands, consequently resulting in a
greater weight value.

• Dynamic cell weighting [77]. Timers to track the effective computing times
for each subdomain are utilized. The effective computational runtime of each
MPI rank is evaluated in relation to the different cells, and a more reliable
representation of the computational workload is achieved.

Subsequent to the computation of all cell weights, the weights are accumulated up
the grid tree such that each partition cell is given an accurate representation of its
downstream branch workloads. The Hilbert curve along the partition cells is split
into approximately equivalent workloads and distributed among all available MPI
ranks. This process is analogous to the initial grid decomposition.

Effectively, the three-dimensional problem is reduced to a one-dimensional problem
which simplifies the assignment of the grid to the individual MPI ranks. Due to
the spatial relationship depicted by the continuous curve, neighboring exchanges
between window and halo cells in the distinct MPI domains are minimized, thus
ensuring workload equalization across all available hardware. Here, window cells
refer to the active boundary regions of each subdomain where data exchange with
adjacent domains occurs, while halo cells (also known as ghost cells) are copies
of neighboring cell values stored locally to enable consistent computations across
domain boundaries. However, due to the dynamic nature of the particles, frequent
repetition of the balancing process is necessary to maintain high performance and
balanced memory usage.

3.2 Parallel particle tracking

To meet the requirements of large-scale simulations of several thousand fully-resolved
particles of varying shape, a new parallel particle class is presented. The main task
of the particle solver is to track the particle dynamics in time, compute the particle
rotation due to the mechanical forces, and account for collisions between the particles.
The focus lies on high efficiency in distributed computing, low memory usage, and
on minimizing the exchange of the individual MPI subdomains.
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3.2.1 Parallelization
The distribution of particles is based on a local/global id approach in which indi-
vidual particles are present only in subdomains which they intersect with. In this
context, the relative position of particles within the grid determines their alloca-
tion with particles assigned to the cell that their center of mass intersects. This cell
then owns the respective particle. As the particle moves, ownership of the particle
is transferred to the new cell. In the case of ownership of an internal cell, i.e., not
a halo cell, the particle is designated as local. In the event that a particle surface
intersects a halo cell within a certain distance, the particle is transferred to the cor-
responding neighboring domain and labeled there as a halo body. The additional
distance ensures the proper synchronization of the individual domains during the
adaptive mesh refinement and the seamless transition of bodies at the boundaries of
two subdomains.

local id

1 27

Fig. 3.7: Local ids of a single particle in different domains. The local id is assisted by a global
id which is consistent in all domains.

This principle is extended to the concept of periodic boundaries which can be pre-
scribed anywhere in the flow field. Consequently, a given particle may be designated
as either local, halo, or periodic. The ownership and status of halo and periodic bod-
ies change to local when the respective cell center intersects with an internal cell.
Updates of local, halo, and periodic bodies are performed only when changes in the
particle distribution necessitate communication.

Within each subdomain, particles are accounted for and referenced by their body
id which ranges from 0 − N in each subdomain, with N denoting the number of
particles intersecting with the respective subdomain. The continuous movement
of particles can result in different ids between individual subdomains. To ensure
the proper exchange of particle data, an additional unique identifier, the global id,
is assigned. This id remains constant across all domains and is assigned to each
particle individually. In the event of a new particle being added, a new global id is
assigned. If a particle leaves the full domain its global id is deleted and marked for
reassignment. Halo and periodic bodies have the same global id as their respective
window bodies. The usage of a common global id simplifies the tracking of particle
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statistics and allows the efficient linking of particles in varying subdomains, including
the linking of local and periodic particles.

3.2.2 Temporal integration of the particle dynamics

The particle dynamics are advanced in time by the acting forces at the boundary
surfaces (see Eq. 2.15 and Eq. 2.16). The coupling of the particles with the flow field
dynamics allows the temporal integration of the particle positions based on the local
flow conditions. This achieves a physically correct free movement of the particles in
the fluid flow. The predictor-corrector scheme presented by Schneiders et al. [99] is
used for time integration.

3.2.2.1 Linear movement

In the predictor step, the acceleration of the previous time step is used to determine
the new position. An implicit Newmark scheme

an = an−1,

un = un−1 + ∆t · 0.5 · (an−1 + an),

xn = xn−1 + ∆t · un−1 + 0.25 · ∆t2 · (an−1 + an),
(3.1)

is used to integrate the acceleration at timestep n in time.

In the corrector step, the hydrodynamic loads of the flow field on the particle
surfaces are known and can be determined. The resulting mechanical loads in
Eq. 2.15 are integrated and reduced to the particle center of mass. Newton’s law
is subsequently used to compute the linear acceleration in Eq. 2.13. An implicit
Newmark scheme

an = F
m

+ g,

un = un−1 + ∆t · 0.5 · (an−1 + an),

xn = xn−1 + ∆t · un−1 + 0.25 · ∆t2 · (an−1 + an),

(3.2)

is used again to integrate the acceleration in the corrector step in time.
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3.2.2.2 Rotational movement

The respective particle rotations are updated according to the acting torque Tp at
the particle surfaces by a Crank-Nicolson scheme

Îω̂n+1 + ∆t
2
[
ω̂n+1 ×

(
Îω̂n+1

)]
= Îω̂n + ∆t

2

[
T̂p
n + T̂p

n+1 − ω̂n ×
(
Îω̂n
)]

(3.3)

εn+1 −
∆t
2

Ω(ω̂n+1)εn+1 = εn + ∆t
2

Ω (ω̂n) εn, (3.4)

with the torque in body-frame coordinates T̂p
j = R

(
εj
)

T j
p and the angular velocity

in inertial frame ωj = R
(

εj
)−1

ω̂j , in a Newton-Raphson iteration scheme. The
orthogonal matrix is

R(ε) =

[
ε20 + ε21 − ε22 − ε23 2(ε1ε2 + ε0ε3) 2(ε1ε3 − ε0ε2)

2(ε1ε2 − ε0ε3) ε20 − ε21 + ε22 − ε23 2(ε2ε3 + ε0ε1)
2(ε1ε3 + ε0ε2) 2(ε2ε3 − ε0ε1) ε20 − ε21 − ε22 + ε23

]
(3.5)

and the vector of quaternions is defined by ε = [ ε0, ε1, ε2, ε3].
The new particle positions is used for the next iteration step. Once the iteration

within an iteration step j of timestep n is converged, i.e., ∆xn,j − ∆xn,j−1 ≤ R, the
iteration is concluded and the next timestep is initiated.

3.2.3 Collision model
Collisions are modeled using a modified version of the collision model proposed by
Glowinski et al. [29]. In this hard-sphere model, a repulsive force is applied to the
respective colliding bodies. This repulsive force acts in opposite normal direction
of the colliding bodies to prevent the overlap of the bodies’ surfaces. The overlap
of solid bodies is ambiguous in the utilized cut-cell method and thus, not feasible.
Due to the multi-cut cell method, this means that particle collisions are resolved
on a sub-cell length level. Distances of 1/10 l of an uncut cell length l between two
colliding surfaces are commonly observed.

The detection of a potential collision for the spherical particles is trivial due to
the equidistant body radii. Due to the anisotropic shape of some of the particles and
the curvature of the pipe walls in Ch. 5, the collision model is extended to operate
on generic non-spherical body shapes. It also includes the point-of-attack in relation
to the center of mass such that the rotational momentum is correctly applied.

The collisions of fully-resolved arbitrary shaped solid bodies (·)p and (·)q are
computed for the contact point which is equivalent to the nearest surfaces of the
bodies. No collision is considered if (xp − xq) − (rmax,p + rmax,q) > S, where the
quantities xp, xq and rmax,p, rmax,q are the center of mass of the particles and the
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3.2 Parallel particle tracking

maximum radius of the non-spherical, ellipsoidal particles and S defines a minimum
gap between the particles.

If a collision occurs, the repulsive force

fp = C0 ·
(
S − ld

S

)2
·

xp − xq

ld
(3.6)

with the coefficient

C0 = fr ·
1
2 · (mp +mq) · u2

ref

lmax
(3.7)

is calculated by the repulsive force factor fr, the particle masses mp and mq, the
reference velocity uref , the cell length of an uncut cell lmax at the max level, the
distance between the surfaces ld, and the distance between the center of mass xp −xq

of the body (·)p. The loss of kinetic energy due to collisions and particle deposition
at the wall is not considered.

In the present study, the collision model is expanded to include collisions between
particles and static bodies. The collision model will be used in Ch. 5 for the
calculation of particle-pipe collisions. The collision between static bodies and particles
is analogous to collisions between particles. The collision is initiated as exemplarily
shown for a particle-pipe wall collision:

1. A preliminary estimation rpipe − (xp + rp,max) < S based on the particle
coordinate and the pipe diameter, including the maximum particle radius,
yields a numerically cheap prediction if a collision is to be considered.

2. In the event that the particle is deemed to be in potential collision with the
wall, the distance ld of the potential collision point is calculated.

3. The effective distance is summarized on the basis of all surfaces involved and
weighted according to the respective distances. To be more exact, the impact
of multiple surface contact points is considered by distance-based weighting.
The resulting repulsive force is then related to the center of mass of the particle
equivalent to the methodology previously outlined.

4. The mass of the particle is used to calculate the force. Given the ambiguous
mass of the pipe wall, the mass of the particle is also utilized for this purpose,
i.e., mp = mq. Rotational forces are applied based on the point-of-attack in
relation to the center of mass of the particle.

With this approach, collisions between particles and solid static bodies are captured
and properly computed. As shown by Yan et al. [119], particle-wall collisions are
important in the configuration of particle-laden pipe flow.
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3 Numerical method

3.3 Finite volume solver

A finite volume method is used to discretize the conservation equations in Eq. 2.1
and Eq. 2.9 [36, 98]. This method is adapted for the calculation of moving bodies
of arbitrary shape. A monotonically integrated LES (MILES) approach is used
where the large-scale turbulent motions are fully resolved and the dissipation of the
numerical scheme is used as a sub-grid scale (SGS) for the small-scale motions [71].
The advantage is that no further SGS model has to be explicitly prescribed and no
additional terms have to be considered in the Navier-Stokes equations.

3.3.1 Spatial discretization

The inviscid fluxes are approximated by a low-dissipative method of the advection
upstream splitting method (AUSM) [70]. The inviscid flux vector in the Cartesian
direction i is calculated by

Hinv
i = 1

2
[
MLR
i

(
fL + fR

)
+
∣∣MLR

i

∣∣ (fL − fR
)]

+ pi (3.8)

with the local Mach number at the surface

MLR
i = 1

2
[
(ui/a)L + (ui/a)R

]
(3.9)

and under the consideration of

f = [ρa, ρau, ρa(E + p/ρ)]T (3.10)

and

pi =
[
pL
(1

2
+ χ (ui/a)L

)
+ pR

(1
2

− χ (ui/a)R
)]( 0

ei
0

)
. (3.11)

Here, the superscripts L and R denote the left- and right-handed states of the
surface. The respective cell surface variables are obtained by interpolation using a
monotone upstream-centered scheme for conservation laws (MUSCL). The centered
variables

P = [u, v, w, ρ, P ]T (3.12)

are in their primitive state and are computed by

PL/R
sf

= PL/Rc + ∇P|L/Rc ·
(

xs − xL/R
)

(3.13)

at the surface.
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3.3 Finite volume solver

The cell-centered gradients ∇P|c of all primitive variables are resolved by a
weighted least-squares reconstruction method

P|c =
∑
nj∈Nc

Cj
(

Pj − Pc
)

(3.14)

with the direct neighbors Nc in each spatial direction. The reconstruction constants
Cj are obtained from solving the least-squares problem of the linear equation

W · A∇P|L/Rc = W

Pn1 − Pc
Pn2 − Pc

...

 (3.15)

with

A =

∆xn1 ∆yn1 ∆zn1
∆xn2 ∆yn2 ∆zn2

...
...

...

 (3.16)

where xnj = xj − xc is the distance between the neighbor (·)j and the cell center
(·)c. This results in the equation system

Cj = A+W2 ·
1
l

(3.17)

where (·)+ remarks the pseudo-inverse of the respective quantity and l the width of
the respective uncut cell. The diagonal matrix W = diag(wn1 , wn2 , ...) weights the
impact of each cell in the least-squares reconstruction with

wnj = ζ(Vj)
[

1 +
(

∆xnj
2

l2

)]−1/2

, (3.18)

which includes the volume weighting ζ(Vj) to handle gradually vanishing small cells
from the reconstruction stencil.

The viscid fluxes are solved by a central differences scheme where the surface
variables are averaged in their primitive state, i.e.,

PL/R
sf

= 1
2
(

PLsf + PRsf
)

(3.19)

with the surfaces states left and right of the surface obtained as described in Eq. 3.13.
The surface gradients ∇Psf with respect to the cell variables P are obtained from
the recentering approach proposed by Berger & Aftosmis [11]. Further details on
the described numerical methods can be found in Hartmann et al. [38], Günther et
al. [32], and Schneiders et al. [99].
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3.3.2 Temporal integration
The solution of the flow field is advanced in time by an explicit five-step Runge-
Kutta scheme. Being second-order accurate, the Runge-Kutta scheme is specifically
optimized for setups with moving bodies as presented in Schneiders et al. [98, 99].

The scheme reads

(QV )(0) = (QV )n,

(QV )(1) = (QV )(0) − ∆tR(tn; Q(0)),

(QV )(k) = (QV )(0) − ∆t[(1 − αk−1)R(tn; Q(0)) + ...

...+ αk−1R(tn+1; Q(k−1))], for k = 2, ..., 5,

(QV )n+1 = (QV )(5),

(3.20)

where tn and tn+1 refer to the current and the following timestep and k marks the
current Runge-Kutta sub-step. The cell surface flux R(t; Qk) is approximated by

R(t; Qk) =
∮
∂V (t)

(
Hinv(Qk) − Hvis(Qk)

)
· ndA+ O(h2) (3.21)

with the Runge-Kutta coefficients αk = [ 1/4, 1/6, 3/8, 1/2, 1]T for a five-step
scheme. For low Reynolds number flows, the vector of coefficients αk = [ 0.02514,
0.0718, 0.1757, 0.5, 1]T is used instead.

The original multi-step Runge-Kutta formulation by [45, 48, 110] requires the
reconstruction of the residual operator R(t; Qk) at each Runge-Kutta sub-step
k. This is necessary to sustain a time-consistent formulation which requires the
recomputation of the particle surfaces and the regeneration of the cut-cell geometries.
This consequently increases the workload multifold.

In contrast, Eq. 3.20 only reconstructs the residual operator R and the cut-cell
geometries at time levels tn and tn+1. Within a time step, only the conservative
variables Qk are updated alongside the geometric conservation law (explained in
Ch. 3.3.3.4). This renders the scheme well-suited for the computation of moving
particles in fluid flow as a speed-up of 2.5x is achieved [98].

The Courant-Friedrichs-Lewy (CFL) stability constraint dictates the timestep ∆t
by

∆t = min

(
C

lmax

|ui| + a
, Cvis

ρl2max
µ

)
(3.22)

where lmax is the grid length of an uncut cell at the highest refinement level and C
and Cvis denote the CFL number for the regular and the viscous stability limit.

During the movement of the particles, the diminishing volume of small cut-cells
can force instability issues. To avoid stability issues and an infinitesimally small
timestep, a small-cell correction is used with a flux redistribution method which is
described in Ch. 3.3.3.5.
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3.3 Finite volume solver

3.3.3 Immersed-boundary method

An immersed-boundary method (IBM) is used to render the fluid-structure inter-
actions. The surfaces of arbitrary shaped moving bodies are discretized by a sharp
cut-cell method. As the surface contours of the particles intersect the Cartesian cells,
the cells are recut to accommodate for the penetrating boundary. In other words,
the volume of the cell is divided into fluid and solid volume, see Fig. 3.8.

uncut cell

fluid domain

solid domain
ex

ch
an

ge

Fig. 3.8: A cut cell containing the body surface is split into its fluid and solid part. The data
between the two phases can be exchanged as it is observed in thermal equalization
processes.

This ensures that the geometries of the individual bodies are accurately represented
while maintaining the conservatism of the Navier-Stokes equations. In particular, a
multi-cut cell method is used which allows individual cells to be cut multiple times
to ensure the accurate presentation of cells that are penetrated by multiple bodies
or complex geometries.

The multi-cut cell method incorporates a higher-order surface approximation [99]
which significantly reduces the truncation error near the embedded interface achieving
an order of magnitude improvement compared to less accurate methods [1]. However,
the increased level of accuracy of the higher-order surface approximation results
in larger memory allocations and an increase of the computational complexity.
Therefore, the utilized algorithm differentiates between a single-cut cell method and
a multi-cut cell method, i.e., the multi-cut cell method is only used for the resolution
of the sharp boundary surfaces if necessary. To be more precise, boundary cells which
are intersected by a single interface line use a single-cut cell method which is based
on a Marching cube algorithm [65] using look-up tables to cover all 256 possible plane
intersections. For multiple intersections of a single cell, the intersection problem is
split into multiple single intersection problems. The individual intersection problems
are then covered by a Marching cube algorithm and the resulting multi-cut cell
is derived by polygonal intersection of the fluid domain portion of all individual
intersections.

27



3 Numerical method

During the intersection process, the fluid volume of the cut cells can become
exceedingly small. Then, explicit time-integration schemes require vanishingly small
time steps due to the CFL stability constraint. Since this is not feasible, additional
process steps are applied to ensure a robust and accurate cut-cell method. An
additional geometric volume constraint, the geometric conservation law, and a flux-
redistribution technique are used to stabilize such small cut cells while simultaneously
ensuring a conservative method. The small cell correction is explained in Ch. 3.3.3.5.

For further information the reader is referred to publications by Hartmann et
al. [38], Schneiders et al. [99], and Günther et al. [32].

Small adjustments to the method were necessary to properly compute the inter-
section of bodies at the domain boundaries. An overview is given in the following
where the changes will be discussed.

3.3.3.1 Particle surface contour

As previously outlined, an analytical level-set function is used to derive the level-set
values of the flow field. The particles move within the CFL constraint and as such,
the temporal change of the particle surface positions is only small. To increase the
performance of the solver, a region update algorithm is introduced which exploits
the numerical properties of the analytical level-set. Since the full level-set field is
known at timestep tn, the level-set values at timestep tn+1 are only updated in a
small band surrounding the particles.

Ψ
0(

x,
t)

+9.0

−2.0

Fig. 3.9: Zero level-set Ψ0(x, t) of a particle-laden pipe. The black bold line indicates the body
surfaces, i.e., the pipe domain (large circle) and the anisotropic particles. The cells
outside of the dotted purple and white lines are kept constant during the simulation
run unless new bodies penetrate the area.

The combined zero level-set field Ψ0(x, t) is shown in Fig. 3.9. All values are
analytically prescribed as the pipe radius and the particle positions are known along
the radii and orientations. In subsequent steps, only the cells in the moving band
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3.3 Finite volume solver

(purple dotted line) are updated. The level-set band moves and changes with each
particle. Additionally, the level-set values at static non-moving bodies, e.g., the pipe
wall, are only updated if other bodies penetrate the respective area, i.e., the white
dotted lines in Fig. 3.9.

3.3.3.2 Cut-cell method

The level-set values Ψ(x, t) are cell-based, i.e., they are related to the respective cell
center. In the course of the intersection, they are interpolated to the corner points of
the cells. All eight neighboring cells of a vertex are used for the interpolation. In the
case of level jumps, the corresponding distance is taken into account. The level-set
values of the corner points are used for cell intersection. Sign changes are used to
determine the position of the surfaces. To be more precise, sign changes between two
adjacent nodal level-set values are used to determine cut points along the connecting
border where a linear interpolation determines the exact location of the cut.

After that, all cut points are connected by boundary surfaces using a modified
Marching Cube triangulation algorithm. Split cells, that is, cells that have two
disconnected fluid parts in a single cell, are processed separately as the conservative
treatment of these cells needs special consideration. For a more detailed description
of the cut-cell methodology, see Schneiders et al. [98].

For cells at the domain boundaries, i.e., where less than eight neighboring cells
are available and the interpolation is therefore skewed, cells are added outside of the
domain by a new algorithm for the adaptive generation of grid cells. The description
of the algorithm can be found in Ch. 3.3.3.3.

3.3.3.3 Adaptive mesh extension

The cell-based level-set values are interpolated to nodal-based values during cell in-
tersection which can lead to significant distortions at the domain boundaries due to
sparse information caused by missing neighboring cells. A visual example is shown
in Fig. 3.10. An algorithm termed adaptive mesh extension (AME) is introduced as
a solution to this problem. Cells are added to the grid based on runtime information
of the solution. That is, the grid is locally extended by the generation of new cells
at each individual timestep to ensure the accurate resolution of the particle surfaces
while minimizing the computational load. The mesh enhancement is visually shown
in Fig. 3.11 where the added cells consist of multiple layers and can be intersected
by the moving boundaries.
These cells are a mixture of halo and ghost cells which are regularly taken into ac-
count in the flow field and accordingly contribute to the flow field development.

The addition of such cells can be conducted based on different data. In the
stabilization of the particles, the level-set information is used for determination if
new cells are to be added. If a cell-centered level-set Ψ(x, t) value is below a certain
threshold at the domain boundary, i.e., an interface line is nearby, cells are added
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(a) No adaptive mesh extension. The surfaces of
the particle entering the domain is clearly dis-
torted.

(b) Adaptive mesh extension enabled. The particle
entering the domain is properly resolved.

Fig. 3.10: Adaptive mesh extension. The adaptive enhancement of the grid at the domain
boundaries ensures the proper resolution of the level-set field by locally extending the
flow field. Resulting are proper body surfaces which ensures the correct conservatism
of the approach.

Fig. 3.11: Adaptive mesh extension visualized. The blue cells are regular grid cells and the red
cells are the adaptively added cells added during the simulation run, i.e., at each
timestep. Note the smooth transition of the particle intersection of the regular grid
cells and the added cells.

outside of the regular domain. This ensures the proper resolution of all particle
surfaces at the domain boundaries.

However, since these cells are added based on flow field information, the initial
value prescription is to be thought of. From this perspective, these cells are similar to
ghost cells in that initial values are extracted from the flow field. In Ch. 5, periodicity
is applied to the added cells in the pipe domain.

Two main problems of the immersed-boundary method as implemented in the
used code are targeted:

1. The intersection of the respective cells is ensured beyond the domain limits
and surface smearing is avoided. Due to the cell extension, nodal information
is ensured to be accurate through the boundaries and no distortions of the
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moving body are risked. As a result, the conservatism of the cut cell method
is maintained. By avoiding geometry changes due to numerical irregularities,
the correct redistribution of the flux due to pressure, momentum, and thermal
gradients is facilitated.

2. The added cells have the option to be linked to the regular grid cells. Due to
this, fluid energy can be transported out of the domain and is not echoed back.
This means that other mechanisms such as sponge layers become superfluous
at the boundaries. The prescription of cells according to other solution field
data than the level-set value is supported.

The handling of particles exiting the domain is stabilized using this algorithm by
one-sided linking of the flux dynamics. Consequently, sponge layers and the regular
prescription of cell values for boundary cells containing moving bodies are avoided.
This solves, for example, the problem of setting the outflow boundary conditions
which are not generic anymore if the cell contains particle surfaces. The application
of the boundary conditions is adapted to fit this novel mechanism.

3.3.3.4 Geometric conservation law

To avoid non-physical perturbations of the discrete solution of moving bodies, an
additional transport term has to be satisfied. The so-called geometric conservation
law (GCL) is necessary in an arbitrary Lagrangian-Eulerian formulation to regulate
the reconstruction of the variables Q from the volumetric quantities QV .

The GCL formulation is adapted to Eq. 3.20 and reads

V (0) = V n,

V (1) = V (0) − ∆t(u · nA)nΓ,

V (k) = V (0) − ∆t ((1 − αk−1)(u · nA)nΓ + αk−1(u · nA)nΓ) , for k = 2, ..., s,

V n+1 = V s.

(3.23)

The law states that the discrete formulation in the reworked Runge-Kutta scheme
does not alter a uniform flow field even under the motion of the control volumes, i.e.,
the moving particles. It does so by updating the volumes V of the cut-cells at each
Runge-Kutta sub-step k while keeping all other geometric quantities constant for
the remainder of the timestep. Fulfilling the geometric conservation law ensures that
the timestep ∆t, as computed, in Eq. 3.22 does not become infinitesimally small.

3.3.3.5 Small cell correction

Due to particle movement, the fluid volume of a given cell can become arbitrarily small
before vanishing in cut-cell methods. This reduces the domain of influence which
renders explicit schemes unstable. While different strategies to combat this problem
exist, an interpolation routine coupled with a flux-redistribution step developed by
Schneiders et al. [99] is used in the present thesis. Here, cells with vanishing cell
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volumina are reconstructed using a least-squares reconstruction. The ensuing delta
of the conservative variables and the reconstructed data is subsequently redistributed
to the neighboring cells. A detailed description is given in Schneiders et al. [99].

3.4 Enthalpy solver
A novel solver for the computation of fully-resolved solid bodies is introduced. The
aim of this solver is to solve the conservation equation for the enthalpy Eq. 2.9 which
facilitates the solution of heat dynamics inside of solid or deformable bodies.

To accomplish this, the novel solver is based on the finite volume solver presented
in Ch. 3.3. The level-set method and the multi-cut cell method are used to properly
model the dynamics inside of the particles.

(a) Adaptively refined grid of the fluid domain in
black and the enthalpy domain in red.

T
/
T

0

1.0

3.0

(b) Resulting temperature distribution within the
particle and the fluid domain.

Fig. 3.12: Modeling of two coupled domains, a fluid domain and a solid domain. Notice the
consistent description of the interface line which results in the exact split of a shared
cell into a fluid and solid cell which allows the conservative linking of the multiphysics
domains.

The enthalpy solver is used to model the heat transfer dynamics of solid bodies of
arbitrary complex shape. Moving bodies are fully supported and the conservation of
thermal energy is ensured by the usage of the aforementioned mechanisms.

While arbitrarily shaped bodies, such as, e.g., combustion engines, heated plates,
or turbo machinery, are imaginable, the solver is used for the computation of spherical
and ellipsoidal particles under the influence of thermal energy in this thesis.

Eq. 2.9 is solved to map the thermal dynamics inside a solid body. The goal is to
investigate the interaction of the particles and the surrounding carrier fluid.

As seen in Fig. 3.12, the solver is set up such that the interface lines between the
fluid and solid domain are synchronized at all times. The common interface line then
allows the linking of the two domains to exchange data as, e.g., observed in thermal
equalization processes. The solver is part of an investigation to conjugate heat
transfer and the approach to the exchange of the thermal energy will be described in
detail in Ch. 3.6.
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3.5 Coupling
The coupling of information between different modalities specialized in the compu-
tation of varying phases is a fundamental task in multiphysics simulations. The
term coupling refers to the synchronization and the exchange of information between
different solvers and phases [115].

The spatial and temporal coupling is presented in this section. Particular emphasis
is placed on the implementation on high-performance computing systems that utilize
distributed memory methods. In the following, the overall concept and mechanism
of the coupling is presented. After that, a specific example on how the approach is
used in this thesis is outlined by the description of the slicing technique used to link
the pipe and the jet domain described in Ch. 5.

3.5.1 Coupling mechanism
The efficient coupling of the different solvers is ensured by the usage of distinct MPI
ranks along the Hilbert curve. As shown in Fig. 3.3, the distribution of the cells along
the Hilbert curve is based on the course of the curve which splits the joint grid into
distinct subdomains and distributes them to all available MPI ranks. The different
solvers are subsequently imposed onto the MPI ranks, i.e., all solvers are assigned
the respective subdomains such that the solvers contain the same cells. This allows
the direct exchange between the solvers as no out-of-memory exchanges need to be
initiated, i.e., the numerical structure of the joint Cartesian grid allows information
to be exchanged with minimal interference of the computation process. The processes
are defined so that the exchange can be carried out at pre-defined points in time.
This increases the overall performance and reduces idle times significantly.

This is in contrast to other methods, such as segregated solvers, where distinct
ranks are applied to solve the different equations in the individual subdomains. The
coupling between two solvers in such methods can be realized by libraries such as
PreCICE [14]. When it comes to the execution of the overall solution method on
HPC systems, the solvers in such methods are assigned to different ranks executed
on parallel compute hardware. This requires a domain decompositioning where the
individual compute load on each rank of the parallel executed tasks becomes identical
to achieve a high parallel efficiency. This approach can be useful for fixed meshes,
but can become considerably less efficient when solution adaptive meshes are used.
Then, a repartitioning of the overall problem and a regeneration of the connectivity
between the solvers can become necessary after each mesh adaptation step.

Additionally, the accurate prediction of the dynamics across the fluid-solid interface
poses significantly larger challenges when the solid surface moves through the fluid
flow. In this case, the spatial domains are dynamically changing, which can be taken
into account by various strategies. One option is to use deformable meshes where
the fluid domain is constantly adapted to the solid domain. This approach, however,

33



3 Numerical method

requires mesh regeneration efforts, which may be possible for small body movements,
but become computationally unfeasible when several solid bodies with arbitrary
shape and movement have to be resolved. Alternatively, one could use overset or
chimera meshes [5, 9, 10, 108], in which the solid body and the fluid domain in the
vicinity of the body is resolved with a mesh moving with the body such that the
interface line between the fluid and the solid mesh does not change. In this case, the
overset formulation, however, poses the same challenges as when a pure fluid flow
simulation with moving bodies is conducted [108]. The overset mesh formulation
becomes especially difficult to implement on parallel compute systems since the
connection between the overset mesh points has to be regenerated possibly in each
time step, which can involve considerable communication effort and thus, reduces the
parallel efficiency. Furthermore, when the distance of solid bodies becomes small, the
problem arises, which of the overlapping mesh points will be chosen to define the local
solution. Finally, it is difficult to formulate a fully conservative solution method, due
to the arbitrary cut interfaces of the overset mesh cells [108]. Recent developments in
hole-cutting methods provide more advanced solutions for the execution on parallel
compute systems [17], however, with only moderate parallel efficiency.

3.5.2 Solver coupling
The coupling of multiple solvers is facilitated by a mapping of the solver cell id to
the joint grid cell id. Since the joint grid is split into parts of varying lengths which
are adapted by the different MPI ranks, the joint grid cell id and the solver-specific
cell id will differ. To maintain a direct connection between the cell ids, additional
lookup tables are stored. With this, the direct derivation of the local cell to the
joint grid cell by each solver is possible and the coupling of the same cell in different
solvers is straightforward.

(a) Combined domain (b) Fluid domain

.

.

(c) Enthalpy domain

Fig. 3.13: Illustration of how the joint grid is used by multiple solvers. The fluid domain and
the solid domain consist of the same grid cells which are subsequently marked as
active/inactive by the cut-cell generation. With this approach, the moving of the
particles is ensured and the linking of the interface line is consistent through the
different domains.

Due to the direct connection of cells within different solvers, information of any
kind, e.g., cell information or surface data, can be exchanged and synchronized.
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Additionally, solver class specific data such as, e.g., variables or arrays, can be
exchanged. This facilitates the efficient exchange of information between different
phases and modalities.

The coupling algorithm additionally makes use of the predefined work tasks defined
by each solver. Once a specific work task is finished, the coupling algorithm is called
and synchronizes/exchanges the respective data.

The coupling of the particle solver (Ch. 3.2) and the finite volume solver (Ch. 3.3)
is shown here as an example. The aim is to simulate a particle-laden flow in which
the finite volume solver computes the flow dynamics and the particle solver solves
the motion equations for the individual particles.

Fig. 3.14: Flowchart of the coupled solution of the particle solver and the finite volume solver.
The inner iteration of the predictor-correct scheme encapsulates the solution step and
the pre- and post-solution step.

As shown in Fig. 3.14, the overall structure is such that the different solvers are
called alternating. Once the necessary data for the temporal integration of the
particle data is known, the exchange is initiated. Subsequently, the particles are
integrated in time and collisions are accounted for before the data is synchronized for
the ensuing computations. Hence, additional constraints in the execution order are
accounted for and the scheme is rendered such that the mechanisms of the previously
described predictor-corrector Runge-Kutta is exploited.

The coupling mechanism facilitates the exchange of different kind of information.
In the following, an example used in Ch. 5 is given where two fluid domains are
coupled.
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3.5.3 Slicing technique

The investigation in Ch. 5 inspects particle-laden turbulent free jet flow. One
of the challenges associated with numerical studies of free jet flow are the inflow
conditions. The most common approach is the generation of synthetic turbulence,
which is characterized by random velocity fluctuations in the inflow cross-sectional
area. If a particle-laden problem is considered, particles with random orientations,
velocities, and rotational dynamics are additionally assumed. It is obvious that the
aforementioned particle properties fail to align with the turbulent characteristics of
the flow field. Consequently, there is a discrepancy between the inflow boundary
conditions and the actual physical conditions. This discrepancy is often exacerbated
by the interaction between the particle and the carrier fluid. This discrepancy alters
the results as significant turbulence development is observed in the near-field of the
jet exit [8, 15].

To achieve an accurate solution of a particle-laden free jet flow, it is essential
to assume boundary conditions that are coherent and naturally developed. The
solution of a concurrently computed periodic turbulent pipe flow generates such
inflow conditions. A slicing technique is used to inject the instantaneous solution of
a particle-laden turbulent pipe flow as inflow condition to the free jet domain. To be
more precise, the domains partially overlap and the overlapping areas are coupled
such that a continuous flow is achieved as shown in Fig. 3.15.

Slicing
Pipe domain Jet domain

(a) Split of the joint Cartesian grid into two do-
mains, a pipe domain and a jet domain as used
in Ch. 5. The red cells are consistent in both
domains which allows the direct exchange of
data between the two domain at these cells.

u

0.0 0.12

(b) The velocity u in the pipe and jet domain. The
slicing technique is applied within the white
boundaries. The smooth transition between the
two domains is clearly discernible.

Fig. 3.15: The coupling of multiple solvers facilitates the usage of a pipe domain as inflow
condition for a jet domain. The transfer of data is conducted by a slicing technique
on overlapping cells which results in a smooth transition of the flow field through the
domain boundaries.

This achieves a coupling of the flow states, providing naturally evolved and physically
correct flow and particle information as flow- and particle information are transferred.
The coupling takes place on one or both sides. In the case of Ch. 5, there is a
one-sided transfer from the pipe flow to the free jet.
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A mapping between the corresponding cells of both domains is stored to facilitate
the exchange of the data. The respective cells are exchanged at each Runge-Kutta
sub-state. Two options are implemented:

1. The direct exchange of the conservative variables: the conservative variables
Q of each cell in the target area are overwritten by the source variables. In a
multi-layer exchange, a transition function can be defined.

2. The exchange of RHS information: the cell data is updated using the flux
through the cell surfaces, summarized as an update of the right hand side. In
the second coupling mode, the corresponding right hand side information is
exchanged and applied to the target cells.

The consistent transfer of cell information from one domain to the other results in
a continuous flow and coherent turbulent structures. A validation of the method is
given in Ch. 4.3.

In contrast to the flow field, the exchange of particle information is more complex.
Due to the parallel structure of the particle class, further MPI exchanges are necessary.

To avoid duplicates of the same particle, a mapping of already existing particles is
stored in the overlapping areas. The computationally cheap mapping is queried when
new bodies cross the periodic boundary. If the mapping returns negative, the particle
is added to the jet domain by transferring all particle properties, i.e., velocities,
rotational dynamics, and more. During the transfer, the global number of bodies
and the global ids are also updated and synchronized within the MPI subdomains.

The exchange of the flow field and the particle data results in physically correct
flow and coherent particle information as input boundary conditions for the free jet.
No further assumptions for the inflow condition are needed and the correct mixing
and development of the turbulent scales is ensured in the jet near-field area.

3.5.3.1 Flow periodicity

To continuously supply data of coherent information to the jet domain, periodicity is
applied at the pipe in- and outlet. Periodicity is applied by means of a cell-mapping.
Multiple layers of cells are marked as source and target cells upon which the exchange
is initiated. Subsequently, the mapping is used for the update of the conservative
variables Q or the RHS information at each Runge-Kutta sub-stage. The modalities
of the previously described slicing technique are mirrored. Two different update
methods are implemented:

1. The direct exchange of the conservative variables

2. The exchange of RHS information to update the conservative variables

In addition to the update of the conservative variables, additional information of
the boundary cells is exchanged to ensure the proper transfer of the dynamics of the
periodic boundaries.
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3 Numerical method

The periodicity of the spherical and ellipsoidal bodies is conducted by the previously
described particle solver. Periodic ghost particles are added upon the crossing of
the periodic boundaries. These particles mirror their local counterpart under the
assumption of an adjusted particle position. Once the particles center of mass of a
periodic ghost particle intersects the new domain, the local/periodic body status
is switched. Upon leaving the periodic boundaries, the periodic ghost particle is
removed.

With the coupling of the fluid cells and the solid bodies to the periodic boundaries,
the efficient coupling of the scheme is achieved. The periodicity shows to be fully
conservative and well equipped to model the periodic dynamics of the flow field and
the particles.

3.6 Application of boundary conditions

The boundary conditions are formulated using multiple ghost cells in a multi-cut cell
method [99]. The cut-cell algorithm properly reshapes the respective cells according
to the body or phase interfaces. Multiple cuts of a single cell are possible, i.e., more
than one cut surface can be generated per cell. This allows several surface elements
of one or several bodies to intersect a cell, which can happen, e.g., with complex
geometric shapes or bodies at a small distance. Each boundary surface is connected
to its corresponding ghost cell allowing an accurate formulation of the corresponding
boundary conditions for each cut surface [99].

The computation of the ghost cell variables is conducted using an image point I
normal to the boundary surface. The resulting values at the image point location
are reconstructed using a second-order accurate least-squares reconstruction scheme.
The ghost cell values G are determined at a mirror position

xG = xC −max

(
2Ψ, Ψ + l

2

)
· nΓ (3.24)

to the image point I, see Fig. 3.16, where Ψ is the distance between the cell center
and the surface and l is the length of an uncut cell.

The boundary conditions are formulated using primitive variables. For the solid
phase and the fluid phase, the ghost cell velocities uG are determined by Dirichlet
boundary conditions

uG(x, t) = 2 uΓ(x, t) − uI(x, t), (3.25)

where uΓ(x, t) denotes the body surface velocity and uI(x, t) the velocity at the
image point.

Robin boundary conditions

pC − pG

Ψ + h/2
+ κ

Ψ pG + h/2 pC
Ψ + h/2

= 0 (3.26)
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I

G

h
ξ

Fig. 3.16: Schematic of the prescription of ghost cells. Ghost cell values G are determined at a
mirror position of a reconstructed image point I at a distance h. A multiple ghost
cell approach is used for the simulation.

are prescribed for the fluid ghost cell pressure pG defined by the distance Ψ from the
cell to the boundary surface and based on the fluid cell pressure pC and the distance
from the cell position to the ghost cell h. The quantity κ = γ T−1

Γ (Du/Dt · n)Γ is
defined by the substantial material derivative Du/Dt · n and the temperature TΓ
on the surface Γ [98].

In the isothermal case, the density is prescribed either for isothermal or adiabatic
configurations analogous to the derivation of pG.

In the non-isothermal configurations, specific boundary conditions for the density
in the fluid phase and for the temperature in the solid phase are prescribed. The
prescription is outlined in the following.

Conjugate Heat Transfer Coupling
The coupling of fully-resolved solid bodies and the surrounding carrier fluid is
conducted by conjugate heat transfer. Conjugate heat transfer dictates that the
surface temperature TΓ and the heat flux qΓ through the surface Γ must be equal
for the fluid and solid phases [51], i.e.,

Tf |Γ = Ts|Γ = TΓ (3.27a)
qf |Γ = qs|Γ = qΓ , (3.27b)

where the heat flux is defined as qi = k
(
∂Ti
∂n

)
.

To fulfill these conditions and maintain energy conservation, an iterative procedure
is proposed. Estimates for the initial surface temperature values indicated by the
superscript (·)0 in the fluid and solid phase are determined by the respective cell
values for the temperature Ts,c and Tf,c and temperature gradients next to the
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surface Γ. Subsequently, the weighted mean of both surface values is considered as
initial value for T 0

Γ with

T 0
f |Γ = Tf,c − nf · ∇Tf ,c (3.28a)

T 0
s |Γ = Ts,c − ns · ∇Ts,c (3.28b)

T 0
Γ = df · T 0

f + ds · T 0
s (3.28c)

where ni is a unit normal vector and df and ds are the normalized surface distances,
the sum of which is unity.

Using the initial surface temperature T 0
Γ , the temperature gradient and thus, the

resulting heat flux can be calculated in both phases independently from each other.
The resulting heat fluxes qνf and qνs are used to update the surface temperature in
subsequent iteration steps ν + 1 by

T ν+1
Γ = T νΓ − α ·

(
qνf − qνs

)
. (3.29)

The factor α = ε
Lref

k0
represents a non-dimensionalized scaled step size where ε can

be a constant or a function, see e.g. Kingma & Ba [56], Lref is a reference length,
and k0 being a reference thermal conductivity.

During the iteration process, the differences in the heat fluxes in the fluid and
solid decrease such that a converged value for the body surface temperature TΓ is
determined. The iteration process is considered converged when the difference of the
heat fluxes defined by the L1-Norm R = Lref

k0
·
∣∣∣∣qνf /Tf,ref − qνs /Ts,ref

∣∣∣∣ satisfies
the condition R < 10−14, i.e., the difference is almost machine zero.

Typically, this threshold value is met in less than 15 iterations. When the converged
solution for TΓ is obtained, the resulting temperature is used as a surface value
for both domains, and the ghost cell values are computed as described in the last
chapter.

Choice of step size α
The choice of the scaled step size α in Eq. 3.29 determines the rate of convergence
for the surface temperature. Too small a choice of the step size can result in a large
number of iterations or, if the convergence threshold is not reached or not chosen
small enough, in a loss of energy conservation. If α is chosen too large, the iteration
may not converge or even diverge.

Fig. 3.17 shows the residual R as function of the iteration steps sit for a specific
cell surface. The predetermined convergence criterium R < 10−14 is met within
7 iterations steps for the unscaled step size α = 0.05 for a non-dimensional tempera-
ture difference between the fluid cell and the corresponding solid cell adjacent to the
surface of ∆T = 2(Ts − Tf )/(Ts + Tf ) = 0.08.

For a larger step size α, Fig. 3.17 shows that the solution converges slower (dotted
line) or does diverge (red line). This is a well-known problem in iterative algorithms
used to find a minimum value. If the algorithm fails to reach the convergence
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Fig. 3.17: Logarithmic plot of the residual R as a function of the iteration step count sit for
α = 0.05 (solid, black), α = 0.1 (dotted, black), α = 0.3 (dashed, red). The circle
indicates, that the convergence threshold is reached. The choice of the step width α
clearly impacts the convergence rate. For α = 0.3, the iteration does not converge.

threshold within a pre-defined maximum number of iterations, a loss of conservation
can occur. This can be avoided with a meaningful choice of α.

The update of the surface temperature TΓ is computed independent from the local
spatial step. However, with coarser mesh spacings, the temperature values at the cell
centers of the neighbouring fluid and solid cells Tf and Ts show potentially larger
differences. This increase in the temperature difference may necessitate larger step
sizes α or more iteration steps to reach convergence.

Further impact of the mesh spacing on the solution is discussed in the grid
convergence study presented in Ch. 4.3.1.

For the solid phase, the temperature occurs directly in Eq. 2.9, whereas in the fluid
phase (Eq. 2.1), the surface temperature is taken into account via the non-dimensional
equation of state T = γp/ρ. Note that the same approach can be used for moving
bodies, for which the surface pressure is determined by the Robin boundary condition
Eq. 3.26.
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The numerical methods applied in this thesis have been used and validated in a
wide range of different fundamental and engineering-relevant fields. Flow problems
such as turbo machinery [13, 44], aeroacoustics [30, 95], or wind turbines [46, 47] are
only a few examples. The numerical methods for the particle calculations have been
extensively validated in isotropic turbulent flows [25, 97, 100].

However, as modifications and novel code contribute to the simulation framework
m-AIA in the context of this thesis, the following chapter shows the validation of
the framework in the different investigated fields.

First, the modifications necessary to compute the particle-laden pipe-jet flow
discussed in Ch. 5 are outlined. The dynamics inside the pipe and free jet domain
are compared to reference results from the literature.

To evaluate the numerical approaches in regard to the heat dynamics used in
Ch. 6, different aspects of thermal dynamics are investigated. The dynamics of the
heat exchanges are relatively unexplored in the current simulation framework and
new additions are contributed. The dynamics of isothermal heat transfer, used in the
derivation of the correlation equation for the Nusselt number Nu outlined in Ch. 6.1,
are shown first. Subsequently, the novel enthalpy solver is evaluated in a wide array
of generic test cases of varying shape and configuration. The coupling efficiency is
evaluated and its suitability for high performance computing systems is highlighted.

4.1 Turbulent pipe-free jet flow
First, the approach used in Ch. 5 is validated where a particle-laden pipe flow is
coupled to turbulent free jet flow. The investigation of the coupled pipe-jet flow is
susceptible to various numerical inaccuracies due to its complex interactions. To
validate the approach, the velocity profile inside the pipe and the jet domain is
inspected. This validates not only the dynamics inside each domain, but also the
slicing technique and its approach to supply proper inflow conditions.

4.1.1 Turbulent pipe flow
The Reynolds number based on the friction velocity is Reτ = 448 while it is
ReD = 15 546 based on the bulk velocity ub at the jet inflow section. This is
somewhat different from the Reynolds number Reτ = 500 in Chin et al. [20, 21] and
slightly lower than Reτ ≈ 450 in Pirozzoli et al. [81]. A 118 million-cell mesh was
used with local mesh refinement of the viscous wall layer.
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The time and streamwise averaged axial velocity profile as a function of the radial
direction r normalized by the centerline velocity ucl is compared in Fig. 4.1 with the
data of Chin et al. [21]. The results are in close agreement. The maximum discrepancy
between the velocity distributions is below 3%. Furthermore, the time-averaged
centerline velocity is ucl/ub = 1.27 which agrees with the result ucl/ub = 1.27 in
Pirozzoli et al. [81].

0.0 0.1 0.2 0.3 0.4 0.50.0
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Present Reτ = 448
Chin et al. [21] Reτ ≈ 500

Fig. 4.1: Time and streamwise averaged velocity component u/ucl normalized by the maximum
velocity on the centerline as a function of the radius r/D. The solution is compared
with results of Chin et al. [21].

The distribution of the root-mean-square of the velocity fluctuations normalized
by the friction velocity uτ is shown in Fig. 4.2. Again, the maximum deviation
between the current data and data by Chin et al. [21] is 3% which is acceptable due
to the slightly different friction velocity Reynolds numbers.

It is fair to conclude that the velocity field in the single-phase pipe flow is accurately
predicted by the numerical method.

4.1.2 Turbulent free jet flow
To further validate the numerical approach for a turbulent free jet including the
slicing technique, a single-phase jet is simulated. The Reynolds number ReD = 15 546
is that of the latter discussed particle-laden jet since the single-phase data serve
as reference solution for the multiphase solution. The mesh contains 118 million
cells for the periodic pipe domain and 593 million cells for the turbulent free jet.
Furthermore, the schematic of the turbulent free jet in Fig. 5.2 is also valid for the
single-phase flow.

The mean velocity profile ucl/ucl,x=0 along the centerline in the axial direction of
the free jet domain is compared with experimental data from Papadopoulos et al. [80]
in Fig. 4.3. The authors conducted measurements for two jets at Reynolds numbers
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Fig. 4.2: Streamwise root-mean-square velocity fluctuations normalized by the wall-friction

velocity
√

u′2/uτ as a function of the distance from the centerline r/D compared
with results from Chin et al. [21].

based on the bulk velocity Re1 = 13 300 and Re2 = 17 500. In the experimental
setup, the jet emerges from a long straight pipe such that a fully-developed turbulent
pipe flow at the exit is ensured. The comparison of the present numerical and the
experimental results show good agreement. The deviation at various distances from
the nozzle exit is below 4%.
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Fig. 4.3: Centerline velocity normalized by the centerline velocity at the nozzle exit ucl/ucl,0
compared with experimental data from Papadopoulos et al. [80].
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4.1.3 Conclusions
The comparisons of the results for the turbulent pipe and free jet flow with data from
the literature shows the high quality of the current numerical method. The reference
data from the literature are matched with high accuracy in the pipe and the free
jet domain. The mean velocity across the pipe radius and the velocity fluctuations
compare very well to Chin et al. [21]. The turbulent profile is clearly discernible and
the maximum centerline velocity matches perfectly with that reported by Pirozzoli
et al. [81]. Inside the turbulent free jet flow, the axial decline of velocity is accurate
when comparing the present results to Papadopoulos et al. [80] such that the slicing
technique is considered validated. Thus, the method can be used to analyze the flow
of particle-laden turbulent pipe and free jet flow as shown in Ch. 6.1

4.2 Constant surface temperature

Lagrangian point-particle models reduce the particles to finite-sized small points
and describe the interaction between the different phases by correlation equations.
This entails simplifications such that the particle surface has a spatially constant
temperature. Mirroring this assumption, the derivation of a correlation equation for
the Nusselt number Nu is conducted by assuming a constant surface temperature
(CST). The mechanisms used in Ch. 6.1 entailing this assumption are evaluated in
the following.

4.2.1 Grid convergence study
To assess the quality of the findings discussed in Ch. 6.1, a grid convergence study
is presented and the method is validated with special focus on heat transfer. To
determine the necessary mesh resolution, the flow at Re = 1 and Re = 100 over
an ellipsoid with an aspect ratio β = 8, a temperature ratio TR = 1.05, and an
inclination angle φ = 45◦ is considered (Fig. 6.2). At Re = 1, the viscous forces
dominate the flow, while the pressure forces characterize the flow at Re = 100.

This is a very challenging flow problem due to the extended streamwise development
of the shear stress on the particle surface and the recirculation in the wake of the
particle. In Tab. 4.1, the resolution defined by the minimum cell size per volume-
equivalent diameter ∆min/deq , the Reynolds numbers, and the Nusselt numbers for
a static temperature ratio TR = 1.05 are listed.
The quality of the solution is determined by the averaged Nusselt number, while
the solution for ∆min/deq = 1/128 defines the reference solution. The data shows
that for grid resolutions ∆min/deq = 1/48 and finer the percentage deviation of the
averaged Nusselt number from the reference value is less than 1%. In other words,
this resolution is a good compromise between computational cost and accuracy.
Higher resolutions reduce the error only marginally while significantly increasing the
computational cost. The decrease of the relative deviation of the Nusselt number as
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Nu(TR = 1.05)
∆min/deq Re = 1 Re = 100

1/16 3.12 (1.9%) 11.78 (2.2%)
1/24 3.14 (1.3%) 11.66 (1.1%)
1/32 3.16 (0.6%) 11.60 (0.6%)
1/48 3.17 (0.3%) 11.56 (0.3%)
1/64 3.18 (0.1%) 11.54 (0.2%)
1/128 3.18 11.53

Tab. 4.1: Averaged Nusselt number for each resolution. The deviation in percentage with respect
to the reference value for ∆min/deq = 1/128 is given in parentheses.

a function of the mesh resolution in Fig. 4.4 shows the second-order accuracy of the
numerical method.

To characterize the impact of the boundary location, i.e., the computational do-
main sizes defined by the number of cells in the streamwise, spanwise, and normal
direction, the boundary dimensions 80 × 32 × 32, 96 × 48 × 48, and 120 × 64 × 64
all scaled by deq are validated. The deviation between the medium domain and the
largest domain is below 1%. Considering these results, the following analysis is based
on the domain size 96 × 48 × 48.

1/64 1/48 1/32 1/24 1/1610−1

100

101

∆min/deq

∆
N
u

[%
]

second-order reference
Re = 3
Re = 100

Fig. 4.4: Logarithmic plot of the relative deviations to a fine simulation at ∆min/deq = 1/128.
The red line represents the theoretical minimum error attainable by the second-order
accurate methods used.

4.2.2 Numerical validation
To validate the numerical method, which has been successfully applied to various
fundamental and engineering flow problems such as, e.g., Schneiders et al. [82, 98]
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and Pogorelov et al. [82], for heat transfer problems, the flow past a sphere TR > 1
in uniform flow is computed.

First, a sphere with a small temperature ratio TR → 1 but TR > 1 is considered.
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Richter & Nikrityuk [90]
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Fig. 4.5: Flow past a sphere at a small temperature ratio TR → 1. Shown is Nu over Re
in comparison with data from Whitaker [116], Ranz & Marshall [87], and Richter &
Nikrityuk [90].

The distribution of the Nusselt number Nu as a function of the Reynolds number
in Fig. 4.5 shows good agreement with the correlation function by Whitaker [116].
The direct comparison yields the mean deviation to be below 2% with a maximum
deviation below 4%. The maximum deviation from the correlation functions by Ranz
& Marshall [87] and Richter & Nikrityuk [90] is below 10%.

Next, an extended range of temperature ratios is investigated and the results
are compared with data from Kurose et al. [61], Nagata et al. [76], and Ganguli &
Lele [28] who also varied the fluid properties with the temperature.

Kurose et al. [61] simulated by a finite volume method the flow past a sphere
at Ts/T0 = 1000K/293K ≈ 3.4 and a sphere at Ts/T0 = 293K/1000K ≈ 0.3
for Re = 50 and Re = 100. Nagata et al. [76] analyzed the temperature ratios
TR = TS/T∞ = [0.5, 0.9, 1.1, 1.5, 2.0] at Re = 100. Ganguli & Lele [28] inspected a
sphere TR > 1 at low Reynolds numbers Re ≤ 10 in the absence of buoyancy. The
quantitative comparison of the Nusselt numbers in Tab. 4.2 evidences the maximum
deviation to be 10%, which is considered acceptable.

Finally, the distribution of the local Nusselt number, i.e., the spatial heat transfer
variation on the surface of a sphere, is determined. That is, the local Nusselt
number Nul(θ) is computed in slices and circumferentially averaged about the
x-axis (Fig. 4.6a). The results of the local Nusselt number Nul(θ) in the range
0◦ ≤ θ ≤ 180◦ are compared with the data from Bagchi et al. [6] at Re = 50 and
TR → 1. It is evident that they are in very good agreement (Fig. 4.6b).
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Kurose et al. [61] Ganguli & Lele [28]
Re = 50 Nu (Kurose) Nu (current) ∆Nu Re = 1 Nu (Ganguli) Nu (current) ∆Nu
TR = 0.3 11.5 12.70 9.4% TR = 1.1 2.21 2.26 2.26%
TR = 3.4 2.8 2.57 8.9% TR = 1.5 2.06 2.11 2.43%

TR = 2.0 1.88 1.93 2.66%

Re = 100 Nu (Kurose) Nu (current) ∆Nu Re = 10 Nu (Ganguli) Nu (current) ∆Nu
TR = 0.3 14.9 15.33 2.8% TR = 1.1 3.17 3.24 2.16%
TR = 3.4 3.3 3.01 9.6% TR = 1.5 2.95 3.02 2.32%

TR = 2.0 2.69 2.77 2.88%
Nagata et al. [76]

Re = 100 Nu (Nagata) Nu (current) ∆Nu
TR = 0.5 11.8 12.62 6.5%
TR = 0.9 8.2 8.64 5.1%
TR = 1.1 5.5 5.52 0.4%
TR = 1.5 5.0 4.76 5.0%
TR = 2.0 4.3 4.29 0.1%

Tab. 4.2: Flow past a sphere at several TR for Re = 50 and Re = 100 compared with data from
Kurose et al. [61] and Nagata et al. [76], and compared with data from Ganguli &
Lele [28] at Re = 1 and Re = 10.
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(a) Illustration of the slicing technique to determine
the local Nusselt number Nul(θ)
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(b) Averaged local Nusselt number as a function of
θ in comparison to Bagchi et al. [6]

Fig. 4.6: Uniform flow over a sphere at Re = 50 and TR → 1.

4.2.3 Conclusions

The comparisons of the results for the flow of heated and cooled spheres with data
from the literature shows the high quality of the current numerical method. The
reference results from the scientific literature are matched with good accuracy within
a wide array of different configurations related to the topic of thermal dynamics.
A grid convergence study determines the minimal solution that is necessary to
obtain highly accurate results with minimizing computational efforts. Subsequently,
a comparison of a fixed sphere with TR > 1 to reference results from Kurose et
al. [61], Nagata et al. [76], and Ganguli & Lele [28] shows the accuracy of the used
algorithms by comparison of the Nusselt number Nu. Thus, the method can be used
to thoroughly analyze the flow over ellipsoids for various Re, φ, β, and TR as shown
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in Ch. 6.1

4.3 Conjugate heat transfer

The conjugate heat transfer model presented in Ch. 3.6 is applied to generic test cases
consisting of stationary and moving solid bodies in fluid flow to validate and show its
wide application range. Different problems characterized by varying mechanisms are
considered. First, a grid convergence study is conducted to investigate the accuracy
of the proposed method and the impact of the cell size on the results. Then, the
results of the coupling method and the one-dimensional analytical equation proposed
by He & Oldfield [40] are compared. Results for a fixed spherical body in uniform
flow are discussed with regard to the Nusselt number Nu and the results for the
CHT for a backward-facing step flow are presented. Subsequently, the conservation
properties of the method are asserted by a fixed and shape-transforming body in
an adiabatic enclosure. Additionally, results for moving bodies are presented which
demonstrate the accuracy and versatility of the developed method. Finally, the
efficient implementation of the algorithm for usage on parallel computing systems is
shown by scaling and benchmark plots.

4.3.1 Grid convergence study

The impact of the mesh resolution on the simulation results of the conjugate heat
transfer for a sphere in a uniform flow is discussed. The Reynolds number based on
the sphere diameter is Red = 100 and an initial Gaussian temperature distribution
in the sphere is chosen, where the sphere interface line has a temperature ratio of
TR,Γ = TΓ/Tf = 2.0. The ratio of specific heats is γ = 1.4 with Prandtl number
Pr = 0.72 = const. The center of mass of the sphere with diameter d = 1.0 is located
at 0.0 × 0.0 × 0.0 in a domain defined by −15.0 × −15.0 × −15.0 to 50.0 × 15.0 × 15.0.
The boundary conditions on the sphere surface are described in Ch. 3.6. For the
fluid, freestream conditions are given for the velocity and density and the pressure
is extrapolated from the flow field at the inlet and the lateral boundaries. On the
outflow boundary, von Neumann boundary conditions are applied for the velocity
and density, whereas the freestream value is prescribed for the pressure.

In the mesh convergence study, the maximum spatial step in the far field of the
sphere is held constant, while the mesh around the sphere is progressively refined as
specified in Tab. 4.3. The highest mesh refinement with a minimum cell length of
∆min/d = 0.0023 is used to obtain a reference solution. In the finest mesh, approx.
448 cells are distributed over the diameter of the sphere.

Fig. 4.7 depicts the coarsest and the finest mesh used for the grid convergence study.
The coarse mesh resolution l1 is defined by a minimum cell length ∆min,l1/d = 0.0366
and the fine mesh resolution by a maximum refinement level ∆min,l5/d = 0.0023.
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Parameter Case Grid spacing Cells per diameter
li ∆min/d d/∆min

Max grid spacing 0.2929

Min grid spacing l1 0.0366 28
l2 0.0183 56
l3 0.0092 112
l4 0.0046 224
l5 0.0023 448

Tab. 4.3: Mesh configurations in the grid convergence study.

(a) Coarsest mesh l1 in the grid convergence study
with a minimum cell-width of ∆min,l1/d =
0.0366.

(b) Finest mesh l5 in the grid convergence study
with a minimum cell-width of ∆min,l5/d =
0.0023 which defines the reference solution.

Fig. 4.7: Zoom of the region around the sphere for the coarsest (left) and finest (right) mesh
used in the grid convergence study.

The surface temperature of the surfaces around φ = 45◦ is evaluated at a non-
dimensional time tu∞/d = 33.3. The semi-log plot of the error (Tli − Tl5 )/Tl5 is
shown in Fig. 4.8.

The deviation decreases linearly in the semi-log plot. The distribution shows
second-order accuracy. Since the overall accuracy of the discrete approximation of
the spatial and temporal derivatives in the governing equations is of second order,
the coupling approach proves to be at least second-order accurate. Therefore, it can
be concluded that the presented surface coupling condition for the conjugate heat
transfer is a consistent formulation which does not induce further inaccuracies.

4.3.2 Validation of the coupling formulation
In the following, generic test problems to validate the coupling formalism between
the fluid and solid phases and to assess the accuracy of the approach are discussed.

4.3.2.1 One-dimensional steady heat conduction

For steady conduction in one-dimensional (1D) space, the surface temperature TΓ at
the interface is given by the analytical relation

TΓ =
Ts(ks/∆xs) + Tf (kf/∆xf )

ks/∆xs + kf/∆xf
(4.1)
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Fig. 4.8: Logarithmic plot of the relative deviation |Tli − Tl5 |/Tl5 from a fine simulation at
∆min,l5/d = 1/448. The red line indicates the theoretical minimum error correspond-
ing to the second-order accuracy of the applied methods.

where ∆xs and ∆xf describe the mesh spacings [40]. The thermal state at the
boundary interface can be analytically described by a harmonious average of the
respective cell temperatures Ts and Tf , distances ∆xs and ∆xf , and thermal
conductivities ks and kf (Fig. 4.9a).

∆xs∆xf

TΓ

Tf Ts

kf ks

Fluid Solid

(a) Schematic illustration of the relation of the an-
alytical equation by He & Oldfield [40]. The
interface of the fluid domain with temperature
Tf and the solid domain with Ts has the tem-
perature TΓ. The quantities ∆xf and ∆xs
define the distances from the interface to the
respective cell centers.
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(b) Comparison of the analytical solution Eq. 4.1
with the solution of the coupling method. The
ratio of the surface temperature TΓ/T0 is
shown as a function of the position of the cell in-
terface xs/Lc normalized by the cell length of
an uncut cell Lc. Hence, xs/Lc = 0.5 means
an even split of the cell volume.

Fig. 4.9: Schematic and results for the analytical equation derived by He & Oldfield [40].

The coupling method described in Ch. 3.6 is used to determine the surface temperature
of an arbitrary single surface (Fig. 4.9a). The comparison with the analytical equation
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4.3 Conjugate heat transfer

in Fig. 4.9b shows the perfect agreement between the computed and the iteratively
determined surface temperatures as a function of the surface-cell distance. The
results for varying surface temperature ratios are precisely predicted and the mean
deviation is well below 1%. Note that this accuracy is determined by the limit value
defined for the iteration process. This indicates the proper derivation of the surface
temperature. The results confirm that the iterative approach successfully determines
the surface temperature with high accuracy for varying cut cell configurations.

4.3.2.2 Stationary isothermal sphere in uniform flow

Next, the case of a uniform flow over a stationary isothermal sphere is considered.
That is, the temperature ratio between the sphere and the fluid is TR = Ts/Tf = 1.05
and the heat capacity is cp → ∞ to allow the comparison to 0D configurations,
i.e., the particle temperature is effectively isothermal. The Reynolds number of the
freestream flow is Red = 50. The minimum mesh spacing is ∆min/d = 0.018 with
local grid refinement which results in a total grid size of 4 million cells.

To evaluate the prediction accuracy of the resulting heat flux, the integral Nusselt
number Nu

Nu = d

k A∆T

∮
q(x) · n dA (4.2)

is determined. The quantity d defines the sphere diameter, A is the surface of
the sphere,

∮
q(x) · n dA is the integrated heat flux, and ∆T = Ts − Tf is the

temperature difference between the solid and the fluid phase. A mesh resolution of
∆min/d = 1/48 is used which is based on the results in Kiwitt et al. [58].

In Fig. 4.10, the results for the local Nusselt number Nul(Θ) are compared with
the findings in Bagchi et al. [6], in which the heat transfer from a sphere in a uniform
flow was determined by direct numerical simulation at various Reynolds numbers. A
visualization of the temperature distribution in the flow field and of the distribution
of the local Nusselt number across the sphere surface is presented in Fig. 4.10a. The
distribution of the local Nusselt number as a function of the angle θ is compared
with the results from Bagchi et al. [6] in Fig. 4.10b. The agreement between both
distributions is convincing, the maximum deviation for the local Nusselt number on
the surface of the sphere is less than 4%. The heat flux, and thus, Nul(Θ), is highest
at the front stagnation point of the body. Subsequently, the heat transfer reduces to
a minimum at the rear of the sphere. The heat transfer is accurately captured by
the present coupling method. Results for other parameter combinations of Ts/Tf
and Re∞, not presented in this paper, show similar agreement.
Furthermore, the data of the surface integrated and time-averaged Nusselt number
are compared to the correlation equations from Whitaker [116], Kurose et al. [61],
Nagata et al. [76], and Ganguli & Lele [28] since these correlations are often used in
Lagrangian point-particle models. The results are summarized in Tab. 4.4. The flow
parameters vary for the Reynolds number in the range of 1 ≤ Re ≤ 1000 and for the
temperature ratio. In all simulated configurations, the results match the findings
published by the aforementioned authors. For the entire range of Reynolds numbers
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(a) Local Nusselt number Nul(Θ) on the surface
and temperature distribution Tf/T0 in the
flow field.
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(b) Local Nusselt number Nul(Θ) as a function
of the angle Θ. The results are averaged in
slices from 0◦ − 180◦ degrees.

Fig. 4.10: Isothermal sphere in uniform steady flow, comparison with findings from Bagchi et
al. [6].

Kurose et al. [61] Ganguli & Lele [28]
Re = 50 Nu (Kurose) Nu (present) ∆Nu Re = 1 Nu (Ganguli) Nu (present) ∆Nu
TR = 0.3 11.5 12.0 4.2% TR = 1.1 2.21 2.24 1.34%
TR = 3.4 2.8 2.9 3.4% TR = 1.5 2.06 2.09 1.43%

TR = 2.0 1.88 1.90 1.05%

Re = 100 Nu (Kurose) Nu (present) ∆Nu Re = 10 Nu (Ganguli) Nu (present) ∆Nu
TR = 0.3 14.9 15.7 5.09% TR = 1.1 3.17 3.21 1.25%
TR = 3.4 3.3 3.2 3.13% TR = 1.5 2.95 3.01 1.99%

TR = 2.0 2.69 2.74 1.83%

Nagata et al. [76] Whitaker [116]
Re = 100 Nu (Nagata) Nu (present) ∆Nu µ/µs = 1.1 Nu (Whitaker) Nu (present) ∆Nu
TR = 0.5 11.8 12.1 2.48% Re = 100 6.72 6.93 3.03%
TR = 0.9 8.2 8.1 1.24% Re = 200 8.88 9.11 2.53%
TR = 1.1 5.5 5.5 0.4% Re = 300 10.59 10.76 1.58%
TR = 1.5 5.0 5.0 0.5% Re = 500 13.36 13.49 0.96%
TR = 2.0 4.3 4.2 2.4% Re = 1000 18.65 19.01 1.89%

Tab. 4.4: Flow past a fixed isothermal sphere at several temperature ratios TR compared with
data from Kurose et al. [61] and Nagata et al. [76] at Re = 50 and Re = 100, compared
with data from Ganguli & Lele [28] at Re = 1 and Re = 10, and compared to
Whitaker [116] at various Reynolds numbers.

an average deviation below 5% is obtained. It can be concluded that the current
coupling method yields accurate results for an isothermal body in steady flow for
TR > 1.

4.3.2.3 CHT for a backward-facing step

The backward-facing step (BFS) is as a generic configuration for separated flows.
The separation is well defined, while the reattachment length is very susceptible.
Such a flow field is often observed in engineering flow problems.
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4.3 Conjugate heat transfer

The flow forms a separation bubble behind the step, which reattaches further
downstream. This reattachment considerably impacts the heat transfer, as evidenced
by Chen et al. [18]. The recirculating flow and the reattachment are known to
modulate the shear stress distributions and heat transfer rates in the fluid-solid
interface [18, 19]. The simple geometry and the intricate flow physics make this
problem an ideal benchmark case.

The current configuration corresponds to that of Ramšak [85], which is depicted
in Fig. 4.11. The Reynolds number based on the step height H of the laminar inflow
is ReH = 800 and the Prandtl number is Pr = 0.71. The minimum mesh spacing
is ∆min/H = 0.01 with local grid refinement which results in a total grid size of
27 million cells.

inflow
(Tf/T0 = 1)

outflow

Solid

Fluid

Ts/T0 = 1

Ts/T0 = 2

H

2H

2H

30H

Fig. 4.11: Backward-facing step configuration from [85]. Its streamwise extent is 30H based on
the step height H. The height of the solid domain is 2H.

Laminar inflow and outflow conditions are prescribed in the streamwise x-direction,
in the spanwise z-direction periodic conditions are applied. Adiabatic boundary
conditions are imposed on the top and vertical walls, while the bottom wall in the
solid domain is isothermal. On the wall surface, defined by the red line in Fig. 4.11,
the boundary conditions outlined in Ch. 3.6 are prescribed. Initially, the temperature
distribution in the solid domain is set as linear function in the y-direction and set to
Tf = T0 in the fluid phase.
The simulation results for 0 ≤ x/H ≤ 20 are visualized in Fig. 4.12 by temperature
contours and streamlines. For the temperature ratio defined in this validation setup,
the overall flow structure is only slightly influenced by the temperature distribution
in the solid phase. The laminar separation bubble reattaches at approx. xc/H = 11.6
which agrees well with the results of Ramšak [85].

In Fig. 4.13, the temperature distribution T/T0 in the x-direction on the fluid-solid
interface is shown. Note that the solution by Ramšak [85] is a 2D result, while in this
study a 3D simulation is performed. Due to the vanishing gradients in the spanwise
direction z, the results of the 2D and the 3D simulation are almost identical.
Overall, the comparison shows good agreement. Along the fluid-solid interface, the
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Fig. 4.12: Temperature field and streamline distribution for the backward-facing step case at
ReH = 800. The bold red line indicates the interface between the fluid and the solid
domain. The streamlines visualize the separation bubble and the reattachment point
at x/H = 11.6.
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Fig. 4.13: Simulation of the CHT for a BFS setup. Comparison of results for the temperature
and the Nusselt number distribution on the fluid-solid interface obtained with the
present method with those from [85].

temperature distribution decreases until the minimum temperature T/T0 ≈ 1 is
reached at xc/H ≈ 12 and then it increases until the end of the domain. The
comparison with the flow field and the streamline distribution in Fig. 4.12 shows that
the location of the temperature minimum roughly coincides with the reattachment
location. This is also true for the peak Nusselt number as shown in Fig. 4.13. The
results show that the presented method yields reliable results in generic setups for
CHT in steady flows.
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4.3.3 Energy conservation

In the following section, the conservation properties of the proposed method are
validated. That is, the energy flux through the fluid-solid interface is verified. First,
a fixed sphere in an adiabatic enclosure is validated. Then, the same setup for a
shape-transforming body is investigated.

4.3.3.1 Fixed sphere in an adiabatic enclosure

The essential part of CHT in fluid-body interactions is the exchange of momentum
and energy. To show that no energy is numerically dissipated by the coupling
method, a reference case of a sphere of diameter d at a fixed position in an adiabatic
environment is considered. The initial homogeneous temperature distribution is
TR = Ts/T0 = 1.2 and the fluid domain possesses a zero velocity. The outer
boundaries of the fluid domain are defined as adiabatic walls such that the combined
energy of the fluid and solid domain should remain constant. The minimum mesh
spacing is ∆min/d = 0.018 with local grid refinement which results in a total grid
size of 7 million cells.

The energy variations within the fluid and solid phase are monitored during the
simulation, i.e., the energy flux across the body interface and the individual changes
in total energy in both domains are determined at each timestep. Since the solid
domain loses energy due to cooling by the fluid, the fluid domain must receive this
amount of energy due to heating. Checking the rate of total energy change allows the
identification of unphysical energy sources or sinks, i.e., the assessment of whether
energy conservation is satisfied.
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Fig. 4.14: Development of the total energy error in the fluid and solid normalized by the
initial total energies Ef (t = 0) and Es(t = 0) and the energy loss ∆Ef/Ef (t =
0) − ∆Es/Es(t = 0) as a function of the non-dimensional time t u∞/d. The relative
error ∆Ef/Ef (t = 0) − ∆Es/Es(t = 0) is on the order of 10−14, i.e., in machine
precision range.
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The total energy loss across both domains shown in Fig. 4.14 is approximately at
machine precision level, i.e., the energy loss is negligible. This means that the total
energy is conserved during the cooling and heating processes of the two phases since
all energy is properly transferred over the interface. In brief, energy conservation is
satisfied for this generic test problem.

4.3.3.2 Shape-transforming body in an adiabatic enclosure

Next, a fixed body undergoing a deformation of the shape in an adiabatic environment
is considered. The setup is similar to that described in the previous section Ch. 4.3.3.1.
Initially, the body has the shape of a sphere and slowly transforms into a prolate
ellipsoidal body of aspect ratio β = c/a = 2 and back into a sphere where β = 1.
The aspect ratio β is defined by the ratio of the major axis c and the minor axis a.
The body volume is kept constant during the transformation based on the volume-
equivalent diameter deq = 1 such that the evaluation of the energy conservation
is simplified. The minimum mesh spacing is ∆min/deq = 0.009 with local grid
refinement which results in a total grid size of 27 million cells. Note that the grid
around the shape-transforming body is refined to the highest level such that the
body remains in the highest refinement region during the shape transformation.

The energy exchange between the fluid and the body during the transformation is
determined as in Ch. 4.3.3.1.
In Fig. 4.15, the shape transformation from the spherical to the ellipsoidal shape
and back to the spherical shape is shown together with the temperature contours
in the fluid domain as a function of time. The transformation of the body shape is
done slowly to minimize the impact of the shape change on the temperature and the
flow field.

All energy fluxes through the interface are tracked and contrasted with each other.
The results in Fig. 4.16 show somewhat higher energy conservation errors on the order
of 10−11. Slight pressure and velocity fluctuations, and thus, energy modulations,
on the interface cannot totally be avoided due to the changing body shape although
the small cell correction technique [99] is used in the simulation. Overall, however,
the results confirm that the coupling method does conserve energy in an extremely
high accuracy range for slowly shape-varying bodies.

4.3.4 CHT for moving bodies
In the following, the proposed methodology is validated for a moving body case. A
comparison between the moving and a reference non-moving configuration is used by
switching the Eulerian and Lagrangian frame of reference.

The validation of the proposed method for the heat exchange in moving bodies
presents a significant challenge. To the best of the authors’ knowledge, there is
no suitable CHT reference case that allows a detailed validation of the method,
especially for moving bodies of arbitrary shape.

As previously stated, the method is based on an iterative approach that utilizes
cell information, i.e., it is implicitly applicable to moving bodies. To validate this

58



4.3 Conjugate heat transfer

Tf/T0

1.0 1.2

tu
∞
/
d
e
q

Fig. 4.15: Shape-transforming body in a domain with external adiabatic boundaries. The trans-
formation process is shown. The body shape changes from spherical to ellipsoidal with
an aspect ratio β = 2 and back to spherical with an initial diameter d0. Furthermore,
the temperature contours in the fluid domain are shown.

hypothesis, two configurations are examined. The first configuration is the case of a
single ellipsoidal body at a fixed position in a flow defined by a freestream Reynolds
number Re∞ = 100 and a Mach number Ma = 0.1. The second case is defined by
the body moving at us = u∞ through a flow field at rest such that Re∞ and Ma are
again Re∞ = 100 and Ma = 0.1. In other words, the Lagrangian and the Eulerian
descriptions of the flow fields are compared.

The minimum mesh spacing is ∆min/deq = 0.005 with local grid refinement which
results in a total grid size of 21 million cells. For the moving case, the locally refined
grid moves with the particle.

The aspect ratio of the ellipsoid is β = 4 and the inclination angle is φ0 = 45◦ as
shown by the red grid in Fig. 4.17. The initial temperature ratio is TR = Ts/Tf = 1.2.
This represents a challenging configuration for the thermal and mechanical predictions
due to the high pressure gradients at the tips of the ellipsoid.

Fig. 4.18 shows contours of the temperature field for the moving and non-moving
case. It can be seen that the flow field is virtually alike, indicating that the heat
transfer dynamics is identically predicted independently of the movement of the
body.
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Fig. 4.16: Development of the total energy error in the fluid and solid normalized by the
initial total energies Ef (t = 0) and Es(t = 0) and the energy loss ∆Ef/Ef (t =
0) − ∆Es/Es(t = 0) as a function of the non-dimensional time t u∞/d. The relative
error ∆Ef/Ef (t = 0) − ∆Es/Es(t = 0) is slightly higher than machine precision due
to the relative movement of the surfaces during the shape transformation.

Fig. 4.17: Locally adapted grid around a body (red) at β = 4 and φ0 = 45◦, and fluid (black).
The local refinement is determined by the fluid temperature and the strain rate.

Ts,f/T0
1.0 1.2

(a) Stationary ellipsoid with coupled boundary con-
ditions in uniform flow.

Ts,f/T0
1.0 1.2

(b) Moving ellipsoid with coupled boundary condi-
tions in a quiescent flow field.

Fig. 4.18: Comparison of the temperature contours for an ellipsoid β = 4 and φ = 45◦.
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Ts,f/T0
1.0 1.2

(a) Temperature contours of a stationary ellipsoid
in uniform flow.

Ts,f/T0
1.0 1.2

(b) Temperature contours of a moving ellipsoid in
a quiescent flow field.

Fig. 4.19: Comparison of the temperature contours for a stationary ellipsoid in uniform flow
and a moving ellipsoid in a flow field at rest. The white contours describe the body
temperature, whereas the black lines show the fluid temperature contours.

This is further supported by quantitatively analyzing the temperature distribution
in the near-field in Fig. 4.19. The comparison of the temperature contours in close
proximity to the ellipsoid shows no differences. The contours for Tf/T0 and Ts/T0
are virtually indistinguishable. Accumulating the individual cell values inside the
contours yields a deviation of 2.7%. This is a highly accurate result, especially
considering that an adaptively refined mesh is used for the moving ellipsoid.

A more detailed plot is shown in Fig. 4.20. The temperature along the centerline of
the ellipsoid, i.e., from tip to tip through the center of mass, of an instantaneous time
step is shown. It is evident that the differences are again on the order of machine
zero. To highlight the small deviation, the difference between the two setups is shown
by the black line. The little peaks are mainly due to the sudden changes in the mesh
refinement for the moving body case.
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Fig. 4.20: Temperature distribution along the centerline of an ellipsoid from tip to tip passing
through the center of mass.

The temporal development of the fluid temperature at the very top of the ellipsoid’s
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tip, i.e., at φ ≈ 130◦, is shown in Fig. 4.21 for the moving and the non-moving
configuration. Note that the temperature is averaged over several cells between
126◦ ≤ φ ≤ 135◦. The solutions for both cases are almost identical. The maximum
deviation is less than 1%. This confirms the applicability of the coupled method for
the moving case of arbitrarily shaped bodies. Therefore, it can be concluded that
the numerical method produces valid results for stationary, deformable, and moving
bodies.
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Fig. 4.21: Comparison of the fluid temperature at φ ≈ 130◦, i.e., at the top ellipsoidal bodie’s tip.
The deviation between the line plot of the moving and the non-moving configuration
is less than 1%.

4.3.5 Freely falling bodies
To further show the broad application range, the problem of 5 freely falling particles
of various shapes, i.e., spherical, prolate, and oblate shape, in air is considered. To
be more precise, the particles possess varying volumina with aspect ratios β = 4,
β = 1, β = 0.25, β = 0.5, and β = 2.

The configuration is such that the freestream Reynolds number encountered by
the falling particles is Re∞ ≈ 100. The Prandtl number is Pr = 0.72. The initial
temperature distribution inside the particles possesses a Gaussian distribution where
the highest temperature Ts/T0 = 3.5 is located at the center of each particle,
i.e., the temperature is lower on the surface compared to the body center. The
initial temperature of the flow field is Tf = T0. The minimum mesh spacing is
∆min/deq = 0.004 with local grid refinement which results in a total grid size of
197 million cells.

The illustration of the direct particle-fluid simulation in Fig. 4.22a The computation
is based on a direct particle-fluid simulation which takes advantage of adaptive mesh
refinement for each particle independently as shown in Fig. 4.17. The illustration
in Fig. 4.22a indicates that the bodies tumble and rotate due to the aerodynamic
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field for five freely falling bodies of varying
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(b) CHT simulation for a freely falling particle in a
fluid at initially rest and constant temperature.
Shown are temperature contours in a cut plane
through the fluid and solid.

Fig. 4.22: Freely falling particles of varying shape and aspect ratio in periodic quiescent flow.

forces acting on the bodies and the temporal development of Ts/T0 differs between
the various bodies. Due to the varying curvatures of the different body shapes,
the motion of the bodies differs, which results in varying thermal gradients on the
surface. The differences in the surface temperature distribution between the bodies
are obvious. The strongly varying temperature distribution on the windward and
the leeward side is evidenced in Fig. 4.22b for one of the ellipsoidal particles. In
regions with a locally higher velocity close to the body surface, the heat transfer is
larger resulting in a locally lower temperature. This emphasizes the necessity for
accurate simulations when CHT for moving objects in a fluid flow is investigated. A
detailed discussion of this topic, however, is beyond the scope of this study.

4.3.6 Parallel performance on HPC systems
The proposed coupling method is based on the joint Cartesian mesh approach which
facilitates the direct exchange of the coupling information on the body surface. Unlike
other solution approaches, e.g., in segregated solvers or overset meshes [5, 9, 10, 108],
additional communication between solvers and mesh regeneration efforts, which are
computationally expensive for large body displacements or setups containing a large
number of bodies, are avoided.

The execution time for the simulation depends strongly on whether or not dynamic
load balancing is used. Due to the moving bodies resolved with the solution adaptive
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mesh, the workload of the cells shifts through the subdomains, which causes an
imbalanced workload. This is demonstrated in Fig. 4.23, where the wall-clock
time per physical time step is plotted for two simulations using 128 nodes for the
problem of five freely falling particles. In the direct particle-fluid simulation, the
bodies of varying shape are resolved on a locally refined Cartesian mesh. The joint
mesh has 197 million cells such that the minimum particle diameter is resolved by
dmin/hmin = 54 cells. The number of cells in the fluid domain is approx. 171 million
and the solid domain is resolved by about 26 million cells.
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Fig. 4.23: Temporal development of the duration of a single time step for a balanced and
unbalanced configuration of five freely falling particles. The dashed lines indicate
load balancing events in the balanced configuration.

In the first simulation, dynamic load balancing is used which is switched off in the
second simulation. Whereas the wall-clock time per time step is almost constant in the
balanced simulation, the time increases monotonically in the unbalanced simulation
until a single partition runs of out memory due to the creation of additional cells
in the adaptive mesh refinement. The dynamic load balancing means only a small
computational overhead, since the domain decompositioning based on a space filling
curve can be performed by communication between neighboring subdomains such
that no global repartitioning is required.

To demonstrate that a high parallel efficiency of the coupling method can be
achieved, a strong scaling test is performed for the five freely falling body problem
shown in Fig. 4.22a. The performance of the method including dynamic load balancing
is evaluated using 16, 32, 64, and 128 nodes of the HPC system Hawk installed at
HLRS Stuttgart. That is, only the number of CPU cores is varied. Each compute
node is equipped with two AMD EPYC 7742 CPUs and 256 GB memory. Each CPU
has 64 cores from which only every other CPU core is used by the simulation. The
solver m-AIA uses a hybrid MPI and OpenMP parallelization, which is implemented
using the parallel STL defined in the C++ standard 17. Fig. 4.24 shows the strong
scaling results for the five freely falling bodies. The parallel efficiency remains high

64



4.3 Conjugate heat transfer

with increasing number of nodes. The achieved speed-up in the strong scaling test is
close to the ideal speed-up.
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Fig. 4.24: Speed-up of the strong-scaling benchmark. The speed-up is in relation to the reference
solution with 16 nodes at Hawk (HLRS Stuttgart).

4.3.7 Conclusions
An efficient numerical method to predict the thermal exchange by means of conjugate
heat transfer between fluid and solid domains is presented. The algorithm uses an
iterative conjugate heat transfer formulation at the interface, which ensures the
conservation of mass, momentum, and energy. The method is applicable to fixed,
moving, and deformable solid bodies of arbitrary shape.

The presented method demonstrates high accuracy across several test cases. Vali-
dation against an analytical solution for a generic body surface temperature shows
excellent agreement. For heat transfer of a spherical body in uniform flow, local
and averaged Nusselt numbers closely match literature values with deviations un-
der 5%. The method accurately models dynamics in separating flow, as shown
by the non-isothermal backward-facing step data. Energy conservation is verified
by equilibrating a spherical body in a fluid at rest with adiabatic walls and for
shape-transforming bodies.

Additionally, the applicability of the method to moving bodies of arbitrary shape is
investigated by simulating moving and non-moving bodies in quiescent and uniform
flow. Energy exchange results for five freely falling bodies with initial Gaussian
temperature distributions highlight the need for precise methods to predict spatially
varying temperatures in moving bodies.

The parallel efficiency of the method is demonstrated by a strong scaling test
which is based on up to 8 192 compute cores. Additionally, the comparison of load
balanced and unbalanced configurations shows the efficiency of the method in regard
to performance and memory allocations.
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4 Solver validation

The presented method relies on the usage of Cartesian hierarchical meshes. Since
the accurate prediction of the heat transfer requires high mesh resolution at the
surface, the method suffers from the limitation of the applicability of Cartesian
meshes. In particular, the method may become expensive in the simulation of high
Reynolds number flows. A wall function that predicts the heat transfer with a coarser
mesh resolution at the surface could remedy this problem.
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5 Particle-laden free jet flow

In the context of industrial combustion processes utilizing fine-scale fuels, solid
particles are blown into a combustion chamber where they burn off in the presence of
an oxidising atmosphere, in most cases air. A portion of the combustion air is injected
alongside the fuel within the primary flow, resulting in a turbulent, two-phase free jet
upon entry into the combustion chamber. In a first step, the combustion influence is
neglected. That is, this numerical investigation focuses on analyzing the impact of
non-spherical, ellipsoidal particles on the physics, i.e., the spreading rate, the kinetic
energy, the dissipation rate etc., of non-heated turbulent free jet flow.

These dynamics will be addressed in this chapter by performing direct particle-fluid
simulations for a non-spherical particle-laden turbulent free jet and comparing the
multiphase jet flow data with single-phase turbulent free jet data for the same flow
parameters. The direct comparison highlights the modulation impact of the particles.
Energy and turbulence statistics are shown and the impact of the spherical and
ellipsoidal particle characteristics are discussed.

An overall impression of the instantaneous flow field is shown in Fig. 5.1 in which
the distribution of the particles and the development of the potential core, that is
defined by the region near the centerline that has almost uniform mean velocity, and
the free-shear layers are indicated.

x

y

Fig. 5.1: Instantaneous absolute velocity contours for the particle-laden pipe and jet flow.
Particles are shown in grey color.
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5 Particle-laden free jet flow

5.1 Current research
There is a vast amount of literature on particle-laden flows for configurations like
channel flow, pipe flow, and free jet flow. Since the current investigation is defined
by the impact of non-spherical, ellipsoidal particles, only experimental and numerical
studies of such non-spherical particle-laden flows are discussed in the following. To
the best of the authors’ knowledge, the number of journal publications in the field of
non-spherical isothermal pipe or free jet flows is low. Scientific publications regarding
pipe flow is included in the literature review since the pipe flow determines the inflow
distribution of the turbulent free jet.

Black & McQuay [12] performed experiments in co-axial jet and swirling flows
to assess the influence of the shapes of spherical and non-spherical particles on the
particle dynamics. The two-component phase-Doppler particle analyzer technique
was used to collect data for the particle velocities. The authors observed that non-
spherical particles follow the fluid velocity much closer than the spherical particles.
The essential reasons for these results are: First, the non-spherical particles show
an increase in the drag coefficient which lowers the response time. The drag forces
depend on the particle orientation such that the non-spherical particles tend to
behave more like the gas phase. Finally, the terminal velocity of the non-spherical
particles is lower than that of the spherical particles.

Ljus et al. [64] experimentally investigated spherical and pulp fibre particles with
large aspect ratios in turbulent pipe flow. The Reynolds number based on the bulk
velocity was in the range 82 000−130 000 and the particle mass loading was 0.01−0.1.
The measurements were conducted using a wedge-shaped hot-film probe with a static
calibration method. The authors reported significant turbulence intensity modulation
by the particles. The modulation impact depended on the particle diameter. Whereas
spherical particles showed a modulation as a function of the radial position, the pulp
fibres were shown to decrease the turbulence intensity over the entire cross sectional
area.

Qi et al. [84] presented experimental measurements of fibrous particles with long
aspect ratios in turbulent pipe-jet flow. The bulk velocity Reynolds number was
70 000 and the fibre aspect ratio was 40. Particle-tracking velocimetry was used
to measure the particle characteristics. The results showed that the fibres possess
a preferential orientation at 54◦ to the axial direction. However, the orientations
covered a wide range from 30◦ to 90◦. The absolute value of the mean angular
velocity of the fibres increased with the radial distance from the axis centerline such
that the lowest angular velocity was observed at the centerline of the jet.

Gupta et al. [35] numerically investigated the effect of the particle shape of prolate
ellipsoids on the fluid statistics in particle-laden turbulent pipe flow at Reynolds
number based on the friction velocity Reτ ≈ 250 and volume loading ζv = 0.48%.
The finite-sized particles with aspect ratios in the range of β = 1, β = 2, and
β = 3 are compared to a single-phase reference solution. It was shown that the local
accumulation of particles close to the wall decreases for ellipsoids with increasing
aspect ratio due to slower rotation than the spheres near to the wall. The prolate
particles tend to align with their major axes in the streamwise direction.
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5.2 Domain of integration

Guo et al. [33] used a model that accounts for spheroidal particle drag force and
torque within an Eulerian-Lagrangian model to simulate pulverized biomass jets.
The findings of particle and fluid velocities yielded large differences. It was also
shown that the spheroid model led to a more dispersed distribution regarding the
particle residence time and local concentration compared to the reference models.

The literature review shows that there are hardly any detailed results on non-
spherical, ellipsoidal particle-laden turbulent free jets. That is, the impact of the
shape of non-spherical, ellipsoidal particles on the orientation and the preferential
distribution of the particles, the fluid kinetic energy, the jet geometry etc. are not
discussed in the existing literature. These questions will be addressed in the following
by performing direct particle-fluid simulations for a non-spherical particle-laden
turbulent free jet and comparing the multiphase jet flow data with single-phase
turbulent free jet data for the same flow parameters. The direct comparison highlights
the modulation impact of the particles. Energy and turbulence statistics are shown
and the impact of the spherical and ellipsoidal particle characteristics are discussed.

5.2 Domain of integration
A schematic of the pipe and the free jet domain is shown in Fig. 5.2. Both domains
possess their own independent mesh resolution. However, the mesh in the crossflow
section of the pipe is identical to that at the inflow boundary of the jet domain such
that the solution in the pipe domain can be transferred at each time step without
interpolation. The particles and all associated information are transferred accordingly.
The slicing technique guarantees physically correct velocity distributions, particle
positions and particle velocities as inflow conditions for the jet domain such that
no assumptions regarding the turbulent flow state or particle dynamics have to be
made [15].

The fully-developed turbulent pipe flow is simulated by a periodic boundary
condition in streamwise direction where a volume forcing is applied to mimic a
pressure gradient in the axial direction. While the free jet is coupled to the solution
in the pipe flow, the solution in the pipe domain is independent from the solution in
the free jet domain, i.e., one-directional coupling is applied.

On the outflow boundaries of the free jet domain the static pressure is prescribed.
Von Neumann type boundary conditions are defined for the density and velocity.
When particles enter or exit the domain, a special treatment around the particles is
applied that is related to the adaptive mesh extension.

The boundary conditions on the particle surfaces are applied as described in
Ch. 3.6 and as sketched in Fig. 3.16.

The pipe has a diameter D and a length L = 6 D. This streamwise extent is based
on the work of Chin et al. [21] in which the influence of the periodic pipe length on
the turbulence statistics was investigated. The free jet domain consists of a box with
a length of 50D in the streamwise and 15D in the radial direction. Note that the
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5 Particle-laden free jet flow
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Fig. 5.2: Schematic illustration of the slicing technique to determine the inflow condition for
the particle-laden jet. The simulations for the pipe and jet domains are conducted
concurrently. A plane of the fully-developed pipe flow solution is transferred to the
inflow boundary of the jet domain at each time step. The sketch also defines the domain
sizes and imposed boundary conditions: periodic boundary conditions are implemented
at the pipe in- and outlet, while outflow boundary conditions are defined on all other
boundaries of the jet domain outside of the pipe. A no-slip isothermal wall boundary
condition is used on the pipe wall.

pipe domain extends a length of one D into the jet domain as sketched in Fig. 5.2.
There is no coflow around the free jet.

5.3 Flow and particle parameters

The Reynolds number based on the pipe diameter and the velocity at the jet inflow
section is ReD = 15 546 and the Reynolds number computed with the friction velocity
is Reτ = 448. The Mach number is M = 0.1 and the Prandtl number is Pr = 0.72.

The particles are initially placed at random locations within the pipe domain and
the initial particle velocity equals the local fluid velocity. Random orientations of
the particles are assumed. The particle aspect ratios cover the range 1 ≤ β ≤ 8.
The spectrum of the aspect ratio for the particles is uniform, i.e., equal amounts
of particles (12.5%) for each of the 8 different aspect ratios are ensured. As stated
before, all particles have the same volume based on the volume-equivalent diameter
which is deq/D = 0.01. All particles have the same density ratio ρp/ρf = 600 which
is relevant for biomass particles [34]. The particle Stokes number is St0 = 50.

The volume loading in the pipe domain is approx. ζv = 6.67 × 10−4 and the
resulting mass loading is ζm ≈ 0.4. The number of particles in the pipe domain
is 5 981. It remains constant due to the periodic boundary conditions for the pipe
simulation. In the near field of the jet x/D ≤ 10, the number of particles is approx.
10 000. It slightly varies since the number of particles entering is not necessarily
identical to the number of particles exiting the jet domain. The particle parameters
are summarized in Tab. 5.1.
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5.4 Particle-laden turbulent pipe flow

Particle parameter Value
Diameter deq/D 0.01
Aspect ratio β 1,2,3,4,5,6,7,8
Percentage of each β 12.5%
Density ratio ρp/ρf 600
Volume loading ζv 0.00667
Mass loading ζm 0.4
Stokes number St0 50

Tab. 5.1: Particle parameters

5.4 Particle-laden turbulent pipe flow
The fully-developed pipe flow determines the instantaneous inflow for the free jet
flow. Therefore, the flow dynamics of the fully-developed particle-laden pipe flow is
investigated first. The spatial distribution and relative velocity between the particles
and the fluid in the pipe flow are discussed and the energy exchange between the solid
and fluid phase is analyzed with emphasis on the impact on the fluid dissipation.

The turbulent flow in the pipe is simulated concurrently with the flow in the jet
domain. As stated before, one-way coupling is used such that the pipe flow solution
is not influenced by the jet results. The particle dynamics are analyzed statistically
and the interaction between the two phases is discussed.

5.4.1 Particle distribution
The dynamics of spherical and non-spherical particles differ. Due to their anisotropic
shape, ellipsoidal particles show a concentration maximum at a position different
from that of spherical particles inside turbulent pipe flow. The time-averaged particle
distribution in the pipe is shown in Fig. 5.3 for spherical and ellipsoidal particles,
i.e., for individual aspect ratios and the mean for all aspect ratios β ≥ 2.

The general trend of ellipsoidal particles to accumulate closer to the pipe wall
rather than in the pipe center is indicated. The results show an approximately linear
increase in concentration with increasing pipe radius until a maximum is reached at
r/D ≈ 0.32. Spherical particles show a maximum concentration closer to the pipe
wall at approx. r/D ≈ 0.4.

The resulting particle concentration is related to the average residence time of
the particles at a specific radial location, which is a function of the local radial
velocity of the particles. Thus, the probability that a particle is located at a certain
radius should be higher, where the radial velocity of the particles is smaller. In

Fig. 5.4, the absolute radial velocity |uR| =
∣∣∣∣ yv+zw√

y2+z2

∣∣∣∣ normalized by ub is shown

for β = 1, β = 2, β = 4, and β = 8 as a function of the radial coordinate r/D. The
comparison of the radial velocity for the spherical and ellipsoidal particles shows
that the magnitude of the velocity differs for the various aspect ratios. Whereas the
curves follow a similar trend of increased velocities at the pipe center and pipe wall,
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Fig. 5.3: Probability density function of particles with aspect ratio β = 1, β = 2, β = 4,
and β = 8. The solid black line, which represents the mean distribution of the
ellipsoidal particles β ≥ 2, shows a preferential distribution in the pipe domain at
approx. r/D ≈ 0.32. The statistics are computed for the full streamwise extent of the
pipe domain.

the particles show larger radial velocities with increasing aspect ratio. Especially
in the center of the pipe and near the pipe wall, the radial velocity increases with
increasing aspect ratio, which leads to a lower probability that a particle will be
present in this area.
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Fig. 5.4: Absolute radial velocity |uR|/ub as a function of the radial position r/D. The pref-
erential concentration at r/D ≈ 0.32 by the particles is caused by the lower radial
velocity between the pipe center and the wall.
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5.4 Particle-laden turbulent pipe flow

Several phenomena are identified for the different dynamics of spherical and
ellipsoidal particles. Due to the elongated shape, the ratio of the length of prolate
particles in relation to the turbulent scales becomes larger than that of spherical
particles. Therefore, the ellipsoidal particles experience larger differences in the
inhomogeneous turbulent velocity field in the near-wall region. As a result, they
are more likely to experience torque, which induces a rotation of the particle. The
interaction of the rotating particle with the flow field eventually causes the particle
to translate.

In addition, the turbulent velocity profile strengthens the motion of the particles
within the domain through the localized loads on the particle surfaces. The spatially
varying forces on the particle surfaces are induced by the local eddies such that
additional torque and radial momentum are imposed on the surfaces of the particles.
The high Stokes number St0 = 50 means that the particles largely maintain their
momentum. However, eventually the mechanical loads generated by the large-scale
coherent structures in the flow field, i.e., the vertical structures are greater than the
particle sizes, impact the particle trajectories. The relative mass distribution within
the particles further influences this dynamic as the forces required to induce rotation
are lower than those necessary to modulate the linear velocity.

In the following, a more detailed analysis of the impact of the particle aspect ratio
β on the radial position within the turbulent pipe flow is conducted. The separate
particle distributions for β = 2, β = 4, and β = 8 are also shown in Fig. 5.3. The
particle concentrations show the maximum values to shift towards the pipe center
with increasing aspect ratio. The distributions of spherical and prolate ellipsoidal
particles with aspect ratio β = 2 exhibit a close resemblance. In contrast, the
ellipsoidal shapes β = 2 and β = 8 possess distinctly different distributions. The
distribution of the intermediate aspect ratio of β = 4 lies between the two extremes.
For increasing aspect ratio β, the maximum develops a plateau-like distribution
which shifts progressively towards the center of the pipe. This behavior can be
attributed to enhanced rotational dynamics among elongated particles as discussed
before. This results in a more uniform distribution compared to that of spherical
particles. Similar phenomena have been reported by Gupta et al. [35].

It is evident that the particle aspect ratio plays a crucial role in the radial particle
distribution. The shift in distribution correlates to localized low radial velocity and
increased rotational dynamics.

5.4.2 Linear velocity statistics
Previous research for spherical particles has shown that the ratio of the particle
velocity and the local fluid velocity is a function of the radial position within turbulent
pipe flow [83, 105].

To investigate this hypothesis for prolates, the time-averaged fluid velocity u and
the time-averaged particle velocities up in the streamwise direction are shown in
Fig. 5.5. The velocities for spherical particles are indicated by the subscript (·)p,s
and ellipsoidal particles are marked by the subscript (·)p,e. The distributions of the
particle velocities up normalized by the centerline velocity ucl in the pipe show that
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5 Particle-laden free jet flow

the particle velocity is higher than the local fluid velocity near the pipe wall. The
opposite is observed near the centerline.
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Fig. 5.5: Fluid velocity u and velocities of spherical up,s, and ellipsoidal up,e particles as a
function of r/D. Near the centerline the particle velocities are smaller than the fluid
velocity, while near the pipe wall the opposite is observed. On average, ellipsoidal
particles are slightly faster than spherical particles due to the increased surface area
exposed to the carrier flow.

Kaftori et al. [53] reported similar behavior for spherical particles. The authors
concluded that the combination of rotational spin and linear movement resulted in
increased particle velocities in relation to the local fluid [52, 53, 74]. This behavior
is directly linked to the large Stokes number St0 = 50 and the inertia resulting from
it. For small Stokes numbers St0 � 1, it is expected that the differences between
the fluid velocity and the particle velocity will subside, i.e., the particles will align
closely with the local fluid dynamics and act as tracer particles.

A comparison of the relative velocity distribution of the spherical particles and the
ellipsoidal particles shows that the overall trend is very similar. The tendency of the
particles to have a lower velocity than the fluid flow near the centerline is consistent
with the behavior of spherical particles. The same is true near the pipe wall. Due to
the equal mass of all particles irrespective of their aspect ratio, the particles have
the same Stokes number St0 and thus, show similar inertial behavior. Hence, the
differences are mainly due to the particle shape. The ellipsoidal particles expose a
larger surface area to the carrier fluid. Consequently, the ellipsoidal particles tend to
experience larger mechanical loads on the windward side and maintain their inertia
for a longer time. As a result, the velocity of the ellipsoidal particles near the pipe
wall is greater than the spherical particle velocity.
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5.4 Particle-laden turbulent pipe flow

5.4.3 Rotational statistics
The anisotropic shape of the ellipsoidal particles and the locally varying forces on
the particle surface generate rotational forces which are less important for spherical
particles. For ellipsoidal particles, this force distribution leads to rotational dynamics
and eventually to linear movement due to interaction with the turbulent carrier fluid.
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Fig. 5.6: Mean absolute angular velocity |ω| deq/ub as a function of r/D. The maximum
angular velocity is observed at r/D ≈ 0.32 which aligns well with the position where
the particle velocities are aligned with the fluid velocity, i.e., small differences of the
local fluid velocity yield the rotational dynamics.

To support this hypothesis, Fig. 5.6 shows the time-averaged absolute angular
velocity |ω| deq/ub over r/D. The averaged vorticity rates peak at r/D ≈ 0.32. This
is in the range of the radial position where the ratio of the particle to the fluid
velocity changes as shown in Fig. 5.5. The relative velocity at the particle tips of the
ellipsoids is more likely of varying direction such that modulations on the surface
have a comparably greater impact. This results in increased rotational dynamics
due to the locally varying forces and velocities of the fluid.

The enhanced dynamics at r/D ≈ 0.32 leads to a preferential orientation on average.
The relative orientation of the ellipsoidal particles in relation to the streamwise axis
is analyzed by the probability distribution function pdf(φx) illustrated in Fig. 5.7.
Considering the illustration in Fig. 2.2, φx is the angle between the elongated particle
major axis c and the fluid streamwise axis x. The results of the ellipsoidal particles
indicate a preferential orientation of approx. 90◦. Furthermore, two distinct peaks
at φx = 55◦ and φx = 125◦, i.e., at approx. ±35◦ from the mean orientation of 90◦

are observed. The shear flow and the boundary layer on the pipe walls determine
the loads on the particles. An inclination of the ellipsoidal particles of 90◦± ∼ 35◦

results from the pressure and velocity differences at the particle tips. Moreover, note
the slight trend towards higher angles for increased aspect ratios.
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Fig. 5.7: Probability density function of the particle inclination angle pdf(φx). Except for β = 2,
two peaks are observed at φx = 55◦ and φx = 125◦, i.e., a deviation of ±35◦ from the
perpendicular orientation. The statistics are computed for the full streamwise extent
of the pipe domain.

This finding is in agreement with the results by van Wachem et al. [112] who
reported an average value of approx. 60◦ − 70◦ for β = 2.5 for turbulent channel
flow at Reτ = 600 when wall effects were incorporated.

The probability density function pdf(r/D, φx) as a function of the particle position
r/D and the orientation φx in Fig. 5.8 evidences that the maxima at φx = 55◦ and
φx = 125◦ primarily occur near the pipe wall where the ratio of the particle to the
fluid velocity changes from > 1 to < 1 (see Fig. 5.5). Outside of these areas, the
distribution is more random and uniform.

5.4.4 Multiphase energy exchange

Previous publications have shown a close relationship between the relative velocity
ratio of the particle and the local fluid (up/u) and the energy exchange rates in
multiphase setups [111, 122]. Furthermore, Zhao et al. [122] have shown that the
energy exchange between the two phases due to the mean motion exceeds the
exchange caused by the velocity fluctuations. To be more precise, the majority of
the energy exchange is associated with the streamwise motions.

In Ch. 5.4.3 it was shown that the anisotropic ellipsoidal particles undergo addi-
tional rotation. It is stated in many publications such as [7, 16, 64, 81, 86, 109, 111,
122] that this additional rotation impacts the energy exchange. This is investigated
in the following.

As shown in the last section, the velocity ratio up/u differs with the relative position
of the particles inside the pipe. This results in varying shear-stress and strain rates
across the pipe diameter and altered fluid dissipation rates. The ellipsoidal particle
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Fig. 5.8: Mutidimensional plot of the probability density function pdf(r/D, φx) for β ≥ 2 as a
function of the angle φx and the radial position r/D. The maxima at φx = 55◦ and
φx = 125◦ primarily occur near the pipe wall.

shape additionally leads to a more complex dynamics in the particle wake due to
entrainment, which further modulates the energy exchange.
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Fig. 5.9: Comparison of the mean interphase energy exchange rate ψ (a) and the mean viscous
dissipation rate ε (b) for the investigated particle aspect ratios.

The dependence of the particle-fluid energy exchange on up/u is investigated
for spherical and ellipsoidal particles. Fig. 5.9a shows the time-averaged energy
transfer ψ(r)/(ρu3

0/deq) between the fluid and the particles as a function of r/D.
The convention of ψ ≥ 0 implies that energy is transferred from the particle to the
fluid.
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5 Particle-laden free jet flow

The energy transfer depends on the relative position inside the pipe. It is positive
in the near-wall region and negative near the pipe center, i.e., energy is transferred
from the particles to the fluid in the near-wall region for all aspect ratios. The
particle transfer of energy is predominantly found near the pipe wall where the
particle velocity is higher than the fluid velocity up/u > 1. This emphasizes the
strong impact of the ratio of relative velocities and is attributed to the Stokes number
St0.

Since the ellipsoidal particles on average are faster than the spherical particles
near the wall, increased energy transfer rates are observed for ellipsoidal particles.
Furthermore, larger aspect ratios yield higher transfer rates. Since all particles have
the same mass, the surplus in energy transfer is caused by the differences in the
relative velocities and the anisotropic shape which results in rotational dynamics
yielding higher energy transfer rates. However, on average the momentum due to
the rotation is one order of magnitude smaller than the momentum transferred by
linear movement.

In contrast, the energy exchange near the pipe center is negative, i.e., energy is
absorbed by the particles from the fluid. The ratio up/u is < 1 which facilitates the
transfer of kinetic energy from the fluid to the particles. Since up/u is similar for
different particle aspect ratios, comparable energy exchange rates are determined.

The particles additionally modulate the fluid dissipation due to the crossing-
trajectory effect [97, 100]. With increasing up/u, the modulation is enhanced due
to the increased shear stress on the particle surfaces. Additionally, the wake of the
particles invokes fluid entrainment and thus, increased dissipation.

Fig. 5.9b shows by the local dissipation rate ε(r)/(ρu3
0/deq) over r/D that this

assumption holds true for spherical and ellipsoidal particles. Qualitatively, the
dissipation distribution behaves similar as the interphase energy transfer. The
dissipation caused by the ellipsoidal particles is larger than for the spherical shape.
This is especially true near the pipe wall where up/u > 1, which results in larger
relative velocities and thus dissipation rates. Furthermore, the particle tips of the
ellipsoids generate localized pressure minima and steep velocity gradients which
enhance the dissipation in the flow field.

In summary, the additional dissipation induced by ellipsoidal particles is greater
than the energy transferred from the particle to the fluid. Near the pipe wall, energy
is transferred towards the fluid and the fluid dissipation is significantly enhanced.
Near the centerline, the energy transfer is negative and lower dissipation rates are
observed. This is similar for spherical particles. However, a larger particle aspect
ratio results in higher additional strain and dissipation.

5.5 Particle-laden turbulent free jet flow
The dynamics and the impact of the particles on the turbulent free jet flow are
investigated next. The focus is on the near field x/D ≤ 10. The spatial dynamics
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of the particles are presented and their impact on the flow structure are analyzed.
Kinetic energy and turbulent intensity statistics are discussed.

5.5.1 Particle statistics

The near field of the turbulent free jet single-phase flow is characterized by the rapid
development of the turbulent scales [15]. The initial instability modes trigger the
development of the flow structures in the shear layer. The subsequent mixing results
in vortices which will roll-up and stretch the vortices in the potential core [8].

The development of the flow field in the intermediate region 10 ≤ x/D ≤ 70 is
characterized by the highly anisotropic turbulent structures formed in the initial
phase of the jet interacting with each other before reaching self-similarity in the far
field x/D ≥ 70.

The particles impact the flow development due to the particle-fluid energy exchange
and local interphase and dissipation modulations as a function of the local position.
In the following, the particle linear and rotational dynamics are discussed. Statistics
equivalent to the analysis for the pipe flow evidence the impact of the different
particle shapes on the turbulent free jet flow.

The probability density distribution pdf(r/D) of the particle positions of different
shapes as a function of the radial position r/D at x/D = 10, i.e., at the end of the
near field, is shown in Fig. 5.10. The overall shape of the particle distributions is
quite similar for the different particle aspect ratios. However, the ellipsoidal particles
show a slightly wider radial distribution in comparison to spherical particles and the
spreading increases for larger β.
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Fig. 5.10: Probability density function of particles with aspect ratio β = 1, β = 2, β = 4, and
β = 8 at x/D = 10 in turbulent free jet flow.
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5 Particle-laden free jet flow

When investigating the maximum of the probability density function, ellipsoidal
particles of larger aspect ratios tend to align further away from the jet centerline.

The location of the maximum of the probability density function rmax,x/D is
plotted in the streamwise direction x/D in Fig. 5.11a normalized by the location
at the jet exit rmax,0. It is evident that ellipsoidal particles spread faster in radial
direction than spherical particles. While the maximum of the PDF for spherical
particles (β = 1) changes its location only marginally, ellipsoids with an aspect ratio
β = 8 show a three times higher spreading compared to β = 1.
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Fig. 5.11: Particle spreading in turbulent free jet flow.

The standard deviation SD =
√

1
N−1

∑N

i=0 |pdf(r/D) − ψmean|2i with the mean
of the distribution ψmean at the respective distance x/D is shown in Fig. 5.11b for
the different aspect ratios. The deviation from the mean increases for all aspect ratios
in the streamwise direction x/D until x/D ≈ 3. Further downstream, the standard
deviation decreases which implies that particles tend to cluster closer together with
increasing distances from the nozzle exit. It can be concluded that the aspect ratio
of the particles has a large impact on their spreading rate in the turbulent free jet.

The higher spreading of the ellipsoidal particles in the turbulent free jet flow is
correlated to their increased rotational dynamics. The probability density function
pdf(|ω| deq/ub) of the absolute angular velocity |ω| deq/ub is shown at x/D = 5 and
x/D = 10 in Fig. 5.12. The distributions show that ellipsoidal particles with an
aspect ratio of β = 8 possess higher angular velocities compared to particles with
smaller aspect ratios. Further downstream at x/D = 10, the angular velocity slightly
increases for all aspect ratios in comparison to x/D = 5.

Since the jet free shear layer merges towards the end of the potential core the
particles are subject to larger scale fluctuations in the turbulent jet, which increases
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Fig. 5.12: Probability density function pdf(|ω| deq/ub) of the absolute angular velocity
|ω| deq/ub for x/D = 5 (dashed) and x/D = 10 (solid).

the likelihood of varying surface forces around the particles such that the rotational
dynamics is enhanced.

Fig. 5.13 shows the average orientation of all ellipsoidal particles β ≥ 2 and the
individual orientation of the β = 2, β = 4, and β = 8 at the end of the near field
x/D = 10.The alignment with the streamwise axis is similar to the result in Fig. 5.7
for the pipe flow. However, the dip at φx ≈ 90◦ has disappeared. In other words,
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Fig. 5.13: Probability density function pdf(φx) of the particle orientation φx at x/D = 10 for
ellipsoidal particles.

the particles tend to align normal to the streamwise direction without any clear
deviations. Compared to the pipe flow, the velocity gradients in the radial direction
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Fig. 5.14: Impact of the presence of the spherical and non-spherical particles on the carrier
fluid velocity in the turbulent free jet flow for the particle-laden and single-phase
configuration.

are reduced such that the forces on the particle surface are more evenly distributed.
The ellipsoidal particles consequently tend to behave as bluff bodies. Similar results
are reported by Fröhlich et al. [25] who investigated settling ellipsoids in isotropic
decaying turbulence by means of Lagrangian point-particle models.

5.5.2 Jet structure
The flow structure of a free jet is characterized by the development of the free shear
layer and the potential core. The velocity profile in Fig. 5.14a shows the single and
multiphase solution in the potential core at x/D = 1. The single-phase jet velocity
profile is wider than that of the particle-laden jet whose radial extension is reduced
by approx. 4%. The narrower extension is compensated by a slightly higher peak
velocity on the centerline. Due to the small distance to the jet exit plane, it is clear
that the distributions in Fig. 5.14a are strongly affected by the upstream pipe flow.

The particle-laden potential core has a higher mean velocity on its centerline. Due
to the relative transfer of kinetic energy inside the potential core resulting from
the spatially varying ratio of interphase energy exchange and increased dissipation
rates, the shear layer of the jet is modulated. This means that the kinetic energy is
more centralized to the core compared to the single-phase case. This results in lower
velocity gradients in the radial direction which further impacts the energy decay
rates. As a consequence of the altered core geometry, the length of the potential core
is significantly increased. The length is defined by the position where the centerline
velocity is less than 90% of its initial value, i.e., xcl(ucl/ucl,0 = 0.9).

To counterbalance the elevated velocities on the centerline, Fig. 5.14b shows that
the distribution of the centerline velocity of the particle-laden flow has a steeper
decrease. The development of the dynamics in the turbulent free jet flow in the near
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Fig. 5.15: Impact of the presence of the spherical and non-spherical particles on the carrier
fluid energy in the turbulent free jet flow for the particle-laden and single-phase
configuration.

field (0 ≤ x/D ≤ 10) develops like a sudden expansion. Due to the free-shear layers,
turbulence further develops before reaching self-similarity further downstream.

Hence, Fig. 5.14b shows that the decay of fluid energy is greater at x/D ≥ 7 for
the particle-laden jet flow. The previously outlined tendency of the particles to
increase the local fluid dissipation is related to the inertia forces of the particles. To
be more precise, the inertia of the particles in the turbulent free jet decreases due to
the spreading of the jet. Consequently, the fluid velocity is higher than the particle
velocity which lowers the fluid kinetic energy. The tendency to break up coherent
turbulent structures and enhance the transfer from the large-scale to the small-scale
motions in the near field is well known [8, 15]. This is further intensified by the
particles which facilitate the break-up process. This statement is further investigated
in the following.

5.5.3 Fluid kinetic energy
The temporal development of the total kinetic energy of the fluid in the near field is
shown in Fig. 5.15a for the single-phase jet and the particle-laden jet normalized
by the maximum kinetic energy Ek,max,single−phase of the single-phase flow. The
kinetic energy is integrated in a volume [0 ≤ x/D ≤ 10,−5 ≤ y ≤ 5,−5 ≤ z ≤ 5]
and is normalized by the kinetic energy of the single-phase flow and the integrated
volume, i.e., excluding the volume of the embedded particles.

The distribution of the single-phase jet possesses hardly any fluctuations. The
kinetic energy reaches an almost steady value. The particle-laden jet fluctuates,
it shows an unsteady distribution caused by the energy modulations of the carrier
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5 Particle-laden free jet flow

flow imposed by the particles. The fluid kinetic energy in the particle-laden jet is
reduced by approx. 9.1%. The kinetic energy distribution does not converge to a
constant steady state value since the number of particles and their aspect ratios vary
temporally in the jet volume.

5.5.4 Fluid turbulence intensity
The impact of different particle shapes on the turbulence intensity in fluid flow
depends on various parameters [31, 64, 102, 109, 111].

To assess the impact of non-spherical particles on the intensity of the turbulent
scales, the turbulence intensity

√
u′2/Um normalized by the single-phase maximum

turbulence intensity is evaluated along the centerline. It is shown in Fig. 5.15b for
the single-phase and the particle-laden jet.

Overall, the distributions follow a similar trend. Initially, the development of
the turbulence intensity is indentical. At the nozzle exit, the initial instabilities
generated by the free shear layer result in turbulent flow structures which convect
downstream [8, 15]. Vortex roll-ups occur which enhance the spreading of the jet
in the near field. This interaction breaks up coherent structures resulting in the
development of the turbulent fluctuations in the later stages of the jet development [8,
15]. The tendency is enforced by the particles which are known to break up coherent
large-scale motions [24]. The turbulence intensity of the particle-laden jet and the
single-phase jet diverge at x/D ≥ 3 where the particle-laden jet is severely damped.

The increased break-up of coherent structures and the higher dissipation due to
the velocity differences between the carrier fluid and the particles cause the energy of
the fluid to decrease and the turbulence intensity to be weakened. As shown before,
the dissipation rate is impacted by the anisotropic particle shapes and the rotational
dynamics. Therefore, the dissipation of the fluid is increased by the increased stress
on the particle surfaces resulting in the steep drop off shown in Fig. 5.14b. At the
end of the near field, the turbulence intensity is reduced by approx. 20%.

5.6 Conclusions
The impact of spherical and ellipsoidal particles on the overall flow structure in
turbulent free jet flow is investigated. The particles possess aspect ratios in the range
1 ≤ β ≤ 8. The simulations are performed using a cut-cell method in a finite volume
formulation. The surfaces are described by a level set method. Using the multi-cut
cell method, highly accurate results were achieved, conserving mass, momentum,
and energy.

The turbulent free jet is computed simultaneously with a pipe flow. The latter
provides the inflow data for the jet. This setup ensures physically correct particle
and fluid properties at the jet inflow boundary.

The particle dynamics and flow characteristics of the fully-developed periodic
pipe flow are investigated separately from the turbulent free jet flow. The particle
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distribution is assessed and the preferred orientation as a function of the varying
particle aspect ratios is outlined. The results show preferential concentrations and
orientations based on the particle aspect ratio and the relative position inside the
pipe. For increasing aspect ratios, the distribution of the particles inside the pipe
takes a more uniform distribution. Whereas spherical particles tend to align close to
the pipe wall, ellipsoidal particles tend to align throughout the domain as the aspect
ratio β increases. The major reason for the different distribution inside the pipe is
the anisotropic particle shape, i.e., the elongated major axis. Due to the particle
shape, rotational movement is induced that leads to increased spanwise dynamics.
Preferential orientations of the ellipsoidal particles are identified at φx ≈ 55◦ and
φx ≈ 125◦, i.e., 90◦± ∼ 35◦ where φx is the inclination angle against the streamwise
direction. The almost perpendicular orientation is caused by the relative velocity
and pressure differences at the particle tips of the anisotropic particles resulting in
varying mechanical forces at the particle surfaces. The particles interact with the
carrier fluid by transferring kinetic energy to and from the fluid. Depending on the
relative position inside the pipe, all particles are shown to extract energy from the
pipe center and to transfer energy to the fluid towards the pipe walls. This tendency
is further amplified by the aspect ratio, i.e., a higher aspect ratio tends to increase
the energy transfer. The particles are shown to additionally induce dissipation in
the fluid. Similar trends as to the energy transfer are observed although varying in
magnitude. The magnitude of the induced dissipation is on average larger than the
energy transfer. This is shown to be caused by the additional rotational dynamics of
the ellipsoidal particles and the relative velocity differences between the fluid and
the particles.

Subsequently, the turbulent free jet flow is analyzed focusing on the near field
region x/D ≤ 10. The jet flow is modulated by the particles. That is, the jet radial
extension is reduced by approx. 4% due to the particles. The velocity along the
centerline has a steeper negative slope in the particle-laden jet since the particles
induce additional dissipation. The comparison of the kinetic energy budgets between
a single-phase and the particle-laden jet reveals an attenuation of the fluid kinetic
energy by approx. 9% through the particles. The turbulence intensity is reduced by
approx. 20%.

85





6 Heat transfer dynamics

In combustion processes, understanding heat transfer dynamics is crucial for opti-
mizing energy efficiency, enhancing safety, and minimizing environmental impact.
When fuels undergo chemical reactions to release energy, heat transfer dynamics
play a significant role in fuel utilization efficiency and affect emissions, fluid dynam-
ics, and overall system performance. Investigating the heat transfer mechanisms of
non-spherical particles provides deeper insights into the behavior of these complex
multiphase systems.

This chapter investigates non-isothermal multiphase flow. The focus will initially
be on the study of ellipsoidal particles in a uniform flow. The data of more than
6 600 fully-resolved simulations in the parameter spaces Re, β, φ and TR will be used
to derive a correlation equation for the Nusselt number Nu.

The model for the calculation of fully-resolved particles, as presented in Ch. 3.6,
is used for the investigation of heat transfer dynamics. By connecting the surfaces
between the particle and the fluid, a physically correct and conservative energy
exchange is ensured. As a result, thermal equalization processes between the particle
and the fluid are reproduced with high accuracy. This method is used to investigate
the accuracy of Lagrangian point-particle models. The configuration of a single
ellipsoidal particle in uniform flow used for the correlation derivation in Ch. 6.1 is
computed with fully resolving the thermal dynamics inside the particle. The flow
field is discussed and the differences between the leeward and windward sides are
specifically addressed.

Ultimately, this exploration will underscore the importance of effective heat man-
agement in achieving sustainable and efficient combustion technologies.

6.1 Correlation equation for the Nusselt number of ellipsoidal
particles

Previous research has shown that the particle shape and the inclination of the
particles have a major impact on the fluid-particle interaction [43, 50, 66, 93].
Recently, Fröhlich et al. [26] have shown a distinct relationship between the non-
spherical particle dynamics and the Reynolds number, the inclination angle, and
the aspect ratio. In a subsequent study, Fröhlich et al. [25] showed that ellipsoidal
particles show a preferential orientation perpendicular to the settling direction
impacting the particle velocity and thus, the particle dynamics. The impact on the
heat transfer was not considered in either work.
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Furthermore, work conducted by Kurose et al. [61] and Nagata et al. [76] showed
that for a uniform flow past a sphere of surface temperature TS and freestream fluid
temperature T∞ the temperature ratio TR = TS/T∞ severely impacts the Nusselt
number. For a sphere TR < 1 the Nusselt number increases, whereas for a sphere
TR > 1 Nu decreases. This is explained by the change in viscosity caused by the
temperature modulation in the surrounding gaseous fluid. Recent work by Ganguli &
Lele [28] shows that this behavior is also observed at low Reynolds numbers Re ≤ 10.

To further emphasize the difference between the numerical results of the present
study of an ellipsoidNusim and the prediction based on the equation by Whitaker [116]
Nucorr for spheres at TR = 1.05 and TR = 0.35, the deviation ∆Nu =

∣∣Nusim−Nucorr
Nucorr

∣∣·
100 [%] is illustrated in Fig. 6.1 for the maximum deviation of an inclination range
0◦ ≤ φ ≤ 90◦. Clearly, the correlation functions for spheres are insufficient to pre-
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Fig. 6.1: Deviations of the correlation function by Whitaker [116] and the fully-resolved numerical
results as a function of Reynolds number Re of prolate particles for varying inclination
angle φ, aspect ratio β. and temperature ratios.

dict Nu for ellipsoidal particles, i.e., β > 1. The deviation increases up to over 80%
with increasing aspect ratio for small temperature differences, i.e., TR = 1.05. This
deviation becomes even more pronounced for TR = 0.35.

To the best of the authors’ knowledge, there are no studies available in the literature
in which the impact of the shape of the particle, the particle Reynolds number,
the inclination angle, and the temperature ratio are analyzed and summarized in
a correlation for the Nusselt number Nu. This, however, is necessary to perform
efficient and accurate simulations of ellipsoidal particle-laden flows with a pronounced
temperature difference between the particles and the carrier fluid as encountered in
combustion chambers [3, 4, 49, 79].

To investigate the impact in regard to the heat transfer, direct numerical sim-
ulations are performed for a uniform flow over a single particle with a constant
surface temperature. The data are used to analyze the essential physical phenom-
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ena characteristic for the present parameter space. The structures of the flow and
temperature fields in the near-wall and the outer-flow regions are investigated to
physically describe the impact of geometric, freestream, and heat transfer variations.
Subsequently, the data from more than 6 600 simulations are used to derive a novel
correlation function for the Nusselt number Nu that can be subsequently applied to
conduct highly accurate point-particle computations.

6.1.1 Current research
The expressions most commonly used for the heat transfer are those by Ranz &
Marshall [87] and Whitaker [116], or are based on these.

In early investigations, Frössling [27] developed a theoretical model for the evapo-
ration of falling liquid droplets, combining molecular diffusion with convective effects
caused by the droplets motion through air. The author derived a correlation equa-
tion that quantifies how convection enhances mass transfer, forming the basis for
modern droplet evaporation theory.

Follow-up investigations regarding the impact of different flow parameters on
the heat transfer of a spherical particle expressed by the Nusselt number Nu were
published by Ranz & Marshall [87]. Based on measurements of water droplets in air
in a Reynolds number range ReF ≤ 200, the authors proposed the equation

Nu = 2 + 0.6Re1/2
F Pr

1/3
F , (6.1)

with the subscript F representing the fluid properties being computed at film
temperature TF = 1

2 (TS + T∞).
Later, Whitaker [116] reviewed the available literature and proposed the equation

Nu = 2 +
(

0.4Re
1
2 + 0.06Re

2
3

)
Pr0.4

(
µ∞

µs

) 1
4
, (6.2)

with the dynamic viscosity at freestream conditions µ∞ and the dynamic viscosity
evaluated at surface temperature µs for a single sphere in freestream. The equation
is valid for spheres in the parameter range 3.5 ≤ Re ≤ 7.6 · 104, 0.71 ≤ Pr ≤ 380,
and 1.0 ≤

(
µ∞
µs

)
≤ 3.2 all determined at freestream conditions. This equation yields

a maximum deviation of ±30% compared to experimental data.
The comparison of the solutions of the equations by Ranz & Marshall [87] and

Whitaker [116] shows that the results can deviate by up to 10%. Several improvements
have been presented in the last half century [23], i.e., the validity range and accuracy
of the correlations have been improved. For instance, Wiskel et al. [118] increased
the applicable temperature range of the formulation by Whitaker [116].

In contrast to the analysis of spherical particles, very few correlation expressions
have been published for ellipsoidal particles. In general, these correlation functions
are valid in a very limited parameter space. Richter & Nikrityuk [90] studied the
heat and fluid flow past non-spherical particles, i.e., ellipsoidal and cubic particles,
for varying inclination angles φ at the constant temperature ratio TR = 1.33 and the
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constant aspect ratio β = 2. They presented correlation functions for the particle
dynamics and the Nusselt number in the Reynolds number range Re ≤ 200 and
0◦ ≤ φ ≤ 90◦.

Ke et al. [55] investigated for a fixed ellipsoidal particle TR > 1 the impact
of the particle shape, the inclination angle, and the Reynolds number. Based
on 125 simulations, the authors proposed a correlation for the parameter space
0.25 ≤ β ≤ 2.5, 0◦ ≤ φ ≤ 90◦ , and 10 ≤ Re ≤ 200. This parameter space partially
overlaps with the current study and their correlation will therefore be used for
comparison with the findings in this study.

6.1.2 Computational setup
The conservation equations Eq. 2.1 and Eq. 2.9 are discretized by a finite volume
method using a locally-adapted hierarchical Cartesian mesh [39, 98]. The inviscid
fluxes are solved by an upwind-biased scheme, the viscous fluxes are computed by
a central scheme [11], and the temporal integration is performed by a predictor-
corrector Runge-Kutta scheme [98]. The contour of the surface of the ellipsoid is
described by a level-set function [37]. The surface is discretized by a cut-cell method
in which intersected Cartesian cells are redefined according to the local boundary [98].
This ensures a strict conservation of mass, momentum, and energy of the multi-phase
system.

At the inlet and the lateral boundaries, freestream conditions are given for the
velocity and density, the pressure is extrapolated from the flow field (Fig. 6.2a, grey).
On the outflow boundary (Fig. 6.2a, red), von Neumann boundary conditions are
defined for the velocity and density, while for the pressure its freestream value is
prescribed. A no-slip, isothermal condition is imposed on the surface of the ellipsoid.

The coordinate system (x, y, z) is fixed at the center of mass of the ellipsoid
(Fig. 6.2b) which is located at (0.25Lx, 0.5Ly, 0.5Lz) in a domain defined by the
streamwise (x), spanwise (y) and normal (z) lengths Lx = 96 deq , Ly = 48 deq , and
Lz = 48 deq . It was shown in Ch. 4.2.1 that the minimum cell size deq/∆min = 48
is a good compromise between computational cost and accuracy.
Adaptive mesh refinement [36] is used which is controlled by distinct threshold values
based on the statistical distribution of given parameters around each sensor. Sensors
are defined as local flow characteristics, i.e., strain rate gradient and the temperature
gradient, determined throughout the domain (Fig. 6.2c). The local refinement is
based on up to five refinement steps. Furthermore, the area surrounding the ellipsoid
is refined based on a static, distance-based parameter to the highest refinement
level. This ensures a proper resolution of all boundary layer phenomena on the
surface of the ellipsoid. The adaptive mesh refinement is complemented by dynamic
load-balancing [77].

The freestream velocity u∞ is determined by the Mach number Ma = 0.1 and the
particle Reynolds number Re varies in the range 1 ≤ Re ≤ 100. The ratio of the
surface temperature TS and the freestream fluid temperature T∞ covers the interval
0.35 ≤ TR ≤ 1.65. The Prandtl number is Pr = 0.72 = const.
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(a) Full domain setup (b) Particle fixed coordinate system (x,y,z) and
inclination angle φ

(c) Temperature gradient contours in the vicinity
of the ellipsoid

(d) Locally refined Cartesian grid

Fig. 6.2: Numerical setup of the flow configuration.

The inclination angle φ, i.e., the angle between the major axis of the ellipsoid and
the freestream direction (Fig. 6.2b), is varied in the range 0◦ ≤ φ ≤ 90◦. The aspect
ratio β, defined by the ratio between the major- and minor axis, is varied between
1.5 ≤ β ≤ 8, while the two minor axes are kept at a constant ratio of unity.

Note that the particle does not move, i.e., the location and orientation of the
ellipsoid is fixed and buoyancy effects are neglected.

6.1.3 Fluid dynamics
In the following, the impact of the Reynolds number Re, the inclination angle φ, the
aspect ratio β, and the temperature ratio TR on the Nusselt number of a prolate
ellipsoid in uniform flow is discussed. For TR = 1.05, the complete (red and black)
parameter range of Re, φ, and β in Tab. 6.1 is analyzed, whereas for TR 6= 1.05 only
the red parameter combinations are investigated. In total, approx. 6 600 parameter
combinations were considered.
To accurately separate the influence of each individual parameter, the flow and
temperature fields are presented in Ch. 6.1.4. The discussion will focus on the
interaction between the flow field and the heat transfer. First, the temperature ratio
is considered TR = 1.05 = const. and the parameters, i.e., the Reynolds number,
the inclination angle, and the aspect ratio, will be varied. Then, the temperature
ratio and the lower limit of the studied Reynolds number range will be investigated.
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Parameter investigated range
Re 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100
β 1.5, 2, 3, 4, 5, 6, 7, 8
φ 0◦, 5◦, 10◦, 15◦, 20◦, 25◦, 30◦, 35◦, 40◦, 45◦, 50◦, 55◦, 60◦, 65◦, 70◦, 75◦, 80◦, 85◦, 90◦

TR 0.35, 0.55, 0.75, 0.95, 1.05, 1.25, 1.45, 1.65

Tab. 6.1: Investigated parameter space. Configurations of varying temperature gradients are
considered, the Reynolds number is based on the volume-equivalent diameter deq and
the aspect ratio 1.5 ≤ β ≤ 8 is chosen to cover the most common aspect ratios in
technical environments [78, 79].

In Ch. 6.1.5.2, the novel Nusselt number correlation equation is introduced and its
accuracy and broad applicability range are discussed.

6.1.4 Flow and temperature field

To better understand the intricate flow structure that determines the Nusselt number
distribution via the interaction with the surface, certain flow and structure features
such as separation, reattachment, vortices, etc. are visualized. For conciseness, only
selected configurations are discussed. First, the impact of the Reynolds number, i.e.,
the viscous forces, is considered, followed by geometric variations defined by the
inclination angle and the aspect ratio. Then, the temperature ratio is changed and
finally, the low end of the investigated Reynolds number range is discussed.

6.1.4.1 Impact of Reynolds number

To illustrate the impact of the Reynolds number on the heat transfer, the temperature
contour lines for Re = 1 and Re = 100 are shown in Fig. 6.3 for φ = 0◦, β = 2, and
TR = 1.05.

Fig. 6.3: Temperature distribution around an ellipsoidal particle at Re = 1 (top) and Re = 100
(bottom) for β = 2, φ = 0◦, and TR = 1.05. The solid contour lines show the fluid
temperature T/T0 = [1.01, 1.02, 1.03, 1.04].

The comparison evidences that at increasing Reynolds number the region of heat
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6.1 Correlation equation for the Nusselt number of ellipsoidal particles

transfer is compressed on the windward and stretched on the leeward side. This
development is determined by the local velocity field and the trend is observed over
the complete Reynolds number range.

Next, the impact of Re for varying inclination angle φ is discussed by analyzing
the velocity and temperature fields, as well as the wall heat transfer for Re = 10 and
Re = 90 shown in Fig. 6.4.

(a) Re = 10, φ = 0◦ (b) Re = 90, φ = 0◦

(c) Re = 10, φ = 90◦ (d) Re = 90, φ = 90◦

Fig. 6.4: Streamlines and temperature contours for Reynolds number Re = 10 and Re = 90 and
inclination angle φ = 0◦ and φ = 90◦ at β = 3. Stream tracer particles are injected
to highlight the flow topology in the wake of the ellipsoid. Furthermore, the Nusselt
number distribution is shown. Note the different color scales for the local Nusselt
number in (a,b) and (c,d).

For an ellipsoid with β = 3 aligned in the streamwise direction, i.e., φ = 0◦ (Figs. 6.4a
and 6.4b), the temperature contour lines are squeezed to the surface of the ellipsoid
as Re increases. This observation agrees with the previous result that higher velocity
gradients yield higher temperature gradients between the surface of the ellipsoid
and the surrounding fluid. In other words, the heat transfer and thus, the Nusselt
number, are increased. Furthermore, the difference in heat transfer between the
windward and leeward stagnation point is amplified at higher Re as evidenced by
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the stretched contour lines and an increased distribution of the local Nusselt number
Nul(x), which is defined by the local heat flux.

For a rotation of the ellipsoid about the y-axis by φ = 90◦, the flow field and
the temperature field change drastically for Re = 10 and Re = 90. This varying
susceptibility of the flow and temperature fields on the Reynolds number as a function
of the inclination angle is primarily observed in the higher Reynolds Number range
and for large inclination angles. At Re = 10, the flow does not separate. Although
there is a positive pressure gradient in the streamwise direction on the leeward side
in the vicinity of the upper and lower tip of the ellipsoid, no flow detachment is
observed. Only a slightly stretched wake region within the streamwise extent, which
can be approximated by the major axis of the ellipsoids, characterizes the flow field
and the temperature field. At Re = 90 (Fig. 6.4d), however, the more pronounced
positive pressure gradient near the upper and lower tip results in flow separation
such that the leeward flow structure is determined by a massive vortex ring. This
recirculating flow facilitates the removal of hot fluid from the leeward side leading to
a higher heat transfer, i.e., an increasing Nusselt number. Note that this variation of
the Nusselt number determined by φ is also true over the β regime.

6.1.4.2 Impact of inclination angle

Next, the impact of the orientation of the ellipsoid is analyzed.

(a) φ = 30◦ (b) φ = 60◦

Fig. 6.5: Streamlines, temperature and Nusselt number contours for Re = 90 and β = 3 at
varying inclination angles.

The streamlines, temperature, and Nusselt number contours are shown for two
configurations Re = 90, β = 3, φ = 30◦ and φ = 60◦ in Fig. 6.5. While the former
configuration is characterized by an attached flow, the latter is characterized by a
detached flow. The varying flow structure is strongly determined by the distinct
pressure gradients in the symmetry plane near the leeward tip of the ellipsoid.
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Unlike the flow topology on the leeward side, the flow structure on the windward
side is quite similar. It is characterized by the impingement of the uniform flow
on the surface of the ellipsoid. This surface, which is exposed to the uniform flow,
however, increases at higher inclination angles. For this reason, and the flow behavior
on the leeward side, the mean Nusselt number Nu = 7.50 for φ = 60◦ is higher
by approx. 10% compared to Nu = 6.98 for φ = 30◦. This result agrees with the
findings by Richter & Nikrityuk [90] who reported an impact of the inclination angle
of 7 − 12%.

The illustrations in Fig. 6.5a and Fig. 6.5b indicate that the peak value of the local
Nusselt number Nul(x) occurs at the tip of the ellipsoid independently from the
inclination angle. The maximum value of the local Nusselt number Nul(x), however,
increases with decreasing inclination angles φ, i.e., the maximum value is observed
at φ = 0◦. This is attributed to the increased curvature of the ellipsoid relative
to the freestream direction which enhances the velocity gradient at the tip at low
inclination angles.

6.1.4.3 Impact of aspect ratio

The impact of the aspect ratio on the velocity, temperature and heat transfer field
is illustrated in Fig. 6.6 for Re = 90 and φ = 45◦ at β = 2, 3, 6, and 8. The overall
flow structure does not change when β ≥ 3, which was also observed by Fröhlich et
al. [26].
However, unlike the flow topology, the mean Nusselt number strongly increases with
higher aspect ratios, i.e., it almost linearly increases by ∼ 45% from Nu = 7.27
at β = 3 to Nu = 9.31 at β = 6 and Nu = 10.54 at β = 8. Further analysis
of the local Nusselt number Nul(x) yields almost equal maximum values, i.e.,
Nul(x)Max,β=6 = 33.8 and Nul(x)Max,β=8 = 33.9. Consequently, it is the larger
portion of the surface area which is exposed to relatively high local heat transfer
rates which leads to an increased Nusselt number.

6.1.4.4 Impact of temperature ratio

The temperature fields for a flow at Re = 100 over a particle at aspect ratio β = 8
inclined by φ = 90◦ are shown in Fig. 6.7 for a temperature ratio TR = 0.55
(top) and a temperature ratio TR = 1.45 (bottom) ellipsoid. Two contour lines
Ta(x) = 1

2 (TS + T∞) = TF (white) and Tb(x) = 0.95T∞ (black) are highlighted to
emphasize the differences in the temperature fields of the particle-fluid temperature
ratios.
The area confined by the contour lines Ta and Tb is somewhat larger for TR = 1.45
than for TR = 0.55. It is evident that the temperature ratio overall only slightly
influences the extent of the particle surrounding temperature field. This result is
due to the strong coupling between the temperature and the flow field. Especially
the wake flow is defined by the separation on the leeward side which is primarily
determined by the streamwise pressure gradient. Since the pressure variation hardly
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(a) β = 2 (b) β = 3

(c) β = 6 (d) β = 8

Fig. 6.6: Streamlines, temperature, and Nusselt number contours for various aspect ratios at
Re = 90 and φ = 45◦.

Fig. 6.7: Temperature and Nusselt number contours for a particle TR = 0.55 (top) and a particle
TR = 1.45 (bottom) at Re = 100, β = 8, and φ = 90◦.

changes due to the constant Reynolds number the flow structure and thus, the
temperature field, do not vary massively. This is in contrast to Kurose et al. [61]
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who reported differing separation points. Note, however, that Kurose et al. [61]
inspected spheres at higher Reynolds numbers, i.e., 50 ≤ Re ≤ 500. In the Reynolds
number range investigated in this study 1 ≤ Re ≤ 100, the temperature ratio does
not massively change the separation which is why the extent and the structure of
the temperature field hardly varies.

The detailed analysis of the dynamic viscosity µ(T ) surrounding the particle shows
the link between the local dynamic viscosity µ(x) and the local fluid temperature
T (x) caused by the heat flux between the particle and the fluid flow (Fig. 6.8). For

Fig. 6.8: Dynamic viscosity µ(T )/µ0 of the fluid surrounding an ellipsoidal particle at TR = 1.45,
Re = 100, β = 4, and φ = 90◦.

TR = 1.45, an increased local viscosity µ(x) is observed in the vicinity of the particle.
This increased dynamic viscosity leads to a higher wall shear-stress τw = µ

δu‖
δn

with the wall-parallel velocity component u‖ and the wall-normal direction n. This
reduces the fluid velocity near the wall and thus, the temperature gradient, yielding
a lower heat flux and lower Nusselt number. The opposite result is true for TR < 1.

Note that the constancy of the Prandtl number also means µ(T )/µ0 = k(T )/k0
such that the contours are qualitatively alike.

6.1.4.5 Low Reynolds number limit

The equations by Ranz & Marshall [87] and Whitaker [116] are based on a lower
limit of the Nusselt number obtained at creeping flow conditions, i.e., Re → 0, of
Nu = 2. Since the temperature ratio impacts the temperature gradients directly, it
is natural to assume different minimum Nusselt numbers at low Reynolds numbers
as a function of the temperature ratio.

In the lower limit of the inspected Reynolds number range, i.e., 1 ≤ Re ≤ 10, the
inertial forces gradually vanish. The conductive mechanism becomes the dominant
factor changing the dynamics of the heat transfer. Approaching Stokes flow conditions,
different minimum Nusselt numbers are obtained depending on the particle shape.
For spheres, the lower limit is Nu → 2 for Re → 0 and TR → 1 [28, 87, 116]. In
contrast, values Nu < 2 for Re → 0 at Pr = 0.7 for air are observed for prolate
ellipsoids [68].
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Since the impact of Re vanishes, a diminishing dependence of the heat transfer
on the inclination angle φ is reached. That is, the dynamics is mostly governed by
the geometry of the ellipsoid and the temperature gradients at the particle surface,
to be more precise the shape determined by the aspect ratio β and the imposed
temperature ratio TR [120].

It is clear from the fully-resolved simulation data in Tab. 6.2 that the Nusselt
numbers massively vary for the Reynolds number Re = 1 as a function of the
temperature ratio TR. The lowest Nusselt number at Re = 1 is obtained at the

TR < 1 Nusim(Re = 1) TR > 1 Nusim(Re = 1)
0.35 4.98 1.05 2.34
0.55 3.48 1.25 2.06
0.75 2.91 1.45 1.89
0.95 2.51 1.65 1.75

Tab. 6.2: Smallest Nusselt number of all aspect ratios β at Re = 1 for several TR.

highest temperature ratio TR = 1.65. This trend is observed in the full range
1 ≤ Re ≤ 10. To be more precise, for a particle TR < 1 at Re = 1 the Nusselt
number is Nu(Re = 1) > 2 and for a particle TR > 1 the dimensionless wall heat
transfer already reaches values Nu(Re = 1) < 2.

Next, the simulation data is used to present a correlation function for the Nusselt
number in the considered parameter space.

6.1.5 Correlation equation
The parameter space is extremely large such that it is not straightforward to analyti-
cally derive an orientation dependent correlation function of the Nusselt number for
ellipsoidal particles of different aspect ratios at various temperature ratios in uni-
form freestream flow. Therefore, a genetic programming approach is used to advance
a symbolic regression tree to determine an accurate correlation function.

In the following, the regression method is briefly described and the novel correlation
function is presented and discussed.

6.1.5.1 Regression method

A symbolic regression is a subgenre of regression analysis which constructs and
searches for mathematical expressions that best describe a given dataset. To achieve
this, the algorithm initializes a tree structure with randomly sampled functions and
initializes them with arbitrary values.

Each generated expression is consecutively evaluated for its fitness and the tree is
evolved accordingly in an iterative approach. Note that the term fitness represents
the suitability of an expression to describe the dataset with regard to its accuracy
and complexity. In general, each new generation has a higher fitness than the parent
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generation, ultimately converging to a solution to describe a given dataset with
almost arbitrary accuracy.

During the derivation of the proposed equation by the genetic programming
algorithm, the full dataset is split into a training dataset and a validation dataset.
The training dataset encompasses 90% of the full dataset, i.e., roughly 6 600 simulation
results, while the validation dataset is comprised of the remaining 10%.

For further details, the reader is referred to the works by Zelinka et al. [121],
Searson et al. [101], and Riolo et al. [91].

6.1.5.2 Novel correlation function

The discussion of the new correlation function for the Nusselt number determined
by the regression method is split into two parts. First, the structure of the equation
is analyzed and its accuracy is assessed. Subsequently, the results of the correlation
function for the Nusselt number are compared with findings from the literature.

Structure and accuracy
The regression method derived the correlation function

Nu = 1.5 +
0.5 − 0.05

√
β

−1

TR
+ 0.37

√
Re

T 1.1
R

+ 0.1

√
Reβsin(φ) β

TR
, (6.3)

which was slightly adjusted to achieve a high accuracy at minimum complexity. That
is, minor modifications were made, e.g., the coefficients were rounded slightly.

In the following, the physical meaning of the essential terms and their interactions
are discussed.

For Re → 0, the final two terms on the right-hand side vanish and the heat transfer
is governed by the aspect ratio β and the temperature ratio TR. The minimum
Nusselt number reaches values Nu < 2 for TR > 1 and Nu > 2 for TR < 1. The
discussion in Ch. 6.1.5.2 will show that the accuracy between the analytical solution
for prolate spheroids [68] and the proposed equation at Re → 0 is accurate within a
maximum deviation < 10%.

Fig. 6.9 shows the Nusselt number Nu of an ellipsoid β = 2, φ = 0◦, TR = 0.55 at
Reynolds numbers 1 ≤ Re ≤ 10. The simulation results are very accurately captured
and the general trend of Nu is described very well.

The term 0.37
√
Re

T1.1
R

accounts for the influence of the surrounding fluid on the
convective heat transfer between the particle and the gas, with TR reflecting the
resulting temperature field due to the imposed heat flux.
The development of the Nusselt number as a function of the Reynolds number
for different particle configurations are shown in Fig. 6.10. The distributions for
the various configurations show a similar trend emphasizing that the qualitative
behavior is dominated by the surrounding flow, characterized by the Reynolds
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Fig. 6.9: Nusselt number Nu as a function of Reynolds number Re for an ellipsoid β = 2, φ = 0◦,
TR = 0.55 at Re ≤ 10.
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Fig. 6.10: Nusselt number Nu as a function of Reynolds number Re for several temperature
ratios TR at β = 4 and φ = 45◦.

number. The slope increases moderately for decreasing TR for particles TR > 1, and
more drastically for decreasing TR for particles temperature ratios TR < 1 due to
the impact on the viscosity µ(T ) and the thermal conductivity k(T ) as discussed in
Ch. 6.1.4.4.

Fig. 6.11 further highlights the high accuracy and versatility of Eq. 6.3 within the
parameter space. Three configurations are shown in Fig. 6.11a for TR = 0.35 and
Fig. 6.11b for TR = 1.65. The configurations are selected to show the accuracy in
the extremes of the inspected parameter space, where the maximum deviations are
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(a) Temperature ratio TR = 0.35
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(b) Temperature ratio TR = 1.65

Fig. 6.11: Nusselt number Nu as a function of Reynolds number Re. Comparison of fully-
resolved simulation and correlation data Eq. 6.3 for varying inclination angle φ and
aspect ratio β.

found at high Reynolds number and high aspect ratio β in combination with high
inclination angle φ.

The final term 0.1

√
Reβsin(φ) β

TR
models the relationship between the Reynolds

number Re, the temperature ratio TR, the inclination angle φ, and the aspect ratio β,
i.e., the link between the shape and the orientation with respect to the surrounding
flow is taken into account. Note that the inclination angle appears exclusively in
combination with the aspect ratio. This ensures that the particle rotation does not
falsify the results for a rotated sphere, i.e., β = 1. Thus, Eq. 6.3 is also applicable to
spheres.

The development of the Nusselt number for Re = 80 is illustrated in Fig. 6.12 for
TR = 1.05. The distributions show an S-curve shape, i.e., the plateau-like regions
at low (φ ≤ 10◦) and high (φ ≥ 80◦) inclination angles are connected by the region
with a pronounced slope in which the inflection point is located. The maximum
slope increases for larger aspect ratios and is shifted to smaller inclination angles.
That is, the overall sensitivity of the Nusselt number against β and φ grows.

Next, the dependence of Nu on β at Re = const. and φ = const. is discussed. It is
shown in Fig. 6.13 that the Nusselt number increases almost linearly with the aspect
ratio independent from the inclination angle and the Reynolds number. Additionally,
the slope clearly grows at higher Reynolds number and higher inclination angle. To
be more precise, the comparison of the Re = 20 and Re = 80 results for varying
inclination angle φ evidences the pronounced impact of φ when changing from the
low φ value to the mid φ value.
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Fig. 6.12: Nusselt number Nu as a function of the inclination angle φ for varying aspect ratios
β at Re = 80 and TR = 1.05.
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Fig. 6.13: Nusselt number Nu as a function of the aspect ratio β for various Re and φ configu-
rations at TR = 1.05.

Sensitivity analysis
To further highlight the impact of the parameters on the Nusselt number, a sensi-
tivity analysis is conducted. In the variance-based sensitivity analysis, the variance
of the model output is split into individual fractions which are linked to the in-
put parameters. The framework presented by Sobol [104] is applied in which the
second-order indices quantify the impact of two coupled parameters on the out-
put, i.e., the second-order indices quantify the variance of the output caused by
the various combinations of the parameters. This analysis shows the impact of
the meticulous amplification of the parameters, i.e., it reveals when the coupled
impact is greater than the combined impact of each individual input parameter
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V ar(x, y) > V ar(x) + V ar(y).

Parameter Second-order index Percentage
Reφ 0.014518 12.0%
Reβ 0.029160 24.2%
ReTR 0.066108 54.7%
φβ 0.003189 2.6%
φTR −0.007375 6.1%
β TR 0.000405 0.4%

Tab. 6.3: Sensitivity analysis of the new Nu correlation function to quantify the impact of each
input parameter.

The results in Tab. 6.3 emphasize the strong impact of the Reynolds number and
the temperature ratio in Eq. 6.3. More than half of the variance in the output is
attributed to the parameter combination ReTR. The combinations Reβ and Reφ
are also important due to the mechanisms discussed in Ch. 6.1.4, i.e., the larger area
exposed to the increased heat transfer rates and the pressure gradient at the tip of
the ellipsoid. The impact of Reφ shows to be similar to the impact described by
Richter & Nikrityuk [90] which is 7 − 12%.

It was previously described by Fröhlich et al. [26] how the aspect ratio β = 3
defines a turning point, i.e., the overall flow structure does not further change when
β ≥ 3. In Ch. 6.1.4.3, however, it was shown that the Nusselt number increases
independent from the flow topology. To evidence the impact of the inclination angle
φ and the aspect ratio β, the second-order indices are listed in Tab. 6.4 for two
β-intervals.

1 ≤ β ≤ 3 Second-order index Percentage 4 ≤ β ≤ 8 Second-order index Percentage
Reφ 0.011653 10.7% Reφ 0.021172 16.5%
Reβ 0.016184 15.0% Reβ 0.021708 17.0%
ReTR 0.073395 67.8% ReTR 0.072827 61.1%
φβ −0.000662 0.6% φβ −0.001818 1.4%
φTR −0.003628 3.4% φTR 0.000015 0.1%
β TR 0.002735 2.5% β TR −0.005022 3.9%

Tab. 6.4: Second-order sensitivity analysis of the new Nu correlation function for the intervals
1 ≤ β ≤ 3 and 4 ≤ β ≤ 8.

The data show a varying impact of inclination angle φ and aspect ratio β implying
that the inclination angle shows additional importance at high aspect ratios. Note
that the impact of Reφ is 16.9% for 4 ≤ β ≤ 8 even though the data in Tab. 6.4
includes small Reynolds numbers, i.e., a vanishing impact of φ as previously discussed.

Accuracy of the correlation equation
To assess the accuracy of Eq. 6.3, Tab. 6.5 shows the mean deviation |∆Nu| =

103



6 Heat transfer dynamics

1
M

M∑
i=1

|∆Nui| between the numerical results and the correlation results for several

temperature ratios TR. The deviations are calculated for the complete parameter
space, i.e., the deviations for each TR are determined based on the full Re, φ, and β
parameter space. The mean deviation |∆Nu| over the full investigated parameter

TR < 1 |∆Nu| |∆NuMax| TR > 1 |∆Nu| |∆NuMax|
TR = 0.35 4.11% 15.76% TR = 1.05 4.54% 16.64%
TR = 0.55 1.70% 16.89% TR = 1.25 2.08% 13.44%
TR = 0.75 1.79% 17.06% TR = 1.45 2.51% 12.61%
TR = 0.95 3.21% 17.37% TR = 1.65 4.69% 16.73%
TR < 1 2.70% 17.37% TR > 1 3.45% 16.73%

Tab. 6.5: Mean and maximum deviations between the numerical and the prediction results for
several TR.

range is approx. 3% with a maximum deviation below 18%.
The distribution of ∆Nu in Fig. 6.14 further shows the majority of all deviations

of Nu to be less than |5%|. To be more precise, 36.8% of all deviations are ≤ |3|%,
66.9% are ≤ |5|%, and 93.9% are ≤ |10|%. The Gaussian distribution possesses a
peak value at ∼ 3% deviation. This slight shift is attributed to the minor rounding
of the coefficients mentioned at the beginning of this section.
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Fig. 6.14: Histogram of the deviation distribution, the solid red line defines the Gaussian
distribution of the dataset.

To illustrate the dependence of the deviation of Eq. 6.3 as a function of the
investigated parameter space, Fig. 6.15 shows the deviation ∆Nu(Re, φ) for β = 4
(Fig. 6.15a) and ∆Nu(Re, β) for φ = 45◦ (Fig. 6.15b) at TR = 1.05.
It is evident that maximum deviations occur mainly for low Reynolds numbers at
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Fig. 6.15: Contour maps of the relative deviations ∆Nu.

high inclination angles and low aspect ratios at TR = 1.05, i.e., the extremes of the
investigated parameter space.

To conclude, the novel correlation shows low deviations, i.e., |∆Nu| < 4%, through-
out the investigated parameter space. Thus, it is a promising function to be used in
point-particle models to efficiently investigate multiphase flows with non-spherical
particles and heat transfer.

Comparison
As mentioned in the Introduction, point-particle models of ellipsoidal particles are
often based on correlation functions for spheres, e.g., the equation by Whitaker [116].
The comparison between Whitaker’s equation and the novel equation Eq. 6.3 at
TR = 1.05 in Fig. 6.16 shows the accuracy of the newly proposed correlation also for
spheres, i.e., β = 1. The trend is very well captured and the maximum deviation is
less than 5% at Re = 100.

Ganguli & Lele [28] investigated the Nusselt number distribution of a sphere at
low Reynolds numbers where the temperature ratio between the particle and the
fluid is TR > 1. The authors proposed the correlation function

Nu = [1 + (1 +Re)1/3]e−0.2201λ+0.00331λ2+0.0046(Re−ReTMF ) (6.4)

with the Reynolds number RTMF computed at the modified film temperature
TMF = 0.08TP + 0.92T∞ for a sphere at 10−3 ≤ Re ≤ 10. Fig. 6.17a shows the dis-
tribution of the Nusselt number Nu as a function of the Reynolds number Re for a
sphere for 0 ≤ Re ≤ 10 for the correlation function from Ganguli & Lele [28] and the
correlation Eq. 6.3. The agreement between both correlation functions is even in the
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Fig. 6.16: Nusselt number Nu as a function of Reynolds number Re. Comparison of the
correlation by Whitaker [116] and the novel correlation function Eq. 6.3 for a sphere
at TR = 1.05.

low Reynolds number regime convincing. The accuracy of the novel correlation equa-
tion is substantiated by the comparison of the correlation data with fully-resolved
simulation findings in Fig. 6.17b for a sphere at TR = 0.75.
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Fig. 6.17: Nusselt number Nu as a function of Reynolds number Re. Comparison of the
correlation by Ganguli & Lele [28] and the novel correlation function Eq. 6.3 for a
sphere at TR = 1.25, and fully-resolved simulation and correlation data Eq. 6.3 for a
sphere at TR = 0.75.

It can be stated that the good agreement of the proposed correlation function with
data from the literature and fully-resolved numerical simulations shows that Eq. 6.3
gives reliable results also for spheres, i.e., β = 1, at varying temperature ratios. This
is especially noteworthy since the genetic approach was trained by ellipsoidal data
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only.

Next, a comparison of Eq. 6.3 with correlation functions for the Nusselt number
for non-spherical particles is presented. To the best of the authors’ knowledge, no
correlation function for a likewise parameter space is available. Only Ke et al. [55]
proposed a correlation function which can be considered relevant, however, without
the temperature ratio as an explicit parameter. The correlation function reads

Nu = c1Pr
1/3Re2/3(β)c2 + c3Pr

1/3Re1/2(β)c4

+ c5(β)c6 + (β)c7 (β − 1)c8Re
c9sin2(c10φ) (6.5)

function with the coefficients

c1 = 0.0187 c2 = 0.8829 c3 = 0.5453 c4 = −0.1830 c5 = 1.9120
c6 = 0.0646 c7 = 0.7346 c8 = 0.0227 c9 = 0.5660 c10 = 1.0645,

which are valid for 10 ≤ Re ≤ 200, 0.25 ≤ β ≤ 2.5, and 0◦ ≤ φ ≤ 90◦.
Fig. 6.18 shows a comparison for the configuration β = 2.5 for φ = 0◦ and φ = 90◦

for both correlation functions.
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Fig. 6.18: Nusselt number Nu as a of Reynolds number Re. Comparison of the new correlation
function Eq. 6.3 and the correlation function by Ke et al. [55] for φ = 0◦ and φ = 90◦

at β = 2.5. The temperature ratio in Eq. 6.3 is TR = 1.05.

The mean deviation is |∆Nu| = 0.55% and the maximum deviation |∆NuMax| =
1.14%. Other configurations show similar deviations. The mean deviation averaged
over the entire parameter space is |∆Nu| = 2.01% and the maximum deviation is
|∆NuMax| = 5.79%. Thus, the agreement between the correlations for small TR is
very high.
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Extended parameter range
The discussion of the smallest computed Nusselt number Re = 1 in Ch. 6.1.4.5
shows the dependence of the dimensionless heat transfer on the aspect ratio β and
the temperature ratio TR. Masliyah & Epstein [68] derived analytical solutions for
prolate ellipsoids β > 1 in Stokes flow conditions. The direct comparison of the
analytical solution by Masliyah & Epstein [68] and the proposed correlation Eq. 6.3
at Re = 0, i.e., outside of the trained and investigated Reynolds number range, and
TR → 1 yields a maximum deviation below < 10%, which is considered acceptable.
The data in Tab.6.6 show the differences as a function of β. It is evident that the

β ∆Nu(Re = 0) β ∆Nu(Re = 0)
1.5 −1.05% 5 7.81%
2 1.09% 6 8.55%
3 4.45% 7 8.95%
4 6.46% 8 9.12%

Tab. 6.6: Nusselt number deviations as predicted by the analytical solution by Masliyah &
Epstein [68] and Eq. 6.3 for Re = 0 and TR → 1 grouped by β.

deviation increases with increasing aspect ratios.

It was previously shown that the proposed equation accurately models the heat flux
dynamics within the inspected parameter ranges and therefore accurately captures the
underlying physical relationships. To further support this statement, comparisons to
data outside of the training dataset are conducted. While the following investigation
is not meant to be a complete validation of the proposed equation in an extended
range of parameter ranges, the comparisons yield convincing accuracy in parameter
ranges outside the training dataset.

To show the wide applicability of the correlation Eq. 6.3, the correlation data
is compared to fully-resolved simulation results for the temperature ratios TR =
[0.55, 1.05, 1.45] in the range β = [2, 4, 8] and φ = [0◦, 45◦, 90◦] up to Reynolds
numbers Re = 200. The agreement of the data is convincing, i.e., the mean deviation

TR ∆Nu ∆NuMax ∆(∆Nu ≤ 5%)
0.55 2.5% 7.5% 79.6%
1.05 2.6% 6.3% 80.0%
1.45 1.8% 4.0% 100.0%
ALL 2.3% 7.5% 86.6%

Tab. 6.7: Mean and maximum deviations at different temperature ratios TR in the range 100 ≤
Re ≤ 200

is 2.3% for the extended parameter range shown in Tab. 6.7. More than 80% of all
deviations between the fully-resolved results and the correlation findings are smaller
than 5%.

The particle configuration φ = 45◦, β = 4 at TR = 0.55 and TR = 1.45 is
exemplarily shown in Fig. 6.19 for 1 ≤ Re ≤ 200 with the solid line marking the
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6.1 Correlation equation for the Nusselt number of ellipsoidal particles

correlation results and the dots marking the fully-resolved numerical simulations.
The maximum deviation is smaller than 5% within the full Reynolds number range

20 40 60 80 100 120 140 160 180 2002

4

6

8

10

12

14

16

18

20

22

TR = 1.45

TR = 0.55

Re

N
u

Simulation results
Correlation Eq. 6.3

Fig. 6.19: Nusselt number Nu as a function of Reynolds number Re for an ellipsoid β = 4, at
an inclination angle φ = 45◦, and TR = 0.55 and TR = 1.45.

1 ≤ Re ≤ 200.
Note that in the Reynolds number regime Re ≤ 200 no unsteady asymmetric flow

field was computed by the fully-resolved simulation. Following Richter & Nikrityuk
and Sanjeevi et al. [89, 94] such a flow is expected depending on the inclination angle
for Re ≥ 250.

Furthermore, the direct comparison between the correlation results by Whitaker [116]
and Eq. 6.3 for a sphere at TR = 1.05 in the range 1 ≤ Re ≤ 200 yields a maximum
deviation of ∆NuMax = 6.87%.

Hence, it is fair to state that Eq. 6.3 further provides reliable results in an ex-
tended range of Reynolds numbers for spheres and ellipsoids.

6.1.6 Conclusions
A novel correlation function for solid spherical and non-spherical particles in uniform
flow conditions is derived. The equation is valid for Reynolds numbers 1 ≤ Re ≤ 100,
inclination angles 0◦ ≤ φ ≤ 90◦, aspect ratios 1 ≤ β ≤ 8, and temperature ratios
0.35 ≤ TR ≤ 1.65. In total, more than 6 600 simulations were performed to span the
complete solution space.

The analysis of the flow and temperature fields shows that the heat transfer is
dominated by different fluid mechanical and geometric aspects. A higher Reynolds
number yields increased inertial forces leading to higher velocity, pressure, and
temperature gradients. The temperature ratio impacts the wall temperature gradient
directly. The inclination angle and the aspect ratio influence the Nusselt number
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via geometric properties, i.e., increased pressure gradients and an increased area
exposed to higher heat transfer rates. The lowest Nusselt number depends on TR, it
is obtained at the highest investigated temperature ratio TR = 1.65.

The data was plugged into a genetic programming algorithm to determine a
correlation function to predict Nu. The comparison of the correlation data and the
fully-resolved solutions shows the high quality of the proposed correlation over the
whole parameter range with a mean deviation of less than ∆Nu < 4%. The analysis
of the various terms evidences the Reynolds number and the temperature ratio to be
the dominant factors of the Nusselt correlation. The comparison with correlation
functions from the literature and fully-resolved simulation data also evidences the
high accuracy in an extended parameter range.

6.2 On the accuracy of Lagrangian point-particle models
Lagrangian point-particle models are often used for the simulation of particle-laden
flows due to their lower numerical complexity compared to fully-resolved particle
simulations. For particle sizes in the order of the Kolmogorov scale, they pose a good
approximation and often reproduce the dynamics with reasonable accuracy. However,
these models are often based on certain simplifications and assumptions which reduce
the accuracy of the predictions, especially for non-spherical particles [25, 33].

In the context of heat transfer dynamics, the particles yield a direct impact on
the surrounding fluid by modulating the thermal and velocity boundary layer. In
point-particle models, this modulation is assumed to be isotropic for the thermal
dynamics, i.e., constant along the particle surface such that local gradients between
the fluid and the particle are neglected.

In order to evaluate the accuracy of such assumptions in common Lagrangian
point-particle models, comparisons between fully-resolved conjugate heat transfer
solutions and solutions that assume constant surface temperature are conducted.

The evolution of the thermal distribution within the particle and the fluid, the
expansion of the thermal boundary layer, and the differences between fully-resolved
conjugate heat transfer solutions and constant surface temperature assumptions are
analyzed and discussed in the following.

6.2.1 Description of interphase dynamics
The mathematical equations of Lagrangian point-particle models differ from those
used in fully-resolved particle simulations. In the following, the mathematical models
for Lagrangian point-particle models are briefly described and subsequently related
to the equations used in the fully-resolved configuration. Due to the focus of this
investigation, only the equations related to the thermal dynamics are discussed.

In Lagrangian point-particle models, particles are reduced to finite-sized point
sources. In two-way coupling the reciprocal impact is captured by correlation
equations describing the interactions between the carrier fluid and the particles. For
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the heat dynamics, the overall particle temperature is represented by a single scalar
assumed constant across the particle volume. The temporal change of the particle
temperature is described by

dTp

dt
= Nu

3 Pr Re0

Cp,f

Cp,p

Tf − Tp

τp
(6.6)

with the particle relaxation time τp = ρp d
2
p

18 µ [113].
Subsequently, the impact of the thermal dynamics is considered by the additional

source term
∆ET = Cp,p

γ − 1
mp

dTp

dt
(6.7)

in the fluid energy equation [113].
The assumptions of constant surface temperature in Lagrangian point-particle

models are adapted to a configuration in a finite volume formulation in which the
particles are fully-resolved by a cut-cell method. The particle temperature is reduced
to a scalar value which is applied across all particles surfaces, i.e., constant surface
temperature boundary conditions are applied.

The reduced particle temperature is advanced in time by

Tt = Tt−1 + ∆t ·
q

mp · Cv,p/Cv,f
(6.8)

with the particle mass mp and the heat capacity ratio Cv,p/Cv,f at constant volume.
This is equivalent to the thermal dynamics in Lagrangian point-particle models

such that the comparison between the equations outlined above and a fully-resolved
conjugate heat transfer solution will highlight the inaccuracies between the two
approaches.

In the conjugate heat transfer configuration, the equations described in Ch. 3.6
are used.

6.2.2 Application of boundary conditions

The application of the constant surface temperature boundary conditions is explained
in the following. For the velocity, Dirichlet boundary conditions (Eqn. 3.6) are used.

Due to the coupling of pressure p, density ρ, and temperature T in the compressible
formulation of the Navier-Stokes equations, the direct application of Robin boundary
conditions is not feasible anymore.

Therefore, the pressure in the ghost cell pG is determined by an extrapolation
using a least-squares reconstruction at an image point I. The ghost cell density

ρG = ρC − ∆n ·
∆ρ
n

(6.9)
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is determined by the equation of state with the density derivative

∆ρ
n

= γ
∆P
TΓ

−
ρΓ · ∆T

∆n
TΓ

(6.10)

with the temperature derivative ∆T/∆n of the constant surface temperature and
the cell temperature with the surface density

ρΓ = γ
pΓ
TΓ

. (6.11)

In the conjugate heat transfer configuration, the coupling boundary condition
approach described in Ch. 3.6 is used.

6.2.3 Computational setup
To investigate the differences between a heat exchange model that assumes a constant
surface temperature and one based on conjugate heat transfer within fully-resolved
particles, numerical simulations of spherical and ellipsoidal particles in uniform flow
are conducted. The configuration setup, that is, the numerical setup and the domain
configuration, is equivalent to Ch. 6.1. The investigated simulations vary in the
range 10 ≤ Re ≤ 100, 1 ≤ β ≤ 8, 0◦ ≤ φ ≤ 90◦, and 0.5 ≤ TR ≤ 2.0. The distinct
parameters investigated are shown in Tab. 6.8.

Parameter Value
Reynolds number Redeq 10,25,50,100
Particle aspect ratio β 1,2,4,8
Particle angle φ 0◦, 45◦, 90◦

Temperature ratio TR 0.5, 0.95, 1.05, 1.5, 2.0
Particle density ratio ρp/ρf 600.0
Prandtl number Pr 0.72
Mach number Ma 0.1

Tab. 6.8: Parameter range for the conjugate heat transfer configuration.

The given initial temperature ratio TR = Tp/Tf is applied to the particles in
relation to the fluid reference temperature T0. It follows that Tp = TR · Tf · T0.
The particle temperature is assumed spatially constant in the constant surface
temperature configuration on all particle surfaces. In the configuration pertaining
to the conjugate heat transfer model, the particle temperature Tp/T0 is initially
applied constant within the particle, i.e., the particles initially have an isothermal
temperature distribution.

For the simulations, a minimum cell length of ∆lmin = 0.011 is used such that
the equivalent diameter of the particles is resolved by 92 cells. Adaptive mesh refine-
ment is used where the mesh is locally refined based on the instantaneous flow field
resulting from the particle surfaces and the temperature derivative. The flow field in
the fluid domain is furthermore refined based on the shear stress distribution. An

112



6.2 On the accuracy of Lagrangian point-particle models

example of a 2D cut plane of an ellipsoidal particle with β = 8 and φ = 45◦, and
the fluid for the conjugate heat transfer configuration is shown in Fig. 6.20.

Fig. 6.20: Initial grid β = 8 and φ = 45◦. In the conjugate heat transfer configuration the
black (fluid) and the red grid (particle) is resolved whereas in the constant surface
temperature configuration only the black grid lines (fluid) are considered.

In the constant surface temperature configuration the same grid is considered,
however, without resolving the inside of the particles, i.e., the red grid cells are
neglected.

6.2.4 Results and discussion
In the following, the results of the different numerical configurations are presented.
The differences of the particle surface temperature assumptions are discussed and
the impact on the particles and the fluid is outlined.

6.2.4.1 Particle temperature

The thermal dynamics of the particles are presented. To define the particle tem-
perature in the conjugate heat transfer configuration, two different approaches are
considered.

First, the volume-averaged temperature of all cells inside the solid particles is
considered. Fig. 6.21 shows the temporal development of the volume-averaged
particle temperature Tp,c/T0 for an ellipsoidal particle β = 8 for particle angles
φ = 0◦, φ = 45◦, and φ = 90◦ in uniform flow Re = 100 with initial temperature
ratio TR = 2.0.

The temporal development of the inspected configurations varies based on the
angle of attack. The angle is in relation to the flow streamwise direction as shown
in Fig. 2.2, i.e., for angles φ = 0◦ a slender body and for φ = 90◦ a bluff body is
observed. It is shown that for bluff bodies, an increased decay of particle temperature
is found in comparison to slender bodies. The particle rotated by 45◦ degrees shows
a distribution inbetween the other two configurations. However, the temporal
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Fig. 6.21: Temporal distribution of the particle cell-averaged temperature Tp,c/T0 at Re = 100,
β = 8, and initial temperature ratio TR = 2.0 for φ = 0◦, φ = 45◦, φ = 90◦ for the
conjugate heat transfer configuration.

development of Tp,c/T0 for φ = 45◦ is closer to the development of the bluff body
than the slender body.

Tp,c/T01.0 1.6

(a) φ = 0◦ (b) φ = 45◦ (c) φ = 90◦

Fig. 6.22: Temperature distribution inside of an ellipsoidal particle β = 8 in uniform flow at
Re = 100 for an arbitrary time step. The particle is coupled to the surrounding
fluid by the conjugate heat transfer algorithm presented in Ch. 3.6 and the initial
temperature distribution was isothermal with TR = 2.0. The particle temperature
field is in relation to the reference temperature T0.

To investigate what causes the differences in particle temperature between the
different angles, Fig. 6.22 shows a cut through the center of mass of the three inspected
particles. Stark temperature gradients inside the particles are prevalent where the
particle tips are found to be of lower temperature than the rest of the particles. Due
to the large exposed area to the fluid of the particle tip, the temperature gradients
are increased. For the angle φ = 0◦ only one of the tips is directly exposed to
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the undisturbed uniform flow. In the other configurations, both particle tips are
exposed to the undisturbed fluid flow at the surface. Consequently, the heated
fluid is transported away such that the gradients at the surface of the particle are
consistently increased. This results in larger temperature gradients inside the particle
and subsequently in increased cooling rates of the particle at the tips. The differences
in the number of tips subject to the fluid flow then explains the increased cooling
rates of non-slender bodies. Within the particles, the particle tips facilitate the
conductive transport of energy due to increased gradients. Furthermore, the particle
configurations φ = 45◦ and φ = 90◦ expose a larger surface area to the undisturbed
flow field. The increased gradients at the particle inside facing the undisturbed flow
field on the windward side result in larger thermal dynamics. Consequently, the
particle configurations with increasing inclination angles are shown to decrease their
temperature faster than the slender body configuration.

Next, the area-averaged surface temperature of all surfaces of the solid particles in
the conjugate heat transfer configuration is considered.

The starting phase of the simulation run is inspected, i.e., t u∞/deq < 1, and
shown in Fig. 6.23. The simulation configuration is Re = 100, TR = 2.0, and β = 8
for φ = 0◦, φ = 45◦, and φ = 90◦.

0 1 2 3 4 5 6 7 8 9 10 11
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

tu∞/deq

T
p
,Γ
/T

0

φ = 0◦

φ = 45◦

φ = 90◦

Fig. 6.23: Temporal distribution of the particle surface-averaged temperature Tp,Γ/T0 at Re =
100, β = 8, and initial temperature ratio TR = 2.0 for φ = 0◦, φ = 45◦, φ = 90◦ for
the conjugate heat transfer configuration.

As shown, the initial surface temperature is lower than the volume-averaged
particle temperature. The conjugate heat transfer model uses an iterative approach
which minimizes the heat flux differences between the fluid and the solid phase such
that an energy-conserving method is ensured. In the initial time steps, the thermal
conductivity k(T ), and the large temperature gradients ∆T between the two phases
limit the transfer of thermal energy. This explains the rapid increase of the surface
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temperature in the initial time steps. As the thermal boundary layer builds up inside
the fluid the energy flux through the interface line is conserved. While this can be
controlled by choosing different parameters, the set of parameters chosen in this
investigation corresponds to solid biomass particles embedded in air [69].

The dynamics of the initial phase with the slow build up of the thermal boundary
layer are not captured by the constant surface temperature approach. The surface
temperature corresponds to the particle temperature such that a conservative heat
flux cannot be guaranteed.

However, the overall distributions of the different inclination angle configurations
are similar to the cell-averaged temperature distributions in Fig. 6.21.

The temporal development of the particle temperature is inspected next. The
simulation setup at Re = 100, β = 8, φ = 45◦, and TR = 2.0 is considered. The
particle temperature Tp/T0 in the conjugate heat transfer model is equivalent to
the volume-averaged particle temperature Tp,c/T0 as outlined above. The particle
temperature in the constant surface temperature configuration and conjugate heat
transfer configuration are compared in Fig. 6.24.
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Fig. 6.24: Temporal distribution of the particle cell-averaged temperature Tp,c/T0 at Re = 100,
β = 8, φ = 45◦, and initial temperature ratio TR = 2.0 for the conjugate heat transfer
configuration (CHT) and the constant surface temperature (CST) configuration.

The overall shape of the temperature distributions is similar for the conjugate
heat transfer and the constant surface temperature configuration. However, the two
distributions do not coincide exactly. That is, the temperature in the conjugate heat
transfer configuration decreases slower than in the constant surface temperature
model. Due to the varying heat transfer rates and subsequent temperature gradients
along the particle surfaces, the conjugate heat transfer model results in lower tem-
perature decay overall. This is especially relevant in non-spherical particles where
the windward and leeward side are subject to different mechanical loads. This aspect
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is neglected in the constant surface temperature model. Therefore, the constant sur-
face temperature model not only decreases its temperature faster but also reaches an
equilibrium with the surrounding surface faster which further impacts the temporal
development of the surrounding carrier fluid.

6.2.4.2 Fluid dynamics

The impact of the varying surface dynamics on the carrier fluid is discussed in the
following.

The simulation configuration Re = 100, β = 8, φ = 45◦, and TR = 2.0 is in-
spected. The temperature contours of the fluid are shown in Fig. 6.25 for both
configurations at a timestep in which the volume-averaged particle temperature is
roughly equal with Tp,c/T0 ≈ 1.5. At the shown time step, the velocity field is steady.
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Fig. 6.25: Comparison of the fluid temperature contours for an ellipsoid β = 8 and φ = 45◦ at
Re = 100. The initial temperature ratio is TR = 2.0 and the particles are shown at a
timestep where the cell-averaged temperature is Tp/T0 ≈ 1.5.

The temperature contour for Tf/T0 = 1.1 varies between the conjugate heat
transfer and the constant surface temperature configuration. While the conjugate
heat transfer contour has only a narrow extension near the tip on the top of the
ellipsoidal particle, the constant surface temperature contour line is more extended.

The reason for this is shown in Fig. 6.26 where the tip of the particle is magnified.
The contour lines align much closer to the particle tip in the conjugate heat transfer
configuration due to the lower particle temperatures at the tips.

The distributions of the contour lines for Tf/T0 = 1.2, Tf/T0 = 1.3, and Tf/T0 =
1.4 are also modulated. While the impact is decreased in the near vicinity of the
particle leeward side, the distributions of the temperature contours vary at the
particle tips and the windward side. As shown in Fig. 6.26, the particle tips are
not covered by the contour lines for TF /T0 ≥ 1.2 in the conjugate heat transfer
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Fig. 6.26: Comparison of the particle tips temperature contours for an ellipsoid β = 8 and
φ = 45◦ at Re = 100. The initial temperature ratio is TR = 2.0 and the particles are
shown at a timestep where the cell-averaged temperature is Tp/T0 ≈ 1.5.

configuration which is opposite to the constant surface temperature configuration.
The tip is fully covered by increased temperature contour line. Similar dynamics are
observed on the windward side of the particle.

Due to the impact of the locally varying temperature inside the particle and on the
surface intersecting the solid and the fluid, the particle tips are cooler than the rest
of the ellipsoidal particle. The fluid flow then increases the temperature gradients
nearby. This results in faster temperature decreases due to the advective flow and
the larger area to volume ratio near the tips which has severe implications on the
temperature field in the fluid downstream.

Subsequently, the thermal boundary layer is significantly modulated by the as-
sumption of the constant surface temperature distribution. To be more precise, the
assumption of a constant surface temperature neglects the local impact of the tem-
perature distribution which subsequently influences the development of the thermal
dynamics inside the fluid. Due to the low Mach number, the velocity field is not
modulated noticeably.

The impact of the local temperature variations on specific coefficients is explored
in the following. Since the linear and rotational movement and the heat transfer
dynamics in Lagrangian point-particle models are commonly described by the drag-,
lift-, and torque coefficients and the Nusselt number [25, 113], the aforementioned
coefficients are investigated.

A simulation with Re = 100, β = 8, φ = 45◦ and an initial homogeneous
temperature distribution of TR = 2.0 is investigated. Shown in Tab. 6.9 are the
aforementioned coefficients for the constant surface temperature (CST) configuration,
the conjugate heat transfer (CHT) configuration, and a reference configuration at
isothermal conditions (ISO) where the impact of the thermal dynamics is neglected.
For the constant surface temperature and conjugate heat transfer configuration,
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the timestep at which the coefficients are evaluated is chosen such that the same
volume-averaged temperature Tp/T0 ≈ 1.15 is given.

Parameter CST CHT ISO
Drag CD 1.852 1.842 1.811
Lift CL −1.146 · 10−6 −1.002 · 10−6 −7.515 · 10−7

Torque CT −1.305 · 10−4 −1.269 · 10−4 −1.393 · 10−4

Nusselt Nu 10.008 10.783 −

Tab. 6.9: Drag, lift, and torque coefficient and Nusselt number for the constant surface tem-
perature configuration, the conjugate heat transfer configuration, and an isothermal
reference configuration.

The data indicates that the temperature impacts all inspected coefficients. However,
the order of the modulation varies between the constant surface temperature and
the conjugate heat transfer configuration. The drag coefficient is increased in the
constant surface temperature configuration by 2.3% where it is increased by 1.7% in
the conjugate heat transfer configuration, i.e., roughly 0.6% less. The lift and torque
coefficient are modulated similarly. The relative small impact of the non-thermal
components is owed to the low Mach number Ma = 0.1. This is expected but shows
the inaccuracies of the constant surface temperature assumption even at low Mach
number configurations.

In the conjugate heat transfer configuration, the Nusselt number increases by 7.7%
compared to the CST configuration. This increase is primarily due to significant
differences in heat flux between the windward and leeward sides of the particle,
driven by steep temperature gradients along its surface. These gradients result from
local variations in surface temperature, which modulate the thermal boundary layer
in the fluid flow. Consequently, these variations influence the local heat flux and
contribute to the increased Nusselt number.

While the observed differences are small, the results indicate that even at low
temperature ratios the relevant coefficients used in Lagrangian point-particle models
are inaccurate in comparison to fully-resolved simulations such that the Lagrangian
point-particle approach with the given formulations can only pose an approximation.

6.2.5 Conclusions
The impact of locally varying heat exchange is investigated by comparison of constant
surface temperature and conjugate heat transfer assumptions. This assumption
is often made in Lagrangian point-particle models such that the investigation is
synonymous for the inspection of the accuracy of the point-particle approach.

The comparison is conducted for fixed ellipsoidal particles in the range 10 ≤ Re ≤
100, 1 ≤ β ≤ 8, 0◦ ≤ φ ≤ 90◦, and 0.5 ≤ TR ≤ 2.0 in uniform flow.

First, the particle temperature is investigated for an ellipsoidal particle with aspect
ratio β = 8 and initial temperature ratio TR = 2.0 in uniform flow with Re = 100
for φ = 0◦, φ = 45◦, and φ = 90◦. The results show that the inclination angle has
a large effect on the temporal decrease of the particle temperature. To be more
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precise, the particle tips are subject to the undisturbed fluid flow and facilitate the
temperature decrease due to increasing gradients as a consequence of the advective
fluid flow near the surfaces of the particle tips.

Additionally, the initial surface temperature of the particle appears to differ from
the particle temperature. Since the conjugate heat transfer approach is energy con-
serving, the initial surface temperature differs from the particle temperature. The
solid-fluid interaction can only transfer thermal energy based on the thermal conduc-
tivity. Consequently, the comparison of the temporal development of the particle
temperature in a constant surface temperature configuration and a conjugate heat
transfer configuration yields different distributions. To be more precise, the constant
surface temperature decreases faster due to the neglect of the local temperature
variations along the particle surface.

The impact of the two assumptions on the fluid dynamics is discussed next. The
temperature contour lines are noticeably modulated since the locally decreased
temperature at the particle tips is not considered in the constant surface temperature
configuration. The thermal boundary layer is modulated which prevails especially
near the particle tips and the elongated axis at the windward and leeward side.

As a result, the key figures used in Lagrangian point-particle models, namely the
drag, lift, and torque coefficient and the Nusselt number, differ between the constant
surface temperature model and the conjugate heat transfer model. In comparison to
an isothermal configuration at the same fluid properties, the drag, lift, and torque
coefficient are only slightly modulated. This is expected due to the low Mach number
in the investigation. However, the Nusselt number is increased by approx. 7% in
the conjugate heat transfer model due to the local variations in the particle surface
temperature which impacts the thermal boundary layer in the fluid.

The results indicate that the impact of locally varying heat exchange between
solid particles and the carrier fluid is of high importance in non-spherical particle
configurations.
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7 Conclusions and Outlook

The present thesis explores the interaction of spherical and non-spherical solid
particles with the carrier fluid in multiphase flows.

The numerical simulations of the particles are conducted using an immersed-
boundary method in a finite volume framework. The aspect ratios of the particles
are in the range 1 ≤ β ≤ 8, which are fully resolved by a cut-cell method to ensure
the conservation of mass, momentum, and energy at the particle interfaces.

To facilitate the computation of different physical problems, several enhancements
were implemented within the simulation framework m-AIA.

A parallel particle solver is introduced to optimize performance on high-performance
computing systems. The solver operates on a local/global id principle and uses New-
mark and Crank-Nicholson integration schemes to accurately capture the motion of
free-moving particles. A modified hard-sphere collision model is presented to account
for particle-particle and particle-wall collisions.

A novel solver for the solution of the conservation equation for the enthalpy
is developed. The solver facilitates accurate computation of the heat dynamics
within solid bodies of arbitrary geometry by fully resolving their internal structure.
The solver is coupled to the surrounding carrier fluid by an iterative conjugate
heat transfer approach. Thermal energy exchanges are computed such that local
temperature gradients are considered and energy conservation is ensured which
results in increased accuracy inside the particles and the fluid flow.

A local mesh extension algorithm for the numerical stabilization of particles at
the domain boundaries is presented. The novel algorithm, called adaptive mesh
extension, supports the addition of cells extending beyond the computational domain.
The algorithm enhances the stability during computations and facilitates accurate
numerical intersections and conservative interactions among moving particles beyond
the domain of investigation.

A slicing technique to couple and synchronize multiple different domains is pre-
sented. In the investigation of fully-developed periodic pipe and free jet flow, the
domains are coupled such that the instantaneous solution of the pipe flow is used as
inflow condition for the free jet domain. This allows the seamless transition between
the two domains and eliminates the necessity for assumptions or artificial turbulence
for the jet inflow area and the associated particle dynamics.

The newly developed methods are used in different configurations consisting of
isothermal and non-isothermal problems.

First, a particle-laden turbulent free jet flow is inspected. This configuration is a
first approximation of biomass combustion in industrial combustion plants. Initially,
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7 Conclusions and Outlook

the influence of the thermal dynamics is neglected such that the aerodynamic
properties of the particles and the flow in a turbulent free jet are investigated. The
turbulent free jet is computed concurrently with a fully-developed, particle-laden
turbulent pipe flow. The latter provides the inflow data for the jet. This setup
ensures physically correct particle and fluid properties at the jet inflow boundary
which eliminates the necessity for random inflow assumptions. The problem contains
spherical and ellipsoidal particles with aspect ratios 1 ≤ β ≤ 8 and relative particle
volume-loading of ξv ≈ 6.67 · 10−4 for Ma = 0.1 and Rebulk = 15 546.

The fully-developed pipe flow and the free jet are evaluated independently of each
other.

Within the pipe domain, the particles exhibit a preferential concentration at
approximately r/D ≈ 0.35. An examination of the individual aspect ratios reveals
that the particle tends to approach the center of the domain with greater frequency as
the aspect ratio β increases. Non-spherical particles exhibit a preferential orientation
of approximately 90◦ ± 35◦ with respect to the streamwise axis which is related
to the anisotropic particle geometry. The investigation of the interphase energy
exchange reveals that ellipsoidal particles invoke larger transfer of kinetic energy in
comparison to spherical particles. This trend is especially prevalent in the near-wall
region of the pipe where the ellipsoidal particles lead the fluid and subsequently
transfer kinetic energy to the fluid. Closer to the pipe center, the particles trail
the fluid and extract energy from the fluid resulting in location-dependent energy
dynamics. Similar dynamics are observed for the particle-induced dissipation. The
particles tend to increase the dissipation rates in close proximity to the pipe wall,
i.e., a location where the particles lead the fluid.

The inspection of the subsequent jet domain shows that the dynamics in the
near-field range, i.e., x/D ≤ 10, are modulated by the particles. The presence of
the particles elicits a reduction of the radial extension of the jet flow by ∼ 4% and
an elongation of the centerline velocity by ∼ 10%. This is shown to be caused by
the tendency of the particles to induce higher dissipation towards the pipe walls
than at the pipe center, i.e., a relative shift in the local energy budget is observed.
Within the near-field range, the tendency of the particles to break up coherent
large-scale fluid motions, impose an energy cascade towards the small-scale motions,
and increase the dynamics in the particle wake results in a greater decline of kinetic
energy in the range x/D ≥ 6. The comparison between the particle-laden case and
a single-phase reference flow indicates that the total kinetic energy is reduced by
approximately ∼ 9% in the particle-laden case whereas the turbulence intensity is
reduced by ∼ 20%.

Subsequently, the thermal dynamics in multiphase flow are investigated under
assumptions of constant surface temperature and conjugate heat transfer.

To derive a correlation function for the Nusselt number Nu for ellipsoidal particles
in uniform flow, more than 6 600 fully-resolved simulations are computed within the
parameter space defined by Reynolds number 1 ≤ Re ≤ 100, aspect ratio 1 ≤ β ≤ 8,
orientation angle 0◦ ≤ φ ≤ 90◦, and temperature ratio 0.35 ≤ TR ≤ 1.65. The
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results are analyzed to derive a correlation function aimed at enhancing the accuracy
of Lagrangian point-particle models. The equation’s accuracy is evaluated through
comparisons within the investigated parameter space and an extended range beyond
it. A sensitivity analysis is conducted to highlight the impact of various terms and
parameters on heat transfer dynamics.

Finally, a novel solver for computing heat dynamics in fully-resolved solid bodies
is presented. This solver can solve the conservation equation for enthalpy, thereby
enabling accurate prediction of heat equalization processes within solid bodies of
arbitrary shape. An efficient iterative coupling ensures correct exchange between
the body and surrounding fluid. The model is validated with emphasis on parallel
efficiency. Subsequently, the model is exemplarily used to assess the accuracy of
assumptions made in Lagrangian point-particle models.

Outlook
The dynamics of non-spherical particles, as observed in industrial combustion

engines, are highly complex. Thus, the presented work can only describe a fraction
of the overall dynamics.

In future work, the dynamics of fully-resolved particle-laden pipe-jet flow under
consideration of temperature gradients between the particles and the fluid need to be
investigated. For this purpose, novel solvers allow for the inspection of such dynamics
by incorporating the impact of local temperature gradients. The author hypothesizes
that the relative position of particles inside the pipe differs in comparison to an
isothermal configuration. Consequently, the modulation of flow dynamics is altered,
resulting in different flow fields.

Additionally, solid particles undergo significant shape and mass changes during
combustion processes [42, 88]. The impact of temporally changing particle parameters
needs to be assessed. Comparisons with experimental investigations and single-phase
reference data will highlight the impact of combustion processes in more detail,
resulting in more accurate data. As shown in this thesis, the aspect ratio of particles
results in different dynamics between spherical and ellipsoidal particles. Therefore,
it is expected that the impact on fluid varies as particle shape and mass change over
time.
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Appendix

Non-dimensionalization

In this study, the governing Navier-Stokes equations for the different phases are
expressed in a non-dimensional form using the stagnation-state properties of air as
the reference condition. The reference velocity is defined by the local speed of sound
at stagnation a0, while the characteristic pressure scale is given by ρ0a2

0, with ρ0
representing the corresponding total density.

All transport and thermodynamic quantities are rendered dimensionless through
normalization by their stagnation-state values. For example, the density is written
as ρ = ρ̃/ρ0. This normalization provides a consistent basis for the dimensionless
formulation of the governing conservation equations.

The non-dimensional conservation equations are based on the variables

ρ = ρ̃

ρ̃0
, u = ũ

ã0
, µ = µ̃

µ̃0
, p = p̃

ρ̃ã02 = p̃

γp̃0
,

T = T̃

T̃0
, t =

t̃Lref

ã0
, h = h̃

h̃0

which are with respect to the variables at the state of rest given by (·)0 with (̃·)
denoting dimensional variables.

The dimensional material constants at the reference state γ, R, and µ̃0 serve
as the basis for the non-dimensional formulation. Applying Sutherlands law in its
normalized form introduces the non-dimensional temperature dependence through
the ratio

µ = T 3/2 1 + S

T + S
, (A.1)

where S denotes the Sutherland constant. Under this non-dimensionalization, the
ideal gas relation simplifies to p = ρT/γ, and the explicit appearance ofR is eliminated
from the governing equations. The velocity field, expressed in non-dimensional form,
corresponds to a Mach-number scaling based on the reference speed of sound a0.
Consequently, the characteristic reference quantities, such as the Reynolds number
Re0 = ρ0a0L0/µ0, naturally emerge within the non-dimensional equations.
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This non-dimensionalization by the stagnation-state properties of the continuous
phase was likewise applied to the dispersed phase to ensure consistency between
the two phases and to eliminate the need for additional conversion factors in the
interphase coupling terms.
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